
Fractured Processes: Adaptive, Fine-Grained Process Abstractions

Thanumalayan Sankaranarayana Pillai
University of Wisconsin-Madison

Andrea C. Arpaci-Dusseau
University of Wisconsin-Madison

Remzi H. Arpaci-Dusseau
University of Wisconsin-Madison

Abstract. We introduce Fracture, a novel framework
that transforms and modernizes the basic process ab-
straction. By “fracturing” an application into logical
modules, Fracture enables powerful and novel run-time
configurations that improve run-time testing, applica-
tion availability, and general robustness, all in a generic
and incremental manner. We demonstrate the utility of
fracturing via in-depth case studies of a chat client, a
web server, and two user-level file systems. Through
these examples, we show that Fracture enables applica-
tions to transparently tolerate memory leaks, buffer over-
flows, and isolate subsystem crashes, with little change
to source code; through intelligent fracturing, we can
achieve low overhead as well, thus enabling deployment.

1 Introduction
Since the advent of modern operating systems, the pro-
cess has been the central abstraction of the machine that
is presented to users [25, 18, 44]. To users and develop-
ers, processes directly represent a virtual machine, pro-
viding a clean and simple abstraction of a computer sys-
tem, and thus are essential in all modern systems.

Unsurprisingly, with processes as a core abstraction,
an entire ecosystem of tools and techniques has de-
veloped around them. For example, debuggers such
as GDB help users pinpoint problems in their code;
memory checking tools such as Purify [2] and Val-
grind [45] automatically find common memory-related
errors; environment-related specializations, such as those
made available by the run-time linker and user limits, en-
able further specialization (e.g., allowing transparent use
of a debugging malloc library or restricting the amount
of memory a process can allocate).

However, applications have changed greatly since the
time when processes were invented. Early applications,
particularly in the UNIX domain, were generally small
and “did one thing well”; complex applications were
built by stringing together many small processes [44].
Modern applications, in contrast, are monoliths. Good
examples are Microsoft’s Office Suite, Apple’s iPhoto,
iTunes, and iMovie [26], Apache’s web server, and Post-
gres database.

Unfortunately, monolithic applications can restrict the
effective usage of process-based tools and techniques.
For example, when downloading a code patch, a user
might want to restrict the environment of the patch, gain-
ing assurance that it works before running it unrestricted;
however, patches cannot currently be easily isolated in
their own environment. Alternately, the user might want
to run the patched and unpatched version in parallel to
compare results; currently, this might not give correct
results given side effects. Finally, the user might wish
to test the modified code with a memory-checking tool
such as Valgrind; unfortunately, the cost of applying a
tool to the entire application may be too high. There-
fore, we propose that environments and tools should be
applicable to sub-portions of an application.

In this paper, we introduce a new framework that en-
ables fractured processes. Given an existing code base
(written in C), a developer adds a small amount of anno-
tation to demarcate natural boundaries within the code,
thus splitting the code into a set of static modules. A frac-
turing specification dynamically groups modules into
one or more fractured mini-processes (FMPs). Each
FMP may be run in its own environment, which allows
selective application of OS policies (e.g., scheduling or
security); it also enables powerful process-level tools
(e.g., Memcheck [45]) to be selectively applied, signif-
icantly reducing overhead.

FMPs, in their simplest implementation, correspond
directly to UNIX processes. Modules within an FMP
communicate directly via function calls, share mem-
ory, and thus represent an isolated sub-unit of the ap-
plication; modules in different FMPs communicate via
shared-memory queues. Both cases are the same to the
programmer, who simply annotates the code; the fracture
compiler transforms the code automatically. One essen-
tial feature of the framework is that it is incremental; only
relevant pieces of code need to be modified. This aspect
allows large complex applications to be annotated only
as needed, increasing deployability.

Beyond grouping modules into separate isolation do-
mains, fracturing also enables many configurations. For
example, individual FMPs can be restarted automatically
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Figure 1: Modules, Fracturings, FMPs, and FMP-Es.
(a) is a visualization of the application’s source code divided
into modules. (b) and (c) are two different fracturings, i.e.,
visualizations of the application at runtime. The fracturing in
(b) has maximum runtime isolation and consists of 7 FMPs,
each using a different FMP-E. (c) is minimal isolation, with a
single FMP and FMP-E.

and transparently after a crash, as in microreboots [13].
One can also replicate an FMP, enabling various forms of
N-version programming [7]. Finally, sampling replicated
FMPs can reduce overheads.

This paper makes three major contributions. First, we
provide a complete framework that makes it practical to
use mini-processes for application written in C; Fracture
handles incremental conversion, multi-threading, and in-
telligent partitioning at runtime. An important aspect of
Fracture is its flexibility, which allows an application to
be split into mini-processes at function-level, yet also to
be run as a single, low-overhead, monolithic process.

Second, we outline our experience modularizing four
different applications: a simple web server, two FUSE
file systems, and an open-source chat client. We present
guidelines for modularizing applications and labeling the
capabilities of each module (e.g., restartable, replicable,
and samplable) in such a way that is low effort yet leads
to acceptable performance and functionality.

Finally, we evaluate the performance overhead of ap-
plying Fracture and show how Fracture can increase ro-
bustness. We find that Fracture can be used without over-
head for some configurations, but care must be taken to
obtain the best trade-off between performance and isola-
tion of modules. We show how Fracture can be used to
efficiently detect buffer overflows with a padded mem-
ory allocator, find memory leaks with Memcheck, toler-
ate memory leaks via isolation and restart, and even use
replicated fracturing to verify that a new patch behaves
functionally identical to the old one-to-one. By applying
this functionality for specific FMPs instead of the entire
application, performance remains acceptable, indicating
that all could be run in deployment.

The rest of this paper presents our framework. After
an overview of the design, the paper describes our im-
plementation, our experience fracturing different appli-
cations, an evaluation, related work, and conclusions.

2 Design
This section presents our goals, Fracture’s ecosystem,
basic fracturing approaches, and runtime configurations.

2.1 Goals and Scope
The aim of Fracture is a framework that, with regards to
the conventional abstractions of a process, achieves:
Fine-grained mappings of parts of a program into sepa-
rate runtime entities, for process-like OS-level monitor-
ing, isolation, and policy enforcement. The fine-grained
entities should allow convenient control actions, similar
to process restarts. This can be contrasted to the tradi-
tional mapping of each program to a single OS process.
Incremental conversion of existing programs. If only
one portion of a program requires fine-grained mecha-
nisms, it can be transformed with little effort, a stark con-
trast to rewriting the program in a new language.
Supporting complex applications written in C. The
framework should aim for minimal changes to the C
paradigm, even supporting multi-threaded programs.
Low overhead by adaptively mapping static code parts to
fine-grained runtime entities. Runtime overhead for sep-
arating out parts must be incurred only when the user de-
sires the separation, at runtime, and should be optimized
to the environment and workload of each deployment.

2.2 System Overview
The basis of Fracture is identifying fine-grained static
divisions of the code at development time, but map-
ping them onto runtime entities in different ways after
deployment. The static divisions are identified by the
programmer, who typically exposes logical divisions al-
ready present in the source code. The mappings are con-
figured by the user or administrator, sometimes consid-
ering trade-offs (between performance and robustness,
for example). Users and administrators do not require
knowledge of the code, but need to know which static di-
visions are present and the capabilities of each division.
The basic elements of this workflow are:
Module: Modules are static divisions in the program that
could form a separate runtime entity. Modules, shown
in Figure 1a, are identified by the programmer. From
the programmer’s perspective, a module is a collection
of functions that are closely coupled, likely share data,
and interact with other modules through inter-modular
function calls; they are akin to classes in object-oriented
languages or servers in microkernel-based systems.
Fractured Mini-process: An FMP is a set of static mod-
ules that form a dynamic runtime entity, and corresponds
to the notion of an OS-level process. Figures 1b and 1c
show two different ways of composing modules into
FMPs. Calls within an FMP act like procedure calls;
calls between FMPs are converted into RPCs.
FMP-Environment: An FMP-Environment (FMP-E) is
the runtime environment of an FMP and is the key to ap-
plying process-level tools and specializations to targeted
portions of an application. The FMP-E includes all as-
pects of a process-level environment, such as resource

2



1

34

5

6 7

1

34

5

6 7 xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

22

(a)

1

4

5

6

1

4

5

6 xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx2

3

7

2

3

7

(b)

1

4

5

6

3

7

1

4

5

6

3

7 xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx2

3′

7′
2

3′

7′

(c)

Figure 2: Basic Fracturings, for isolating module 2 from 1.
(a) Single Module Isolation: 2 constitutes an individual FMP.
(b) Intelligent Paritioning: 3 and 7 are with 2, reducing FMP
interaction. (c) Duplication: 3 and 7 duplicated across FMPs.

limits, resource restrictions based on user IDs, and dy-
namic linker behavior (i.e., LD PRELOAD in UNIX).
An FMP-E can even be a transparent emulator for exe-
cutable binaries, such as tools built using Valgrind [45]
or Pin [37]. Providing different environments is a key
feature of traditional systems, since it allows generalized
tools and strategies to be applied to each process; FMP-
Es extend this notion for modules (or groups of mod-
ules) and thus are critical in Fracture. Figure 1b illus-
trates each FMP with a different FMP-E; in Figure 1c,
the entire program is run with the same FMP-E.
Fracturing: A fracturing describes how modules are
composed into FMPs, and the FMP-Environment for
each FMP. Hence, it specifies the isolation boundaries
used at runtime (e.g., a single monolithic process with-
out any boundaries, or as a group of processes) as well
as how each FMP is specialized (e.g., one FMP could be
targeted with special debugging tools). Figure 1b and 1c
present two different fracturings of an application.
Execution Control: In addition to partitioning mod-
ules, three execution control actions can be performed
on FMPs: restarting, replicating, and sampling. Modules
have execution control capabilities corresponding to ac-
tions; an action can be imposed on an FMP only if all its
modules are labeled with the associated capability. Mod-
ules with no special capabilities can be only isolated.
Runtime Configuration: A runtime configuration, con-
sisting of a fracturing and the execution control on dif-
ferent FMPs, is specified for each run of the application.

The rest of the paper explains Fracture with respect to
fault tolerance and testing strategies. Different runtime
configurations can be used by the system administrator,
the developer, or end user, to achieve a variety of out-
comes. The flexibility provided by Fracture in enabling
different environments, fracturings, execution controls,
and runtime configurations is central to its design.

2.3 Basic Fracturings
Fracturings offer a trade-off. Having many FMPs results
in many inter-FMP procedure calls, and hence can be in-
efficient. However, very few FMPs can be too coarse-
grained, and hence ineffective. We now explain some
likely fracturings and their utility.
Monolithic Process: Running all modules together in a
single FMP (Figure 1c) is similar to the classic approach
of running an application as a single process. This frac-

turing has no overhead (other than from modularization
source code changes), but it does not permit fine-grained
reliability mechanisms. It should be used if no fine-
grained mechanism is needed or performance is critical.
Micro-isolation: Isolating each module into an individ-
ual FMP (Figure 1b) is the most fine-grained fracturing;
it is the most flexible but suffers the highest overheads.
Single Module Isolation (SMI): This consists of two
FMPs (Figure 2a), one containing a targeted module, the
other with all other modules. The targeted module is thus
isolated, and (importantly) can have a different FMP-E.
Intelligent Partitioning: SMI can be optimized if more
modules can be assigned to the separated FMP (Fig-
ure 2b). An example is a small set of “important” mod-
ules needing isolation from a buggy module; all other
modules can then be intelligently assigned to either FMP,
reducing inter-FMP calls. Fracture includes a mecha-
nism to automatically realize an intelligent partitioning.
Duplicate Modules: Overheads can sometimes be re-
duced by duplicating some modules across FMPs, as
shown in Figure 2c. The functions of the duplicated
modules act as if they belong to all modules. Determin-
ing whether a module is duplicable is the responsibility
of the programmer.

2.4 Runtime Configurations
Basic fracturing simply allocates modules to FMPs.
Runtime configurations dictate how Fracture is used, by
specifying if FMPs are only partitioned, or if they are
also restarted, replicated, and/or sampled.

2.4.1 Partition-only
Adding no extra execution control actions to the basic
fracturing results in a partition-only runtime configura-
tion, as shown in Figure 2. This configuration facilitates
isolation between modules, and the ability to associate an
FMP-E with only a subset of modules. An example us-
age is isolating a suspected buggy module from the rest
of an application; this provides increased fail-fast behav-
ior, due to the detection of any faulty access by the mod-
ule. Resource isolation is also useful for debugging; for
example, generic memory-leak-finding tools need a log-
ically isolated address space.

Another usage arises when FMP-Es can be designed to
tolerate faults (but have high overhead), or cause unsafe
behavior that should not be imposed on the rest of the ap-
plication (such as failure-oblivious computing [43] or re-
active immunity [47]). Partitioning allows such FMP-Es
to be applied selectively upon suspicious modules. Yet
another usage concerns high-overhead FMP-Es that fa-
cilitate transparent bug testing (such as Memcheck [45]
for memory leak detection). These cannot typically be
used in actual deployment due to high overheads, but
might find the divergent workloads in the field helpful
in detecting bugs. With partitioning, the FMP-E can be
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Figure 3: Runtime Configurations. (a) Replicated FMP
(modules 1 and 2), with different FMP-Es. (b) Sampled FMP.

applied to only one module in each deployment, thus re-
ducing overhead, while gaining the insights such mea-
surement “in the wild” provide.

2.4.2 Restarting FMPs
Capable FMPs can be configured to restart if they crash.
Doing so achieves the usual benefits of process-level
restarts, resetting the process environment and any allo-
cated OS resources (including memory). Any FMP that
communicates with a restarting FMP only perceives de-
lays. Moreover, the FMP-E can be changed with each
restart. Thus, FMP restart facilitates fine-grained ver-
sions of fault tolerance mechanisms based on restart or
retry, much like microreboots [13]. This can be use-
ful when FMP restarts might be quicker, or when, for
GUI-based applications, transparent full restarts are not
readily achievable. Other uses include FMP rejuvena-
tion [32], and fault tolerance with special FMP-Es [42].

2.4.3 Replicating FMPs
Some FMPs can be replicated, as shown in Figure 3a,
while appearing non-replicated to the rest of the applica-
tion. This allows each replica to run different code atop
different FMP-Es. When replicas crash, hang, or return
different values, the configuration will specify a handling
policy, such as terminating the application, using the re-
sults of a single trusted replica, or using majority voting.
Thus, FMP replication facilitates N-versioned fault tol-
erance [7] for parts of an application, even if the rest of
the application cannot be replicated transparently or effi-
ciently. Similarly, when software patches themselves can
be a source of bugs [55], FMP replication allows a patch
to be tested with real workloads in deployment [15].

2.4.4 Sampling FMPs
For FMPs composed of all samplable modules, function
calls to the FMP can be multiplexed among replicas with
a specified ratio, as shown in Figure 3b. For all previ-
ously described use-cases applying a special FMP-E to
one FMP, sampling can reduce overhead by multiplexing
between two replicas, only one running atop the special
(and perhaps non-performant) FMP-E.

3 Modularization Semantics
In this section, we explain the semantics of how pro-
grammers transform their code so that it can be fractured.
Our goal is to enable powerful fracturings to be realized
without a great deal of programming effort.

3.1 Modules
Modules are specified in terms of functions: a set of func-
tions forms a module. All functions need not be associ-
ated with specific modules; functions that are not will be-
have as if there are multiple copies, one per module, like
a typical library function linked into separate processes.

Since modules are units of isolation, Fracture does not
allow arbitrary access of data or resources, such as global
variables, between modules. Doing so does not obstruct
logical data sharing; instead, to access data in a differ-
ent module, one must do so through a function call. For
example, if two hash tables contain pointers to the same
data, Fracture requires either both hash tables (and the
data) to belong to a single module, or the data to be ac-
cessed via accessor functions.

In inter-modular function calls, Fracture replaces the
usual pointer parameter semantics with a similar, but
not equivalent, on-demand copy-by-value-result seman-
tic. This new approach is required because, without a
global address space, pointers in inter-modular calls do
not work; allowing only pass-by-value makes module
boundaries expensive and modularization challenging.
At runtime, if modules are isolated into different FMPs,
the new semantic passes a copy of the pointed-to object
to the callee; within the same FMP, normal semantics
apply and the pointer is simply passed. Although the se-
mantic reduces modularization overhead, it requires mar-
shalling of data referred to by pointer parameters; thus
annotation is needed for some complex types.

Similar to pointer parameters, the semantics for heap-
allocated data is also extended in Fracture. When data
is allocated in a module, and a reference is returned to a
calling module, the data is automatically re-allocated to
the calling module (if the modules are isolated). Thus,
any references to the data still in the called module will
be invalid. The same principle is applied on the return
path as needed.

As with any modular system, there is the question of
how the application should be split into modules and the
exact boundaries. For existing programs, Fracture en-
ables this transformation to be incremental, first splitting
off only key pieces of code, and more only as need be.

3.2 Module Capabilities
Semantics for module capabilities are designed so that
any effects are transparent to other modules, while still
being useful. Modules can be labeled with three control
capabilities: restartability, replicability, and samplabil-
ity. They can also be labeled with duplicability, useful in
fracturings to optimize performance. It is the program-
mer’s responsibility to understand the code within a mod-
ule well enough to determine whether it has any (or all)
of these capabilities.
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module FileCache (restartable, replicable) {
void *getData(char *file, int *l @ret len);
void put(char *file, void *data, int l @data len);

struct stat *getStat(char *file);

void putStat(char *file, struct stat *buf);

void @module init FileCacheInit();
}
@DeclareComplexType(struct stat, stat marshal);

void stat marshal(struct stat *x, Marshaller *m) {...}

Listing 1: Example Programming Annotations.

3.2.1 Restartable
Restartable modules can be aborted at any point in time,
and then restarted. All OS and data resources associated
with the module will be reset, and a module initialization
handler will be run at restart. If a thread of control had
called into the module during the abort (but not exited),
after restart, its execution will be resumed from the point
of entry into the module. This approach simplifies under-
standing of restart behavior, but introduces challenges for
non-idempotent modules, which may need to be restruc-
tured to be restartable.

A re-executed thread must make the same sequence
of inter-modular calls as it did before the abort, until
the point of crash. In reality, such calls (if happening
across FMPs) are only simulated during re-execution:
the framework returns the same values returned before
the abort. Thus, for example, if a file append is called
indirectly via a non-restartable module, it will not be per-
formed multiple times. No context of the call (other than
the return value) is simulated; thus, a sleep(seconds) ex-
ternal call might return immediately during re-execution.
Finally, the presence of recursive inter-modular calls
does not change restart semantics.

3.2.2 Replicable
In replicated modules, multiple replicas can be simulta-
neously active at runtime, each with its own instances of
data and OS resources. Parallel threads of control enter-
ing the module are mirrored in all replicas. All mirrored
instances of a thread (across replicas), are required to
make the same sequence of outgoing inter-modular calls,
and return the same values for incoming calls. Other
than this, mirrored instances can take different execution
paths in each replica. Outgoing inter-modular calls are
collated across the instances, and performed only once;
returns are equivalently dispersed.

3.2.3 Samplable
In samplable modules, multiple replicas can be active at
runtime, but with each thread executing within only one
replica at any point in time; data modifications are local
to its current replica. A thread will remain in the same
replica during a call, even with additional inter-modular

or recursive calls; when a thread fully exits the module,
its next entry into the module may use a different replica.

3.2.4 Duplicable
In duplicable modules, functions belonging to the mod-
ule can be simultaneously active in all FMPs. While this
is similar to replication and sampling, thread entries into
FMPs are not constrained by any duplicated modules.
Instead, each thread enters different FMPs based solely
upon other specifications in the fracturing, and just uses
the duplicated functions in any FMP it enters.

3.3 Source Code Annotations
A mild amount of source-code annotation is required to
enable Fracture to operate correctly. Listing 1 highlights
the different annotations, using a hypothetical FileCache
module. The programmer has decided that FileCache
can be replicated or restarted. The function declarations
within the module construct identify the entry functions
of the module. The char * parameters, representing
strings, can be automatically marshalled without any an-
notations. The getData and put functions have void *
parameters or return types that cannot be automatically
marshalled, and require annotating some parameters as
their length. The module also has a initialization handler,
that is called each time it is restarted. Although the stan-
dard struct stat can be automatically marshalled, this
example illustrates a manual marshaller that marshalls a
given stat by issuing calls to a Marshaller object.

4 Implementation
With annotated source code, the framework uses a sim-
ple source-to-source compiler to convert the annotations
into calls for a runtime engine. The runtime engine takes
a configuration as input, and runs the application accord-
ing to the configuration. A subsystem helps in choosing
optimal configurations for each workload.

4.1 Compilation Unit
The source-to-source compilation unit examines the an-
notated source code, identifying module declarations and
pseudo pointer capable types. At each relevant function
definition, the compilation unit adds calls to the run-time
engine described later, which might transfer control to
another FMP if necessary. Marshalling code is generated
for pseudo-pointer parameters.

4.2 Runtime Configuration
The runtime configuration specifies the fracturing, the
execution control for each FMP in the fracturing, and
parameters associated with the execution control. For
FMPs with no special execution control, the only pa-
rameter is the FMP-E. The FMP-E can be any program
that, taking the application’s binary as a command line
argument, executes the application in a modified environ-
ment, without affecting the application’s inter-modular

5



FMP (1,2,3): nice

FMP (4,5): restart(, safe runtime)
duplicate across FMPs (6,7)
FMP (8,9): sample(10:1)(, valgrind)

Listing 2: Example Runtime Configuration.

communication. For restartable FMPs, the parameter
is a list of FMP-Es that should be used each time the
FMP is restarted; restarts are performed after crashes.
For both replicated and sampled FMPs, the FMP-E for
each replica is specified. Fracture also requires, for sam-
pling, the ratio with which function calls are multiplexed
between replicas, and for replication, the replica to be
trusted if there is mismatch in behavior. Our prototype
can be easily extended; we leave this for future work.

Listing 2 is an example configuration, and uses num-
bers for denoting modules. In the listing, Modules
1, 2, and 3 form a single FMP using nice (to change
scheduling priority) as the FMP-E. Modules 4 and 5 form
an FMP that is simply restarted on the first crash. If
restarted again, the FMP is run atop safe runtime, a user-
implemented script. Modules 6 and 7 are duplicated
across all FMPs. Modules 8 and 9 form FMP replicas
sampled in a 10:1 ratio, one replica run atop Valgrind.

4.3 Runtime Engine
Our prototype runtime engine maps each FMP in the
configuration to a set of Linux processes, run atop the
given FMP-Es. Restartable FMPs, and FMPs without
special control, map to one process each. For restarts, a
new process is created after each crash. Replicable and
samplable FMPs map to one process per replica.

For inter-FMP function calls, the prototype uses mes-
sage passing by shared memory concurrent queues. Each
logical thread is mapped to one real thread per FMP pro-
cess. Execution control is implemented by adding extra
logic to the queue management. malloc()-like calls are
wrapped for implementing heap-allocation semantics.

For FMP restarts, queue messages are logged in shared
memory by reusing the queue’s buffers. After a crash,
on a per-thread basis corresponding to the semantic of
restartable modules, the log is replayed or checked. For
FMP replication and sampling, according to their seman-
tics, the queue messages are distributed, mirrored, or col-
lated. For FMP replication, if replicas behave differently,
the current prototype trusts one designated replica, and
kills the others. For sampling, at each complete entry of
a thread into the FMP, the replica the thread is scheduled
in is decided based on the sampling ratio.

4.4 Intelligent Boundary Subsystem (IBS)
Typically, for a goal such as isolating a buggy module
from non-restartable modules, multiple fracturings can
be used, but with differing overheads. Fracture provides
assistance in finding a fracturing with low overhead via

clever partitioning. To achieve this end, the intelligent
boundary subsystem (IBS) records the interaction be-
tween each pair of modules at runtime. It then repre-
sents the interaction as a node-edge graph, and, given a
goal, uses the s-t mincut algorithm [19] to predict op-
timal fracturings. IBS also exports this graph directly,
enabling further manual optimization as needed.

5 Modularization Guidelines
Two aspects of Fracture greatly affect its programma-
bility and utility. The first is incremental modulariza-
tion, which enables a programmer to evolve pieces of a
monolithic application into well-defined modules; mod-
ules are central to all of the features Fracture enables.
The second is capability labeling, which informs the run-
time system of the properties of a given module, such as
whether it is restartable, replicable, or samplable; with
such knowledge, Fracture can then realize numerous in-
teresting, novel, and useful configurations.

After numerous experiences, we have found that the
following workflow is useful in transforming existing ap-
plications into modularized form, and then labeling capa-
bilities per module. Due to space limitations, we concen-
trate only upon key aspects.

5.1 Splitting Programs into Modules
The first step in using Fracture is to (partially) split the
application of interest. Here we present guidelines we
have developed from our experiences.
Partition global data structures. Shared data structures
should be identified. The easiest partitioning strategy
groups all code that accesses particular data structures
into the same module; if this approach is not sufficiently
fine-grained, accessor and update functions should be
created, and requisite code rewritten to use said functions
instead of directly accessing the shared data.
Partition OS state. Similarly, OS state should be care-
fully partitioned, by grouping OS resource access into
a single module and perhaps adding accessor functions.
One example is a file descriptor; access to the descriptor
should likely be localized within a single module.
Identify heap-allocated data. Identify places where a
called module stores a pointer (in local state) to data
passed in as a parameter, or when it both returns allocated
data and stores a pointer to it in local state. After identi-
fying such places, the called function should be changed
to make a separate copy of the data in local state.
Handle external libraries and state. Some applications
have state specific to external libraries, and depend on
the entire application being externally visible as a single
process. Hence, each library the application uses must
be analyzed; if the library depends on a single process-
identity or address-space, all code and state relating to
the library should be moved to a single module.

6



Handle state initialization. The programmer should find
all initialization calls to data structures and other re-
sources and move them to module initialization handlers.
Annotate complex parameters. The programmer should
examine the pointer-parameters passed between func-
tions and provide annotations if the data types are com-
plex. For example, consider a char * parameter on
an inter-FMP call; without annotation, Fracture assumes
that this parameter represents a string and copies all bytes
until reaching the end-of-string delimiter.

5.2 Labeling Modules with Capabilities
After modularization is complete, the programmer must
label each module with its relevant capabilities. Doing
so requires understanding what the module does, since
mislabeling can lead to incorrect program behavior for
certain deployment scenarios. Thus labeling is a critical
aspect in the usage of Fracture. We now identify the steps
for labeling (or not labeling) modules.
Identify stateless, simple modules. If a module does not
possess local state, does not relate to external libraries,
and does not perform any explicit system calls, the mod-
ule can be labeled with all capabilities. In the future, we
believe this could be automated.
Visualize modules as (idempotent) micro-servers. Sim-
ilar to advice in [13], we imagine each module as idem-
potent micro-servers. We restructure modules with state
such that replaying requests is acceptable. If this is not
straight-forward, then the module should not be labeled
restartable or replicable, but can be samplable.
Determine call-chain determinism. The programmer
should find if all inter-modular calls performed by the
module, between the arrival of each request and the cor-
responding reply, are deterministic. Modules cannot be
labeled replicable or restartable if they are not determin-
istic. Non-determinism can occur if the module has local
state, issues system calls, or relates to complicated ex-
ternal libraries. Modules that do not perform any inter-
modular calls and only reply to the given request can
be easily identified as restartable; these modules can be
identified using call-graph analysis.
Filter infinite loops. The programmer should identify
modules that never return from an inter-modular call, and
should not mark such modules restartable.
Filter inter-modular synchronization. Threads may
synchronize through function calls to other modules;
the programmer should identify such modules and label
them non-restartable. For example, consider the situation
where threads in module A, to protect a critical section,
call module B to lock/unlocking a mutex (the mutex ex-
ists in B). During replay (after restart), the calls to B will
not act as real synchronization calls; thus, the critical re-
gion will be compromised. Hence, it is necessary to iden-
tify modules such as A and make them non-restartable.

Nhttpd Ntfs-3g SSHFS Pidgin

M
od

ul
es

co
un

t Total 27 34 20 23
Fully capable 23 32 17 22

Pa
rt

ia
lly

ca
pa

bl
e Restartable 2 - 1 -

Replicable - - - -
Samplable 2 - 1 -
Duplicable - - - -

Fu
nc

tio
n

D
is

tr
ib

ut
io

n Maximum 2 242 23 3143
Median 1 3 8 2

Minimum 1 1 2 1
Common - 180 18 21

Table 1: Modularization Statistics. All fully capable mod-
ules correspond to modules without local state. The function
distribution shown counts all functions defined in the appli-
cation’s source code that are called by the module, including
common functions. The function distribution does not count li-
brary functions. For Nhttpd, the OS resources module was not
considered in the distribution.

Filter local-state synchronization and thread creation.
The programmer should identify modules that use lo-
cal state to synchronize threads, or that have benign
data races. These modules should be labeled restartable
or replicable only if the programmer is confident that
these modules do not exhibit externally visible non-
determinism. Modules that create threads cannot have
any of the capabilities.

6 Evaluation
We evaluate the Fracture framework to answer three
questions: How complex is it to modularize applica-
tions? How much performance penalty does Fracturing
induce? How can Fracture be useful in the real world?

We evaluate four applications. The applications were
chosen to stress different aspects of modularization, such
as code size, server versus desktop, and the threading
model. We chose applications written in C that are
widely used and a manageable size.

Null-httpd [3] (nhttpd) is a multi-threaded, CGI-
capable, small (around 2000 lines of code) web server.
NTFS-3g [6] is a widely used filesystem implementation
on FUSE [1]; NTFS-3g is single threaded and has around
30,000 lines of code. SSHFS [5] is a FUSE-based file
system for remote files; SSHFS is multi-threaded and im-
plements an in-memory cache, but has only around 1500
lines of code. Pidgin [4] is a desktop chat client support-
ing many protocols.

6.1 Modularization Complexity
We now assess the difficulty of splitting and labeling
each program; we do so to address the question of how
difficult it is to use Fracture in existing (and sometimes
complex) applications. Although this characterization
is challenging (e.g., in our experience, lines of code
changed does not reflect the amount of programmer ef-
fort), we believe it is an important part of our evaluation.

Table 1 shows the number of modules split in each
application, and the number labeled with each capabil-
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ity. Most modules supported all capabilities. Table 1
also shows the distribution of the number of functions as-
signed to each module. The distribution differs between
applications, based on the assumed purpose of each mod-
ularization explained in subsequent sections.

Table 2 shows a summary of the programming over-
head related to each step in Section 5, for each appli-
cation. While splitting modules, all steps were easy or
straight-forward, except identifying heap-allocated data;
since an actual application developer needs to be knowl-
edgeable about heap-allocations to manage memory, we
believe identification will be easy for such a developer.
During modularization, we made three trivial changes
across all applications to improve fractured performance;
they are detailed subsequently. While labeling mod-
ules, we found most modules to be simple and state-
less: all the fully capable modules in Table 1 corre-
spond to the stateless modules in Table 2. Determining
call-chain determinism for the complex modules was not
straight-forward. However, Fracture’s design offered an
easy alternative: even if non-deterministic modules were
marked restartable, the worst consequence would be fail-
ure to restart a crashed FMP, leading to a full-application
restart (similar to when not using Fracture). Hence, in-
stead of verifying determinism, we optimistically chose
to label the modules restartable (but not replicable).

Overall, the effort required seems substantially less
than rewriting the entire program, mostly because good
software already has logical divisions whose capabili-
ties programmers inherently understand. In particular,
the capabilities of external libraries are readily under-
standable, given the purpose and interface of the libraries
(e.g., an encryption library is both restartable and repli-
cable). However, the effort does vary with applications,
and might be large if the software itself is less structured.

We next present the details for each application. While
we found the modularization process mostly straight-
forward (though not trivial) in practice, it is possible that
modularization might be wrong, exposing failures when
the application is run as multiple mini-processes. To fur-
ther evaluate programmer overhead, we evaluate the cor-
rectness of our modularization by systematic verification
(the modularized code was verified previously only with
trivial testruns); results are discussed in Section 6.1.5.

6.1.1 Nhttpd
Our goal for modularizing Nhttpd was to find the most
fine-grained divisions possible. We attempted to place
each C function into its own module. The 28 functions
in Nhttpd were placed into 27 modules; in only one case
could two functions not be easily separated.

Our modularization required changing the size of two
parameters to improve performance. First, the size of
the scratchpad variable was reduced, since it was being

passed across modules and thus decreased performance.
Second, the size of a buffer passed to send() was in-
creased, so as to reduce the number of calls to send()
and improve performance.

One complex module (having state) was not idempo-
tent: a dedicated module for OS resources with external
side effects. Another module waited for incoming con-
nections and spawns threads, and hence could not be la-
beled with any capabilities. The remaining two complex
modules were labeled restartable and samplable.

6.1.2 NTFS-3g
Since NTFS-3g has a significant code base, our goal was
only to separate some chosen functions from the remain-
der (i.e., from the main module). Many of the functions
(i.e., 242) were placed in this one module. Modularizing
NTFS-3g was mostly easy; we describe here two partic-
ularly interesting experiences.

First, the FUSE library supplies a function pointer
to an NTFS-3g handler (read-directory) which invokes
the supplied function with some data (directory entries).
With modularization, the function must be invoked in the
FMP containing the main routine, since FUSE might not
expect the invocation from a different process. Hence,
we wrapped the invocation of the function (by the han-
dler), and assigned the wrapper to the main module.

Second, NTFS-3g operates on complicated NTFS file-
system data structures. We changed one structure for per-
formance: the volume-meta-information structure con-
tained a large byte array with constant string-encoding
information. Since the structure was being passed fre-
quently between modules, we removed the byte array
from the structure and instead keep the information in
a dummy local variable in each module where it is used.

6.1.3 SSHFS
Our goal with SSHFS was to modularize its source code
based on high-level logical divisions in its functionality.
Specifically, SSHFS contains functions for sending re-
quests, receiving replies, and maintaining a connection
to the SSH server; functions for caching; functions for
each of the FUSE filesystem operations; and, functions
to initialize and register SSHFS with FUSE. Thus, we
modularized SSHFS into 20 different modules.

Three modules in SSHFS had local state. Both the
fuse funcs and the ssh connection module deal with
OS resources and thus have no capabilities. The cache
module has local state and synchronizes via a local mu-
tex; it can behave differently if restarted or replicated.
Nevertheless, we labeled it restartable, since the bene-
fits outweigh the occasional consequence of failing FMP
restarts, as previously explained.

6.1.4 Pidgin
Our last application, Pidgin, is event-based, extensively
uses the GTK library, and contains an extensible library
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Nhttpd Ntfs-3g SSHFS Pidgin
Sp

lit
tin

g
Global data structures 3,L - 2,L -

Global structure optimizations 2 1 - -
OS state L L L -

Heap allocation - 0,H 4,H 0,H
External libraries, state 1,L 1,L 1,L -

State initialization 1,L 1,L 1,L -
Simple annotations (like @len) 3 29 5 8
Marshaller annotations 1 5 1 5

L
ab

el
in

g

Simple stateless modules 23,L 32,L 17,L 22,L

C
om

pl
ex

M
od

ul
es

Idempotent micro-servers -1,L 0,- -1,L 0,-
Call-chain determinism H - H -
Infinite loops - - - -
Inter-module sync - - - -
Thread create, local sync -1 - - -

Table 2: Programming overhead summary. ‘L’ indi-
cates low programming overhead, such as requiring only an
overall understanding of the logic, or using automated text re-
placement to address the concern. ‘H’ indicates high over-
head, requiring in-depth understanding of the source code. ‘-’
indicates concerns that are easily dismissed for the applica-
tion. For quantifiable concerns (e.g., the number of global vari-
ables), the quantity is shown.

of IM protocols and plugins. Our agenda in modular-
izing Pidgin was to place code corresponding to five
patches into separate modules. These patches fix four
bugs which we will tolerate with Fracture in Section 6.3.
To make the modularization more representative of typi-
cal circumstances, we formed 23 small modules.

Every module other than the very large main mod-
ule was easily identified as being fully capable. The
only complexity we encountered was marshalling an-
notations: since Pidgin extensively uses data structures
from the glib library, manual marshallers were needed.

6.1.5 Verification
To verify our modularization, we used standard test-
suites for each application. Since Nhttpd does not pro-
vide an inbuilt test-suite, we used http-test-suite [12]. For
SSHFS and NTFS-3g, we used the POSIX Test Suite [50]
associated with NTFS-3g. We used the included libpur-
ple test suite for Pidgin. In Nhttpd and Pidgin, since the
test suite does not exercise all modules, we wrote addi-
tional tests. The original version of Nhttpd fails some of
the supplied tests; we modified the test suite to match the
original version of Nhttpd.

We first verify whether the application works correctly
when ran with each module assigned to a separate FMP
(micro-isolation). As expected, all applications passed
all tests atop this fully fractured configuration. To ver-
ify restartable labels, we used micro-isolation with all
restartable modules configured to restart on a crash. We
then crashed each restartable FMP multiple times during
execution. Similarly, for verifying replication and sam-
pling, we configured capable modules to be replicated
and sampled (1:1 ratio), respectively. For verifying du-
plication, we changed the micro-isolation fracturing to

config

read

fix

slashes

send

file

decode

url

ge t

mime

type

send

fileheader

flush

buffer

resources

wrapper

swap

char

striprn

read

header
sgets

main

func

strcase

str

close

connection

do

request

flush

header

sock

init

htloop

accept

loop

Figure 5: Module Interaction Graph for nhttpd-
Latency. Black nodes are non-restartable modules; grey and
white are restartable; edge thickness represents module inter-
action. For example, resources wrapper interacts heavily
with sgets, and little with sock init. Seven modules (eg:dir
list) that are not executed in this workload are omitted. Shaded re-
gions are module clusters used in intelligent fracturings; for isolating
a grey module, the containing innermost cluster is placed in an FMP;
for white modules, SMI is chosen. The inset shows the manually op-
timized partition for send file: two FMPs, each a shaded region
(duplicated modules overlap both regions).

duplicate all duplicable modules across the other FMPs.
In all cases, we found the applications to pass all tests.

6.2 Performance
Fracture enables run-time configurations that fall on a
spectrum; on one side are configurations that provide lit-
tle isolation and low overhead; the other side has fine-
grained isolation but potentially higher overhead. De-
pending on the performance sensitivity of the application
and the anticipated deployment scenarios, different frac-
turings may be desired. To illustrate the range of per-
formance overheads, we begin by investigating the two
extreme points on the spectrum: monolithic (all modules
in a single FMP, lowest isolation) and micro-isolation (all
modules separated from each other for maximum isola-
tion). We then explore the configurations in the middle of
the spectrum: single module isolation (SMI: one module
is isolated from all others), and intelligent partitioning
(one module may be grouped with others).

Our evaluation workloads are as follows. For nhttpd,
we use two workloads. nhttpd-Throughput consists
of five threads requesting files of sizes 1KB, 2KB
. . . 512KB with uniform distribution, and is similar to
previous work [42]. nhttpd-Latency consists of a single
thread with repeated requests to the same file; this is de-
signed to stress overheads. For NTFS-3g and SSHFS, we
use Postmark [30]. Pidgin uses a workload that repeat-
edly logs-in and sends 20 messages; the number of GUI
actions (return key presses or mouse clicks) per second,
guips, is measured. Experimental machines had 1 GB of
RAM, a unicore 2.2 GHz processor, and Linux 2.6.22.
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Figure 4: Partitioned Performance. Performance of different configurations normalized to the performance of the unmodu-
larized application is shown. Module names are shown within the bars. Modules with bold names do not possess some capability.

To begin, we verify that Fracture can be configured
to impose negligible overhead on applications. We first
compare the performance of each original application to
the version we modified by hand. As expected, the mea-
sured overhead (not shown) is not statistically signifi-
cant, since we did not aggressively change the internal
logic of individual functions. We next evaluate the per-
formance of the applications when run as a monolithic
process with Fracture. Again, the overhead is insignif-
icant (not shown). Thus, applications can be modular-
ized and run atop Fracture without worrying about per-
formance, even if no immediate use-cases are known.

We next investigate the other extreme: micro-isolation
of each module of the application. Figure 4 shows the
performance of micro-isolation (with a dashed line) for
each of the five workloads. For some workloads, the per-
formance overhead of even this most extreme partition-
ing is tolerable; Figure 4a and 4c show that the penalty
is less than 3% for nhttpd-Throughput and less than 20%
for SSHFS. Even the apparently high overhead of 50%
for Pidgin is not observable to a user. Thus, for these
workloads, micro-isolation for deployments could im-
prove reliability with tolerable performance.

For performance sensitive workloads (i.e., nhttpd-
Latency and NTFS-3g shown in Figures 4b and 4d),
micro-isolation is not viable. For these workloads,
we consider more targeted partitionings, beginning with
SMI. As shown, for nhttpd-Latency and NTFS-3g, SMI
performance is fine for some modules (e.g., mst pread

in NTFS-3g) but not for others (e.g., map pairs build).
Specifically, SMI is not appropriate for modules that

interact heavily with others either through many inter-
modular calls or with large parameters during calls. To
explain this effect, inter-module interactions are shown
in Figure 5 for nhttpd-Latency. For example, the node
for send file has thick edges with many other nodes,
representing a high rate of interaction. Hence, isolating
the send file module incurs a high overhead.

To investigate whether the problematic modules can
be isolated from others using intelligent boundaries,

we trained the intelligent boundary subsystem (IBS) on
nhttpd-Latency and NTFS-3g. IBS reports the most ap-
propriate grouping for each restartable module; for ex-
ample, as shown in Figure 5, send file should be placed
with ten other modules (the gray bubble).

As shown in Figure 4a and 4c, intelligent boundaries
do improve performance for a few modules. We also
manually experimented with fracturings using duplicate
modules in nhttpd-Latency (inset in Figure 5), and found
that they can further improve performance in some cases.
Summary: The Fracture environment does not impose
noticeable overhead if all modules are placed in the same
FMP. For the most flexibility and isolation of modules,
one might wish to place each module into its own FMP,
but this cannot always be done with acceptable perfor-
mance. Thus, care must be taken to understand applica-
tion performance when allocating modules to FMPs.

6.3 Usefulness
To demonstrate the usefulness of Fracture, we focus on
Pidgin; in particular, we demonstrate that Fracture can
be used to find or tolerate real-world bugs that are hard
to capture in normal testing. These bugs are handled
by configuring FMP-Es with special functionality, by
restarting individual FMPs, by sampling FMPs to reduce
performance overhead, and by replicating FMPs to detect
differences. In some cases, we repeat the run-time con-
figurations on the other applications (Null-httpd, NTFS-
3g, and SSHFS) to show their generality.

We focus on four bugs that cause Pidgin to either
crash or hang: two memory leaks and two buffer over-
flows. The four Pidgin bugs have been fixed using code
patches. When dividing Pidgin into 23 modules, we
ensured that the code patches corresponded to specific
modules: Jabber, IRC, SILC, and ICQ (all IM protocols),
and UTF8 (a UTF-8 string function causing both over-
flows). While this one-to-one correspondence is opti-
mistic, the approaches described below could still be ap-
plied across multiple modules.
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6.3.1 Specialized Environments with FMP-Es
To illustrate the benefits of specialized environments
(FMP-Es) for different modules within an application,
we show how Fracture repairs the two memory overflow
bugs in Pidgin. When the unmodified version of Pidgin
is run with certain inputs, a buffer overflow bug crashes
the application, as shown in Figure 6a. It is well known
that buffer overflow attacks can be prevented by padding
memory allocations; without Fracture, this padding can
be done for the entire application by specializing the pro-
cess environment using the LD PRELOAD mechanism.
Figure 6b shows that this environment tolerates the over-
flows, but unfortunately instills a 10% overhead.

Fracture enables special FMP-Es (i.e., zero-padding
LD PRELOAD) to be applied to a subset of modules.
In this case, Fracture can isolate the buggy UTF8 module
from the others and apply the special FMP-E to that mod-
ule alone. The resulting timeline is shown in Figure 6c:
Pidgin runs without crashes at only 0.25% overhead.

6.3.2 FMP Restarts
To explore the benefits of restarting individual FMPs,
we apply Fracture to fix the two memory leaks in Pid-
gin; restarting individual FMPs is especially useful when
restarting the entire application would be visible to the
user, as in Pidgin. When a bug causing a memory leak
is triggered in the unmodified version of Pidgin, Pidgin
first exhibits a significant slowdown and then crashes. It
is known that the initial slowdown can be avoided using a
per-process memory limit in the environment; when the
memory limit is exceeded, the process crashes and can
be restarted. Unfortunately, this restart is user-visible.

The Fracture environment enables the two leaky mod-
ules (Jabber, IRC) to be isolated into separate FMPs with
a specialized memory-limit FMP-E. This has two bene-
fits. First, the memory limit can be more precisely spec-
ified for these smaller modules, thus avoiding the slow-
down. Second, the crash and resulting restarts can be ap-
plied to only those two modules; these restarts are trans-
parent to the user. (Figure not shown due to space.)

To further stress FMP restart capability, we config-
ured each of the other applications (Null-httpd, NTFS-
3g, and SSHFS) to place each restartable module in its
own FMP; we then crashed each isolated FMP at a rate
of 5 crashes per second. As desired, each crash was toler-
ated transparently and each module restarted within 1 ms
(not shown); there was no additional overhead compared
to the partitioned-only SMI configurations in Figure 4.

6.3.3 Adaptive Fracturing and Modified Restarts
Fracture enables run-time configurations in which differ-
ent modules are adaptively placed into different FMPs
based on their past behavior. This functionality can be
used to identify modules with previously unknown bugs.
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Figure 6: Pidgin: Tolerating Buffer Overflows. (a) Un-
modularized. (b) Unmodularized with special environment. (c)
UTF8 SMI with special FMP-E. (d) Adaptive fracturing.

We demonstrate a simple “adaptive tolerance” strat-
egy in which all modules are initially trusted and are
run as a single FMP with the default environment (i.e.,
with no memory padding). If the FMP crashes, it is
subdivided into two smaller groups of modules (with in-
telligent boundaries provided by the IBS). If the FMP
crashes with a single module, then the faulty module has
been successfully identified and is restarted with the bug-
tolerant environment (e.g., with memory padding).

Figure 6d shows the timeline for memory-overflow
input when the buggy module in Pidgin is not known.
The first three times that Pidgin crashes, Fracture subdi-
vides the FMPs into two smaller groups; the fourth time,
the faulty module is identified and is restarted with the
padded-allocation FMP-E which tolerates later faults.

With this approach, Pidgin incurs negligible overhead,
since the more costly FMP-E is never applied to the en-
tire application and highly interacting modules (memcpy
and main) are always in the same FMP. However, our
current approach leads to multiple user-visible restarts.
Straight-forward modifications could reduce this effect;
for example, the specialized FMP-E could be applied to
FMPs larger than a single module.

6.3.4 Reducing Overhead with Sampling
The memory leaks in Pidgin occur for rare workloads
that appeared only in deployment. One way to discover
such memory leaks is to run the entire application with
the Memcheck tool during deployment and to send bug
reports back to the developers. Unfortunately, Pidgin
with Memcheck achieves only 1.4 guips (shown as the
dotted line in Figure 7a), which is not acceptable.

To discover bugs using Fracture, different users can
run Pidgin such that a random module is isolated with
the Memcheck FMP-E. As desired, when the Memcheck
FMP-E is applied to the leaking modules (Jabber or
IRC), the leaks are easily identified. The light-gray bars
in Figure 7a show performance when each module is
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Figure 7: FMP Replication and Sampling.

separated from other modules, and Memcheck is applied
on the separated module. We make a few observations.
First, main should not be isolated from the other mod-
ules with Memcheck; Memcheck imposes too high of an
overhead for main. Second, the majority of modules can
use Memcheck and be isolated with only a negligible per-
formance impact (less than 5%). However, a few specific
modules lead to unacceptable performance with Mem-
check (i.e., strcmp, memcpy, getrhash, and strchr).

The impact of high overhead environments on perfor-
mance sensitive modules can be reduced using sampling.
When sampling is applied to an isolated module (e.g.,
strcmp), the default environment is applied to the mod-
ule for some of the invocations, while the modified en-
vironment (e.g., Memcheck) is applied other times. Fig-
ure 7a shows that a 10:1 sampling ratio leads to a worst-
case overhead of only 20% for all of the isolated modules
in Pidgin (excepting main, which cannot be sampled).

We have experimented further with sampling for the
more performance sensitive server workloads (Null-
httpd, NTFS-3g, and SSHFS). For example, Figure 7b
shows that applying the Memcheck FMP-E individually
to the 25 samplable modules of nhttpd-Throughput in-
curs significant overhead; this overhead can be reduced
in many cases with a 10:1 sampling ratio. In those cases
where sampling improves performance but not enough
(e.g., send file), a higher ratio should be used; in those
cases where sampling cannot be applied (e.g., resources
wrapper), the Memcheck FMP-E cannot be used. We
found sampling an effective technique for reducing over-
head in most cases.

6.3.5 Validating with Replication
Software patches that introduce new bugs are a real prob-
lem [15, 55]. Performance patches can sometimes be val-
idated by running the patched and unpatched application
and comparing the results; but, this approach is not pos-
sible in Pidgin due to the GUI.

If a patch can be placed in a set of restartable mod-
ules such that interactions with other modules are un-
changed, then Fracture can help validate performance
patches by replicating the resulting FMPs transparently.
To verify this functionality in Pidgin, for each of the four
patches, we ran replicated FMPs with one patched and
one unpatched version. As expected, when Pidgin is run
without bug-inducing inputs, the two FMPs return the

same results; as desired, when one of the replicated FMP
crashes, the error is logged and the application continues
without replication for that FMP. Across all patches, the
worst overhead is within 10% (not shown).

We have also investigated the performance impact of
replication on the other applications (Null-httpd, NTFS-
3g, and SSHFS). Figure 7a shows the impact of replicat-
ing each of the 32 replicable modules in NTFS-3g. In
most cases, the overhead of FMP replication is not sig-
nificantly greater than that of simple isolation; thus, FMP
replication is likely to enable fine-grained N-versioning.

7 Related Work
Simple restarts, checkpointing, software rejuvenation,
and restarts with logging and replay are well known
fault tolerance techniques [24, 21, 36] for distributed sys-
tems. Applying these techniques might be challenging,
as some processes are not readily restartable; alterna-
tively, precautions such as logging and replay [21] might
be inefficient. Rx [42] explores a set of techniques to be
applied during the restart process, but is not fine-grained.
Fracture enables classic techniques (e.g, process pairs,
replicated RPC [24, 16]) to be used on parts of an ap-
plication. Existing fine-grained techniques include Mi-
croreboot [13] for restarts, and Band-aid Patching [46]
and delta execution [49] for replication. These do not
offer a generic (process-like) abstraction for tools and
techniques to be applied to existing C programs, instead
focusing on a specific technique. Similarly, tools like
Pin [37] allow partial instrumentation but are not generic.
Quarantine [40] debates fine-grained boundaries concep-
tually, but does not present a design or implementation.

Component-based systems and middleware (such as
OSGi, COM, EJB) support applications made of multiple
components, thus making modularization easier. How-
ever, their existence does not help legacy C programs.
Mutable Protection Domains [39] comes close to Frac-
ture by intelligently splitting an application for fault iso-
lation, but uses a specialized operating system.

Security research has focused on splitting C applica-
tions into multiple protection domains. Examples are
OKWS [33], privilege-separated OpenSSH [41], Priv-
trans [11], and Wedge [10]. These do not explore restart-
ing or replicating individual parts, instead focusing on
aspects like information flow. Also, the final goal (se-
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curity) makes their desired divisions different from Frac-
ture. For example, they require a strict conceptual as-
signment of memory objects to “trusted” or “untrusted”
code parts, and a strict static division at runtime.

Research in mobile code offloading [23, 8] looks at
optimally partitioning applications, sometimes without
any manual effort. Most of these target application-level
virtual machines, or existing process-separated applica-
tions. Intelligent partitioning in Fracture, derived from
classic research like Coign [29] and intelligent satel-
lites [51], is similar. But, none of these (or Coign and
intelligent satellites) focus on a generic abstraction for
generic code (mobile applications have a “deep architec-
tural unity” [8]) that enables many tools and techniques.

The idea of extending the process abstraction has
been well-explored. Resource containers [9] and Ex-
okernel [22] propose a separate abstraction for resource
management; Asbestos [20] and Ribbons [27] provide
thread-boundary isolation and fine-grained labels within
a process or JVM; sandboxing [52, 54] provides mul-
tiple fault domains within a single process. Other ap-
proaches include capability-based systems [34], and sin-
gle address space operating systems [31] emphasizing
partially-shared address spaces. These do not preserve
many properties of the process abstraction, and are hence
more difficult to adapt for generic tools and techniques.

The use of fine-grained isolated domains has been
studied extensively. Research in this area includes
SFI [52], fine-grained memory protection [53, 14], type-
safe operating systems [28, 56], microkernels [35, 17]
and isolated OS extensions [48, 38, 14]. Such approaches
establish a fixed boundary between parts of a kernel and
do not provide generic abstractions for user applications.

8 Conclusions
We believe mini-processes that support process-like
restarts, replication, environments, and other features,
are needed for modern user software; our case studies
reveal that such flexibility and configurability are impor-
tant. A generalized, fine-grained abstraction facilitates
innovative methods to increase the robustness of applica-
tions like Pidgin, where equivalent coarse-grained strate-
gies might fail. In the case of servers, mini-processes al-
low balancing performance and robustness, especially in
cases like Null-httpd, where optimal fracturings are com-
pletely different for two different workloads. Fracture is
our attempt at providing full-featured mini-processes, in
a way we believe will be easy to adopt.
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