
A

ffsck: The Fast File System Checker

AO MA, University of Wisconsin, Madison; Backup Recovery Systems Division, EMC Corporation

CHRIS DRAGGA, ANDREA C. ARPACI-DUSSEAU, and REMZI H. ARPACI-DUSSEAU,

University of Wisconsin, Madison

MARSHALL KIRK McKUSICK, McKusick.com

Crash failures, hardware errors, and file system bugs can corrupt file systems and cause data loss, despite
the presence of journals and similar preventive techniques. While consistency checkers such as fsck can
detect this corruption and restore a damaged image to a usable state, they are generally created as an
afterthought, to be run only at rare intervals. Thus, checkers operate slowly, causing significant downtime
for large scale storage systems when they are needed.

We address this dilemma by treating the checker as a key component of the overall file system (and not
merely a peripheral add-on). To this end, we present a modified ext3 file system, rext3, to directly support
the fast file system checker, ffsck. The rext3 file system colocates and self-identifies its metadata blocks,
removing the need for costly seeks and tree traversals during checking. These modifications to the file system
allow ffsck to scan and repair the file system at rates approaching the full sequential bandwidth of the
underlying device. In addition, we demonstrate that rext3 performs competitively with ext3 in most cases
and exceeds it in handling random reads and large writes. Finally, we apply our principles to FFS, the default
FreeBSD file system, and its checker, doing so in a lightweight fashion that preserves the file-system layout
while still providing some of the gains in performance from ffsck.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management—File organi-

zation; E.5 [Files]: Backup/recovery

General Terms: Measurement, Performance, Reliability

Additional Key Words and Phrases: File-system checking, file-system consistency

ACM Reference Format:

Ma, A., Dragga, C., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., and McKusick, M. K. 2013. ffsck: The
Fast File System Checker ACM Trans. Storage V, N, Article A (January YYYY), 29 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Data integrity is critically important for personal users and companies. Once data be-
comes lost or corrupted, it is expensive and challenging to restore [Keeton and Wilkes
2002]. As the file system plays a central role in storing and organizing data, system
developers must carefully consider how to keep the file system robust and reliable.
Unfortunately, there are a variety of factors that can corrupt a file system. Unclean

shutdowns and bugs in the file system or device drivers can easily corrupt meta-

This material is based upon work supported by the National Science Foundation under the following grants:
CNS-1218405, CCF-0937959, CSR-1017518, CCF-1016924, as well as generous support from NetApp, EMC,
and Google. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of NSF or other institutions.
Authors’ address: Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St.,
Madison, WI 53706-1685.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1553-3077/YYYY/01-ARTA $15.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Ao Ma et al.

data [Engler et al. 2001; Swift et al. 2003]. Hardware failures such as memory cor-
ruption [May and Woods 1979; Schroeder et al. 2009; Ziegler and Lanford 1979] and
disk corruption [Anderson et al. 2003; Bairavasundaram et al. 2007; Bairavasundaram
et al. 2008; Baumann 2005; Sundaram 2006; The Data Clinic 2004] can render the file
system inconsistent. Since metadata corruption and file-system inconsistency can eas-
ily propagate to different parts of the file system, these errors can ultimately lead to
significant data loss.
In the past several decades, file and storage systems have devised a variety of dif-

ferent techniques to handle corruption. Journaling [Best 2000; Reiser 2004; Sweeney
et al. 1996; Tweedie 1998], copy-on-write [Hitz et al. 1994; Rosenblum and Ousterhout
1992; Sun Microsystems 2006; Rodeh et al. 2012], and soft updates [Ganger and Patt
1994] can handle inconsistency in the event of a system crash. Bug finding tools [En-
gler and Musuvathi 2004; Yang et al. 2006; Yang et al. 2004] can identify and remove
errors in file-system source code and prevent them from corrupting the file system.
Checksums [Bartlett and Spainhower 2004; Bonwick and Moore 2008; Stein et al.
2001; Sundaram 2006] and scrubbing [Schwarz et al. 2004] can detect hardware fail-
ures and repair corrupted blocks with copies [Patterson et al. 1988].
Unfortunately, while these tools and techniques can reduce the probability of sys-

tem corruption and repair inconsistent file systems in some cases, they cannot protect
against all faults. Even when combined with mechanisms to improve reliability, as
seen in ZFS [Bonwick and Moore 2008] and XFS [Sweeney et al. 1996], certain errors
can still evade these measures and damage the file system [Funk 2007; Zhang et al.
2010].
As a result, the offline file-system checker remains a last resort to protect the file sys-

tem. A file-system checker restores a file-system image back to a consistent and usable
state by scanning all the file-system metadata and using redundancy information to
detect and repair inconsistencies [McKusick et al. 1986]. Unlike the mechanisms pre-
viously described, file-system checkers are robust to nearly all types of failure (except
those within the checker itself [Carreira et al. 2012; Gunawi et al. 2008]).
Despite the importance of file-system checkers, users and administrators are reluc-

tant to run them, frequently complaining about bad experiences when doing so [Anony-
mous 2006; Svanberg 2009]. Complaints such as “It’s been almost 24 hours now and
e2fsck -f -y -v /dev/sda1 is still running” are not uncommon [Anonymous 2009]. Gen-
erally, most file-system checkers run extremely slowly, without providing a reliable
indication of their progress or anticipated completion time. Because of this, system ad-
ministrators often have to endure significant, unpredictable downtime when running
a checker.
Addressing this dilemma and building an efficient checker for large scale storage

systems requires a new approach that treats the file-system checker as more than an
afterthought. Thus, we propose the rext3 file system, a modified version of ext3 which
sets fast handling of inconsistency as a principle design goal, providing direct support
for the file-system checker in its implementation. To accompany this new file system,
we develop a new fast file-system checker, ffsck.

While rext3 and ffsck are based on the widely-used Linux ext3 file system [Tweedie
1998] and its default checker, e2fsck, respectively, they include several novel com-
ponents that can be easily applied to other file systems and corresponding check-
ers. Specifically, rext3 enhances metadata density by co-locating all the file indirect
blocks for each block group [Bovet and Cesati 2005] and better supports ffsck by using
backpointer-based data structures for these indirect blocks [Chidambaram et al. 2012].
To fully utilize disk bandwidth, ffsck performs a disk-order scan of system metadata
instead of a traditional inode-order scan. To reduce memory pressure, ffsck compresses
in-memory metadata on the fly, in a fashion arising naturally from a disk order scan.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:3

Finally, ffsck employs a bitmap snapshot to avoid costly double scans that would oth-
erwise occur when it encounters doubly-allocated data blocks.

Our measurements show that ffsck scans the file system significantly faster than
e2fsck, nearing the sequential peak of disk bandwidth. Moreover, its speed is robust to
file system aging, making it possible to estimate its running time beforehand and thus
helping the system administrator make better decisions about running the checker.

We also find that, surprisingly, rext3 improves ordinary I/O performance in some
cases. Specifically, rext3 performs up to 20% better in large sequential writes due to
improvements in journaling performance and up to 43% faster in random reads due to
better utilization of the segmented disk track buffer. In other cases, it remains compet-
itive with ext3, with a worst-case degradation of 10% due to additional seeks caused
by metadata colocation.

Together, rext3 and ffsck provide nearly optimal file system checker performance,
but this comes at the cost of generality. Because rext3 introduces a new disk layout
and does hinder the performance of some workloads, it may be impractical to adopt
it in certain cases. Nonetheless, it may still be possible to benefit from some of the
principles behind ffsck without adopting a fully integrated solution. To demonstrate
this, we apply our metadata colocation policies to FFS, the standard FreeBSD filesys-
tem, as well as some of our improved caching measures to its version of fsck. While
these its improvements are not as dramatic as those provided by rext3 and ffsck, they
nonetheless provide substantial benefit. At the same time, they leave the underlying
file system structure fundamentally unchanged, allowing them to be deployed seam-
lessly on top of existing systems.

The rest of this paper is organized as follows. We first introduce related work (§2),
and then provide an overview of the file-system checking policy and analyze traditional
checker bottlenecks (§3). We next describe the design and implementation of rext3 and
ffsck (§4), evaluate their performance (§5), and discuss ffsck’s and rext3’s limitations
(§6). Finally, we describe and analyze our implementation of ffsck’s principles in FFS
(§7) and summarize our conclusions (§8).

This paper is an expansion of our earlier work [Ma et al. 2013]. We have added the
FFS implementation described in Section 7, which first appeared in the April issue of
;login: [McKusick 2013]. In addition, we have expanded the examples and description
in Section 4.

2. RELATED WORK

We introduce research closely related to our work in this section. In general, all of this
research seeks to improve file system reliability and protect the user from potential
data loss in the face of system crashes, file-system bugs, and hardware failures.

2.1. Protecting Against Inconsistency

Mechanisms such as journaling [Best 2000; Hagmann 1987; Reiser 2004; Sweeney
et al. 1996; Tweedie 1998], copy-on-write [Hitz et al. 1994; Rosenblum and Ousterhout
1992; SunMicrosystems 2006; Rodeh et al. 2012], soft updates [Ganger and Patt 1994],
and backpointer-based consistency [Chidambaram et al. 2012] can handle or prevent
file-system inconsistency caused by system crashes, but cannot rectify errors arising
from file-system bugs and hardware failures [Bairavasundaram et al. 2007; Baumann
2005; May and Woods 1979; Ziegler and Lanford 1979].

File-system bugs can be detected and fixed by bug-finding tools [Engler and Musu-
vathi 2004; Yang et al. 2006; Yang et al. 2004], which can significantly reduce the
probability of file-system inconsistency resulting from coding errors. Despite their suc-
cess, these tools have so far been unable to remove all bugs. For example, bugs that

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Ao Ma et al.

can cause metadata corruption are still being found in the widely-deployed ext3 file
system, which has been in use for more than 10 years.
Hardware errors can be identified with checksums [Bartlett and Spainhower 2004;

Bonwick and Moore 2008; Stein et al. 2001; Sundaram 2006] and corrected with redun-
dant copies [Patterson et al. 1988]. Though these mechanisms protect the file system
from a wide range of disk faults [Anderson et al. 2003; Bairavasundaram et al. 2007;
Baumann 2005; The Data Clinic 2004], they cannot handle errors coming from the
file-system source code or hardware failures that happen before applying a checksum
or creating a copy [Zhang et al. 2010].
In general, these aforementioned mechanisms can only protect against a subset

of the factors which corrupt file systems; none of them provide universal protection.
Therefore, the checker remains an indispensable tool, serving as the last line of de-
fense.

2.2. Improving the Speed of Fsck

Traditional checkers require a full scan of the entire file system, causing significant
downtime. To make matters worse, while disk bandwidth and seek time have changed
little in recent years, file systems have only grown larger, lengthening the time re-
quired for these scans [Henson et al. 2006]. Thus, a number of file systems have been
developed with the intent of reducing this requirement.
Extent-based file systems, such as ext4 [Mathur et al. 2007] and XFS [Sweeney et al.

1996] offer a straightforward improvement over the direct mapping of block pointers
employed by file systems such as FFS and ext3. Extents can significantly compress
metadata, reducing the amount that the checker has to scan if the average file size is
large and most blocks are allocated contiguously. However, if the file system contains
a large percentage of small and sparsely allocated files or the disk image is highly
fragmented, checking (without costly defragmentation [Sato 2007]) will suffer. In Sec-
tion 3.2, we use ext4 as a case study to explore how these factors affect the file-system
checker’s performance.
In addition to using extents, ext4 further optimizes the file system checker by in-

dicating which inodes in the inode table are currently in use, allowing e2fsck to skip
unused inode blocks during its scan [Mathur et al. 2007]. Unfortunately, this approach
will grow less effective over time as the file system’s utilization increases. Further-
more, in the event that either the inode table or the checksum that protects the unini-
tialized inode table high-water mark becomes corrupted, the checker will still have to
perform a full inode scan, rendering this heuristic ineffective.
Both Chunkfs and Solaris UFS provide an alternate method for addressing checking

time, attempting to reduce it by dividing the file system into isolated chunks [Henson
et al. 2006; Peacock et al. 1998]. Though the idea of fault isolation is appealing, it is
difficult to create entirely separate chunks that can be checked independently. More-
over, it can be difficult to reliably determine that a partial check has found all errors in
the system, especially since most failure modes give little indication of where an error
may lie.
Finally, Abishek Rai’s metaclustering patch [2008] reduces the amount of time that

fsck spends seeking between metadata and data by grouping indirect blocks together
on disk. This closely resembles our approach in rext3; however, Rai focuses solely on
the file system, presenting only a partial solution. By designing a file system checker
in tandem with a new layout, we are able to realize larger improvements.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:5

2.3. Alternatives to Fsck

In contrast to the previous solutions, other work seeks to improve the repair process
itself, rather than the underlying file system. Again, though, these works generally fail
to provide a fully integrated solution.

Recon protects file system metadata from buggy file system operations by verifying
metadata consistency at run-time [Fryer et al. 2012]. Doing so allows Recon to detect
metadata corruption before committing it to disk, preventing its propagation. However,
Recon does not perform a global scan and thus cannot protect against errors resulting
from hardware failures. The current implementation of Recon also relies on the proper
functioning of the ext3 journal, making the strong assumption that it is free of bugs.
McKusick [2002] proposes avoiding downtime during file checking by running the

checker as a background process on a file-system snapshot. While this does allow the
primary system to continue running, assuming that file-system corruption is not catas-
trophic, it does not improve the overall time required to run the checker, and thus,
some file system capacity may be unavailable for long periods of time if it has been
erroneously marked as in use. It also requires the underlying file system to support
soft updates, which may not be available.

Similarly, both WAFL [NetApp 2011], NetApp’s file system, and ReFS [Sinofsky
2012], Microsoft’s server-side successor for NTFS, provide mechanisms for the online
removal of corrupt data. These are designed to remove the need for an offline checking
tool; however, given the limited availability of technical details on these systems, it is
difficult to evaluate their effectiveness.

Finally, SQCK takes a different approach to improving file-system checkers, focusing
on reliability and correctness instead of execution time. To do so, it transforms the
complicated rules used by most checkers into SQL, benefiting from the simplicity and
compactness of a query language [Gunawi et al. 2008]. However, its simplicity comes
at some cost; it executes more slowly than traditional checkers.

In summary, the file system checker provides the last chance to recover a damaged
file system image, but the significant downtime it causes when scanning makes it
costly. Though the mechanisms introduced above can accelerate the checking process,
many of them sacrifice the checker’s primary goal: thoroughly scanning the whole file
system and guaranteeing complete freedom from inconsistency. Those that do avoid
this pitfall only focus on part of the solution—either the checker or the file system—
and fail to improve both.

3. EXTENDED MOTIVATION

Before developing a better file-system checker, one needs to thoroughly understand the
approach current checkers use and clearly define their bottlenecks. In this section, we
first introduce the overall file-system check and repair policy, focusing on the widely-
used open-source checker e2fsck. We examine how well the checker performs under
varying conditions, including file size and age, comparing both ext3 and ext4. Finally,
we discuss the design trade-offs that account for poor checking performance.

3.1. Fsck Background

Though its reliability has improved over the past decade, file systems are still frag-
ile and vulnerable to a variety of errors. When McKusick et al. [1984] designed and
implemented the Fast File System, they also developed the fsck utility to restore a
corrupt file-system image to a consistent and usable state [McKusick et al. 1986]. At a
high level, fsck scans all of the file system’s metadata and uses redundant structural
information to perform consistency checks. If an inconsistency is detected during the
scanning process, the checker will repair it with best effort.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Ao Ma et al.

Table I. E2fsck Phases of Operation

Phase Scan and checking task
1 Scan and check all inodes and indirect

blocks. If blocks are multiply claimed,
rescan all previously checked metadata
to choose an owner.

2 Individually check each directory.
3 Check the directory connectivity.
4 Check the inode reference count and remove

orphan inodes.
5 Update block and inode bitmaps if necessary.

Below, we briefly describe how e2fsck uses these fields to verify the consistency of
each type of metadata. E2fsck primarily executes its checking rules in five phases,
described in Table I. Once these phases are complete, the following rules will have
been validated:

Superblock. E2fsck checks the values stored in the superblock, including the file-
system size, number of inodes, free block count, and the free inode count. Although
there is no way to accurately verify the first two numbers, because they are stat-
ically determined upon creation of the file-system disk image, fsck can still check
whether these sizes are within a reasonable range.
Group Descriptor. E2fsck checks that blocks marked free in the data bitmap are not
claimed by any files and that inodes marked free in the inode bitmap are not in use.
Directory. E2fsck applies several checking rules to each directory data block, includ-
ing whether the directory inode numbers point to unallocated inodes, whether the
directory inode numbers lie in a reasonable range, and whether the inode numbers
of “.” and “..” reference the correct inodes.
Inode. On the most basic level, e2fsck verifies the consistency of the internal state of
the inode, including its type and allocation status. In addition, it verifies the inode’s
link count and the number of blocks claimed by the inode. Finally, it ensures that
all the blocks pointed to by the inode have valid numbers and are not held by any
other inode.
Indirect Block. As with inodes, fsck checks that each block claimed by the indirect
block has not been claimed by another and that each block number is valid. In
addition, it records the number of data blocks that the indirect block references for
later comparison with the total size claimed by the parent inode.

3.2. E2fsck Performance Analysis

In this section, we analyze the factors that affect fsck’s performance, allowing us to
accurately locate its bottlenecks and obtain hints for further optimization. We perform
all of our experiments on a 2.2 Ghz AMD Opteron machine with 1 GB of memory
and a 750 GB Seagate Barracuda 7200.12 testing disk with Linux 2.6.28 and e2fsprog
1.41.12. We create all file system images with their default settings, except where
otherwise specified, and enable all features.
We first examine how e2fsck performs as the file system utilization grows. We ini-

tialize the file system image by creating one directory per block group, each of which
contains a number of files with sizes chosen uniformly from a one to 512 block (4 KB-
2 MB) range; we create files in this directory until it contains 25.6 MB (20% of the
block group size). To increase the utilization of the file system to the desired amount,
we then randomly create new files (4 KB-2 MB) or append one to 256 blocks (4 KB-
1 MB) of data to existing files, choosing between the two operations uniformly. We
display our results in Figure 1. The total run time of e2fsck grows quickly as the uti-

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:7

150GB 300GB 450GB 600GB

1666

2554

3398

4176

0

500

1000

1500

2000

2500

3000

3500

4000

4500
C

he
ck

in
g

T
im

e
(S

ec
on

ds
)

File system image utilization

Phase 1
Phase 2

Phase 3
Phase 4

Phase 5

Fig. 1. e2fsck Execution Time By Utiliza-
tion. This graph shows e2fsck’s execution
time for file-system images with different
levels of utilization, broken down by time
spent in each phase.

0

5

10

15

20

25

30

S
ec

on
d

0 1000 2000 3000 4000 5000
Read Block Number

indirect block
inode block

Fig. 2. Cumulative e2fsck Read Time In
Phase 1. This figure shows the cumulative
time to access each indirect block and inode
block in phase 1 of e2fsck’s scan.

0

5

10

15

M
B

/S
ec

on
d

0 250 500 750 1000
Operations/Group

6.23 5.87 5.43 5.29 5.16

17.78

6.51
5.95 5.82 5.64

e2fsck on ext4
e2fsck on ext3

Fig. 3. e2fsck on Aging File System Images. This graph shows that e2fsck’s speed degrades as
the file system ages. The file system is on a 750 GB partition and has around 95% utilization.

lization of file system increases, indicating that e2fsck’s performance does not scale to
high file system utilization.

To determine which portion of the check dominates the scan time, Figure 1 also
breaks down the total time by the amount spent in each phase. We find that phase 1
occupies more than 95% of the total checking time. During this phase, e2fsck scans all
inodes and their corresponding indirect blocks, which comprise the largest portion of
the file-system’s metadata. Furthermore, since e2fsck has to execute this scan again
if it detects multiply-claimed blocks, the actual total time may be even longer in the
presence of errors.

To better understand the I/O behavior during this phase, we measure the time e2fsck
spends reading each individual block during the 150 GB experiment. We show our
results in Figure 2, which displays the cumulative time spent reading indirect and
inode blocks, represented by Xs and circles, respectively. Accesses of indirect blocks
overwhelmingly dominate I/O time. This behavior results from ext3’s disk layout: inode

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Ao Ma et al.

blocks are stored contiguously, while indirect blocks are dynamically allocated and
thereby scattered throughout the disk, requiring a separate seek for each block access.
Given this time spent reading indirect blocks, one might assume that an extent-

based file system would reduce the time required to check the file system. However,
extents are also likely to suffer under fragmentation resulting from regular use. To
examine this effect, we measure the speed of e2fsck on a series of ext3 and ext4 file
system images in increasing stages of aging [Smith and Seltzer 1997].

We construct each image by initializing the file system as described previously and
then performing a series of file creations, appends, truncations, and deletions, choosing
uniformly between them. File creation and appending use the approaches described in
our first experiment. Truncation chooses a random offset into the file and truncates
it to that length. Finally, deletion chooses a file to delete at random from the current
directory. As these operations can change the utilization of the final file system image
dramatically, we discard any image with a utilization under 90% and generate a new
one.
Figure 3 shows our results for this experiment. The x-axis shows the number of ag-

ing operations performed per directory and the y-axis depicts the throughput obtained
by e2fsck, measured by bytes accessed (not by the total data in the file system). The re-
sults demonstrate that, while ext4 initially performs much better than ext3, it rapidly
degrades due to increased fragmentation, performing only marginally better than ext3
under even moderate aging. Neither system ultimately performs well, achieving less
than 10% of the underlying 100 MB/s disk bandwidth (calculated accounting for band-
width differences between zones).
From these three experiments, we conclude that e2fsck does not scale well as the

file system grows, that checking inodes and indirect blocks occupies the most time,
and that e2fsck’s performance degrades significantly as the file system ages. Because
ext4 shows little difference from ext3 in the presence of file-system aging, we focus the
remainder of our discussion entirely on ext3.

3.3. File System Design Trade-offs

Based on our previous analysis, we observe two file-system design decisions that lead
to e2fsck’s poor performance. First, ext3 uses the same allocation strategies for data
blocks and indirect blocks, storing them in a contiguous fashion to facilitate sequential
access. However, this design causes indirect blocks to be scattered throughout the disk,
growing increasingly further apart as the file system ages. Given the low density of
these blocks, e2fsck has to pay a significant penalty to access them.
Second, ext3 relies on a tree structure to locate all of the indirect blocks, imposing

a strict ordering of accesses when checking a file. For example, e2fsck can only locate
a double indirect block by first traversing its inode and then its parent indirect block.
This limitation prevents the checker from optimizing its accesses using disk locality.
Though batching several adjacent inodes and fetching all of their indirect blocks in

an order sorted by their double indirect blocks could ameliorate the I/O penalty to some
extent, the dependency on a tree structure still limits the overall optimization across
file boundaries. For example, if the checker knew the locations of all of the indirect
blocks, it could access them with a sequential scan. Because it lacks this information,
the checker is forced to seek frequently to look up the indirect blocks of a file.

From our analysis, we infer that fsck’s poor performance results from a long-term
focus on preventing errors, instead of fixing them. The checker is usually regarded
as a peripheral addition to the file system to be used only as a matter of last resort,
rather than an integral component. Despite this, factors in practical deployment that
cause the file system to become corrupted and inconsistent may significantly exceed

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:9

designers’ expectations. For example, soon after SGI deployed XFS with “no need for
fsck, ever,” they added a checker for it [Funk 2007].

4. DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation of both the rext3 file sys-
tem and ffsck, the fast file system checker. While these systems are based on ext3 and
e2fsck, respectively, they each contain a number of modifications designed to reduce
the time required to fully check the file system. Rext3 improves metadata density by
co-locating all the indirect blocks in a block group and uses a backpointer-based struc-
ture for indirect blocks to better support a fast checker. Ffsck then uses this modified
layout to perform a disk-order scan that accesses all of the file-system metadata at
once, significantly reducing the number of seek operations from that incurred by a tra-
ditional inode-order scan. To mitigate the memory pressure that storing all this data
could incur, ffsck compresses the metadata that it caches on the fly. Finally, ffsck em-
ploys a bitmap snapshot to reduce the number of inode and indirect blocks it has to
rescan when it encounters multiply claimed data blocks.

4.1. Goals

We expect rext3 and ffsck to meet the following criteria:

Fast scan speed. Unlike e2fsck, which is limited to roughly 10% of the underlying
disk bandwidth, we expect ffsck to scan the file system with the greatest possible
efficiency. The ability to scan and repair quickly should be of paramount concern
for file-system designers, as nobody wants to wait hours to bring a file system back
online.
Robust performance despite file-system aging. E2fsck’s speed drops quickly as the
file system ages, which not only significantly increases its running time but also
makes it impractical to estimate its completion time. We expect our new checker to
scan the system at a constant speed, regardless of the aging that has occurred in
the file system, allowing the system administrator to better decide when to execute
the checker.
Competitive file-system performance. Repairability cannot come at the expense of
responsiveness and throughput, as these are critical in production environments.
Therefore, we focus on ensuring that our repair-driven file system performs com-
petitively with ext3.

4.2. Rext3 File System

Rext3 is developed atop ext3, the default file system for many popular Linux distribu-
tions. Rext3 inherits most of the mechanisms used in ext3, except two: the disk layout
and the indirect block structure. This section details these new features and gives a
basic overview of our implementation.

4.2.1. Rext3 Disk Layout. To reduce the time spent in phase one of file checking, rext3
decouples the allocation of indirect blocks and data blocks by reserving a block region
immediately after the inode table in each block group, called the indirect region. This
region stores all dynamically allocated metadata: specifically, indirect blocks and di-
rectory data blocks. When allocating metadata blocks for a file, rext3 first attempts to
allocate from the indirect region in the same block group of the file’s inode. If the cur-
rent region is full, rext3 will iterate over the subsequent indirect regions until a free
block is found. Ordinary data blocks are restricted to the free blocks outside the indi-
rect region, but otherwise use the same allocation algorithm as ext3. The disk layout
is shown in Figure 4.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Ao Ma et al.

Group

Descriptor

Data

Bitmap

Inode

Bitmap

Inode

Table
Data blocks

Ext3 Block Group Layout

Rext3 Block Group Layout

Group

Descriptor

Data

Bitmap

Inode

Bitmap

Inode

Table
Data blocks

Indirect

Region

Contains:

File indirect blocks

Directory data blocks

Fig. 4. ext3 and rext3 Disk Layout Comparison. This figure shows the disk layouts of both ext3
and rext3.

Block pointer 0

Block pointer 2

. . .

Block pointer 1

Block pointer 1023

ext3 Indirect Block Format

Inode number

Block pointer 0

. . .

Level in indirect tree

Block pointer 1021

rext3 Indirect Block Format

Fig. 5. Indirect Block Layout. This figure shows how the indirect blocks of ext3 and rext3 differ.

By co-locating dynamically allocated metadata, we improve the I/O density during
the checker’s scan phase, because this metadata will no longer be scattered throughout
the disk. Instead of having to perform a separate seek for each of these blocks, the
indirect region of rext3 allows the fast checker to perform one sequential read of all
metadata blocks for a given block group, including the block and inode bitmaps, the
inode table, indirect blocks, and directory data blocks.
Initially, the indirect region seems to work against our goal of competitive file-system

performance. Because we separate the allocation of indirect blocks and their corre-
sponding data blocks, sequential access requires additional seek operations, appar-
ently slowing ordinary use to accelerate the repair process. However, modern disks
generally buffer entire tracks when reading individual blocks; thus, the disk will fetch
several indirect blocks with a single I/O. Subsequent reads of these blocks will then re-
turn from the disk cache, which is usually an order of magnitude faster than the disk
platter. This allows rext3 to perform as efficiently as ext3 in most cases, without the
extensive manual prefetching used in other systems that allocate metadata and data
separately, such as DualFS [Piernas et al. 2007] and the ext3 metaclustering patch
[Rai 2008]. We verify this claim in Section 5.

4.2.2. Backpointer-based indirect structure. To allow ffsck to link related indirect blocks
and perform some verification without referring to the indirect tree, rext3 uses a
backpointer-based data structure. Specifically, the beginning of each indirect block con-

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:11

tains its inode number and level in the indirect tree structure, as shown in Figure 5.
We discuss how ffsck uses these pointers in Section 4.3.2.

Because this global information is added when allocating a new indirect block for
the file, it does not degrade performance. However, it does reduce the number of block
pointers that each indirect block can store.

4.2.3. Rext3 Implementation. Rext3 is implemented in Linux 2.6.28. Our implementa-
tion removes the preallocation mechanism for indirect blocks [Bovet and Cesati 2005],
as all indirect blocks are written to designated indirect regions. In total, our modifica-
tions add 1357 lines to the ext3 codebase, most of which reside in inode.c and balloc.c.

The default size of each indirect region is 2 MB, which, given the default 4 KB block
size, allows for 512 blocks; however, users can adjust this parameter based on the
expected average file size. Tuning this parameter properly is of key importance: too
large a value will lead to wasted disk space, while too small a value may cause the file
system to run out of indirect blocks.

4.3. Fast File System Checker

As rext3 is based on ext3, ffsck is based on e2fsck, the default file system checker for
ext2 and ext3. Ffsck inherits the same checking policy and phase structure employed
by e2fsck; however, it features three new components. First, it performs a disk-order
scan to fetch all file-system metadata into memory. Second, it compresses metadata
on the fly to alleviate the memory pressure caused by the aforementioned scan. Third,
it employs a bitmap snapshot that allows it to avoid a costly double inode scan when
it encounters a doubly-allocated block. The following subsections detail each of these
features individually.

4.3.1. Disk-order Scan. Ffsck loads all the file-system metadata into memory in a sin-
gle sequential scan, referred to as a disk-order scan. Each metadata block is fetched
in an order sorted by its disk address. To perform this disk-order scan, ffsck needs to
know the location of each metadata item ahead of time. Statically-allocated metadata,
such as the superblock, block descriptors, inodes, data bitmap, and inode bitmap, have
a fixed location on disk, allowing ffsck to obtain their addresses with a simple calcula-
tion. Ffsck locates dynamically allocated metadata, such as the indirect and directory
data blocks, using the portion of the data bitmap corresponding to the indirect region.
Because the indirect region immediately follows the fixed-length inode table, ffsck can
obtain its block range and fetch every block within it marked in-use in the data bitmap,
removing nearly all seeks except those between block groups. Thus, ffsck is capable of
scanning the file system with close to maximum efficiency under normal operation.

Moreover, the combination of the indirect region and the disk-order scan removes
the negative influence of file-system aging on the check speed. Regardless of the file
system’s age, indirect and directory data blocks will still reside in the indirect region,
ensuring that the scan speed remains nearly constant as the file system ages. Ffsck’s
execution time varies only with the total number of block groups, which is proportional
to the utilization of the file system image. Thus, system administrators can accurately
and easily evaluate the total checking time beforehand and infer how long downtime
will last.

4.3.2. Self-check, Cross-check, and Compression. The disk-order scan is an efficient ap-
proach to maximizing the utilization of disk bandwidth. However, it leads to a new
challenge: because ffsck accesses all of the file system metadata in a physical, rather
than logical sequence, it cannot apply checking rules until all related metadata are
cached in memory. Since the metadata size is directly proportional to the file-system
data size, a disk-order scan can easily lead to memory saturation in large-scale storage

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Ao Ma et al.

Indirect Block

Last Pointer: 700

Last Pointer Offset:

1021

LBA: 20

Double Indirect

Last Pointer: 157

Last Pointer Offset: 2

LBA: 36

Inode

Last Pointer: 36

Last Pointer Offset:

13

Indirect Block

Last Pointer: 900

Last Pointer Offset:

1021

LBA: 97

Indirect Block

Last Pointer: 950

Last Pointer Offset:

12

LBA: 157

Fig. 6. File Size Verification. This figure shows the logical tree structure used to verify a file’s
size. The bold arrows indicate the path followed to retrieve and construct the final offset.

systems. To prevent this, it will suffice to reduce the in-memory footprint of inodes and
indirect blocks, since these comprise the majority of the file-system metadata.
All of the checking rules for inode and indirect blocks can be categorized into two

groups. The first of these, self-check, only relies on the internal structure of the in-
ode or indirect block; this group includes checks on inode types and on indirect block
data pointer ranges, among others. The second, cross-check, requires data structures
from multiple metadata items; this group includes more complicated checks, such as
verifying the total number of blocks claimed by an inode and its file size.
Cross-check rules do not need all the information in each object; thus, we can save

memory by removing unused fields of each metadata object. Ffsck self-checks each
metadata block as soon as it is loaded into memory; ffsck then frees the memory it
no longer needs, retaining only the data used for cross-check rules. Once all related
metadata for a file are in memory and processed with the self-check rules, ffsck then
executes the cross-check rules, removing the metadata entirely once the cross-check
is complete for all files. With this method, we convert the memory saturation problem
into a compression problem.

Self-check and Cross-check Rules. The self-check of an inode includes checking the
inode type, link count, and allocation state, and the self-check of an indirect block
includes verifying its data block pointer range and its allocation state. These checks
are performed when the block is fetched into memory.
The cross-check between each inode and its indirect blocks has two stages. First,

it verifies that the number of blocks claimed by the inode agrees with the number of
the actual blocks owned by the inode, which is the sum of the total number of indirect
blocks owned by the inode and the number of non-zero block pointers in each of them.
Second, it calculates the actual file size based on the last block’s offset and compares
that with the file size field of the inode.
For the first cross-check, ffsck links together blocks from the same file using the

backpointers to the parent inode provided by rext3, allowing it to avoid the indirect
tree structure. When self-checking an indirect block, ffsck also records the number of
non-zero block pointers it contains, associating this with the inode number stored in its
backpointer. Using this backpointer information, ffsck can then sum the block pointer
counts to obtain the actual number of blocks associated with the inode.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:13

!"#$%&
!"$'(%)*&+#'"*%(,&&-&

.#/012&!"$'(%)*&

+#'"*%(,&&3&

!"$'(%)*&41#)5&

+#'"*%(6&*#&$7*7&

849,&-&

.#/01%&!"$'(%)*&&

!"$'(%)*&+#'"*%(,&&:&

!"$'(%)*&+#'"*%(,&&;<&

849,&3&

!"$'(%)*&41#)5&

+#'"*%(6&*#&$7*7&

849,&&:&

!"$'(%)*&41#)5&

+#'"*%(6&*#&$7*7&

849,&&;<&

8%=%1&;&)>%)56/?&7*&'"#$%,&&-@3AB&

8%=%1&;&)>%)56/?&#=%(&01#)5&8496,&&-@3AB&

8%=%1&C&)>%)56/?,&&&

:@;<A;:&

8%=%1&C&)>%)56/?&&

#=%(&01#)5&8496,&&&

:@;<A;:&

Fig. 7. Checksum of Each Indirect Layer. This figure shows how ffsck calculates and verifies the
checksum of each layer in the tree of indirect blocks.

The second cross-check verifies file size, requiring the file offset of the last data block
pointer. To determine this, ffsck records the disk location of each indirect block, along
with the address and offset of its last non-zero block pointer. This information allows
ffsck to partially rebuild the indirect tree, find the last block offset, and calculate the
actual file size. We provide an example of this procedure in Figure 6.

In this example, ffsck begins by checking the inode, noting that the inode’s last
pointer points to block 36, the inode’s double indirect block. Because the double in-
direct block is allocated, the file size is at least 1034 blocks long: 12 blocks pointed
to by the inode, and 1022 blocks pointed to by the single indirect block, which uses
two pointers to store backpointer information (note that all indices start from zero; as
blocks are 4 KB and pointers four bytes by default, each indirect block can store 1022
pointers). Ffsck then checks the pointer information for block 36, the double indirect
block. As this block’s last pointer offset is 2, the file contains an additional 2044 blocks.
Finally, ffsck checks block 157, the final indirect block. That indirect block’s last offset
is 12; thus, the total file size is 1034 + 2044 + 12 = 3090 blocks. Ffsck can then compare
this with the size stored in the inode; if these differ, corruption has occurred.

Because ffsck finds indirect blocks by using the portion of the data bitmap corre-
sponding to the indirect region rather than by following pointers in metadata blocks,
bitflips or similar types of corruption in the data bitmap may cause ffsck to process
obsolete indirect blocks or ignore current ones. Traditional checkers are not suscepti-
ble to this problem, since they directly traverse the indirect tree for each file; thus, we
provide a mechanism to prevent this occurrence.

For each file, ffsck calculates a series of checksums, two for each layer in the indirect
tree. It calculates the first of these using the pointers in the inode (for the top level)
or the indirect block (for the subsequent levels). It calculates the second of these using
the logical block addresses of the blocks in the lower layer, which it identifies using
the backpointer and layer data stored with each indirect block. If the two checksums
are equal, ffsck assumes that the indirect blocks are up-to-date; otherwise, it manually
traverses the file’s indirect tree to obtain the correct metadata blocks. Currently, our
checksum consists of a sum, though this could easily be upgraded to a more advanced
function, such as a collision resistant hash, albeit at the cost of additional computation
and memory.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Ao Ma et al.

We provide an example of our checksumming procedure in Figure 7. Ffsck verifies
checksums once the disk-order scan is complete; thus, the first checksum for each layer
of the tree has already been calculated. To verify these checksums, ffsck then sums the
LBAs at each layer of the in-memory tree. It begins with the first layer, which contains
the file’s single indirect and double indirect blocks, at LBAs 3 and 6, respectively. These
LBAs sum to 9, which agrees with the first checksum. The single indirect block has no
children by definition, so ffsck proceeds to the double indirect block. This block has two
children, at LBAs 7 and 10, summing to 17. Again, this agrees with the first checksum
for this layer. As all of the checksums agree, the bitmaps are valid. If there were a
checksum mismatch, we would then need to traverse the on-disk tree to determine
where the error lies.

Compression. Thanks to our careful grouping of checking rules, ffsck need not retain
all fields of a metadata item in memory after self-checking it. For inodes, ffsck only
stores the inode number, file size, block count, last non-zero block pointer address,
checksum of each layer, and data structures needed to link the inode with its corre-
sponding indirect blocks. Similarly, indirect blocks only require their own address, the
number of non-zero block pointers they contain, and the address and offset of their last
block pointer.
Discarding data that will no longer be used significantly reduces ffsck’s in-memory

footprint. Specifically, the compression ratio of inodes is nearly 2:1 and the compres-
sion ratio of indirect blocks is nearly 250:1, substantially lowering the probability of
memory saturation.
Figure 8 provides a quantitative comparison of the memory cost of storing the meta-

data for one gigabyte of data before and after compression. The x-axis represents the
average file size, and the y-axis shows the memory cost of storing the inode and indi-
rect blocks. Memory utilization peaks at 86 MB when the average file size is 49KB, at
which size the average file has one indirect block and several data blocks; this ratio of
metadata to data will not scale to large storage systems. However, by compressing the
metadata, we lower memory consumption to 1 MB, alleviating much of the memory
pressure.

4.3.3. Bitmap Snapshot. When a file-system checker detects a data block claimed by
more than one inode, it must determine which inodes claim the data block and assign
the data block to the correct one. Traditional checkers, such as e2fsck, have to rescan
all of the inodes and indirect blocks encountered by that point to do so. Since scanning
the inodes and indirect blocks comprises more than 95% of the total checking time,
these double scans are very costly.
To accelerate this process, ffsck uses a list of bitmap snapshots, each of which shows

which data blocks were allocated by a specific group of inodes. Each group has a pre-
determined size, allowing ffsck to easily determine which inodes correspond to which
snapshot. These snapshots are created cumulatively; when a block is marked in the
corresponding snapshot for its inode group, it is marked in all subsequent snapshots.
Thus, ffsck can detect a doubly-allocated block if the bit in the current snapshot is al-
ready set. It can then find the inode group that first allocated the block by iterating
through the snapshots until it finds the one in which the bit was first set. Once it has
done so, it only needs to rescan that group to find the inode that first claimed the block,
instead of rescanning all of the previous inodes and indirect blocks. This bitmap mech-
anism can be further optimized by batching multiple doubly-allocated blocks before
rescanning.
An example is given in Figure 9. Bitmap snapshot 1 marks blocks 0, 3, and 4 in use,

and bitmap snapshot 2 marks blocks 1 and 5 in use. When ffsck marks bitmap snapshot
3 to include blocks 2 and 5, it detects that block 5 has its use bit set, indicating that it

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:15

0
10
20
30
40
50
60
70
80
90

100

M
em

or
y

C
os

t (
M

B
)

48KB 49KB 0.1MB0.5MB 1MB 2MB
Average File Size

0

86.2

42.24

8.45
4.12 2.061.06

Original Memory Cost
Compressed Memory Cost

Fig. 8. Memory Cost Analysis. This figure compares memory cost of inodes and indirect blocks
for 1 GB of data as average file size increases, before and after compression.

has already been allocated. Iterating over its list of snapshots, ffsck will discover that
snapshot 2 contains the inode that first pointed to the block. Ffsck can then find the
inode that first claimed ownership by rescanning the block groups corresponding to
snapshot 2.

Ffsck can configure the number of snapshots it takes dynamically based on the sys-
tem’s available memory; the more memory available, the more snapshots that ffsck
can create, reducing the number of blocks ffsck has to rescan. Even two snapshots,
however, can halve the time spent rescanning, time that will be further reduced by the
use of a disk-order scan.

4.3.4. Ffsck Summary. The previous sections provided a detailed overview of ffsck’s
individual components; we now provide a step-by-step summary of its operation.

Disk-order scan. First, ffsck scans the disk in ascending-address order. During the
scan, ffsck:
(1) Reads the inodes in each block group and self checks them, discarding all fields

but those needed for the cross-check: the inode number, file size, block number,
and address of the last non-zero block pointer.

(2) Reads the portion of the data bitmap corresponding to the indirect region; for
each set bit, read the corresponding indirect block and self check it, again re-
taining only those fields needed for the cross-check (LBA, number of non-zero
block pointers, and the address and offset of the last non-zero block pointer).

(3) For both inodes and indirect blocks, mark the appropriate bitmap snapshot for
each data block allocated. If a data block is allocated twice, record it, its inode,
and the conflicting inode group.

Cross-check. Next, ffsck performs a cross check using the data saved in memory. For
each file, ffsck:
(1) Verifies the total number of blocks claimed by the file.
(2) Verifies the file size.
(3) Verifies that the checksums in each layer agree.
Correct doubly-allocated blocks. Then, for each doubly allocated data block, ffsck
scans the conflicting inode group and chooses to which inode to assign the block,
using the same procedure as e2fsck.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Ao Ma et al.

1 0 0 1 1 0Snapshot 1

1 1 0 1 1 1Snapshot 2

1 1 1 1 1 1Snapshot 3

Block Number

0 1 2 3 4 5

Fig. 9. Bitmap Snapshot Illustration. This figure shows an example of three bitmap snapshots
taken during a file-system scan. A shaded bit indicates that the corresponding block was allo-
cated in the scan of the inode group for that snapshot. The bold outline around block five in
snapshot three indicates that that block has been allocated twice—once in snapshot two and
once in snapshot three—and needs to be repaired.

Once these steps are completed, corresponding to phase 1 of e2fsck’s operation, we
then continue with the rest of e2fsck’s phases. As these phases do not require much
time to execute, we do not change their behavior.

4.3.5. Ffsck Implementation. We base ffsck on e2fsprog1.41.12, adding 2448 lines of
source code to it. Most of these modifications occur in pass1.c, which implements the
phase one scan and pass1b.c, which rescans all of the inodes and their corresponding
indirect blocks to find which inodes have claimed doubly-allocated blocks.

5. EVALUATION

In this section we evaluate our prototype in three aspects: we compare the perfor-
mance of e2fsck in the ext3 file system with that of ffsck in the rext3 file system, we
compare the correctness of ffsck to that of e2fsck, and we measure the two file sys-
tems’ relative performance. We execute our experiments in the environment described
in Section 3.2 and employ the same techniques for creating and initializing file system
images described there. In general, we demonstrate that rext3 provides comparable
performance to ext3 during ordinary use, while allowing ffsck to operate significantly
faster than e2fsck during recovery.

5.1. Checker Performance

To measure the relative performance of e2fsck and ffsck, we evaluate the time it takes
to run them on different file system images of varying utilization and age. We create
all of the images using the techniques described in Section 3.2. We generated none of
these images with errors; thus, these results represent the best-case scenario.

We first compare e2fsck and ffsck by executing them on a series of file-system images
with increasingly high utilization. Because the number of inodes and indirect blocks
has the greatest impact on the checker’s performance, we focus on file system images
with large numbers of files, rather than those with complex directory trees. Figure 10
displays our results for file systems with 150-600 GB of data; the x-axis indicates the
amount of data in the file system, and the y-axis indicates the checker’s execution time.
While e2fsck’s total execution time grows with the utilization of the file system, ffsck’s
time remains roughly constant.
Next, we compare e2fsck’s performance with that of ffsck on a series of aged, 750 GB

file-system images, showing our results in Figure 11. The x-axis represents how many
aging operations are performed on each block group, and the y-axis depicts the rate at
which the two programs process data (i.e., the total data read divided by total checking

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:17

1666

2554

3398

4176

462 464 468 471

0

500

1000

1500

2000

2500

3000

3500

4000

4500
E

xe
cu

tio
n

T
im

e
(S

ec
on

ds
)

150GB 300GB 450GB 600GB
File System Utilization

e2fsck
ffsck

Fig. 10. E2fsck and ffsck Execution Time.
Total running time of e2fsck and ffsck as
file-system utilization increases.

0

20

40

60

80

100

120

140

T
hr

ou
gh

pu
t (

M
B

/S
ec

on
d)

0 250 500 750 1000
Operations/Group

6.23 5.87 5.43 5.29 5.16

102

61.89 62.31 61.17 60.94 60.91

optimal disk bandwidth
ffsck on rext3
e2fsck on ext3

Fig. 11. E2fsck and ffsck Throughput Under
Aging. Rate at which e2fsck and ffsck scan
a 750 GB file system as the file system ages.

222

49.4

206

1.9
0

50

100

150

200

250

S
ca

n
T

im
e

(S
ec

on
ds

)

E2fsck Ffsck

First Scan
Double Scan

Fig. 12. Double Scan Execution Time. Total running time of e2fsck and ffsck in the presence of
a doubly-allocated block.

time). While e2fsck’s throughput achieves roughly 5-6% of the disk bandwidth, our
new checker uses roughly 61% of the hard disk bandwidth, nearly 10 times faster than
e2fsck.

Moreover, ffsck scans the file system at a consistent speed regardless of the age of
the file system. This occurs because rext3 colocates its dynamically allocated metadata,
allowing it to scan its metadata in disk-order and thus minimize both the number of
disk head movements and the average seek distance.

5.2. Checker Correctness

We also test ffsck’s robustness by injecting the 15 metadata corruptions listed in Ta-
ble II. We use one test case for each superblock and group descriptor error, as our
changes do not affect the validation of these objects. For each inode and indirect block
error, we inject either one or three corruptions; three if the corruption is checked in
phase 1, as we made substantial changes to this phase, and one if it is checked in
phases 2-5, as these phases are unaltered. In every circumstance, both e2fsck and
ffsck detect and repair all errors, showing that ffsck provides the same basic correct-
ness guarantees as e2fsck.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Ao Ma et al.

Table II. Corrupted Metadata Used For Testing

Metadata type Corrupted fields Test Cases
Superblock magicNum 1

inodeSize 1
inodeNum 1
blockNum 1

Group Descriptor inodeBitmapAdd 1
blockBitmapAdd 1

Inode type 1
linkCount 1
blockNumber 3
fileSize 3
pointerRange 3
State 1
multiply-allocated block 3

Indirect blocks pointerRange 3
blockNumber 3
multiply-allocated block 3

0.64
6.98

51.9

100

121 121

0.64
6.21

51.1

99.3

119 121

0

20

40

60

80

100

120

140

160

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

10KB 100KB 1MB 10MB 100MB 1GB
File Size

ext3
rext3

Fig. 13. Sequential Read Throughput. Se-
quential read throughput for a file of vary-
ing size.

4.62

23.4

59.1
70.5

81.0
87.6

4.58

24.2

59.7
69.4

88.5

104

0

20

40

60

80

100

120

140

160

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

12KB 100KB 1MB 10MB 100MB 1GB
File Size

ext3
rext3

Fig. 14. Sequential Write Throughput. Se-
quential write throughput for a file of vary-
ing size.

To see how ffsck performs in the most expensive error case, we test the performance
of both checkers when they encounter doubly-allocated blocks, using a full 50 GB file
system. We configure ffsck to create a bitmap snapshot for every ten block groups;
since the file-system image is 50 GB, one snapshot occupies less than 2 MB. Each block
group is 128 MB, so there are 400 block groups and 40 snapshots. Thus, the snapshots
consume less than 80 MB of additional memory.
In our experiment, we create a single doubly-allocated block by randomly setting

two block pointers in different files to point to the same data block. Figure 12 shows
our results. When the doubly-allocated block is detected, ffsck only has to recheck the
inode tables and indirect regions of 10 block groups, whereas e2fsck has to rescan the
entire system. Thus, ffsck repairs the error much more quickly.

5.3. File System Performance

The main difference between ext3 and rext3 is that rext3 colocates all the indirect
blocks in each block group on disk, rather than placing them near their data. Despite
this, rext3 achieves similar results to ext3’s continuous allocation mechanism through
better utilization of the disk track buffer. This section compares the performance of
rext3 and ext3 and analyzes their differences.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:19

0.329 0.352
0.398

0.470 0.480 0.505

0.0

0.2

0.4

0.6

0.8

1.0
T

hr
ou

gh
pu

t (
M

B
/s

ec
)

128 256 512
read number

ext3
rext3

Fig. 15. Random Read Throughput.
Throughput when performing varying
numbers of random 4KB reads from a 2GB
file.

0

600

1200

1800

2400

3000

T
im

e
(M

ill
is

ec
on

ds
)

0 100 200 300 400 500 600
Read block number

indirect block
data block

Fig. 16. Cumulative ext3 Strided Read
Time. Cumulative time spent reading dif-
ferent block types in ext3 for the strided
read benchmark.

0

500

1000

1500

2000

2500

3000

T
im

e
(M

ill
is

ec
on

ds
)

0 100 200 300 400 500 600
Read block number

indirect block
data block

Fig. 17. Cumulative rext3 Strided Read Time. Cumulative time spent reading different block
types in rext3 for the strided read benchmark.

Figure 13 compares the performance of ext3 and rext3 when reading files sequen-
tially. The x-axis represents the target file size, ranging from 10 KB to 1 GB, and the
y-axis depicts the average read throughput over a minimum of five runs. The differ-
ence between the two file systems is less than 3% in all cases except when the target
file size is 100 KB. In this case, rext3 is 8.4% slower than ext3.

This discrepancy occurs because ext3 stores indirect blocks and data blocks contigu-
ously on disk. Thus, there is no seek operation between an indirect block and its cor-
responding data blocks during sequential reads. In contrast, since rext3 places these
blocks in different areas, an additional seek has to be performed between references to
an indirect block and its data blocks.

While this seems like it could cause significant overhead, modern disks generally
buffer entire tracks, as described in Section 4.2.1, causing most indirect blocks for a
file to be buffered in the disk cache after the first is read. Since the subsequent accesses
to the indirect region will be then returned from the disk cache, the seek penalty be-
comes negligible for larger files, allowing rext3 to perform virtually identically to ext3.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Ao Ma et al.

76

165

338

719

76
160

341

710

0

100

200

300

400

500

600

700

800
T

im
e

(S
ec

on
ds

)

1000 2000 4000 8000
Transaction Number

ext3
rext3

Fig. 18. Postmark Performance. Postmark
Performance with ext3 and rext3.

2.5

3.43

0.57

2.4

3.23

0.57

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

T
hr

ou
gh

pu
t (

M
B

/s
ec

on
d)

File Server Web Server Varmail

ext3
rext3

Fig. 19. Filebench Performance. Perfor-
mance of fileserver, webserver and varmail
macrobenchmarks with ext3 and rext3.

However, ext3 performs better when the target file is 100 KB, as the file has only one
indirect block and a few data blocks, causing the extra seek time to materialize.

Figure 14 compares the sequential write performance of rext3 and ext3. The x-axis
indicates the file size and the y-axis depicts the average access speed. Both systems
perform almost identically for small files ranging between 12 KB and 10 MB. However,
when the file size increases to 100 MB and 1 GB, rext3 demonstrates a 9.3% and 19%
improvement, respectively.
This occurs because the indirect region aids ext3’s ordered journaling mechanism.

By default, ext3 checkpoints its journal every five seconds, causing a large write to
be checkpointed several times before it completes. During these long writes, the file
system performs interleaving I/Os from data blocks that are being flushed to disk and
metadata blocks that are being checkpointed. Because it has to seek to write each
indirect block, ext3 performs primarily random I/O when checkpointing; in contrast,
rext3 can write the indirect blocks sequentially, improving overall write performance.
The benefits of the indirect region appear more readily when analyzing random read

performance. To do so, we randomly read one 4 KB block from a 2 GB file multiple
times and record the observed throughput. We show our results in Figure 15. The x-
axis indicates the number of times we read from the file, and the y-axis shows the
average read throughput over a minimum of five runs of the experiment in MB/s. The
rext3 file system sees 43%, 39%, and 27% higher throughput for 128, 256, and 512
reads, respectively, a significant difference.
Since the main difference between rext3 and ext3 is the disk layout, we examine the

performance of rext3 without the influence of the file system cache. To do so, we design
a test using strided reads, which iterate over all the indirect blocks and periodically
read a random data block to which the current indirect block points.
Figures 16 and 17 display the cumulative time spent reading indirect blocks and

data blocks during the strided read test, showing that rext3 outperforms ext3 by 68%
in this experiment. This occurs because the first access to the indirect region caches
it in the disk buffer, which is significantly faster than the disk platter. The rext3 file
system will thus spend much less time fetching indirect blocks, doubling its read speed.

Finally, we use Postmark and Filebench as macrobenchmarks to compare rext3 and
ext3. We use the default settings for Filebench and invoke Postmark with 5000 files
between 4 KB and 4 MB in size, placed in 50 subdirectories, with 50/50 read/append
and create/delete biases. Figures 18 and 19 show our results. In most cases, rext3 per-

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:21

forms nearly identically to ext3, except when large numbers of small files are involved.
In this case, rext3 performs 5% worse than ext3.

Given these performance measurements, we can conclude that rext3 performs com-
petitively with ext3 in most cases, exceeding ext3 in its ability to handle random reads
and large writes, and performing slightly worse when handling small reads.

6. LIMITATIONS

While rext3 and ffsck provide a number of substantial improvements over ext3 and
fsck, they are not without some drawbacks that may make them unsuited for certain
deployments. This section briefly discusses some of the areas where problems may
occur or performance may suffer and some potential solutions for these problems.

As mentioned earlier, ffsck relies on the data bitmap to determine which indirect
blocks are in use when performing its scan. Thus, corruption in the data bitmap can
potentially cause ffsck to miss indirect blocks. While we construct checksums to guard
against this kind of error, a mismatch in checksums will cause ffsck to revert to the
behavior of traditional fsck, causing performance to suffer (though this will still ben-
efit from metadata colocation, as demonstrated in the ext3 metaclustering patch [Rai
2008]).

More significantly, our current checksum is simple and may, in some cases, miss
certain errors due to collisions. In future work, this can likely be addressed by using a
more sophisticated checksum for each file; many cryptographic hash functions provide
strong enough guarantees to make the possibility of collision negligible. Doing so will
consume additional memory during the scan, as the checksum will be larger, and may
require backpointers to point to their immediate parent, rather than the inode; these
changes should, however, be feasible.

Memory consumption comprises the other potential drawback of our checker. In the
worst case, discussed in Section 4.3.2, metadata compression will not scale to very
large file systems with tens or hundreds of terabytes of data, as this will require tens
or hundreds of gigabytes of memory. This worst case behavior is, however, somewhat
unusual, relying on large numbers of files with sizes near 49 KB, which is unlikely
to arise in practice. In addition, this memory pressure could be partially alleviated by
performing the cross-check on a file-by-file basis (rather than upon completion of the
scan) and discarding the metadata for each file once all checks are complete for it; we
have yet to evaluate this approach, however.

Metadata seek times comprise the largest barrier to rext3’s efficient operation. While
the disk track buffer mitigates nearly all of this, its effectiveness can be thwarted by
fragmentation in the indirect region, causing seeks to distant block groups to fetch
metadata for local files, or simply by disks that do not possess this technology. Fortu-
nately, however, we have yet to observe the former in practice and the latter are likely
to be rare.

The other potential concern with rext3 is the need to choose the size of the indirect
region correctly, as described in Section 4.2.3; such misconfiguration could lead either
to wasted space or premature exhaustion of indirect blocks for the file system. Future
implementations of our file system may be able to allocate new indirect regions from
unused groups of data blocks. This approach may warrant investigation if configura-
tion proves difficult.

Finally, our techniques are most directly applicable to block-based file systems, such
as ext3 and FFS. While it may be possible to apply them to extent based file systems,
like ext4 and XFS, we have yet to analyze this in detail. Furthermore, they may be
challenging to implement in copy-on-write file-systems, like btrfs, without adopting
split partitions for data and metadata, as in DualFS [Piernas et al. 2007].

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Ao Ma et al.

7. IMPROVING THE PERFORMANCE OF FSCK IN FREEBSD

Our implementation and analysis of rext3 and ffsck have shown the power of metadata
colocation for improving the speed of fsck. However, it remains to be seen how broadly
applicable these ideas are, and how much benefit we receive from carefully structuring
the file system and the checker to take advantage of this colocation, as opposed to a
lighter-weight implementation.
To investigate how closely tied to our implementation of rext3 and ffsck our im-

provements from metadata colocation are, we apply our policies to the FreeBSD file
system, FFS. In designing our solution, we set two primary goals. First, we would
like to minimize the effects of our policies on existing file-system structures, avoiding
changes incompatible with the existing on-disk layout. Second, despite this unintru-
sive approach, we also seek to realize significant performance improvements to fsck.
Ideally, the resulting system will provide us both with a sense of the benefits of meta-
data colocation in isolation—along with a corresponding sense of the efficacy of our
more aggressive optimizations in rext3 and ffsck—and with a solution that is more
easily deployable and, thus, more likely to be adopted.
We begin with an overview of the structure of FFS, highlighting the important ways

it differs from ext3. Following this, we describe how we apply our policies from rext3
and ffsck to FFS and its checker and analyze their resultant performance. We conclude
the section with a brief discussion of our results’ implications.

7.1. FFS Structure

While FFS closely resembles ext3 in many respects, it does contain some significant
differences. Thus, we now provide a brief overview of the features of FFS that are
relevant to its checker (ignoring those, like the use of soft updates instead of journaling,
that have no bearing on file-system repair).
The basic disk layout of FFS is largely typical of UNIX file systems. FFS divides the

disk into cylinder groups, which are similar in structure and purpose to ext3’s block
groups. The first block of each cylinder group contains the cylinder group descriptor,
which includes a map showing the free and allocated blocks and a map showing the
free and allocated inodes in that cylinder group. The area following the cylinder group
descriptor is reserved for inodes; the remainder of the cylinder group is then used for
indirect blocks and data blocks for files and directories. In general, these structures
closely resemble their analogues in ext3.
Similarly, block allocation in FFS resembles that of ext3; small files have their blocks

allocated in the same cylinder group as their inode, though large files may be split
among multiple cylinder groups. Notably, FFS attempts to allocate the single indirect
block for each file in line with the file’s data, placing it immediately after the file’s
first twelve data blocks and immediately before the data blocks to which it points.
For further details FFS’s block allocation strategies, see Chapter 8 of McKusick and
Neville-Neil [2005].
While FFS’s placement strategies may be similar to those of ext3, its mechanism for

allocating blocks differs. Specifically, FFS separates its allocation process into two dis-
tinct layers: policy and implementation. The policy layer attempts to select the ideal
place to allocate a block, based on its type and previous blocks allocated, and the imple-
mentation layer manages allocation bitmaps and ensures that resource are not doubly
allocated. Thus, the policy layer does not have to concern itself heavily with the sta-
tus of existing allocations; if it selects a block that has already been allocated, the
implementation layer will find the closest available free block and use that, instead.

This separation of implementation and policy greatly facilitates developing new poli-
cies. As the implementation layer has remained constant through the course of FFS’s

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:23

development, it provides a stable, bug-free framework on which to test new policies,
removing much of the risk of corruption.

7.2. Optimizing FFS For Fsck

In adapting the principles behind ffsck and rext3 to FFS, we adhere to FFS’s separa-
tion of policy and implementation, leaving both the file system layout and the imple-
mentation layer untouched and changing only the allocation policy. This new policy
employs the fundamental concepts behind rext3, but it does so in a minimally disrup-
tive way, treating the concepts as guidelines rather than as rigid strictures.

The most fundamental change that rext3 makes is to colocate its metadata at the
beginning of each block group in a fixed-size region, allowing ffsck to read it in a single
pass. Our policy for FFS preserves this general concept, reserving about the first 4% of
data blocks in each cylinder group for metadata. Unlike our implementation in rext3,
however, this preallocation is treated as a hint. If the metadata region for a given
cylinder group fills, new metadata will spill over into the data section of the same
cylinder group; conversely, data can be allocated in a metadata region if necessary.
This decision removes the need to finely tune the size of the metadata region, since it
is no longer fixed, and can improve file system performance over that of rext3, because
it keeps metadata local to the cylinder group. However, ffsck can no longer guarantee
that it can read all relevant data in a single, disk-order scan; it may still have to seek,
even in the normal case. Nonetheless, this should eliminate the majority of the seeks
that fsck experiences, improving performance.

Our policy for FFS also differs from rext3 in its placement of the file’s first indirect
block. Rather than place each file’s single indirect block in the metadata area, our
metadata-colocation policy preserves FFS’s strategy of placing it inline with the data.
This should mitigate the slowdowns observed in rext3 caused by extra seeking when
files spill into part of the first indirect block. However, we continue to place the double
and triple indirect blocks, along with their child indirect blocks, in the metadata region,
obtaining both the seek time and fsck improvements present in rext3 from doing so.

Finally, we implement some of the other, more minor policies in rext3 and ffsck. We
again place directory data blocks in the metadata area, speeding up directory traversal
in both normal operation and fsck. In addition, we modify BSD’s fsck to save a copy
of the cylinder groups in memory during phase 1, to avoid having to reread them in
phase 5. As this almost doubles the memory footprint of fsck, this cache is released as
necessary to allow for other allocations to proceed.

There are a number of modifications present in rext3 and ffsck that we omit from
our FFS implementation. The most substantial of these is the disk order scan; because
we do not guarantee that metadata will lie in a fixed region, BSD’s fsck must traverse
the file system in directory order. Thus, we do not implement metadata compression or
the careful division between self-check and cross-check rules, since these are designed
to make the disk order scan possible. Similarly, we avoid adding backpointer data
structures to indirect blocks; this also preserves our goal of avoiding layout changes.

Even though we are unable to employ a disk order scan, our implementation of ffsck
for FFS could still benefit from bitmap snapshots, as inode locations are known a pri-
ori. However, in the interests of simplicity, we currently omit them.

7.3. Results

We have evaluated our system on a 1.3 TB file system with 16 KB blocks and 2 KB
fragments that is 75% full, populated primarily with large files, to emphasize metadata
effects. We have performed four sets of tests: a baseline test using the current release
of FFS, a test using our new metadata allocation policy for indirect blocks, a test that
places directory data blocks in the metadata area as well, and, finally, a test that

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Ao Ma et al.

28
4.

26
3

13
5.

76
0

13
4.

73
4

84
.6

22

0

50

100

150

200

250

300
C

he
ck

in
g

T
im

e
(s

ec
on

ds
)

Baseline Indirect Directory Caching
FFS Optimizations

Phase 1

Phase 2

Phase 5

Computation

Fig. 20. FFS Fsck Duration By Phase.
Time required to run fsck on FFS using dif-
ferent levels of optimization, broken down
by I/O time in each phase, along with
pure computation time (only a factor in the
caching experiment). The numbers atop the
bars indicate total duration.

28
4.

26
3

13
5.

76
0

13
4.

73
4

84
.6

22

0

50

100

150

200

250

300

C
he

ck
in

g
T

im
e

(s
ec

on
ds

)

Baseline Indirect Directory Caching
FFS Optimizations

Cylinder Group

Single Ind.

Double ind.

Triple Ind.

Inode

Directory

Fig. 21. FFS Fsck Duration By Block Type.
Time required to run fsck on FFS using dif-
ferent levels of optimization, broken down
by block type. “Single Ind.” refers to time
spent reading the first indirect block for
each file. “Double Ind.” and “Triple Ind.” re-
fer to time spent reading the double and
triple indirect blocks for each file, as well as
their children. The numbers atop the bars
indicate total duration.

adds the phase 1 cache to fsck, along with the previous optimizations. In each test,
we created a new file system and repopulated it, allowing policy changes to take full
effect.
These tests do not attempt to simulate file system aging. However, because FFS

dynamically reallocates blocks, it tends to be robust to aging; Smith and Seltzer [1996]
found that I/O performance degraded only 10% after ten months of simulated aging.
Thus, our observations are likely to hold even for aged file systems.
We display our results in Figure 20, which depicts the I/O time spent in each phase,

and Figure 21, which displays the time spent reading each type of block. The largest
performance gain results from placing double and triple indirect blocks, along with
their children, into the metadata region, which more than halves fsck’s total running
time. The second-largest improvement results from adding the cylinder group cache,
which provides a roughly 40% reduction in running time. Adding directory data blocks
to the metadata region has little effect; however, this is likely an artifact of the test
data. This change is likely to have a more significant effect in a more conventionally
populated file system, as we have seen in our tests of rext3.
The baseline fsck times here are fast given the size of the file system image; there

are two primary reasons for this. First, there are relatively few files in the file system,
requiring the inspection of fewer inodes. Second, FreeBSD’s fsck uses a compression
technique for directory metadata similar to that discussed in Section 4.3.2 for indirect
and inode metadata, which aids its running time.
Examining the results in more detail, we see from Figure 20 that, in the baseline

case, most of the I/O time is spent in phase 1 with phase 5 occupying a significant
minority. Placing double and triple indirect blocks in the metadata region reduces the
time spent in phase 1 by almost 70%; adding directory data blocks to this region, as one
would expect given the file-system contents, has no noticeable effect. For the indirect
and directory experiments, phase 1 and phase 5 occupy nearly equal amounts of time.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:25

By adding the phase 5 cache to fsck, we remove all I/O from this phase; at this point,
the only time it takes is in computation.

The previous results are reflected in Figure 21. In the baseline experiment, the ma-
jority of I/O time is occupied with reads of double and triple indirect blocks; by adding
the metadata region, we eliminate nearly all of this time, leaving reads of data blocks
as the primary source of I/O time. By adding the cache in the fourth experiment, we
halve this time. It is worth noting that these times validate the decision to leave initial
indirect blocks inline, as the time spent reading them is minimal.

7.4. Discussion

Our implementation of ffsck in FFS provides two major contributions. First, it shows
that these principles can be effectively applied to other file systems. Furthermore, they
are flexible enough that they can provide meaningful improvements without requiring
a new file system layout and without harming the performance of existing workloads.
While performance gains may not be optimal, the improved generality and ease of
deployment will make up for that in many cases.

In addition, the ease with which this work was accomplished demonstrates the im-
portance of separating policy and implementation. One of our authors (Marshal Kirk
McKusick) implemented the entirety of the required changes to FFS in 100 lines of
code (half of which were comments) written over the course of 90 minutes. We were
then able to test this code on our ordinary systems, since the policy layer is incapable
of corrupting the file system; at worst, it might cause suboptimal allocation.

Similarly, because the disk format was unchanged, BSD’s fsck required no changes,
though we did add the cylinder-group caching code. While we lose the significant per-
formances gains from the disk order scan, we still obtain some benefit from reducing
metadata seek times. In addition, deploying and verifying the new fsck proved sub-
stantially easier; only three months elapsed from its initial development to its pro-
duction release, without a single instance of file-system corruption observed during
testing.

Thus, the separation of policy from implementation can be critical when architecting
software systems, especially when these systems are mission-critical. With the policy
layer, one can implement and test new ideas quickly. Once validated, these ideas can
be deployed without danger of compromising the system’s integrity. Again, while the
changes made to FFS do not offer performance benefits as substantial as those from
rext3 and ffsck, they are much easier to deploy in real environments, since they have
no risk of causing performance regressions or instability.

In many ways, these changes to FFS resemble those in the proposed metaclustering
patch for ext3 [Rai 2008]. Like that patch, it improves fsck performance substantially
with no penalty to existing file system operations by treating metadata colocation as a
general policy hint, rather than as a strict guideline as rext3 does. Given the success
of our new FFS policies, it may be worth fully integrating metaclustering into ext3.

8. CONCLUSION

While the file-system checker is ultimately the only mechanism that can repair all
types of file-system damage, its design has been neglected since its first iteration. In
some ways, this makes sense: in order to provide correctness, checkers have to examine
all of the metadata in the file system, a process that will necessarily be slow. However,
the layout of current file systems frequently makes this process excruciating due to the
numerous random seeks needed to logically traverse the metadata tree. Furthermore,
the erratic growth of this tree, which scatters indirect blocks throughout the disk,
makes it virtually impossible to accurately estimate the run time of a given file system

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Ao Ma et al.

check after the file system has aged. Simply put, if your scan is tree-ordered, it will
run slowly, and worse, unpredictably slowly.
To solve this problem, we place the correct, fast handling of file-system inconsisten-

cies at the heart of the design of a new file system, rext3, a slight variant of the Linux
ext3 file system. We design rext3 to explicitly support a fast file-system checker by co-
locating all the indirect blocks in each block group into a single location per block group
and by using backpointers to inodes in indirect and data blocks to eliminate the need
to logically traverse the metadata tree during ordinary operation. In addition to this
new file system, we build ffsck, a file-system checker capable of providing near optimal
performance by scanning metadata in disk-order, rather than logically. While doing so
could potentially exert substantial pressure on memory, as ffsck has to hold the en-
tire contents of metadata in memory, it mitigates this by using a two-stage checking
process that allows it to discard metadata it no longer needs, providing substantial
compression. Finally, ffsck provides further optimizations over current checkers by us-
ing bitmap snapshots to track which data blocks have already been allocated, removing
the need for a full rescan when it encounters already allocated blocks.
These innovations result in major improvements to checking behavior without sacri-

ficing ordinary case file-system performance. During execution, ffsck manages to read
metadata at rates nearing the sequential peak of disk bandwidth, operating 10 times
faster than e2fsck in the optimal case and scaling with sequential disk performance;
further, it no longer suffers from file-system aging, allowing better prediction of time
to completion.
The underlying file system, rext3, maintains performance competitive with ext3 in

most cases, incurring only a small penalty of less than ten percent when dealing with
files around 100 KB in size. However, rext3 actually outperforms ext3 by up to 20% for
large sequential writes and up to 43% for random reads by facilitating journal check-
pointing through metadata locality and by using the disk track buffer more efficiently.
Together, rext3 and ffsck provide a tightly integrated design, maximizing improve-

ments in checking time and providing some improvements to normal case operation.
Unfortunately, the focused nature of this design may make it difficult to adopt in some
circumstances. Because it changes the file system layout, rext3 cannot be installed on
top of an existing file system without reformatting it. In addition, to avoid performance
problems, the size of rext3’s metadata region must be carefully tuned at creation time;
even with proper tuning, performance of certain workloads may suffer. For cases where
these issues are unacceptable, we provide a more general solution, adapting the most
important principles in rext3 and ffsck—metadata colocation and metadata caching—
to the BSD Fast File System. Because we treat metadata colocation as a hint, rather
than a requirement, we do not impose mandatory changes to the file system layout;
thus, this new version of FFS can be adopted without having to reformat or worry
about performance regressions. While it no longer is able to guarantee a single disk or-
der scan in the first phase of fsck and thus fails to achieve the same performance gains
as rext3 and ffsck, it nonetheless nearly doubles fsck performance, showing the appli-
cability of metadata colocation to other file systems. In addition, the ease with which
we implemented these changes shows the inherent benefits of FFS’s clean division of
file system policy and implementation.
While there are powerful reasons for a checker to be developed independently from

the mainline file system it checks (i.e., in order to avoid making the same mistakes
in each), some cooperation can be worthwhile. Such co-design may thus be worth con-
sidering in other domains. Co-design need not be absolute; as we have shown, it can
range on a spectrum from tight integration, as with rext3 and ffsck, to a looser cooper-
ation, as demonstrated with our changes to FFS. There are tradeoffs to be had between
performance and flexibility. The former approach maximizes performance, though po-

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:27

tentially at the cost of widespread deployability, whereas the latter sacrifices some
performance gains in order to accomodate a broad userbase. Room exists for both ap-
proaches, depending on one’s ultimate goal.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and Dan Tsafrir (our shepherd for the FAST version of the paper) for
their feedback and comments, which have substantially improved the content and presentation of this paper.
We also thank the members of the ADSL research group, in particular Yupu Zhang, Yiying Zhang, and Vijay
Chidambaram for their insight. The authors would also like to thank the Advanced Development Group and
WAFL team at NetApp, especially Lakshmi Bairavasundaram, Minglong Shao, Prashanth Radhakrishnan,
Shankar Pasupathy, and Yasuhiro Endo for their feedback during the early stage of this project, Yanpei
Chen for discussing the disk-order scan, and Xiaoxuan Meng for suggestions on the kernel implementation.

REFERENCES

ANDERSON, D., DYKES, J., AND RIEDEL, E. 2003. More Than an Interface: SCSI vs. ATA. In Proceedings of

the 2nd USENIX Symposium on File and Storage Technologies (FAST ’03). San Francisco, California.

ANONYMOUS. 2006. How long does it take fsck to run?! http://www.jaguarpc.com/forums/vps-
dedicated/14217-how-long-does-take-fsck-run.html.

ANONYMOUS. 2009. e2fsck is taking forever. http://gparted-forum.surf4.info/viewtopic.php?id=13613.

BAIRAVASUNDARAM, L. N., GOODSON, G. R., PASUPATHY, S., AND SCHINDLER, J. 2007. An Analysis of
Latent Sector Errors in Disk Drives. In Proceedings of the 2007 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS ’07). San Diego, California.

BAIRAVASUNDARAM, L. N., GOODSON, G. R., SCHROEDER, B., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. 2008. An Analysis of Data Corruption in the Storage Stack. In Proceedings of the 6th

USENIX Symposium on File and Storage Technologies (FAST ’08). San Jose, California, 223–238.

BARTLETT, W. AND SPAINHOWER, L. 2004. Commercial Fault Tolerance: A Tale of Two Systems. IEEE
Transactions on Dependable and Secure Computing 1, 1, 87–96.

BAUMANN, R. 2005. Soft errors in advanced computer systems. IEEE Des. Test 22, 3, 258–266.

BEST, S. 2000. JFS Overview. www.ibm.com/developerworks/library/l-jfs.html.

BONWICK, J. AND MOORE, B. 2008. ZFS: The Last Word in File Systems. http://www.snia.org/sites/default/
files2/sdc˙archives/2008˙presentations/monday/JeffBonwick-BillMoore˙ZFS.pdf.

BOVET, D. AND CESATI, M. 2005. Understanding The Linux Kernel. Oreilly & Associates Inc.

CARREIRA, J. C. M., RODRIGUEZ, R., CANDEA, G., AND MAJUMDAR, R. 2012. Scalable Testing of File
System Checkers. In Proceedings of the EuroSys Conference (EuroSys ’12). Bern, Switzerland.

CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2012. Consistency
Without Ordering. In Proceedings of the 10th USENIX Symposium on File and Storage Technologies

(FAST ’12). San Jose, California.

ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A., AND CHELF, B. 2001. Bugs as Deviant Behavior: A
General Approach to Inferring Errors in Systems Code. In Proceedings of the 18th ACM Symposium on

Operating Systems Principles (SOSP ’01). Banff, Canada, 57–72.

ENGLER, D. AND MUSUVATHI, M. 2004. Static Analysis versus Software Model Checking for Bug Finding.
In 5th International Conference Verification, Model Checking and Abstract Interpretation (VMCAI ’04).
Venice, Italy.

FRYER, D., SUN, K., MAHMOOD, R., CHENG, T., BENJAMIN, S., GOEL, A., AND BROWN, A. D. 2012. Recon:
Verifying File Ssytem Consistency at Runtime. In Proceedings of the 10th USENIX Symposium on File

and Storage Technologies (FAST ’12). San Jose, California.

FUNK, R. 2007. fsck / xfs. http://lwn.net/Articles/226851/.

GANGER, G. R. AND PATT, Y. N. 1994. Metadata Update Performance in File Systems. In Proceedings of

the 1st Symposium on Operating Systems Design and Implementation (OSDI ’94). Monterey, California,
49–60.

GUNAWI, H. S., RAJIMWALE, A., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2008. SQCK: A
Declarative File System Checker. In Proceedings of the 8th Symposium on Operating Systems Design

and Implementation (OSDI ’08). San Diego, California.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Ao Ma et al.

HAGMANN, R. 1987. Reimplementing the Cedar File System Using Logging and Group Commit. In Proceed-

ings of the 11th ACM Symposium on Operating Systems Principles (SOSP ’87). Austin, Texas.

HENSON, V., VAN DE VEN, A., GUD, A., AND BROWN, Z. 2006. Chunkfs: Using divide-and-conquer to im-
prove file system reliability and repair. In IEEE 2nd Workshop on Hot Topics in System Dependability

(HotDep ’06). Seattle, Washington.

HITZ, D., LAU, J., AND MALCOLM, M. 1994. File System Design for an NFS File Server Appliance. In Pro-

ceedings of the USENIX Winter Technical Conference (USENIX Winter ’94). San Francisco, California.

KEETON, K. AND WILKES, J. 2002. Automating data dependability. In Proceedings of the 10th ACM-SIGOPS

European Workshop. Saint-Emilion, France, 93–100.

MA, A., DRAGGA, C., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2013. ffsck: The Fast File
System Checker. In Proceedings of the 11th Conference on File and Storage Technologies (FAST ’13).
San Jose, California.

MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER, A., TOMAS, A., AND VIVIER, L. 2007. The new ext4
filesystem: current status and future plans. In Proceedings of the Ottowa Linux Symposium.

MAY, T. C. AND WOODS, M. H. 1979. Alpha-particle-induced Soft Errors in Dynamic Memories. IEEE Trans-

actions on Electron Devices 26, 1.

MCKUSICK, M. K. 2002. Running ’fsck’ in the Background. In Proceedings of BSDCon 2002 (BSDCon ’02).
San Fransisco, CA.

MCKUSICK, M. K. 2013. Improving the performance of fsck in freebsd. ;login: 38, 2.

MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., AND FABRY, R. S. 1984. A Fast File System for UNIX. ACM
Transactions on Computer Systems 2, 3, 181–197.

MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., AND FABRY, R. S. 1986. Fsck - The UNIX File System
Check Program. Unix System Manager’s Manual - 4.3 BSD Virtual VAX-11 Version.

MCKUSICK, M. K. AND NEVILLE-NEIL, G. V. 2005. The Design and Implementation of the FreeBSD Oper-

ating System. Pearson Education.

NETAPP. 2011. Overview of wafl check. http://uadmin.nl/init/?p=900.

PATTERSON, D., GIBSON, G., AND KATZ, R. 1988. A Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proceedings of the 1988 ACM SIGMOD Conference on the Management of Data (SIGMOD

’88). Chicago, Illinois, 109–116.

PEACOCK, J. K., KAMARAJU, A., AND AGRAWAL, S. 1998. Fast Consistency Checking for the Solaris File
System. In Proceedings of the USENIX Annual Technical Conference (USENIX ’98). New Orleans,
Louisiana, 77–89.

PIERNAS, J., CORTES, T., AND GARCIA, J. M. 2007. The Design of New Journaling File Systems: The Du-
alFS Case. Computers, IEEE Transactions on 56, 2, 267 –281.

RAI, A. 2008. Make ext3 fsck way faster [2.6.23.13]. http://lwn.net/Articles/264970/.

REISER, H. 2004. ReiserFS. www.namesys.com.

RODEH, O., BACIK, J., AND MASON, C. 2012. Btrfs: The linux b-tree filesystem. Tech. Rep. RJ10501
(ALM1207-044), IBM Research. July.

ROSENBLUM, M. AND OUSTERHOUT, J. 1992. The Design and Implementation of a Log-Structured File
System. ACM Transactions on Computer Systems 10, 1, 26–52.

SATO, T. 2007. ext4 online defragmentation. http://ols.fedoraproject.org/OLS/Reprints-2007/sato-
Reprint.pdf.

SCHROEDER, B., PINHEIRO, E., AND WEBER, W.-D. 2009. DRAM Errors in the Wild: A Large-scale Field
Study. In Proceedings of the 2009 Joint International Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS/Performance ’09). Seattle, Washington.

SCHWARZ, T. J., XIN, Q., MILLER, E. L., LONG, D. D., HOSPODOR, A., AND NG, S. 2004. Disk Scrubbing
in Large Archival Storage Systems. In Proceedings of the 12th Annual Meeting of the IEEE Interna-

tional Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS). Volendam, Netherlands.

SINOFSKY, S. 2012. Building the Next Generation File System for Windows: ReFS.
http://blogs.msdn.com/b/b8/archive/2012/01/16/building-the-next-generation-file-system-for-windows-
refs.aspx.

SMITH, K. AND SELTZER, M. I. 1997. File System Aging. In Proceedings of the 1997 Sigmetrics Conference.
Seattle, WA.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

ffsck: The Fast File System Checker A:29

SMITH, K. A. AND SELTZER, M. I. 1996. A Comparison of FFS Disk Allocation Policies. In Proceedings of

the USENIX Annual Technical Conference (USENIX ’96). San Diego, California, 15–26.

STEIN, C. A., HOWARD, J. H., AND SELTZER, M. I. 2001. Unifying File System Protection. In Proceedings

of the USENIX Annual Technical Conference (USENIX ’01). Boston, Massachusetts.

SUN MICROSYSTEMS. 2006. ZFS: The last word in file systems. www.sun.com/2004-0914/feature/.

SUNDARAM, R. 2006. The Private Lives of Disk Drives. http://partners.netapp.com/go/techontap/matl/
sample/0206tot“˙resiliency.html.

SVANBERG, V. 2009. Fsck takes too long on multiply-claimed blocks. http://old.nabble.com/Fsck-takes-too-
long-on-multiply-claimed-blocks-td21972943.html.

SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C., NISHIMOTO, M., AND PECK, G. 1996. Scalability in
the XFS File System. In Proceedings of the USENIX Annual Technical Conference (USENIX ’96). San
Diego, California.

SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. 2003. Improving the Reliability of Commodity Operating
Systems. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03).
Bolton Landing, New York.

THE DATA CLINIC. 2004. Hard Disk Failure. http://www.dataclinic.co.uk/hard-disk-failures.htm.

TWEEDIE, S. C. 1998. Journaling the Linux ext2fs File System. In The Fourth Annual Linux Expo. Durham,
North Carolina.

YANG, J., SAR, C., AND ENGLER, D. 2006. EXPLODE: A Lightweight, General System for Finding Seri-
ous Storage System Errors. In Proceedings of the 7th Symposium on Operating Systems Design and

Implementation (OSDI ’06). Seattle, Washington.

YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M. 2004. Using Model Checking to Find Serious File
System Errors. In Proceedings of the 6th Symposium on Operating Systems Design and Implementation

(OSDI ’04). San Francisco, California.

ZHANG, Y., RAJIMWALE, A., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2010. End-to-end Data
Integrity for File Systems: A ZFS Case Study. In Proceedings of the 8th USENIX Symposium on File

and Storage Technologies (FAST ’10). San Jose, California.

ZIEGLER, J. F. AND LANFORD, W. A. 1979. Effect of Cosmic Rays on Computer Memories. Science 206, 4420,
776–788.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.

