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Abstract ingly common, layered storage architecture: a distributed
. database (HBase, derived from BigTal3®) fatop a dis-
We present a multilayer study of the Facebook Mesyipte file system (HDFSH], derived from the Google
sages stack, which is based on HBase and HDFS. Wejle System 11]). Our goal is to study the interaction of
collect and analyze HDFS traces to identify potential im-page important systems, with a particular focus on the

provements, which we then evaluate via simulation. Mesyqyer layer; thus, our highest-level question: is HDFS
sages represents a new HDFS workload: whereas HDFQ, effective storage backend for HBase?

was built to store very large files and receive mostly-
sequential 1/0, 90% of files are smaller than 15MB and

Vo IIS ?ltg_hlnyl\r;Idorr(;. VYS :jm:j hOtt da'ia IS t?o Iargle ;c; popular workload: Facebook Messages (FRO|[ FM is
castly fitin and cold data IS oo ‘arge fo eastly 1 a messaging system that enables Facebook users to send

in flash; however, cost simulations show that adding 8., 41,y email-like messages to one another; it is quite

small flash tller improves perfgrmance mor,e than equ'v'popular, handling millions of messages each day. FM
allent spend!ng on RAM or disks. HBase's Iayerec'i de'stores its information within HBase (and thus, HDFS),
sign off_ers simplicity, but at the cost of performanc_:e, OUr_ 4 hence serves as an excellent case study.
simulations show that network 1/0O can be halved if com- . . .
paction bypasses the replication layer. Finally, although To perform our anaIyS|s,_ we first cqllect detailed
Messages is read-dominated, several features of the sta DFS-level traces over an eight-day period on a subset

i.e., logging, compaction, replication, and caching) am- © machines_ vyithir! a specially_-configuredadow clus-
E)Iify Wr%g I/%) caqu)ing Writespto dominate disk I/Og) ter. FM traffic is mirrored to this shadow cluster for the

purpose of testing system changes; here, we utilize the
. shadow to collect detailed HDFS traces. We then ana-
1 Introduction lyze said traces, comparing results to previous studies of

Large-scale distributed storage systems are exceedingljPFS under more traditional workloads4, 16].
complex and time consuming to design, implement, and To complement to our analysis, we also perform nu-
operate. As a result, rather than cutting new systemgherous simulations of various caching, logging, and
from whole cloth, engineers often opt ftayered ar- other architectural enhancements and modifications.
chitectures, building new systems upon already-existing hrough simulation, we can explore a range of “what if?”
ones to ease the burden of development and deploymerficenarios, and thus gain deeper insight into the efficacy
Layering, as is well known, has many advantaggh[  Of the layered storage system.
For example, construction of the Frangipani distributed Overall, we derive numerous insights, some expected
file system R7] was greatly simplified by implementing and some surprising, from our combined analysis and
it atop Petal 19, a distributed and replicated block-level simulation study. From our analysis, we find writes rep-
storage system. Because Petal provides scalable, faultesent 21% of 1/O to HDFS files; however, further in-
tolerant virtual disks, Frangipani could focus solely onvestigation reveals the vast majority of writes are HBase
file-system level issue®(g, locking); the result of this overheads from logging and compaction. Aside from
two-layer structure, according to the authors, was thathese overheads, FM writes are scarce, representing only
Frangipani was “relatively easy to build27]. 1% of the “true” HDFS I/O. Diving deeper in the stack,
Unfortunately, layering can also lead to problems, usu-simulations show writes become amplified. Beneath
ally in the form of decreased performance, lowered reli-HDFS replication (which triples writes) and OS caching
ability, or other related issues. For example, Denety (which absorbs reads), 64% of the final disk load is write
al. show how naive layering of journaling file systems I/O. This write blowup (from 1% to 64%) emphasizes the
atop software RAIDs can lead to data loss or corrupimportance of optimizing writes in layered systems, even
tion [5]. Similarly, others have argued about the generalffor especially read-heavy workloads like FM.
inefficiency of the file system atop block devicag] From our simulations, we further extract the follow-
In this paper, we focus on one specific, and increasing conclusions. We find that caching at the DataNodes

To derive insight into this hierarchical system, and
thus answer this question, we trace and analyze it under a



is still (surprisingly) of great utility; even atthe lasylr 2.2 Messages Architecture
of the storage stack, a reasonable amount of memory PgY

node €.9, 30GB) significantly reduces read load. We by an application cluster, which in turn stores data in a

also find that a “no—wrlt.e allocate” p_ohcy gener.ally per- separate HBase cluster. The application cluster executes
forms be?t' and that h|g_her—level hints rega_rdmg ertesFM—specific logic and caches HBase rows while HBase
Onl.y provide moqlest gains. Furthgr ana!y5|s shows theF‘tself is responsible for persisting most data. Large ob-
utility of _server-S|de flash caches (in addition to RAM), jects €.g, message attachments) are an exception; these
€9, adding a 60GB SSD can redupe latency by 3.5x. are stored in Haystackp] because HBase is inefficient
Fmally, we evalu_ate the effecuvenes-s of more Sub-,, large data (8.1). This design applies Lampson’s ad-
stantial HDFS architectural changes, aimed at IMProvyice to “handle normal and worst case separately] [

ing yvrite handling: Ioc_al compaction and C(_)mbined HBase stores its data in HDF24], a distributed file
logging. Local compaction performs compaction work system which resembles GF$1. HDFS triply repli-

W'th'n each replicated serverinstead of rgadmg and Wr't'cates data in order to provide availability and tolerate
ing data across the network; the result is a 2.7x reducg

tion work 1/0. Combined logai lidates | failures. These properties free HBase to focus on higher-
lon in networ - ~ombinedlogging consolidates 109s o q| gatabase logic. Because HBase stores all its data in
from multiple HBase RegionServers into a single stream

. . ) HDFS, the same machines are typically used to run both

thus reducing Iog-wnte IaFenmes t_Jy bx. . HBase and HDFS servers, thus improving locality. These

The rest of this paper 1 prganlzed as follows. F'rSt'cIusters have three main types of machines:Hiase
a background section describes HBase and the Messagﬁ?‘aster an HDFS NameNodeand manyworker ma-
storage archit(_acturezi Then we dgscribg our methog- chines. Each worker runs two servers:HBase Region-
ology for tracing, _analy5|s, and simulation3s WE_’ Serverand anHDFS DataNode HBase clients use the
present our analysis resultsAjgmake a case for adding HBase master to map row keys to theeRegionServer
afIa;h tier (§), and measure layering cost$J8Finally, responsible for that key. Similarly, an HDFS NameNode
we discuss related work ¥and conclude §. helps HDFS clients map a pathname and block number
to thethreeDataNodes with replicas of that block.

sers of FM interact with a web layer, which is backed

2 Background

We now describe the HBase sparse-table abstractiod Methodology

82.1) and the overall FM storage architectur@ (3. . . :
(82.1) d @ We now discuss trace collection and analys& {§ sim-

HBase, like BigTabled], provides aversioned sparse- 3 1 Trace Collection and Analysis
table interface, which is much like an associative array,
but with two major differences: (1) keys are ordered,Prior Hadoop trace studied,[16] typically analyze de-
so lexicographically adjacent keys will be stored in thefault MapReduce or HDFS logs, which record coarse-
same area of physical storage, and (2) keys have semaftained file eventse(g, creates and opens), but lack de-
tic meaning which influences how HBase treats the datatails about individual request®.g, offsets and sizes).
Keys are of the fornrow:column:version A row may  For our study, we build a new trace framework, HTFS
be any byte string, while aolumnis of the formfam- (Hadoop Trace File System) to collect these details.
ily:name While both column families and names may be Some data, thougte(g, the contents of a write), is not
arbitrary strings, families are typically defined statigal recorded; this makes traces smaller and (more impor-
by a schema while new column names are often creatently) protects user privacy.
during runtime. Together, a row and column specify a HTFS extends the HDFS client library, which supports
cell, for which there may be many versions. the arbitrary composition of layers to obtain a desired
A sparse table is sharded along both row and colfeature setd.g, a checksumming layer may be used).
umn dimensions. Rows are grouped intgions which ~ FM deployments typically have two layers: one for nor-
are responsible for all the rows within a given row-key mal NameNode and DataNode interactions, and one for
range. Data is sharded across different machines with rdast failover f]. HDFS clients ¢.g, RegionServers) can
gion granularity. Regions may be split and re-assignedecord I/O by composing HTFS with other layers. HTFS
to machines with a utility or automatically upon reboots. can trace over 40 HDFS calls and is publicly available
Columns are grouped into families so that the applicaWith the Facebook branch of Hadobp.
tion may specify different policies for each groupd,
what compression to use). Families also provide a locals

. ) "“"blob/master/src/hdfs/org/apache/hadoop/hdfs/
ity hint: HBase clusters together data of the same familyap1TraceFilesysten. java

Inttps://github.com/facebook/hadoop-20/


https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java
https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java
https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java

Actual stack Model

policy and state which could reasonably occur).

HDFS _ 15 ce+HDFS Our model assumes the HDFS files in our traces are
traces replicated by nine DataNodes which co-reside with the
¥4 ¢ what-ifs nine RegionServers we traced. The data for each Re-
local traces gionServer is replicated to one co-resident and two re-
(inferred) mote DataNodes. HDFS file blocks are 256MB in size;
* Model thus, when a RegionServer writes a 1GB HDFS file, our

MR Analysis Pipeline model translates that to the creation of twelve 256MB lo-
' ' ' ' what-ifs

cal files (four per replica). Furthermore, 2GB of network

analysis results simulation results reads are counted for the remote replicas. This simplified
model of replication could lead to errors for load bal-
Figure 1: Tracing, analysis, and simulation. ancing studies, but we believe little generality is lost for

caching simulations and our other experiments. In pro-
duction, all the replicas of a RegionServer’s data may be

We collect our traces on a specially configuseddow  remote (due to region re-assignment), causing additional
clusterthat receives the same requests as a productiofetwork 1/0: however, long-running FM-HBase clusters
FM cluster. Facebook often uses shadow clusters to tegstnd to converge over time to the pattern we simulate.
new code before broad deployment. By tracing in an The HDFS+HBase model’s output is the input for our
HBase/HDFS shadow cluster, we were able to study thgycal-store simulator. Each local store is assumed to have
real workload without imposing overheads on real usersg, HDES DataNode, a set of disks (each with its own
For our study, we randomly selected nine worker mafijle system and disk scheduler), a RAM cache, and pos-
chines, configuring each to use HTFS. sibly an SSD. When the simulator processes a request, a

We collected traces for 8.3 days, starting June 7, 2013yalancer module representing the DataNode logic directs
We collected 116GB of gzip-compressed traces, reprethe request to the appropriate disk. The file system for
Senting 5.2 billion recorded events and 71TB of HDFSthat disk checks the RAM and flash Caches; upon a miSS,
/0. The machines each had 32 Xeon(R) CPU cores anghe request is passed to a disk scheduler for re-ordering.
48GB of RAM, 16.4GB of which was allocated for the  The scheduler switches between files using a round-
HBase cache (most memory is left to the file-systemygpin policy (LMB slice). The C-SCAN policy]] is
cache, as attempts to use larger caches in HBase cauisn used to choose between multiple requests to the
JVM garbage-collection stalls). The HDFS workload is same file. The scheduler dispatches requests to a disk
the product of a 60/34/6 get/put/delete ratio for HBase. module which determines latency. Requests to differ-

As Figurel shows, the traces enable both analysis ancnt files are assumed to be distant, and so require a
simulation. We analyzed our traces with a pipeline of 1010ms seek. Requests to adjacent offsets of the same
MapReduce jobs, each of which transforms the tracesjle, however, are assumed to be adjacent on disk, so
builds anindex, shards events, or outputs statistics. Conplocks are transferred at 100MB/s. Finally, we as-
plex dependencies between events require careful shardyme some locality between requests to non-adjacent

ing for correctness. For instance, a stream-open everjffsets in the same file; for these, the seek time is
and a stream-write event must be in the same computg, i, {10ms, distance/(100MB/s)}.

shard in order to correlate I/O with file type. Further-
more, sharding must address the fact that different path8.3 ~ Simulation Validity

may refer to the same data (due to renames). We now address three validity questiomiges ignoring

32 Modeli d Simulati network latency skew our results? Did we run our simu-
) odeling an imulation lations long enough? Are simulation results from a single
We evaluate changes to the storage stack via simulatiomepresentative machine meaningful?
Our simulations are based on two models (illustrated in  First, we explore our assumption about constant net-
Figurel): a model which determines how the HDFS I/O work latency by adding random jitter to the timing of
translates to local I/O and a model of local storage. requests and observing how important statistics change.
How HDFS I/O translates to local I/O depends on sev-Table 1 shows how much error results by changing re-
eral factors, such as prior state, replication policy, andquest issue times by a uniform-random amount. Errors
configurations. Making all these factors match the actuabre very small for 1ms jitter (at most 1.3% error). Even
deployment would be difficult, and modeling what hap- with a 10ms jitter, the worst error is 6.6%. Second, in
pens to be the current configuration is not particularlyorder to verify that we ran the simulations long enough,
interesting. Thus, we opt for a model which is easy towe measure how the statistics would have been different
understand and plausibleq, it reflects a hypothetical if we had finished our simulations 2 or 4 days earlier (in-



jitter ms finishday sample
statistic baseline| 1 5 10 -2 -4 median 5 4H7?-';’Séﬁv\:’gg?fads)
FS reads MB/min 576] 00 00 00 | -34 -06 4.2 3
FS writes MB/min 447 00 00 00 | -7.7 -115 0.1 S HDE
RAM reads MB/min ~ 287| -0.0 00 00 | -26 -24 6.2 = compaCH O |
RAM writes MB/min 345 00 00 -00 | -39 11 2.4
Disk reads MB/min 345] -0.0 0.0 0.0 -3.9 11 -2.4 ] | | Local FS
Disk writes MB/min ~ 616| -0.0 13 19 [ 53 83 | -01 3 R1 (replica 1) GERH AR BUER 101TR, RIW: 55/45
Net reads MB/min 305| 0.0 0.0 0.0 -8.7 -18.4 -2.8 f_‘sﬂ
Disk regs/min 275.1K| 0.0 0.0 0.0 -4.6 -4.7 -0.1 £ cache Disk
(user-read) 65.8K| 0.0 -0.0 -0.0 -2.9 -0.8 -4.3 (2 misses 97TB, RIW: 36/64
(log) 1041K| 00 00 0.0 1.6 1.3 -1.0
(flush) 4.5K| 0.0 0.0 0.0 1.2 0.4 -1.3 Reads Writes
(compact) 100.6K| -0.0 -0.0 -0.0 -12.2  -13.6 -0.1
Disk queue ms 6.17| -0.4 -0.5 -0.0 -3.2 0.6 -1.8 . . .
(user-fear) 123 01 o8 a8 | 02 27 17 Figure 2: 1/0O across layers. Black sections represent
(Iog) 247 13 11 06 | 49 64 -6.0 reads and gray sections represent writes. The top two bars in
(flush) 533 03 00 03 | -28 26 | -LO dicate HDFS I/O as measured directly in the traces. The botto
(compact) 6.0 -0.6 0.0 2.0 -3.5 2.5 -6.4 L . )
Disk exec ms 039 01 10 25 | 10 20 EW) two bars indicate local I/O at the file-system and disk laysess
(user-read) 084 01 -05 -07 [ -00 -0.1 -1.2 inferred via simulation.
(log) 026 04 33 66 | 21 -17 0.0
(flush) 015/ -03 07 32 [ -11  -09 0.8 .
(compact) 024 -00 21 52 | 40 48 03 4 Workload BehaVIor

Table 1: Statistic Sensitivity. The first column group We now characterize the FM workload with four ques-
shows important statistics and their values for arepresgwe  tions: what are the major causes of I/O at each layer of
machine. Other columns show how these values would changée stack (8.1)? How much I/O and space is required by

(as percentages) if measurements were done differently Lo different types of data 82)? How large are files, and
percentages indicate a statistic is robust. doeS f||e Size prediCt f|le ||fet|me4§)’> And dO requeStS

exhibit patterns such as locality or sequentialityt (§7?

stead of using the full 8.3 days of traces). The difference#.1 Multilayer Overview

are worse than for jitter, but are still usually small, andWe begin by considering the number of reads and writes
are at worst 18.4% for network /0. at each layer of the stack in Figuee At a high level,
Finally, we evaluate whether it is reasonable to pick aFp issuesput () andget () requests to HBase. The
single representative instead of running our experiment§y¢ data accumulates in buffers, which are occasion-
for all nine machines in our sample. Running all our ex-aly flushed toHFiles (HDFS files containing sorted key-
periments for a single machine alone takes about 3 daygalue pairs and indexing metadata). Thget requests
on a 24-core machine with 72GB of RAM, so basing ourconsult the write buffers as well as the appropriate HFiles
results on a representative is desirable. The final columgh order to retrieve the most up-to-date value for a given
of Table1 compares the difference between statistics forkey. This core I/0 gut-flushes anget-reads) is shown
our representative machine and the median of statistic the first bar of Figur®; the 47TB of /O is 99% reads.
for all nine machines. Differences are quite small and |, aqdition to the core /O, HBase also does log-
are never greater than 6.4%, so we use the representgmg (for durability) and compaction (to maintain a read-
tive for the remainder of our simulations (trace-analysisefficient layout) as shown in the second bar. Writes
results, however, will be based on all nine machines).  gccount for most of these overheads, so the R/W
(read/write) ratio decreases to 79/21. Flush data is com-
3.4 Confidentiality pr(_essed but log data is not, so Iogging causes 10x more
writes even though the same data is both logged and
In order to protect user privacy, our traces only containflushed. Preliminary experiments with log compression
the sizes of datag(g, request and file sizes), but never [26] have reduced this ratio to 4x. Flushes, which can
actual data contents. Our tracing code was carefully rebe compressed in large chunks, have an advantage over
viewed by Facebook employees to ensure compliancégs, which must be written gaits arrive. Compaction
with Facebook privacy commitments. We also avoid pre-causes about 17x more writes than flushing does, indi-
senting commercially-sensitive statistics, such as wouldtating that a typical piece of data is relocated 17 times.
allow estimation of the number of users of the service.FM stores very large objecte.g, image attachments)
While we do an in-depth analysis of the 1/O patterns onin Haystack 7] for this reason. FM is a very read-
a sample of machines, we do not disclose how large theavy HBase workload within Facebook, so it is tuned to
sample is as a fraction of all the FM clusters. Much of compact aggressively. Compaction makes reads faster by
the architecture we describe is open source. merge-sorting many small HFiles into fewer big HFiles,



| [l HDFS (-overheads) Il Read only Fam”y Description _
o | B 3.9TB footprint @ Read+written Actions Log of user actions and message contents
§ [ Written only MessageMeta Metadata per messageg, isRead and subject)
2 < 4] HDFS [J untouched ThreadMeta Metadata per threae(glist of participants)
5= 16.3TB footprint PrefetchMeta Privacy settings, contacts, mailbox summary, etc.
5 ) Keywords Word-to-message map for search and typeahead
’é[ R1 | R2 | R3 cold data ESS?'BFSQ?'?E ThreaderThread| Thread-to-message mapping
[} pr Threadingldldx | Map between different types of message IDs
ActionLogldldx | Also a message-ID map (like Threadingldldx)

Figure 3: Data across layers. Thisisthe same as Figu®  Table 2: Schema. HBase column families are described.
but for data instead of I/0. COMP is compaction.

thus reducing the number of filessat must check. ‘The Actionsfamily is a log built on top of HBase,

FM tolerates failures by replicating data with HDFS. with different log reC(_)rds stored in different col_umns;
Thus, writing an HDFS block involves writing three local @ddMsgrecords contain actual message data while other
files and two network transfers. The third bar of Figare ecords €.9, markAsReajrecord changes to metadata
shows how this tripling further reduces the R/W ratio to State- Getting the_ latest state requires reading a number
55/45. Furthermore, OS caching prevents some of thesgf recent records in the log. To cap this number, a meta-
file-system reads from hitting disk. With a 30GB cache, data snapshot (a few hundred bytes) is sometimes writ-
the 56TB of reads at the file-system level cause onlyfen t0 theMessageMetéamily. Because Facebook chat
35TB of reads at the disk level, as shown in the fourthiS built over messages, metadata objects are large relative
bar. Also, very small file-system writes cause 4KB-block {0 Many messages.g, “hey, whasup?”). Thus, writing a
disk writes, so writes are increased at the disk level. Behange tactionsis generally much cheaper than writing
cause of these factors, writes represent 64% of disk 1/0 2 full metadata object tMessageMetaOther metadata

Figure3 gives a similar layered overview, but for data 'S Stored inThreadMetaand PrefetchMetawhile Key-

rather than /0. The first bar shows 3.9TB of HDFS data/V0rdsis a keyword-search index anthreaderThread
received some core 1/0 during tracing (data deleted dur NreadingldidxandActionLogldidxare other indexes.
ing tracing is not counted). Nearly all this data was read 19Ure 4a shows how much data of each type is
and a small portion written. The second bar also include@ccessed at least once during tracing (including later-
data which was accessed only by non-core I/0; non-cord€leted data); a total (sum of bars) of 26.5TB is ac-
data is several times bigger than core data. The third’?,ssed' While actual messagee.,(ActlonQ take sig-
bar shows how much data is touched at the local levefificant space, helper date.g, metadata, indexes, and
during tracing. This bar also showstouchediata; we logs) takes much_ more. We a_Iso see thgt little data is
estimatd this by subtracting the amount of data we infer POth read and written, suggesting that writes should be
was touched due to HDFS I/O from the disk utilization cached selectively (if at all). Figuréo reports the I/O

(measured withif). Most of the 120TB of data is very do_ne for each type. We observe that some families re-
cold: only a third is accessed over the 8-day period. ~ C€ve much more I/O per date.g, an average data byte
Conclusion: FM is very read-heavy, but logging of PrefetchMetaeceives 15 bytes of /0O whereas a byte

compaction, replication, and caching amplify write 1/0, of Keywordsecelves only .1'1.'.

causing writes to dominate disk I/O. We also observe that Conclusion: FM uses significant space to store mes-
while the HDFS dataset accessed by core /O is relatively29€S and does a significant amount of /0 on th_ese mes-
small, on disk the dataset is very large (120TB) and verysaQES; however, both space and I/O are dominated by

cold (two thirds is never touched). Thus, architectures tdﬁelper datai(e., metadata, indexes, and logs). Relatively

support this workload should consider its hot/cold nature Ittle data is both written and read during tracing; this

suggests caching writes is of little value.

4.2 Data Types 4.3 File Size

We now study the types of data FM stores. Each usersrg (the inspiration for HDFS) assumed that “multi-GB
data is stored in a single HBase row; this prevents thgjles are the common case, and should be handled effi-
data from being split across different RegmnServersCienﬂyu [11]. Other workload studies confirm thie,g,
New data for a user is added in new columns within theMapReduce inputs were found to be about 23GB at the

row. Related columns are grouped into families, whichggip, percentile (Facebook in 201@] We now revisit
are defined by the FM schema (summarized in Taple  he assumption that HDFS files are large.

2 . , Figure 5 shows, for each file type, a distribution of
the RegionServers in our sample store some data on DataNodefs - . .
outside our sample (and vice versa), so this is a sampletestiate  111€ Sizes (about 862 thousand files appear in our traces).

rather than a direct correlation of HDFS data to disk data Most files are small; for each family, 90% are smaller




Actions Actions
MessageMeta 7/ MessageMeta 3.6x
ThreadMeta ThreadMeta
PrefetchMeta PrefetchMeta
Keywords Keywords
ThreaderThread ThreaderThread
Threadingldldx Threadingldldx
ActionLogldldx ActionLogldldx
logs logs
other M read written other 1.8x W reads M writes
0 1 2 3 4 5 6 0 5 10 15 20

(a) File dataset footprint (TB) (b) File 1/0 (TB)

Figure 4: File types. Left: all accessed HDFS file data is broken down by type. Bamhdér show whether data was read,
written, or both. Right: I/O is broken down by file type andd&erite. Bar labels indicate the I/O-to-data ratio.

Type Avg 1009 0 1AMR s
MessageMeta 293 —3 1 — 2(:‘:(;0124'\/58
Actions 314 [, | 754 — 6amB+
ThreaderThread 62 | ——— c
Threadingldidx 70 | F— I 50 -
PrefetchMeta 5| I—— 5
Keywords 219 | —— o
ThreadMeta 10 | — T T
ActionLogldldx 49 [
T T T T T T T T 1 0 T T T T T T T T T T T T T 1
0 3 6 9 12 15 o NS 0O NS OONYYNYY Y
Size (MB) Minutes

Figure 5: File-size distribution. This shows a box-and- Figure 6: Size/life correlation. Each line is a CDF of
whiskers plot of file sizes. The whiskers indicate the 10th an lifetime for created files of a particular size. Not all linesach
90th percentiles. On the left, the type of file and averageisiz 100% as some files are not deleted during tracing.
indicated. Log files are not shown, but have an average size of

218MB with extremely little variance.

than 15MB. However, a handful are so large as to skewq 4 |/O Patterns
averages upwards significantlg,g, the average Mes-
sageMeta file is 293MB. We explore three relationships between different read re-
Although most files are very small, compaction shouldquests: temporal locality, spatial locality, and sequeti
quickly replace these small files with a few large, long-ity. We use a new type of plot, lacality map that de-
lived files. We divide files created during tracing into scribes all three relationships at once. Figdrshows
small (0 to 16MB), medium (16 to 64MB), and large @ locality map for FM reads. The data shows how of-
(64MB+) categories. 94% of files are small, 2% areten a read wasecentlypreceded by aearbyread, for
medium, and 4% are large; however, large files contairvarious thresholds on “recent” and “nearby”. Each line
89% of the data. Figuré shows the distribution of file is a hit-ratio curve, with the x-axis indicating how long
lifetimes for each category. 17% of small files are deletedtems are cached. Different lines represent different lev-
within less than a minute, and very few last more than &€ls of prefetchinge.g, the 0-line represents no prefetch-
few hours; about half of medium files, however, last moreing, whereas the 1MB-line means data 1MB before and
than 8 hours. Only 14% of the large files created duringLMB after a read is prefetched.
tracing were also deleted during tracing. Line shape describéemporal locality e.g, the O-line
Conclusion: Traditional HDFS workloads operate on gives a distribution of time intervals between different
very large files. While most FM data lives in large, long- reads to the same data. Reads are almost never preceded
lived files, most files are small and short-lived. This hasby a prior read to the same data in the past four minutes;
metadata-management implications; HDFS manages allowever, 26% of reads are preceded within the last 32
file metadata with a single NameNode because the dataminutes. Thus, there is significant temporal localitg.(
to-metadata ratio is assumed to be high. For FM, thigeads are near each other with respect to time), and ad-
assumption does not hold; perhaps distributing HDFSditional caching should be beneficial. The locality map
metadata management should be reconsidered. also shows there is littlsequentiality A highly sequen-
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Figure 7: Reads: locality map. This plot shows how of- the right shows a distribution of I/O to different parts ofth
ten a read was recently preceded by a nearby read, with timedataset (so the bars sum to the total read 1/0).
distance represented along the x-axis and offset-distagge

resented by the four lines. high-latency storage mediums.g§, disk) are not ideal

] for serving reads. The workload also shows very little
tial pattern would show that many reads were recentlyspatia| locality, suggesting additional prefetching vebul
preceded by 1/O to nearby offsets; here, however, thg,ot help, possibly because FM already chooses for itself
1KB-line shows only 25% of reads were preceded by /Oy hat data to prefetch. However, despite application-level

to very nearby offsets within the last minute. Thus, overg,q HBase-level caching, some of the HDFS data is par-
75% of reads are random. The distances between thﬁcularly hot; thus, additional caching could help.

lines of the locality map descritspatial locality The

1KB-line and 64KB-line are very near each other, indi- . . .
cating that (except for sequential 1/0) reads are rarely'5 Tiered Storage. Addmg Flash

preceded by other reads to nearby offsets. This indicaté§a now make a case for adding a flash tier to local ma-

very low spatial locality ite., reads are far from each . oc EM has a very large, mostly cold datasét1g
other with respect to offset), and additional prefetchingyeening all this data in flash would be wasteful, costing
is unlikely to be helpful. _ upwards of $10K/machirfe We evaluate the two alterna-
To summarize the locality map, the main pattern readsjyes: use some flash or no flash. We consider four ques-
exhibit is temporal locality (there is little sequentiglir  tjons: how much can we improve performance without
spatial locality). High temporal locality implies a sig- fash. by spending more on RAM or disks.(8? What
nificant portion of reads are “repeats” to the same datagjicies utilize a tiered RAM/flash cache bess @? Is

We explore this repeated-access pattern further in Figfiash petter used as a cache to absorb reads or as a buffer
ure8a. The bytes of HDFS file data that are read duringy apbsorb writes (§.3? And ultimately,is the cost of a
tracing are distributed along the x-axis by the number ofj55h tier justifiable (§.4)?

reads. The figure shows that most data (73.7%) is read
only once, but 1.1% of the data is read at least 64 timesg 1 pPerformance without Flash

Thus, repeated reads are not spread evenly, but are con- . , . o .
centrated on a small subset of the data. Can buying faster disks or more disks significantly im-

Figure8b shows how many bytes are read for each ofProve FM performanceFigure9 presents average disk
the categories of Figura. While 19% of the reads are latency as a function of various disk factors. The first
to bytes which are only read once, most I/O is to dat lot shows that for more than 15 disks, adding more disks
which is accessed many times. Sué:h bias at this Ieveléas quickly diminishing returns. The second shows that

surprising considering that all HDFS 1/O has missed two igher-bandwidth disks also have relatively little advan-

higher-level caches (an application cache and the HBag@9®e: as anticipated by the highly-random workload ob-

cache). Caches are known to lessen 1/O to particularl erved earlier (8.4). However, the third plot shows that

hot data,e.g, a multilayer photo-caching study found atency is a major performance factor. .
caches cause “distributions [to] flatten in a significant | "€ fact thatlower latency helps more than having ad-

way” [15. The fact that bias remains despite CaChmgditional disks suggests the workload has relatively little
suggests the working set may be too large to fitin a smalparallelismii.e, being able to do a few things quickly is

cache; a later section%8l) shows this to be the case.
Conclusion: At the HDFS level, FM exhibits rel-

better than being able to do many things at once. Un-

3at $0.80/GB, storing 13.3TB (120TB split over 9 machines) in

atively little sequentiality, suggesting high-bandwidth flash would cost $10,895/machine.
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Figure 9: Disk performance. The figure shows the rela- ]
tionship between disk characteristics and the averagentate Flash (GB)
of disk requests. As a default, we use 15 disks with 100MB/$3igure 11: Tiered hit rates. Overall hit rate (any) is
bandwidth and 10ms seek time. Each of the plots varies one Qf,gwn by the solid lines for the promote and keep policies. Th
the characteristics, keeping the other two fixed. results are shown for varying amounts of RAM (differentg)lot
and varying amounts of flash (x-axis). RAM hit rates are indi-
cated by the dashed lines.
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Conclusion: The FM workload exhibits relatively lit-

Q
g 404 T write ht"“S" . tle sequentiality or parallelism, so adding more disks or
T e oaate higher-bandwidth disks is of limited utility. Fortunately
201 the same data is often repeatedly readl.4§ so a very
P large cacheife., a few hundred GBs in size) can ser-
0 100 200 300 400 vice nearly 80% of the reads. The usefulness of a very
Cache size (GB) large cache suggests that storing at least some of the hot

data in flash may be most cost effective. We evaluate the
cost/performance tradeoff between pure-RAM and hy-
brid caches in a later sectionJg).
fortunately, the 2-6ms disks we simulate are unrealisti-
cally fast, having no commercial equivalent. Thus, al-
though significant disk capacity is needed to store the5'2 Flash as Cache
large, mostly cold data, reads are better served by a lown this section, we use flash as a second caching tier be-
latency mediumé.g, RAM or flash). neath RAM. Both tiers independently are LRU. Initial
Thus, we askgan the hot data fit comfortably in a inserts are to RAM, and RAM evictions are inserted into
pure-RAM cache®Ve measure hit rate for cache sizes in flash. We evaluate exclusive cache policies. Thus, upon
the 10-400GB range. We also try three different LRU a flash hit, we have two options: tpeomote policy PP)
policies: write allocate no-write allocate andwrite ~ repromotes the item to the RAM cache, but Keep pol-
hints All three are write-through caches, but differ re- icy (KP) keeps the item at the flash level. PP gives the
garding whether written data is cached. Write allocatecombined cache LRU behavior. The idea behind KP is
adds all write data, no-write allocate adds no write datato limit SSD wear by avoiding repeated promotions and
and the hint-based policy takes suggestions from HBasevictions of items between RAM and flash.
and HDFS. In particular, a written file is only cached if  Figure 11 shows the hit rates for twelve flash/RAM
(a) the local file is a primary replica of the HDFS block, mixes. For example, the middle plot shows what the hit
and (b) the file is either flush output (as opposed to com+ate is when there is 30GB of RAM: without any flash,
paction output) or is likely to be compacted soon. 45% of reads hit the cache, but with 60GB of flash, about
Figure 10 shows, for each policy, that the hit rate in- 63% of reads hit in either RAM or flash (regardless of
creases significantly as the cache size increases up unfiblicy). The plots show that across all amounts of RAM
about 200GB, where it starts to level off (but not flat- and flash, the number of reads that hit in “any” cache
ten); this indicates the working set is very large. Earlierdiffers very little between policies. However, PP causes
(84.2), we found little overlap between writes and readssignificantly more of these hits to go to RAM; thus, PP
and concluded that written data should be cached selewvill be faster because RAM hits are faster than flash hits.
tively if at all. Figure 10 confirms: caching all writes We now test our hypothesis that, in trade for decreas-
is the worst policy. Up until about 100GB, “no-write ing RAM hits, KP improves flash lifetime. We compute
allocate” and “write hints” perform about equally well. lifetime by measuring flash writes, assuming the FTL
Beyond 100GB, hints help, but only slightly. We use provides even wear leveling, and assuming the SSD sup-
no-write allocate throughout the remainder of the papeports 10K program/erase cycles. Figizreports flash
because itis simple and provides decent performance. lifetime as the amount of flash varies along the x-axis.

Figure 10: Cache hit rate. The relationship between
cache size and hit rate is shown for three policies.
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Figure 13: Crash simulations. The plots show two exam-
ples of how crashing at different times affects differer@@B

size and flash lifetime is shown for both the keep policy (graytiered caches, some of which are pure flash, pure RAM, or a

lines) and promote policy (black lines). There are two lifas
each policy (10 or 30GB RAM).

mix. Hit rates are unaffected when crashing with 100% flash.

a7 10 disks 7 - 15 disks
The figure shows that having more RAM slightly im- £ ¢ 60 ¢
proves flash lifetime. This is because flash writes occurd s 120 5
. .. . o 1.4% 240 60 flash
upon RAM evictions, and evictions will be less frequent § 4 o 41 120 flash
with ample RAM. Also, as expected, KP often doubles2 3 %% 3{ %% 240 flash
. . . . =} D)
or triples flash lifetime.e.g, with 10GB of RAM and 2 21 2 \ZZ.W—/
60GB of flash, using KP instead of PP increases life-2 11 19
time from 2.5 to 5.2 years. The figure also shows that* 0-——r—rr—rrrr— 0-—rorr T
[ : : E AMmMONL ® S T  AMONL ®
flash lifetime increases with the amount of flash. For PP, 5 =& 5 =&

the relationship is perfectly linear. The number of flash Threshold (MB) Threshold (MB)
writes equals the number of RAM evictions, which is in-
dependent of flash size; thus, if there is twice as muc ) Cesn i
flash, each block of flash will receive exactly half as Puffering policies impact foreground requests with twotglo
much wear. For KP, however, the flash lifetime increase4©" 10 or 15 disks) and three lines (60, 120, or 240GB of flash)
superlinearly with size; with 10GB of RAM and 20GB Different points on the x-axis represent different pobcidhe

of flash, the years-to-GB ratio is 0.06, but with 240G ©Ptimum point on each line is marked, showing improvement
of flash, the ratio is 0.15. The relationship is superlin-"élative to the latency when no buffering is done.

ear because additional flash absorbs more reads, causing

fewer RAM inserts, causing fewer RAM evictions, and €Ver, using flash raises concerns about wear. Shuffling
ultimately causing fewer flash writes. Thus, doublingdata between flash and RAM to keep the hottest data

the flash size decreases total flash writes in addition tén RAM improves performance but can easily decrease
spreading the writes over twice as many blocks. SSD lifetime by a factor of 2x relative to a wear-aware
Flash caches have an additional advantage: crashes @§licy. Fortunately, larger SSDs tend to have long life-
not cause cache contents to be lost. We quantify this berfimes for FM, so wear may be a small conceengg
efit by simulating four crashes at different times and mea-120GB+ SSDs last over 5 years regardless of policy).
suring changes to hit rate. Figuit& shows the results
of two of these crashes for 100GB caches with differen15'3 Flash as Buffer
flash-to-RAM ratios (using PP). Even though the hottestAnother advantage of flash is that (due to persistence) it
data will be in RAM, keeping some data in flash signif- has the potential to reduce disk writes as well as reads.
icantly improves the hit rate after a crash. The exam-We saw earlier (8.3) that files tend to be either small and
ples also show that it can take 4-6 hours to fully recovershort-lived or big and long-lived, so one strategy would
from a crash. We quantify the total recovery cost in termsbe to store small files in flash and big files on disk.
of additional disk reads (not shown). Whereas crashing HDFS writes are considered durable once the data is
with a pure-RAM cache on average causes 26GB of adin memory on every DataNode (but not necessarily on
ditional disk /O, crashing costs only 10GB for a hybrid disk), so buffering in flash would not actually improve
cache which is 75% flash. HDFS write performance. However, decreasing disk
Conclusion: Adding flash to RAM can greatly im- writes by buffering the output dbackground activities
prove the caching hit rate; furthermore (due to persis{e.g, flushes and compaction) indirectly improviese-
tence) a hybrid flash/RAM cache can eliminate half ofground performance. Foreground activity includes any
the extra disk reads that usually occur after a crash. Howtocal requests which could block an HBase request,(

H:igure 14: Flash Buffer. We measure how different file-



HW | Cost Failure rate Performance

HDD | $100/disk 4% AFRY] 10ms/seek, 100MB/s 07 famGB  flash GB  disks
RAM | $5.0/GB 4% AFR (8GB) 0 latency 18 A: 10 0:0 o 10
Flash | $0.8/GB 10K P/E cycles  0.5ms latency (B: ?80 % (1520 : %g
Table 3: Cost Model. Our assumptions about hardware 161 3:240
costs, failure rates, and performance are presented. Fsk di g 14 1
and RAM, we state an AFR (annual failure rate), assuming >
uniform-random failure each year. For flash, we base replace % 121
ment on wear and state program/erase cycles. E 101
%
a get). Reducing background 1/0 means foreground &, 87
reads will face less competition for disk time. Thus, we § ¢{
measure how buffering files written by background ac-- AL
tivities affects foreground latencies. 41 A2 o
Of course, using flash as a write buffer has a cost, | ASB3  A2C%; .
namely less space for caching hot data. We evaluate this A3B3 3 S

tradeoff by measuring performance when using flash to 0900 1200 1500 1800 2100 2400 2700
buffer only files which are beneath a certain size. Fig-

ure 14 shows how latency corresponds to the policy. At Cost (9)

the left of the x-axis, writes are never buffered in flash, Figure 15: Capex/latency tradeoff. We present the cost
and at the right of the x-axis, all writes are buffered.and performance of 36 systems, representing every combina-
Other x-values represent thresholds; only files smalletion of three RAM levels, four flash levels, and three diskltev
than the threshold are buffered. The plots show thafombinations which present unique tradeoffs are black and |
buffering all or most of the files results in very poor per- beled; unjustifiable systems are gray and unlabeled.

formance. Below 128MB, though, the choice of how I

much to buffer makes little differgence. The best gain is(31%) are_hlglhllghte.d; these are the only systems th_at

just a 4.8% reduction in average latency relative to per—one could justify buying. Each of the other 25 systemg IS

formance when no writes are buffered both slower and more expensive than one of these 11 jus-
Conclusion: Using flash to buffer a{II writes results tifiable systems. Over half of the justifiable systems have

. : maximum flash. It is worth noting that the systems with
in much worse performance than using flash only as %}v

. . . ss flash are justified by low cost, not good performance.
cache. Ifflash is used for both caching and buffering, an ith one exception (15-disk A2), all systems with less

if policies are tuned to only buffer files of the right size, ; 2
. . than the maximum flash have the minimum number of
then performance can be slightly improved. We conclude

that these small gains are probably not worth the adde8|3kS and RAM. We observ_e that flash can greatly im-
. . prove performance at very little cost. For example, Al
complexity, so flash should be for caching only.

has a 60GB SSD but is otherwise the same as A0. With
10 disks, Al costs only 4.5% more but is 3.5x faster. We
5.4 Is Flash worth the Money? conclude that if performance is to be bought, then (within
Adding flash to a system can, if used properly, only im-the space we explore) flash should be purchased first.
prove performance, so the interesting question is, given We also consider expected opex (operating expendi-
that we want to buy performance with monskipuld we  ture) for replacing hardware as it fails, and find that re-
buy flash, or something elseWe approach this ques- placing hardware is relatively inexpensive compared to
tion by making assumptions about how fast and expeneapex (not shown). Of the 36 systems, opex is at most
sive different storage mediums are, as summarized in Te&$90/year/machine (for the 20-disk C3 system). Further-
ble 3. We also state assumptions about component failurenore, opex is never more than 5% of capex. For each of
rates, allowing us to estimate operating expenditure.  the justifiable flash-based systems shown in Figibe

We evaluate 36 systems, with three levels of RAMwe also do simulations using KP for flash hits. KP de-
(10GB, 30GB, or 100GB), four levels of flash (none, creased opex by 4-23% for all flash machines while in-
60GB, 120GB, or 240GB), and three levels of disk (10,creasing latencies by 2-11%. However, because opex is
15, or 20 disks). Flash and RAM are used as a hybridow in general, the savings are at most $14/year/machine.
cache with the promote policy $82). For each system, Conclusion: Not only does adding a flash tier to the
we compute the capex (capital expenditure) to initially FM stack greatly improve performance, but it is the most
purchase the hardware and determine via simulation theost-effective way of improving performance. In some
foreground latencies (defined i 8). Figurel5shows cases, adding a small SSD can triple performance while
the cost/performance of each system. 11 of the system@nly increasing monetary costs by 5%.
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Figure 16: Layered architectures. The HBase archi- Figure 17: Local-compaction architecture.  The
tecture (mid-replicated) is shown, as well as two altevedi  HBase architecture (left) shows how compaction currently ¢
Top-replication reduces network I/O by co-locating datsda ates a data flow with significant network 1/0, representechey t
computation with database data. The mid-bypass architectu two lines crossing machine boundaries. An alternativehfig
is similar to mid-replication, but provides a mechanism ligr shows how local reads could replace network 1/0

passing the replication layer for efficiency.

6 Layering: Pitfalls and Solutions If the database wants to reorganize data on disl, (via
compaction), each database replica can do so on its lo-

The FM stack, like most storage, is a composition ofcal copy. Unfortunately, top-replicated storage is com-
other systems and subsystems. Some composition is hostex. The database layer must handle underlying failures
izontal; for example, FM stores small data in HBase andas well as cooperate with other databases; in Salus, this
large data in Haystack 481). In this section, we focus is accomplished with a pipelined-commit protocol and
instead on the vertical composition of layers, a patternvierkle trees for maintaining consistency.

commonly used to manage and reduce software com- Mid-bypasgFigurel6c) is a third option proposed by
plexity. We discuss different ways to organize storagezahariaet al. [30]. This approach (like mid-replication),
layers (%.1), how to reduce network I/O by bypassing places the replication layer between the database and the
the replication layer &2, and how to reduce the ran- |ocal store, but in order to improve performanceRPD
domness of disk I/0 by adding special HDFS support for(Resilient Distributed Dataset) API lets the database by-

HBase logging (6.3). pass the replication layer. Network 1/O is avoided by
shipping computation directly to the data. HBase com-
6.1 Layering Background paction could be built upon two RDD transformations,

. ) join andsort, and network 1/0 could thus be avoided.
Three important layers are thecal layer(e.g, disks, lo-

cal file systems, and a DataNode), tleplication layer .
(e.g, HDFS), and thelatabase layefe.g, HBase). FM 6.2 Local Compaction
composes these inraid-replicatedpattern (Figurel6a),  We simulate the mid-bypass approach, with compaction
with the database at the top of the stack and the locabperations shipped directly to all the replicas of com-
stores at the bottom. The merit of this architecture ispaction inputs. Figurd7 shows how local compaction
simplicity. The database can be built with the assump-differs from traditional compaction; network 1/O is
tion that underlying storage, because it is replicated, wil traded for local I/O, to be served by local caches or disks.
be available and never lose data. The replication layer is Figure 18 shows the result: a 62% reduction in net-
also relatively simple, as it deals with data in its simplestwork reads from 3.5TB to 1.3TB. The figure also shows
form (i.e., large blocks of opaque data). Unfortunately, disk reads, with and without local compaction, and with
mid-replicated architectures separate computation froneither write allocate (wa) or no-write allocate (nwa)
data. Computatione(g, database operations such ascaching policies (8.1). We observe disk I/O increases
compaction) can only be co-resident with at most onesightly more than network 1/0 decreases. For exam-
replica, so all writes involve network transfers. ple, with a 100GB cache, network I/O is decreased by
Top-replication(Figurel6b) is an alternative approach 2.2GB but disk reads are increased by 2.6GB for no-
used by the Salus storage syste?f]] Salus supports write allocate. This is unsurprising: HBase uses sec-
the standard HBase API, but its top-replicated approaclondary replicas for fault tolerance rather than for reads,
provides additional robustness and performance advarso secondary replicas are written once (by a flush or com-
tages. Salus protects against memory corruption and cepaction) and read at most once (by compaction). Thus,
tain bugs in the database layer by replicating databaskcal-compaction reads tend to (a) be misses and (b) pol-
computation as well as the data itself. Doing replica-lute the cache with data that will not be read again. We
tion above the database level also reduces network I/Gsee that write allocate still underperforms no-write allo-
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Figure 18: Local-compaction results. The thick gray  Figure 20: Combined logging results. Disk latencies for
lines represent HBase with local compaction, and the thickl  various activities are shown, with (gray) and without (tdac
lines represent HBase currently. The solid lines represett  combined logging.

work reads, and the dashed lines represent disk reads; long-

dash represents the no-write allocate cache policy andtshor

dash represents write allocate. cies for foreground reads (defined i6.§), compaction,
and logging. Figure?0 reports the results for varying
Current logging Combined logging numbers of disks. The latency of log writes decreases
dramatically with combined logging; for example, with
RS1||Rs2|[Rs3 RS1||RS2||RS3 ' '
- - - - - - 15 disks, the latency is decreased by a factor of six. Com-
paction requests also experience modest gains due to less

competition for disk seeks. Currently, neither logging
nor compaction block the end user, so we also consider
the performance of foreground reads. For this metric,
Figure 19: Combined-logging architecture. Currently  tpe gains are smak.g, latency only decreases by 3.4%
(left), the average DataNode will receive logs from threeald&  \yith 15 disks. With just 10 disks, dedicating one disk to
RegionServers, and these logs will be written to differecad logging slightly hurts user reads.

tions. An alternative approach (right) would be for HDFSto  cgnclusion: Merging multiple HBase logs on a ded-
provide a special logging API which allows all the logs to be jcated disk reduces logging latencies by a factor of 6.
combined so that disk seeks are reduced. However,put requests do not currently block until data
is flushed to disks, and the performance impact on fore-

cate ($.1). However, write allocate is now somewhat ground reads is negligible. Thus, the additional complex-
more competitive for large cache sizes because it is ablBY 0f combined logging is likely not worthwhile given
to serve some of the data read by local compaction. the current durability guarantees. However, combined

Conclusion: Doing local compaction by bypassing Iogging could e_qable HBase, at little perfo_rmancg cost,
the replication layer turns over half the network 1/0 into t© give the additional guarantee that data is on disk be-
disk reads. This is a good tradeoff as network I/0 is genforeé aput returns. Providing such a guarantee would
erally more expensive than sequential disk 1/O. make logging a foreground activity.

logs logs logs consolidated logs

6.3 Combined Logging 7 Related Work

We now consider the interaction between replication andn this work, we compare the 1/0 patterns of FM to
HBase logging. Figur&9 shows how (currently) a typi- prior GFS and HDFS workloads. Chehal[4] provides
cal DataNode will receive log writes from three Region- broad characterizations of a wide variety of MapRe-
Servers (because each RegionServer replicates its loghkice workloads, making some of the comparisons pos-
to three DataNodes). These logs are currently writtersible. The MapReduce study lisoad, analyzing traces
to three different local files, causing seeks. Such seekef coarse-grained events.§, file opens) from over 5000
ing could be reduced if HDFS were to expose a speciamachines across seven clusters. By contrast, our study is
logging feature that merges all logical logs into a singledeep analyzing traces of fine-grained everagy, reads
physical log on a dedicated disk as illustrated. to a byte) for just nine machines.

We simulate combined logging and measure perfor- Detailed trace analysis has also been done in many
mance for requests which go to disk; we consider latennon-HDFS contexts, such as the work by Badeal. [2]
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in a BSD environment and by Hartet al. [13] for Ap- of megabytes. This traditional workload implies a high
ple desktop applications. Other studies include the worldata-to-metadata ratio, justifying the one-NameNode de-
done by Ousterhouwt al. [21] and Vogelset al. [2§]. sign of GFS and HDFS. By contrast, FM is dominated by
A recent photo-caching study by Huaeg al. [15  small files; perhaps the single-NameNode design should
focuses, much like our work, on I/O patterns across mul-be revisited.
tiple layers of the stack. The photo-caching study corre- Third, FM storage is built upon layers of independent
lated 1/0O across levels by tracing at each layer, whereasubsystems. This architecture has the benefit of simplic-
our approach was to trace at a single layer and infeity; for example, because HBase stores data in a repli-
I/0 at each underlying layer via simulation. There is acated store, it can focus on high-level database logic in-
tradeoff between these two methodologies: tracing mulstead of dealing with dying disks and other types of fail-
tiple levels avoids potential inaccuracies due to simulato ure. Layering is also known to improve reliability,g,
oversimplifications, but the simulation approach enable®ijkstra found layering “proved to be vital for the veri-
greater experimentation with alternative architectuees b fication and logical soundness” of an O.[ Unfortu-
neath the traced layer. nately, we find that the benefits of simple layering are
Our methodology of trace-driven analysis and simula-not free. In particular, we showed@gthat building a
tion is inspired by Kaushikt al.[16], a study of Hadoop database over a replication layer causes additional net-
traces from Yahoo! Both the Yahoo! study and our workwork I/O and increases workload randomness at the disk
involved collecting traces, doing analysis to discover po-layer. Fortunately, simple mechanisms for sometimes
tential improvements, and running simulations to evalu-bypassing replication can reduce layering costs.
ate those improvements. Fourth, the cost of flash has fallen greatly, prompting
We are not the first to suggest the methods we evaluGray’s proclamation that “tape is dead, disk is tape, flash
ated for better HDFS integration&g our contributionis  is disk” [12]. To the contrary, we find that for FM, flash
to quantify how useful these techniques are for the FMis not a suitable replacement for disk. In particular, the
workload. The observation that doing compaction abovecold data is too large to fit well in flash 48) and the
the replication layer wastes network bandwidth has beehot data is too large to fit well in RAM &1). However,
made by Wanget al. [29), and the approach of local our evaluations show that architectures with a small flash
compaction is a specific application of the more generafier have a positive cost/performance tradeoff compared
techniques described by Zahaegal. [30]. Combined to systems built on disk and RAM alone.

logging is also commonly used by administrators of tra- In this work, we take a unique view of Facebook Mes-
ditional databases[ 22]. sages, not as a single system, but as a complex compo-

sition of systems and subsystems, residing side-by-side
. and layered one upon another. We believe this perspec-
8 Conclusions tive is key to deeply understanding modern storage sys-

We have presented a detailed multilayer study of storaglfms- Such understanding, we hope, will help us bet-
/O for Facebook Messages. Our combined approach oer mte_grate layers, thereby maintaining simplicity whil
analysis and simulation allowed us to identify potentially @chieving new levels of performance.
useful changes and then evaluate those changes. We have
four major conclusions. 9 Acknowledgements
First, the special handling received by writes make,
them surprisingly expensive. At the HDFS level, the
read/write ratio is 99/1, excluding HBase compaction
and logging overheads. At the disk level, the ratio is
write-dominated at 36/64. Logging, compaction, repli-
cation, and caching all combine to produce this write
blowup. Thus, optimizing writes is very important even
for especially read-heavy workloads such as FM.
Second, the GFS-style architecture is based on wor
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