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System as a whole unaffected
data is available
data is correct
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We call these storage faults
corrupted or 
inaccessible
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How to Recover Faulty Data?

3

A widely used approach: delete the data 
on the faulty node and restart it

The approach seems intuitive and 
works - all good, right?
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Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

This majority has no idea
about the committed data
Committed data is lost!
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The recovery approach is oblivious
to the underlying protocols

used by the distributed system

e.g., the delete + rebuild approach was oblivious to the 
protocol used by the system to update the replicated data
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e.g., is there a dedicated leader? constraints on leader election? how is the 
replicated state updated? what are the consistency guarantees?

We call such an approach protocol-aware

To safely recover,  a recovery approach should be 
carefully designed based on 

properties of underlying protocols
of the distributed system
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Why RSM?
most fundamental piece in building reliable distributed systems
many systems depend upon RSM

protecting RSM will improve reliability of many systems

A hard problem 
strong guarantees, even a small misstep can break guarantees

Our Focus:  PAR for Replicated State Machines (RSM)

7

Chubby
GFS
Colossus
BigTable

ZooKeeper
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Study popular systems and analyze prior approaches
approaches in most systems are protocol-oblivious 
some use protocol knowledge, but incorrectly
violate safety (e.g., data loss) or cause unavailability

Our solution: CTRL (Corruption-Tolerant RepLication)
a PAR approach, exploits properties of RSM protocols
guarantees safety and high availability with low performance overhead
applied to LogCabin and ZooKeeper
experimentally verified guarantees and little overheads (4%-8%)

This Work 

8



Outline

Introduction
Replicated state machines
Current approaches to storage faults
CTRL: corruption-tolerant replication
Evaluation
Summary and conclusion

9



RSM Overview

10



RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10



RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers, 

State Machine

State Machine

State Machine

State Machine

State Machine



RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers, 

State Machine

same initial state, 

State Machine

State Machine

State Machine

State Machine



RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers, 

State Machine

C B A
inputs

same initial state, same sequence of inputs,

clients
State Machine

State Machine

State Machine

State Machine



RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers, 

State Machine

C B A
inputs

Same 
state/

Output

same initial state, 
will produce same outputs

same sequence of inputs,

clients
State Machine

State Machine

State Machine

State Machine



RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers, 

State Machine

C B A
inputs

Same 
state/

Output

same initial state, 
will produce same outputs

same sequence of inputs,

clients
State Machine

State Machine

State Machine

State MachineAlways correct and available if a 
majority of servers are functional



RSM: a paradigm to make a program/state machine more reliable

RSM Overview
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key idea: run on many servers, 

State Machine

C B A
inputs

Same 
state/

Output

same initial state, 
will produce same outputs

same sequence of inputs,

clients
State Machine

State Machine

State Machine

State Machine

A consensus algorithm (e.g., Paxos, Raft, or ZAB) 
ensures SMs process commands in the same order

Always correct and available if a 
majority of servers are functional
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Methodology
fault-injection study of practical systems (ZooKeeper, LogCabin, etcd, 
a Paxos-based system)
analyze approaches from prior research

Protocol-oblivious
do not use any protocol knowledge

Protocol-aware
use some protocol knowledge but incorrectly or ineffectively
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B C
A B C
A B C
A B C
A B C

Restarting the node does not help
persistent fault, so remain in crash-restart loop
need error-prone manual intervention (can lead to safety violations)

A B C
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A B C

A B C
corrupted

failed
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Standard failure assumptions
crashes
network failures

Augment with storage faults
data blocks of log, snapshots, and metainfo can be faulty

depending on FS, return corrupted data or turn into errors

FS metadata blocks could also be faulty
e.g., inode of a log file corrupted
e.g., files/directories implementing the log may go missing
e.g., files may appear with fewer or more bytes
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Main function: detect and identify
whether log/snapshot/metainfo faulty or not?
what is corrupted? (e.g., which log entry?)

Requirements
low performance overheads
low space overheads

An interesting problem: disentangling 
crashes and corruptions in log

checksum mismatch due to crash or disk 
corruption? 
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Distributed 
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append()

Disk corruption
cannot truncate, may lose possibly committed data! 

Crash during append
recovery: can truncate entry - unacknowledged

Current systems conflate the two conditions – always truncate

disk 
corruption

Crash-Corruption Entanglement in the Log

CTRL: modified local update – write additional information
enables disentanglement, performant - more details in the paper…
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Leader-based 
single node acts as leader; all updates flow through the leader

Epochs
a slice of time; only one leader per slice/epoch 
a log entry is uniquely qualified by its index and epoch

Leader completeness
leader guaranteed to have all committed data

Applies to Raft, ZAB, and most implementations of Paxos
CTRL exploits these properties to perform recovery
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must fix committed, while uncommitted can be safely discarded
discard uncommitted as early as possible for improved availability
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Log recovery
faulty entry on follower unknown to leader
nodes could be down during recovery 
different entries at same log index

Snapshot recovery
Metainfo recovery
FS metadata fault handling

More In The Paper…
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Evaluation

We apply CTRL in two systems
LogCabin 

based on Raft

ZooKeeper
based on ZAB
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Original systems
unsafe or unavailable in many cases

CTRL versions
safe always and highly available
correctly unavailable in some cases (when all copies are faulty)
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Overheads (because CTRL’s storage layer writes additional information 
for each log entry) – however, little: SSDs 4% worst case, disks: 8% to10%
Note: all writes, so worst-case overheads
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Summary

Recovering from storage faults correctly in a distributed 
system is surprisingly tricky
Most existing recovery approaches are protocol-oblivious –
they cause unsafety and low availability
To correctly and quickly recover, an approach needs to be 
protocol-aware
CTRL: a protocol-aware recovery approach for RSM

guarantees safety and provides high availability, with little 
performance overhead
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redundancy à reliability are surprisingly hard to achieve [1] 
Protocol-awareness is key to use redundancy correctly to 
recover bad data

need to be aware of what’s going on underneath in the system

However, only a first step: we have applied PAR only to RSM
other classes of systems (e.g., quorum-based systems) remain vulnerable

http://research.cs.wisc.edu/adsl/Publications/par/
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