
Protocol-Aware Recovery for
Consensus-Based Storage

Ramnatthan Alagappan, Aishwarya Ganesan,

Eric Lee*, Aws Albarghouthi, Vijay Chidambaram*,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau

University of Wisconsin – Madison
*University of Texas at Austin

Redundancy Enables Reliability

1

Redundancy helps distributed
storage systems mask failures

Redundancy Enables Reliability

1

Redundancy helps distributed
storage systems mask failures

Redundancy Enables Reliability

1

Redundancy helps distributed
storage systems mask failures

system crashes

Redundancy Enables Reliability

1

Redundancy helps distributed
storage systems mask failures

system crashes
network failures

Redundancy Enables Reliability

1

Redundancy helps distributed
storage systems mask failures

system crashes
network failures

System as a whole unaffected
data is available
data is correct

How About Faulty Data?

2

How About Faulty Data?

2

Data could be faulty
corrupted (disk corruption)
inaccessible (latent errors)

corrupted or
inaccessible

How About Faulty Data?

2

Data could be faulty
corrupted (disk corruption)
inaccessible (latent errors)

We call these storage faults
corrupted or
inaccessible

How to Recover Faulty Data?

3

corrupted

How to Recover Faulty Data?

3

A widely used approach: delete the data
on the faulty node and restart it

corrupted

How to Recover Faulty Data?

3

A widely used approach: delete the data
on the faulty node and restart it

ZooKeeper fails to start? How can I fix?
Try clearing all the state in Zookeeper: stop Zookeeper
, wipe the Zookeeper data directory, restart it

– A top Stackoverflow answer [1]

[1] https://stackoverflow.com/questions/17038957/

corrupted

How to Recover Faulty Data?

3

A widely used approach: delete the data
on the faulty node and restart it

A server might not be able to read its database … because of
some file corruption in the transaction logs...in such a case, make
sure all the other servers in your ensemble are up and
working.…go ahead and clean the database of the corrupt server.
Delete all the files in datadir... Restart the server…

– Recommendation from developers [2]

ZooKeeper fails to start? How can I fix?
Try clearing all the state in Zookeeper: stop Zookeeper
, wipe the Zookeeper data directory, restart it

– A top Stackoverflow answer [1]

[1] https://stackoverflow.com/questions/17038957/
[2] https://zookeeper.apache.org/doc/r3.3.3/zookeeperAdmin.html#sc_troubleshooting

corrupted

How to Recover Faulty Data?

3

A widely used approach: delete the data
on the faulty node and restart it

A server might not be able to read its database … because of
some file corruption in the transaction logs...in such a case, make
sure all the other servers in your ensemble are up and
working.…go ahead and clean the database of the corrupt server.
Delete all the files in datadir... Restart the server…

– Recommendation from developers [2]

ZooKeeper fails to start? How can I fix?
Try clearing all the state in Zookeeper: stop Zookeeper
, wipe the Zookeeper data directory, restart it

– A top Stackoverflow answer [1]

[1] https://stackoverflow.com/questions/17038957/
[2] https://zookeeper.apache.org/doc/r3.3.3/zookeeperAdmin.html#sc_troubleshooting

corrupted

Looks reasonable: redundancy will help

How to Recover Faulty Data?

3

A widely used approach: delete the data
on the faulty node and restart it

corrupted

How to Recover Faulty Data?

3

A widely used approach: delete the data
on the faulty node and restart it

How to Recover Faulty Data?

3

A widely used approach: delete the data
on the faulty node and restart it

How to Recover Faulty Data?

3

A widely used approach: delete the data
on the faulty node and restart it

The approach seems intuitive and
works - all good, right?

Unfortunately, No…Not So Easy!

4

Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

This majority has no idea
about the committed data

Unfortunately, No…Not So Easy!

4

Surprisingly, can lead to a global data loss!

This majority has no idea
about the committed data
Committed data is lost!

Problem: Approach is Protocol-Oblivious

5

Problem: Approach is Protocol-Oblivious

5

The recovery approach is oblivious
to the underlying protocols

used by the distributed system

Problem: Approach is Protocol-Oblivious

5

The recovery approach is oblivious
to the underlying protocols

used by the distributed system

e.g., the delete + rebuild approach was oblivious to the
protocol used by the system to update the replicated data

Our Proposal: Protocol-Aware Recovery (PAR)

6

e.g., is there a dedicated leader? constraints on leader election? how is the
replicated state updated? what are the consistency guarantees?

We call such an approach protocol-aware

To safely recover, a recovery approach should be
carefully designed based on

properties of underlying protocols
of the distributed system

Our Focus: PAR for Replicated State Machines (RSM)

7

Why RSM?

Our Focus: PAR for Replicated State Machines (RSM)

7

Why RSM?
most fundamental piece in building reliable distributed systems

Our Focus: PAR for Replicated State Machines (RSM)

7

Why RSM?
most fundamental piece in building reliable distributed systems
many systems depend upon RSM

Our Focus: PAR for Replicated State Machines (RSM)

7

Chubby
GFS
Colossus
BigTable

ZooKeeper

Why RSM?
most fundamental piece in building reliable distributed systems
many systems depend upon RSM

protecting RSM will improve reliability of many systems

Our Focus: PAR for Replicated State Machines (RSM)

7

Chubby
GFS
Colossus
BigTable

ZooKeeper

Why RSM?
most fundamental piece in building reliable distributed systems
many systems depend upon RSM

protecting RSM will improve reliability of many systems

A hard problem

Our Focus: PAR for Replicated State Machines (RSM)

7

Chubby
GFS
Colossus
BigTable

ZooKeeper

Why RSM?
most fundamental piece in building reliable distributed systems
many systems depend upon RSM

protecting RSM will improve reliability of many systems

A hard problem
strong guarantees, even a small misstep can break guarantees

Our Focus: PAR for Replicated State Machines (RSM)

7

Chubby
GFS
Colossus
BigTable

ZooKeeper

This Work

8

Study popular systems and analyze prior approaches

This Work

8

Study popular systems and analyze prior approaches
approaches in most systems are protocol-oblivious

This Work

8

Study popular systems and analyze prior approaches
approaches in most systems are protocol-oblivious
some use protocol knowledge, but incorrectly

This Work

8

Study popular systems and analyze prior approaches
approaches in most systems are protocol-oblivious
some use protocol knowledge, but incorrectly
violate safety (e.g., data loss) or cause unavailability

This Work

8

Study popular systems and analyze prior approaches
approaches in most systems are protocol-oblivious
some use protocol knowledge, but incorrectly
violate safety (e.g., data loss) or cause unavailability

Our solution: CTRL (Corruption-Tolerant RepLication)

This Work

8

Study popular systems and analyze prior approaches
approaches in most systems are protocol-oblivious
some use protocol knowledge, but incorrectly
violate safety (e.g., data loss) or cause unavailability

Our solution: CTRL (Corruption-Tolerant RepLication)
a PAR approach, exploits properties of RSM protocols

This Work

8

Study popular systems and analyze prior approaches
approaches in most systems are protocol-oblivious
some use protocol knowledge, but incorrectly
violate safety (e.g., data loss) or cause unavailability

Our solution: CTRL (Corruption-Tolerant RepLication)
a PAR approach, exploits properties of RSM protocols
guarantees safety and high availability with low performance overhead

This Work

8

Study popular systems and analyze prior approaches
approaches in most systems are protocol-oblivious
some use protocol knowledge, but incorrectly
violate safety (e.g., data loss) or cause unavailability

Our solution: CTRL (Corruption-Tolerant RepLication)
a PAR approach, exploits properties of RSM protocols
guarantees safety and high availability with low performance overhead
applied to LogCabin and ZooKeeper

This Work

8

Study popular systems and analyze prior approaches
approaches in most systems are protocol-oblivious
some use protocol knowledge, but incorrectly
violate safety (e.g., data loss) or cause unavailability

Our solution: CTRL (Corruption-Tolerant RepLication)
a PAR approach, exploits properties of RSM protocols
guarantees safety and high availability with low performance overhead
applied to LogCabin and ZooKeeper
experimentally verified guarantees and little overheads (4%-8%)

This Work

8

Outline

Introduction
Replicated state machines
Current approaches to storage faults
CTRL: corruption-tolerant replication
Evaluation
Summary and conclusion

9

RSM Overview

10

RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers,

State Machine

State Machine

State Machine

State Machine

State Machine

RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers,

State Machine

same initial state,

State Machine

State Machine

State Machine

State Machine

RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers,

State Machine

C B A
inputs

same initial state, same sequence of inputs,

clients
State Machine

State Machine

State Machine

State Machine

RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers,

State Machine

C B A
inputs

Same
state/

Output

same initial state,
will produce same outputs

same sequence of inputs,

clients
State Machine

State Machine

State Machine

State Machine

RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers,

State Machine

C B A
inputs

Same
state/

Output

same initial state,
will produce same outputs

same sequence of inputs,

clients
State Machine

State Machine

State Machine

State MachineAlways correct and available if a
majority of servers are functional

RSM: a paradigm to make a program/state machine more reliable

RSM Overview

10

key idea: run on many servers,

State Machine

C B A
inputs

Same
state/

Output

same initial state,
will produce same outputs

same sequence of inputs,

clients
State Machine

State Machine

State Machine

State Machine

A consensus algorithm (e.g., Paxos, Raft, or ZAB)
ensures SMs process commands in the same order

Always correct and available if a
majority of servers are functional

Pa
xo

s/
R

af
t

C
on

se
ns

us State
Machine

D
IS

K

11

Replicated State Update

C
on

se
ns

us

C
on

se
ns

usState
Machine

State
Machine

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update

B A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
B

State
Machine

State
Machine

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
B

State
Machine

State
Machine

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
B

State
Machine

State
Machine

Fo
llo

w
er

Fo
llo

w
er

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B

C

A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
B

State
Machine

State
Machine

Fo
llo

w
er

Fo
llo

w
er

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B C A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
B

State
Machine

State
Machine

Fo
llo

w
er

Fo
llo

w
er

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B C A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
B

C C

State
Machine

State
Machine

Fo
llo

w
er

Fo
llo

w
er

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B C A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
BC C

State
Machine

State
Machine

Fo
llo

w
er

Fo
llo

w
er

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B C A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
BC C

State
Machine

State
Machine

Fo
llo

w
er

Fo
llo

w
er

ACK ACK

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B C A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
BC C

State
Machine

State
Machine

Fo
llo

w
er

Fo
llo

w
er

ACK ACK

apply to SM once
majority log the

command

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B C A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
BC C

State
Machine

State
Machine

Fo
llo

w
er

Fo
llo

w
er

ACK ACK

apply to SM once
majority log the

command

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B C A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
BC C

State
Machine

State
Machine

Fo
llo

w
er

Fo
llo

w
er

ACK ACK

apply to SM once
majority log the

command

R
es

ul
t

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

B C A
C

on
se

ns
us

Log
B A

C
on

se
ns

us

Log
BC C

State
Machine

State
Machine

Command is committed
Safety condition: C must not
be lost or overwritten!

Fo
llo

w
er

Fo
llo

w
er

ACK ACK

apply to SM once
majority log the

command

R
es

ul
t

A

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

Snapshot
B C A

C
on

se
ns

us
Log Snapshot

B A

C
on

se
ns

us

Log Snapshot
BC C

State
Machine

State
Machine

Command is committed
Safety condition: C must not
be lost or overwritten!

Fo
llo

w
er

Fo
llo

w
er

ACK ACK

apply to SM once
majority log the

command

R
es

ul
t

C
on

se
ns

us State
Machine

LogD
IS

K

11

Replicated State Update
Le

ad
er

Snapshot
C

on
se

ns
us

Log Snapshot

C
on

se
ns

us

Log Snapshot

State
Machine

State
Machine

Command is committed
Safety condition: C must not
be lost or overwritten!

Fo
llo

w
er

Fo
llo

w
er

ACK ACK

apply to SM once
majority log the

command

R
es

ul
t

12

RSM Persistent Structures

12

RSM Persistent Structures

Snapshot
A

Log
B C

Log - commands are
persistently stored

Snapshots - persistent image of
the state machine

12

RSM Persistent Structures

Snapshot
A

Log
B C M

Metainfo

Log - commands are
persistently stored

Snapshots - persistent image of
the state machine

Metainfo - critical meta-data
structures (e.g., whom did I
vote for?)

12

RSM Persistent Structures

Snapshot
A

Log
B C M

Metainfo

Log - commands are
persistently stored

Snapshots - persistent image of
the state machine

Metainfo - critical meta-data
structures (e.g., whom did I
vote for?)

specific to each node, should not
be recovered from redundant
copies on other nodes

12

RSM Persistent Structures

Snapshot
A

Log
B C M

Metainfo

disk corruption or
latent sector errors

Log - commands are
persistently stored

Snapshots - persistent image of
the state machine

Metainfo - critical meta-data
structures (e.g., whom did I
vote for?)

specific to each node, should not
be recovered from redundant
copies on other nodes

12

RSM Persistent Structures

Snapshot
A

Log
B C M

Metainfo

get corrupted data (e.g., ext2/3/4)
get error (e.g., any FS on latent
errors, btrfs on a corruption)

disk corruption or
latent sector errors

read access

File System

Log - commands are
persistently stored

Snapshots - persistent image of
the state machine

Metainfo - critical meta-data
structures (e.g., whom did I
vote for?)

specific to each node, should not
be recovered from redundant
copies on other nodes

Outline

Introduction
Replicated state machines
Current approaches to storage faults
CTRL: corruption-tolerant replication
Evaluation
Summary and conclusion

13

Current Approaches to Handling Storage Faults

14

Current Approaches to Handling Storage Faults

Methodology
fault-injection study of practical systems (ZooKeeper, LogCabin, etcd,
a Paxos-based system)
analyze approaches from prior research

14

Current Approaches to Handling Storage Faults

Methodology
fault-injection study of practical systems (ZooKeeper, LogCabin, etcd,
a Paxos-based system)
analyze approaches from prior research

Protocol-oblivious
do not use any protocol knowledge

14

Current Approaches to Handling Storage Faults

Methodology
fault-injection study of practical systems (ZooKeeper, LogCabin, etcd,
a Paxos-based system)
analyze approaches from prior research

Protocol-oblivious
do not use any protocol knowledge

Protocol-aware
use some protocol knowledge but incorrectly or ineffectively

14

Protocol-Oblivious: Crash

15

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

15

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

15

A B C

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

15

A B C
corrupted

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

15

A B C
A B C

A B C
corrupted

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

15

A B C
A B C
A B C
A B C

A B C
corrupted

failed

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

15

A B C
A B C
A B C
A B C

A B C
corrupted

failed

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

15

B C
A B C
A B C
A B C
A B C

A B C
A B C
A B C
A B C

A B C
corrupted

failed

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

15

B C
A B C
A B C
A B C
A B C

A B C
A B C
A B C
A B C

A B C
corrupted

failed

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

15

B C
A B C
A B C
A B C
A B C

Restarting the node does not help
persistent fault, so remain in crash-restart loop
need error-prone manual intervention (can lead to safety violations)

A B C
A B C
A B C
A B C

A B C
corrupted

failed

Protocol-Oblivious: Truncate

16

Truncate

Protocol-Oblivious: Truncate

16

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

16

A C A

detect using
checksums

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

16

However, can lead to safety violations
A C A

detect using
checksums

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

16

However, can lead to safety violations
A C A

detect using
checksums

A B C
A B C
A B C

S1

S4

S5

S3

S2

A,B,C
committed

S2 - Leader

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

16

However, can lead to safety violations
A C A

detect using
checksums

B C
A B C
A B C

S2

A B C
A B C
A B C

S1

S4

S5

S3

S2

A,B,C
committed

S2 - Leader Entry A
corrupted

at S1

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

16

However, can lead to safety violations
A C A

detect using
checksums

B C
A B C
A B C

S2 A B C
A B C

S2

A B C
A B C
A B C

S1

S4

S5

S3

S2

A,B,C
committed

S2 - Leader Entry A
corrupted

at S1

truncates
faulty and all
subsequent

entries

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

16

However, can lead to safety violations
A C A

detect using
checksums

B C
A B C
A B C

S2 A B C
A B C

S2 A B C
A B C

S1A B C
A B C
A B C

S1

S4

S5

S3

S2

A,B,C
committed

S2 - Leader S2, S3 crash; S1, S4,
S5 form a majority

S1 - Leader

Entry A
corrupted

at S1

truncates
faulty and all
subsequent

entries

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

16

However, can lead to safety violations
A C A

detect using
checksums

B C
A B C
A B C

S2 A B C
A B C

S2 A B C
A B C

S1

A,B,C silently lost!

A B C
A B C
A B C

S1

S4

S5

S3

S2

A,B,C
committed

S2 - Leader S2, S3 crash; S1, S4,
S5 form a majority

S1 - Leader

Entry A
corrupted

at S1

truncates
faulty and all
subsequent

entries

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

16

However, can lead to safety violations
A C A

detect using
checksums

B C
A B C
A B C

S2 A B C
A B C

S2 A B C
A B C

S1

A,B,C silently lost!

A B C
A B C
A B C

S1

S4

S5

S3

S2

A,B,C
committed

S2 - Leader S2, S3 crash; S1, S4,
S5 form a majority

S1 - Leader

Entry A
corrupted

at S1

truncates
faulty and all
subsequent

entries

X Y Z

X Y Z
X Y Z

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

16

However, can lead to safety violations
A C A

detect using
checksums

B C
A B C
A B C

S2 A B C
A B C

S2 A B C
A B C

S1

A,B,C silently lost!

A B C
A B C
A B C

S1

S4

S5

S3

S2

A,B,C
committed

S2 - Leader S2, S3 crash; S1, S4,
S5 form a majority

S1 - Leader

Entry A
corrupted

at S1

truncates
faulty and all
subsequent

entries

X Y Z

X Y Z
X Y Z

X Y Z
X Y Z
X Y Z
X Y Z
X Y Z

S2, S3 follow
leader’s log,

removing A,B,C

17

Recovery Approaches Summary

17

Recovery Approaches Summary
Class

Protocol-
oblivious

Protocol-
aware

17

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote [1]
Reconfigure [2]
Byzantine FT

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

17

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote [1]
Reconfigure [2]
Byzantine FT

Safety

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

17

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote [1]
Reconfigure [2]
Byzantine FT

Safety
Availa-
bility

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

17

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote [1]
Reconfigure [2]
Byzantine FT

Safety
Perform

-ance
No

intervention
Fast

recovery
Low

complexity
Availa-
bility

No extra
nodes

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

17

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote [1]
Reconfigure [2]
Byzantine FT

Safety
Perform

-ance
No

intervention
Fast

recovery
Low

complexity
Availa-
bility

No extra
nodes

NA

NA

NA

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

17

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote [1]
Reconfigure [2]
Byzantine FT

Safety
Perform

-ance
No

intervention
Fast

recovery
Low

complexity
Availa-
bility

No extra
nodes

NA

NA

NA

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

17

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote [1]
Reconfigure [2]
Byzantine FT

Safety
Perform

-ance
No

intervention
Fast

recovery
Low

complexity
Availa-
bility

No extra
nodes

NA

NA

NA

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

17

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote [1]
Reconfigure [2]
Byzantine FT

Safety
Perform

-ance
No

intervention
Fast

recovery
Low

complexity
Availa-
bility

No extra
nodes

NA

NA

NA

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

CTRL

17

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote [1]
Reconfigure [2]
Byzantine FT

Safety
Perform

-ance
No

intervention
Fast

recovery
Low

complexity
Availa-
bility

No extra
nodes

NA

NA

NA

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

Outline

Introduction
Replicated state machines
Current approaches to storage faults
CTRL: Corruption-tolerant replication

fault model and guarantees
local storage layer
distributed recovery

Evaluation
Summary and conclusion

18

CTRL Overview

19

Two components

CTRL Overview

19

Two components
Local storage layer

Storage Layer

CTRL Overview

19

manage local data;
detect faults

M

Two components
Local storage layer
Distributed recovery

Storage Layer

Distributed
Recovery

CTRL Overview

19

manage local data;
detect faults

recover from
redundant copies

M

Two components
Local storage layer
Distributed recovery

Storage Layer

Distributed
Recovery

CTRL Overview

19

manage local data;
detect faults

recover from
redundant copies

M

Storage Layer

Distributed
Recovery

M

Two components
Local storage layer
Distributed recovery

Exploit RSM knowledge to correctly and quickly recover faulty data

Storage Layer

Distributed
Recovery

CTRL Overview

19

manage local data;
detect faults

recover from
redundant copies

M

Storage Layer

Distributed
Recovery

M

CTRL Fault Model

20

CTRL Fault Model

20

Standard failure assumptions
crashes
network failures

CTRL Fault Model

20

Standard failure assumptions
crashes
network failures

Augment with storage faults

CTRL Fault Model

20

Standard failure assumptions
crashes
network failures

Augment with storage faults
data blocks of log, snapshots, and metainfo can be faulty

depending on FS, return corrupted data or turn into errors

CTRL Fault Model

20

Standard failure assumptions
crashes
network failures

Augment with storage faults
data blocks of log, snapshots, and metainfo can be faulty

depending on FS, return corrupted data or turn into errors

FS metadata blocks could also be faulty
e.g., inode of a log file corrupted
e.g., files/directories implementing the log may go missing
e.g., files may appear with fewer or more bytes

CTRL Guarantees

21

CTRL Guarantees

21

Committed data will never be lost
as long as one intact copy of a data item exists
correctly remain unavailable when all copies are faulty

CTRL Guarantees

21

Committed data will never be lost
as long as one intact copy of a data item exists
correctly remain unavailable when all copies are faulty

Provide the highest possible availability

CTRL Local Storage

22

Storage Layer

Distributed
Recovery

M

Distributed
Recovery

CTRL Local Storage

22

Main function: detect and identify
whether log/snapshot/metainfo faulty or not?
what is corrupted? (e.g., which log entry?)

Storage Layer

Distributed
Recovery

M

Distributed
Recovery

CTRL Local Storage

22

Main function: detect and identify
whether log/snapshot/metainfo faulty or not?
what is corrupted? (e.g., which log entry?)

Requirements
low performance overheads
low space overheads

Storage Layer

Distributed
Recovery

M

Distributed
Recovery

CTRL Local Storage

22

Main function: detect and identify
whether log/snapshot/metainfo faulty or not?
what is corrupted? (e.g., which log entry?)

Requirements
low performance overheads
low space overheads

An interesting problem: disentangling
crashes and corruptions in log

checksum mismatch due to crash or disk
corruption?

Storage Layer

Distributed
Recovery

M

Distributed
Recovery

23

Crash-Corruption Entanglement in the Log

23

Crash-Corruption Entanglement in the Log

23

append()

Crash-Corruption Entanglement in the Log

23

append()

Crash-Corruption Entanglement in the Log

23

append()

Crash-Corruption Entanglement in the Log

23

append()
Crash during append

recovery: can truncate entry - unacknowledged

Crash-Corruption Entanglement in the Log

23

append()
Crash during append

recovery: can truncate entry - unacknowledged

Crash-Corruption Entanglement in the Log

23

append()
Crash during append

recovery: can truncate entry - unacknowledged

Crash-Corruption Entanglement in the Log

23

append()
Crash during append

recovery: can truncate entry - unacknowledged

Crash-Corruption Entanglement in the Log

23

append()
Crash during append

recovery: can truncate entry - unacknowledged

disk
corruption

Crash-Corruption Entanglement in the Log

23

append()

Disk corruption
cannot truncate, may lose possibly committed data!

Crash during append
recovery: can truncate entry - unacknowledged

disk
corruption

Crash-Corruption Entanglement in the Log

23

append()

Disk corruption
cannot truncate, may lose possibly committed data!

Crash during append
recovery: can truncate entry - unacknowledged

Current systems conflate the two conditions – always truncate

disk
corruption

Crash-Corruption Entanglement in the Log

23

append()

Disk corruption
cannot truncate, may lose possibly committed data!

Crash during append
recovery: can truncate entry - unacknowledged

Current systems conflate the two conditions – always truncate

disk
corruption

Crash-Corruption Entanglement in the Log

CTRL: modified local update – write additional information
enables disentanglement, performant - more details in the paper…

Distributed
Log Recovery

CTRL Distributed Recovery

24

Storage Layer

Distributed
Recovery

Distributed
Snapshot Recovery

M

Distributed
Log Recovery

CTRL Distributed Recovery

24

Storage Layer

Distributed
Recovery

Distributed
Log Recovery

Distributed
Snapshot Recovery

M
Distributed

Snapshot Recovery

Properties of Practical Consensus Protocols

25

Properties of Practical Consensus Protocols

Leader-based
single node acts as leader; all updates flow through the leader

25

Properties of Practical Consensus Protocols

Leader-based
single node acts as leader; all updates flow through the leader

Epochs
a slice of time; only one leader per slice/epoch
a log entry is uniquely qualified by its index and epoch

25

Properties of Practical Consensus Protocols

Leader-based
single node acts as leader; all updates flow through the leader

Epochs
a slice of time; only one leader per slice/epoch
a log entry is uniquely qualified by its index and epoch

Leader completeness
leader guaranteed to have all committed data

25

Properties of Practical Consensus Protocols

Leader-based
single node acts as leader; all updates flow through the leader

Epochs
a slice of time; only one leader per slice/epoch
a log entry is uniquely qualified by its index and epoch

Leader completeness
leader guaranteed to have all committed data

Applies to Raft, ZAB, and most implementations of Paxos

25

Properties of Practical Consensus Protocols

Leader-based
single node acts as leader; all updates flow through the leader

Epochs
a slice of time; only one leader per slice/epoch
a log entry is uniquely qualified by its index and epoch

Leader completeness
leader guaranteed to have all committed data

Applies to Raft, ZAB, and most implementations of Paxos
CTRL exploits these properties to perform recovery

25

26

Follower Log Recovery

26

Decouple follower and leader recovery

Follower Log Recovery

26

Decouple follower and leader recovery
Fixing followers is simple: can be fixed by leader because the
leader is guaranteed to have all committed data!

Follower Log Recovery

{
26

Decouple follower and leader recovery
Fixing followers is simple: can be fixed by leader because the
leader is guaranteed to have all committed data!

A B C
A B 3
A B C
1 B 3
A 2 C

Leader

Followers

Follower Log Recovery

{
26

Decouple follower and leader recovery
Fixing followers is simple: can be fixed by leader because the
leader is guaranteed to have all committed data!

A B C
A B 3
A B C
1 B 3
A 2 C

Leader

Followers

Follower Log Recovery

index = 2
epoch = e

{
26

Decouple follower and leader recovery
Fixing followers is simple: can be fixed by leader because the
leader is guaranteed to have all committed data!

A B C
A B 3
A B C
1 B 3
A 2 C

Leader

Followers

Follower Log Recovery

index = 2
epoch = e

A C
A B 3
A C
1 B 3
A C

BL

{
26

Decouple follower and leader recovery
Fixing followers is simple: can be fixed by leader because the
leader is guaranteed to have all committed data!

A B C
A B 3
A B C
1 B 3
A 2 C

Leader

Followers

Follower Log Recovery

index = 2
epoch = e

A C
A B 3
A C
1 B 3
A C

BL

B

{
26

Decouple follower and leader recovery
Fixing followers is simple: can be fixed by leader because the
leader is guaranteed to have all committed data!

A B C
A B 3
A B C
1 B 3
A 2 C

Leader

Followers

Follower Log Recovery

index = 2
epoch = e

A C
A B 3
A C
1 B 3
A C

BL

B

{
26

Decouple follower and leader recovery
Fixing followers is simple: can be fixed by leader because the
leader is guaranteed to have all committed data!

A B C
A B 3
A B C
1 B 3
A 2 C

Leader

Followers

Follower Log Recovery

index = 2
epoch = e

A C
A B 3
A C
1 B 3
A C

BL

B

A C
A B 3
A C
1 B
A B C

BL

{
26

Decouple follower and leader recovery
Fixing followers is simple: can be fixed by leader because the
leader is guaranteed to have all committed data!

A B C
A B 3
A B C
1 B 3
A 2 C

Leader

Followers

Follower Log Recovery

index = 2
epoch = e

A C
A B 3
A C
1 B 3
A C

BL

B

A C
A B 3
A C
1 B
A B C

BL

A
B

C

C

27

Leader Log Recovery

27

Fixing the leader is the tricky part

Leader Log Recovery

27

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

Leader Log Recovery

27

A B C
A B 3
A B C
1 B 3
A 2 C

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

Leader Log Recovery

Leader

27

A B C
A B 3
A B C
1 B 3
A 2 C

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

Leader Log Recovery

Leader

27

A B C
A B 3
A B C
1 B 3
A 2 C

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

Leader Log Recovery

Leader index = 3
epoch = e

27

A B C
A B 3
A B C
1 B 3
A 2 C

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

Leader Log Recovery

Leader index = 3
epoch = e A B

A B 3
A B C
1 B 3
A 2 C

27

A B C
A B 3
A B C
1 B 3
A 2 C

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

Leader Log Recovery

Leader index = 3
epoch = e A B

A B 3
A B C
1 B 3
A 2 C

C

27

A B C
A B 3
A B C
1 B 3
A 2 C

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

Leader Log Recovery

Leader index = 3
epoch = e A B

A B 3
A B C
1 B 3
A 2 C

C A B
A B 3
A B C
1 B 3
A 2 C

C

27

A B C
A B 3
A B C
1 B 3
A 2 C

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

Leader Log Recovery

Leader index = 3
epoch = e A B

A B 3
A B C
1 B 3
A 2 C

C A B
A B 3
A B C
1 B 3
A 2 C

C

CA
B

B

C

28

Leader Log Recovery: Determining Commitment

However, sometimes cannot easily recover the leader’s log

28

Leader Log Recovery: Determining Commitment

However, sometimes cannot easily recover the leader’s log

28

A B 3
A B
A B
A B
A B

Leader Log Recovery: Determining Commitment

Leader

However, sometimes cannot easily recover the leader’s log

28

A B 3
A B
A B
A B
A B

Leader Log Recovery: Determining Commitment

Leader A B 3
A B
A B
A B
A B

Leader

C

However, sometimes cannot easily recover the leader’s log

28

A B 3
A B
A B
A B
A B

Leader Log Recovery: Determining Commitment

Leader A B 3
A B
A B
A B
A B

Leader

C

Main insight: separate committed from uncommitted entries

However, sometimes cannot easily recover the leader’s log

28

A B 3
A B
A B
A B
A B

Leader Log Recovery: Determining Commitment

Leader A B 3
A B
A B
A B
A B

Leader

C

Main insight: separate committed from uncommitted entries
must fix committed, while uncommitted can be safely discarded

However, sometimes cannot easily recover the leader’s log

28

A B 3
A B
A B
A B
A B

Leader Log Recovery: Determining Commitment

Leader A B 3
A B
A B
A B
A B

Leader

C

Main insight: separate committed from uncommitted entries
must fix committed, while uncommitted can be safely discarded
discard uncommitted as early as possible for improved availability

29

Leader Log Recovery: Determining Commitment

29

Leader queries for a faulty entry

Leader Log Recovery: Determining Commitment

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue

Leader Log Recovery: Determining Commitment

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L

discard faulty,
continue

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L

discard faulty,
continue

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

L

discard faulty,
continue

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

L

discard faulty,
continue

fix using a response (will get
at least one correct response

because it is committed)

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

A B 3
A B
A B
A B
A B

L

C
L

discard faulty,
continue

fix using a response (will get
at least one correct response

because it is committed)

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

A B 3
A B
A B
A B
A B

L

C
L

discard faulty,
continue

fix using a response (will get
at least one correct response

because it is committed)

1

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

A B 3
A B
A B
A B
A B

L

C
L

discard faulty,
continue

fix using a response (will get
at least one correct response

because it is committed)

2

1

do
n’

t
ha

ve

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

A B 3
A B
A B
A B
A B

L

C
L

discard faulty,
continue

fix using a response (will get
at least one correct response

because it is committed)

either fix log or discard,
depending on order

2

1

do
n’

t
ha

ve

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

A B 3
A B
A B
A B
A B

L

C
L

discard faulty,
continue

fix using a response (will get
at least one correct response

because it is committed)

either fix log or discard,
depending on order

2

1
21 before - fix

do
n’

t
ha

ve

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

A B 3
A B
A B
A B
A B

L

C
L

discard faulty,
continue

fix using a response (will get
at least one correct response

because it is committed)

either fix log or discard,
depending on order

2

1
21 before - fix

2 1before - discard

do
n’

t
ha

ve

do
n’

t
ha

ve

29

Leader queries for a faulty entry
if majority say they don’t have the entry à must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry – can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

A B 3
A B
A B
A B
A B

L

C
L

discard faulty,
continue

fix using a response (will get
at least one correct response

because it is committed)

either fix log or discard,
depending on order

2

1
21 before - fix

2 1before - discard

both
orders
safe!

do
n’

t
ha

ve

do
n’

t
ha

ve

30

More In The Paper…

30

Log recovery
faulty entry on follower unknown to leader
nodes could be down during recovery
different entries at same log index

Snapshot recovery
Metainfo recovery
FS metadata fault handling

More In The Paper…

Outline

Introduction
Replicated state machines
Current approaches to storage faults
CTRL: Corruption-tolerant replication
Evaluation
Summary and conclusion

31

Evaluation

We apply CTRL in two systems
LogCabin

based on Raft

ZooKeeper
based on ZAB

32

Reliability Experiments Example

33

Reliability Experiments Example

33

A B C
A B C
A B C

D
D
Dlog

Reliability Experiments Example

33

A B C
A B C
A B C

D
D
D

file-system data blocks

errors

log

corruptions

Reliability Experiments Example

33

A B C
A B C
A B C

D
D
D

file-system data blocks

Original
corruptions: 30% unsafe or unavailable
errors: 50% unavailable

errors

log

corruptions

Reliability Experiments Example

33

A B C
A B C
A B C

D
D
D

file-system data blocks

Original
corruptions: 30% unsafe or unavailable
errors: 50% unavailable

CTRL
corruptions and errors: always safe and available

errors

log

corruptions

Reliability Experiments Summary

34

FS data blocks

A B C
A B C
A B C

D
D
DLo

g

Reliability Experiments Summary

34

Targeted entriesFS data blocks

A B C
A B C
A B C

D
D
D A B C

B C
A B C
A

Lo
g

Reliability Experiments Summary

34

Targeted entriesFS data blocks

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D A B C

B C
A B C
A

Lo
g

Reliability Experiments Summary

34

Targeted entriesFS data blocks

A B C
A B C

Lagging and crashed

A B C
A B C
A

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D AA B C

B C
A B C
A

Lo
g

Reliability Experiments Summary

34

Targeted entriesFS data blocks

A B C
A B C

Lagging and crashed

A B C
A B C
A

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D AA B C

B C
A B C
A

Lo
g

Reliability Experiments Summary

34

Targeted entriesFS data blocks

A B C
A B C

Lagging and crashed

A B C
A B C
A

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D AA B C

B C
A B C
A

Lo
g

Sn
ap

sh
ot

s

Reliability Experiments Summary

34

Targeted entriesFS data blocks

A B C
A B C

Lagging and crashed

A B C
A B C
A

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D AA B C

B C
A B C
A

A B C

A B C

Lo
g

Sn
ap

sh
ot

s

Reliability Experiments Summary

34

Targeted entriesFS data blocks

A B C
A B C

Lagging and crashed

A B C
A B C
A

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D AA B C

B C
A B C
A

A B C

A B C

Lo
g

Sn
ap

sh
ot

s

Reliability Experiments Summary

34

Targeted entriesFS data blocks

A B C
A B C

Lagging and crashed

A B C
A B C
A

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D AA B C

B C
A B C
A

A B C

A B C FS
 M

et
ad

at
a

Fa
ul

ts

Lo
g

Sn
ap

sh
ot

s

Reliability Experiments Summary

34

Targeted entriesFS data blocks

A B C
A B C

Lagging and crashed

A B C
A B C
A

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D AA B C

B C
A B C
A

A B C

A B C FS
 M

et
ad

at
a

Fa
ul

ts

Un-openable files

Missing files

Improper sizes

Lo
g

Sn
ap

sh
ot

s

Reliability Experiments Summary

34

Targeted entriesFS data blocks

A B C
A B C

Lagging and crashed

A B C
A B C
A

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D AA B C

B C
A B C
A

A B C

A B C FS
 M

et
ad

at
a

Fa
ul

ts

Un-openable files

Missing files

Improper sizes

Lo
g

Sn
ap

sh
ot

s A B C

A B C

A B C

Reliability Results Summary

35

Reliability Results Summary

35

Original systems

Reliability Results Summary

35

Original systems
unsafe or unavailable in many cases

Reliability Results Summary

35

Original systems
unsafe or unavailable in many cases

CTRL versions

Reliability Results Summary

35

Original systems
unsafe or unavailable in many cases

CTRL versions
safe always and highly available

Reliability Results Summary

35

Original systems
unsafe or unavailable in many cases

CTRL versions
safe always and highly available
correctly unavailable in some cases (when all copies are faulty)

36

Update Performance (SSD)

36

Update Performance (SSD)
Workload: insert entries (1K) repeatedly, background snapshots

36

Update Performance (SSD)

0
1000
2000
3000
4000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

0
5000

10000
15000
20000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

LogCabin ZooKeeper

Workload: insert entries (1K) repeatedly, background snapshots

36

Update Performance (SSD)

0
1000
2000
3000
4000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

0
5000

10000
15000
20000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

LogCabin ZooKeeper

Workload: insert entries (1K) repeatedly, background snapshots

36

Update Performance (SSD)

0
1000
2000
3000
4000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

0
5000

10000
15000
20000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

LogCabin ZooKeeper

Workload: insert entries (1K) repeatedly, background snapshots

36

Overheads (because CTRL’s storage layer writes additional information
for each log entry) – however, little: SSDs 4% worst case, disks: 8% to10%

Update Performance (SSD)

0
1000
2000
3000
4000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

0
5000

10000
15000
20000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

LogCabin ZooKeeper

Workload: insert entries (1K) repeatedly, background snapshots

4% 4%

36

Overheads (because CTRL’s storage layer writes additional information
for each log entry) – however, little: SSDs 4% worst case, disks: 8% to10%
Note: all writes, so worst-case overheads

Update Performance (SSD)

0
1000
2000
3000
4000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

0
5000

10000
15000
20000

2 4 8 16 32

T
hr

ou
gh

pu
t

(o
ps

/s
)

Clients

Original CTRL

LogCabin ZooKeeper

Workload: insert entries (1K) repeatedly, background snapshots

4% 4%

Summary

37

Summary

Recovering from storage faults correctly in a distributed
system is surprisingly tricky

37

Summary

Recovering from storage faults correctly in a distributed
system is surprisingly tricky
Most existing recovery approaches are protocol-oblivious –
they cause unsafety and low availability

37

Summary

Recovering from storage faults correctly in a distributed
system is surprisingly tricky
Most existing recovery approaches are protocol-oblivious –
they cause unsafety and low availability
To correctly and quickly recover, an approach needs to be
protocol-aware

37

Summary

Recovering from storage faults correctly in a distributed
system is surprisingly tricky
Most existing recovery approaches are protocol-oblivious –
they cause unsafety and low availability
To correctly and quickly recover, an approach needs to be
protocol-aware
CTRL: a protocol-aware recovery approach for RSM

guarantees safety and provides high availability, with little
performance overhead

37

Conclusions

38

Conclusions

Obvious things we take for granted in distributed systems:
redundant copies will help recover bad data or
redundancy à reliability are surprisingly hard to achieve [1]

38
[1] Redundancy Does Not Imply Fault Tolerance - Ganesan et al., at FAST ‘17

Conclusions

Obvious things we take for granted in distributed systems:
redundant copies will help recover bad data or
redundancy à reliability are surprisingly hard to achieve [1]
Protocol-awareness is key to use redundancy correctly to
recover bad data

need to be aware of what’s going on underneath in the system

38
[1] Redundancy Does Not Imply Fault Tolerance - Ganesan et al., at FAST ‘17

Conclusions

Obvious things we take for granted in distributed systems:
redundant copies will help recover bad data or
redundancy à reliability are surprisingly hard to achieve [1]
Protocol-awareness is key to use redundancy correctly to
recover bad data

need to be aware of what’s going on underneath in the system

However, only a first step: we have applied PAR only to RSM
other classes of systems (e.g., quorum-based systems) remain vulnerable

38
[1] Redundancy Does Not Imply Fault Tolerance - Ganesan et al., at FAST ‘17

Conclusions

Obvious things we take for granted in distributed systems:
redundant copies will help recover bad data or
redundancy à reliability are surprisingly hard to achieve [1]
Protocol-awareness is key to use redundancy correctly to
recover bad data

need to be aware of what’s going on underneath in the system

However, only a first step: we have applied PAR only to RSM
other classes of systems (e.g., quorum-based systems) remain vulnerable

http://research.cs.wisc.edu/adsl/Publications/par/

38
[1] Redundancy Does Not Imply Fault Tolerance - Ganesan et al., at FAST ‘17

