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Abstract

We investigate the problem of slow, scan-based, soft-
ware RAID resynchronization that restores consistency
after a system crash. Instead of augmenting the RAID
layer to quicken the process, we leverage the functional-
ity present in a journaling file system. We analyze Linux
ext3 and introduce a new mode of operation, declared
mode, that guarantees to provide a record of all outstand-
ing writes in case of a crash. To utilize this information,
we augment the software RAID interface with a verify
read request, which repairs the redundant information for
a block. The combination of these features allows us to
provide fast, journal-guided resynchronization. We eval-
uate the effect of journal-guided resynchronization and
find that it provides improved software RAID reliability
and availability after a crash, while suffering little per-
formance loss during normal operation.

1 Introduction

Providing reliability at the storage level often entails the
use of RAID [8] to prevent data loss in the case of a disk
failure. High-end storage arrays use specialized hard-
ware to provide the utmost in performance and reliabil-
ity [6]. Unfortunately, these solutions come with multi-
million dollar price tags, and are therefore infeasible for
many small to medium businesses and organizations.

Cost-conscious users must thus turn to commodity
systems and a collection of disks to house their data.
A popular, low-cost solution for reliability in this arena
is software RAID [15], which is available on a range
of platforms, including Linux, Solaris, FreeBSD, and
Windows-based systems. This software-based approach
is also attractive for specialized cluster-in-a-box systems.
For instance, the EMC Centera [5] storage system is built
from a cluster of commodity machines, each of which
uses Linux software RAID to manage its disks.

Unfortunately, in life as in storage arrays, you get
what you pay for. In the case of software RAID, the

lack of non-volatile memory introduces aconsistent up-
dateproblem. Specifically, when a write is issued to the
RAID layer, two (or more) disks must be updated in a
consistent manner; the possibility of crashes makes this
a challenge. For example, in a RAID-5 array, if an un-
timely crash occurs after the parity write completes but
before the data block is written (i.e., the two writes were
issued in parallel but only one completed), the stripe is
left in an inconsistent state. This inconsistency intro-
duces awindow of vulnerability– if a data disk fails be-
fore the stripe is made consistent, the data on that disk
will be lost. Automatic reconstruction of the missing
data block, based on the inconsistent parity, will silently
return bad data to the client.

Hardware RAID circumvents this problem gracefully
with non-volatile memory. By buffering an update in
NVRAM until the disks have been consistently updated,
a hardware-based approach avoids the window of vulner-
ability entirely. The outcome is ideal: both performance
and reliability are excellent.

With current software-based RAID approaches, how-
ever, a performance/reliability trade-off must be made.
Most current software RAID implementations choose
performance over reliability [15]: they simply issue
writes to the disks in parallel, hoping that an untimely
crash does not occur in between. If a crash does oc-
cur, these systems employ an expensiveresynchroniza-
tion process: by scanning the entire volume, such dis-
crepancies can be found and repaired. For large volumes,
this process can take hours or even days.

The alternate software RAID approach chooses reli-
ability over performance [3]. By applying write-ahead
logging within the array to record the location of pend-
ing updates before they are issued, these systems avoid
time-consuming resynchronization: during recovery, the
RAID simply repairs the locations as recorded in its
log. Unfortunately, removing the window of vulnera-
bility comes with a high performance cost: each up-
date within the RAID must now be preceded by a syn-
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chronous write to the log, greatly increasing the total I/O
load on the disks.

To solve the consistent update problem within soft-
ware RAID, and to develop a solution with both high
performance and reliability, we take a global view of the
storage stack: how can we leverage functionality within
other layers of the system to assist us? In many cases,
the client of the software RAID system will be a modern
journaling file system, such as the default Linux file sys-
tem, ext3 [16, 17, 18], or ReiserFS [9], JFS [1], or Win-
dows NTFS [12]. Although standard journaling tech-
niques maintain the consistency of file system data struc-
tures, they do not solve the consistent update problem at
the RAID level. We find, however, that journaling can be
readily augmented to do so.

Specifically, we introduce a new mode of operation
within Linux ext3: declared mode. Before writing to
any permanent locations, declared mode records its in-
tentions in the file system journal. This functionality
guarantees a record of all outstanding writes in the event
of a crash. By consulting this activity record, the file
system knows which blocks were in the midst of being
updated and hence can dramatically reduce the window
of vulnerability following a crash.

To complete the process, the file system must be able
to communicate its information about possible vulnera-
bilities to the RAID layer below. For this purpose, we
add a new interface to the software RAID layer: thever-
ify read. Upon receiving a verify read request, the RAID
layer reads the requested block as well as its mirror or
parity group and verifies the redundant information. If an
irregularity is found, the RAID layer re-writes the mirror
or parity to produce a consistent state.

We combine these features to integrate journal-guided
resynchronization into the file system recovery process.
Using our record of write activity vastly decreases the
time needed for resynchronization, in some cases from
a period of days to mere seconds. Hence, our approach
avoids the performance/reliability trade-off found in soft-
ware RAID systems: performance remains high and the
window of vulnerability is greatly reduced.

In general, we believe the key to our solution is its
cooperativenature. By removing the strict isolation be-
tween the file system above and the software RAID layer
below, these two subsystems can worktogetherto solve
the consistent update problem without sacrificing either
performance or reliability.

The rest of the paper is organized as follows. Sec-
tion 2 illustrates the software RAID consistent update
problem and quantifies the likelihood that a crash will
lead to data vulnerability. Section 3 provides an introduc-
tion to the ext3 file system and its operation. In Section 4,
we analyze ext3’s write activity, introduce ext3 declared
mode and an addition to the software RAID interface,

and merge RAID resynchronization into the journal re-
covery process. Section 5 evaluates the performance of
declared mode and the effectiveness of journal-guided
resynchronization. We discuss related work in Section 6,
and conclude in Section 7.

2 The Consistent Update Problem

2.1 Introduction

The task of a RAID is to maintain an invariant between
the data and the redundant information it stores. These
invariants provide the ability to recover data in the case of
a disk failure. For RAID-1, this means that each mirrored
block contains the same data. For parity schemes, such as
RAID-5, this means that the parity block for each stripe
stores the exclusive-or of its associated data blocks.

However, because the blocks reside on more than one
disk, updates cannot be applied atomically. Hence, main-
taining these invariants in the face of failure is challeng-
ing. If a crash occurs during a write to an array, its blocks
may be left in an inconsistent state. Perhaps only one
mirror was successfully written to disk, or a data block
may have been written without its parity update.

We note here that the consistent update problem and
its solutions are distinct from the traditional problem of
RAID disk failures. When such a failure occurs, all of the
redundant information in the array is lost, and thus all of
the data is vulnerable to a second disk failure. This sit-
uation is solved by the process of reconstruction, which
regenerates all of the data located on the failed disk.

2.2 Failure Models

We illustrate the consistent update problem with the ex-
ample shown in Figure 1. The diagram depicts the state
of a single stripe of blocks from a four disk RAID-5 ar-
ray as time progresses from left to right. The software
RAID layer residing on the machine is servicing a write
to data blockZ, and it must also update the parity block,
P. The machine issues the data block write at time 1, it
is written to disk at time 3, and the machine is notified
of its completion at time 4. Similarly, the parity block
is issued at time 2, written at time 5, and its notification
arrives at time 6. After the data write to blockZ at time
3, the stripe enters awindow of vulnerability, denoted by
the shaded blocks. During this time, the failure of any
of the first three disks will result in data loss. Because
the stripe’s data and parity blocks exist in an inconsistent
state, the data residing on a failed disk cannot be recon-
structed. This inconsistency is corrected at time 5 by the
write to P.

We consider two failure models to allow for the possi-
bility of independent failures between the host machine
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Figure 1: Failure Scenarios. The diagram illustrates
the sequence of events for a data block write and a parity
update to a four disk RAID-5 array as time progresses
from left to right. The boxes labeledi indicate a request
being issued, and those labeledc represent completions.
The shaded blocks denote a window of vulnerability.

and the array of disks. We will discuss each in turn and
relate their consequences to the example in Figure 1. The
machine failure modelincludes events such as operating
system crashes and machine power losses. In our exam-
ple, if the machine crashes between times 1 and 2, and
the array remains active, the stripe will be left in an in-
consistent state after the write completes at time 3.

Our second model, thedisk failure model, considers
power losses at the disk array. If such a failure occurs
between time 3 and time 5 in our example, the stripe will
be left in a vulnerable state. Note that the disk failure
model encompasses non-independent failures such as a
simultaneous power loss to the machine and the disks.

2.3 Measuring Vulnerability

To determine how often a crash or failure could leave an
array in an inconsistent state, we instrument the Linux
software RAID-5 layer and the SCSI driver to track sev-
eral statistics. First, we record the amount of time be-
tween the first write issued for a stripe and the last write
issued for a stripe. This measures the difference between
times 1 and 2 in Figure 1, and corresponds directly to the
period of vulnerability under the machine failure model.

Second, we record the amount of time between the first
write completion for a stripe and the last write comple-
tion for a stripe. This measures the difference between
time 4 and time 6 in our example. Note, however, that
the vulnerability under the disk failure model occurs be-
tween time 3 and time 5, so our measurement is an ap-
proximation. Our results may slightly overestimate or
underestimate the actual vulnerability depending on the
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Figure 2: Software RAID Vulnerability. The graph
plots the percent of time (over the duration of the experi-
ment) that an inconsistent disk state exists in the RAID-5
array as the number of writers increases along the x-axis.
Vulnerabilities due to disk failure and machine failure
are plotted separately.

time it takes each completion to be sent to and processed
by the host machine. Finally, we track the number of
stripes that are vulnerable for each of the models. This
allows us to calculate the percent of time that any stripe
in the array is vulnerable to either type of failure.

Our test workload consists of multiple threads per-
forming synchronous, random writes to a set of files on
the array. All of our experiments are performed on an
Intel Pentium Xeon 2.6 GHz processor with 512 MB of
RAM running Linux kernel 2.6.11. The machine has five
IBM 9LZX disks configured as a 1 GB software RAID-5
array. The RAID volume is sufficiently large to perform
our benchmarks yet small enough to reduce the execution
time of our resynchronization experiments.

Figure 2 plots the percent of time (over the duration
of the experiment) that any array stripe is vulnerable as
the number of writers in the workload is increased along
the x-axis. As expected, the cumulative window of vul-
nerability increases as the amount of concurrency in the
workload is increased. The vulnerability under the disk
failure model is greater because it is dependent on the re-
sponse time of the write requests. Even for a small num-
ber of writers, it is more than likely that a disk failure
will result in an inconsistent state. For higher concur-
rency, the array exists in a vulnerable state for up to 80%
of the length of the experiment.

The period of vulnerability under the machine failure
model is lower because it depends only on the process-
ing time needed to issue the write requests. In our ex-
periment, vulnerability reaches approximately 40%. At
much higher concurrencies, however, the ability to issue
requests could be impeded by full disk queues. In this
case, the machine vulnerability will also depend on the
disk response time and will increase accordingly.
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2.4 Solutions

To solve this problem, high-end RAID systems make use
of non-volatile storage, such as NVRAM. When a write
request is received, a log of the request and the data are
first written to NVRAM, and then the updates are propa-
gated to the disks. In the event of a crash, the log records
and data present in the NVRAM can be used to replay the
writes to disk, thus ensuring a consistent state across the
array. This functionality comes at an expense, not only
in terms of raw hardware, but in the cost of developing
and testing a more complex system.

Software RAID, on the other hand, is frequently em-
ployed in commodity systems that lack non-volatile stor-
age. When such a system reboots from a crash, there
is no record of write activity in the array, and therefore
no indication of where RAID inconsistencies may exist.
Linux software RAID rectifies this situation by labori-
ously reading the contents of the entire array, checking
the redundant information, and correcting any discrepan-
cies. For RAID-1, this means reading both data mirrors,
comparing their contents, and updating one if their states
differ. Under a RAID-5 scheme, each stripe of data must
be read and its parity calculated, checked against the par-
ity on disk, and re-written if it is incorrect.

This approach fundamentally affects both reliability
and availability. The time-consuming process of scan-
ning the entire array lengthens the window of vulner-
ability during which inconsistent redundancy may lead
to data loss under a disk failure. Additionally, the disk
bandwidth devoted to resynchronization has a deleteri-
ous effect on the foreground traffic serviced by the ar-
ray. Consequently, there exists a fundamental tension
between the demands of reliability and availability: allo-
cating more bandwidth to recover inconsistent disk state
reduces the availability of foreground services, but giv-
ing preference to foreground requests increases the time
to resynchronize.

As observed by Brown and Patterson [2], the default
Linux policy addresses this trade-off by favoring avail-
ability over reliability, limiting resynchronization band-
width to 1000 KB/s per disk. Unfortunately, such a slow
rate may equate to days of repair time and vulnerability
for even moderately sized arrays of hundreds of giga-
bytes. Figure 3 illustrates this problem by plotting an
analytical model of the resynchronization time for a five
disk array as the raw size of the array increases along the
x-axis. With five disks, the default Linux policy will take
almost four minutes of time to scan and repair each giga-
byte of disk space, which equates totwo and a half days
for a terabyte of capacity. Disregarding the availability of
the array, even modern interconnects would need approx-
imately an hour at their full bandwidth to resynchronize
the same one terabyte array.
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Figure 3: Software RAID Resynchronization Time.
The graph plots the time to resynchronize a five disk ar-
ray as the raw capacity increases along the x-axis.

One possible solution to this problem is to add log-
ging to the software RAID system in a manner simi-
lar to that discussed above. This approach suffers from
two drawbacks, however. First, logging to the array
disks themselves would likely decrease the overall per-
formance of the array by interfering with foreground
requests. The high-end solution discussed previously
benefits from fast, independent storage in the form of
NVRAM. Second, adding logging and maintaining an
acceptable level of performance could add considerable
complexity to the software. For instance, the Linux soft-
ware RAID implementation uses little buffering, discard-
ing stripes when their operations are complete. A log-
ging solution, however, may need to buffer requests sig-
nificantly in order to batch updates to the log and im-
prove performance.

Another solution is to perform intent logging to a
bitmap representing regions of the array. This mecha-
nism is used by the Solaris Volume Manager [14] and
the Veritas Volume Manager [19] to provide optimized
resynchronization. An implementation for Linux soft-
ware RAID-1 is also in development [3], though it has
not been merged into the main kernel. Like logging to
the array, this approach is likely to suffer from poor per-
formance. For instance, the Linux implementation per-
forms a synchronous write to the bitmap before updat-
ing data in the array to ensure proper resynchronization.
Performance may be improved by increasing the bitmap
granularity, but this comes at the cost of performing scan-
based resynchronization over larger regions.

Software RAID is just one layer in the storage hierar-
chy. One likely configuration contains a modern journal-
ing file system in the layer above, logging disk updates
to maintain consistency across its on-disk data structures.
In the next sections, we examine how a journaling file
system can be used to solve the software RAID resyn-
chronization problem.
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3 ext3 Background

In this section, we discuss the Linux ext3 file system,
its operation, and its data structures. These details will
be useful in our analysis of its write activity and the de-
scription of our modifications to support journal-guided
resynchronization in Section 4. Although we focus on
ext3, we believe our techniques are general enough to
apply to other journaling file systems, such as ReiserFS
and JFS for Linux, and NTFS for Windows.

Linux ext3 is a modern journaling file system that aims
to keep complex on-disk data structures in a consistent
state. To do so, all file system updates are first written
to a log called the journal. Once the journal records are
stored safely on disk, the updates can be applied to their
home locations in the main portion of the file system.
After the updates are propagated, the journal records are
erased and the space they occupied can be re-used.

This mechanism greatly improves the efficiency of
crash recovery. After a crash, the journal is scanned and
outstanding updates are replayed to bring the file system
into a consistent state. This approach constitutes a vast
improvement over the previous process (i.e. fsck [7]) that
relied on a full scan of the file system data structures to
ensure consistency. It seems natural, then, to make use
of the same journaling mechanism to improve the pro-
cess of RAID resynchronization after a crash.

3.1 Modes

The ext3 file system offers three modes of operation:
data-journaling mode, ordered mode, and writeback
mode. In data-journaling mode, all data and metadata
is written to the journal, coordinating all updates to the
file system. This provides very strong consistency se-
mantics, but at the highest cost. All data written to the
file system is written twice: first to the journal, then to its
home location.

Ordered mode, the ext3 default, writes all file system
metadata to the journal, but file data is written directly
to its home location. In addition, this mode guarantees
a strict ordering between the writes: all file data for a
transaction is written to disk before the corresponding
metadata is written to the journal and committed. This
guarantees that file metadata will never reference a data
block before it has been written. Thus, this mechanism
provides the same strong consistency as data-journaling
mode without the expense of multiple writes for file data.

In writeback mode, only file system metadata is writ-
ten to the journal. Like ordered mode, file data is writ-
ten directly to its home location; unlike ordered mode,
however, writeback mode provides no ordering guaran-
tees between metadata and data, therefore offering much
weaker consistency. For instance, the metadata for a file

creation may be committed to the journal before the file
data is written. In the event of a crash, journal recovery
will restore the file metadata, but its contents could be
filled with arbitrary data. We will not consider writeback
mode for our purposes because of its weaker consistency
and its lack of write ordering.

3.2 Transaction Details

To reduce the overhead of file system updates, sets of
changes are grouped together into compound transac-
tions. These transactions exist in several phases over
their lifetimes. Transactions start in therunning state.
All file system data and metadata updates are associated
with the current running transaction, and the buffers in-
volved in the changes are linked to the in-memory trans-
action data structure. In ordered mode, data associated
with the running transaction may be written at any time
by the kernel pdflush daemon, which is responsible for
cleaning dirty buffers. Periodically, the running transac-
tion is closed and a new transaction is started. This may
occur due to a timeout, a synchronization request, or be-
cause the transaction has reached a maximum size.

Next, the closed transaction enters thecommitphase.
All of its associated buffers are written to disk, either
to their home locations or to the journal. After all of
the transaction records reside safely in the journal, the
transaction moves to thecheckpointphase, and its data
and metadata are copied from the journal to their per-
manent home locations. If a crash occurs before or dur-
ing the checkpoint of a committed transaction, it will be
checkpointed again during the journalrecoveryphase of
mounting the file system. When the checkpoint phase
completes, the transaction is removed from the journal
and its space is reclaimed.

3.3 Journal Structure

Tracking the contents of the journal requires several new
file system structures. A journal superblock stores the
size of the journal file, pointers to the head and tail of the
journal, and the sequence number of the next expected
transaction. Within the journal, each transaction begins
with a descriptorblock that lists the permanent block
addresses for each of the subsequent data or metadata
blocks. More than one descriptor block may be needed
depending on the number of blocks involved in a trans-
action. Finally, acommitblock signifies the end of a par-
ticular transaction. Both descriptor blocks and commit
blocks begin with a magic header and a sequence num-
ber to identify their associated transaction.
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4 Design and Implementation

The goal of resynchronization is to correct any RAID in-
consistencies that result from system crash or failure. If
we can identify the outstanding write requests at the time
of the crash, we can significantly narrow the range of
blocks that must be inspected. This will result in faster
resynchronization and improved reliability and availabil-
ity. Our hope is to recover such a record of outstanding
writes from the file system journal. To this end, we begin
by examining the write activity generated by each phase
of an ext3 transaction.

4.1 ext3 Write Analysis

In this section, we examine each of the ext3 transaction
operations in detail. We emphasize the write requests
generated in each phase, and we characterize the possi-
ble disk states resulting from a crash. Specifically, we
classify each write request as targeting a known location,
an unknown location, or a bounded location, based on its
record of activity in the journal. Our goal, upon restart-
ing from a system failure, is to recover a record ofall
outstanding write requestsat the time of the crash.

Running:

1. In ext3 ordered mode, the pdflush daemon may
write dirty pages to disk while the transaction is in
the running state. If a crash occurs in this state, the
affected locations will be unknown, asno record of
the ongoing writes will exist in the journal.

Commit:

1. ext3 writes all un-journaled dirty data blocks asso-
ciated with the transaction to their home locations,
and waits for the I/O to complete. This step ap-
plies only to ordered mode, since all data in data-
journaling mode is destined for the journal. If a
crash occurs during this phase, the locations of any
outstanding writes will be unknown.

2. ext3 writes descriptors, journaled data, and meta-
data blocks to the journal, and waits for the writes
to complete. In ordered mode, only metadata blocks
will be written to the journal, whereas all blocks are
written to the journal in data-journaling mode. If the
system fails during this phase, no specific record of
the ongoing writes will exist, but all of the writes
will be bounded within the fixed location journal.

3. ext3 writes the transaction commit block to the jour-
nal, and waits for its completion. In the event of a
crash, the outstanding write is again bounded within
the journal.

Block Type Data-journaling Mode
superblock known, fixed location

journal bounded, fixed location
home metadata known, journal descriptors

home data known, journal descriptors

Block Type Ordered Mode
superblock known, fixed location

journal bounded, fixed location
home metadata known, journal descriptors

home data unknown

Table 1: Journal Write Records. The table lists the
block types written during transaction processing and
how their locations can be determined after a crash.

Checkpoint:

1. ext3 writes journaled blocks to their home locations
and waits for the I/O to complete. If the system
crashes during this phase, the ongoing writes can be
determined from the descriptor blocks in the jour-
nal, and hence they affect known locations.

2. ext3 updates the journal tail pointer in the su-
perblock to signify completion of the checkpointed
transaction. A crash during this operation involves
an outstanding write to the journal superblock,
which resides in a known, fixed location.

Recovery:

1. ext3 scans the journal checking for the expected
transaction sequence numbers (based on the se-
quence in the journal superblock) and records the
last committed transaction.

2. ext3 checkpoints each of the committed transactions
in the journal, following the steps specified above.
All write activity occurs to known locations.

Table 1 summarizes our ability to locate ongoing
writes after a crash for the data-journaling and ordered
modes of ext3. In the case of data-journaling mode, the
locations of any outstanding writes can be determined
(or at least bounded) during crash recovery, be it from the
journal descriptor blocks or from the fixed location of the
journal file and superblock. Thus, the existing ext3 data-
journaling mode is quite amenable to assisting with the
problem of RAID resynchronization. On the down side,
however, data-journaling typically provides the least per-
formance of the ext3 family.

For ext3 ordered mode, on the other hand, data writes
to permanent home locations are not recorded in the jour-
nal data structures, and therefore cannot be located dur-
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ing crash recovery. We now address this deficiency with
a modified ext3 ordered mode: declared mode.

4.2 ext3 Declared Mode

In the previous section we concluded that, if a crash oc-
curs while writing data directly to its permanent location,
the ext3 ordered mode journal will contain no record of
those outstanding writes. The locations of any RAID
level inconsistencies caused by those writes will remain
unknown upon restart. To overcome this deficiency, we
introduce a new variant of ordered mode,declared mode.

Declared mode differs from ordered mode in one key
way: it guarantees that a write record for each data block
resides safely in the journal before that location is modi-
fied. Effectively, the file system mustdeclare its intentto
write to any permanent location before issuing the write.

To keep track of these intentions, we introduce a new
journal block, thedeclareblock. A set of declare blocks
is written to the journal at the beginning of each transac-
tion commit phase. Collectively, they contain a list of all
permanent locations to which data blocks in the transac-
tion will be written. Though their construction is similar
to that of descriptor blocks, their purpose is quite differ-
ent. Descriptor blocks list the permanent locations for
blocks that appear in the journal, whereas declare blocks
list the locations of blocks thatdo not appearin the jour-
nal. Like descriptor and commit blocks, declare blocks
begin with a magic header and a transaction sequence
number. Declared mode thus adds a single step to the be-
ginning of the commit phase, which proceeds as follows:

Declared Commit:

1. ext3 writes declare blocks to the journal listing each
of the permanent data locations to be written as part
of the transaction, and it waits for their completion.

2. ext3 writes all un-journaled data blocks associated
with the transaction to their home locations, and
waits for the I/O to complete.

3. ext3 writes descriptors and metadata blocks to the
journal, and waits for the writes to complete.

4. ext3 writes the transaction commit block to the jour-
nal, and waits for its completion.

The declare blocks at the beginning of each transaction
introduce an additional space cost in the journal. This
cost varies with the number of data blocks each transac-
tion contains. In the best case, one declare block will be
added for every 506 data blocks, for a space overhead of
0.2%. In the worst case, however, one declare block will
be needed for a transaction containing only a single data

block. We investigate the performance consequences of
these overheads in Section 5.

Implementing declared mode in Linux requires two
main changes. First, we must guarantee that no data
buffers are written to disk before they have been declared
in the journal. To accomplish this, we refrain from set-
ting the dirty bit on modified pages managed by the file
system. This prevents the pdflush daemon from eagerly
writing the buffers to disk during the running state. The
same mechanism is used for all metadata buffers and for
data buffers in data-journaling mode, ensuring that they
are not written before they are written to the journal.

Second, we need to track data buffers that require dec-
larations, and write their necessary declare blocks at the
beginning of each transaction. We start by adding a new
declare treeto the in-memory transaction structure, and
ensure that all declared mode data buffers are placed on
this tree instead of the existingdata list. At the begin-
ning of the commit phase, we construct a set of declare
blocks for all of the buffers on the declare tree and write
them to the journal. After the writes complete, we simply
move all of the buffers from the declare tree to the exist-
ing transaction data list. The use of a tree ensures that the
writes occur in a more efficient order, sorted by block ad-
dress. From this point, the commit phase can continue
without modification. This implementation minimizes
the changes to the shared commit procedure; the other
ext3 modes simply bypass the empty declare tree.

4.3 Software RAID Interface

Initiating resynchronization at the file system level re-
quires a mechanism to repair suspected inconsistencies
after a crash. A viable option for RAID-1 arrays is for
the file system to read and re-write any blocks it has
deemed vulnerable. In the case of inconsistent mirrors,
either the newly written data or the old data will be re-
stored to each block. This achieves the same results as
the current RAID-1 resynchronization process. Because
the RAID-1 layer imposes no ordering on mirrored up-
dates, it cannot differentiate new data from old data, and
merely chooses one block copy to restore consistency.

This read and re-write strategy is unsuitable for RAID-
5, however. When the file system re-writes a single
block, our desired behavior is for the RAID layer to cal-
culate its parity across the entire stripe of data. Instead,
the RAID layer could perform a read-modify-write by
reading the target block and its parity, re-calculating the
parity, and writing both blocks to disk. This operation
depends on the consistency of the data and parity blocks
it reads from disk. If they are not consistent, it will
produce incorrect results, simply prolonging the discrep-
ancy. In general, then, a new interface is required for the
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file system to communicate possible inconsistencies to
the software RAID layer.

We consider two options for the new interface. The
first requires the file system to read each vulnerable block
and then re-write it with an explicitreconstruct write
request. In this option, the RAID layer is responsible
for reading the remainder of the block’s parity group,
re-calculating its parity, and then writing the block and
the new parity to disk. We are dissuaded from this op-
tion because it may perform unnecessary writes to con-
sistent stripes that could cause further vulnerabilities in
the event of another crash.

Instead, we opt to add an explicitverify readrequest to
the software RAID interface. In this case, the RAID layer
reads the requested block along with the rest of its stripe
and checks to make sure that the parity is consistent. If
it is not, the newly calculated parity is written to disk to
correct the problem.

The Linux implementation for the verify read request
is rather straight-forward. When the file system wishes
to perform a verify read request, it marks the correspond-
ing buffer head with a newRAID synchronizeflag. Upon
receiving the request, the software RAID-5 layer identi-
fies the flag and enables an existingsynchronizingbit for
the corresponding stripe. This bit is used to perform the
existing resynchronization process. Its presence causes a
read of the entire stripe followed by a parity check, ex-
actly the functionality required by the verify read request.

Finally, an option is added to the software RAID-5
layer to disable resynchronization after a crash. This
is our most significant modification to the strict layering
of the storage stack. The RAID module is asked to en-
trust its functionality to another component for the over-
all good of the system. Instead, an apprehensive software
RAID implementation may delay its own efforts in hopes
of receiving the necessary verify read requests from the
file system above. If no such requests arrive, it could
start its own resynchronization to ensure the integrity of
its data and parity blocks.

4.4 Recovery and Resynchronization

Using ext3 in either data-journaling mode or declared
mode guarantees an accurate view of all outstanding
write requests at the time of a crash. Upon restart, we
utilize this information and our verify read interface to
perform fast, file system guided resynchronization for
the RAID layer. Because we make use of the file sys-
tem journal, and because of ordering constraints between
their operations, we combine this process with journal
recovery. The dual process of file system recovery and
RAID resynchronization proceeds as follows:

Recovery and Resync:

1. ext3 performs verify reads for its superblock and
the journal superblock, ensuring their consistency
in case they were being written during the crash.

2. ext3 scans the journal checking for the expected
transaction sequence numbers (based on the se-
quence in the journal superblock) and records the
last committed transaction.

3. For the first committed transaction in the journal,
ext3 performs verify reads for the home locations
listed in its descriptor blocks. This ensures the in-
tegrity of any blocks undergoing checkpoint writes
at the time of the crash. Only the first transaction
need be examined because checkpoints must occur
in order, and each checkpointed transaction is re-
moved from the journal before the next is processed.
Note that these verify reads must take place before
the writes are replayed below to guarantee the parity
is up-to-date. Adding the explicit reconstruct write
interface mentioned earlier would negate the need
for this two step process.

4. ext3 issues verify reads beyond the last committed
transaction (at the head of the journal) for the length
of the maximum transaction size. This corrects any
inconsistent blocks as a result of writing the next
transaction to the journal.

5. While reading ahead in the journal, ext3 identi-
fies any declare blocks and descriptor blocks for
the next uncommitted transaction. If no descriptor
blocks are found, it performs verify reads for the
permanent addresses listed in each declare block,
correcting any data writes that were outstanding at
the time of the crash. Declare blocks from transac-
tions containing descriptors can be ignored, as their
presence constitutes evidence for the completion of
all data writes to permanent locations.

6. ext3 checkpoints each of the committed transactions
in the journal as described in Section 4.1.

The implementation re-uses much of the existing
framework for the journal recovery process. Issuing the
necessary verify reads means simply adding the RAID
synchronize flag to the buffers already used for reading
the journal or replaying blocks. The verify reads for lo-
cations listed in descriptor blocks are handled as the re-
play writes are processed. The journal verify reads and
declare block processing for an uncommitted transaction
are performed after the final pass of the journal recovery.
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Figure 4:Random Write Performance. The top graph
plots random write performance as the amount of data
written is increased along the x-axis. Data-journaling
mode achieves 11.07 MB/s when writing 5 MB of data.
The bottom graph shows the relative performance of de-
clared mode as compared to ordered mode with sorting.

5 Evaluation

In this section, we evaluate the performance of ext3 de-
clared mode and compare it to ordered mode and data-
journaling mode. We hope that declared mode adds little
overhead despite writing extra declare blocks for each
transaction. After our performance evaluation, we exam-
ine the effects of journal-guided resynchronization. We
expect that it will greatly reduce resync time and increase
available bandwidth for foreground applications. Finally,
we examine the complexity of our implementation.

5.1 ext3 Declared Mode

We begin our performance evaluation of ext3 declared
mode with two microbenchmarks, random write and se-
quential write. First, we test the performance of random
writes to an existing 100 MB file. A call tofsync() is
used at the end of the experiment to ensure that all data
reaches disk. Figure 4 plots the bandwidth achieved by
each ext3 mode as the amount written is increased along
the x-axis. All of our graphs plot the mean of five exper-
imental trials.

We identify two points of interest on the graph. First,
data-journaling mode underperforms ordered mode as
the amount written increases. Note that data-journaling
mode achieves 11.07 MB/s when writing only 5 MB of
data because the random write stream is transformed into
a large sequential write that fits within the journal. As
the amount of data written increases, it outgrows the size
of the journal. Consequently, the performance of data-
journaling decreases because each block is written twice,
first to the journal, and then to its home location. Ordered
mode garners better performance by writing data directly
to its permanent location.
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Figure 5: Sequential Write Performance. The top
graph plots sequential write performance as the amount
of data written is increased along the x-axis. The bottom
graph shows the relative performance of declared mode
as compared to ordered mode.

Second, we find that declared mode greatly outper-
forms ordered mode as the amount written increases.
Tracing the disk activity of ordered mode reveals that
part of the data is issued to disk in sorted order based
on walking the dirty page tree. The remainder, how-
ever, is issued unsorted by the commit phase as it at-
tempts to complete all data writes for the transaction.
Adding sorting to the commit phase of ordered mode
solves this problem, as evidenced by the performance
plotted in the graph. The rest of our performance evalu-
ations are based on this modified version of ext3 ordered
mode with sorted writing during commit.

Finally, the bottom graph in Figure 4 shows the slow-
down of declared mode relative to ordered mode (with
sorting). Overall, the performance of the two modes is
extremely close, differing by no more than 3.2%.

Our next experiment tests sequential write perfor-
mance to an existing 100 MB file. Figure 5 plots the
performance of the three ext3 modes. Again, the amount
written is increased along the x-axis, andfsync() is used
to ensure that all data reaches disk. Ordered mode and
declared mode greatly outperform data-journaling mode,
achieving 22 to 23 MB/s compared to just 10 MB/s.

The bottom graph in Figure 5 shows the slowdown of
ext3 declared mode as compared to ext3 ordered mode.
Declared mode performs quite well, within 5% of or-
dered mode for most data points. Disk traces reveal
that the performance loss is due to the fact that declared
mode waits forfsync() to begin writing declare blocks
and data. Because of this, ordered mode begins writing
data to disk slightly earlier than declared mode. To al-
leviate this delay, we implement an early declare mode
that begins writing declare blocks to the journal as soon
as possible, that is, as soon as enough data blocks have
been modified to fill a declare block. Unfortunately, this
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Figure 6:Sprite Create Performance. The top graph
plots the performance of the create phase of the Sprite
LFS microbenchmark as the number of files increases
along the x-axis. The bottom graph shows the slowdown
of declared mode when compared to ordered mode.

modification does not result in a performance improve-
ment. The early writing of a few declare blocks and data
blocks is offset by the seek activity between the journal
and the home data locations (not shown).

Next, we examine the performance under the Sprite
LFS microbenchmark [10], which creates, reads, and
then unlinks a specified number of 4 KB files. Figure 6
plots the number of create operations completed per sec-
ond as the number of files is increased along the x-axis.
The bottom graph shows the slowdown of declared mode
relative to ordered mode. Declared mode performs well,
within 4% of ordered mode for all cases. The perfor-
mance of declared mode and ordered mode are nearly
identical for the other phases of the benchmark.

The ssh benchmark unpacks, configures, and builds
version 2.4.0 of the ssh program from a tarred and com-
pressed distribution file. Figure 7 plots the performance
of each mode during the three stages of the benchmark.
The execution time of each stage is normalized to that of
ext3 ordered mode, and the absolute times in seconds are
listed above each bar. Data-journaling mode is slighter
faster than ordered mode for the configure phase, but
it is 12% slower during build and 378% slower during
unpack. Declared mode is quite comparable to ordered
mode, running about 3% faster during unpack and con-
figure, and 0.1% slower for the build phase.

Next, we examine ext3 performance on a modified
version of the postmark benchmark that creates 5000
files across 71 directories, performs a specified number
of transactions, and then deletes all files and directories.
Our modification involves the addition of a call tosync()
after each phase of the benchmark to ensure that data is
written to disk. The unmodified version exhibits unusu-
ally high variances for all three modes of operation.

The execution time for the benchmark is shown in Fig-
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Figure 7: ssh Benchmark Performance. The graph
plots the normalized execution time of the unpack, con-
figure, and build phases of the ssh benchmark as com-
pared to ext3 ordered mode. The absolute execution
times in seconds are listed above each bar.
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Figure 8: Postmark Performance. The top graph
plots the execution time of the postmark benchmark as
the number of transactions increases along the x-axis.
The bottom graph shows the slowdown of declared mode
when compared to ordered mode.

ure 8 as the number of transactions increases along the x-
axis. Data-journaling mode is extremely slow, and there-
fore we concentrate on the other two modes, for which
we identify two interesting points. First, for large num-
bers of transactions, declared mode compares favorably
to ordered mode, differing by approximately 5% in the
worst cases. Second, with a small number of transac-
tions, declared mode outperforms ordered mode by up to
40%. Again, disk traces help to reveal the reason. Or-
dered mode relies on the sorting provided by the per-file
dirty page trees, and therefore its write requests are scat-
tered across the disk. In declared mode, however, the sort
performed during commit has a global view of all data
being written for the transaction, thus sending the write
requests to the device layer in a more efficient order.

Finally, we examine the performance of a TPC-B-
like workload that performs a financial transaction across
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Figure 9: TPC-B Performance. The top graph plots
the execution time of the TPC-B benchmark as the num-
ber of transactions increases along the x-axis. The bot-
tom graph shows the slowdown of declared mode as com-
pared to ordered mode.

three files, adds a history record to a fourth file, and com-
mits the changes to disk by callingsync(). The execution
time of the benchmark is plotted in Figure 9 as the num-
ber of transactions is increased along the x-axis. In this
case, declared mode consistently underperforms ext3 or-
dered mode by approximately 19%, and data-journaling
mode performs slightly worse.

The highly synchronous nature of this benchmark
presents a worst case scenario for declared mode. Each
TPC-B transaction results in a very small ext3 transac-
tion containing only four data blocks, a descriptor block,
a journaled metadata block, and a commit block. The
declare block at the beginning of each transaction adds
14% overhead in the number of writes performed during
the benchmark. To compound this problem, the four data
writes are likely serviced in parallel by the array of disks,
accentuating the penalty for the declare blocks.

To examine this problem further, we test a modified
version of the benchmark that forces data to disk less
frequently. This has the effect of increasing the size of
each application level transaction, or alternatively sim-
ulating concurrent transactions to independent data sets.
Figure 10 shows the results of running the TPC-B bench-
mark with 500 transactions as the interval between calls
to sync() increases along the x-axis. As the interval
increases, the performance of declared mode and data-
journaling mode quickly converge to that of ordered
mode. Declared mode performs within 5% of ordered
mode forsync() intervals of five or more transactions.

In conclusion, we find that declared mode routinely
outperforms data-journaling mode. Its performance is
quite close to that of ordered mode, within 5% (and
sometimes better) for our random write, sequential write,
and file creation microbenchmarks. It also performs
within 5% of ordered mode for two macrobenchmarks,
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Figure 10:TPC-B with Varied sync() Intervals. The
top graph plots the execution time of the TPC-B bench-
mark as the interval between calls to sync() increases
along the x-axis. The bottom graph shows the slowdown
of declared mode as compared to ordered mode.

ssh and postmark. The worst performance for declared
mode occurs under TPC-B with small application-level
transactions, but it improves greatly as the effective
transaction size increases. Overall, these results indicate
that declared mode is an attractive option for enabling
journal-guided resynchronization.

5.2 Journal-guided Resynchronization

In our final set of experiments, we examine the effect of
journal-guided resynchronization. We expect a signifi-
cant reduction in resync time, thus shortening the win-
dow of vulnerability and improving reliability. In addi-
tion, faster resynchronization should increase the amount
of bandwidth available to foreground applications after
a crash, thus improving their availability. We compare
journal-guided resynchronization to the Linux software
RAID resync at the default rate and at two other rates
along the availability versus reliability spectrum.

The experimental workload consists of a single fore-
ground process performing sequential reads to a set of
large files. The amount of read bandwidth it achieves is
measured over one second intervals. Approximately 30
seconds into the experiment, the machine is crashed and
rebooted. When the machine restarts, the RAID resyn-
chronization process begins, and the foreground process
reactivates as well.

Figure 11 shows a series of such experiments plot-
ting the foreground bandwidth on the y-axis as time pro-
gresses on the x-axis. Note that the origin for the x-axis
coincides with the beginning of resynchronization, and
the duration of the process is shaded in grey. The top left
graph in the figure shows the results for the default Linux
resync limit of 1000 KB/s per disk, which prefers avail-
ability over reliability. The process takes 254 seconds
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Default 1000 KB/s/disk 29.58± 1.69 MB/s 254.00 s 100.00%
Medium 5 MB/s/disk 29.70± 9.48 MB/s 50.41 s 19.84%
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Journal-guided 34.09± 1.51 MB/s 0.21 s 0.08%

Figure 11:Software RAID Resynchronization. The graphs plot the bandwidth achieved by a foreground process
performing sequential scans of files on a software RAID arrayduring a system crash and the ensuing array resynchro-
nization. The recovery period is highlighted in grey and itsduration is listed. In the first three graphs, the bandwidth
allocated to resynchronization is varied: the default of 1000 KB/s per disk, 5 MB/s per disk, and 200 MB/s per disk.
The final graph depicts recovery using journal guidance. Thetable lists the availability of the foreground service and
the vulnerability of the array compared to the default resynchronization period of 254 seconds following restart.
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to scan the 1.25 GB of raw disk space in our RAID-5
array. During that time period, the foreground process
bandwidth drops to 29 MB/s from the unimpeded rate of
34 MB/s. After resynchronization completes, the fore-
ground process receives the full bandwidth of the array.

Linux allows the resynchronization rate to be adjusted
via a sysctl variable. The top right graph in Figure 11
shows the effect of raising the resync limit to 5 MB/s
per disk, representing a middle ground between reliabil-
ity and availability. In this case, resync takes only 50.41
seconds, but the bandwidth afforded the foreground ac-
tivity drops to only 9.3 MB/s. In the bottom left graph,
the resync rate is set to 200 MB/s per disk, favoring relia-
bility over availability. This has the effect of reducing the
resync time to 38.44 seconds, but the foreground band-
width drops to just 2.6 MB/s during that period.

The bottom right graph in the figure demonstrates the
use of journal-guided resynchronization. Because of its
knowledge of write activity before the crash, it performs
much less work to correct any array inconsistencies. The
process finishes in just 0.21 seconds, greatly reducing the
window of vulnerability present with the previous ap-
proach. When the foreground service activates, it has
immediate access to the full bandwidth of the array, in-
creasing its availability.

The results of the experiments are summarized in the
table in Figure 11. Each metric is calculated over the
254 second period following the restart of the machine
in order to compare to the default Linux resynchroniza-
tion. The 5 MB/s and 200 MB/s resync processes sac-
rifice availability (as seen in the foreground bandwidth
variability) to improve the reliability of the array, reduc-
ing the vulnerability windows to 19.84% and 15.13% of
the default, respectively. The journal-guided resync pro-
cess, on the other hand, improves both the availability of
the foreground process and the reliability of the array, re-
ducing its vulnerability to just 0.08% of the default case.

It is important to note here that the execution time of
the scan-based approach scales linearly with the raw size
of the array. Journal-guided resynchronization, on the
other hand, is dependent only on the size of the journal,
and therefore we expect it to complete in a matter of sec-
onds even for very large arrays.

5.3 Complexity

Table 2 lists the lines of code, counted by the number of
semicolons and braces, that were modified or added to
the Linux software RAID, ext3 file system, and journal-
ing modules. Very few modifications were needed to add
the verify read interface to the software RAID module
because the core functionality already existed and merely
needed to be activated for the requested stripe. The ext3
changes involved hiding dirty buffers for declared mode

Orig. Mod. New Percent
Module Lines Lines Lines Change
Software

RAID 3475 2 16 0.52%
ext3 8621 22 47 0.80%

Journaling 3472 43 265 8.87%
Total 15568 67 328 2.53%

Table 2: Complexity of Linux Modifications. The
table lists the lines of code (counting semicolons and
braces) in the original Linux 2.6.11 source and the num-
ber that were modified or added to each of the software
RAID, ext3 file system, and journaling modules.

and using verify reads during recovery. The majority of
the changes occurred in the journaling module for writ-
ing declare blocks in the commit phase and performing
careful resynchronization during recovery.

As a point of comparison, the experimental version of
Linux RAID-1 bitmap logging consists of approximately
1200 lines of code, a 38% increase over RAID-1 alone.
Most of our changes are to the journaling module, in-
creasing its size by about 9%. Overall, our modifications
consist of 395 lines of code, a 2.5% change across the
three modules. These observations support our claim that
leveraging functionality across cooperating layers can re-
duce the complexity of the software system.

6 Related Work

Brown and Patterson [2] examine three different software
RAID systems in their work on availability benchmarks.
They find that the Linux, Solaris, and Windows imple-
mentations offer differing policies during reconstruction,
the process of regenerating data and parity after a disk
failure. Solaris and Windows both favor reliability, while
the Linux policy favors availability. Unlike our work,
the authors do not focus on improving the reconstruction
processes, but instead on identifying their characteristics
via a general benchmarking framework.

Stodolskyet al. [13] examine parity logging in the
RAID layer to improve the performance of small writes.
Instead of writing new parity blocks directly to disk, they
store a log of parity update images which are batched and
written to disk in one large sequential access. Similar to
our discussion of NVRAM logging, the authors require
the use of a fault tolerant buffer to store their parity up-
date log, both for reliability and performance. These ef-
forts to avoid small random writes support our argument
that maintaining performance with RAID level logging
is a complex undertaking.

The Veritas Volume Manager [19] provides two facil-
ities to address faster resynchronization. A dirty region
log can be used to speed RAID-1 resynchronization by
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examining only those regions that were active before a
crash. Because the log requires extra writes, however, the
author warns that coarse-grained regions may be needed
to maintain acceptable write performance. The Volume
Manager also supports RAID-5 logging, but non-volatile
memory or a solid state disk is recommended to support
the extra log writes. In contrast, our declared mode of-
fers fine-grained journal-guided resynchronization with
little performance degradation and without the need for
additional hardware.

Schindleret al. [11] augment the RAID interface to
provide information about individual disks. Their Atro-
pos volume manager exposes disk boundary and track
information to provide efficient semi-sequential access to
two-dimensional data structures such as database tables.
Similarly, E×RAID [4] provides disk boundary and per-
formance information to augment the functionality of an
informed file system. Our verify read interface is much
less complex, providing file system access to functional-
ity that already exists in the software RAID layer.

7 Conclusions

We have examined the ability of a journaling file system
to provide support for faster software RAID resynchro-
nization. In order to obtain a record of the outstanding
writes at the time of a crash, we introduce ext3 declared
mode. This new mode guarantees to declare its inten-
tions in the journal before writing data to disk. Despite
this extra write activity, declared mode performs within
5% of its predecessor.

In order to communicate this information to the soft-
ware RAID layer, the file system utilizes a new verify
read request. This request instructs the RAID layer to
read the block and repair its redundant information, if
necessary. Combining these features allows us to imple-
ment fast, journal-guided resynchronization. This pro-
cess improves both software RAID reliability and avail-
ability by hastening the recovery process after a crash.

Our general approach advocates a system-level view
for developing the storage stack. Using the file system
journal to improve the RAID system leverages existing
functionality, maintains performance, and avoids dupli-
cating complexity at multiple layers. Each of these layers
may implement its own abstractions, protocols, mecha-
nisms, and policies, but it is often their interactions that
define the properties of a system.
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