
Designing a True Direct-Access File System with DevFS

Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
University of Wisconsin–Madison

Yuangang Wang, Jun Xu, Gopinath Palani
Huawei Technologies

Abstract
We present DevFS, a direct-access file system embed-
ded completely within a storage device. DevFS provides
direct, concurrent access without compromising file sys-
tem integrity, crash consistency, and security. A novel
reverse-caching mechanism enables the usage of host
memory for inactive objects, thus reducing memory load
upon the device. Evaluation of an emulated DevFS pro-
totype shows more than 2x higher I/O throughput with
direct access and up to a 5x reduction in device RAM
utilization.

1 Introduction

The world of storage, after decades of focus on hard-
drive technologies, is finally opening up towards a new
era of fast solid-state storage devices. Flash-based SSDs
have become standard technology, forming a new perfor-
mance tier in the modern datacenter [7, 32]. New, faster
flash memory technologies such as NVMe [20] and stor-
age class memory (SCM) such as Intel’s 3D X-point [1]
promise to revolutionize how we access and store persis-
tent data [10, 13, 50, 53]. State-of-the-art flash memory
technologies have reduced storage-access latency to tens
of microseconds compared to milliseconds in the hard-
drive era [34, 52, 58].

To fully realize the potential of these storage devices,
a careful reconsideration of the software storage stack
is required. The traditional storage stack requires ap-
plications to trap into the OS and interact with multiple
software layers such as the in-memory buffer cache, file
system, and device drivers. While spending millions of
cycles is not a significant problem for slow storage de-
vices such as hard drives [3,13,58], for modern ultra-fast
storage, software interactions substantially amplify ac-
cess latencies, thus preventing applications from exploit-
ing hardware benefits [3, 9, 34, 50]. Even the simple act
of trapping into and returning from the OS is too costly
for modern storage hardware [14, 49, 58].

To reduce OS-level overheads and provide direct stor-
age access for applications, prior work such as Ar-
rakis [34], Moneta-D [8], Strata [26], and others [20, 49,
50] split the file system into user-level and kernel-level
components. The user-level component handles all data-
plane operations (thus bypassing the OS), and the trusted
kernel is used only for control-plane operations such as
permission checking. However, prior approaches fail to
deliver several important file-system properties. First,
using untrusted user-level libraries to maintain file sys-
tem metadata shared across multiple applications can se-
riously compromise file-system integrity and crash con-
sistency. Second, unlike user-level networking [51], in
file systems, data-plane operations (e.g., read or write to
a file) are closely intertwined with control-plane opera-
tions (e.g., block allocation); bypassing the OS during
data-plane operations can compromise the security guar-
antees of a file system. Third, most of these approaches
require OS support when sharing data across applications
even for data-plane operations.

To address these limitations, and realize a true user-
level direct-access file system, we propose DevFS, a
device-level file system inside the storage hardware.
The DevFS design uses the compute capability and
device-level RAM to provide applications with a high-
performance direct-access file system that does not com-
promise integrity, concurrency, crash consistency, or se-
curity. With DevFS, applications use a traditional POSIX
interface without trapping into the OS for control-plane
and data-plane operations. In addition to providing di-
rect storage access, a file system inside the storage hard-
ware provides direct visibility to hardware features such
as device-level capacitance and support for processing
data from multiple I/O queues. With capacitance, DevFS
can safely commit data even after a system crash and also
reduce file system overhead for supporting crash consis-
tency. With knowledge of multiple I/O queues, DevFS
can increase file system concurrency by providing each
file with its own I/O queue and journal.

A file system inside device hardware also introduces
new challenges. First, even modern SSDs have limited
RAM capacity due to cost ($/GB) and power constraints.
In DevFS, we address this dilemma by introducing re-
verse caching, an approach that aggressively moves in-
active file system data structures off the device to the
host memory. Second, a file system inside a device is
a separate runtime and lacks visibility to OS state (such
as process credentials) required for secured file access.
To overcome this limitation, we extend the OS to co-
ordinate with DevFS: the OS performs down-calls and
shares process-level credentials without impacting direct
storage access for applications.

To the best of our knowledge, DevFS is the first design
to explore the benefits and implications of a file system
inside the device to provide direct user-level access to ap-
plications. Due to a lack of real hardware, we implement
and emulate DevFS at the device-driver level. Evalua-
tion of benchmarks on the emulated DevFS prototype
with direct storage access shows more than 2x higher
write and 1.6x higher read throughput as compared to a
kernel-level file system. DevFS memory-reduction tech-
niques reduce file system memory usage by up to 5x.
Evaluation of a real-world application, Snappy compres-
sion [11], shows 22% higher throughput.

In Section 2, we first categorize file systems, and then
discuss the limitations of state-of-the-art user-level file
systems. In Section 3, we make a case for a device-level
file system. In Section 4, we detail the DevFS design and
implementation, followed by experimental evaluations in
Section 5. In Section 6, we describe the related literature,
and finally present our conclusions in Section 7.

2 Motivation

Advancements in storage hardware performance have
motivated the need to bypass the OS stack and provide
applications with direct access to storage. We first dis-
cuss hardware and software trends, followed by a brief
history of user-level file systems and their limitations.

2.1 H/W and S/W for User-Level Access
Prior work has explored user-level access for PCI-based
solid state drives (SSD) and nonvolatile memory tech-
nologies.
Solid-state drives. Solid-state drives (SSD) have be-
come the de facto storage device for consumer elec-
tronics as well as enterprise computing. As SSDs
have evolved, their bandwidth has significantly increased
along with a reduction in access latencies [6, 57]. To
address system-to-device interface bottlenecks, modern
SSDs have switched to a PCIe-based interface that can
support up to 8-16 GB/s maximum throughput and 20-50
µs access latencies. Further, these modern devices use a

large pool of I/O queues to which software can concur-
rently submit requests for higher parallelism.

With advancements in SSD hardware performance,
bottlenecks have shifted to software. To reduce software
overheads on the data path and exploit device-level par-
allelism, new standards such as NVMe [54] have been
adopted. NVMe allows software to bypass device driver
software and directly program device registers with sim-
ple commands for reading and writing the device [18].
Storage class memory technologies. Storage class
memory (SCM), such as Intel’s 3D Xpoint [1] and HP’s
memristors, are an emerging class of nonvolatile mem-
ory (NVM) that provide byte-addressable persistence
and provide access via the memory controller. SCMs
have properties that resemble DRAM more than a block
device. SCMs can provide 2-4x higher capacity than
DRAMs, with variable read (100-200ns) and write la-
tency (400-800ns) latency. SCM bandwidth ranges from
8 GB/s to 20 GB/s, which is significantly faster than
state-of-the-art SSDs. Importantly, read (loads) and
writes (stores) to SCMs happen via the processor cache
which plays a vital role in application performance.

Several software solutions that include kernel-level
file systems [10, 13, 55, 56], user-level file systems [49],
and object storage [17, 50] libraries have been pro-
posed for SCM. Kernel-level file systems retain the
POSIX-based block interface and focus on thinning the
OS stack by replacing page cache and block layers with
simple byte-level load and store operations. Alterna-
tive approaches completely bypass the kernel by us-
ing an object-based or POSIX-compatible interface over
memory-mapped files [49].

2.2 File System Architectures
We broadly categorize file systems into three types: (1)
kernel-level file systems, (2) hybrid user-level file sys-
tems, and (3) true user-level direct-access file systems.
Figure 1 shows these categories, and how control-plane
and data-plane operations are managed by each. The
figure additionally shows a hybrid user-level file system
with a trusted server and a Fuse-based file system.
Kernel-level traditional file systems. Kernel-level file
systems act as a central entity managing data and meta-
data operations as well as control-plane operations [13,
28, 56]. As shown in Figure 1, kernel-level file sys-
tems preserve the integrity of metadata and provide crash
consistency. Applications using kernel-level file systems
trap into the OS for both data-plane and control-plane
plane operations.
Hybrid user-level file systems. To allow applications
to access storage hardware directly without trapping into
the kernel, a class of research file systems [8,26,34] split
the file system across user and kernel space. In this pa-
per, we refer to these as hybrid user-level file systems. As

SSD

 (a) Kernel-level FS

Application
FS lib

(b) Hybrid user-level FS

Coordinate sharing,
protection

Manage
metadata

(d) FUSE-based user-level FS (e) True user-level direct-access FS

Read/Write
data

Read protected
data

Data allocation and
protection

Coordinate sharing,
protection

Application

Read/Write

 FS kernel

Coordinate sharing,
protection, manage
metadata

Read/write data
Read metadata

Application
FS lib

(c) Hybrid user-level FS with server

Manage
metadata

Read/Write
data

Trusted
service

Application

Read/Write data

FS daemon

Read/Write data
Read metadata Coordinate sharing,

protection, manage
metadata

Fuse driver

Application
FS lib

 SSD

 FS kernel
 FS kernel FS kernel

 FS kernel

 SSD SSD SSD DevFS

Read/write data
Read metadata

Coordinate sharing,
protection, manage
metadata

Figure 1: File system categories. (a) shows a kernel-level file system, which manages control-plane and data-plane operations.
(b) shows a hybrid user-level file system in which a user library manages data-plane operations. (c) shows a hybrid user-level file
system with a trusted server. The server partially manages control-plane operations. (d) shows a Fuse-based file system. (e) shows
a true user-level direct-access file system inside the device. The device file system fully manages the control-plane and data-plane.

shown in Figure 1.b, the user-level file system manages
all data and metadata updates without trapping into the
kernel for common-case read and writes. The kernel file
system is used only for control-plane operations such as
permission checks, security, and data sharing across ap-
plications.

More specifically, Arrakis [34] is a hybrid user-level
file system that proposes a generic user-level I/O frame-
work for both network and storage. Arrakis aims to
realize the ideas of U-Net [51] for modern hardware
by virtualizing storage for each application and manag-
ing all data-plane operations at user-level, but does trap
into the OS for control-plane operations. Strata [26], a
hybrid user-level file system designed to combine ultra-
fast NVM with high-capacity SSD and hard disk, uses
NVM as a memory-mapped user-space log and writes
application’s data-plane operations to a log. A back-
ground thread uses a kernel-level file system to digest
the logs to SSD or hard disk. For sharing files across
processes, Strata traps into the kernel-level file system,
which coordinates concurrent data and metadata updates.

Moneta-D [8] is a hybrid user-level file system that
customizes SSDs to provide direct-access for data-plane
operations. Moneta-D virtualizes an I/O interface (I/O
channel) instead of storage to provide isolation and con-
currency. Metadata operations are split between user-
level and kernel-level. Operations such as file creation
and size extension happen inside the kernel. Moneta-
D enforces permission checks for data-plane operations
with a user-level driver that reads a file’s permission and
stores them in hardware registers; during an I/O oper-
ation, the driver compares the hardware register values
with process credentials.

Finally, TxDev [37] proposes a transactional flash sys-
tem in which each process encapsulates its updates into
a transaction request, and the flash device serializes and
atomically commits the transactions. While TxDev can
reduce the overheads of transactions in either user-level
or kernel-level file systems, the resulting system has the

same structural advantages and disadvantages of other
hybrid user-level file systems.

Hybrid file systems with trusted server. Another class
of hybrid file systems, such as Aerie [49], aims to reduce
kernel overheads for control-plane operations by using a
trusted user-level third-party server similar to a microker-
nel design [30] (see Figure 1.c). The trusted server runs
in a separate address space and facilitates control-plane
operations such as permission checking and data sharing;
the server also interacts with the OS for other privileged
operations.

Fuse-based user-level file systems. Another class of
user-level file systems widely known as Fuse [38, 47],
are mainly used for customizing and extending the in-
kernel file system. As shown in Figure 1.d, in Fuse, the
file system is split across a kernel driver and a user-level
daemon. All I/O operations trap into the kernel, and the
kernel driver simply queues I/O requests for the custom
user-level file system daemon to process requests and re-
turn control to the application via the driver; as a result,
Fuse file systems add an extra kernel trap for all I/O op-
erations. Because we focus on direct-access storage so-
lutions, we do not study Fuse in rest of this paper.

True direct-access user-level file system. In this pa-
per, we propose DevFS, a true user-level direct-access
file system as shown in Figure 1.e. DevFS pushes the file
system into the device, thus allowing user-level libraries
and applications to access storage without trapping into
the OS for both control-plane and data-plane operations.

2.3 Challenges
Current state-of-the-art hybrid user-level file systems fail
to satisfy three important properties – integrity, crash
consistency, and permission enforcement – without trad-
ing away direct storage access. We discuss the chal-
lenges in satisfying these properties while providing di-
rect access next.

2.3.1 File System Integrity
Maintaining file system integrity is critical for correct be-
havior of a file system. In traditional file systems, only
the trusted kernel manages and updates both in-memory
and persistent metadata. However, satisfying file system
integrity is hard with a hybrid user-level file system for
the following reasons.
Single process. In hybrid user-level file systems such as
Arrakis and Moneta-D, each application uses an instance
of a file system library that manages both data and meta-
data. Consider an example of appending a block to a file:
the library must allocate a free block, update the bitmap,
and update the inode inside a transaction. A buggy or
malicious application sharing the address space with the
file system library can easily bypass or violate the trans-
action and incorrectly update the metadata; as a result,
the integrity of the file system is compromised. An al-
ternative approach is to use a trusted user-level server as
in Aerie [49]. However, because applications and the
user-level server run in different address spaces, applica-
tions must context-switch even for data-plane operations,
thus reducing the benefits of direct storage access [58].
The metadata integrity problem cannot be solved by us-
ing TxDev (a transactional flash) in a hybrid user-level
file system because TxDev cannot verify the contents of
transactions composed by an untrusted user-level library.
Concurrent access and sharing. Maintaining integrity
with hybrid user-level file systems is more challenging
when applications concurrently access the file system or
share data. Updates to in-memory and on-disk metadata
must be serialized and ordered across all library instances
with some form of shared user-level locking and transac-
tions across libraries. However, a malicious or buggy ap-
plication can easily bypass the lock or the transaction to
update metadata or data, which can lead to an incorrect
file system state [25]. Prior systems such as Arrakis [34]
and Strata [26] sidestep this problem by trapping into
the OS for concurrent file-system access (common-case)
and concurrent file access (rare). In contrast, approaches
such as Aerie suffer from the context-switch problem.

2.3.2 Crash Consistency
A system can crash or lose power before all in-memory
metadata is persisted to storage, resulting in arbitrary file
system state such as a persisted inode without its pointed-
to data [4, 35, 36]. To provide crash consistency, kernel
file systems carefully orchestrate the order of metadata
and data updates. For example, in an update transaction,
data blocks are first flushed to a journal, followed by the
metadata blocks, and finally, a transaction commit record
is written to the journal; at some point, the log updates
are checkpointed to the original data and metadata loca-
tions to free space in the log.

For user-level file systems, every application’s un-

trusted library instance must provide crash consistency,
which is challenging for the following reasons. First,
if even a single library or application violates the order-
ing protocol, the file system cannot recover to a consis-
tent state after a crash. Second, with concurrent file sys-
tem access, transactions across libraries must be ordered;
as discussed earlier, serializing updates with user-level
locking is ineffective and can easily violate crash con-
sistency guarantees. While a trusted third-party server
can enforce ordering, applications suffer from context
switches and thus do not achieve the goal of direct ac-
cess.

2.3.3 Permission Enforcement
Enforcing permission checks for both the control-plane
and data-plane is critical for file system security. In a
kernel-level file system, when a process requests an I/O
operation, the file system uses OS-level process creden-
tials and compares it with the corresponding file (inode)
permission. Hybrid user-level file systems [34] use the
trusted OS for permission checks only for control-plane
operation, and bypass the checks for common-case data-
plane operations. Avoiding permission checks for data-
plane operations violates security guarantees, specifi-
cally when multiple applications share a file system.

3 The Case For DevFS

In the pursuit of providing direct storage access to user-
level applications, prior hybrid approaches fail to satisfy
one or more fundamental properties of a file system. To
address the limitations, and design a true direct-access
file system, we propose DevFS, a design that moves the
file system inside the device. Applications can directly
access DevFS using a standard POSIX interface. DevFS
satisfies file system integrity, concurrency, crash consis-
tency, and security guarantees of a kernel-level file sys-
tem. DevFS also supports a traditional file-system hier-
archy such as files and directories, and their related func-
tionality instead of primitive read and write operations.
DevFS maintains file system integrity and crash consis-
tency because it is trusted code that acts as a central en-
tity. With minimal support and coordination with the OS,
DevFS also enforces permission checks for common-
case data-plane operations without requiring applications
to trap into the kernel.

3.1 DevFS Advantages And Limitations
Moving a file system inside the device provides numer-
ous benefits but also introduces new limitations.
Benefits. An OS-level file system generally views
storage as a black box and lacks direct control over
many hardware components, such as device memory,
I/O queues, power-loss-protection capacitors, and the file

translation layer (FTL). This lack of control results in a
number of limitations.

First, even though storage controllers often contain
multiple CPUs that can concurrently process requests
from multiple I/O queues [20], a host-based user-level
or kernel-level file system cannot control how the device
CPUs are utilized, the order in which they process re-
quest from queues, or the mapping of queues to elements
such as files. However, a device-level file system can
redesign file system data structures to exploit hardware-
level concurrency for higher performance.

Second, some current devices contain capacitors that
can hold power until the device CPUs safely flush all
device-memory state to persistent storage in case of an
untimely crash [22, 44]. Since software file systems can-
not directly use these capacitors, they always use high-
overhead journaling or copy-on-write crash consistency
techniques. In contrast, a device-level file system can
ensure key data structures are flushed if a failure occurs.

Finally, in SSDs and storage class memory technolo-
gies, the FTL [21] performs block allocation, logical-to-
physical block translation, garbage collection, and wear-
leveling, but a software file system must duplicate many
of these tasks since it lacks visibility of the FTL. We be-
lieve that DevFS provides an opportunity to integrate file
system and FTL functionality, but we do not yet explore
this idea, leaving it to future work.

Limitations. Moving the file system into the stor-
age device introduces both hardware and software lim-
itations. First, device-level RAM is limited by cost
and power consumption; currently device RAM is used
mainly by the FTL [16] and thus the amount is propor-
tional to the size of the logical-to-physical block map-
ping table (e.g., a 512 GB SSD requires a 2 GB RAM). A
device-level file system will substantially increase mem-
ory footprint and therefore must strive to reduce its mem-
ory usage. Second, the number of CPUs inside a storage
device can be limited and slower compared to host CPUs.
While the lower CPU count impacts I/O parallelism and
throughput, the slower CPUs reduce instructions per cy-
cle (IPC) and thus increase I/O latency. Finally, imple-
menting OS utilities and features, such as deduplication,
incremental backup, and virus scans, can be challeng-
ing. We discuss these limitations and possible solutions
in more detail in § 4.7.

Regarding software limitations, a device-level file sys-
tem runs in a separate environment from the OS and
hence cannot rely on the OS for certain functionality or
information. In particular, a device-level file system must
manage its own memory and must provide a mechanism
to access process credentials from the OS.

3.2 Design Principles
To exploit the benefits and address the limitations of
a device-level file system, we formulate the following
DevFS design principles.
Principle 1: Disentangle file system data structures to
embrace hardware-level parallelism. To utilize the
hardware-level concurrency of multiple CPU controllers
and thousands of I/O queues from which a device can
process I/O requests, DevFS maps each fundamental data
unit (i.e., a file) to an independent hardware resource.
Each file has its own I/O queue and in-memory journal
which enables concurrent I/O across different files.
Principle 2: Guarantee file system integrity without
compromising direct user-level access. To maintain
integrity, the DevFS inside the device acts as a trusted
central entity and updates file system metadata. To fur-
ther maintain integrity when multiple process share data,
DevFS shares per-file structures across applications and
serializes updates to these structures.
Principle 3: Simplify crash consistency with storage
hardware capacitance. Traditional OS-level file sys-
tems rely on expensive journaling or log-structured (i.e.,
copy-on-write) mechanisms to provide crash consis-
tency. While journaling suffers from “double write” [35]
costs, log-structured file systems suffer from high
garbage-collection overheads [5]. In contrast, DevFS ex-
ploits the power-loss-protection capacitors in the hard-
ware to safely update data and metadata in-place with-
out compromising crash consistency. DevFS thus avoids
these update-related overheads.
Principle 4: Reduce the device memory footprint of
the file system. Unlike a kernel-level file system,
DevFS cannot use copious amounts of RAM for its data
and metadata structures. To reduce memory usage, in
DevFS, only in-memory data structures (inodes, dentries,
per-file structures) of active files are kept in device mem-
ory, spilling inactive data structures to host memory.
Principle 5: Enable minimal OS-level state sharing
with DevFS. DevFS is a separate runtime and imple-
ments its own memory management. Concerning state
sharing, because DevFS does not have information about
processes, we extend the OS to share process credentials
with DevFS. The credentials are used by DevFS for per-
mission checks across control-plane and data-plane oper-
ations without forcing applications to trap into the kernel.

4 Design

DevFS provides direct user-level access to storage with-
out trapping into the OS for most of its control-plane and
data-plane operations. DevFS does not compromise ba-
sic file system abstractions (such as files, directories) and
properties such as integrity, concurrency, consistency,
and security guarantees. We discuss how DevFS realizes

Jf

data	blocks

Global	file	system	structures
DevFS

Open(F1,	flags,	PERM)		

Per-file	structures

OS	allocated		
command	buffer

Submission		
queue	(SQ)		

In-memory	
journal

journal		

Fd

Application

User	FS	lib
Cmd:	ops	=DEVFS_Open,		
																				perm=PERM,	path=F1

2 Write(fd,	buff,	4k,	off=1)

Cmd:	payload=buff,		ops	=WRITE,			
										UID=	1,	off	=	1,		size=	4k

Controller	(CPU)

On-disk	file	metadata

In-memory	metadata

User	space

In-memory	filemap	tree
/root

/root/dir1/root/proc

filemap:	
						*dentry	
						*inode;	
						*queues	
				*mem_journal	
					*disk_journal	

1

Super	
block Bitmaps Inodes Dentries Completion	

queue	(SQ)		

Super	
block Bitmaps Inodes Dentries

Figure 2: DevFS high-level design. The file system data
structure is partitioned into global and per-file structures. The
per-file structures are created during file setup. DevFS meta-
data structures are similar to other kernel-level file system.

the design principles discussed earlier.

4.1 Disentangling File System Structures
To exploit hardware-level concurrency, DevFS provides
each file with a separate I/O queue and journal. DevFS
is compatible with traditional POSIX I/O interface.
Global and per-file structures. In DevFS, the file sys-
tem data structures are divided into global and per-file
structures as shown in Figure 2. The global data struc-
tures manage state of an entire file system, including
metadata such as the superblock, inodes, and bitmaps.
The per-file structures enable concurrency: given that
modern controllers contain up to four CPUs [41], and
this amount is expected to increase [19], DevFS at-
tempts to utilize multiple CPUs. In contrast to prior ap-
proaches such as Moneta-D that provide each application
with its own I/O channel, DevFS provides a per-file I/O
queue and journal. DevFS also maintains an in-memory
filemap structure for each file. The filemap structure is
created during file creation (or during file open if it is not
available in device memory) and is maintained in a red-
black tree as shown in the figure. Processes sharing a
file also share a filemap structure which serializes access
across the per-file I/O queue and the journal.

Most data structures of DevFS are similar to a kernel-
level file system. Hence, we reuse and extend in-memory
and on-disk data structures from the state-of-the-art per-
sistent memory file system (PMFS) [13]. We use PMFS
because it provides direct-access to storage bypassing
the file system page cache. Specifically, the DevFS su-
perblock contains global information of a file system,
each inode contains per-file metadata and a reference to
per-file memory and disk journal, and finally, directory
entries (dentries) are maintained in a radix-tree indexed
by hash values of file path names.
File system interface. Unlike prior approaches that

expose the storage device as a block device for direct
access [34], DevFS supports the POSIX I/O interface
and abstractions such as files, directories, etc. Similar to
modern NVMe-based devices with direct-access capabil-
ity, DevFS uses command-based programming. To sup-
port POSIX compatibility for applications, a user-level
library intercepts I/O calls from applications and con-
verts the I/O calls to DevFS commands. On receipt, the
DevFS controller (device CPU) uses the request’s file de-
scriptor to move the request to a per-file I/O queue for
processing and writing to storage.

4.2 Providing File System Integrity
To maintain integrity, file system metadata is always up-
dated by the trusted DevFS. In contrast to hybrid user-
level file systems that allow untrusted user-level libraries
to update metadata [34], in DevFS, there is no concern
about the legitimacy of metadata content (beyond that
caused by bugs in the file system).

When a command is added to a per-file I/O queue,
DevFS creates a corresponding metadata log record (e.g.,
for a file append command, the bitmap and inode block),
and adds the log record to a per-file in-memory journal
using a transaction. When DevFS commits updates from
an in-memory I/O queue to storage, it first writes the data
followed by the metadata. Updates to global data struc-
tures (such as bitmaps) are serialized using locks.

DevFS supports file sharing across processes without
trapping into the kernel. Because each file has separate
in-memory structures (i.e., an I/O queue and journal),
one approach would be to use separate per-file structures
for each instance of an open file and synchronize up-
dates across structures; however, synchronization costs
and device-memory usage would increase linearly with
the number of processes sharing a file. Hence, DevFS
shares in-memory structures across processes and seri-
alizes updates using a per-file filemap lock; to order
updates, DevFS tags each command with a time-stamp
counter (TSC). Applications requiring strict data order-
ing for shared files could implement custom user-level
synchronization at application-level.

4.3 Simplifying Crash Consistency
DevFS avoids logging to persistent storage by using de-
vice capacitors that can hold power until the device con-
troller can safely flush data and metadata to storage. Tra-
ditional kernel-level file systems use either journaling or
a copy-on-write techniques, such as log-structured up-
dates, to provide crash consistency; the benefits and im-
plications of these designs are well documented [5, 40].
Journaling commits data and metadata updates to a per-
sistent log before committing to the original data and
metadata location; as a result, journaling suffers from the
“double write” problem [40, 56]. The log-structured de-
sign avoids double writes by treating an entire file system

1. Reserve during file
system mount

App
Inode Cache

Dentry cache

(6) move to cache

(5) close(“file”)

3. Check host for
dentry and inode

(2) open(“file”)

Device	Memory

Inode list
lllCacheDentry list
cachefile ptr list

DevFS
Host Memory

(4) move to device and

delete cache

Figure 3: DevFS reverse caching design. DevFS keeps
only active and essential file system structures in device mem-
ory, and reverse caches others to host memory.

as a log, appending data and metadata blocks; however,
a log-structured design suffers from high garbage collec-
tion costs [40]. DevFS uses device-level capacitance to
avoid both the double-write and garbage-collection prob-
lems.

Modern enterprise SSDs provide power-loss-
protection capacitors inside device hardware that can
hold power until controllers can safely flush contents of
device-level DRAM [22, 44]. In existing systems, the
device DRAM primarily contains the FTL’s logical-to-
physical block translation table, block error correction
(ECC) flags, and in-flight data yet to be flushed to
storage. Since DevFS runs inside the device, it uses
device-level DRAM for all file system data structures.

Although the goal of hardware capacitance is to safely
flush device in-memory contents to storage, flushing
larger amounts of memory would require a more expen-
sive capacitor; in addition, not all DevFS state needs to
be made persistent. To minimize the memory state that
must be flushed, DevFS leverages its per-file in-memory
journals, as shown in Figure 2. As described previously,
after an I/O command is added to a device queue, DevFS
writes the command’s metadata to a per-file in-memory
journal. If a power failure or crash occurs, the device
capacitors can hold power for controllers to safely com-
mit in-memory I/O queues and journals to storage, thus
avoiding journal writes to storage.

4.4 Minimizing Memory Footprint
We next discuss how DevFS manages device mem-
ory followed by three memory reduction techniques.
The techniques include on-demand allocation, reverse
caching, and a method to decompose inode structures.

DevFS uses its own memory allocator. Unlike
the complex-but-generic Linux slab allocator [15], the
DevFS allocator is simple and customized to manage
only DevFS data structures. In addition to device mem-
ory, DevFS reserves and manages a DMA-able region in
the host for reverse caching.

In DevFS, there are four types of data structures that
dominate memory usage: in-memory inodes, dentries,
file pointers, and the DevFS-specific per-file filemap

/*	Devfs	inode	structure	*/	
struct	devfs_inode_info	{	

				/*DevFS	specific	fields*/	
			inode_list		/*parent	directory	list*/	
			page_tree;	/*radix	tree	of	all	pages*/				
			journals	/*per	file	journals	*/	

…….	
/*Frequently	accessed*/	
struct	inode		vfs_inode	
}

/*	Decomposed	structure*/	
struct	devfs_inode_info	{	

				/*always	kept	in	device*/	
			struct	*inode_device;					

		/*moved	to	host	upon	close*/	
		struct	*inode_host;	
}	

Figure 4: Decomposing large structures. Large static
in-memory inode is decomposed to a dynamically allocatable
device and host structure. The host structure is reverse cached.

structure. Examining the data structures in detail, we see
that each inode, dentry, file pointer, and filemap consume
840 bytes, 192 bytes, 256 bytes, and 156 bytes respec-
tively. Since inodes are responsible for the most mem-
ory usage, we examine them further. We find that 593
bytes (70.5%) of the inode structure are used by generic
fields that are frequently updated during file operations;
referred to as the VFS inode in other file systems, this
includes the inode number, a pointer to its data blocks,
permissions, access times, locks, and a reference to the
corresponding dentry. The remaining 247 bytes (29.5%)
of the inode are used by DevFS-specific fields, which in-
clude a reference to in-memory and on-disk journals, the
dentry, the per-file structure, other list pointers, and per-
file I/O queues. To reduce the device memory usage, we
propose the following techniques.

On-demand memory allocation. In a naive DevFS
design, the in-memory structures associated with a file,
such as the I/O queue, in-memory journal, and filemap,
are each allocated when a file is opened or created and
not released until a file is deleted; however, these struc-
tures are not used until an I/O is performed. For work-
loads that access a large number of files, device memory
consumption can be significant. To reduce memory con-
sumption, DevFS uses on-demand allocation that delays
allocation of in-memory structures until a read or write
request is initiated; these structures are also aggressively
released from device memory when a file is closed. Ad-
ditionally, DevFS dynamically allocates the per-file I/O
queue and memory journal and adjusts their sizes based
on the availability of free memory.

Reverse caching metadata structures. In traditional
OS-level file systems, the memory used by in-memory
metadata structures such as inodes and dentries is a small
fraction of the overall system memory; therefore, these
structures are cached in memory even after the corre-
sponding file is closed in order to avoid reloading the
metadata from disk when the file is re-accessed. How-
ever, caching metadata in DevFS can significantly in-
crease memory consumption. To reduce device memory
usage, DevFS moves certain metadata structures such as
in-memory inodes and dentries to host memory after a

file is closed. We call this reverse caching because meta-
data is moved off the device to the host memory.

Figure 3 shows the reverse caching mechanism. A
DMA-able host-memory cache is created when DevFS is
initialized. The size of the host cache can be configured
when mounting DevFS depending on the availability of
free host memory; the cache is further partitioned into
inode and dentry regions. After moving an inode or den-
try to host memory, all its corresponding references (e.g.,
the inode list of a directory) are updated to point to the
host-memory cache. When a file is re-opened, the cached
metadata is moved back to device memory. Directories
are reverse-cached only after all files in a directory are
also reverse-cached. Note that the host cache contains
only inodes and dentries of inactive (closed) files, since
deleted files are also released from the host cache. Fur-
thermore, in case of an update to in-memory structures
that are reverse-cached, the structures are moved to de-
vice memory and cached structures in the host mem-
ory are deleted. As a result, reverse caching does not
introduce any consistency issues. Although using host
memory instead of persistent storage as a cache avoids
serializing and deserializing data structures, the over-
head of data movement between device and host mem-
ory depends on interface bandwidth. The data movement
overhead could be further reduced by using incremental
(delta-based) copying techniques.
Decomposing file system structures. One problem
with reverse caching for a complicated and large struc-
ture such as an inode is that some fields are accessed even
after a file is closed. For example, a file’s inode in the
directory list is traversed for search operations or other
updates to a directory. Moving these structures back and
forth from host memory can incur high overheads. To
avoid this movement, we decompose the inode structure
into a device-inode and host-inode structure as shown in
the Figure 4. The device-inode contains fields that are
accessed even after a file is closed, and therefore only
the host-inode structure is moved to host memory. Each
host inode is approximately 593 bytes of the overall 840
bytes. Therefore, this decomposition along with reverse
caching significantly reduces inode memory use.

4.5 State Sharing for Permission Check
DevFS provides security for control-plane and data-
plane operations without trapping into the kernel by ex-
tending the OS to share application credentials.

In a kernel-level file system, before an I/O operation,
the file system uses the credentials of a process from the
OS-level process structure and compares them with per-
mission information stored in an inode of a file or direc-
tory. However, DevFS is a separate runtime and cannot
access OS-level data structures directly. To overcome
this limitation, as shown in Figure 5, DevFS maintains

APP

User-FS
OS

Host CPU Credentials
0 Task1.cred
1 Task1.cred
… …
24 Task2.cred

Set	credential		
in		DevFS

DevFS	 Permission	manager

Write(UID,	buff,	4k,off=1)

payload=buff	
ops	=	READ	
UID=	1	
off	=	1	
size	=	4K

t_cred	=	get_task_cred(CPUID)	
inode_cred	=	get_inode_cred(fd)	
compare_cred(t_cred,	inode_cred)	

1

Process	scheduled	to	CPU

User	

2

3

4

Figure 5: DevFS permission check design. The OS is
responsible for updating DevFS credential table with process
credentials after a context-switch.

a credential table in device memory that can be accessed
and updated only by the OS, which updates the table with
credential information of a new process scheduled on a
host CPU. When an I/O request is sent from the host,
the request is tagged with an ID number of the initiating
CPU. We assume that CPU ID tagged with a request is
unforgeable by an untrusted process; DevFS can be eas-
ily extended to support other types of unforgeable IDs.
Before processing a request, DevFS performs a simple
table lookup to compare credentials of a process running
on the initiating CPU with the corresponding inode’s per-
missions. Invalid requests are returned with a permission
error in the request’s completion flag.

We note that one intricate scenario can occur when
a process is context-switched from its host CPU before
DevFS can process the request. We address this scenario
using the following steps: first, whenever a new process
is scheduled to use a host CPU, the OS scheduler up-
dates the credential table in DevFS with credentials of
currently running process; second, a request is admitted
to the device I/O queue only after a permission check.
These steps allow DevFS to safely execute requests in
the I/O queue even after a process is context-switched.
Our future work will examine the overheads of OS down-
calls to update the device-level credential table when pro-
cesses are frequently context-switched across host CPUs.

4.6 Implementation and Emulation
We implement the DevFS prototype to understand the
benefits and implications of a file system inside a storage
device. Due to the current lack of programmable stor-
age hardware, we implement DevFS as a driver in the
Linux 4 kernel and reserve DRAM at boot time to em-
ulate DevFS storage. We now describe our implementa-
tion of the DevFS user-level library and device-level file
system.
User-level library and interface. DevFS utilizes
command-based I/O, similar to modern storage hard-
ware such as NVMe [54, 57]. The user library has three
primary responsibilities: to create a command buffer in
host memory, to convert the applications POSIX inter-
face into DevFS commands and add them to the com-

mand buffer, and to ring a doorbell for DevFS to pro-
cess the request. When an application is initialized, the
user-level library creates a command buffer by making an
ioctl call to the OS, which allocates a DMA-able memory
buffer, registers the allocated buffer, and returns the vir-
tual address of the buffer to the user-level library. Cur-
rently, DevFS does not support sharing command buffers
across processes, and the buffer size is restricted by the
Linux kernel allocation (kmalloc()) upper limit of 4 MB;
these restrictions can be addressed by memory-mapping
a larger region of shared memory in the kernel. The user-
library adds I/O commands to the buffer and rings a door-
bell (emulated with an ioctl) with the address of the com-
mand buffer from which DevFS can read I/O requests,
perform permission checks, and add them to a device-
level I/O queue for processing. For simplicity, our cur-
rent library implementation only supports synchronous
I/O operations: each command has an I/O completion
flag that will be set by DevFS, and the user-library must
wait until an I/O request completes. The user-library is
implemented in about 2K lines of code.
DevFS file system. Because DevFS is a hardware-
centric solution, DevFS uses straightforward data struc-
tures and techniques that do not substantially increase
memory or CPU usage. We extend PMFS with DevFS
components and structures described earlier. Regard-
ing DevFS block management, each block in DevFS is
a memory page; pages for both metadata and data are al-
located from memory reserved for DevFS storage. The
per-file memory journal and I/O queue size are set to
a default of 4 KB but are each configurable during file
system mount. The maximum number of concurrently
opened files or directories is limited by the number of
I/O queues and journals that can be created in DevFS
memory. Finally, DevFS does not yet support memory-
mapped I/O. DevFS is implemented in about 9K lines of
code.

4.7 Discussion
Moving the file system inside a hardware device avoids
OS interaction and allows applications to attain higher
performance. However, a device-level file system also
introduces CPU limitations and adds complexity in de-
ploying new file system features.
CPU limitations. The scalability and performance
of DevFS is dependant on the device-level CPU core
count and their frequency. These device CPU limita-
tions can impact (a) applications (or a system with many
applications) that use several threads for frequent and
non-dependant I/O operations, (b) multi-threaded appli-
cations that are I/O read-intensive or metadata lookup-
intensive, and finally, (c) CPU-intensive file system fea-
tures such as deduplication or compression. One pos-
sible approach to address the CPU limitation is to iden-

tify file-system operations and components that are CPU-
intensive and move them to the user-level library in a
manner that does not impact integrity, crash consistency,
and security. However, realizing this approach would
require extending DevFS to support a broader set of
commands from the library in addition to application-
level POSIX commands. Furthermore, we believe that
DevFS’s direct-access benefits could motivate hardware
designers to increase CPU core count inside the storage
device [19], thus alleviating the problem.

Feature support. Moving the file system into stor-
age complicates the addition of new file system features,
such as snapshots, incremental backup, deduplication, or
fixing bugs; additionally, limited CPU and memory re-
sources also add to the complexity. One approach to
solving this problem is by implementing features that
can be run in the background in software (OS or library),
exposing the storage device as a raw block device, and
using host CPU and memory. Another alternative is
to support “reverse computation” by offloading file sys-
tem state and computation to the host. Our future work
will explore the feasibility of these approaches by ex-
tending DevFS to support snapshots, deduplication, and
software RAID. Regarding bug fixes, changes to DevFS
would require a firmware upgrade, which is supported by
most hardware vendors today [45]. Additionally, with in-
creasing focus on programmability of I/O hardware (e.g.,
NICs [8,29]) as dictated by new standards (e.g., NVMe),
support for embedding software into storage should be-
come less challenging.

5 Evaluation

Our evaluation of DevFS aims to answer the following
important questions.

• What is the performance benefit of providing appli-
cations with direct-access to a hardware-level file
system?

• Does DevFS enable different processes to simulta-
neously access both the same file system and the
same files?

• What is the performance benefit of leveraging de-
vice capacitance to reduce the double write over-
head of a traditional journal?

• How effective are DevFS’s memory reduction
mechanisms and how much do they impact perfor-
mance?

• What is the impact of running DevFS on a slower
CPU inside the device compared to the host?

We begin by describing our evaluation methodology and
then we evaluate DevFS on micro-benchmarks and real-
world applications.

0

4

8

12

16

1KB 4KB 16KB

10
0K

 O
ps

/S
ec

on
d

(a) Random write

NOVA
DevFS [naive]
DevFS [+cap]
DevFS [+cap +direct]

0

10

20

30

40

1KB 4KB 16KB

(b) Random read

Write Size Read Size

Figure 6: Write and Read throughput. The graph shows
results for Filebench random write and read micro-benchmark.
X-axis varies the write size, and the file size is kept constant to
32 GB. Results show single thread performance. For DevFS,
the per-file I/O queue and in-memory journal is set to 4 KB.

5.1 Methodology
For our experiments, we use a 40-core Intel Xeon 2.67
GHz dual socket system with 128 GB memory. DevFS
reserves 60 GB of memory to emulate storage with max-
imum bandwidth and minimum latency. DevFS is run on
4 of the cores to emulate a storage device with 4 CPU
controllers and with 2 GB of device memory, matching
state-of-the-art NVMe SSDs [41, 42].

5.2 Performance
Single process performance. We begin by evaluating
the benefits of direct storage access for a very simple
workload of a single process accessing a single file with
the Filebench workload generator [48]. We study three
versions of DevFS: a naive version of DevFS with tra-
ditional journaling, DevFS with hardware capacitance
support (+cap), and DevFS with capacitance support and
without kernel traps (+cap +direct). We emulate DevFS
without kernel traps by replicating the benchmark inside
a kernel module. For comparison, we use NOVA [56], a
state-of-the-art kernel-level file system for storage class
memory technologies. Although NOVA does not provide
direct access, it does use memory directly for storage and
uses a log-structured design.

Figure 6.a shows the throughput of random writes
as a function of I/O size. As expected, NOVA per-
forms better than naive DevFS with traditional journal-
ing. Because NOVA uses a log-structured design and
writes data and metadata to storage only once, it out-
performs DevFS-naive with traditional journaling since
DevFS-naive writes to an in-memory journal, a per-file
storage log, and the final checkpointed region. For larger
I/O sizes (16 KB), the data write starts dominating the
cost, thus reducing the impact of journaling on the per-
formance.

However, DevFS with capacitance support,
DevFS+cap, exploits the power-loss-protection ca-
pability and only writes metadata to the in-memory
journal; both the metadata and the data can be directly

0

0.5

1

1.5

2

1 4 8 12 16

10
0K

 O
ps

/S
ec

on
d

(a) Without data sharing

NOVA DevFS [+cap] DevFS [+cap +direct]

#. of Instances

0

0.5

1

1.5

2

1 4 8 12 16

(b) With data sharing

#. of Instances

Figure 7: Concurrent access throughput. (a) shows
throughput without data sharing. (b) shows throughput with
data sharing. The x-axis shows the number of concurrent in-
stances. Each instance opens ten files, appends 256 MB to each
file using 4 KB writes, and then closes the files. DevFS uses up
to 4 device CPUs.

committed to storage in-place without a storage log. For
1-KB writes, DevFS+cap achieves up to 27% higher
throughput than the naive DevFS approach and 12%
higher than NOVA. DevFS+cap outperforms NOVA be-
cause NOVA must issue additional instructions to flush
its buffers, ordering writes to memory with a barrier
after each write operation. Finally, by avoiding kernel
traps, DevFS+cap+direct provides true direct-access to
storage and improves performance by more than 2x and
1.8x for 1-KB and 4-KB writes respectively.

Figure 6.b shows random read throughput. NOVA pro-
vides higher throughput than both the DevFS-naive and
DevFS+cap approaches because our prototype manages
all 4 KB blocks of a file in a B-tree and traverses the tree
for every read operation; in contrast, NOVA simply maps
a file’s contents and converts block offsets to physical ad-
dresses with bit-shift operations, which is much faster.
Even with our current implementation, DevFS+direct
outperforms all other approaches since it avoids expen-
sive kernel traps. We believe that incorporating NOVA’s
block mapping technique into DevFS would further im-
prove read performance.
Concurrent access performance. One of the advan-
tages of DevFS over existing hybrid user-level file sys-
tems is that DevFS enables multiple competing processes
to share the same file system and the same open files. To
demonstrate this functionality, we begin with a workload
in which processes share the same file system, but not the
same files: each process opens ten files, appends 256 MB
to each file using 4-KB writes, and then closes the files.
In Figure 7.a, the number of processes is varied along the
x-axis, where each process writes to a separate directory.

For a single process, DevFS+direct provides up to a
39% improvement over both NOVA and DevFS+cap by
avoiding kernel traps. Since each file is allocated its own
I/O queues and in-memory journal, the performance of
DevFS scales well up to 4 instances; since we are emu-
lating 4 storage CPUs, beyond four instances, the device

CPUs are shared across multiple instances and perfor-
mance does not scale well. In contrast, NOVA is able to
use all 40 host CPUs and scales better.

To demonstrate that multiple processes can simultane-
ously access the same files, we modify the above work-
load so that each instance accesses the same ten files;
the results are shown in Figure 7.b. As desired for file
system integrity, when multiple instances share and con-
currently update the same file, DevFS serializes meta-
data updates and updates to the per-file I/O queue and
in-memory journal. Again, scaling of DevFS is severely
limited beyond 4 instances given the contention for the
4 device CPUs. In other experiments, not shown due to
space limitations, we observe that increasing the number
of device CPUs directly benefits DevFS scalability.
Summary. By providing direct-access to storage with-
out trapping into the kernel, DevFS can improve write
throughput by 1.5x to 2.3x and read throughput by 1.2x
to 1.3x. DevFS also benefits from exploiting device ca-
pacitance to reduce journaling cost. Finally, unlike hy-
brid user-level file systems, DevFS supports concurrent
file-system access and data sharing across processes;
lower I/O throughput beyond four concurrent instances
is mainly due to a limited number of device-level CPUs.

5.3 Impact of Reverse Caching
A key goal of DevFS is to reduce memory usage of the
file system. We first evaluate the effectiveness of DevFS
memory optimizations to reduce memory usage and then
investigate the impact on performance.

5.3.1 Memory Reduction
To understand the effectiveness of DevFS memory-
reduction techniques, we begin with DevFS+cap
and analyze three memory reduction techniques:
DevFS+cap+demand allocates each in-memory
filemap on-demand and releases them after a file is
closed; DevFS+cap+demand+dentry reverse caches
the corresponding dentry after a file is closed;
DevFS+cap+demand+dentry+inode also decomposes a
file’s inode into inode-device and inode-host structures
and reverse caches the inode-host structure. Because
we focus on memory reduction, we do not consider
DevFS+direct in this experiment.

Figure 8 shows the amount of memory consumed for
the four versions of DevFS on Filebench’s file-create
workload that opens a file, writes 16 KB, and then closes
the file for 1 million files. In the baseline (DevFS+cap),
three data structures dominate memory usage: the DevFS
inode (840 bytes), the dentry (192 bytes), and the filemap
(156 bytes). While file pointers, per-file I/O queues, and
in-memory journals are released after a file is closed, the
three other structures are not freed until the file is deleted.

The first memory optimization, DevFS+cap+demand,
dynamically allocates the filemap when a read or write

0

400

800

1200

1600

+cap +cap
+demand

+cap
+demand
+dentry

+cap
+demand
+dentry
+inode

M
em

or
y

(M
B)

filemap dentry inode

Figure 8: DevFS memory reduction. +cap represents a
baseline without memory reduction. Other bars show incre-
mental memory reduction technique impact.

0

0.5

1

1.5

2

Create-files Reopen-files
10

0K
 O

ps
/S

ec
on

d

+cap
+cap +demand
+cap +demand +dentry
+cap +demand +dentry +inode
+cap +demand +dentry +inode +direct

Figure 9: Throughput impact of memory reduction.
Reopen-files benchmark reopens closed files; as a result, struc-
tures cached in host memory are moved back to device.

is performed and releases the filemap after closing the
file; this reduces memory consumption by 156 MB
(13.4%). Reverse caching of dentries, shown by
DevFS+cap+demand+dentry, reduces device memory
usage by 193 MB (16.6%) by moving them to the host
memory; the small dentry memory usage visible in the
graph represents directory dentries which are not moved
to the host memory in order to provide fast directory
lookup. Finally, decomposing the large inode structure
into two smaller structures, inode-device (262 bytes) and
inode-host (578 bytes), and reverse caching the inode-
host structure reduces memory usage significantly. The
three mechanisms cumulatively reduce device memory
usage by up to 78% (5x) compared to the baseline. In
our current implementation, we consider only these three
data structures, but reverse caching could easily be ex-
tended to other file system data structures.

5.3.2 Performance Impact
The memory reduction techniques used by DevFS
do have an impact on performance. To evaluate
their impact on throughput, in addition to the file-
create benchmark used above, we also evaluate a
file-reopen workload that re-opens each of the files
in the file-create benchmark immediately after it is
closed. We also show the throughput for direct-access
(DevFS+cap+demand+dentry+inode+direct) that avoids
expensive kernel traps.

For both benchmarks, DevFS with no memory opti-

0
0.2
0.4
0.6
0.8

1
1.2

1KB 4KB 16KB 64KB 256KB

10
0K

 O
ps

/S
ec

on
d

(a) Snappy throughput

NOVA DevFS [naive]
DevFS [+cap] DevFS [+cap +direct]

0
0.2
0.4
0.6
0.8

1
1.2

1.2 1.4 1.8 2.2 2.6

(b) CPU speed impact
Write Size CPU Frequency in GHz

Figure 10: Snappy compression throughput and CPU
speed impact. Application uses 4 CPUs. Memory reduction
techniques are enabled for DevFS (+cap) and DevFS (+cap
+direct). For DevFS (+cap +direct), Snappy is run as a kernel
module. The CPU speed is varied by scaling the frequency.

mizations and DevFS with on-demand allocation have
similar throughput because the only difference is ex-
actly when the filemap is allocated. However, the re-
verse caching techniques do impact throughput. For
the file-create benchmark, reverse caching only the
dentry (DevFS+cap+demand+dentry) reduces through-
put by 5%, while also reverse caching the inode
(DevFS+cap+demand+dentry+inode) by 13%. Perfor-
mance degradation occurs because reverse caching in-
volves significant work: allocating memory in the host
DRAM, copying structures to host memory, updating the
parent list with the new memory address, and later re-
leasing the device memory. The performance of reverse
caching inodes is worse than that of dentries, due to their
relative sizes (578 bytes vs 196 bytes). While the direct-
access approach has similar overheads, by avoiding ker-
nel traps for file open, write, and close, and it provides
higher performance compared to all other approaches.

With the file-reopen benchmark, reverse caching
moves the corresponding inodes and dentries back to de-
vice memory, causing a throughput drop of 26%. Our
results for the file-reopen benchmark can be consid-
ered worst-case behavior since most real-world applica-
tions spend more time performing I/O before closing a
file. Our current mechanism performs aggressive reverse
caching, but could easily be extended to slightly delay
reverse caching based on the availability of free memory
in the device.
Summary. DevFS memory-reduction techniques can
reduce device DRAM usage by up to 5x. Although
worst-case benchmarks do suffer some performance im-
pact with these techniques, we believe memory reduction
is essential for device-level file systems and that DevFS
will obtain both memory reduction and high performance
for realistic workloads.

5.4 Snappy File Compression
To understand the performance impact on a real-world
application, we use Snappy [11] compression. Snappy is

widely used as a data compression engine for several ap-
plications including MapReduce, RocksDB, MongoDB,
and Google Chrome. Snappy reads a file, performs com-
pression, and writes the output to a file; for durability,
we add an fsync() after writing the output. Snappy op-
timizes throughput and is both CPU- and I/O-intensive;
for small files, the I/O time dominates the computation
time. Snappy can be used at both user-level and kernel-
level [23] which helps us to understand the impact of di-
rect access. For the workload, we use four application
threads, 16 GB of image files from OpenImage reposi-
tory [24], and vary the size of files from 1 KB to 256 KB.

Comparing the performance of NOVA, DevFS-naive,
DevFS+cap, and DevFS+direct, we see the same trends
for the Snappy workload as we did for the previous
micro-benchmarks. As shown in Figure 10.a, NOVA
performs better than DevFS-naive due to DevFS-naive’s
journaling cost, while DevFS+cap removes this over-
head. Because DevFS+direct avoids trapping into the
kernel when reading and writing across all application
threads, it provides up to 22% higher throughput than
DevFS-cap for 4-KB files; as the file size increases, the
benefit of DevFS+direct is reduced since compression
costs dominate runtime.

Device CPU Impact. One of the challenges of DevFS
is that it is restricted to the CPUs on the storage device,
and these device CPUs may be slower than those on the
host. To quantify this performance impact, we run the
Snappy workload as we vary the speed of the “device”
CPUs, keeping the “host” CPUs at their original speed
of 2.6 GHz [27]; the threads performing compression al-
ways run on the fast “host” CPUs. Figure 10.b shows
the performance impact for 4-KB file compression for
two versions of DevFS; we choose 4-KB files since it
stresses DevFS performance more than with larger files
(which instead stress CPU performance). As expected,
DevFS-direct consistently performs better than DevFS-
cap. More importantly, we do see that reducing de-
vice CPU frequency does have a significant impact on
performance (e.g., reducing device CPU frequency from
2.6 GHz to 1.4 GHz reduces throughput by 66%). How-
ever, comparing across graphs, we see that even with a
1.8 GHz device CPU, the performance of DevFS-direct
is similar to that of NOVA running on all high-speed host
CPUs. For workloads that are more CPU intensive, the
impact of slower device CPUs on DevFS performance is
smaller (not shown due to space constraints).

Summary. DevFS-direct provides considerable perfor-
mance improvement even for applications that are both
CPU and I/O-intensive. We observe that although slower
device CPUs do impact performance of DevFS, DevFS
can still outperform other approaches.

6 Related Work

Significant prior work has focused on providing direct-
access to storage, moving computation to storage, or pro-
grammability of SSDs.
Direct-access storage. Several hybrid user-level file
system implementations, such as Intel’s SPDK [18],
Light NVM [6], and Micron’s User Space NVME [33]
provide direct-access to storage by exposing them as a
raw block device and exporting a userspace device driver
for block access. Light NVM goes one step further to en-
able I/O-intensive applications to implement their own
FTL. However, these approaches do not support tradi-
tional file-system abstractions and instead expose storage
as a raw block device; they do not support fundamental
properties of a file system such as integrity, concurrency,
crash consistency, or security.
Computation inside storage. Providing compute ca-
pability inside storage for performing batch tasks have
been explored for past four decades. Systems such as
CASSM [46] and RARES [31] have proposed adding
several processors to a disk for performing computa-
tion inside storage. ActiveStorage [2, 39] uses one CPU
inside a hard disk for performing database scans and
search operations, whereas Smart-SSD [12] is designed
for query processing inside SSDs. Architectures such as
BlueDBM [19] have shown the benefits of scaling com-
pute and DRAM inside flash memory for running “big
data” applications. DevFS also uses device-level RAM
and compute capability; however, DevFS uses these re-
sources for running a high-performance file system that
applications can use.
Programmability. Willow [43] develops a system to
improve SSD programmability. Willow’s I/O component
is offloaded to an SSD to bypass the OS and perform di-
rect read and write operations. However, without a cen-
tralized file system, Willow also has the same general
structural advantages and disadvantages of hybrid user-
level file systems.

7 Conclusion
In this paper, we address the limitations of prior hybrid
user-level file systems by presenting DevFS, an approach
that pushes file system functionality down into device
hardware. DevFS is a trusted file system inside the de-
vice that preserves metadata integrity and concurrency
by exploiting hardware-level parallelism, leverages hard-
ware power-loss control to provide low-overhead crash
consistency, and coordinates with the OS to satisfy se-
curity guarantees. We address the hardware limitations
of low device RAM capacity by proposing three mem-
ory reduction techniques (on-demand allocation, reverse
caching, and decomposing data structures) to reduce file
system memory usage by 5x(at the cost of a small per-

formance reduction). Performance evaluation of our
DevFS prototype shows more than 2x improvement in
I/O throughput with direct-access to storage. We believe
our DevFS prototype is a first step towards building a
true direct-access file system. Several engineering chal-
lenges, such as realizing DevFS in real hardware, sup-
porting RAID, and integrating DevFS with the FTL, re-
main as future work.

Acknowledgements

We thank the anonymous reviewers and Ed Nightin-
gale (our shepherd) for their insightful comments. We
thank the members of the ADSL for their valuable input.
This material was supported by funding from NSF grants
CNS-1421033 and CNS-1218405, and DOE grant DE-
SC0014935. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and may not reflect the views of NSF, DOE,
or other institutions.

References

[1] Intel-Micron Memory 3D XPoint. http://intel.ly/

1eICR0a.

[2] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active Disks:
Programming Model, Algorithms and Evaluation. SIGPLAN
Not., 33(11):81–91, October 1998.

[3] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K.
Gupta, and Steven Swanson. Onyx: A Protoype Phase Change
Memory Storage Array. In Proceedings of the 3rd USENIX con-
ference on Hot topics in storage and file systems, HotStorage’11,
Portland, OR, 2011.

[4] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Oper-
ating Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.91
edition, May 2015.

[5] Valerie Aurora. Log Structured File System Issues. https://

lwn.net/Articles/353411/.

[6] Matias Bjørling, Javier González, and Philippe Bonnet. Light-
NVM: The Linux Open-channel SSD Subsystem. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies,
FAST’17, Santa clara, CA, USA, 2017.

[7] Eric Brewer. FAST Keynote: Disks and their Cloudy Future,
2015. https://www.usenix.org/sites/default/files/

conference/protected-files/fast16_slides_brewer.

pdf.

[8] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup
De, Joel Coburn, and Steven Swanson. Providing Safe, User
Space Access to Fast, Solid State Disks. SIGARCH Comput. Ar-
chit. News, 40(1), March 2012.

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp,
Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps:
Making Persistent Objects Fast and Safe with Next-generation,
Non-volatile Memories. In Proceedings of the Sixteenth In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XVI, New-
port Beach, California, USA, 2011.

[10] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better
I/O Through Byte-addressable, Persistent Memory. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, SOSP ’09, Big Sky, Montana, USA, 2009.

[11] Jeff Dean, Sanjay Ghemawat, and Steinar H. Gunderson. Snappy
Compession. https://github.com/google/snappy.

[12] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,
Kwanghyun Park, and David J. DeWitt. Query Processing on
Smart SSDs: Opportunities and Challenges. In Proceedings of
the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’13, pages 1221–1230, New York, NY,
USA, 2013. ACM.

[13] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy,
Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson.
System Software for Persistent Memory. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14,
pages 15:1–15:15, New York, NY, USA, 2014. ACM.

[14] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An
Operating System Architecture for Application-level Resource
Management. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, SOSP ’95, Copper Mountain,
Colorado, USA, 1995.

[15] Mel Gorman. Understanding the Linux Virtual Memory Man-
ager. http://bit.ly/1n1xIhg.

[16] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. The Unwritten Contract of Solid State
Drives. In Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, pages 127–144, New York, NY,
USA, 2017. ACM.

[17] Intel. NVM Library. https://github.com/pmem/nvml.

[18] Intel. Storage Performance Development Kit. http://www.

spdk.io/.

[19] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John
Ankcorn, Myron King, Shuotao Xu, and Arvind. BlueDBM:
Distributed Flash Storage for Big Data Analytics. ACM Trans.
Comput. Syst., 34(3):7:1–7:31, June 2016.

[20] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. NVMeDi-
rect: A User-space I/O Framework for Application-specific Op-
timization on NVMe SSDs. In 8th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 16), Denver, CO,
2016. USENIX Association.

[21] Jesung Kim, Jong Min Kim, S. H. Noh, Sang Lyul Min, and
Yookun Cho. A Space-Efficient Flash Translation Layer for Com-
pactFlash Systems. IEEE Transactions on Consumer Electronics,
48(2):366–375, May 2002.

[22] Kingston. Kingston power loss control. https:

//www.kingston.com/us/ssd/enterprise/technical_

brief/tantalum_capacitors.

[23] Andi Kleen. Snappy Kernel Port. https://github.com/

andikleen/snappy-c.

[24] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, Sami
Abu-El-Haija, Alina Kuznetsova, Hassan Rom, Jasper Uijlings,
Stefan Popov, Andreas Veit, Serge Belongie, Victor Gomes, Ab-
hinav Gupta, Chen Sun, Gal Chechik, David Cai, Zheyun Feng,
Dhyanesh Narayanan, and Kevin Murphy. OpenImages: A public
dataset for large-scale multi-label and multi-class image classifi-
cation. Dataset available from https://github.com/openimages,
2017.

[25] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith
Makam. High Performance Metadata Integrity Protection in the
WAFL Copy-on-Write File System. In 15th USENIX Confer-
ence on File and Storage Technologies (FAST 17), pages 197–
212, Santa Clara, CA, 2017. USENIX Association.

[26] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Em-
mett Witchel, and Thomas Anderson. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, 2017.

[27] Etienne Le Sueur and Gernot Heiser. Dynamic Voltage and Fre-
quency Scaling: The Laws of Diminishing Returns. In Pro-
ceedings of the 2010 International Conference on Power Aware
Computing and Systems, HotPower’10, Vancouver, BC, Canada,
2010.

[28] Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun
Cho. F2FS: A New File System for Flash Storage. In Proceed-
ings of the 13th USENIX Conference on File and Storage Tech-
nologies, FAST’15, Santa Clara, CA, 2015.

[29] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and Lintao
Zhang. KV-Direct: High-Performance In-Memory Key-Value
Store with Programmable NIC. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, SOSP ’17, Shanghai,
China, 2017.

[30] J. Liedtke. On Micro-kernel Construction. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles,
SOSP ’95, Copper Mountain, Colorado, USA, 1995.

http://intel.ly/1eICR0a
http://intel.ly/1eICR0a
https://lwn.net/Articles/353411/
https://lwn.net/Articles/353411/
https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_brewer.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_brewer.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_brewer.pdf
https://github.com/google/snappy
http://bit.ly/1n1xIhg
https://github.com/pmem/nvml
http://www.spdk.io/
http://www.spdk.io/
https://www.kingston.com/us/ssd/enterprise/technical_brief/tantalum_capacitors
https://www.kingston.com/us/ssd/enterprise/technical_brief/tantalum_capacitors
https://www.kingston.com/us/ssd/enterprise/technical_brief/tantalum_capacitors
https://github.com/andikleen/snappy-c
https://github.com/andikleen/snappy-c

[31] Chyuan Shiun Lin, Diane C. P. Smith, and John Miles Smith.
The Design of a Rotating Associative Memory for Relational
Database Applications. ACM Trans. Database Syst., 1(1):53–65,
March 1976.

[32] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. A
Large-Scale Study of Flash Memory Failures in the Field. SIG-
METRICS Perform. Eval. Rev., 43(1):177–190, June 2015.

[33] Micron. Micron User Space NVMe. https://github.com/

MicronSSD/unvme/.

[34] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe.
Arrakis: The Operating System is the Control Plane. In Pro-
ceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, Broomfield, CO, 2014.

[35] Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan,
Lanyue Lu, Vijay Chidambaram, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Application Crash Consistency and
Performance with CCFS. In Proceedings of the 15th Usenix Con-
ference on File and Storage Technologies, FAST’17, Santa clara,
CA, USA, 2017.

[36] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram,
Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. All File Systems
Are Not Created Equal: On the Complexity of Crafting Crash-
consistent Applications. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’14, Broomfield, CO, 2014.

[37] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou.
Transactional Flash. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation,
OSDI’08, San Diego, California, 2008.

[38] Aditya Rajgarhia and Ashish Gehani. Performance and Exten-
sion of User Space File Systems. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, pages 206–
213, New York, NY, USA, 2010. ACM.

[39] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. Active
Storage for Large-Scale Data Mining and Multimedia. In Pro-
ceedings of the 24rd International Conference on Very Large
Data Bases, VLDB ’98, pages 62–73, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc.

[40] Mendel Rosenblum and John K. Ousterhout. The Design and
Implementation of a Log-structured File System. ACM Trans.
Comput. Syst., 10(1), February 1992.

[41] Samsung. NVMe SSD 960 Polaris Controller. http:

//www.samsung.com/semiconductor/minisite/

ssd/downloads/document/NVMe_SSD_960_PRO_EVO_

Brochure.pdf.

[42] Samsung. Samsung nvme ssd 960 data sheet. http:

//www.samsung.com/semiconductor/minisite/ssd/

downloads/document/Samsung_SSD_960_PRO_Data_

Sheet_Rev_1_1.pdf.

[43] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran,
Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swan-
son. Willow: A User-programmable SSD. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’14, Broomfield, CO, 2014.

[44] Y. Son, J. Choi, J. Jeon, C. Min, S. Kim, H. Y. Yeom, and H. Han.
SSD-Assisted Backup and Recovery for Database Systems. In
2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pages 285–296, April 2017.

[45] StorageReview.com. Firmware Upgrade. http://www.

storagereview.com/how_upgrade_ssd_firmware.

[46] Stanley Y. W. Su and G. Jack Lipovski. CASSM: A Cellular
System for Very Large Data Bases. In Proceedings of the 1st
International Conference on Very Large Data Bases, VLDB ’75,
Framingham, Massachusetts, 1975.

[47] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok.
To FUSE or Not to FUSE: Performance of User-space File Sys-
tems. In Proceedings of the 15th Usenix Conference on File and
Storage Technologies, FAST’17, Santa clara, CA, USA, 2017.

[48] Tarasov Vasily. Filebench. https://github.com/

filebench/filebench.

[49] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. Aerie: Flexible File-system Interfaces to Storage-class
Memory. In Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, Amsterdam, The Netherlands,
2014.

[50] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of
the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
XVI, Newport Beach, California, USA, 2011.

[51] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
User-level Network Interface for Parallel and Distributed Com-
puting. In Proceedings of the Fifteenth ACM Symposium on Op-
erating Systems Principles, SOSP ’95, Copper Mountain, Col-
orado, USA, 1995.

[52] Michael Wei, Matias Bjørling, Philippe Bonnet, and Steven
Swanson. I/O Speculation for the Microsecond Era. In Proceed-
ings of the 2014 USENIX Conference on USENIX Annual Tech-
nical Conference, USENIX ATC’14, Philadelphia, PA, 2014.

[53] Matthew Wilcox and Ross Zwisler. Linux DAX. https://www.
kernel.org/doc/Documentation/filesystems/dax.txt.

[54] NVM Express Workgroup. NVMExpress Specification. ://

www.nvmexpress.org/resources/specifications/.

[55] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A File System
for Storage Class Memory. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’11, Seattle, Washington, 2011.

[56] Jian Xu and Steven Swanson. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In Pro-
ceedings of the 14th Usenix Conference on File and Storage Tech-
nologies, FAST’16, 2016.

[57] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri,
Manu Awasthi, Zvika Guz, Anahita Shayesteh, and Vijay Bal-
akrishnan. Performance Analysis of NVMe SSDs and Their Im-
plication on Real World Databases. In Proceedings of the 8th
ACM International Systems and Storage Conference, SYSTOR
’15, Haifa, Israel, 2015.

[58] Jisoo Yang, Dave B. Minturn, and Frank Hady. When Poll is
Better Than Interrupt. In Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies, FAST’12, San Jose,
CA, 2012.

https://github.com/MicronSSD/unvme/
https://github.com/MicronSSD/unvme/
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_960_PRO_Data_Sheet_Rev_1_1.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_960_PRO_Data_Sheet_Rev_1_1.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_960_PRO_Data_Sheet_Rev_1_1.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_960_PRO_Data_Sheet_Rev_1_1.pdf
http://www.storagereview.com/how_upgrade_ssd_firmware
http://www.storagereview.com/how_upgrade_ssd_firmware
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
://www.nvmexpress.org/resources/specifications/
://www.nvmexpress.org/resources/specifications/

	Introduction
	Motivation
	H/W and S/W for User-Level Access
	File System Architectures
	Challenges
	File System Integrity
	Crash Consistency
	Permission Enforcement

	The Case For DevFS
	DevFS Advantages And Limitations
	Design Principles

	Design
	Disentangling File System Structures
	Providing File System Integrity
	Simplifying Crash Consistency
	Minimizing Memory Footprint
	State Sharing for Permission Check
	Implementation and Emulation
	Discussion

	Evaluation
	Methodology
	Performance
	Impact of Reverse Caching
	Memory Reduction
	Performance Impact

	Snappy File Compression

	Related Work
	Conclusion

