
Explicit Control in a Batch-Aware Distributed File System

John Bent, Douglas Thain,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Miron Livny

Computer Sciences Department, University of Wisconsin, Madison

Abstract
We present the design, implementation, and evaluation
of the Batch-Aware Distributed File System (BAD-FS),
a system designed to orchestrate large, I/O-intensive
batch workloads on remote computing clusters distributed
across the wide area. BAD-FS consists of two novel com-
ponents: a storage layer that exposes control of tradi-
tionally fixed policies such as caching, consistency, and
replication; and a scheduler that exploits this control as
necessary for different workloads. By extracting control
from the storage layer and placing it within an external
scheduler, BAD-FS manages both storage and computa-
tion in a coordinated way while gracefully dealing with
cache consistency, fault-tolerance, and space manage-
ment issues in a workload-specific manner. Using both
microbenchmarks and real workloads, we demonstrate
the performance benefits of explicit control, delivering ex-
cellent end-to-end performance across the wide-area.

1 Introduction
Traditional distributed file systems, such as NFS and AFS,
are built on the solid foundation of empirical measure-
ment. By studying expected workload patterns [7, 41, 45,
50, 57], researchers and developers have long been able
to make appropriate trade-offs in system design, thereby
building systems that work well for the workloads of in-
terest. Most previous distributed file systems have been
targeted at a particular computing environment, namely
a collection of interactively used client machines. How-
ever, as past work has demonstrated, different workloads
lead to different designs (e.g., FileNet [18] and the Google
File System [29]); if assumptions about usage patterns,
sharing characteristics, or other aspects of the workload
change, one must reexamine the design decisions embed-
ded within distributed file systems.

One area of increasing interest is that of batch work-
loads. Long popular within the scientific community,
batch computing is increasingly common across a broad
range of important and often commercially viable appli-
cation domains, including genomics [3], video produc-
tion [52], simulation [11], document processing [18], data
mining [2], electronic design automation [17], financial
services [42], and graphics rendering [36].

Batch workloads minimally present the system with a

set of jobs that need to be run and perhaps some ordering
among them; in many environments, the approximate run
times and I/O requirements are also known in advance. A
scheduler uses this information to dispatch jobs so as to
maximize throughput.

Batch workloads are typically run in controlled local-
area cluster environments. However, organizations that
have large workload demands increasingly need ways to
share resources across the wide-area, both to lower costs
and to increase productivity. One approach to accessing
resources across the wide-area is to simply run a local-
area batch system across multiple clusters that are spread
over the wide-area and to use a distributed file system as
a backplane for data access.

Unfortunately, this approach is fraught with difficulty,
largely due to the way in which I/O is handled. The pri-
mary problem with using a traditional distributed file sys-
tem is in its approach to control: many decisions concern-
ing caching, consistency, and fault tolerance are made im-
plicitly within the file system. Although these decisions
are reasonable for the workloads for which these file sys-
tems were designed, they are ill-suited for a wide-area
batch computing system. For example, to minimize data
movement across the wide-area, the system must carefully
use the cache space of remote clusters; however, caching
decisions are buried deep within distributed file systems,
thus preventing such control.

To mitigate these problems and enable the utilization of
remote clusters for I/O-intensive batch workloads, we in-
troduce the Batch-Aware Distributed File System (BAD-
FS). BAD-FS differs from traditional distributed file sys-
tems in its approach to control; BAD-FS exposes deci-
sions commonly hidden inside of a distributed file system
to an external workload-savvy scheduler. BAD-FS leaves
all consistency, caching, and replication decisions to this
scheduler, thus enabling explicit and workload-specific
control of file system behavior.

The main reason to migrate control from the file sys-
tem to the scheduler is information – the scheduler has
intimate knowledge of the workload that is running and
can exploit that knowledge to improve performance and
streamline failure handling. The combination of workload
information and explicit control of the file system leads to
three distinct benefits over traditional approaches:

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

� Enhanced performance. By carefully managing re-
mote cluster disk caches in a cooperative fashion, and by
controlling I/O such that only needed data is transported
across the wide-area, BAD-FS minimizes wide-area traf-
fic and improves throughput. Using workload knowledge,
BAD-FS further improves performance by using capacity-
aware scheduling to avoid thrashing.

� Improved failure handling. Using detailed work-
load information, the scheduler can determine whether to
make replicas of data based on the cost of generating it,
and not indiscriminately as is typical in many file systems.
Data loss is treated uniformly as a performance problem.
The scheduler has the ability to regenerate a lost file by
rerunning the application that generated it and hence only
replicates when the cost of regeneration is high.

� Simplified implementation. Detailed workload in-
formation allows a simpler implementation. For example,
BAD-FS provides a cooperative cache but does not imple-
ment a cache consistency protocol. Through exact knowl-
edge of data dependencies, it is the scheduler that ensures
proper access ordering among jobs. Previous work has
demonstrated the difficulties of building a more general
cooperative caching scheme [4, 12].

We demonstrate the benefits of explicit control via
our prototype implementation of BAD-FS. Using syn-
thetic workloads, we demonstrate that BAD-FS can re-
duce wide-area I/O traffic by an order of magnitude, can
avoid performance faults through capacity-aware schedul-
ing, and can proactively replicate data to obtain high per-
formance in spite of remote failure. Using real work-
loads, we demonstrate the practical benefits of our system:
I/O-intensive batch workloads can be run upon remote re-
sources both easily and with high performance.

Finally, BAD-FS achieves these ends while maintaining
site autonomy and support for unmodified legacy applica-
tions. Both of these practical constraints are important for
acceptance in wide-area batch computing environments.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe our assumptions about the expected
environment and workload, in Section 3, we discuss the
architecture of our system, in Section 4, we present our
experimental evaluation, in Section 5, we examine related
work, and finally in Section 6, we conclude.

2 Background
In this section, we describe the setting for BAD-FS. We
present the expected workloads, basing assumptions on
our recent work in batch workload characterization [54].
We describe the computing environment available to users
of these workloads and the difficulty they encounter exe-
cuting such workloads with conventional tools.

2.1 Workloads
As illustrated in Figure 1, these data-intensive workloads
are composed of multiple independent vertical sequences

job

job

job

job

job

job

job

job

job

job

job

endpoint batch

batchendpoint

input b1

input b2

pi
pe

lin
e

da
ta

 p
1

pi
pe

lin
e

da
ta

 p
2

pi
pe

lin
e

da
ta

 p
3

input i1

output o1

job

width = 3

de
pt

h
=

 4

Figure 1: A Typical Batch-Pipelined Workload. A single pipeline
represents the logical work that a user wishes to complete, and is com-
prised of a series of jobs. Users often assemble many such pipelines into
a batch to explore variations on input parameters or other input data.

of processes that communicate with their ancestors and
relatives via private data files. A workload generally con-
sists of a large number of these sequences that are inci-
dentally synchronized at the beginning, but are logically
distinct and may correctly execute at a different rate than
their siblings. We refer to a vertical slice of the workload
as a pipeline, a horizontal slice as a batch, and the entire
set as a batch-pipelined workload. Note that “pipeline”
is used generically; the processes are not connected by
UNIX-style pipes but rather communicate through files.

One of the key differences between a single application
and a batch-pipelined workload is file sharing behavior.
For example, when many instances of the same pipeline
are run, the same executable and potentially many of the
same input files are used. We characterize the sharing that
occurs in these batch-pipelined workloads by breaking I/O
activity into three types (as shown in Figure 1): endpoint,
the unique input and final output; pipeline-shared, shared
write-then-read data within a single pipeline; and batch-
shared, input data shared across multiple pipelines.

2.2 Environment
Although wide-area sharing of untrusted and arbitrary
personal computers is a possible platform for batch work-
loads [53], we believe that a better platform for these types
of throughput-intensive workloads is one or more clusters
of managed machines, spread across the wide area. We
assume that each cluster machine has processing, mem-
ory, and local disk space available for remote users, and
that each cluster exports its resources via a CPU sharing
system. The obvious bottleneck of such a system is the
wide-area connection, which must be managed carefully

2

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

to ensure high performance. For simplicity, we focus most
of our efforts on the case of a single cluster being accessed
by a remote user. However, in Section 4.8, we present pre-
liminary results from a multi-cluster environment.

We refer to this more organized, less hostile, and well
managed collection of clusters as a c2c (cluster-to-cluster)
system, in contrast to popular peer-to-peer (p2p) systems.
Although the p2p environment is appropriate for many
uses, there is likely to be a more organized effort to share
computing resources within corporations or other organi-
zations. We may assume that c2c environments are more
stable, more powerful, and more trustworthy. That said,
p2p technologies and designs are likely to be directly ap-
plicable to the c2c domain.

We also make the practical and important assumption
that each site has local autonomy over its resources. Au-
tonomy has two primary implications on the design of
BAD-FS. First, although a workload may be able to use
remote resources at a given time, these resources may be
arbitrarily revoked. Thus, a system that is built to exploit
remote resources must be able to tolerate unexpected re-
source failures, whether they are due to physical break-
downs, software failures, or deliberate preemptions. Sec-
ond, autonomy prohibits the deployment of arbitrary soft-
ware within the remote cluster. In designing BAD-FS, we
assume that a remote cluster only provides us with the
ability to dispatch a well-defined job as an ordinary, un-
privileged user. Mandating that a single distributed file
system be used everywhere is not a viable solution.

Finally, we assume that the jobs run on these systems
cannot be modified, In our experience, many scientific
workloads are the product of years of fine-tuning, and
when complete, are viewed as untouchable. Also, ease
of use is important; the less work for the user, the better.

2.3 Current Solutions
We now consider a user who wishes to run a batch-
pipelined workload in this environment. After the user
has developed and debugged the workload on their home
system, they are ready to run batches of hundreds or thou-
sands on all available computing resources, using remote
batch execution systems such as Condor, LSF, PBS, or
Grid Engine. Each pipeline in their workload is expected
to use much of the same input data, while varying param-
eters and other small inputs. The necessary input data
begins on the user’s home storage server (e.g., an FTP
server), and the output data, when generated, should even-
tually be committed to this home server. Conventional
batch computing systems present a user with two options
for running a workload.

The first option, remote I/O, is to simply submit the
workload to the remote batch system. With this option,
all input and output occur on demand back to the home
storage device. Although this approach is simple, the

throughput of a data-intensive workload will be drasti-
cally reduced by two factors. First, wide-area network
bandwidth is not sufficient to handle simultaneous batch
reads from many data-intensive pipelines running in par-
allel. Second, all pipeline output is directed back to the
home site, including temporary data that is not needed af-
ter the computation completes.

The second option, pre-staging, is for the user to man-
ually configure the system to replicate batch data sets in
the remote environment. This approach requires the user
to have or obtain an account in the remote environment,
identify the necessary input data, transfer that data to the
remote site, log into the remote system, unpack the data
in an appropriate location, configure the workload to rec-
ognize the correct directories (possibly using /tmp for
temporary pipeline data), submit the workload, and man-
ually deal with any failures. The entire process must be
repeated whenever more data needs to be processed, new
batch systems become available, or existing systems no
longer have capacity to offer to the user. As is obvious
from the description, this configuration process is labor-
intensive and error-prone; additionally, using /tmp can
be challenging because its availability cannot be guaran-
teed. Another limitation is that because the user has made
these configurations independently of the scheduling sys-
tem, the scheduling system is not able to correctly check-
point pipelines within the workload. Still, many users go
to these lengths simply to run their workloads.

Traditional distributed file systems would be a better
solution but are typically not available due to administra-
tive desire to preserve autonomy across domain bound-
aries. Even were such systems available, their fixed poli-
cies prevent them from being viable for batch-pipelined
workloads. Consider, for example, BLAST [3], a com-
monly used genomic search program, consisting of a sin-
gle stage pipeline that searches through a large shared
dataset for protein string matches. Assume a user were to
run BLAST on a compute cluster of 100 nodes equipped
with a conventional distributed file system such as AFS
or NFS. With cold caches, all 100 nodes will individually
(and likely simultaneously) access the home server with
the same large demands, resulting in poor performance as
the dataset is redundantly transferred over the wide area
network. Once the caches are loaded, each node will run
at local disk speeds, but only if the dataset can fit in its
cache. If it cannot, the node will thrash and generate an
enormous amount of repetitive traffic back to the home
server. Further, lacking workload information, each node
must employ some mechanism to protect the consistency
and availability of its cached data.

In contrast, a batch-aware system such as BAD-FS has
a global view of the hardware configuration and workflow
structure; it can execute such workloads much more effi-
ciently by copying the dataset a single time over the wide

3

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

queries

catalogscheduler home storage

SSSS

CCCCCCCC

movement
data

remote cluster #1 remote cluster #2

status
updatesjob and data

placements
complete

job

notices

S

Figure 2: System Architecture. Circles are compute servers, which
execute batch jobs. Squares are storage servers, which hold cached in-
puts and temporary outputs. Both types of servers report to a catalog
server, which records the state of the system. The scheduler uses infor-
mation from the catalog to direct the system by configuring storage de-
vices and submitting batch jobs. The gray shapes are novel elements in
our design; the white are standard components found in batch systems.

area and sharing or duplicating the data at the remote clus-
ter. Further, explicit knowledge of sharing characteristics
permits such a system to dispense with the expense and
complexity of consistency checks while allowing nodes
to continue executing even while disconnected.

3 Architecture
In this section, we present the architecture and implemen-
tation of BAD-FS. Recall that the main goal of the de-
sign of BAD-FS is to export sufficient control to a remote
scheduler to allow it to deliver improved performance and
better fault-handling for I/O-intensive batch workloads
run on remote clusters. Figure 2 summarizes the archi-
tecture of BAD-FS, with the novel elements shaded gray.

BAD-FS is structured as follows. Two types of server
processes manage local resources. A compute server ex-
ports the ability to transfer and execute an ordinary user
program on a remote CPU. A storage server exports ac-
cess to disk and memory resources via remote procedure
calls that resemble standard file system operations. It
also permits remote users to allocate space via an abstrac-
tion called volumes. Interposition agents bind unmodified
workloads running on compute servers to storage servers.
Both types of servers periodically report themselves to a
catalog server, which summarizes the current state of the
system. A scheduler periodically examines the state of
the catalog, considers the work to be done, and assigns
jobs to compute servers and data to storage servers. The
scheduler may obtain data, executables, and inputs from
any number of external storage sites. For simplicity, we
assume the user has all the necessary data stored at a sin-
gle home storage server such as a standard FTP server.

From the perspective of the scheduler, compute and
storage servers are logically independent. A specialized
device might run only one type of server process: for ex-

ample, a diskless workstation runs only a compute server,
whereas a storage appliance runs only a storage server.
However, a typical workstation or cluster node has both
computing and disk resources and thus runs both.

BAD-FS may be run in an environment with multiple
owners and a high failure rate. In addition to the usual
network and system errors, BAD-FS must be prepared to
for eviction failures in which shared resources may be re-
voked without warning. The rapid rate of change in such
systems creates possibly stale information in the catalog.
BAD-FS must also be prepared to discover that the servers
it attempts to harness may no longer be available.

BAD-FS makes use of several standard components.
Namely, the compute servers are Condor [38] startd
processes, the storage servers are modified NeST stor-
age appliances [8], the interposition agents are Par-
rot [55] agents, and the catalog is the Condor matchmaker.
The servers advertise themselves to the catalog via the
ClassAd [43] resource description language.

3.1 Storage Servers
Storage servers are responsible for exporting the raw stor-
age of the remote sites in a manner that allows efficient
management by remote schedulers. A storage server does
not have a fixed policy for managing its space. Rather,
it makes several policies accessible to external users who
may carve up the available space for caching, buffering, or
other tasks as they see fit. Using an abstraction called vol-
umes, storage servers allow users to allocate space with
a name, a lifetime, and a type that specifies the policy
by which to internally manage the space. The BAD-FS
storage server exports two distinct volume types: scratch
volumes and cache volumes.

A scratch volume is a self-contained read-write file sys-
tem, typically used to localize access to temporary data.
The scheduler can use scratch volumes for pipeline data
passed between jobs and as a buffer for endpoint output.
Using scratch volumes, the scheduler minimizes home
server traffic by localizing pipeline I/O and only writing
endpoint data when a pipeline successfully completes.

A cache volume is a read-only view of a home server,
created by specifying the name of the home server and
path, a caching policy (i.e., LRU or MRU), and a maxi-
mum storage size. Multiple cache volumes can be bound
into a cooperative cache volume by specifying the name
of a catalog server, which the storage servers query to dis-
cover their peers. A number of algorithms [16, 20] exist
for managing a cooperative cache, but it is not our intent
to explore the range of these algorithms here. Rather, we
describe a reasonable algorithm for this system and ex-
plain how it is used by the scheduler.

The cooperative cache is built using a distributed hash
table [31, 37]. The keys in the table are block addresses,
and the values specify which server is primarily responsi-

4

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

ble for that block. To avoid wide-area traffic, only the pri-
mary server will fetch a block from the home server and
the other servers will create secondary copies from the
primary. When space is needed, secondary data is evicted
before primary. To approximate locality, our initial imple-
mentation only forms cooperative caches between peers in
the same subnetwork. Although our initial analysis sug-
gests that this is sufficient, in the future we plan on inves-
tigating other more complicated grouping algorithms.

Failures within the cooperative cache, including par-
titions, are easily managed but may cause slowdown.
Should a cooperative cache be internally partitioned, the
primary blocks that were assigned to the now missing
peers will be reassigned. As long as the home server is
accessible, partitioned cooperative caches will be able to
refetch any lost data and continue without any noticeable
disturbance to running jobs.

This approach to cooperative caching has two impor-
tant differences from previous work. First, because data
dependencies are completely specified by the scheduler,
we do not need to implement a cache consistency scheme.
Once read, all data are considered current until the sched-
uler invalidates the volume. This design decision greatly
simplifies our implementation; previous work has demon-
strated the many difficulties of building a more general
cooperative caching scheme [4, 12]. Second, unlike pre-
vious cooperative caching schemes that manage cluster
memory [16, 20], our cooperative cache stores data on
local disks. Although managing memory caches cooper-
atively could also be advantageous, the most important
optimization to make in our environment is to avoid data
movement across the wide-area; managing remote disk
caches is the simplest and most effective way to do so.
3.1.1 Local vs. Global Control. Note that volumes
export only a certain degree of control to the scheduler.
Namely, by creating and deleting volumes, the scheduler
controls which data sets reside in the remote cluster. How-
ever, the storage servers retain control over per-block de-
cisions. Two such important decisions made locally by the
storage servers are the assignment of primary blocks in the
cooperative cache and cache victim selection. Of course,
if the scheduler is careful in space allocation, the cache
will only victimize blocks that are no longer needed. In
general, we have found this separation of global and local
control to be suitable for our workloads. Although more
work needs to be done to precisely identify the balance
point, it is clear that a trade-off is better than either ex-
treme. Complete local control, the current approach, suf-
fers because the policies embedded within distributed file
systems are inappropriate for batch workloads. The other
extreme, complete global control, in which the scheduler
makes decisions for each block of data, would require ex-
orbitant complexity in the scheduler and would incur ex-
cessive network traffic to exert this fine-grained control.

3.2 Interposition Agents

In order to permit ordinary workloads to make use of stor-
age servers, an interposition agent [33] transforms POSIX
I/O operations into storage server calls. The agent’s map-
ping from logical path names to physical storage volumes
is provided by the scheduler at runtime. Together, the
agent and the volume abstraction can hide a large num-
ber of errors from the job and the end user. For example,
if a volume no longer exists, whether due to accidental
failure or deliberate preemption, a storage server returns
a unique volume lost error to the agent. Upon discovering
this, the agent forcibly terminates the job, indicating that
it could not run correctly in the given environment. This
gives the scheduler clear indication of failures and allows
it to take transparent recovery actions.

3.3 The Scheduler

The BAD-FS scheduler directs the execution of a work-
load on compute and storage servers by combining a static
workload description with dynamic knowledge of the sys-
tem state. Specifically, the scheduler minimizes traffic
across the wide-area by differentiating I/O types and treat-
ing each appropriately, carefully managing remote storage
to avoid thrashing and replicating output data proactively
if that data is expensive to regenerate.

3.3.1 Workflow language. Shown in Figure 3 is an ex-
ample of the declarative workflow language that describes
a batch-pipelined workload and shows how the scheduler
converts this description into an execution plan. The key-
word job names a job and binds it to a description file,
which specifies the information needed to execute that
job. Parent indicates an ordering between two jobs. The
volume keyword names the data sources required by the
workload. For example, volume b1 comes from an FTP
server, while volumes p1 and p2 are empty scratch vol-
umes. Volume sizes are provided to allow the scheduler
to allocate space appropriately. The mount keyword binds
a volume into a job’s namespace. For example, jobs a and
c access volume b1 as /mydata, while jobs a and b share
volume p1 via the path /tmp. The extract command
indicates which files of interest must be committed to the
home server. In this case, each pipeline produces a file x
that must be retrieved and uniquely renamed.

To many readers accustomed to working in an inter-
active environment, this language may seem like an un-
usual burden. We point out that a user intending to exe-
cute batch-pipelined workloads must be exceptionally or-
ganized. Batch users already provide this information, but
it is scattered across shell scripts, make files, and batch
submission files. In addition to imparting needed infor-
mation to the BAD-FS scheduler, this workflow language
actually reduces user burden by collecting all of this dis-
persed information into a coherent whole.

5

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

job a a.condor
job b b.condor
job c c.condor
job d d.condor
parent a child b
parent c child d
volume b1 ftp://home/data 1 GB
volume p1 scratch 50 MB
volume p2 scratch 50 MB
mount b1 a /mydata
mount b1 c /mydata
mount p1 a /tmp
mount p1 b /tmp
mount p2 c /tmp
mount p2 d /tmp
extract p1 x ftp://home/out.1
extract p2 x ftp://home/out.2

(A)

x x

job
a

job
b

mount

extract extract

m
ou

nt
m

ou
ntvo

lu
m

e
p1

vo
lu

m
e

p2
m

ou
nt

m
ou

nt

job
c

d

mount

volume b1

job

home storage

out.2

out.1
/data

(B)

agent

job

scheduler catalog home storage

4. execute

6. cleanup

3. submit compute server

1. query

5. extract

2. configure

storage server
b1

c

p2

(C)

Figure 3: Workflow and Scheduler Examples. (A) A simple workflow script. A directed graph of jobs is constructed using job and parent, and
the file system namespace presented to jobs is configured with volume and mount. The extract keyword indicates which files must be committed
to the home storage server after pipeline completion. (B) A graphical representation of this workflow. (C) The scheduler’s plan for job c. (1) The
scheduler queries the catalog for the current system state and decides where to place job c and its data. (2) The scheduler creates volumes b1 and
p2 on a storage server. (3) Job c is dispatched to the compute server. (4) Job c executes, accessing its volumes via the agent. (5) After jobs c and d
complete, the scheduler extracts x from p2. (6) The scheduler frees volumes b1 and p2.

3.3.2 I/O Scoping. Unlike most file systems, BAD-
FS is aware of the flow of its data. From the workflow
language, the scheduler knows where data originates and
where it will be needed. This allows it to create a cus-
tomized environment for each job and minimize traffic to
the home server. We refer to this as I/O scoping.

I/O scoping minimizes traffic in two ways. First, co-
operative cache volumes are used to hold read-only batch
data such as b1 in Figure 3. Such volumes may be reused
without modification by a large number of jobs. Second,
scratch volumes, such as p2 in Figure 3, are used to lo-
calize pipeline data. As a job executes, it accesses only
those volumes that were explicitly created for it; the home
server is accessed only once for batch data and not at all
for pipeline.

3.3.3 Consistency management. With the workload
information expressed in the workflow language, the
scheduler neatly addresses the issue of consistency man-
agement. All of the required dependencies between jobs
and data are specified directly. Since the scheduler only
runs jobs so as to meet these constraints, there is no need
to implement a cache consistency protocol among the
BAD-FS storage servers.

The user may make mistakes in the workflow descrip-
tion that can affect both cache consistency and correct fail-
ure recovery. However, through an understanding of the
expected workload behavior as specified by the user, the
scheduler can easily detect these mistakes and warn the
user that the results of the workload may have been com-
promised. We have not yet implemented these detection
features, but the architecture readily admits them.

3.3.4 Capacity-Aware Scheduling. The scheduler is
responsible for throttling a running workload to avoid per-
formance faults and maximize throughput. By carefully
allocating volumes, the scheduler avoids overflowing stor-
age or thrashing caches. Although disk capacity is rapidly
increasing, the size of data sets is also growing and space
management remains important [4, 6, 23]. The scheduler
manages space by retrieving a list of available storage
from the catalog server and selecting the ready job with
the least unfulfilled storage needs, whether pipe or batch.
If the scheduler is able to allocate all of that job’s vol-
umes, then it allocates and configures these volumes and
schedules the job. If there are no jobs to execute or not
enough available space, then the scheduler waits for a job
to complete, more resources to arrive, or for a failure to
occur. Note that due to a lack of complete global control,
the scheduler may need to slightly overprovision when the
needed volume size approaches the storage capacity.

In other scheduling domains, selecting the smallest job
first can result in starvation. In this domain, however, star-
vation is avoided because a workflow is a static entity ex-
ecuted by one scheduler. Although smaller jobs will run
first, all jobs will eventually be run.
3.3.5 Failure Handling. Finally, the scheduler makes
BAD-FS robust to failures by handling failures of jobs,
storage servers, the catalog, and itself. One aspect of
batch workloads that we leverage is job idempotency; a
job can simply be rerun in order to regenerate its output.

The scheduler keeps a log of allocations in persistent
storage, and uses a transactional interface to the compute
and storage servers. If the scheduler fails, then allocated
volumes and running jobs will continue to operate un-

6

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

aided. If the scheduler recovers, it simply re-reads the
log to discover what resources have been allocated and
resumes normal operations. Recording allocations persis-
tently allows them to be either re-discovered or released
in a timely manner. If the log is irretrievably lost, then
the workflow must be resumed from the beginning; previ-
ously acquired leases will eventually expire.

In contrast, the catalog server uses soft state. Since the
catalog is only used to discover new resources, there is no
need to recover old state from a crash. When the catalog
is unavailable, the scheduler will continue to operate on
known resources, but will not discover new ones. When
the catalog server recovers, it rebuilds its knowledge as
compute and storage servers send periodic updates.

The scheduler waits for passive indications of failure
in compute and storage servers and then conducts active
probes to verify. For example, if a job exits abnormally
with an error indicating a failure detected by the interpo-
sition agent, then the scheduler suspects that the storage
servers housing one or more of the volumes assigned to
the job are faulty. The scheduler then probes the servers.
If all volumes are healthy, it assumes the job encountered
transient communication problems and simply reruns it.
However, if the volumes have failed or are unreachable
for some period of time, they are assumed lost.

The failure of a volume affects the jobs that use it. As
a design simplification, the scheduler considers a partial
volume failure to be a failure of the entire volume; in the
future we plan to investigate the trade-offs involved in the
choice of failure granularities. Running jobs that rely on
a failed volume must be stopped. In addition, failures can
cascade; completed processes that wrote to a volume must
be rolled back and re-run. In order to avoid these expen-
sive restarts of a pipeline, the scheduler may checkpoint
scratch volumes as pipeline stages complete.

Of course, determining an optimal checkpoint interval
is an old problem [27]. The solution depends upon the
likelihood of failure, the value of a checkpoint, and the
cost to create it. Unlike most systems, BAD-FS can solve
this problem automatically, because the scheduler is in a
unique position to measure the controlling variables. The
scheduler performs a simple cost-benefit analysis at run-
time to determine if a checkpoint is worthwhile.

The algorithm works as follows. The scheduler tracks
the average time to replicate a scratch volume. This cost is
initially assumed to be zero in order to trigger at least one
replication and measurement. To determine the benefit of
replication, the scheduler tracks the number of job and
storage failures and computes the mean-time-to-failure
across all devices in the system. The benefit of repli-
cating a volume is the sum of the run times of those jobs
completed so far in the applicable pipeline multiplied by
the probability of failure. If the benefit exceeds the cost,
then the scheduler replicates the volume on another stor-

age server as insurance against failure. If the original fails,
the scheduler restarts the pipeline using the saved copy.

Due to its robust failure semantics, the scheduler need
not handle network partitions any differently than other
failures. When partitions are formed between the sched-
uler and compute servers, the scheduler may choose to
reschedule any jobs that were running on the other side
of the partition. In such a situation, it is possible that
the partition could be resolved, at which point the sched-
uler will find that multiple servers are executing the same
jobs. Note that this will not introduce errors because each
job writes to distinct scratch volumes. The scheduler may
choose one output to extract and then discard the other.

3.4 Practical Issues

One of the primary obstacles to deploying a new dis-
tributed system is the need for a friendly administrator.
Whether deploying an operating system, a file system, or
a batch system, the vast majority of such software requires
a privileged user to install and oversee the software. Such
requirements make many forms of distributed computing
a practical impossibility; the larger and more powerful
the facility, the more difficult it is for an ordinary user
to obtain administrative privileges. To this end, BAD-FS
is packaged as a virtual batch system that can be deployed
over an existing batch system without special privileges.
This technique is patterned after the “glide-in job” de-
scribed by Frey et al. [26] and is similar in spirit to re-
cursive virtual machines [22].

To run BAD-FS, an ordinary user need only to be able
to submit jobs into an existing batch system. BAD-FS
bootstraps itself on these systems, relying on the basic
ability to queue and run a self-extracting executable pro-
gram containing the storage and compute servers and the
interposition agent. Once deployed, the servers report to
a catalog server, and the scheduler may then harness their
resources. Note that the scheduling of the virtual batch
jobs is at the discretion of the host system; these jobs may
be interleaved in time and space with jobs submitted by
other users. We have used this technique to deploy BAD-
FS over several existing Condor and PBS batch systems.

Another practical issue is security. BAD-FS currently
uses the Grid Security Infrastructure (GSI) [24], a public
key system that delegates authority to remote processes
through the use of time-limited proxy certificates. To
bootstrap the system, the submitting user must enter a
password to unlock the private key at his/her home node
and generate a proxy certificate with a user-settable time-
out. The proxy certificate is delegated to the remote sys-
tem and used by the storage servers to authenticate back to
the home storage server. This requires that users trust the
host system not to steal their secrets, which is reasonable
in a c2c environment.

7

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

 0

 1000

 2000

 3000

 4000

 5000

PipeBatch
100% Mixed100%

H
om

e
tr

af
fic

 (
M

B
)

Traffic

Remote
Pipe-local

Caching
BAD-FS

PipeBatch
100% Mixed100%

 0

 1000

 2000

 3000

 4000

 5000

 6000

R
un

tim
e

(s
)

Runtime

Figure 4: I/O Scoping: Traffic Reduction and Run Times. These
graphs show the total amount of network traffic generated by and run-
times for a number of different workloads with different optimizations
enabled. For this experiment, we run 48 synthetic pipelines of depth 4,
each of which generates a total of 100 MB I/O. Across the x-axis we vary
the relative amounts of batch I/O and pipeline I/O. For example, at 100%
Batch, the workload generates 100 MB of batch I/O and no pipeline. As
is common in these types of workloads, the amount of endpoint I/O is
small (1 KB). The leftmost graph shows the total amount of home server
traffic; the right shows total runtimes when the home server is accessed
over an emulated wide-area network (set at 1 MB/s).

4 Experimental Evaluation
In this section, we present an experimental evaluation
of BAD-FS under a variety of workloads. We first
present our methodology, and then focus on I/O scoping,
capacity-aware scheduling, and failure handling, using
synthetic workloads to understand system behavior. Sec-
ond, we present our experience with running real work-
loads on our system in a controlled environment. Finally,
we discuss our initial experience using BAD-FS to run
real workloads across multiple clusters in the wild.

4.1 Methodology
In the initial experiments in this section, we build an envi-
ronment similar to that described in Section 2. We assume
the user’s input data is stored on a home server; once all
pipelines have run and all output data is safely stored back
at the home server, the workload is considered complete.

We assume that the workload is run on a remote clus-
ter of machines, accessible from the user’s home server
via a wide-area link. To emulate this scenario, we limit
the bandwidth to the home server to 1 MB/s via a simple
network delay engine similar to DummyNet [44]. Thus,
all I/O between the remotely run jobs and the home server
must traverse this slow link. The cluster itself is taken
from a dedicated compute pool of Condor nodes at the
University of Wisconsin, connected via a 100 Mbit/s Eth-
ernet switch. Each node has two Pentium-3 processors,
1 GB of physical memory and a 9 GB IBM SCSI drive, of
which only a 1 GB partition is made available to Condor
jobs. Of these 1 GB partitions, typically only about half
is available at any one time as the rest awaits lazy garbage
collection.

To explore the performance of BAD-FS under a range
of workload scenarios, we utilize a parameterized syn-
thetic batch-pipelined workload. The synthetic work-

load can be configured to perform varying amounts of
endpoint, batch, and pipeline I/O, compute for different
lengths of time, and can exhibit different amounts of both
batch and pipeline parallelism. As each experiment re-
quires different parameters, we leave those descriptions
for the individual figure captions. However, given our
previous results in workload analysis [54], we focus on
batch-intensive workloads, which exhibit a high degree of
batch sharing but little pipeline or endpoint I/O, and pipe-
intensive, which perform large amounts of pipeline I/O
but generate little batch or endpoint I/O.

4.2 I/O Scoping
The results of the first experiment, as shown in Figure 4,
demonstrate how BAD-FS uses I/O scoping to minimize
traffic across the wide area by localizing pipeline I/O in
scratch volumes and reusing batch data in cooperative
cache volumes. Although these optimizations are straight-
forward, their ability to increase throughput is significant.

In this experiment, we repeatedly run the same syn-
thetic workload but vary the relative amount of batch and
pipeline I/O. We compare a number of different system
configurations. In the remote configuration, all I/O is sent
to the home node. Against this baseline, we compare the
pipeline localization and caching optimizations. Finally,
both optimizations are combined in the BAD-FS config-
uration. Note that in these experiments, we assume co-
pious cache space and a controlled environment; neither
capacity-aware scheduling nor failure recovery is needed.

The left-hand graph shows the total I/O that is trans-
ferred over the wide-area network. Not surprisingly,
the cooperative cache greatly reduces batch traffic to the
home node by ensuring that all but the first reference
to a batch data set is retrieved from the cache. We
can also see that the pipeline localization optimizations
work as expected, removing pipeline I/O entirely from
the home server. Finally, we see that neither optimiza-
tion in isolation is sufficient; only the BAD-FS configura-
tion that combines both is able to minimize network traf-
fic throughout the entire workload range. The right-hand
graph in Figure 4 shows the runtimes of the workloads on
our emulated remote cluster. From this graph, we can see
the direct impact that wide-area traffic has on runtime.

4.3 Capacity-Aware Scheduling
Next, we examine the benefits of explicit storage manage-
ment. The previous experiments were run in an environ-
ment where storage was not used to near capacity. With
the increasing size of batch data sets and storage sharing
by jobs and users, the scheduler must carefully manage
remote space so as to avoid wide-area thrashing.

For these experiments, we compare the capacity-aware
BAD-FS scheduler to two simple variants: a depth-first
scheduler and a breadth-first scheduler. These algorithms
are not aware of the data needs of the workload and

8

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

 0

 10

 20

 30

 40

 50

 60

100%75%50%25%0%

R
un

tim
e

(h
ou

rs
)

Batch Intensive

DFS
BFS

BAD-FS

 0

 1

 2

 3

 4

100%75%50%25%0%

N
or

m
al

iz
ed

 h
om

e
tr

af
fic

Batch data (% of total coop cache)

DFS
BFS

BAD-FS

Figure 5: Batch-intensive Explicit Storage Management. These
graphs show the benefits of explicit storage management under a batch-
intensive workload. The workload consists of 32 4-stage pipelines;
within each stage, each process streams through a shared batch file (i.e.,
there are 4 batch files total). Batch file size is varied as a percentage
of the total amount of cooperative cache space available across the 16
nodes in the experiment. All other I/O amounts are negligible. Each of
16 nodes has local storage which is used as a portion of the cache. The
total cache size available is set to 8 GB (100% on the x-axis), which
reflects our observations of available storage in the UW Condor pool.

base decisions solely on the job structure of its workflow.
Depth-first simply assigns a single pipeline to each avail-
able CPU and runs all jobs in the pipeline to completion
before starting another. Conversely, breadth-first attempts
to execute all jobs in a batch to completion before de-
scending to the next horizontal batch slice.

Each is correct for certain types of workloads, but can
lead to poor storage allocations in others. For example,
depth-first scheduling of a batch-intensive workload is
more likely to cause thrashing because it attempts to si-
multaneously cache all of the batch datasets. Similarly,
breadth-first scheduling of a pipe-intensive workload is
more likely to over-allocate storage because it creates al-
locations for all pipelines before completing any.

4.4 Batch-intensive Capacity-Aware Scheduling
Figure 5 illustrates the importance of capacity-aware
scheduling through measurements of batch-intensive
workloads scheduled using various algorithms. Each
workload is of depth four and thus has four large batch
data sets, each of which takes up some sizable fraction
of the available cooperative cache in the remote cluster
(as varied along the x-axis). The upper graph shows the
runtime and the lower presents the amount of wide-area
traffic generated, normalized to the size of the batch data.

We can make a number of observations from these
graphs. First, the similarity between the graphs validates
that the wide-area network link is the bottleneck resource.
Second, as expected, the different policies achieve similar
results as long as the entirety of all four batch data sets
fits within the caches (i.e., up to 25%). As the size of the

 0

 2

 4

 6

 8

100%75%50%25%0%

R
un

tim
e

(h
ou

rs
)

Pipe intensive

BFS
DFS

BAD-FS

 0

 4

 8

 12

100%75%50%25%0%

F
ai

lu
re

s
(h

un
dr

ed
s)

Pipe size (% of shared disk)

BFS
DFS

BAD-FS

Figure 6: Pipe-intensive Explicit Storage Management. These
graphs depict the benefits of explicit storage management under a pipe-
intensive workload. The workload consists of 32 4-stage pipelines, and
pipe data size is varied as a percent of total storage available. All other
I/O amounts are negligible. There are 16 compute servers and 1 storage
server in this experiment (representing a set of diskless clients and a
single server). The storage space at the server is constrained to 512 MB.

batch data approaches the total capacity of the coopera-
tive cache, the runtime and wide-area traffic increase for
depth-first scheduling. As the total batch data no longer
fits in cache, depth-first scheduling must refetch batch
data for each pipeline. In this case, this results in three
extra fetches because with 64 pipelines and 16 compute
servers, each server executes four pipelines.

Third, note that the runtime actually begins to increase
slightly before 25%. The reason for this inefficiency is
the lack of complete global control allowed through the
current volume interface. In this case, the local coopera-
tive cache hash function is not perfectly distributing data
across its peers; when the cache nears full utilization, this
skew overloads some nodes and results in extra traffic to
the home server. Because we believe that this trade-off
between local and global control is correct, the implica-
tion here is that the scheduler must be aware not only of
the overall utilization of the cooperative cache, but also of
the utilization of each peer.

Finally, breadth-first and BAD-FS scheduling are able
to retain linear performance in this regime because they
ensure that the total amount of batch data accessed at any
one time does not exceed the capacity of the coopera-
tive cache. However, once each individual batch dataset
exceeds the capacity of the cooperative cache, the per-
formance of breadth-first and BAD-FS scheduling con-
verges with that of depth-first. Note that the same inef-
ficiency that caused depth-first to deviate slightly before
25% causes this to happen slightly before 100%.

4.5 Pipe-intensive Capacity-Aware Scheduling
In our next set of cache management experiments, we fo-
cus on a pipeline-intensive workload instead of a batch-

9

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

 0

 3

 6

 9

 12

MTBF 180 secsNo failure
LargeSmallLargeSmall

T
hr

ou
gh

pu
t

(jo
bs

 /
m

in
ut

e)
Always-copy
Never-copy

BAD-FS

Figure 7: Failure Handling. This graph shows the behavior of the
cost-benefit strategy under different failure scenarios. Shown are two
different workloads of width 64, depth 3 and one minute of CPU time;
one performs a small amount of pipeline I/O, the other a large amount.
Each is run both during periods of high and low rates of failure. Fail-
ures were induced using an artificial failure generator which formatted
disks at random with a mean time between failures of 180 seconds, cor-
responding to the total runtime of a single pipe.

intensive one. In this case, we expect the capacity-aware
approach to follow the depth-first strategy more closely.
Results are presented in Figure 6.

In the lower graph, we plot the number of failed jobs
that each strategy induces. Job failure arise in this work-
load when there is a shortage of space for pipeline out-
put; in such a scenario, a job that runs out of space for
pipeline data aborts and must be rerun at some later time.
Hence, the number of job failures due to lack of space is
a good indicator of the scheduler’s success in scheduling
pipeline-intensive jobs under space constraints.

From the graph, we can observe that breadth-first
scheduling is unable to prevent thrashing. In contrast, the
capacity-aware BAD-FS scheduler does not exceed the
available space for pipelines and thus never observes an
aborted job. This careful allocation results in a drastically
reduced runtime which is shown in the upper graph.

The stair-step pattern in the runtime of BAD-FS results
from this careful allocation. When the size of the data in
each pipeline is between 25% and 33% of the total stor-
age, BAD-FS schedules workload jobs on only 3 of the 16
available CPUs; between 33% and 50% on just two; and
as the data exceeds 50%, BAD-FS allocates only a single
CPU at a time. Notice that BAD-FS achieves runtimes
comparable or better than that of depth-first scheduling
without any wasted resource consumption.

4.6 Failure Handling
We now show the behavior of BAD-FS under varying fail-
ure conditions. Recall that unlike traditional distributed
systems, the BAD-FS scheduler knows exactly how to
re-create a lost output file; therefore, whether to make a
replica of a file on the remote cluster should depend on the
cost of generating the data versus the cost of replicating
it. This choice varies with the workload and the system
conditions. Figure 7 shows how the BAD-FS cost-benefit
analysis adapts to a variety of workloads and conditions.
We compare to two naive algorithms: always-copy, which
replicates a pipeline volume after each of its stages com-
pletes and never-copy, which does not replicate at all.

We draw several conclusions from this graph. In an
environment without failure, replication leads to exces-
sive overhead that increases with the amount of data. In
this case BAD-FS outperforms always-copy but does not
quite match never-copy because of the initial replication
it needs to seed its analysis. In an environment with fre-
quent failure, it is not surprising that BAD-FS outper-
forms never-copy. Less intuitively, BAD-FS also out-
performs always-copy. In this case, given the particu-
lars of the workload and the failure rate, replicating is
only worthwhile after the second stage; BAD-FS correctly
avoids replicating after the first stage while always-copy
naively replicates after all stages.

4.7 Workload Experience
We conclude with demonstrations of the system running
real workloads. In the first demonstration as presented in
Figure 8, we compare the runtime performance of BAD-
FS to other methods of utilizing local storage resources.
In the remote configuration, local storage is not utilized
at all and all I/O is executed directly at the home node.
Standalone emulates AFS by caching data at the execute
nodes but without any cooperative caching among their
storage servers. The leftmost graph shows results for re-
mote workload execution in which the bandwidth to the
home server was constrained at 1 MB/s; the rightmost
shows local workload execution in which the home server
was situated within the same local area network as the ex-
ecute nodes.

From these graphs, we can draw several conclusions.
First, BAD-FS equals or exceeds the performance of re-
mote I/O or standalone caching for all of the workloads in
all of the configurations. These workloads, which are dis-
cussed in great detail in our earlier profiling work [54], all
have large degrees of either batch or pipeline data shar-
ing. Note that workloads whose I/O consists entirely of
endpoint data would gain no benefit from our system.

Second, the benefit of caching, either cooperatively or
in standalone mode, is greater for batch-intensive work-
loads, such as BLAST, than it is for more pipe-intensive
ones such as HF. In these pipe-intensive workloads, the
important optimization is pipeline localization, which is
performed by both BAD-FS and standalone.

Third, cooperative caching in BAD-FS can outperform
standalone both during cold and warm phases of execu-
tion. If the entire batch data set fits on each storage server,
then cooperative caching is only an improvement while
the data is being initially paged in. However, should the
data exceed the capacity of any of the caches, then coop-
erative caching, unlike standalone, is able to aggregate the
cache space and fit the working set.

This benefit of cooperative caching with warm caches
is illustrated in the BLAST measurements in the graph
on the left of Figure 8. Logfile analysis showed that

10

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

 10

 100

 1000

 10000

 100000

C W
IBIS

C W
HF

C W
CMS

C W
BLAST

C W
AMANDA

R
un

tim
e

(s
)

Wide-area execution

Remote
Standalone

BAD-FS

 10

 100

 1000

 10000

 100000

C W
IBIS

C W
HF

C W
CMS

C W
BLAST

C W
AMANDA

R
un

tim
e

(s
)

Local-area execution

Remote
Standalone

BAD-FS

Figure 8: Workload Experience. These graphs show runtime measurements of real workloads. For each workload, we submit 64 pipelines into
a dedicated Condor pool of 16 CPUs. This Condor pool accesses local storage resources in one of three configurations: remote in which all I/O
is redirected back to the home node; standalone, which emulates AFS-like caching to the home server; and BAD-FS. For each measurement, we
present average runtime for the first jobs to run on each storage server when the storage cache is cold (C) and for the subsequent jobs which run
when the cache is warm (W). The graph on the left shows runtimes when the workload is executed on a cluster separated from the home node by an
emulated wide-area link (again set to 1 MB/s). On the right the home node is located within the same local area network. Note that the y-axis is
shown in log scale to accentuate points of interest. Detailed information about these workloads can be found in our profiling study [54].

two of the storage servers had slightly less cache space
(� 500 MB) than was needed for the total BLAST batch
data (� 600 MB). As subsequent jobs accessed these
servers, they were forced to refetch data. Refetching it
from the wide-area home server in the standalone case
was much more expensive than refetching from the co-
operative cache as in BAD-FS. With a local-area home
server this performance advantage disappears. The dif-
ferent behavior of these two servers also explains the in-
creased variability shown in these measurements.

Fourth, the penalty for performing remote I/O to the
home node is less severe but still significant when the
home node is in the same local-area network as the ex-
ecute cluster. This result illustrates that BAD-FS can im-
prove performance even when the bandwidth to the home
server is not obviously a limiting resource.

Finally, comparing across graphs we make the further
observation that BAD-FS performance is almost indepen-
dent of the connection to the home server when caches are
cold and becomes independent once they are warm. Using
I/O scoping, BAD-FS is able to achieve local performance
in remote environments.

4.8 In the Wild
Thus far, our evaluations have been conducted in con-
trolled environments. We conclude our experimental pre-
sentation with a demonstration that BAD-FS is capable of
operating in an uncontrolled, real world environment.

We created a wide-area BAD-FS system out of two
existing batch systems. At the University of Wisconsin
(UW), a large Condor system of over one thousand CPUs,
including workstations, clusters, and classroom machines,
is shared among a large number of users. At the Uni-
versity of New Mexico (UNM), a PBS system manages a
cluster of over 200 dedicated machines.

We established a personal scheduler, catalog, and home
storage server for our use at Wisconsin and then submitted
a large number of BAD-FS bootstrap jobs to both batch
systems without installing any special software at either
of the locations. We then directed the scheduler to execute
a large workload consisting of 2500 CMS pipelines using
whatever resources became available.

Figure 9 is a timeline of the execution of this workload.
As expected, the number of CPUs available to us varied
widely, due to competition with other users, the avail-
ability of idle workstations (at UW), and the vagaries of
each batch scheduler. UNM consistently provided twenty
CPUs, later jumping to forty after nine hours. Two spikes
in the available CPUs between 4 and 6 hours are due to
the crash and recovery of the catalog server; this resulted
in a loss of monitoring data, but not of running jobs.

The benefits of cooperative caching are underscored in
such a dynamic environment. In the bottom graph, the
cumulative read traffic from the home node is shown to
have several hills and plateaus. The hills correspond to
large spikes in the number of available CPUs.

Whenever CPUs from a new subnet begin executing,
they fetch the batch data from the home node. However,
smaller hills in the number of available CPUs do not have
an effect on the amount of home read traffic because a new
server entering an already established cooperative cache is
able to fetch most of the batch data from its peers.

Finally, Figure 9 illustrates that both the design and
implementation of BAD-FS are suitable for running I/O
intensive, batch-pipelined workloads across multiple, un-
controlled real world clusters. Through failures and dis-
connections, BAD-FS continues making steady progress,
removing the burden from the user of scheduling, moni-
toring, and resubmitting jobs.

11

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

 0

 40

 80

 120

 160

 200
CPUs total
CPUs @ UW
CPUs @ UNM

 0

 50

 100

 150

 200

 250
jobs running
tens of jobs complete

 0

 2

 4

 6

 8

 10

 12

 14

00:00 02:00 04:00 06:00 08:00 10:00 12:00

writes to server (GB)
reads from server (GB)

Figure 9: In the Wild These three graphs present a timeline of the
behavior of a large CMS workload run using BAD-FS. The workload
consisted of 2500 CMS pipelines and was run wherever resources could
be scavenged from a collection of CPUs at the University of New Mexico
running PBS and from CPUs at the University of Wisconsin running
Condor. The topmost timeline presents the total number of CPUs, the
middle shows number of jobs running and cumulative jobs completed,
and the bottom shows the cumulative traffic incurred at the home server.

5 Related Work
In designing BAD-FS, we drew on related work from a
number of distinct areas. Workflow management has his-
torically been the concern of high-level business manage-
ment problems involving multiple authorities and com-
puter systems in large organizations, such as approval of
loans by a bank or customer service actions by a phone
company [28]. Our scheduler works at a lower semantic
level than such systems; however, it does borrow several
lessons from them, such as the integration of procedural
and data elements [47]. The automatic management of
dependencies for both performance and fault tolerance is
found in a variety of tools [10].

Many other systems have also managed dependencies
among jobs. A basic example is found with the UNIX

tool make. More elaborate dependency tracking has been
explored in Vahdat and Anderson’s work on transparent
result caching [56]; in that work, the authors build a tool
that tracks process lineage and file dependency automat-
ically. Our workflow description is a static encoding of
such knowledge.

The manner in which the scheduler constructs pri-
vate namespaces for running workloads is reminiscent
of database views [32]. However, a private namespace
is simpler to construct and maintain; views, in contrast,

present systems with many implementation challenges,
particularly when handling updates to base tables and
their propagation into extant materialized views.

BAD-FS could be further improved through the
prefetching of batch datasets. Other work [13] has noted
the difficulty in correctly predicting future access patterns.
In BAD-FS, however, these are explicitly supplied by the
user via the declarative workflow description.

There has been much recent work in peer-to-peer stor-
age systems [1, 4, 15, 35, 39, 46, 48]. Although each of
these systems provides interesting solutions to the prob-
lem domain for which they are intended, each falls short
when applied to the context of batch workloads, for the
same reasons that distributed file systems are not a good
match. However, many of the overlays developed for
these environments may be useful for communication be-
tween clusters, something we plan to investigate in future
work. Similar to p2p is work within grid computing [25],
which uses many of the same techniques but is designed,
as is BAD-FS, for c2c environments. One such example
is Cluster-on-Demand [14] which offers sophisticated re-
source clustering techniques that could be used by BAD-
FS to form cooperative cache groupings.

Extensible systems also share our approach of allowing
the application more control [9, 19, 51]. Although recent
work has recently revisited this approach [5], extensible
systems have not been commercially successful because
the need for specialized policies is not so great. We be-
lieve this need is greater for batch workloads running on
systems designed for interactive use.

Some research in mobile computing bears similarity as
well. Flinn et al. discuss the process of data staging on
untrusted surrogates [21]. In many ways, such a surrogate
is similar to the BAD-FS storage server; the major differ-
ence is that the surrogate is primarily concerned with trust,
whereas our servers are primarily concerned with expos-
ing control. Both Zap [40] and VMWare [49] allow for the
checkpointing and migration of either processes or operat-
ing systems. We create a remote virtual environment, but
at the much higher level of a batch system. Systems with
secure interposition such as Janus [30] complement BAD-
FS as they should make resource owners more willing to
donate their resources into shared pools.

Finally, BAD-FS is similar to other distributed file sys-
tems. The Google File System [29] was also motivated
by workloads that deviate from earlier file system assump-
tions. An additional similarity is a simplified consistency
implementation; however, GFS must relax consistency se-
mantics to enable this, while BAD-FS does so through ex-
plicit control. Earlier work on Coda, and AFS before it, is
also applicable [34]. These systems use caching for avail-
ability, so as to allow disconnected operation. In BAD-FS,
storage servers enact a similar role.

12

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

6 Conclusions
“He’s a big bad wolf in your neighborhood;
not bad meaning bad but bad meaning good.”
Run DMC, from ’Peter Piper’

Allowing external control has long been recognized as
a powerful technique to improve many aspects of system
performance. By moving control to the external user of a
system, that system allows the user to dictate the policy
that is most appropriate to the individual nature of their
work. Systems lacking mechanisms for external control
can only speculate. However, many systems have proven
to be adept at speculation and work well for the majority
of their workloads. In this paper we have argued that the
distinct nature of batch workloads is not well matched by
the design of traditional distributed file systems and the
need therefore for external control is greater.

We have described BAD-FS, a distributed file sys-
tem that exposes internal control decisions to an external
scheduler. Using detailed knowledge of workload char-
acteristics, the scheduler carefully manages remote re-
sources and facilitates the execution of I/O intensive batch
jobs on both wide-area and local-area clusters. Through
synthetic and real workload measurements in both con-
trolled and uncontrolled environments, we have demon-
strated the ability of BAD-FS to use workload specific
knowledge to improve throughput by selecting appropri-
ate storage policies in regards to I/O scoping, space allo-
cation and cost-benefit replication.

7 Acknowledgments
We would like to thank Nate Burnett, Nicholas Cole-
man, Tim Denehy, Barry Henrichs, Florentina Popovici,
Muthian Sivathanu and Vijayan Prabhakaran from our de-
partment for their helpful discussions and comments on
this paper. We are grateful for the excellent support pro-
vided by the members of the UW CSL.

We also wish to state our appreciation to Jeff Chase
for his thoughtful analysis of our work throughout the de-
velopment of this project. Finally, we thank our anony-
mous reviewers for their many helpful suggestions and
Eric Brewer for his excellent and insightful shepherding,
which has substantially improved both the content and the
presentation of this paper.

This work is sponsored in part by NSF CCR-
0092840, NSF UF00111, NGS-0103670, CCR-0133456,
CCR-0098274, ITR-0086044, and ITR-0325267, DOE
DE-FC02-01ER25450, the Wisconsin Alumni Research
Foundation, EMC, and IBM.

References
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.

Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Watten-
hofer. FARSITE: Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation (OSDI
’02), Boston, MA, Dec 2002.

[2] R. Agrawal, T. Imielinski, and A. Swami. Database Mining: A
Performance Perspective. IEEE Transactions on Knowledge and
Data Engineering, 5(6):914–925, Dec 1993.

[3] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, , and D. J. Lipman. Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. In Nucleic
Acids Research, pages 3389–3402, 1997.

[4] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, and R. Wang.
Serverless Network File Systems. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP ’95), pages
109–26, Copper Mountain, CO, Dec 1995.

[5] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnett, T. E.
Denehy, T. J. Engle, H. S. Gunawi, J. Nugent, and F. I. Popovici.
Transforming Policies into Mechanisms with Infokernel. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’03), Bolton Landing (Lake George), NY, Oct 2003.

[6] Avery, P. et al. CMS Virtual Data Requirements. kholt-
man.home.cern.ch/kholtman/tmp/cmsreqsv6.ps, 2001.

[7] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ousterhout.
Measurements of a Distributed File System. In Proceedings of
the 13th ACM Symposium on Operating Systems Principles (SOSP
’91), pages 198–212, Pacific Grove, CA, Oct 1991.

[8] J. Bent, V. Venkataramani, N. Leroy, A. Roy, J. Stanley, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. Livny. Flexi-
bility, Manageability, and Performance in a Grid Storage Appli-
ance. In Proceedings of High-Performance Distributed Computing
(HPDC-11), pages 3–12, Edinburgh, Scotland, Jul 2002.

[9] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczyn-
ski, D. Becker, C. Chambers, and S. Eggers. Extensibility, Safety
and Performance in the SPIN Operating System. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles (SOSP
’95), pages 267–284, Copper Mountain, CO, Dec 1995.

[10] Y. Breitbart, A. Deacon, H.-J. Schek, A. P. Sheth, and G. Weikum.
Merging Application-centric and Data-centric Approaches to Sup-
port Transaction-oriented Multi-system Workflows. SIGMOD
Record, 22(3):23–30, 1993.

[11] J. F. Cantin and M. D. Hill. Cache Performance for Selected SPEC
CPU2000 Benchmarks. Computer Architecture News (CAN), Sep
2001.

[12] S. Chandra, M. Dahlin, B. Richards, R. Y. Wang, T. E. Ander-
son, and J. R. Larus. Experience with a Language for Writing
Coherence Protocols. In Proceedings of the USENIX Conference
on Domain-Specific Languages, Santa Barbara, CA, Oct 1997.

[13] F. W. Chang and G. A. Gibson. Automatic I/O Hint Generation
Through Speculative Execution. In Proceedings of the 3rd Sym-
posium on Operating Systems Design and Implementation (OSDI
’99), pages 1–14, New Orleans, Louisiana, Feb 1999.

[14] J. S. Chase, L. E. Grit, D. E. Irwin, J. D. Moore, and S. Sprenkle.
Dynamic Virtual Clusters in a Grid Site Manager. In Proceedings
of the 12th IEEE International Symposium on High Performance
Distributed Computing (HPDC 12), Seattle, WA, June 2003.

[15] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-Area Cooperative Storage with CFS. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP
’01), Banff, Canada, Oct 2001.

[16] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative Caching: Using Remote Client Memory to Improve
File System Performance. In Proceedings of the 1st Symposium on
Operating Systems Design and Implementation (OSDI ’94), Mon-
terey, CA, Nov 1994.

[17] EDA Industry Working Group. The EDA Resource.
http://www.eda.org/, 2003.

[18] D. A. Edwards and M. S. McKendry. Exploiting Read-Mostly
Workloads in The FileNet File System. In Proceedings of the 12th
ACM Symposium on Operating Systems Principles (SOSP ’89),
pages 58–70, Litchfield Park, Arizona, Dec 1989.

[19] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exokernel: An
Operating System Architecture for Application-Level Resource
Management. In Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles (SOSP ’95), pages 251–266, Copper
Mountain, CO, Dec 1995.

13

Appears in the First USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04)

[20] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, and H. M.
Levy. Implementing Global Memory Management in a Worksta-
tion Cluster. In Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles (SOSP ’95), pages 201–212, Copper
Mountain, CO, Dec 1995.

[21] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanarayanan.
Data Staging on Untrusted Surrogates. In Proceedings of the 2nd
USENIX Symposium on File and Storage Technologies (FAST ’03),
San Francisco, CA, Apr 2003.

[22] B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Back, and S. Claw-
son. Microkernels Meet Recursive Virtual Machines. In Proceed-
ings of the 2nd Symposium on Operating Systems Design and Im-
plementation (OSDI ’96), Seattle, WA, Oct 1996.

[23] I. Foster and P. Avery. Petascale Virtual Data Grids for Data Inten-
sive Science. GriPhyn White Paper, 2001.

[24] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Ar-
chitecture for Computational Grids. In Proceedings of the 5th ACM
Conference on Computer and Communications Security Confer-
ence, pages 83–92, 1998.

[25] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. International Journal of
Supercomputer Applications, 15(3), 2001.

[26] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A Computation Management Agent for Multi- Institu-
tional Grids. In Proceedings of the 10th IEEE International Sym-
posium on High Performance Distributed Computing (HPDC 10),
San Francisco, CA, Aug 2001.

[27] E. Gelenbe. On the Optimal Checkpoint Interval. Journal of the
ACM, 26(2):259–270, Apr 1979.

[28] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An Overview
of Workflow Management: From Process Modeling to Workflow
Automation Infrastructure. Distributed and Parallel Databases,
3(2):119–153, 1995.

[29] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File Sys-
tem. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), Bolton Landing (Lake George),
NY, Oct 2003.

[30] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A Secure
Environment for Untrusted Helper Applications. In Proceedings
of the Sixth USENIX Security Symposium, July 1996.

[31] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scal-
able, Distributed Data Structures for Internet Service Construction.
In Proceedings of the 4th Symposium on Operating Systems Design
and Implementation (OSDI ’00), San Diego, CA, Oct 2000.

[32] A. Gupta and I. S. Mumick. Maintenance of Materialized Views:
Problems, Techniques and Applications. IEEE Quarterly Bulletin
on Data Engineering; Special Issue on Materialized Views and
Data Warehousing, 18(2):3–18, 1995.

[33] M. B. Jones. Interposition Agents: Transparently Interposing User
Code at the System Interface. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP ’93), pages
80–93, Asheville, North Carolina, Dec 1993.

[34] J. Kistler and M. Satyanarayanan. Disconnected Operation in
the Coda File System. ACM Transactions on Computer Systems,
10(1), Feb 1992.

[35] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels, R. Gum-
madi, S. Rhea, W. Weimer, C. Wells, H. Weatherspoon, and
B. Zhao. OceanStore: An Architecture for Global-Scale Persis-
tent Storage. In Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS IX), pages 190–201, Cambridge, MA, Nov
2000.

[36] T. L. Lancaster. The Renderman Web Site.
http://www.renderman.org/, 2002.

[37] W. Litwin, M.-A. Neimat, and D. Schneider. RP*: A Family of Or-
der Preserving Scalable Distributed Data Structures. In Proceed-
ings of the 20th International Conference on Very Large Databases
(VLDB 20), pages 342–353, Santiago, Chile, Sep 1994.

[38] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor – A Hunter
of Idle Workstations. In Proceedings of ACM Computer Network
Performance Symposium, pages 104–111, June 1988.

[39] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A Read/Write Peer-to-Peer File System. In Proceedings of the
5th Symposium on Operating Systems Design and Implementation
(OSDI ’02), Boston, MA, Dec 2002.

[40] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Im-
plementation of Zap: A System for Migrating Computing Environ-
ments. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI ’02), Boston, MA, Dec 2002.

[41] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A Trace-Driven Analysis of the
UNIX 4.2 BSD File System. In Proceedings of the 10th ACM Sym-
posium on Operating System Principles (SOSP ’85), pages 15–24,
Orcas Island, WA, Dec 1985.

[42] Platform Computing. Improving Business Capacity with Dis-
tributed Computing. www.platform.com/industry/financial/, 2003.

[43] R. Raman. Matchmaking Frameworks for Distributed Resource
Management. PhD thesis, University of Wisconsin-Madison, Oct
2000.

[44] L. Rizzo. Dummynet: A Simple Approach to the Evaluation
of Network Protocols. ACM Computer Communication Review,
27(1):31–41, 1997.

[45] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of File
System Workloads. In Proceedings of the USENIX Annual Techni-
cal Conference (USENIX ’00), pages 41–54, San Diego, CA, June
2000.

[46] A. Rowstron and P. Druschel. Storage Management and Caching
in PAST, A Large-scale, Persistent Peer-to-peer Storage Utility. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), Banff, Canada, Oct 2001.

[47] M. Rusinkiewicz and A. P. Sheth. Specification and Execution of
Transactional Workflows. In Modern Database Systems: The Ob-
ject Model, Interoperability, and Beyond., pages 592–620. 1995.

[48] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Tam-
ing Aggressive Replication in the Pangaea Wide-area File System.
In Proceedings of the 5th Symposium on Operating Systems De-
sign and Implementation (OSDI ’02), Boston, MA, Dec 2002.

[49] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum. Optimizing the Migration of Virtual Computers. In
Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI ’02), Boston, MA, Dec 2002.

[50] M. Satyanarayanan. A Study of File Sizes and Functional Life-
times. In Proceedings of the 8th ACM Symposium on Operating
Systems Principles (SOSP ’81), pages 96–108, Pacific Grove, CA,
Dec 1981.

[51] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With
Disaster: Surviving Misbehaved Kernel Extensions. In Proceed-
ings of the 2nd Symposium on Operating Systems Design and Im-
plementation (OSDI ’96), pages 213–228, Seattle, WA, Oct 1996.

[52] S. Soderbergh. Mac, Lies, and Videotape.
www.apple.com/hotnews/articles/2002/04/fullfrontal/, 2002.

[53] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, ,
and D. Anderson. A New Major SETI Project based on Project
Serendip Data and 100,000 Personal Computers. In Proceedings
of the 5th International Conference on Bioastronomy, 1997.

[54] D. Thain, J. Bent, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and M. Livny. Pipeline and Batch Sharing in Grid Work-
loads. In Proceedings of High-Performance Distributed Comput-
ing (HPDC-12), pages 152–161, Seattle, WA, June 2003.

[55] D. Thain and M. Livny. Parrot: Transparent User-Level Middle-
ware for Data-Intensive Computing. In Workshop on Adaptive
Grid Middleware, New Orleans, Louisiana, Sep 2003.

[56] A. Vahdat and T. E. Anderson. Transparent Result Caching.
In Proceedings of the USENIX Annual Technical Conference
(USENIX ’98), New Orleans, Louisiana, June 1998.

[57] W. Vogels. File System Usage in Windows NT 4.0. In Proceed-
ings of the 17th ACM Symposium on Operating Systems Principles
(SOSP ’99), pages 93–109, Kiawah Island Resort, South Carolina,
Dec 1999.

14

