
Towards Efficient, Portable

Application-Level Consistency

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram,

Joo-Young Hwang, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

1

File System

Crash Consistency

2

File System Crash Consistency

• What happens if there is a system crash during

a file system update?

• File system crash consistency: Make sure file

system‟s metadata is logically consistent, even if

there is a crash

• Multiple techniques: FSCK, Soft Updates,

Journaling, Copy-On-Write …

3

Application-Level

Crash Consistency (ALC)

4

Application-Level Consistency (ALC)

• What happens to user data if there is a crash?

• Consistency of user data – Application-Level

Crash Consistency (ALC)

• This work – Study of what happens to user data

5

Result

6

Result

• State of the art: For effective application-level

consistency, application developers depend on

specific details of file system implementation

• This is bad: Many file systems in use (Linux:

ext3, ext4, btrfs, xfs, zfs …)

7

Outline

• Background: Application-Level Consistency (ALC)

• Goals, Methodology of Study

• File System Behavior

• ALC Bugs

• ALC Performance

• Summary

8

Outline

• Background: Application-Level Consistency (ALC)

• Goals, Methodology of Study

• File System Behavior

• ALC Bugs

• ALC Performance

• Summary

9

Application-Level Data Structures

• Modern applications store many data structures

• Google Chrome initialization: 500+ files

– History

– Cookies

– Web page cache

10

Application-Level Consistency (ALC)

• Applications impose invariants on data

– Web page cache: Should contain complete entries

– Photo application: Thumbnails match pictures

• Invariants should hold across system crashes

– Violation: application failures, silent corruption

• Requires complex implementations

– eXplode [OSDI „06], Eat My Data [Stewart Smith]

11

• File should always be in either

– Fully original state or fully updated state

• File should never

– Contain garbage, or be empty, or filled with zeroes

Example: Atomic File Rewrite

kernel vmlinuz

initrd initrd.img

File grub.conf (Original)

12

print “Hello”

kernel vmlinuz

initrd initrd.img

File grub.conf (Updated)

Atomic File Rewrite – Correct Protocol

fd = creat(“temp”)

write(fd)

fsync(fd)

rename(“temp”, “grub.conf”)

13

Atomic File Rewrite – Wrong Protocol

14

kernel vmlinuz

initrd initrd.img

grub.conf (Original)

print “Hello”

kernel vmlinuz

initrd initrd.img

grub.conf (Updated)

000000000000000

000000000000000

000000000000000

grub.conf (Zeroes)

Possible states after crash

fd = creat(“temp”)

write(fd)

fsync(fd)

rename(“temp”, “grub.conf”)

Occurs because file
systems can re-order
write() and rename()

• Wrong protocol is commonly used – why?

– Bug (invalid assumption)

– Correctness sacrificied for performance

• Works under most common file systems

– Ext4, btrfs etc. explicitly ensure correctness

– Though not required by standard FS interface

• Observation:

– FS implementation affects applications

Atomic File Rewrite – Depends on FS

15

Outline

• Background: Application-Level Consistency (ALC)

• Goals, Methodology of Study

• File System Behavior

• ALC Bugs

• ALC Performance

• Summary

16

• Study relationship of FS implementation with

– ALC correctness

– ALC performance

• Characterize common file systems

– Deduce high-level “properties” affecting ALC

Goals

17

• Case study: Two applications (SQLite, LevelDB)

– Find new bugs, analyze existing bugs

• Manual system call trace analysis, Bugzilla

– Find any correctness-performance tradeoffs

• Extract FS implementation details affecting bugs

• Convert details to high-level properties

• Characterize file systems

– Understanding source code

Methodology

18

Outline

• Background: Application-Level Consistency (ALC)

• Goals, Methodology of Study

• File System Behavior

• ALC Bugs

• ALC Performance

• Summary

19

Safe-rename property

Post-Crash Property

Post-Crash Property (True / False):

Does a system call sequence only result in a

given, desirable set of post-crash states

1. fd = creat(“FileA.temp”)

2. write(fd)

3. fsync(fd)

4. rename(“FileA.temp”, “FileA”)

20

kernel vmlinuz

initrd initrd.img

grub.conf (Original)

print “Hello”

kernel vmlinuz

initrd initrd.img

grub.conf (Updated)

000000000000000

000000000000000

000000000000000

grub.conf (Zeroes)

(or)

#!@$%#!@$%#!

@$%#!@$%#!@

$%#!@$%#!@$%

grub.conf (Garbage)

(or)

File System Comparison

Safe rename

ext3 – ordered 

ext3 – writeback 

ext4 – ordered 

ext4 – ordered – original version

btrfs 

21

Different configurations of ext3 file system

Different versions of ext4 file system

Ordered Appends

• Ordered appends property

append(LogA)

22

0.00 Started

File LogA

0.00 Started

File LogB

append(LogB)

0.00 Started

1.00 Msg

File LogA

0.00 Started

File LogB

0.00 Started

1.00 Msg

File LogA

0.00 Started

2.00 FAULT

File LogB

1. Append(LogA)

2. Append(LogB)

Ordered Appends

• Ordered appends property

23

0.00 Started

File LogA

0.00 Started

File LogB

0.00 Started
1.00 Msg

File LogA

0.00 Started

File LogB

0.00 Started
1.00 Msg

File LogA

0.00 Started
2.00 FAULT

File LogB

(or) (or)

0.00 Started

File LogA

0.00 Started
2.00 FAULT

File LogB

1. Append(LogA)

2. Append(LogB)

File System Comparison

• Ordered appends: Appends get persisted in the

issued order

Safe rename Ordered appends

ext3 – ordered  

ext3 – writeback 

ext4 – ordered 

ext4 – original

btrfs 

24

More Properties

• Ordered dir-ops: Directory operations (creat,

unlink, rename …) get persisted in issued order

• Safe appends: When a file is appended, the

appended portion will never contain garbage

• Safe new file: After fsync() on a new file, another

fsync() on the parent directory is not needed

25

File System Comparison

Safe
rename

Ordered
appends

Ordered dir-
ops

Safe
appends

Safe new
file

ext3 – ordered     

ext3 –
writeback

  

ext4 – ordered    

ext4 –original   

Btrfs   

26

Ext3-ordered: Safest for applications

Safe new file: Manpages explicitly warn against this property.

Outline

• Background: Application-Level Consistency (ALC)

• Goals, Methodology of Study

• File System Behavior

• ALC Bugs

• ALC Performance

• Summary

27

Bugs: LevelDB Guarantees

• LevelDB is a key-value database

• Put(key, value, synchronous)

– Atomic

– Ordered

• If a Put() can be retrieved, all previous Put() can also be

retrieved

– Synchronous = true: Durable

– No corruption

28

Bugs: Guarantees vs

Post-Crash Properties

Post-Crash Property LevelDB Guarantee Affected

Ordered append Re-ordering, Corruption

Ordered directory operations Re-ordering, Corruption

Safe new file Corruption

Safe rename Corruption (Previously fixed bug)

29

Outline

• Background: Application-Level Consistency (ALC)

• Goals, Methodology of Study

• File System Behavior

• ALC Bugs

• ALC Performance

• Summary

30

Performance Optimizations

• SQLite:
“In particular, we suspect that most modern filesystems

exhibit the safe append property and that many of them

might support atomic sector writes. But until this is

known for certain, SQLite will take the conservative

approach and assume the worst.”

• Five configuration options

• Evaluated performance for each option

– On top of ext3 - ordered

31

0

0.5

1

1.5

2

2.5

3

3.5

4

Atomic
writes

Safe
appends

Sequential
writes

Power-safe
 overwrites

Sync
directory

N
o

rm
al

iz
e

d
 T

h
ro

u
gh

p
u

t

Configuration options

Performance: SQLite – Configurations

32

Ext3-ordered: 40 to 50% improvement

250 % improvement
with data journaling

Outline

• Background: Application-Level Consistency (ALC)

• Goals, Methodology of Study

• File System Behavior

• ALC Bugs

• ALC Performance

• Summary

33

Summary

• Bugs

– Four new bugs in LevelDB

– Past bugs: One in LevelDB, three in SQLite

– All bugs exposed on some file system

• Performance

– Wildly differing performance when optimized for

exact file system behavior

34

Conclusion

• State of the art: For effective application-level

consistency, application developers depend on

specific details of file system implementation

35

Thank you!

Questions or suggestions?

36

