
Making the Common Case the Only Case with
Anticipatory Memory Allocation

Swaminathan Sundararaman, Yupu Zhang, Sriram Subramanian,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin–Madison
{swami,yupu,srirams,dusseau,remzi}@cs.wisc.edu

Abstract
We present Anticipatory Memory Allocation (AMA), a
new method to build kernel code that is robust to memory-
allocation failures. AMA avoids the usual difficulties in
handling allocation failures through a novel combination
of static and dynamic techniques. Specifically, a devel-
oper, with assistance from AMA static analysis tools, de-
termines how much memory a particular call into a kernel
subsystem will need, and then pre-allocates said amount
immediately upon entry to the kernel; subsequent alloca-
tion requests are serviced from the pre-allocated pool and
thus guaranteed never to fail. We describe the static and
run-time components of AMA, and then present a thor-
ough evaluation of Linux ext2-mfr, a case study in which
we transform the Linux ext2 file system into a memory-
failure robust version of itself. Experiments reveal that
ext2-mfr avoids memory-allocation failures successfully
while incurring little space or time overhead.

1 Introduction
A great deal of recent activity in systems research has fo-
cused on new techniques for finding bugs in large code
bases [13, 16, 17, 20, 24, 26, 38]. Whether using static
analysis [16, 20], model checking [25, 40], symbolic ex-
ecution [10, 39], machine learning [24], or other testing-
based techniques [3, 4, 31], all seem to agree: there are
hundreds of bugs in commonly-used systems.

One important class of software defect is found inre-
covery code, i.e., code that is run in reaction to failure.
These failures, whether from hardware (e.g., a disk) or
software (e.g., a memory allocation), tend to occur quite
rarely in practice, but the correctness of the recovery code
is critical. For example, Yang et al. found a large num-
ber of bugs in file-system recovery code; when such bugs
were triggered, the results were often catastrophic, result-
ing in data corruption or unmountable file systems [40].
Recovery code has the worst possible property: it is rarely
run, but absolutely must work correctly.

Memory-allocation failure serves as an excellent and
important example of the recovery-code phenomenon.
Woven throughout a complex system such as Linux are
memory allocations of various flavors (e.g.,kmalloc,

kmem cache alloc, etc.) in conjunction with small
snippets of recovery code to handle those rare cases
when a memory allocation fails. As previous work has
shown [17, 28, 40], and as we further demonstrate in this
paper (§2), this recovery code does not work very well,
often crashing the system or worse when run.

Thus, in this paper, we take a different approach to solv-
ing the problem presented by memory-allocation failures.
We follow one simple mantra:the most robust recovery
code is recovery code that never runs at all.

Our approach is calledAnticipatory Memory Allocation
(AMA). The basic idea behind AMA is simple. First, us-
ing both a static analysis tool plus domain knowledge, the
developer determines a conservative estimate of the to-
tal memory allocation demand of each call into the ker-
nel subsystem of interest. Using this information, the de-
veloper then augments their code to pre-allocate the req-
uisite amount of memory at run-time, immediately upon
entry into the kernel subsystem. The AMA run-time then
transparently redirects existing memory-allocationcalls to
use memory from the pre-allocated chunk. Thus, when a
memory allocation takes place deep in the heart of the ker-
nel subsystem, it is guaranteed never to fail.

With AMA, kernel code is written naturally, with mem-
ory allocations inserted wherever the developer needs
them to be; however, with AMA, the developer need not
be concerned with downstream memory-allocation fail-
ures and the scattered (and often buggy) recovery code
that would otherwise be required. Further, by allocat-
ing memory in one large chunk upon entry, failure of the
anticipatory pre-allocation is straightforward to handle; a
uniform failure-handling policy (such as retry with expo-
nential backoff) can trivially be implemented.

To demonstrate the benefits of AMA, we apply it to
the Linux ext2 file system to build a memory-failure ro-
bust version of ext2 calledext2-mfr. File systems are
one of the most critical components of the kernel, as they
store persistent state, and bugs within the file system can
lead to serious problems [40]; hence, they serve as an
excellent case study for AMA (although much of AMA
is generic and could be applied elsewhere in the kernel).
Through experiment, we show that ext2-mfr is robust to

1

memory-allocation failure, and runs without noticeable
performance or space overheads; key to the reduction in
space overheads are two novel optimizations we intro-
duce,cache peekingand page recycling. Further, very
little code change is required, thus demonstrating the ease
of transforming a significant subsystem. Overall, we find
that AMA achieves its goals, and thus altogether avoids
of one important class of recovery bug commonly found
in kernel code.

In our current prototype, the static analysis tool in
AMA is semi-automated. AMA requires developer in-
volvement at the last stage of the static analysis to com-
pute the memory requirements for each call. More pro-
gramming effort is required to fully automate the static
analysis tool. Hence, in its current form, our AMA proto-
type serves as a feasibility study of applying static analy-
sis techniques inside operating systems to avoid a class of
recovery code.

The rest of this paper is structured as follows. We
first present more background on Linux memory alloca-
tion (§2), including a further study of how Linux file sys-
tems react to memory failure. We then present the design
and implementation of AMA (§3,§4,§5), and evaluate its
robustness and performance (§6). Finally, we discuss re-
lated work (§7) and conclude (§8).

2 Background
Before delving into the depths of AMA, we provide some
background on kernel memory allocation. We first de-
scribe the many different ways in which memory is ex-
plicitly allocated within the kernel. Then, through fault
injection, we show that many problems still exist in han-
dling memory-allocation failures. Our discussion re-
volves around the Linux kernel (with a focus on file sys-
tems), although in our belief the issues that arise here
likely exist in other modern operating systems.

2.1 Linux Allocators
2.1.1 Memory Zones
At the lowest level of memory allocation within Linux
is a buddy-based allocator of physical pages [7],
with low-level routines such asalloc pages() and
free pages() called to request and return pages, re-
spectively. These functions serve as the basis for the al-
locators used for kernel data structures (described below),
although they can be called directly if so desired.

2.1.2 Kernel Allocators
Most dynamic memory requests in the kernel use the
Linux slab allocator, which is based on Bonwick’s orig-
inal slab allocator for Solaris [6] (a newer SLUB alloca-
tor provides the same interfaces but is internally simpler).
One simply calls the generic memory allocation routines
kmalloc() andkfree() to use these facilities.

kmem
cache mempool alloc

kmalloc alloc vmalloc create pages
btrfs 93 7 3 0 1
ext2 8 1 0 0 0
ext3 12 1 0 0 0
ext4 26 10 1 0 0
jfs 18 1 2 1 0
reiser 17 1 5 0 0
xfs 11 1 0 1 1

Table 1:Usage of Different Allocators.The table shows the

number of different memory allocators used within Linux filesystems.

Each column presents the number of times a particular routine is found

in each file system.

For objects that are particularly popular, specialized
caches can be explicitly created. To create such a cache,
one simply callskmem cache create(), which (if
successful) returns a reference to the newly-created object
cache; subsequent calls tokmem cache alloc() are
passed this reference and return memory for the specific
object. Hundreds of these specialized allocation caches
exist in a typical system (see/proc/slabinfo); a
common usage for a file system, for example, is an inode
cache.

Beyond these commonly-used routines, there are a few
other ways to request memory in Linux. Amemory pool
interface allows one to reserve memory for use in emer-
gency situations. Finally, thevirtual malloc interface re-
quests in-kernel pages that are virtually (but not necessar-
ily physically) contiguous.

To demonstrate the diversity of allocator usage, we
present a study of the popularity of these interfaces within
a range of Linux file systems. We study file systems as
they are an important and complex kernel subsystem, and
one in which memory-allocation failure can lead to se-
rious problems [40]. Table 1 presents our results. As
one can see, although the generic interfacekmalloc()
is most popular, the other allocation routines are used as
well. For kernel code to be robust, it must handle failures
from all of these allocation routines.

2.2 Failure Modes
When calling into an allocator, flags determine the ex-
act behavior of the allocator, particularly in response
to failure. Of greatest import to us is the use of the
GFP NOFAIL flag, which a developer can use when

they know their code cannot handle an allocation failure;
using the flag is the only way to guarantee that an alloca-
tor will either return successfully or not return at all (i.e.,
keep trying forever). However, this flag is rarely used. As
lead Linux kernel developer Andrew Morton said [27]:
“ GFP NOFAIL should only be used when we have no

2

Process State File-System State
Error Abort Unusable Inconsistent

btrfs0 0 0 0 0
btrfs10 0 14 15 0
btrfs50 0 15 15 0
ext20 0 0 0 0
ext210 10 5 5 0
ext250 10 5 5 0
ext30 0 0 0 0
ext310 10 5 5 4
ext350 10 5 5 5
ext40 0 0 0 0
ext410 10 5 5 5
ext450 10 5 5 5
jfs0 0 0 0 0
jfs10 15 0 2 5
jfs50 15 0 5 5
reiserfs0 0 0 0 0
reiserfs10 10 4 4 0
reiserfs50 10 5 5 0
xfs0 0 0 0 0
xfs10 13 1 0 3
xfs50 10 5 0 5

Table 2: Fault Injection Results. The table shows the reac-

tion of the Linux file systems to memory-allocation failuresas the prob-

ability of a failure increases. We randomly inject faults into the three

most-used allocation calls:kmalloc(), kmem cache alloc(),

and alloc pages(). For each file system and each probability

(shown as subscript), we run a micro benchmark 15 times and report

the number of runs in which certain failures happen in each column. We

categorize all failures into process state and file-system state, in which

’Error’ means that file system operations fail (gracefully), ’Abort’ indi-

cates that the process was terminated abnormally, ’Unusable’ means the

file system is no longer accessible, and ’Inconsistent’ means file system

metadata has been corrupted and data may have been lost. Ideally, we

expect the file systems to gracefully handle the error (i.e.,return error)

or retry the failed allocation request. Aborting a process,inconsistent

file-system state, and unusable file system are unacceptableactions on

an memory allocation failure.

way of recovering from failure. ... Actually, nothing in
the kernel should be usingGFP NOFAIL. It is there as a
marker which says ’we really shouldn’t be doing this but
we don’t know how to fix it’.” In all other uses of kernel
allocators, failure is thus a distinct possibility.

2.3 Bugs in Memory Allocation
Earlier work has repeatedly found that memory-allocation
failure is often mishandled [16, 40]. In Yang et al.’s
model-checking work, one key to finding bugs is to follow
the code paths where memory-allocation has failed [40].

We now perform a brief study of memory-allocation
failure handling within Linux file systems. We use fault
injection to fail calls to the various memory allocators and
determine how the code reacts as the number of such fail-
ures increases. Our injection framework picks a certain
allocation call (e.g.,kmalloc()) within the code and

empty_dir() [file: namei.c]
if (...|| !(bh = ext4_bread(..., &err)))

...
return 1; // XXX: should have returned 0

ext4_rmdir() [file: namei.c]
retval = -ENOTEMPTY;
if (!empty_dir(inode))

goto end_rmdir;
retval = ext4_delete_entry(handle, dir, de, bh);
if (retval)

goto end_rmdir;

Figure 1: Improper Failure Propagation. The code shown

in the figure is from the ext4 file system, and shows a case wherea failed

low-level allocation (in ext4bread()) is not properly handled, which

eventually leads to an inconsistent file system.

fails it probabilistically; we then vary the probability and
observe how the kernel reacts as an increasing percent-
age of memory-allocation calls fail. Table 2 presents our
results, which sums the failures seen in 15 runs per file
system, while increasing the probability of an allocation
request failing from 0% to 50% of the time.

The table reports what happens as the probability of al-
location failure occurring increases, from 0% (base case),
to 10% and then 50% of calls. We report the outcomes
in two categories: process state and file-system state. The
process state results are further divided into two groups:
the number of times (in 15 runs) that a running process
received an error (such as ENOMEM), and the number
of times that a process was terminated abnormally (i.e.,
killed). The file system results are split into two categories
as well: a count of the number of times that the file sys-
tem became unusable (i.e., further use of the file system
was not possible after the trial), and the number of times
the file system became inconsistent as a result, possible
losing user data.

From the table, we can make the following observa-
tions. First, we can see that even a simple, well-tested,
and slowly-evolving file system such as Linux ext2 still
does not handle memory-allocation failures very well; we
take this as evidence that doing so is challenging. Second,
we observe that all file systems have difficulty handling
memory-allocation failure, often resulting in an unusable
or inconsistent file system.

An example of how a file-system inconsistency can
arise is found in Figure 1. In this example, in try-
ing to remove a directory (inext4 rmdir()), the
routine first checks if the directory is empty by call-
ing empty dir(). This routine, in turn, calls
ext4 bread() to read the directory data. Unfortu-
nately, due to our fault injection,ext4 bread() tries
to allocate memory but fails to do so, and thus the call to

3

ext4 bread() returns an error (correctly). The routine
empty dir() incorrectly propagates this error, simply
returning a 1 and thus accidentally indicating that the di-
rectory is empty and can be deleted. Deleting a non-empty
directory not only leads to a hard-to-detect file-system in-
consistency (despite the presence of journaling), but also
could render inaccessible a large portion of the directory
tree.

Finally, a closer look at the code of some of these file
systems reveals a third interesting fact: in a file system
under active development (such as btrfs), there are many
places within the code where memory-allocation failure
is never checked for; our inspection thus far has yielded
over 20 places within btrfs such as this. Such trivial mis-
handling is rarer inside more mature file systems.

Overall, our results hint at a broader problem, which
matches intuition: developers write code as if memory
allocation will never fail; only later do they (possibly)
go through the code and attempt to “harden” it to handle
the types of failures that might arise. Proper handling of
such errors, as seen in the ext4 example, is a formidable
task, and as a result, such hardening sometimes remains
“softer” than desired.

2.3.1 Summary
Kernel memory allocation is complex, and handling fail-
ures still proves challenging even for code that is relatively
mature and generally stable. We believe these problems
are fundamental given the way current systems are de-
signed; specifically, to handle failure correctly, adeep re-
coverymust take place, where far downstream in the call
path, one must either handle the failure, or propagate the
error up to the appropriate error-handling location while
concurrently making sure to unwind all state changes that
have taken place on the way down the path. Earlier work
has shown that the simple act of propagating an error cor-
rectly in a complex file system is challenging [19]; doing
so and correctly reverting all other state changes presents
further challenges. Although deep recovery is possible,
we believe it is usually quite hard, and thus error-prone.
More sophisticated bug-finding tools could be built, and
further bugs unveiled; however, to truly solve the problem,
an alternate approach to deep recovery is likely required.

3 Anticipatory Memory Allocation:
An Overview

We now present an overview ofAnticipatory Memory Al-
location (AMA), a novel approach to solve the memory-
allocation failure-handling problem. The basic idea is
simple: first, we analyze the code paths of a kernel sub-
system to determine what their memory requirements are.
Second, we augment the code with a call to pre-allocate
the necessary amounts. Third, we transparently redi-

void f2() {
void *p = malloc(100);
f3();

}

void f3() {
void *q = malloc(25);

}

int f1() {
// AMA: Pre-allocate 100- and 25-byte chunks
f2();
// AMA: Free any unused chunks

}

Figure 2:Simple AMA Example. The code presents a simple

example of how AMA is used. In the unmodified case, routinef1()

calls f2(), which callsf3(), each of which allocate some memory

(and perhaps incorrectly handle their failure). With AMA,f1() pre-

allocates the full amount needed; subsequent calls to allocate memory

are transparently redirected to use the pre-allocated chunks instead of

calling into the real allocators, and any remaining memory is freed.

rect allocation requests during run-time to use the pre-
allocated chunks of memory.

Figure 2 shows a simple example of the transforma-
tion. In the figure, a simple entry-point routinef1() calls
one otherdownstreamroutine,f2(), which in turn calls
f3(). Each of these routines allocates some memory dur-
ing their normal execution, in this case 100 bytes byf2()
and 25 bytes byf3().

With AMA, we analyze the code paths to discover the
worst-case allocation possible; in this example, the anal-
ysis would be simple, and the result is that two memory
chunks, of size 100 and 25 bytes, are required. Then, be-
fore calling intof2(), one should call into the anticipa-
tory memory allocator to pre-allocate chunks of 100 and
25 bytes. The modified run-time then redirects all down-
stream allocation requests to use this pre-allocated pool.
Thus the calls to allocate 100 and 25 bytes inf2() and
f3() (respectively) will use memory already allocated by
AMA, and are guaranteed not to fail.

The advantages of this approach are many. First,
memory-allocation failures never happen downstream,
and thus there is no need to handle said failures; the com-
plex unwinding of kernel state and error propagation are
thus avoided entirely. Second, because allocation failure
can only happen in only one place in the code (at the top),
it is easy to provide a unified handling mechanism; for ex-
ample, if the call to pre-allocate memory fails, the devel-
oper could decide to immediately return a failure, retry,
or perhaps implement a more sophisticated exponential
backoff-and-retry approach, all excellent examples of the
shallow recoveryAMA enables. Third, very little code
change is required; except for the calls to pre-allocate and
perhaps free unused memory, the bulk of the code remains

4

void
ext2 init block alloc info(struct inode *inode)
{

struct ext2 inode info *ei = EXT2 I(inode);
struct ext2 block alloc info *block i =

ei→i block alloc info;
block i = kmalloc(sizeof(*block i), GFP NOFS);
...

}

Figure 3:A Simple Call.

unmodified, as the run-time transparently redirects down-
stream allocation requests to use the pre-allocated pool.

Unfortunately, code in real systems is not as simple as
that found in the figure, and indeed, the problem of deter-
mining how much memory needs to be allocated given an
entry point into a complex code base is generally unde-
cidable. Thus, the bulk of our challenge is transforming
the code and gaining certainty that we have done so cor-
rectly and efficiently. To gain a better understanding of
the problem, we must choose a subsystem to focus upon,
and transform it to use AMA.

3.1 A Case Study: Linux ext2-mfr
The case study we use is the Linux ext2 file system.
Although simpler than its modern journaling cousins,
ext2 is a real file system and certainly has enough com-
plex memory-allocation behavior (as described below) to
demonstrate the intricacies of developing AMA for a real
kernel subsystem.

We describe our effort to transform the Linux ext2 file
system into a memory-robust version of itself, which we
call Linux ext2-mfr (i.e., a version of ext2 that is Memory-
Failure Robust). In our current implementation, the trans-
formation requires some human effort and is aided by a
static analysis tool that we have developed. The process
could be further automated, thus easing the development
of other memory-robust file systems; we leave such efforts
to future work.

We now highlight the various types of allocation re-
quests that are made, from simpler to more complex. By
doing so, we are showing what work needs to be done
to be able to correctly pre-allocate memory before calling
into ext2 routines, and thus shedding light on the types
of difficulties we encountered during the transformation
process.

3.1.1 Simple Calls
Most of the memory-allocation calls made by the kernel
are of a fixed size. Allocating file system objects such as
dentry, file, inode, page have pre-determined sizes. For
example, file systems often maintain a cache of inode ob-
jects, and thus must have memory allocated for them be-
fore being read from disk. Figure 3 shows one example of
such a call from ext2.

struct dentry *d alloc(..., struct qstr *name) {
...
if (name→len > DNAME INLINE LEN-1) {

dname = kmalloc(name→len + 1, GFP KERNEL);
if (!dname)

return NULL;
...

}
}

Figure 4:A Parameterized and Conditional Call.

ext2 find entry (struct inode * dir, ...)
{
unsigned long npages = dir pages(dir);
unsigned long n = 0;
do {

page = ext2 get page(dir, n,..); // allocate a page
...
if (ext2 match entry (...));

goto found;
...
n++;

} while (n != npages); // worst case: n = npages
found:
return entry;

}

Figure 5:Loop Calls.

3.1.2 Parameterized and Conditional Calls
Some allocated objects have variable lengths (e.g., a file
name, extended attributes, and so forth) and the exact size
of the of the allocation is determined at run-time; some-
times allocations are not performed due to conditionals.
Figure 4 shows how ext2 allocates memory for a directory
entry, which uses a length field (plus one for the end-of-
string marker) to request the proper amount of memory.
This allocation is only performed if the name is too long
and requires more space to hold it.

3.1.3 Loops
In many cases file systems allocate objects inside a loop
or inside nested loops. In ext2, the upper bound of the
loop execution is determined by the object passed to the
individual calls. For example, allocating pages to search
for directory entries are done inside a loop. Another good
example is searching for a free block within the block
bitmaps of the file system. Figure 5 shows the page al-
location code during directory lookups in ext2.

3.1.4 Function Calls
Of course, a file system is spread across many functions,
and hence any attempt to understand the total memory
allocation of a call graph given an entry point must be
able to follow all such paths, sometimes into other ma-
jor kernel subsystems. For example, one memory allo-
cation request in ext2 is invoked 21 calls deep; this ex-
ample path starts atsys open, traverses through some
link-traversal and lookup code, and ends with a call to
kmem cache alloc.

5

static void
ext2 free branches(struct inode *inode,

.., int depth){
if (depth--) {
...
// allocate a page and buffer head
bh = sb bread(inode→i sb, ..);
...
ext2 free branches(inode,

(le32*) bh→b data,
(le32*) bh→b data +

addr per block,
depth);

} else
ext2 free data(inode, ...);

}

Figure 6:Recursion.

3.1.5 Recursions
A final example of an in-kernel memory allocation is one
that is performed within a recursive call. Some portions of
file systems are naturally recursive (e.g., pathname traver-
sal), and thus perhaps it is no surprise that recursion is
commonplace. Figure 6 shows the block-freeing code that
is called when a file is truncated or removed in ext2; in the
example,ext2 free branches calls itself to recurse
down indirect-block chains and free blocks as need be.

3.2 Summary
To be able to pre-allocate enough memory for a call,
one must handle parameterized calls, conditionals, loops,
function calls, and recursion. If file systems only con-
tained simple allocations and minimal amounts of code,
pre-allocation would be rather straightforward. The rele-
vant portion of the call graph for ext2 (and all related com-
ponents of the kernel) contains nearly 2000 nodes (one per
relevant function) and roughly 7000 edges (calls between
functions) representing roughly 180,000 lines of kernel
source code. Even for a relatively-simple file system such
as ext2, the task of manually computing the pre-allocation
amount would be daunting, without automated assistance.

4 The Static Transformation:
From ext2 to ext2-mfr

We now present the static-analysis portion of AMA, in
which we develop a tool,the AMAlyzer, to help decide
how much memory to pre-allocate at each entry point
into the kernel subsystem that is being transformed (in
this case, Linux ext2). The AMAlyzer takes in the entire
relevant call graph and produces a skeletal version, from
which the developer can derive the proper pre-allocation
amounts. After describing the tool, we also present two
novel optimizations we employ, cache peeking and page
recycling, to reduce memory demands. We end the section
with a discussion of the limits of our current approach.

We build the AMAlyzer on top of CIL [29], a tool

which allows us to readily analyze kernel source code.
CIL does not resolve function pointers automatically,
which we require for our complete call graph, and hence
we perform a small amount of extra work to ensure we
cover all calls made in the context of the file system; be-
cause of the limited and stylized use of function point-
ers within the kernel, this process is straightforward. The
AMAlyzer in its current form is comprised of a few thou-
sand lines of OCaml code.

4.1 The AMAlyzer
We now describe the AMAlyzer in more detail, which
consists of two phases. In the first phase, the tool searches
through the entire subsystem to construct the allocation-
relevant call graph, i.e., the complete set of downstream
functions that contain kernel memory-allocation requests.
In the second phase, a more complex analysis determines
which variables and state are relevant to allocation calls,
and prunes away other irrelevant code. The result is a
skeletal form of the subsystem in question, from which
the pre-allocation amounts are readily derived.

4.1.1 Phase 1: Allocation-Relevant Call Graph
The first step of our analysis prunes the entire call graph,
which, as we have seen, is quite large, and generates what
we refer to as theallocation-relevant call graph (ARCG).
The ARCG contains only nodes and edges in which a
memory allocation occurs, either within a node of the
graph or somewhere downstream of it.

We perform a Depth First Search (DFS) on the call
graph to generate ARCG. An additional attribute namely
calls memoryallocationis added to each node (i.e., func-
tion) in the call graph to speed up the ARCG gen-
eration. The callsmemoryallocation attribute is set
on two occasions. First, when a memory allocation
routine is encountered during the DFS. Second, the
calls memoryallocation attribute is set if at least one of
the node’s children has its callsmemoryallocation at-
tribute set.

At the end of the DFS, the functions that do not have
calls memoryallocation attribute set are safely deleted
from the call graph. The remaining nodes in the call graph
constitute the ARCG.

4.1.2 Phase 2: Loops and Recursion
At this point, the tool has reduced the number of functions
that must be examined. In this part of the analysis, we add
logic to handle loops and recursions, and where possible,
to help identify their termination conditions. The AM-
Alyzer searches for allfor, while, andgoto-based
loops, and walks through each function within such a loop
to find either direct calls to kernel memory allocators or
indirect calls through other routines. To identify goto-
based loops, AMA uses the line numbers of the labels that
the goto statements point to. To identify both recursions

6

Entry point Pre-allocation required
truncate() (Worst(Bitmap) + Worst(Indirect))× (PageSize + BufferHead)
lookup() (1 + Size(ParentDir)) × (PageSize + BufferHead) + Inode + Dentry + NameLength+

NamesCache

lookuphash() (1 + Size(ParentDir)) × (PageSize + BufferHead) + Inode + Dentry + NameLength + Filp

sysopen() lookup() + lookuphash() + (4 + Depth(Inode) + Worst(Bitmap))× PageSize+
(5 + Depth(Inode) + Worst(Bitmap))× BufferHead + Inode + truncate()

sysread() (count + ReadAhead + Worst(Bitmap) + Worst(Indirect))× (PageSize + BufferHead)
syswrite() (count + Worst(Bitmap))× (PageSize + BufferHead) + sizeof(ext2 block allocinfo)
mkdir() lookup() + lookuphash() + (Depth(ParentInode) + 4) × PageSize+

(Depth(Inode) + 8) × BufferHead

unlink() lookup() + lookuphash() + (1 + Depth(Inode)) × (PageSize + BufferHead)
rmdir() lookup() + lookuphash() + (3 + Depth(Inode)) × (PageSize + BufferHead)
access() lookup() + NamesCache

chdir() lookup() + NamesCache

chroot() lookup() + NamesCache

statfs() lookup() + NamesCache

Table 3: Pre-Allocation Requirements for ext2-mfr. The table shows the worst-case memory requirements of the various system

calls in terms of the kmemcache, kmalloc, and page allocations. The following types of kmemcache are used:NamesCache (4096 bytes),

BufferHead (52 bytes),Inode (476 bytes),F ilp (128 bytes), andDentry (132 bytes). ThePageSize is constant at 4096 bytes. The other

terms used above include:Count: the number of blocks read/written,ReadAhead: the number of read-ahead blocks,Worst(Bitmap):

the number of bitmap blocks that needs to be read,Worst(Indirect): the number of indirect blocks to be read for that particularblock,

Depth(inode): the maximum number of indirect blocks to be read for that particular inode, andSize(inode): the number of pages in the

inode.

and function-call based loops, AMA performs a DFS on
the ARCG and for every function encountered during the
search, it checks if the function has been explored before.
Once these loops are identified, the tool searches for and
outputs the expressions that affect termination.

4.1.3 Phase 3: Slicing and Backtracking
The goal of this next step is to perform a bottom-up crawl
of the graph, and produce a minimized call graph with
only the memory-relevant code left therein. We use a form
of backward slicing [37] to achieve this end.

In our current prototype, the AMAlyzer only performs
a bottom-up crawl until the beginning of each function. In
other words, the slicing is done at the function level and
developer involvement is required to perform backtrack-
ing. To backtrack until the beginning of a system call,
the developer has to manually use the output of slicing
for each function (including the dependent input variables
that affect the allocation size/count) and invoke the slic-
ing routine on its caller functions. The caller functions
are identified using the ARCG.

4.2 AMAlyzer Summary
As we mentioned above, the final output is a skeletal
graph which can be used by the developer to arrive at
the final pre-allocations with the help of slicing support
in the AMAlyzer. For ext2-mfr, the reduction in code is
dramatic: from nearly 200,000 lines of code across 2000
functions (7000 function calls) down to less than 9,000
lines across 300 functions (400 function calls), with all

relevant variables highlighted. Arriving upon the final
pre-allocation amounts then becomes a straightforward
process.

Table 3 summarizes the results of our efforts. In the
table, we present the parameterized memory amounts that
must be pre-allocated for the 13 most-relevant entry points
into the file system.

4.3 Optimizations
As we transformed ext2 into ext2-mfr, we noticed a num-
ber of opportunities for optimization, in which we could
reduce the amount of memory pre-allocated along some
paths. We now describe two novel optimizations.

4.3.1 Cache Peeking
The first optimization,cache peeking, can greatly reduce
the amount of pre-allocated memory. An example is
found in code paths that access a file block (such as a
sys read()). To access a file block in a large file, it
is possible that a triple-indirect, double-indirect, and in-
direct block, inode, and other blocks may need to be ac-
cessed to find the address of the desired block and read it
from disk.

With repeated access to a file, such blocks are likely to
be in the page cache. However, the pre-allocation code
must account for the worst case, and thus in the normal
case must pre-allocate memory to potentially read those
blocks. This pre-allocation is often a waste, as the blocks
will be allocated, remain unused during the call, and then
finally be freed by AMA.

7

With cache peeking, the pre-allocation code performs a
small amount of extra work to determine if the requisite
pages are already in cache. If so, it pins them there and
avoids the pre-allocation altogether; upon completion, the
pages are unpinned.

The pin/unpin is required for this optimization to be
safe. Without this step, it would be possible that a page
gets evicted from the cache after the pre-allocation phase
but before the use of the page, which would lead to an
unexpected memory allocation request downstream. In
this case, if the request then failed, AMA would not have
served its function in ensuring that no downstream failures
occur.

Cache peeking works well in many instances as the
cached data is accessible at the beginning of a system call
and does not require any new memory allocations. Even
if cache peeking requires additional memory, the memory
allocation calls needed for cache peeking can be easily
performed as part of the pre-allocation phase.

4.3.2 Page Recycling
A second optimization we came upon was the notion of
page recycling. The idea for the optimization arose when
we discovered that ext2 often uses far more pages than
needed for certain tasks (such as file/directory truncates,
searches on free/allocated entries inside block bitmaps
and large directories).

For example, consider truncate. In order to truncate a
file, one must read every indirect block (and double in-
direct block, and so forth) into memory to know which
blocks to free. In ext2, each indirect block is read into
memory and given its own page; the page holding an in-
direct block is quickly discarded, after ext2 has freed the
blocks pointed to by that indirect block.

To reduce this cost, we implement page recycling. With
this approach, the pre-allocation phase allocates the mini-
mal number of pages that need to be in memory during the
operation. For a truncate, this number is proportional to
the depth of the indirect-block tree, instead of the size of
the entire tree. Instead of allocating thousands of blocks
to truncate a file, we only allocate a few (for the triple-
indirect, a double indirect, and an indirect block). When
the code has finished freeing the current indirect block,
we recycle that page for the next indirect block instead
of adding the page back to the LRU page cache, and so
forth. In this manner, substantial savings in memory is
made possible.

4.4 Limitations and Discussion
We now discuss some of the limitations of our anticipa-
tory approach.

Not all pieces are yet automated; instead, the tool cur-
rently helps turn the intractable problem of examining
180,000 lines of code into a tractable one providing a
lot of assistance in finding the correct pre-allocations.

Further work is required in slicing and backtracking to
streamline this process, but is not the focus of our current
effort: rather our goal here is to demonstrate the feasibility
of the anticipatory approach.

The anticipatory approach could fail requests in cases
where normal execution would successfully complete.
Normal execution need not always take the worst case (or
longest) path. As a result, it might be able to complete
with fewer memory allocations than the anticipatory ap-
proach. In contrast, anticipatory approach has to always
allocate memory for the worst case scenario, as it cannot
afford to fail on a memory allocation call after the pre-
allocation phase.

Cache peeking can only be used when sufficient infor-
mation is available at the time of allocation to determine
if the required data is in the cache. Sufficient informa-
tion is available for file systems at the beginning of a sys-
tem call in the context of file/directory reads and lookup
of file-system objects, this allows cache peeking to avoid
pre-allocation with little implementation effort. More im-
plementation effort could be required in other systems to
help determine if the required data is in its cache.

5 The AMA Run-Time
The final piece of AMA is the runtime component. There
are two major pieces to consider. First is the pre-
allocation itself, which is inserted at every relevant en-
try point in the kernel subsystem of interest, and subse-
quent cleanup of pre-allocated memory. Second is the
use of the pre-allocated memory, in which the run-time
must transparently redirect allocation requests (such as
kmalloc()) to use the pre-allocated memory. We dis-
cuss these in turn, and then present the other run-time de-
cision a file system such as Linux ext2-mfr must make:
what to do when a pre-allocation request fails?

5.1 Pre-allocating and Freeing Memory
To add pre-allocation to a specific file system, we require
that the file system to implement a single new VFS-level
call, which we callvfs get mem requirements().
This call takes as arguments information about which call
is about to be made, any relevant arguments about the cur-
rent operation (such as the file position or bytes to be read)
and state of the file system, and then returns a structure to
the caller (in this case, the VFS layer) which describes
all of the necessary allocations that must take place. The
structure is referred to as theanticipatory allocation de-
scription (AAD).

The VFS layer unpacks the AAD, allocates memory
chunks (perhaps using different allocators) as need be, and
links them into the task structure of the calling process
for downstream use (described further below). With the
pre-allocated memory in place, the VFS layer then calls
the desired routine (such asvfs read()), which then

8

loff t pos = file pos read(file);
AMA CHECK AND ALLOCATE(file,

AMA SYS READ, pos, count);
ret = vfs read(file, buf, count, &pos);
file pos write(file, pos);

AMA CLEANUP();

Figure 7:A VFS Read Example.

utilizes the pre-allocated memory during its execution.
When the operation completes, a generic AMA cleanup
routine is called to free any unused memory.

To give a better sense of this code flow, we provide a
simplified example from theread() system call code
path in Figure 7. Without the AMA additions, the code
simply looks up the current file position (i.e., where to
read from next), calls intovfs read() to do the file-
system-specific read, updates the file offset, and returns.
As described in the original VFS paper [23], this code is
generic across all file systems.

With AMA, two extra steps are required, as shown in
the figure. First, before calling into thevfs read()
call, the VFS layer now checks if the underlying file
system is using AMA, and if so, calls the file system’s
vfs get mem requirements() routine to deter-
mine the pending call’s memory requirements, and finally
allocates the needed memory. All of this work is neatly
encapsulated by theAMA CHECK AND ALLOCATE()
call in the figure.

Second, after the call is complete, a cleanup routine
AMA CLEANUP() is called. This call is required because
the AMAlyzer provides us with a worst-case estimate of
possible memory usage, and hence not all pre-allocated
memory is used during the course of a typical call into the
file system. In order to free this unused memory, the extra
call toAMA CLEANUP() is made.

5.2 Using Pre-allocated Memory
Central to our implementation istransparency; we do not
change the specific file system (ext2) or other kernel code
to explicitly use or free pre-allocated memory. File sys-
tems and the rest of the kernel thus continue to use regular
memory-allocation routines.

To support this transparency, we modified each of the
kernel allocation routines as follows. Specifically, when
a process calls into ext2-mfr, the pre-allocation code (in
AMA CHECK AND ALLOCATE() above) sets a new flag
within the per-task task structure. Thisanticipatory flag
is then checked upon each entry into any kernel memory-
allocation routine. If the flag is set, the routine attempts
to use pre-allocated memory and if so completes by re-
turning one of the pre-allocated chunks; if the flag is not
set, the normal allocation code is executed (and failure
is a possibility). Calls tokfree() and other memory-
releasing routines operate as normal, and thus we leave

those unchanged.
Allocation requests are matched with the pre-allocated

objects using the parameters passed to the allocation call
at runtime. The parameters passed to the allocation call
are size, order or the cachep pointer and the GFP flag. The
type of the desired memory object is inferred through the
invocation of the allocation call at runtime. The size (for
kmalloc and vmalloc) or order (for allocpages) helps to
exactly match the allocation request with the pre-allocated
object. For cache objects, the cachep pointer help identify
the correct pre-allocated object.

One small complication arises during interrupt han-
dling. Specifically, we do not wish to redirect memory
allocation requests to use pre-allocated memory when re-
quested by interrupt-handling code. Thus, when inter-
rupted, we take care to save the anticipatory flag of the
currently-running process and restore it when the inter-
rupt handling is complete.

5.3 What If Pre-Allocation Fails?
Adding the pre-allocation into the code raises a new pol-
icy question: how should the code handle the failure of
the pre-allocation itself? We believe there are a number of
different policy alternatives, which we now describe:

• Fail-immediate. This policy immediately returns an
error to the caller (such as ENOMEM).

• Retry-forever (with back-off). This policy simply
keeps retrying forever, perhaps inserting a delay of
some kind (e.g., exponential) between retry requests
to reduce the load on the system and control better
the load on the memory system.

• Retry-alternate (with back-off). This form of retry
also requests memory again, but uses an alternate
code path that uses less memory than the original
through page/memory recycling and thus is more
likely to succeed. This retry can also back-off as
need be.

Using AMA to implement these policies is superior
to the existing approach, as it enablesshallow recovery,
immediately upon entry into the subsystem. For exam-
ple, consider the fail-immediate option above. Clearly
this policycouldbe implemented in the traditional system
without AMA, but in our opinion doing so is prohibitively
complex. To do so, one would have to ensure that the fail-
ure was propagated correctly all the way through the many
layers of the file system code, which is difficult [19, 34].
Further, any locks acquired or other state changes made
would have to be undone. Deep recovery is difficult and
error-prone; shallow recovery is the opposite.

Another benefit that the shallow recovery of AMA per-
mits is a unified policy. The policy, whether failing imme-
diately, retrying, or some combination, is specified in one

9

Process State File-System State
Error Abort Unusable Inconsistent

ext2-mfr10 0 0 0 0
ext2-mfr50 0 0 0 0
ext2-mfr99 0 0 0 0

Table 4: Fault Injection Results: Retry. The table shows

the reaction of the Linux ext2-mfr file system to memory failures as the

probability of a failure increases. The file system uses a “retry-forever”

policy to handle each failure. A detailed description of theexperiment is

found in Table 2.

or a few places in the code. Thus, the developer can easily
decide how the system should handle such a failure and be
confident that the implementation meets that desire.

A third benefit of our approach: file systems could
expose some control over the policy to applications.
Whereas most applications may not be prepared to han-
dle such a failure, a more savvy application (such as a file
server or database) could set the file system to fail-fast and
thus enable better control over failure handling.

Pre-allocation failure is not a panacea, however. De-
pending on the installation and environment, the code
that handles pre-allocation failures will possibly run quite
rarely, and thus may not be as robust as normal-case code.
Although we believe this to be less of a concern for pre-
allocation recovery code (because it is small, simple, and
usually correct “by inspection”), further efforts could be
applied to harden this code. For example, some have sug-
gested constant “fire drilling” [9] as a way to ensure oper-
ators are prepared to handle failures; similarly, one could
regularly fail kernel subsystems (such as memory alloca-
tors) to ensure that this recovery code is run.

6 Analysis
We now analyze Linux ext2-mfr. We measure its ro-
bustness under memory-allocation failure, as well as its
baseline performance. We further study its space over-
heads, exploring cases where our estimates of memory-
allocation needs could be overly conservative, and
whether the optimizations introduced earlier are effective
in reducing these overheads. All experiments were per-
formed on a 2.2 GHz Opteron processor, with two 80GB
WDC disks, 2GB of memory, running Linux 2.6.32. We
also experimented with the ramfs file system and were
able to get similar performance results and better space
overheads (not shown in the evaluation results).

6.1 Robustness
Our first experiment with ext2-mfr reprises our earlier
fault injection study found in Table 2. In this experiment,
we vary the probability that the memory-allocation rou-
tines will fail from 10% all the way to 99%, and observe
how ext2-mfr behaves both in terms of how processes

ext2 ext2-mfr
Workload (secs) (secs)
Sequential Write 13.46 13.69 (1.02x)
Sequential Read 9.04 9.05 (1.01x)
Random Writes 11.58 11.67 (1.01x)
Random Reads 146.33 151.03 (1.03x)
Sort 129.64 136.50 (1.05x)
OpenSSH 48.30 49.80 (1.03x)
PostMark 55.90 59.60 (1.07x)

Table 5:Baseline Performance.The baseline performance of

ext2 and ext2-mfr are compared. The first four tests are microbench-

marks: sequential read and write either read or write 1-GB file in its

entirety; random read and write read or write 100 MB of data over a 1-

GB file. Note that random-write performance is good because the writes

are buffered and thus can be scheduled when written to disk. The three

application-level benchmarks: are a command-line sort of a100MB

text file; the OpenSSH benchmark which copies, untars, configures, and

builds the OpenSSH 4.5.1 source code; and the PostMark benchmark run

for 60,000 transactions over 3000 files (from 4KB to 4MB) with50/50

read/append and create/delete biases. All times are reported in seconds,

and are stable across repeated runs.

were affected as well as the overall file-system state. For
this experiment, the retry-forever (without any back-off)
policy is used. Table 4 reports our results.

As one can see from the table, ext2-mfr is highly robust
to memory allocation failure. Even when 99 out of 100
memory-allocation calls fail, ext2-mfr is able to retry and
eventually make progress. No application notices that the
failures are occurring, and file system usability and state
remain intact.

6.2 Performance
In our next experiment, we study the performance over-
heads of using AMA. We utilize both simple microbench-
marks as well as application-level tests to gauge the over-
heads incurred in ext2-mfr due to the extra work of mem-
ory pre-allocation and cleanup. Table 5 presents the re-
sults of our study.

From the table, we can see that the performance of our
relatively-untuned prototype is excellent across both mi-
crobenchmarks as well as application-level workloads. In
all cases, the extra work done by the AMA runtime to
pre-allocate memory, redirect allocation requests trans-
parently, and subsequently free unused memory has a
minimal cost. With further streamlining, we feel confi-
dent that the overheads could be reduced even further.

6.3 Space Overheads and Cache Peeking
We now study the space overheads of ext2-mfr, both with
and without our cache-peeking optimization. The largest
concern we have about conservative pre-allocation is that
excess memory may be allocated and then freed; although
we have shown there is little time overhead involved (Ta-

10

ext2-mfr
ext2 ext2-mfr (+peek)

Workload (GB) (GB) (GB)
Sequential Read 1.00 6.89 (6.87x) 1.00 (1.00x)
Sequential Write 1.01 1.01 (1.00x) 1.01 (1.00x)
Random Read 0.26 0.63 (2.41x) 0.28 (1.08x)
Random Write 0.10 0.10 (1.05x) 0.10 (1.00x)
PostMark 3.15 5.88 (1.87x) 3.28 (1.04x)
Sort 0.10 0.10 (1.00x) 0.10 (1.00x)
OpenSSH 0.02 1.56 (63.29x) 0.07 (3.50x)

Table 6: Space Overheads.The total amount of memory allo-

cated for both ext2 and ext2-mfr is shown. The workloads are identical

to those described in the caption of Table 5.

ble 5), the extra space requested could induce further
memory pressure on the system, (ironically) making al-
location failure more likely to occur. We run the same
set of microbenchmarks and application-level workloads,
and record information about how much memory was al-
located for both ext2 and ext2-mfr; we also turn on and off
cache-peeking for ext2-mfr. Table 6 presents our results.

From the table, we make a number of observations.
First, our unoptimized ext2-mfr does indeed conserva-
tively pre-allocate a noticeable amount more memory than
needed in some cases. For example, during a sequen-
tial read of a 1 GB file, normal ext2 allocates roughly
1 GB (mostly to hold the data pages), whereas unopti-
mized ext2-mfr allocates nearly seven times that amount.
The file is being read one 4-KB block at a time, which
means on average, the normal scan allocates one block
per read whereas ext2-mfr allocates seven. The reason
for these excess pre-allocations is simple: when reading
a block from a large file, it ispossiblethat one would
have to read in a double-indirect block, indirect block, and
so forth. However, as those blocks are already in cache
for these reads, the conservative pre-allocation performsa
great deal of unnecessary work, allocating space for these
blocks and then freeing them immediately after each read
completes; the excess pages are not needed.

With cache peeking enabled, the pre-allocation space
overheads improve significantly, as virtually all blocks
that are in cache need not be allocated. Cache peek-
ing clearly makes the pre-allocation quite space-effective.
The only workload which do not approach the minimum
is OpenSSH. OpenSSH, however, places small demand on
the memory system in general and hence is not of great
concern.

6.4 Page Recycling
We also study the benefits of page recycling. In this exper-
iment, we investigate the memory overheads of that arise
during truncate. Figure 8 plots the results.

In the figure, we compare the space overheads of stan-
dard ext2, ext2-mfr (without cache peeking), and ext2-mfr

Process State File-System State
Error Abort Unusable Inconsistent

ext2-mfr10 15 0 0 0
ext2-mfr50 15 0 0 0
ext2-mfr99 15 0 0 0

Table 7: Fault Injection Results: Fail-Fast. The table

shows the reaction of Linux ext2-mfr using a fail-fast policy file system.

A detailed description of the experiment is found in Table 2.

10KB 10MB 4GB

10KB

100KB

1MB

8MB
Truncate Overheads

Log (File Size)

Lo
g

(M
em

 A
llo

ca
te

d)

ext2-mfr

ext2-mfr (+recycle)

ext2

Figure 8: Space Costs with Page Recycling.The figure
shows the measured space overheads of page recycling during
the truncate of a file. The file size is varied along the x-axis,and
the space cost is plotted on the y-axis (both are log scales).

with page recycling. As one can see from the figure, as
the file system grows, the space overheads of both ext2
and ext2-mfr converge, as numerous pages are allocated
for indirect blocks. Page recycling obviates the need for
these blocks, and thus uses many fewer pages than even
standard ext2.

6.5 Conservative Pre-allocation
We also were interested in whether, despite our best ef-
forts, ext2-mfr ever under-allocated memory in the pre-
allocation phase. Thus, we ran our same set of work-
loads and checked for this case. In no run during these
experiments and other stress-tests did we ever encounter
an under-allocation, giving us further confidence that our
static transformation of ext2 was properly done.

6.6 Policy Alternatives
We also were interested in seeing how hard it is to use
a different policy to react to allocation failures. Table 7
shows the results of our fault-injection experiment, but
this time with a “fail-fast” policy which immediately re-
turns to the user should the pre-allocation attempt fail.

The results show the expected outcome. In this case,
the process running the workload immediately returns the
ENOMEM error code; the file system remains consistent
and usable. By changing only a few lines of code, an en-
tirely different failure-handling behavior can be realized.

11

7 Related Work
A large body of related work is found in the programming
languages community on heap usage analysis, wherein
researchers have developed static analyses to determine
how much heap (or stack) space a program will use [1, 8,
11, 12, 21, 22, 35, 36]. The general use-case suggested for
said analyses is in the embedded domain, where memory
and time resources are generally quite constrained [11].
Whereas many of the analyses focus on functional or
garbage-collected languages, and thus are not directly ap-
plicable to our problem domain, we do believe that some
of the more recent work in this space could be applicable
to anticipatory memory allocation. In particular, Chin et
al.’s work on analyzing “low-level” code [11] and the live
heap analysis implemented by Albert et al. [1] are promis-
ing candidates for further automating the AMA transfor-
mation process.

The more general problem of handling “memory bugs”
has also been investigated in great detail [2, 5, 14, 32, 33];
see Berger and Zorn for an excellent discussion of the
range of common problems, including dangling pointers,
double frees, and buffer overruns [5]. Many interesting
and novel solutions have been proposed, including rolling
back and trying again with a small change to the envi-
ronment (e.g., more padding) [32], using multiple ran-
domized heaps and voting to determine correctness [5],
and even returning “made up” values when out-of-bounds
memory is accessed [33]. The problem we tackle is both
narrower and broader at once: narrower in that one could
view the poor handling of an allocation failure as just one
class of memory bug; broader in that true recovery from
such a failure in a complex code base is quite intricate
and reaches beyond the scope of typical solutions to these
classic memory bugs.

Our approach of using static analysis to predict
memory-requirement is similar in spirit to that taken by
Garbervetsky et al. [18]. Their approach helps to come
up with estimates of memory allocation within a given re-
gion. Moreover, their system does not consider the al-
locations done by native methods or internal allocation
performed by the runtime system, and do not handle re-
cursive calls. In contrast, AMA comes with the estimate
for the entire file-system operation. Also, AMA estimates
the allocations done by the kernel along with handling re-
cursive calls inside file systems.

Our approach to avoiding memory-allocation failure
is reminiscent of the banker’s algorithm [15] and other
deadlock-avoidance techniques. Indeed, with AMA, one
could build a sort of “memory scheduler” that avoided
memory over-commitment by delaying some requests un-
til others frees had taken place, another avenue we plan to
explore in future work.

Finally, our approach draws on concurrency control in
its resemblance to two-phase locking [30], in which all

locks are first acquired in an “expanding phase”, then
used, and then all released during a “shrinking phase”.
The expanding phase thus bears likeness to our pre-
allocation request, in that all necessary resources are ac-
quired up front before they are needed.

8 Conclusions
“Act as if it were impossible to fail.” (Dorothea Brande)

It is common sense in the world of programming that
code that is rarely run rarely works. Unfortunately, some
of the most important code in systems falls into this cate-
gory, including any code that is run during a “recovery”.
If the problem that leads to the recovery code being en-
acted is rare enough, the recovery code itself is unlikely
to be battle tested, and is thus prone to failure.

We have presented Anticipatory Memory Allocation
(AMA), a new approach to avoiding memory-allocation
failures deep within the kernel. By pre-allocating the
worst-case allocation immediately upon entry into the ker-
nel, AMA ensures that requests further downstream will
never fail, in those places within the code where handling
failure has proven difficult over the years. The small bits
of recovery code that are scattered throughout the code
need never run, and system robustness is improved by de-
sign.

As we build increasingly complex systems, perhaps
we should consider new methods and approaches that
help build robustness into the system by design. AMA
presents one method (early resource allocation) to handle
one problem (memory-allocation failure), but we believe
that the approach could be applied more generally. Our
long term goal is to unify mainline code and recovery code
into one; put another way, the only true manner in which
to have working recovery code is to have none at all.

9 Acknowledgments
We thank the anonymous reviewers and Wilson Hsieh (our shep-
herd) for their feedback and comments, which have substantially
improved the content and presentation of this paper. We also
thank Joe Meehean and Laxman Visampalli for their comments
on earlier drafts of the paper.

This material is based upon work supported by the National
Science Foundation under the following grants: CCF-0621487,
CNS-0509474, CNS-0834392, CCF-0811697, CCF-0811697,
CCF-0937959, as well as by generous donations from NetApp,
Sun Microsystems, and Google.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

12

References
[1] Elvira Albert, Samir Genaim, and Miguel Gomez-

Zamalloa. Live Heap Space Analysis for Languages for
Garbage Collection. InInternational Symposium on Mem-
ory Management (ISMM ’09), Dublin, Ireland, June 2009.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detec-
tion of All Pointer and Array Access Errors. InProceed-
ings of the ACM SIGPLAN 2005 Conference on Program-
ming Language Design and Implementation (PLDI ’04),
pages 290–301, Washington, DC, June 2004.

[3] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Dependability Analysis of
Virtual Memory Systems. InProceedings of the Interna-
tional Conference on Dependable Systems and Networks
(DSN ’06), Philadelphia, Pennsylvania, June 2006.

[4] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin
Agrawal, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Michael M. Swift. Systematically Bench-
marking the Effects of Disk Pointer Corruption. InPro-
ceedings of the International Conference on Dependable
Systems and Networks (DSN ’08), Anchorage, Alaska,
June 2008.

[5] Emery D. Berger and Benjamin G. Zorn. DieHard: Proba-
bilistic Memory Safety for Unsafe Languages. InProceed-
ings of the ACM SIGPLAN 2005 Conference on Program-
ming Language Design and Implementation (PLDI ’06),
Ottawa, Canada, June 2006.

[6] Jeff Bonwick. The Slab Allocator: An Object-Caching
Kernel Memory Allocator. InProceedings of the USENIX
Summer Technical Conference (USENIX Summer ’94),
Boston, Massachusetts, June 1994.

[7] Daniel P. Bovet and Marco Cesati.Understanding the
Linux Kernel. O’Reilly, 2006.

[8] V. Braberman, F. Fernandez, D. Garbervetsky, and
S. Yovine. Parametric Prediction of Heap Memory Re-
quirements. InInternational Symposium on Memory Man-
agement (ISMM ’08), Tucson, Arizona, June 2008.

[9] Aaron B. Brown and David A. Patterson. To Err is Human.
In EASY ’01, 2001.

[10] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski,
David L. Dill, and Dawson R. Engler. EXE: Automati-
cally Generating Inputs of Death. InProceedings of the
13th ACM Conference on Computer and Communications
Security (CCS ’06), Alexandria, Virginia, November 2006.

[11] Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and
Shengchao Qin. Analysing Memory Resource Bounds
for Low-Level Programs. InInternational Symposium on
Memory Management (ISMM ’08), Tucson, Arizona, June
2008.

[12] Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, and
Martin Rinard. Memory Usage Verification for OO Pro-
grams. InStatic Analysis Symposium (SAS ’05), 2005.

[13] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An Empirical Study of Operating Sys-
tem Errors. InProceedings of the 18th ACM Symposium

on Operating Systems Principles (SOSP ’01), pages 73–
88, Banff, Canada, October 2001.

[14] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
Safety Without Runtime Checks Or Garbage Collection. In
LCTES ’03, 2003.

[15] E. W. Dijkstra. EWD623: The Mathematics Behind The
Bankers Algorithm. Selected Writings on Computing: A
Personal Perspective (Springer-Verlag), 1977.

[16] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou,
and Benjamin Chelf. Bugs as Deviant Behavior: A Gen-
eral Approach to Inferring Errors in Systems Code. InPro-
ceedings of the 18th ACM Symposium on Operating Sys-
tems Principles (SOSP ’01), pages 57–72, Banff, Canada,
October 2001.

[17] Dawson Engler and Madanlal Musuvathi. Static Analy-
sis versus Software Model Checking for Bug Finding. In
5th International Conference Verification, Model Checking
and Abstract Interpretation (VMCAI ’04), Venice, Italy,
January 2004.

[18] Diego Garbervetsky, Sergio Yovine, Vı́ctor Braberman,
Martı́n Rouaux, and Alejandro Taboada. On transform-
ing java-like programs into memory-predictable code. In
JTRES ’09: Proceedings of the 7th International Workshop
on Java Technologies for Real-Time and Embedded Sys-
tems, pages 140–149, New York, NY, USA, 2009. ACM.

[19] Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Ben Li-
blit. EIO: Error Handling is Occasionally Correct. InPro-
ceedings of the 6th USENIX Symposium on File and Stor-
age Technologies (FAST ’08), pages 207–222, San Jose,
California, February 2008.

[20] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson R.
Engler. A System and Language for Building System-
Specific, Static Analyses. InProceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’02), Berlin, Germany, June
2002.

[21] M. Hofmann and S. Jost. Static Prediction of Heap Space
Usage for First Order Functional Languages. InThe 30th
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’03), New Orleans, Louisiana,
January 2003.

[22] Martin Hofmann and Steffen Jost. Type-based amortised
heap-space analysis. InIn ESOP 2006, LNCS 3924, pages
22–37. Springer, 2006.

[23] Steve R. Kleiman. Vnodes: An Architecture for Multiple
File System Types in Sun UNIX. InProceedings of the
USENIX Summer Technical Conference (USENIX Summer
’86), pages 238–247, Atlanta, Georgia, June 1986.

[24] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. CP-Miner: A Tool for Finding Copy-paste and Re-
lated Bugs in Operating System Code. InProceedings of
the 6th Symposium on Operating Systems Design and Im-
plementation (OSDI ’04), San Francisco, California, De-
cember 2004.

13

[25] David Lie, Andy Chou, Dawson Engler, and David L. Dill.
A Simple Method for Extracting Models from Protocol
Code. InProceedings of the 28th Annual International
Symposium on Computer Architecture (ISCA ’01), Gote-
borg, Sweden, June 2001.

[26] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from Mistakes — A Comprehensive Study on
Real World Concurrency Bug Characteristics. InProceed-
ings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS XIII), Seattle, Washington, March 2008.

[27] Andrew Morton. Re: [patch] jbd slab
cleanups. kerneltrap.org/mailarchive/linux-fsdevel/
2007/9/19/322280/thread#mid-322280, September 2007.

[28] Madanlal Musuvathi, David Y.W. Park, Andy Chou, Daw-
son R. Engler, and David L. Dill. CMC: A Pragmatic Ap-
proach to Model Checking Real Code. InProceedings of
the 5th Symposium on Operating Systems Design and Im-
plementation (OSDI ’02), Boston, Massachusetts, Decem-
ber 2002.

[29] George C. Necula, Scott McPeak, S. P. Rahul, and Westley
Weimer. Cil: An infrastructure for c program analysis and
transformation. InInternational Conference on Compiler
Construction (CC ’02), pages 213–228, April 2002.

[30] Nathan Goodman Philip A. Bernstein, Vassos Hadzilacos.
Concurrency Control and Recovery in Database Systems.
Addison Wesley, 1987.

[31] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin
Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. IRON File Systems. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), pages 206–220, Brighton,
United Kingdom, October 2005.

[32] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and
Yuanyuan Zhou. Rx: Treating Bugs As Allergies. InPro-
ceedings of the 20th ACM Symposium on Operating Sys-
tems Principles (SOSP ’05), Brighton, United Kingdom,
October 2005.

[33] Martin Rinard, Christian Cadar, Daniel Dumitran,
Daniel M. Roy, Tudor Leu, and Jr. William S. Beebe. En-
hancing Server Availability and Security Through Failure-
Oblivious Computing. InProceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’04), San Francisco, California, December 2004.

[34] Cindy Rubio-Gonzalez, Haryadi S. Gunawi, Ben Lib-
lit, Remzi H. Arpaci-Dusseau, and Andrea C. Arpaci-
Dusseau. Error Propagation Analysis for File Systems.
In Proceedings of the ACM SIGPLAN 2009 Conference
on Programming Language Design and Implementation
(PLDI ’09), Dublin, Ireland, June 2009.

[35] TUGS. StackAnalyzer Stack Usage Analysis.
http://www.absint.com/stackanalyzer/, September 2010.

[36] Leena Unnikrishnan and Scott D. Stoller. Parametric Heap
Usage Analysis for Functional Programs. InInternational
Symposium on Memory Management (ISMM ’09), Dublin,
Ireland, June 2009.

[37] Mark Weiser. Program Slicing. InInternational Confer-
ence on Software Engineering (ICSE ’81), pages 439–449,
San Diego, California, May 1981.

[38] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE:
A Lightweight, General System for Finding Serious Stor-
age System Errors. InProceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI
’06), Seattle, Washington, November 2006.

[39] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar,
and Dawson Engler. Automatically Generating Malicious
Disks using Symbolic Execution. InIEEE Security and
Privacy (SP ’06), Berkeley, California, May 2006.

[40] Junfeng Yang, Paul Twohey, Dawson Engler, and Madan-
lal Musuvathi. Using Model Checking to Find Serious
File System Errors. InProceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI
’04), San Francisco, California, December 2004.

14

