
Programmable Hardware
 Acceleration

Vinay Gangadhar

PhD Final Examination

Thursday, Nov 16th, 2017

Advisor: Karu Sankaralingam

Committee: Mark Hill, Mikko Lipasti, David Wood, Dimitris Papailiopoulos

Dissertation Talk 1 11/16/2017

Device scaling slowdown
(or dead)

&
Dark silicon problem

Computing Trends

Emerging applications
driving computing with new

demands

Dissertation Talk 2 11/16/2017

NVIDIA DGX-1 AI Accelerator
& NVDLA Architecture

Movidius
Myriad VPU

Era of Specialization

Traditional Multicore

Image
Processing

Neural
Approx.

Graph
Traversal

AI

Scan

Sort

Reg Expr.

Deep
Neural

Stencil

Application domain
specialization

Fixed-function Accelerators for specific domain:
Domain Specific Accelerators (DSAs)

Domain Specific Acceleration

+ High Efficiency

10 – 1000x
Performance/Power

or
Performance/Area

Google TPU

Dissertation Talk 3 11/16/2017

Caveats of Domain-Specific
Accelerators (DSAs)

DSAs Image
Processing

Neural
Approx.

Graph
Traversal

AI

Scan

Sort

Reg Expr.

Deep
Neural

Stencil

H.266 H.265

- Minimally programmable/
Not Re-configurable

- Obsoletion prone

- Domains targeting each device type

- Architecture, design, verification
 and fabrication cost

- Multi-DSA chip for “N” application domains 

Area and cost inefficient

Server Mobile IOT

Source: Malitel Consulting Dissertation Talk 4 11/16/2017

The Universal Accelerator Dream...

Query
Processing

Image
Processing

Automated
Driving

Compression

Regex
Matching

Deep Neural

Convert 100+ Accelerators

 1 Programmable Accelerator Fabric
Standard programming and

threading interface

A generic programmable hardware accelerator
matching the efficiency of Domain Specific Accelerators (DSAs)

with an efficient hardware-software interface

Source:
Malitel Consulting

Dissertation Talk 5 11/16/2017

Specialization Paradigms

Dissertation Talk 6 11/16/2017

Domain-Specific
Accelerators (DSAs) Image

Processing

Neural
Approx.

Graph
Traversal

AI

Scan

Sort

Reg Expr.

Deep
Neural

Stencil

Commonality in DSAs ?

Programmable Hardware
Accelerator Architecture

Specialization Principles

Micro-Architectural Mechanisms

Research Overview

Dissertation Talk 7 11/16/2017

ASIC/
DSA

GPP SIMD FPGA GPGPU DSP

Efficiency
(energy efficient computing)

Programmability /
Re-configurability Features

General Set of
Micro-Architectural Mechanisms

+

Efficiency
close to DSAs/ASICs

Retain
programmability

Programmable Hardware
Accelerator

Specialization
Principles

Architecture with Flexible
Hardware-Software

Programming Interface

Generality

Trivial adaptation of
new algorithms/applications

8

Research Overview

Programmable or Re-Configurable
Specialized Architecture

Dissertation Talk 8 11/16/2017

Dissertation Research Goal

1. Explore the commonality in the way the DSAs specialize –
Specialization Principles

Programmable Hardware Acceleration

2. General Mechanisms for the design of a generic programmable
hardware accelerator matching the efficiency of DSAs

3. A programmable/re-configurable accelerator architecture
with an efficient accelerator hardware-software (ISA) interface

4. Easy adaptation of new acceleratable algorithms
in a domain-agnostic way

Dissertation Talk 9 11/16/2017

Dissertation Statement

Programmable Hardware Acceleration

A programmable hardware accelerator nearing the efficiency of a
domain-specific accelerator (DSA) is feasible to build by:

• Identifying the common principles of architectural specialization

• Applying general set of micro-architectural mechanisms for the

identified principles

• Having an efficient hardware-software interface to be able to express

any typical accelerator application

Dissertation Talk 10 11/16/2017

Contributions
Modeling Programmable

Hardware Acceleration
Architectural Realization with
Stream-Dataflow Acceleration

• Exploring the common principles
of architectural specialization

• Modeling a general set of
mechanisms to exploit the
specialization principles –
GenAccel Model

• Quantitative evaluation of
GenAccel Model with four DSAs

• System-Level Tradeoffs of
GenAccel Model vs. DSAs

• Stream-Dataflow programmable
accelerator architecture with:

 Programming abstractions
and execution model

 ISA interface

• Detailed micro-architecture with
an efficient architectural
realization of stream-dataflow
accelerator – Softbrain

• Quantitative evaluation of
Softbrain with state-of-the-art
DSA solutions

Dissertation Talk 11 11/16/2017

*Published in HPCA 2016, IEEE Micro Top Picks 2017

Modeling Programmable
Hardware Acceleration*

Dissertation Talk 12 11/16/2017

Outline

• Principles of architectural specialization

 Embodiment of principles in DSAs

• Modeling mechanisms exploiting specialization
principles for a generic programmable accelerator
(GenAccel Model)

• Evaluation of GenAccel with 4 DSAs
(Performance, power & area)

• System-level energy efficiency tradeoffs with
GenAccel and DSA

Speedup

En
er

gy

Computation

Data Reuse

Concurrency

Coordination

Communication

Core

System Bus

$

Memory

Accel.

Dissertation Talk 13 11/16/2017

Key Insight: Commonality in
DSAs’ Specialization Principles

+

S

S

FU

S

S FU

Computation Data Reuse Concurrency Coordination Communication

Most DSAs employ 5 common Specialization Principles

Linear
Algebra

Neural
Approx.

Graph
Traversal

AI

Scan

Sort

Reg Expr.

Deep Neural Stencil

Cache
C

o
re

C
o

re

C
o

re

DSAs Host System

Dissertation Talk 14 11/16/2017

Principles of Architectural
Specialization

• Match hardware concurrency to that of algorithm

• Problem-specific computation units

• Explicit communication as opposed to implicit
communication

• Customized structures for data reuse

• Hardware coordination using simple low-power control logic

+

Computation

FU

Data Reuse Concurrency Coordination

S

S

FU

S

S

Communication

Dissertation Talk 15 11/16/2017

+

S

S

FU

S

S FU

Computation Data Reuse Concurrency Coordination Communication

5 Specialization Principles

Linear
Algebra

Neural
Approx.

Graph
Traversal

AI

Scan

Sort

Reg Expr.

Deep Neural Stencil

NPU

Convolution
Engine

DianNao

Q100

Deep Neural

Stencil

Neural
Approx.

Database

How do DSAs embody these principles in a
domain specific way ?

Dissertation Talk 16 11/16/2017

PE

PE

PE

PE

PE PE

PE PE
In

 F
if

o
 Bus Sched

O
u

t
Fi

fo

General Purpose Processor

Weight Buf.

Fifo

Out Buf.

Cont-
roller Acc Reg.

Sigmoid

NPU – Neural Proc. Unit

Mult-Add

H
ig

h
 L

e
ve

l
O

rg
an

iz
at

io
n

P

ro
ce

ss
in

g
U

n
it

s

Most DSAs employ
Five Common Specialization Principles

Computation Data Reuse Concurrency Coordination Communication

Principles in DSAs

Dissertation Talk 17 11/16/2017

Outline

• Principles of architectural specialization

 Embodiment of principles in DSAs

• Modeling mechanisms exploiting specialization
principles for a generic programmable accelerator
(GenAccel Model)

• Evaluation of GenAccel with 4 DSAs
(Performance, power & area)

• System-level energy efficiency tradeoffs with
GenAccel and DSA

Speedup

En
er

gy

Computation

Data Reuse

Concurrency

Coordination

Communication

Core

System Bus

$

Memory

Accel.

Dissertation Talk 18 11/16/2017

• Concurrency: Multiple tiles (Tile – hardware for coarse grain unit of work)

• Computation: Special FUs in spatial fabric

• Communication: Dataflow + spatial fabric

• Data Reuse: Scratchpad (SRAMs)

• Coordination: Low-power simple core

Computation Data Reuse Concurrency Coordination Communication

Composition of simple micro-architectural mechanisms

Each Tile

Implementation of Principles in
a General Way

Dissertation Talk 19 11/16/2017

Modeling the Generic
Programmable Accelerator Design

Sp
atial Fab

ric

Output Interface

Input Interface

Scratchpad DMA

Memory

Low-power
Core

D$

Sp
atial Fab

ric

Output Interface

Input Interface

Scratchpad DMA

Memory

Low-power
Core

D$

Sp
atial Fab

ric

Output Interface

Input Interface

Scratchpad DMA

Memory

Low-power
Core

D$

. . .

Memory

FU

S

FU

FU FU

S – Switch

Low power core | Spatial fabric | Scratchpad | DMA  GenAccel Model

Computation Data Reuse Concurrency Coordination Communication

Dissertation Talk 20 11/16/2017

Instantiating GenAccel

GAC

GenAccel Fabric

Provisioned for
one single application domain

Programmable hardware template for specialization

Neural Approx.
Deep Neural

Stencil
Neural Approx.

Database

Provisioned for
 multiple application domains

Stencil

Deep Neural

Database

*Figures not to scale

GAD

GAQ

GAN

GABalanced

or
 GAB

GenAccel Usage, Design point selection & Synthesis etc.
 More details in backup…..

Dissertation Talk 21 11/16/2017

Outline

• Principles of architectural specialization

 Embodiment of principles in DSAs

• Modeling mechanisms exploiting specialization
principles for a generic programmable accelerator
(GenAccel Model)

• Evaluation of GenAccel with 4 DSAs
(Performance, power & area)

• System-level energy efficiency tradeoffs with
GenAccel and DSA

Speedup

En
er

gy

Computation

Data Reuse

Concurrency

Coordination

Communication

Core

System Bus

$

Memory

Accel.

Dissertation Talk 22 11/16/2017

Methodology
• Modeling framework for GenAccel

 Performance: Trace driven simulator + application specific modeling

 Power & Area: Synthesized modules, CACTI and McPAT

• Compared to four DSAs (published perf., area & power)

• Four parameterized GenAccels

• Provisioned to match performance of DSAs

 Other tradeoffs possible (power, area, energy etc.)

GAN GAC GAD GAQ

 1 Unit 1 Unit 8 Units 4 Units

NPU

Conv.

DianNao Q100

GAB

NPU

Conv.

 DianNao Q100
8 Units

One combined balanced
GenAccel

Dissertation Talk 23 11/16/2017

Performance Analysis
GenAccel vs DSAs

Baseline – 4 wide OOO core (Intel 3770K)

0

2

4

6

8

10

12

14

 NPU
 (GeoMean)

Sp
e

ed
U

p

0

5

10

15

20

25

30

35

Conv. Engine
 (GeoMean)

0

20

40

60

80

100

120

 Diannao
 (GeoMean)

0

20

40

60

80

100

120

140

160

180

200

Q100
 (GeoMean)

GA (+reuse.)

Spatial (+comm.)

SIMD (+concur.)

Multi-Tile (+concur.)

LP core + SFUs (+comp.)

DSA GeoMean

GAC vs. Conv.
(1 Unit)

GAN vs. NPU
(1 Unit)

GAD vs. DianNao
(8 Units)

GAQ vs. Q100
(4 Units)

Domain Provisioned
GenAccel (GA)

Domain Provisioned GenAccels

Performance: GenAccel able to match DSA

Main contributor to speedup: Concurrency

Dissertation Talk 24 11/16/2017

Domain Provisioned GenAccels

GenAccel area & power compared to a single DSA ?

Dissertation Talk 25 11/16/2017

Domain Provisioned GenAccels
Area and Power Analysis

0

1

2

3

4

N
o

rm
al

iz
ed

 A
re

a

1.2x

1.7x

3.8x

0.5x

*Detailed area breakdown in backup

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

N
o

rm
al

iz
ed

 P
o

w
er

2x

3.6x

4.1x

0.6x

Area Comparison Power Comparison

Domain provisioned GenAccel overhead

1x – 4x worse in Area

2x – 4x worse in Power

Dissertation Talk 26 11/16/2017

Balanced GenAccel design

Area and power of GenAccel Balanced design,
when multiple domains mapped* ?

* Still provisioned to match the performance of each DSA

Dissertation Talk 27 11/16/2017

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
ed

 P
o

w
er

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
ed

 A
re

a

0.6x

2.5x

GenAccel Balanced Design
Area-Power Analysis

Area Power

Balance GenAccel design overheads

Area efficient than multiple DSAs

2.5x worse in Power than multiple DSAs

Dissertation Talk 28 11/16/2017

Outline
• Introduction

• Principles of architectural specialization

 Embodiment of principles in DSAs

• Modeling mechanisms exploiting specialization
principles for a generic programmable accelerator
(GenAccel Model)

• Evaluation of GenAccel with 4 DSAs
(Performance, power & area)

• System-level energy efficiency tradeoffs with
GenAccel and DSA

Speedup

En
er

gy

Computation

Data Reuse

Concurrency

Coordination

Communication

Core

System Bus

$

Memory

Accel.

Dissertation Talk 29 11/16/2017

Conclusion – Modeling Programmable
Hardware Acceleration

• 5 common principles for architectural specialization

• Modeled the mechanisms embodying the specialization principles –
Design of a Generic Programmable accelerator (GenAccel Model)

• GenAccel model competitive with DSA performance and overheads
of only up to 4x in area and power

• Power overhead inconsequential when system-level energy
tradeoffs considered

• GenAccel Model as a baseline for future accelerator research

Dissertation Talk 30 11/16/2017

Dissertation Research Goal

1. Explore the commonality in the way the DSAs specialize –
Specialization Principles

Programmable Hardware Acceleration

2. General Mechanisms for the design of a generic programmable
hardware accelerator matching the efficiency of DSAs

3. A programmable/re-configurable accelerator architecture
with an efficient accelerator hardware-software (ISA) interface

4. Easy adaptation of new acceleratable algorithms
in a domain-agnostic way

Dissertation Talk 31





11/16/2017

Contributions
Modeling Programmable

Hardware Acceleration
Architectural Realization with
Stream-Dataflow Acceleration

• Exploring the common principles
of architectural specialization

• Modeling a general set of
mechanisms to exploit the
specialization principles –
GenAccel Model

• Quantitative evaluation of
GenAccel Model with four DSAs

• System-Level Tradeoffs of
GenAccel Model vs. DSAs

• Stream-Dataflow programmable
accelerator architecture with:

 Programming abstractions
and execution model

 ISA interface

• Detailed micro-architecture with
an efficient architectural
realization of stream-dataflow
accelerator – Softbrain

• Quantitative evaluation of
Softbrain with state-of-the-art
DSA solutions

Dissertation Talk 32 11/16/2017

*Published in ISCA 2017, Submitted to IEEE Micro Top-Picks 2018

Stream-Dataflow Acceleration*

Dissertation Talk 33 11/16/2017

Architectural Realization of
Programmable Hardware Acceleration

• Workloads characteristics:
 Regular streaming memory accesses with straightforward patterns
 Computationally intensive with long execution phases
 Ample data-level parallelism with large datapath
 Small instruction footprints with simple control flow

• Accelerator architecture to accelerate data-streaming applications

 Instantiates the hardware primitives from GenAccel model
 Exploit all the five specialization principles

 Stream-Dataflow high-performance compute substrate with Dataflow
and Stream specialization components

 Exposes a novel stream-dataflow ISA interface for programming the
accelerator

Dissertation Talk 34 11/16/2017

Exploit common accelerator application behavior:

• Stream-Dataflow Execution model –
Abstracts typical accelerator
computation phases

• Stream-Dataflow ISA encoding and
Hardware-Software interface –
Exposes parallelism available in these
phases

• Barrier commands to facilitate data
coordination and data consistency

Stream-Dataflow Acceleration

Dataflow
 Graph

To Memory

Memory
Stream

Reuse
Stream

Local
storage

R
e

cu
rren

ce
 Stre

am

From Memory

Dataflow Computation

Stream Patterns and Interface

+

x x

+

Dissertation Talk 35

Synchronization Primitives

11/16/2017

Stream-Dataflow Acceleration

+

x x

+ Dataflow
 Graph
(DFG)

To Memory

Memory
Stream

Reuse
Stream

Local
storage

R
e

cu
rren

ce
 Stre

am

From Memory

Memory Interface

... Input Data
Streams ...

Output Data
Streams

Recurring
Data
Streams

Local Storage
(Programmable

Scratchpad)

Input Data
Streams

Reuse
streams

Output Data
Streams

Memory/Cache Hierarchy

Programmable Stream-Dataflow
Accelerator

• Data-parallel program kernels streaming data from
memory

• Dataflow computation fabric operates on data streams
iteratively

• Computed output streams stored back to memory

Re-configurable
Computation Fabric

Stream-Dataflow Model

Dissertation Talk 36 11/16/2017

Outline
• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable
Hardware Accelerator

• Stream-Dataflow Accelerator Architecture
and Example program

• Stream-Dataflow Micro-Architecture – Softbrain

• Evaluation and Results

1

10

100

1000

GM

Control

State storage/SRAM

Datapath

BLACK Data Line
GREEN Control/Commands

LEGEND

RISCV
Rocket Core

VP Scoreboard

Resource Status
Checker

Stream
Cmd. Queue Cmd.

Issue

SD
 C

M
D

Scratchpad

Stream Dispatcher

Scratch
Stream Engine (SSE)

for Writes

Scratch
Stream Engine (SSE)

for Reads

. . .

. . .

To MSE

CGRA
Recurrence

Stream Engine
(RSE)

Memory Interface

Memory
Stream Engine (MSE)

for Writes

Memory
Stream Engine (MSE)

for Reads

Cache/ Memory Heirarchy

Fr
ee

 S
SE

 R
ea

d

SS
E

W
ri

te
 C

m
d

SS
E

R
ea

d
 C

m
d

Fr
ee

 M
SE

 R
ea

d

Fr
ee

 M
SE

 W
ri

te

Fr
ee

 S
SE

 W
ri

te

MSE Write Cmd MSE Read Cmd

Fr
o

m
 M

SE

D
-C

a
ch

e
R

eq
/R

es
p

I-
C

a
ch

e
R

eq
/R

es
p

Fr
o

m
 S

SE

To SSE

SCR to MSE
writes

Tag Invalidate

Input
Data VPs

Output
Data VPs

Indirect Load/Store
VPs

Stream
Cmds
to SEs

RSE Cmd

Config

CGRA Config

Writes Reads

Free RSE

Dissertation Talk 37 11/16/2017

Stream-Dataflow Execution Model

+

x x

+

Dataflow based firing
of data from
vector ports

A(3) Acc(1) B(3)

Out(3) R(1)

Input Vector Ports
(width)

Output Vector Ports
(width)

• Computation abstraction – Dataflow Graph
(DFG) with input/output vector ports

• Data abstraction – Streams of data fetched
from memory and stored back to memory

• Reuse abstraction – Streams of data fetched
once from memory, stored in local storage
(programmable scratchpad) and reused again

• Communication abstraction – Stream-Dataflow
data movement commands and barriers

To Memory

Memory
Stream

Reuse
Stream

Local
storage

R
ecu

rre
n

ce Stream

From Memory

+

x x

+
Dataflow

 Graph
(DFG)

Architectural Abstractions for Stream-Dataflow Model

Access
Pattern

Memory Address
Local Storage Address

DFG Port

Source
Memory Address

Local Storage Address
DFG Port

Destination

Dissertation Talk 38 11/16/2017

Stream-Dataflow Execution Model
Programmer Abstractions for Stream-Dataflow Model

To Memory

Memory
Stream

Reuse
Stream

Local
storage

R
ecu

rre
n

ce Stream

From Memory

+

x x

+
Dataflow

 Graph

Read
 Data

Compute

Write Data

Time

• Computation abstraction – Dataflow Graph
(DFG) with input/output vector ports

• Data abstraction – Streams of data fetched
from memory and stored back to memory

• Reuse abstraction – Streams of data fetched
once from memory, stored in local storage
(programmable scratchpad) and reused again

• Communication abstraction – Stream-Dataflow
data movement commands and barriers

Read Barrier

All Barrier

Dissertation Talk 39

• Separates the data-movement from computation

• Achieves high-concurrency through the execution of
coarser-grained data streams alongside dataflow

computation

11/16/2017

Outline
• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable
Hardware Accelerator

• Stream-Dataflow Accelerator Architecture
and Example program

• Stream-Dataflow Micro-Architecture – Softbrain

• Evaluation and Results

1

10

100

1000

GM

Control

State storage/SRAM

Datapath

BLACK Data Line
GREEN Control/Commands

LEGEND

RISCV
Rocket Core

VP Scoreboard

Resource Status
Checker

Stream
Cmd. Queue Cmd.

Issue

SD
 C

M
D

Scratchpad

Stream Dispatcher

Scratch
Stream Engine (SSE)

for Writes

Scratch
Stream Engine (SSE)

for Reads

. . .

. . .

To MSE

CGRA
Recurrence

Stream Engine
(RSE)

Memory Interface

Memory
Stream Engine (MSE)

for Writes

Memory
Stream Engine (MSE)

for Reads

Cache/ Memory Heirarchy

Fr
ee

 S
SE

 R
ea

d

SS
E

W
ri

te
 C

m
d

SS
E

R
ea

d
 C

m
d

Fr
ee

 M
SE

 R
ea

d

Fr
ee

 M
SE

 W
ri

te

Fr
ee

 S
SE

 W
ri

te

MSE Write Cmd MSE Read Cmd

Fr
o

m
 M

SE

D
-C

a
ch

e
R

eq
/R

es
p

I-
C

a
ch

e
R

eq
/R

es
p

Fr
o

m
 S

SE

To SSE

SCR to MSE
writes

Tag Invalidate

Input
Data VPs

Output
Data VPs

Indirect Load/Store
VPs

Stream
Cmds
to SEs

RSE Cmd

Config

CGRA Config

Writes Reads

Free RSE

Dissertation Talk 40 11/16/2017

Programs

General
Language

General ISA

Compiler

General Purpose
Hardware

Traditional
Arch.

Accelerator
(DSA)

Domain-Specific
Programs

Application/Domain
Specific Hardware

Tiny
H/W-S/W
Interface

10-1000x Performance/Power or Performance/Area
(completely lose generality/programmability)

Progammable
Hardware Accelerator

Programs
(“Specialized”)

Re-Configurable
Hardware

H/W-S/W
Interface

H/W
Parameters

Can the specialized programs be adapted in a domain-
agnostic way with this interface?

Dissertation Talk 41 11/16/2017

Stream-Dataflow ISA Interface

Express any data-stream pattern of accelerator
applications using simple, flexible and yet efficient

encoding scheme

Dissertation Talk 42 11/16/2017

Stream-Dataflow ISA

• Set-up Interface:
 SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:
SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

• Stream Interface  SD_[source]_[dest]
Source/Dest Parameters: Address (memory or local_storage), DFG Port number
Pattern Parameters: access_size, stride_size, num_strides

Local Storage
(Scratchpad)

Compute
Fabric

Memory

Dissertation Talk 43 11/16/2017

Stream-Dataflow Programming
Interface

Source
Memory,

Local Storage,
DFG Port

Access Pattern
Destination

Memory,
Local Storage,

DFG Port

Stride

Access Size

Start Address

Number of Strides

mem_addr
= 0xA

 memory_stride = 8

num_strides
= 2

access_size = 4

Overlapped

Repeating

Linear

Example
Access
Patterns

Strided

Offset-Indirect

2D Direct
Streams

2D Indirect
Streams

Dissertation Talk 44 11/16/2017

Stream-Dataflow ISA Encoding

Stream:

for i = 1 to 100:
 ... = a[2*i];
 ... = b[i];
 c[b[i]] = ...

a

b

c

Time <address, access_size, stride_size, length>

<stream_start, offset_address>

Stream Encoding

 Eg: <a, 1, 2, 100>

 <b, 1, 1, 100>

 IND<[prev], c, 100>

Dataflow:

× × ×

+
+

Dataflow
 Graph

Vector A[0:2] Vector B[0:2]

C

Specified in a
Domain Specific
Language (DSL)

Dissertation Talk 45 11/16/2017

Example Pseudo-Code: Dot
Product

for(int i = 0 to N) {
 c += a[i] * b[i];
}

Put a[0: N]  P1
Put b[0: N]  P2
Recur P3, N - 1
Get P3  c

Stream ISA Encoding

Original Program

Dataflow Encoding

×
+

P1 P2

P3

Dissertation Talk 46 11/16/2017

New ISA Class for Programmable
Hardware Acceleration

Dissertation Talk

Stream-Dataflow ISA
• Expresses long memory streams and

access patterns efficiently
– Address generation hardware becomes
much simpler

• Decouples access and execute phases

• Reduces instruction overheads

• Dependences are explicitly encoded

• Reduces cache requests and pressure by
encoding alias-free memory requests

– Implicit coalescing for concurrent
memory accesses

• Separates architecture abstractions from
the implementation details

 47 11/16/2017

Local Storage
(Scratchpad)

ASIC Hardware
For Computation

Memory

A New ISA Paradigm for Acceleration
• Need to embody common accelerator

principles and execution model

• Need to represent programs without
requiring complex micro-architecture
techniques for performance

– VLIW, SIMT and SIMD have their own
drawbacks for accelerators

• Micro-Architecture for C-programmable
ASICs

– Enables ‘hardened’ ASIC compute
substrate implementation
– Separates the memory interface
primitives and interaction

Outline
• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable
Hardware Accelerator

• Stream-Dataflow Accelerator Architecture
and Example program

• Stream-Dataflow Micro-Architecture – Softbrain

• Evaluation and Results

1

10

100

1000

GM

Control

State storage/SRAM

Datapath

BLACK Data Line
GREEN Control/Commands

LEGEND

RISCV
Rocket Core

VP Scoreboard

Resource Status
Checker

Stream
Cmd. Queue Cmd.

Issue

SD
 C

M
D

Scratchpad

Stream Dispatcher

Scratch
Stream Engine (SSE)

for Writes

Scratch
Stream Engine (SSE)

for Reads

. . .

. . .

To MSE

CGRA
Recurrence

Stream Engine
(RSE)

Memory Interface

Memory
Stream Engine (MSE)

for Writes

Memory
Stream Engine (MSE)

for Reads

Cache/ Memory Heirarchy

Fr
ee

 S
SE

 R
ea

d

SS
E

W
ri

te
 C

m
d

SS
E

R
ea

d
 C

m
d

Fr
ee

 M
SE

 R
ea

d

Fr
ee

 M
SE

 W
ri

te

Fr
ee

 S
SE

 W
ri

te

MSE Write Cmd MSE Read Cmd

Fr
o

m
 M

SE

D
-C

a
ch

e
R

eq
/R

es
p

I-
C

a
ch

e
R

eq
/R

es
p

Fr
o

m
 S

SE

To SSE

SCR to MSE
writes

Tag Invalidate

Input
Data VPs

Output
Data VPs

Indirect Load/Store
VPs

Stream
Cmds
to SEs

RSE Cmd

Config

CGRA Config

Writes Reads

Free RSE

Dissertation Talk 48 11/16/2017

Requirements for Stream-
Dataflow Accelerator Architecture

1. Should employ the common specialization principles and
hardware mechanisms explored in GenAccel model

 (*IEEE Micro Top-Picks 2017: Domain Specialization is Generally Unnecessary for Accelerators)

2. Programmability features without the inefficiencies of existing
 data-parallel architectures (with less power, area and control
 overheads)

+
S

S

FU

S

S FU

Computation Data Reuse Concurrency Coordination Communication

Multiple-Tiles Problem-Specific
FUs

Spatial Fabric
(CGRA)

Scratchpad Low-Power Core

Dissertation Talk 49 11/16/2017

Inefficiencies in Data-Parallel
Architectures

Control
Core

Vector
Register File

SIMD Vector
Units

Sub-SIMD

SIMD & Short Vector SIMD
Warp Scheduler +
Vector Dispatch

Large Register File +
Scratchpad

Vector Lanes

…

Memory Coalescer

SIMT
Control Core +

Vector Dispatch

Scalar Dispatch

Register File

Vector Thread

…

Vector Lanes

Vector Fetch Support

Spatial Dataflow

Distributed PEs

Scalar Dispatch

Addressing &
Communication

• Unaligned
addressing

• Complex scatter-
gather

• Mask & merge
instructions

• Redundant address
generation

• Address coalescing
across threads

• Non-decoupled access-
execute phases

• Redundant
address
generation

• Redundant address
generation

• Inefficient memory
b/w for local accesses

Resource
Utilization
&
Latency hiding

• Core-issue width

• Fixed vector width

• Core to reorder
instructions

• Thread scheduling

• Multi-ported large
register file & cache
pressure

• Redundant
dispatchers

• Core issue width
and re-ordering

• Redundant dispatch

Irregular
execution
support

• Inefficient general
pipeline

• Warp divergence
hardware support

• Re-convergence
for diverged
vector threads

 -

– Control

Dissertation Talk 50 11/16/2017

• Vector architectures – Efficient parallel memory interface

• Spatial Architectures – Efficient parallel computation interface

• Application/Domain Specific Architectures – Efficient
datapath for pipelined concurrent execution

Stream-Dataflow Accelerator
Architecture Opportunities

Memory Interface

Scratchpad
C

o
m

m
an

d
 C

o
re

Coarse-Grained
Reconfigurable Arch.

Vector Interface

Vector Interface

Stream Dataflow

• Reduce address generation & duplication overheads

• Distributed control to boost pipelined concurrent
execution

• High utilization of execution resources w/o massive multi-
threading, reducing cache pressure or using multi-
ported scratchpad

• Decouple access and execute phases of programs

• Simplest hardware fallback mechanism for irregular
memory access support

• Able to be easily customizable/configurable for new
application domain

Dissertation Talk 51 11/16/2017

R
ecu

rren
ce

Stream
 En

gin
e

Scrathcpad Stream Engine

Scratchpad

S S

S S

S S

S S

S S

S S

S S

S S

FU FU

FU FU

C
G

R
A

 S
p

at
ia

l F
ab

ri
c

. . .

. . .

. . .

. . .

Output Vector Port Interface

Input Vector Port Interface

Memory Stream
Engine

To/from
memory hierarchy

In
d

irect V
ecto

r Po
rt In

terface

Dataflow:
• Coarse grained reconfigurable architecture

(CGRA) for data parallel execution

• Direct vector port interface into and out
of CGRA for vector execution

Stream Interface:

• Programmable scratchpad and supporting
stream-engine for data-locality and data-reuse

• Memory stream-engine to facilitate data
streaming in and out of the accelerator

• Recurrence stream-engine to support
recurrent data stream

• Indirect vector port interface for streaming
addresses (indirect load/stores)

Stream-Dataflow Accelerator
Architecture 512b 64b

+

x x

+

A(3) Acc(1) B(3)

Out(3) R(1)

Dissertation Talk 52 11/16/2017

R
ecu

rren
ce

Stream
 En

gin
e

Scrathcpad Stream Engine

Scratchpad

512b 64b Stream Command

S S

S S

S S

S S

S S

S S

S S

S S

FU FU

FU FU

C
G

R
A

 S
p

at
ia

l F
ab

ri
c

. . .

. . .

. . .

. . .

Output Vector Port Interface

Input Vector Port Interface

Memory Stream
Engine

To/from
memory hierarchy

In
d

irect V
ecto

r Po
rt In

terface

Stream-Dataflow Accelerator
Architecture

Stream
Command
Dispatcher

Stream Commands

Tiny

In-order core

D$ I$

Coarse-grained Stream
commands issued by core
through a command queue

• Stream command
interface exposed to a
general purpose
programmable core

• Non-intrusive
accelerator design

Put a[0: N]  P1
Put b[0: N]  P2
Recur P3, N - 1
Get P3  c

Stream ISA Encoding

Dissertation Talk 53 11/16/2017

Stream-Dataflow Accelerator
Architecture Integration

. . .

Memory/Cache Hierarchy

Multi-Tile Stream-Dataflow Accelerator

• Each tile is connected to higher-L2 cache interface

• Need a simple scheduler logic to schedule the offloaded stream-
dataflow kernels to each tile

Dissertation Talk 54 11/16/2017

1. Specify Datapath for the CGRA
– Simple Dataflow Language for DFG

2. Orchestrate the parallel execution of hardware components
– Coarse-grained stream commands using the stream-interface

Data Flow Graph

Input
Ports:

CGRA
Instructions

Output
Ports:

Scratchpad Memory

CGRA
(Execution
Resources)

Input Ports

Output Ports

. . .

. . .

Tiny
In-order

Core

Programming Stream-Dataflow
Accelerator

Dissertation Talk 55 11/16/2017

Classifier Layer (Original)

#define Ni 8
#define Nn 8

// synapse and neurons – 2 bytes
uint16_t synapse[Nn][Ni];
uint16_t neuron_i[Ni];
uint16_t neuron_n[Nn];

for (n = 0; n < Nn; n++) {
 sum = 0;

 for (i = 0; i < Ni; i++) {
 sum += synapse[n][i] * neuron_i[i];
 }

 neuron_n[n] = sigmoid(sum);
}

Input Neurons (Ni)

O
u

tp
u

t
N

eu
ro

n
s

(N
n

)

×
∑

Synapses (Nn x Ni)

Dissertation Talk 56 11/16/2017

Dataflow Graph (DFG)
for CGRA: Classifier Kernel

sum += synapse[n][i] * neuron_i[i];
Computation DFG for

Input: do_sig
Input: acc
Input: N
Input: S

M = Mul16x4(N, S)
R = Red16x4(M, acc)
out = Sig16(R, do_sig)

Output: out

Input
Ports:

CGRA
Instructions

Output
Ports:

N – Input neuron (Ni) port
S – Synapses (synapse) port
do_sig – Input sigmoid predicate port
acc – Input accumulate port
out – Output neurons (Nn) port

class_cfg
(Configuration data for CGRA)

Compilation +
Spatial scheduling

Dissertation Talk 57 11/16/2017

neuron_n[n] = sigmoid(sum);

Stream Dataflow Program:
Classifier Kernel

// Configure the CGRA
SD_CONFIG(class_cfg, sizeof(class_cfg));

// Stream the data from memory to ports
SD_MEM_PORT(synapse, 8, 8, Ni * Nn/ 4, Port_S);
SD_MEM_PORT(neuron_i, 8, 8, Ni/4, Port_N);

for (n = 0; n < Nn/nthreads; n++) {
 // Stream the constant values to constant ports
 SD_CONST(Port_acc, 0, 1);
 SD_CONST(Port_do_sig, 0, Ni - 1);

 // Recur the computed data back for accumulation
 SD_PORT_PORT(Port_out, N - 1, Port_acc);

 // Sigmoid computation and output neuron written
 SD_CONST(Port_do_sig, 1, 1);
 SD_PORT_MEM(Port_out, 2, 2, 1, &neuron_n[n]);
}

SD_BARRIER_ALL();

class_cfg
 (Configuration data

for CGRA)

Compilation +
Spatial scheduling

Dissertation Talk 58 11/16/2017

Performance Considerations
• Goal: Fully pipeline the largest dataflow graph

– Increase performance [CGRA Instructions / Cycle]

– Increase throughput [Graph computation instances per cycle]

• Primary Bottlenecks:

– Computations per Size of Dataflow Graph

– General Core (for Issuing Streams)

– Memory/Cache Bandwidth

– Recurrence Serialization Overhead

Increase through Loop Unrolling/Vectorization

Increase “length” of streams

Use Scratchpad for data-reuse

Increase Parallel Computations (tiling)

Dissertation Talk 59 11/16/2017

Outline
• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable
Hardware Accelerator

• Stream-Dataflow Accelerator Architecture
and Example program

• Stream-Dataflow Micro-Architecture – Softbrain

• Evaluation and Results

1

10

100

1000

GM

Control

State storage/SRAM

Datapath

BLACK Data Line
GREEN Control/Commands

LEGEND

RISCV
Rocket Core

VP Scoreboard

Resource Status
Checker

Stream
Cmd. Queue Cmd.

Issue

SD
 C

M
D

Scratchpad

Stream Dispatcher

Scratch
Stream Engine (SSE)

for Writes

Scratch
Stream Engine (SSE)

for Reads

. . .

. . .

To MSE

CGRA
Recurrence

Stream Engine
(RSE)

Memory Interface

Memory
Stream Engine (MSE)

for Writes

Memory
Stream Engine (MSE)

for Reads

Cache/ Memory Heirarchy

Fr
ee

 S
SE

 R
ea

d

SS
E

W
ri

te
 C

m
d

SS
E

R
ea

d
 C

m
d

Fr
ee

 M
SE

 R
ea

d

Fr
ee

 M
SE

 W
ri

te

Fr
ee

 S
SE

 W
ri

te

MSE Write Cmd MSE Read Cmd

Fr
o

m
 M

SE

D
-C

a
ch

e
R

eq
/R

es
p

I-
C

a
ch

e
R

eq
/R

es
p

Fr
o

m
 S

SE

To SSE

SCR to MSE
writes

Tag Invalidate

Input
Data VPs

Output
Data VPs

Indirect Load/Store
VPs

Stream
Cmds
to SEs

RSE Cmd

Config

CGRA Config

Writes Reads

Free RSE

Dissertation Talk 60 11/16/2017

Dissertation Talk

Micro-Architecture Design Principles

1. Low-overhead control structures

2. Efficient execution of concurrent stream commands

with simple resource dependency tracking

3. Not introduce power hungry or large CAM-like
structures

4. Parameterizable design

61 11/16/2017

Micro-Architecture of Stream-Dataflow
Accelerator – Softbrain

Dissertation Talk 62 11/16/2017

Stream-Dispatcher of Softbrain

Dissertation Talk 63

• Issues the stream commands to stream-engines

• Resource dependency tracking
 Simple vector-port to stream-engine scoreboard mechanism

• Barriers – Enforces the explicit stream-barriers for data-consistency in

scratchpad as well as memory state

• Interfaces to the low-power core using a simple queue-based custom
accelerator logic

11/16/2017

Micro-Architecture of Stream-Dataflow
Accelerator – Softbrain

Dissertation Talk 64 11/16/2017

Stream-Engine of Softbrain

Dissertation Talk 65

• Arbitration of multiple stream command requests

• Responsible for address generation for various data-stream access patterns

• Manages concurrent accesses to vector ports, scratchpad and the
cache/memory hierarchy

• Dynamic switching of streams to account for L2 cache misses and maintain
the high-bandwidth memory accesses

Memory Stream-Engine (MSE) Scratchpad Stream-Engine (SSE)

11/16/2017

Softbrain Stream-Engine Controller
Request Pipeline

• Responsible for address generation for both direct and indirect data-streams

• Priority based selection among multiple queued data-steams

• Direct streams – Affine Address Generation Unit (AGU) generates memory
addresses

• Indirect Streams – Non-affine AGU gets addresses, offsets from indirect vector
ports

Stream-Engine Controller

Dissertation Talk 66

Stream Request Pipeline

11/16/2017

Control

State storage/SRAM

Datapath

BLACK Data Line
GREEN Control/Commands

LEGEND

RISCV
Rocket Core

VP Scoreboard

Resource Status
Checker

Stream
Cmd. Queue Cmd.

Issue

SD
 C

M
D

Scratchpad

Stream Dispatcher

Scratch
Stream Engine (SSE)

for Writes

Scratch
Stream Engine (SSE)

for Reads

. . .

. . .

To MSE

CGRA
Recurrence

Stream Engine
(RSE)

Memory Interface

Memory
Stream Engine (MSE)

for Writes

Memory
Stream Engine (MSE)

for Reads

Cache/ Memory Heirarchy

Fr
ee

 S
SE

 R
ea

d

SS
E

W
ri

te
 C

m
d

SS
E

R
ea

d
 C

m
d

Fr
ee

 M
SE

 R
ea

d

Fr
ee

 M
SE

 W
ri

te

Fr
ee

 S
SE

 W
ri

te

MSE Write Cmd MSE Read Cmd

Fr
o

m
 M

SE

D
-C

a
ch

e
R

eq
/R

es
p

I-
C

a
ch

e
R

eq
/R

es
p

Fr
o

m
 S

SE

To SSE

SCR to MSE
writes

Tag Invalidate

Input
Data VPs

Output
Data VPs

Indirect Load/Store
VPs

Stream
Cmds
to SEs

RSE Cmd

Config

CGRA Config

Writes Reads

Free RSE

Micro-Architecture Flow of Softbrain

Dissertation Talk 67 11/16/2017

Outline
• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable
Hardware Accelerator

• Stream-Dataflow Accelerator Architecture
and Example program

• Stream-Dataflow Micro-Architecture – Softbrain

• Evaluation and Results

1

10

100

1000

GM

Control

State storage/SRAM

Datapath

BLACK Data Line
GREEN Control/Commands

LEGEND

RISCV
Rocket Core

VP Scoreboard

Resource Status
Checker

Stream
Cmd. Queue Cmd.

Issue

SD
 C

M
D

Scratchpad

Stream Dispatcher

Scratch
Stream Engine (SSE)

for Writes

Scratch
Stream Engine (SSE)

for Reads

. . .

. . .

To MSE

CGRA
Recurrence

Stream Engine
(RSE)

Memory Interface

Memory
Stream Engine (MSE)

for Writes

Memory
Stream Engine (MSE)

for Reads

Cache/ Memory Heirarchy

Fr
ee

 S
SE

 R
ea

d

SS
E

W
ri

te
 C

m
d

SS
E

R
ea

d
 C

m
d

Fr
ee

 M
SE

 R
ea

d

Fr
ee

 M
SE

 W
ri

te

Fr
ee

 S
SE

 W
ri

te

MSE Write Cmd MSE Read Cmd

Fr
o

m
 M

SE

D
-C

a
ch

e
R

eq
/R

es
p

I-
C

a
ch

e
R

eq
/R

es
p

Fr
o

m
 S

SE

To SSE

SCR to MSE
writes

Tag Invalidate

Input
Data VPs

Output
Data VPs

Indirect Load/Store
VPs

Stream
Cmds
to SEs

RSE Cmd

Config

CGRA Config

Writes Reads

Free RSE

Dissertation Talk 68 11/16/2017

Stream-Dataflow Implementation:
Softbrain

Hardware

Accelerator
Model

Configuration

Chisel Parameterizable
Accelerator

Implementation

RISCV ISA
Accelerator
Cycle-level
Simulator

Chisel-
generated

Verilog
Synthesis +
Synopsis DC

Stream-
Dataflow Code

(C/C++)

DFG
File

DFG
Compiler

(ILP Solver)

RISCV
GCC

RISCV
Binary

Softbrain

Config. DFG.h

Software Stack

Evaluation

Softbrain
RTL

69 11/16/2017 Dissertation Talk

Evaluation Methodology
• Workloads

 Deep Neural Networks (DNN) – For domain provisioned comparison

 Machsuite Accelerator Workloads – For comparison with application specific
accelerators

• Comparison
 Domain Provisioned Softbrain vs. DianNao DSA

 Broadly provisioned Softbrain vs. ASIC design points – Aladdin* generated
performance, power and area

• Area and Power of Softbrain
 Synthesized area, power estimates

 CACTI for cache and SRAM estimates

*Sophia, Shao et al. – Aladdin: a Pre-RTL, power-performance accelerator simulator enabling large design space
 exploration of customized architectures

Dissertation Talk 70 11/16/2017

Domain-Specific Comparison
(Softbrain vs DianNao DSA)

298
191

1

10

100

1000

SP
EE

D
U

P

Speedup Relative to OOO4 (DNN Workloads)

SoftBrain DianNao

Dissertation Talk 71 11/16/2017

Area-Power Estimates of
Domain Provisioned Softbrain

Components Area (mm2) @ 28nm Power (mW)

Rocket Core
(16KB I$ + D$)

0.16 39.1

CGRA

Network 0.12 31.2

FUs (5 x 4) 0.04 24.4

Total CGRA 0.16 55.6

5 x Stream Engines 0.02 18.3

Scratchpad (4KB) 0.1 2.6

Vector Ports (Input &
Output)

0.03

1 Softbrain Unit 0.47 119.3

8 Softbrain Units 3.76 954.4

DianNao DSA 2.16 418.3

Softbrain / DianNao
Overhead

1.74 2.28

Dissertation Talk 72

Softbrain vs Diannao (DNN DSA)

• Perf. – Able to match the performance
• Area – 1.74x Overhead
• Power – 2.28x Overhead

11/16/2017

Broadly Provisioned Softbrain vs ASIC
Performance Comparison

Aladdin* generated ASIC design points – Resources constrained to be in ~15% of Softbrain Perf.
to do iso-performance analysis
*Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space Exploration of Customized Architectures. Sophia Shao , .et. al

2.59 2.67

0

2

4

6

8

10

SP
EE

D
U

P

Speedup Relative to OOO4 (Machsuite Workloads)

Softbrain ASIC

Dissertation Talk 73 11/16/2017

Broadly Provisioned Softbrain vs ASIC
Area & Power Comparison

0.14

0

0.05

0.1

0.15

GM

11

18

0

2

4

6

8

10

12

14

16

18

20

Softbrain ASIC

31

48

0

10

20

30

40

50

60

Softbrain ASIC

Power Efficiency Relative to
OOO4 (GM)

ASIC Area Relative
to Softbrain (GM)

Energy Efficiency
Relative to OOO4 (GM)

Softbrain vs ASIC designs

• Perf. – Able to match the performance
• Power – 1.6x overhead
• Energy – 1.5x overhead
• Area – 8x overhead*

*All 8 ASICs combined  2.15x more area than Softbrain

Dissertation Talk 74 11/16/2017

Conclusion – Stream-Dataflow
Acceleration

• Stream-Dataflow Acceleration

 Stream-Dataflow Execution Model – Abstracts typical accelerator
computation phases using a dataflow graph

 Stream-Dataflow ISA Encoding and Hardware-Software Interface – Exposes
parallelism available in these phases

• Stream-Dataflow Accelerator Architecture
 CGRA and vector ports for pipelined vector-dataflow computation

 Highly parallel stream-engines for low-power stream communication

• Stream-Dataflow Prototype & Implementation – Softbrain
 Matches performance of domain provisioned accelerator (DianNao

DSA) with ~2x overheads in area and power

 Compared to application specific designs (ASICs), Softbrain has ~2x overheads
in power and ~8x in area

Dissertation Talk 75 11/16/2017

Dissertation Research Goal

1. Explore the commonality in the way the DSAs specialize –
Specialization Principles

Programmable Hardware Acceleration

2. General Mechanisms for the design of a generic programmable
hardware accelerator matching the efficiency of DSAs

3. A programmable/re-configurable accelerator architecture
with an efficient accelerator hardware-software (ISA) interface

4. Easy adaptation of new acceleratable algorithms
in a domain-agnostic way

Dissertation Talk 76





11/16/2017





Conclusion – Programmable
Hardware Acceleration

• New acceleration paradigm in specialization era

 Programmable Hardware Acceleration breaking the limits of acceleration

• Foundational specialization principles abstracting the acceleration
primitives

• Enables programmable accelerators instantiation in IOT, embedded,
cloud environment to support Edge Computing

• A new accelerator ISA paradigm for an efficient programmable
accelerator hardware implementation

• Reduce the orders of magnitude overheads of programmability and
generality compared to ASICs

• Drives future accelerator research and innovation
Dissertation Talk 77 11/16/2017

Getting There !!

A good enabler for exploring general purpose
programmable hardware acceleration ….

Future Work
• Multiple DFG executions

 Configuration cache for CGRA to switch between DFGs

• Further distribute the control into vector ports
 Dynamic deadlock detection for buffer overflow
 Concurrent execution of different set of streams (of different DFGs)

• Low-power dynamic credit-based CGRA schedule
 Allow vector ports to run out-of-order reducing the overall latency

• 3D support for streams in ISA

• Partitioned scratchpad to support data dependent address
generation

• Support for fine-grained configuration through FPGA slices (along
with SRAM mats) next to CGRA for memory-dependent algorithm
acceleration

Dissertation Talk 78 11/16/2017

Related Work

• Programmable specialization architectures:
 Smart memories, Charm, Camel, Mosphosys, XLOOPS, Maven-VT

• Principles of Specialization

 GPPs inefficient and need specialization – Hameed. et. Al
 Trace processing – Beret
 Transparent Specialization – CCA, CRIB etc,

• Heterogeneous Cores – GPP + Specialized engines

 Composite cores, DySER, Cambricon

• Streaming Engines:
 RSVP arch, Imagine, Triggered instructions, MAD, CoRAM++

Dissertation Talk 79 11/16/2017

Other Works
• Open Source GPGPU – MIAOW

 Lead developer and contributor to open source hardware GPGPU – MIAOW
 AMD Southern Island based RTL implementation of GPGPU able to execute unmodified

AMDAPP OpenCL kernels
 Published in [ACM TACO 2015, HOTCHIPS’ 2015, COOLCHIPS’ 2015, HiPEAC’ 2016]

• Von-Neumann/Dataflow Hybrid Architecture
 A hybrid architecture aimed to exploit ILP in irregular applications
 Lead developer of the micro-architecture of the dataflow offload engine – Specialized

Engine for Explicit Dataflow (SEED)
 Published in [ISCA‘ 2015, IEEE MICRO Top Picks 2016]

• Open-source Hardware: Opportunities and Challenges
 A position article on the advantages of open-source hardware for hardware innovation
 Huge believer in open-source hardware and contribution
 To be published in IEEE Computer’ 17

Dissertation Talk 80 11/16/2017

Back Up

Dissertation Talk 81 11/16/2017

Programmable Hardware
Acceleration

Idea 1: Specialization principles can be exploited in a general way

Idea 2: Composition of known Micro-Architectural mechanisms
embodying the specialization principles

GenAccel as a programmable hardware design template
 to map one or many application domains

Stencil, Sort, Scan, AI

Balanced GenAccel

Deep Neural

Domain provisioned GenAccel

*Figures not to scale

Programmable Hardware
Accelerator (GenAccel)

Dissertation Talk 82 11/16/2017

Principles in DSAs

Computation Data Reuse Concurrency Coordination Communication

H
ig

h
 L

ev
e

l
O

rg
an

iz
at

io
n

P

ro
ce

ss
in

g
En

gi
n

e

PE

PE

PE

PE

PE PE

PE PE

In
 F

if
o

 Bus Sched

O
u

t
Fi

fo

General Purpose Processor

Weight Buf.

Fifo

Out Buf.

Cont-
roller Acc Reg.

Sigmoid

NPU – Neural Proc. Unit

Mult-Add

• Match hardware concurrency to that
of algorithm

• Problem-specific computation units

• Explicit communication as opposed to
implicit communication

• Customized structures for data reuse

• Hardware coordination using simple
low-power control logic

Dissertation Talk 83 11/16/2017

Accelerator Workloads

DNN Database Streaming

Neural Approx. Convolution

1. Ample Parallelism 2. Regular Memory

3. Large Datapath 4. Computation Heavy
Dissertation Talk 84 11/16/2017

GenAccel Modeling Strategy
• Phase 1. Model Single-Core with PIN + Gem5 based trace

simulation
 The algorithm to specialize in the form of c-code/binary

 Potential Core Types, CGRA sizes, any specialized instructions

 Degree of memory customization (which memory accesses to be
specialized, either with DMA or scratchpad)

 Output: single-core perf./energy for “Pareto-optimal” designs

• Phase 2. Model coarse-grained parallelism
 Use profiling information to determine parallel portion of the

algorithm (or tell user to indicate or estimate)

 Use simple Amdahl's law to get performance estimate

 Use execution time, single-core energy estimate, and static power
estimate to get overall energy estimate

Dissertation Talk 85 11/16/2017

GenAccel in Practice

Synthesis

 Perf.
App. 1: ...
App. 2: ...
App. 3: ...

Performance
Requirements

1. Design Synthesis

 FU Types
 No. of FUs
 Spatial fabric size
 No. of GenAccel tiles

2. Programming

For each application:

 Write Control Program
 (C Program + Annotations)

 Write Datapath Program
 (spatial scheduling)

Programmable Accelerator
(GenAccel)

Area goal: ...
Power goal: ...

Hardware
Constraints

Design
decisions

H
a

rd
w

a
re

 A
rc

h
it

ec
t/

D
es

ig
n

er

3. Runtime

Configure
for App. 1

Run App. 1

Configure for App. 2
(etc.)

Runtime configuration
(Serial)

Configure for App. 1

Run App. 1

Configure for App. 2

Run App. 2

Configure for App. 3

Run App. 3

Runtime configuration
(Parallel)

Dissertation Talk 86 11/16/2017

Programming GenAccel

#pragma genaccel cores 2
#pragma reuse-scratchpad weights

void nn_layer(int num_in, int num_out,
 const float* weights,
 const float* in,
 const float* out)
{
 for (int j = 0; j < num_out; ++j)
 {
 for (int i = 0; i < num_in; ++i)
 {
 out[j] += weights[j][i] *in[i];
 }
 out[j] = sigmoid(out[j]);
 }
}

Pragmas

Sp
atial Fab

ric

Output Interface

Input Interface

Scratchpad DMA

Memory

Low-power Core

D$

x x x

x x x

+ +

+

x

x

+ +

+

+

Ʃ

Loop Parallelize, Insert Communication,
Modulo Schedule

Resize Computation (Unroll), Extract Computation Subgraph, Spatial Schedule

LSSD Insert data transfer

Dissertation Talk 87 11/16/2017

GenAccel Design Point Selection

Design Concurrency Computation Communication Data Reuse
No. of

GenAccel
Units

GAN
24-tile CGRA
(8 Mul, 8 Add, 1 Sigmoid)

2k x 32b sigmoid
lookup table

32b CGRA; 256b
SRAM interface

2k x 32b
weight
buffer

1

GAC
64-tile CGRA
(32 Mul/Shift, 32 Add/logic)

Standard 16b
FUs

16b CGRA; 512b
SRAM interface

512 x 16b
SRAM for
inputs

1

GAD
64-tile CGRA
(32 Mul, 32 Add, 2 Sigmoid)

Piecewise linear
sigmoid unit

32b CGRA; 512b
SRAM interface

2k x 16b
SRAMs for
inputs

8

GAQ

32-tile CGRA
(16 ALU, 4 Agg, 4 Join)

Join + Filter units 64b CGRA; 256b
SRAM interface

SRAMs for
buffering 4

GAB
32-tile CGRA
(Combination of above)

Combination of
above FUs

64b CGRA; 512b
SRAM interface

4KB SRAM
8

Mul: Multiplier, Add: Adder
Dissertation Talk 88 11/16/2017

Synthesis – Time Run – Time

Concurrency No. of GenAccel Units Power-gating unused GenAccel
Units

Computation Spatial fabric FU mix Scheduling of spatial fabric
and core

Communication Enabling spatial datapath
elements, & SRAM interface
widths

Configuration of spatial datapath,
switches and ports, memory access
pattern

Data Reuse Scratchpad (SRAM) size Scratchpad used as DMA/reuse
buffer

Design-Time vs. Runtime
Decisions

Dissertation Talk 89 11/16/2017

0
2
4
6
8

10
12
14
16
18

ff
t

 (
1

-4
-4

-2
)

in
ve

rs
ek

2
j

(2
-8

-2
)

jm
ei

n
t

(1
8

-3
2

-8
-2

)

jp
eg

(6
4-

1
6

-6
4

)

km
ea

n
s

(6
-8

-4
-1

)

so
b

el
(9

-8
-1

)

G
eo

m
et

ri
c

 M
ea

n

Sp
ee

d
u

p
 GA (+reuse.)

Spatial (+comm.)

SIMD (+concur.)

LP Core + Sig. (+comp.)

NPU (DSA)

Performance Analysis (1)
GAN vs. NPU

Baseline – 4 wide OOO core (Intel 3770K)

N

Dissertation Talk 90 11/16/2017

Source of Accelertion Benefits

Algorithm/Concurrency

Sp
e

ci
al

iz
at

io
n

NPU

Q100

Diannao

Convolution
Engine

Massive benefits from
straightforward algorithm

parallelization.

Some benefit from vector
and bit-with specialization.

Massive benefit from
optimizing the algorithm to

avoid data copying.

Significant benefit from
algorithmic modifications
to improve concurrency.

Some benefit from

specialized weight buffer
and inter-layer broadcast.

Some benefit for
optimizing algorithm to

expose concurrency/reuse.

Some benefit from
specialized shift registers

and graph fusion unit.

Overall, specialization of
the hardware is never the
sole factor, and rarely the

larger factor.

Dissertation Talk 91 11/16/2017

Performance Analysis (2)

0

5

10

15

20

25

30

35

40

45

50

IM
E

D
O

G

EX
TR

.

FM
E

G
e

o
m

et
ri

c
M

ea
n

Sp
ee

d
u

p
 GA (+reuse.)

Spatial (+comm.)

SIMD (+concur.)

LP core + FUs (+comp.)

Conv. (domain-acccel)

C

GAc vs. Conv.
(1 Tile)

0

50

100

150

200

250

300

350

400

co
n

v1

p
o

o
l1

cl
as

s1

co
n

v2

co
n

v3

p
o

o
l3

cl
as

s3

co
n

v4

co
n

v5

p
o

o
l5

G
e

o
M

e
an

Sp
ee

d
u

p

GA (+reuse.)

Spatial (+comm.)

SIMD (+concur.)

8-Tile (+concur.)

LP core + Sig. (+comp.)

DianNao (domain-acccel)

D

GAD vs. DianNao
(8 Tiles)

0

100

200

300

400

500

q
1

q
2

q
3

q
4

q
5

q
6

q
1

7

q
1

0

q
1

5

q
1

6

q
1

7

G
M

Sp
ee

d
u

p

GA (+comm.)

SIMD (+concur.)

4-Tile (+concur.)

LP core + SFUs (+comp.)

Q100 (domain-acccel)

Q

GAQ vs. Q100
(4 Tiles)

Baseline – 4 wide OOO core (Intel 3770K) Dissertation Talk 92 11/16/2017

GenAccel Area & Power Numbers
Area (mm2) Power (mW)

Neural
Approx.

GAN 0.37 149

NPU 0.30 74

Stencil
GAC 0.15 108

Conv. Engine 0.08 30

Deep Neural.
GAD 2.11 867

DianNao 0.56 213

Database
Streaming

GAQ 1.78 519

Q100 3.69 870

GABalanaced

2.74 352

*Intel Ivybridge 3770K CPU 1 core Area – 12.9mm2 | Power – 4.95W

*Source: http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
+Estimate from die-photo analysis and block diagrams from wccftech.com

*Intel Ivybridge 3770K iGPU 1 execution lane Area – 5.75mm2

+AMD Kaveri APU Tahiti based GPU 1CU Area – 5.02mm2

Dissertation Talk 93 11/16/2017

http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3

Power & Area Analysis (1)
GAN

1.2x more Area than DSA
2x more Power than DSA

1.7x more Area than DSA
3.6x more Power than DSA

GAC

Dissertation Talk 94 11/16/2017

Power & Area Analysis (2)
GAD

3.8x more Area than DSA
4.1x more Power than DSA

0.5x more Area than DSA
0.6x more Power than DSA

GAQ

Dissertation Talk 95 11/16/2017

Power & Area Analysis (3)

2.7x more Area than DSAs
2.4x more Power than DSAs

0.6x more Area than DSA
2.5x more Power than DSA

LSSDB  Balanced LSSD design

Dissertation Talk 96 11/16/2017

Unsuitable Workloads
for GenAccel /Stream-Dataflow

• Memory-dominated workloads

• Specifically small-memory footprint, but “irregular”

• Heavily serialized data dependent address generation

• Memory compression for example

– A Scalable High-Bandwidth Architecture for Lossless
Compression on FPGAs, Fower et. al

• Other examples:

– IBM PowerEN Regular Expression

– DFA based codes

Dissertation Talk 97 11/16/2017

GenAccel vs. FPGA

• FPGAs are much lower frequency (global-routing and too
fine-grained)

• BlockRAMs too small to gang-up

• Logical Multi-ported Register File needed to pass values
between DSP slices to match high operand-level
concurrency

• Altera’s Stratix 10 seems headed exactly this direction

Dissertation Talk 98 11/16/2017

GenAccel’s power overhead of
 2x - 4x matter in a system with accelerator?

In what scenarios you want to build
DSA over GenAccel?

Dissertation Talk 99 11/16/2017

Energy Efficiency Tradeoffs

Accel. energy System energy Core energy

Pacc * (U/S) * t Pcore * (1 - U) * t Psys * (1 – U + U/S) * t E = + +

S: accelerator’s speedup

U: accelerator utilization

Overall energy of the computation executed on system

*Power numbers are example representation

 t: execution time

OOO
Core

System with accelerator

System Bus

Pcore: 5W

Psys: 5W

Pacc: 0.1 – 5W

System power

Core power Accelerator power

Caches

Memory

Accel.
(GenAccel

 or
 DSA)

Dissertation Talk 100 11/16/2017

Speedupga = Speedupdsa (Speedup w.r.t OOO)

Energy Efficiency Gains of
GenAccel & DSA over OOO core

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50

En
er

gy
 E

ff
. o

f
D

SA
 o

ve
r

O
O

O

Accelerator Speedup w.r.t OOO core

 U = 1

 U = 0.95

 U = 0.9

 U = 0.75

Pdsa ≈ 0.0W

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50En
er

gy
 E

ff
. o

f
G

en
A

cc
el

 o
ve

r
O

O
O

Accelerator Speedup w.r.t OOO core

Pga = 0.5W 500mW (5x)Power overhead

Baseline – 4 wide OOO core
Efficiency gains of both GenAccel and DSA are almost similar &

At higher speedups both get “capped” due to large system power Dissertation Talk 101 11/16/2017

GenAccel’s power overhead of
 2x - 4x matter in a system with accelerator?

When Psys >> Pga, 2x - 4x power overheads of

GenAccel become inconsequential

Dissertation Talk 102 11/16/2017

Energy Efficiency Gains of
DSA over GenAccel

1.00

1.02

1.04

1.06

1.08

1.10

1.12

0 10 20 30 40 50

En
er

gy
 E

ff
. o

f
D

SA
 o

ve
r

G
en

A
cc

el

Accelerator Speedup w.r.t OOO core

 U = 1

 U = 0.95

 U = 0.9

 U = 0.75

Speedupga = Speedupdsa (Speedup w.r.t OOO)

Baseline – GenAccel 𝑬𝒇𝒇𝒅𝒔𝒂
𝒈𝒂 is no more than 10% even at 100% utilization At lower speedups, DSA’s energy efficiency gains 6 - 10% over GenAccel At higher speedups, benefits of DSA less than 5% on energy efficiency

𝑬𝒇𝒇𝒅𝒔𝒂
𝒈𝒂 = (1 / DSA energy) / (1 / GenAccel energy)

 = GenAccel energy / DSA energy

Dissertation Talk 103 11/16/2017

In what scenarios you want to build
DSA over GenAccel?

Only when application speedups are small &
small energy efficiency gains too important

Dissertation Talk 104 11/16/2017

When does accelerator power
or DSA matter?

• GenAccel cannot match DSA for performance

• Accelerator is a “vertically-integrated” accelerator

– Logic attached to memory or IO, that Psys is affected

– ShiDianNao for example (DNN attached to image
sensor)

• Speedups are “small” and 10% energy difference
is “valuable”

Dissertation Talk 105 11/16/2017

Energy Efficiency Gains of
DianNao over GenAccel

SpeedupGA = SpeedupDianNao (Speedup w.r.t OOO)

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

0 10 20 30 40 50

En
er

gy
 E

ff
. o

f
D

ia
n

N
ao

 o
ve

r
G

en
A

cc
el

Accelerator Speedup w.r.t OOO

 U = 1

 U = 0.95

 U = 0.9

 U = 0.75

Dissertation Talk 106 11/16/2017

Does Accelerator power matter?

• At Speedups > 10x, DSA eff. is around 5%, when
accelerator power == core power

• At smaller speedups, makes a bigger difference, up to 35%
Dissertation Talk 107 11/16/2017

Detailed Example of Stream-
Dataflow Execution Model

X

Input Ports:

Output Port:

Stream Commands
C1) Mem  Scratch

P
ro

gram
 O

rd
e

r

C2) Scratch Wr Barrier

C3) Scratch  Port A

C4) Mem  Port B

C5) Port C  Mem

C6) Mem  Port B

C7) All Barrier

CGRA fabric state

Low-power core state

Time

Maps to two i/p scalar
vector ports

Maps to an o/p
scalar vector port

Maps to multiplier of
CGRA substrate

Command
generation

Resume

Scratchpad

A B

C

Processing

X

Enqueued
Dispatched
Resource idle
Resource in use
All data at dest.

Barrier
Dependency
Iter. boundary

Legend:

C[i] = A[i] * B[i]

1. Dataflow based pipelined concurrent execution

2. High Computation Activity Ratio:

Number of Computations/Stream Commands

Stream-Dataflow Accelerator Potential

Dissertation Talk 108 11/16/2017

Example Code: Dot Product
(Instruction Comparisons)

for(int i = 0 to N) {
 dot_prod += a[i] * b[i]
}

for(i = 0 to N) {
 Send a[i] -> P1
 Send b[i] -> P2
}
Get P3 -> result

for(i = 0 to N, i+=vec_len) {
 Send a[i:i+vec_len] -> P1
 Send b[i:i+vec_len] -> P2
}
Get P3 -> result

×
+

P1 P2

P3

Send a[i:i+N] -> P1
Send b[i:i+N] -> P2
Get P3 -> result

Scalar Vector Stream-Dataflow

~2N Instructions
~2N/vec_len Instructions

~3 Instructions

Original Program Computation
Graph:

11/16/2017 Dissertation Talk 109

Stream-Dataflow ISA vs. TPU ISA

Dissertation Talk

Google TPU ISA

• Design goal of TPU ISA
– To be a programmable ISA with less instruction overheads

• Restricted to neural networks domain only  More of programmable ISA for NN
domain

• CISC principle to run complex tasks  To run fast multiple-add accumulations

• Uses matrix as a primitive instead of vector or scalar
 – Huge performance benefit for neural network applications

– Reduced latency for inference [< 7ms]
– ISA restricted heavily for certain type of computations
 [Read_Host_Memory, Read_Weights, MatrxMultiply/Convolve, Activate, Write_Host_Memory]

• Heavily relies on host processor to send the instructions. Host software will be a
bottleneck

• Does not decouple the memory and computation phases

110 11/16/2017

TPU Compute Capability

Dissertation Talk

• 700 Mhz target frequency with 40W TDP. External accelerator and PCIe based
interconnect to host – 12.5GB/s effective bandwidth

• An inference chip for MLPs, CNN and LSTM  Matrix-Matrix multiplication support
 – 65K operations per cycle using a 256 x 256 systolic array 2D pipeline

• Quantization helps performance to operate on 8-bit integers only

111 11/16/2017

Potential Performance
Bottlenecks

1. Computations Per CGRA Instance

2. General Core Instructions

3. Cache  GRA Bandwidth

4. Initialization/Draining Latency (Memory & CGRA)

5. Length of Recurrence through CGRA

112 11/16/2017 Dissertation Talk

1. Computations Per CGRA
Instance

HINT: This usually involves unrolling a loop – but not necessarily
the inner loop.

Principle: Few instructions control many computation
instances

113 11/16/2017 Dissertation Talk

2. General Core Instructions

• Principle: Few core instructions control many computation
instances
– Use as long streams as possible

– Computation Instances > 2 * Number of Commands

for(int i = 0; i < 128; ++i) {
 SB_MEM_PORT(array[i], stride_size,
 acc_size, num_times, Port);
 …
}

for(int i = 0; i < 128; i+=2) {
 SB_MEM_PORT(array[i], stride_size,
 acc_size, num_times*2, Port);
 …
}

114

 SB_MEM_PORT(array[0], stride_size,
 acc_size, num_times*128, Port);

for(int i = 0; i < 128; ++i) {
 …
}

11/16/2017 Dissertation Talk

3. Cache  CGRA Bandwidth (1)

Memory
Scratchpad

• Principle 1: Only 64-bytes per cycle can come from memory
– Can feed One 8-wide port, Two 4-wide ports, Four 2-wide ports

– Use scratch streams to supplement memory streams

115 11/16/2017 Dissertation Talk

3. Cache  CGRA Bandwidth (2)

• Principle 2: Not-accessed elements within a 64-byte cache
line COUNT towards bandwidth

Stream:
access_size = 16 bytes
stride_size = 24 bytes

Address Pattern: 16 8 8 16 8

Cache Line Size:

64

HINT 1: Don’t use access patterns with “gaps” smaller than
the cache line size.

116

HINT 2: Try to align accesses with cache line boundaries

11/16/2017 Dissertation Talk

Optimizing Classifier Layer

Computation DFG Computation DFG

Optimization:
Size of DFG

Optimization: Scratch for Memory B/W

SD_Config(classifier_cfg,
 sizeof(classifier_config));

SD_Mem_Port(synapse, 8,
 8, Ni * Nn/4, Port_S);

SD_Mem_Port(neuron_i, Ni * 2,
 Ni * 2, Ni, Port_N);

for (n = 0; n < Nn; n++) {
 SD_Const_Port(0, 1, Port_acc);
 SD_Const_Port(0, Ni – 1, Port_do_sig);
 SD_Port_Port(Port_out, Ni - 1, Port_acc);
 SD_Const_Port(1, 1, Port_do_sig);
 SD_Port_Mem(Port_out, 1, &neuron_n[n]);
}

SD_Barrier_All;

SD_Config(classifier_cfg, sizeof(cfg));

SD_Mem_Port(synapse, 8,
 8, Ni * Nn/4,Port_S);

SD_Mem_Scratch(neuron_i, Ni * 2,
 Ni * 2, 1, 0);
SD_Barrier_Scratch_Wr();
SD_Scratch_Port(0, Ni * 2,
 Ni * 2, 1, Port_N);

for (n = 0; n < Nn; n++) {
 SD_Const_Port(0, 1, Port_acc);
 SD_Const_Port(0, Ni/4 - 1, Port_do_sig);
 SD_Const_Port(1, 1, Port_do_sig);
 SD_Port_Port(Port_out, Ni/4 - 1, Port_acc);
 SD_Port_Mem(Port_out, 1, &neuron_n[i])
}

SD_Barrier_All;

Dissertation Talk 117 11/16/2017

6. Initialization/Draining Latency

(Memory & CGRA)

• Principle: Hide memory latency by having “longer pipelined
phases”

Memory

~15-cycles

~100-cycle (or ~20-cyces from cache)

~100-cycle (or ~20-cyces from cache)

118 11/16/2017 Dissertation Talk

7. Length of Recurrence
 through CGRA

• Principle: Number of independent instances should be > the length
of the longest recurrence.

Latency = 15 Cycles

Instances / Cycle = 1 / 15

B[0] B[1] B[2] B[3]

Dot
Product of
arrays B
and A

A[0] A[1] A[2] A[3] 0

B[4] B[5] B[6] B[7] A[4] A[5] A[6] A[7] Carry

B[8] B[9] B[10] B[11] A[8] A[9] A[10] A[11] Carry

B[12] B[13] B[14] B[15] A[12] A[13] A[14] A[15] Carry

119 11/16/2017 Dissertation Talk

7. Length of Recurrence
 through CGRA (2)

Latency=15 Cycles

Instances / Cycle = 2 / 15

B[0] B[1] B[2] B[3]

Dot
Product of
arrays B
and A A[0] A[1] A[2] A[3] 0

B[4] B[5] B[6] B[7] A[4] A[5] A[6] A[7] 0

B[8] B[9] B[10] B[11] A[8] A[9] A[10] A[11] Carry1

B[12] B[13] B[14] B[15] A[12] A[13] A[14] A[15] Carry2

120
Carry1

Carry2

11/16/2017 Dissertation Talk

Recurrence Serialization Overhead

Recurrence
Length = 12 Cycles

Maximum Computation Rate =
Pipelinable Instances / Recurrence Length

Max. Computation
Rate = 1 / 12 Cycles

Dissertation Talk 121 11/16/2017

Pipelining Classifier Layer

122

SD_Config(classifier_cfg)

SD_Mem_Scratch(neuron_i, 0,Ni*2,1, 0)
SD_Barrier_Scratch_Write()

for (n = 0; n < Nn; n+=tile_h) {
 SD_Constant(0, tile_height, Port_acc)
 for(i = 0; i < Ni; i+=tile_w) {
 if(not last_iter) {
 SD_Constant(0, tile_h,P_do_sig)
 SD_Port_Port(P_out, tile_h,P_acc)
 } else {
 SD_Constant(0, tile_h,P_do_sig)
 SD_Port_Mem(Port_out, 1, &neuron_n[i])
 }
 SD_Scratch_Port(i*2, 0, 8*tile_w, 1,
 Port_N)
 SD_Mem_Port(&synapse[n][i],
 2*Ni, 8*tile_w, tile_h, Port_S)
 }
}
SD_Barrier_All();

Input Neurons (Ni)

O
u

tp
u

t
N

eu
ro

n
s

(N
n

)
Synapses (Nn x Ni)

tile_w

ti
le

_h

11/16/2017 Dissertation Talk

2D Stencil Example

123

Stencil Array Input Array Output Array

× ∑

for (r=0; r<row_size-2; r++) {
 for (c=0; c<col_size-2; c++) {
 temp = (TYPE)0;
 for (k1=0;k1<3;k1++) { //Row access
 for (k2=0;k2<3;k2++) { //column access
 mul = filter[k1*3 + k2] * orig[(r+k1)*col_size + c+k2];
 temp += mul;
 }
 }
 sol[(r*col_size) + c] = temp;
 }
}

11/16/2017 Dissertation Talk

“Easy” Approach

124

Stencil Array Input Array Output Array

× ∑

for (r = 0; r < row_size - 2; r++) {
 for (c = 0; c < col_size - 2; c++) {
 SD_Constant(P_stencil_sb_carry, 1, 1);
 for (k1 = 0; k1 < 3; k1++) {
 SD_Mem_Port((orig + (r + k1) * col_size + c),
 sizeof(TYPE), sizeof(TYPE), 4, P_stencil_sb_I);
 SD_Mem_Port(filter + (k1 * 3),
 sizeof(TYPE), sizeof(TYPE), 4, P_stencil_sb_F);
 }
 SD_port_Port(P_stencil_sb_R, P_stencil_sb_carry, 2);
 SB_Port_Mem(P_stencil_sb_R, sizeof(TYPE),
 sizeof(TYPE), 1, sol + (r * col_size) + c);
 }
}
SB_Barrier_All();

11/16/2017 Dissertation Talk

Easy Approach’s Bottlenecks

1. Computations Per CGRA Instance (only 3 mults!)

2. General Core Instructions (core insts == CGRA insts)

3. Cache  CGRA Bandwidth (wasted b/c of acc_size)

4. Initialization/Draining Latency

5. Length of Recurrence through CGRA

 (no independent computations through CGRA)

125 11/16/2017 Dissertation Talk

126

Better Approach (probably not best)
Stencil Array Input Array Output Array

× ∑

11/16/2017 Dissertation Talk

127

Better Approach (probably not best)
Stencil Array Input Array Output Array

× ∑

11/16/2017 Dissertation Talk

128

Better Approach (probably not best)
Stencil Array Input Array Output Array

× ∑

11/16/2017 Dissertation Talk

129

Better Approach (probably not best)
Stencil Array Input Array Output Array

× ∑

for (r=0; r<row_size-2; r++) {
 for (c=0; c<col_size-2; c++) {
 temp = (TYPE)0;
 for (k1=0;k1<3;k1++) { //Row access
 for (k2=0;k2<3;k2++) { //column access
 mul = filter[k1*3 + k2] * orig[(r+k1)*col_size + c+k2];
 temp += mul;
 }
 }
 sol[(r*col_size) + c] = temp;
 }
}

11/16/2017 Dissertation Talk

Better Approach’s Bottlenecks

1. Computations Per CGRA Instance (up to 8 mults!)
2. General Core Instructions (core insts << CGRA insts)
3. Cache  CGRA Bandwidth (acc_size > cache_size)
4. Scratchpad  CGRA Bandwidth
5. Memory  Cache Bandwidth
6. Initialization/Draining Latency
7. Length of Recurrence through CGRA (if you stripmine the

c-loop past the DFG width, you can stream multiple
independent computations through the CGRA!)

130 11/16/2017 Dissertation Talk

Programming Restrictions

• CGRA Instruction Types & Data-width

• Shape of the stream (strided)

• Width of input/output ports

• Number of simultaneous streams

• Issue to free-port (data always balanced)

131 11/16/2017 Dissertation Talk

Pipelining Classifier Layer
SD_Config(classifier_cfg, sizeof(cfg))

SD_Mem_Scratch(neuron_i, Ni * 2,
 Ni * 2, 1, 0);
SB_Barrier_Scratch_Wr();

for (n = 0; n < Nn; n += tile_h) {
 SD_Const_Port(0, tile_h, Port_acc);

 for(i = 0; i < Ni; i += tile_w) {
 if(not last_iter) {
 SD_Const-Port(0, tile_h, Port_do_sig);
 SD_Port_Port(P_out, tile_h, Port_acc);
 } else {
 SD_Const_Port(0, tile_h, Port_do_sig);
 SD_Port_Mem(Port_out, 1, &neuron_n[i]);
 }
 SB_Scracth_Port(i * 2, 8 * tile_w,
 8 * tile_w, 1, Port_N);
 SB_Mem_Port(&synapse[n][i], 2 * Ni,
 8 * tile_w, tile_h, Port_S);
 }
}
SD_Barrier_All;

Input Neurons (Ni)

O
u

tp
u

t
N

eu
ro

n
s

(N
n

)
Synapses (Nn x Ni)

tile_w

ti
le

_h

Dissertation Talk 132 11/16/2017

CGRA – Vector Port Interface

S S

S S

S S

S S

S S

S S

S S

S S

FU FU

FU FU

C
G

R
A

 S
p

at
ia

l F
ab

ri
c

. . .

. . .

. . .

. . .

Input Vector Port Interface

Output Vector Port Interface

0 1 2 3 4 5 6 7 Vector Offsets 

4 Entry Vector Port (512b or 64B wide) –
 Each element 8B or 64b)

• Vector ports facilitate “vector/SIMD execution and
can store entire cache-line in a cycle (8 wide)

• Vector ports’ offsets are connected to CGRA input
links – Mapping done by hardware architects
recorded as Softbrain Hardware Parameter Model

• Hardware parameter model is passed to
scheduler/compiler for mapping software DFG
ports to hardware vector ports

• Enable flexible hardware-software interface for
variable width SIMD-execution

VPORT_IN 0: 0:2, 1:5, 2:8, 3:11, 4:17, 5:20, 6:23, 7:26
VPORT_IN 1: 0:4, 1:7, 2:10, 3:16, 4:19, 5:22, 6:25, 7:31

VPORT_OUT 0: 0:1, 1:3, 2:5, 3:6, 4:8, 5:9, 6:11, 7:12

Example vector port to CGRA links mapping
[VPORT_Num]: [Offset]:[CGRA Link Num]

Dissertation Talk 133 11/16/2017

Workload Characterization for
Application Specific Softbrain

Dissertation Talk 134 11/16/2017

Softbrain vs. DianNao vs. GPU

1

10

100

1000

SoftBrain DianNao GPU

Dissertation Talk 135 11/16/2017

ASIC Area Relative to Softbrain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dissertation Talk 136 11/16/2017

Softbrain vs. ASIC
Power Efficiency Comparison

1

10

100

1000

Power Efficiency Relative to OOO4

Softbrain ASIC

Dissertation Talk 137 11/16/2017

Softbrain vs. ASIC
Energy Efficiency Comparison

1

10

100

1000

Energy Efficiency Relative to OOO4

Dissertation Talk 138 11/16/2017

Design Space Exploration for
ASIC Comparison

11/16/2017 Dissertation Talk 139

DSA Architectures

11/16/2017 Dissertation Talk 140

NPU Convolution Engine

Q100 DianNao

Convolutional Neural Network

Dissertation Talk 141 11/16/2017

Rocket Core RoCC Interface

Dissertation Talk 142 11/16/2017

Recurrent Neural Network

Dissertation Talk 143 11/16/2017

ASICs

FPGAs

Source: Bob Broderson, Berkeley Wireless group

More gains the lower you go Specialization Spectrum

Dissertation Talk 144 11/16/2017

