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Device scaling slowdown  
(or dead) 

& 
Dark silicon problem 

Computing Trends 

Emerging applications 
driving computing with new 

demands 
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NVIDIA DGX-1 AI Accelerator 
& NVDLA Architecture 

Movidius 
Myriad VPU 

Era of Specialization 

Traditional Multicore   

Image  
Processing 

Neural 
Approx. 

Graph 
Traversal 

AI 

Scan 

Sort 

Reg Expr. 

Deep 
Neural  

Stencil 

Application domain 
specialization 

Fixed-function Accelerators for specific domain: 
Domain Specific Accelerators (DSAs) 

Domain Specific Acceleration 

+ High Efficiency 
 

10 – 1000x 
Performance/Power 

or  
Performance/Area 

Google TPU 
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Caveats of Domain-Specific 
Accelerators (DSAs) 

DSAs Image  
Processing 

Neural 
Approx. 

Graph 
Traversal 

AI 

Scan 

Sort 

Reg Expr. 

Deep 
Neural  

Stencil 

H.266 H.265 

- Minimally programmable/                                              
Not Re-configurable 

 
- Obsoletion prone 

 
- Domains targeting each device type 

 
- Architecture, design, verification  
     and fabrication cost 

 
- Multi-DSA chip for “N” application domains   

Area and cost inefficient 

Server Mobile IOT 
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The Universal Accelerator Dream... 

Query 
Processing 

Image 
Processing 

Automated 
Driving 

Compression 

Regex 
Matching 

Deep Neural  

Convert 100+ Accelerators  
 

 1 Programmable Accelerator Fabric 
Standard programming and 

threading interface 

A generic programmable hardware accelerator  
matching the efficiency of Domain Specific Accelerators (DSAs) 

with an efficient hardware-software interface 

Source:  
Malitel Consulting 
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Specialization Paradigms 

Dissertation Talk 6 11/16/2017 



Domain-Specific 
Accelerators (DSAs) Image  

Processing 

Neural 
Approx. 

Graph 
Traversal 

AI 

Scan 

Sort 

Reg Expr. 

Deep 
Neural  

Stencil 

Commonality in DSAs ? 

Programmable Hardware 
Accelerator Architecture 

Specialization Principles  

Micro-Architectural Mechanisms 

Research Overview 
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ASIC/
DSA  

GPP SIMD FPGA GPGPU DSP 

Efficiency  
(energy efficient computing) 

Programmability / 
Re-configurability Features 

General Set of 
Micro-Architectural Mechanisms 

+ 

Efficiency 
close to DSAs/ASICs 

Retain  
programmability 

Programmable Hardware 
Accelerator 

Specialization 
Principles  

Architecture with Flexible  
Hardware-Software 

Programming Interface 

Generality 

Trivial adaptation of  
new algorithms/applications 

8 

Research Overview 

Programmable or Re-Configurable 
Specialized Architecture 
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Dissertation Research Goal 

1.  Explore the commonality in the way the DSAs  specialize – 
Specialization Principles 

Programmable Hardware Acceleration 

2. General Mechanisms for the design of a generic programmable 
hardware accelerator matching the efficiency of DSAs 

3. A programmable/re-configurable accelerator architecture 
with an efficient accelerator hardware-software (ISA) interface 

4. Easy adaptation of new acceleratable algorithms 
in a domain-agnostic way  
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Dissertation Statement 

Programmable Hardware Acceleration 

A programmable hardware accelerator nearing the efficiency of a 
domain-specific accelerator (DSA) is feasible to build by: 
 
• Identifying the common principles of architectural specialization 

 
• Applying general set of micro-architectural mechanisms for the 

identified principles 
 
• Having an efficient hardware-software interface to be able to express 

any typical accelerator application 
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Contributions 
Modeling Programmable  

Hardware Acceleration 
Architectural Realization with 
Stream-Dataflow Acceleration 

• Exploring the common principles 
of architectural specialization 
 

• Modeling a general set of 
mechanisms to exploit the 
specialization principles – 
GenAccel Model 
 

• Quantitative evaluation of 
GenAccel Model with four DSAs 
 

• System-Level Tradeoffs of 
GenAccel Model vs. DSAs 

• Stream-Dataflow  programmable 
accelerator architecture with: 

 Programming abstractions 
and execution model 

 ISA interface 
 

• Detailed micro-architecture with  
an efficient architectural 
realization of stream-dataflow 
accelerator  – Softbrain 
 

• Quantitative evaluation of 
Softbrain with state-of-the-art  
DSA solutions 
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*Published in HPCA 2016, IEEE Micro Top Picks 2017 

Modeling Programmable  
Hardware Acceleration* 
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Outline 
 

 

• Principles of architectural specialization 

 Embodiment of principles in DSAs 
 

• Modeling mechanisms exploiting specialization 
principles  for a generic programmable accelerator 
(GenAccel Model) 
 

• Evaluation of GenAccel with 4 DSAs                                    
(Performance, power & area) 
 

• System-level energy efficiency tradeoffs with 
GenAccel and DSA 
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System Bus 

$ 

Memory 
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Key Insight: Commonality in 
DSAs’ Specialization Principles   

+ 

S 

S 

FU 

S 

S FU 

Computation Data Reuse Concurrency Coordination Communication 

Most DSAs employ 5 common Specialization Principles 

Linear 
Algebra 

Neural 
Approx. 

Graph 
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DSAs Host System 
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Principles of Architectural 
Specialization 

• Match hardware concurrency to that of algorithm 

• Problem-specific computation units 

• Explicit communication as opposed to implicit 
communication 

• Customized structures for data reuse 

• Hardware coordination using simple low-power control logic 

+ 

Computation 

FU 

Data Reuse Concurrency Coordination 

S 

S 

FU 

S 

S 

Communication 
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+ 

S 

S 

FU 

S 

S FU 

Computation Data Reuse Concurrency Coordination Communication 

5 Specialization Principles 

Linear 
Algebra 

Neural 
Approx. 

Graph 
Traversal 

AI 

Scan 

Sort 

Reg Expr. 

Deep Neural  Stencil 

NPU  

Convolution  
Engine 

DianNao 

Q100 

Deep Neural  

Stencil 

Neural 
Approx. 

Database 

How do DSAs embody these principles in a 
domain specific way ? 
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Most DSAs employ  
Five Common Specialization Principles 

Computation Data Reuse Concurrency Coordination Communication 

Principles in DSAs 
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Outline 
 

 

• Principles of architectural specialization 

 Embodiment of principles in DSAs 
 

• Modeling mechanisms exploiting specialization 
principles  for a generic programmable accelerator 
(GenAccel Model) 
 

• Evaluation of GenAccel with 4 DSAs                                    
(Performance, power & area) 
 

• System-level energy efficiency tradeoffs with 
GenAccel and DSA 
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• Concurrency:   Multiple tiles  (Tile – hardware for coarse grain unit of work) 

• Computation:  Special FUs in spatial fabric 

• Communication:  Dataflow + spatial fabric 

• Data Reuse:  Scratchpad (SRAMs) 

• Coordination:  Low-power simple core 

Computation Data Reuse Concurrency Coordination Communication 

Composition of simple micro-architectural mechanisms 

Each Tile 

Implementation of Principles in 
a General Way 
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Modeling the Generic 
Programmable Accelerator Design 

Sp
atial Fab

ric 

Output Interface 

Input Interface 

Scratchpad DMA 

Memory 

Low-power 
Core 

D$ 
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Memory 
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Memory 
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Core 

D$ 

. . .  

Memory 

FU 

S 

FU 

FU FU 

S – Switch 

Low power core | Spatial fabric | Scratchpad | DMA  GenAccel Model 

Computation Data Reuse Concurrency Coordination Communication 
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Instantiating GenAccel 

GAC 

GenAccel Fabric 

Provisioned for  
one single application domain 

Programmable hardware template for specialization 

Neural Approx. 
Deep Neural 

Stencil 
Neural Approx. 

Database 

Provisioned for   
 multiple application domains 

Stencil 

Deep Neural 

Database 

*Figures not to scale 

GAD 

GAQ 

GAN 

GABalanced  

or 
 GAB   

 

GenAccel Usage, Design point selection &  Synthesis etc. 
 More details in backup….. 
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Outline 
 

 

• Principles of architectural specialization 

 Embodiment of principles in DSAs 
 

• Modeling mechanisms exploiting specialization 
principles  for a generic programmable accelerator 
(GenAccel Model) 
 

• Evaluation of GenAccel with 4 DSAs                                    
(Performance, power & area) 
 

• System-level energy efficiency tradeoffs with 
GenAccel and DSA 
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Methodology 
• Modeling  framework for GenAccel 

 Performance: Trace driven simulator + application specific modeling 

 Power & Area: Synthesized modules, CACTI and McPAT 
 

 

• Compared to four DSAs (published perf., area & power) 
 

 

 

 

• Four parameterized GenAccels 

 

 

 
 

 

• Provisioned to match performance of DSAs 

 Other tradeoffs possible (power, area, energy etc. ) 

GAN GAC GAD GAQ 

  1 Unit    1 Unit      8 Units         4 Units 
 

NPU
  

 
Conv.

  
DianNao Q100 

GAB 

 
NPU

  

 
Conv.

  DianNao Q100 
8 Units 

One combined balanced  
GenAccel 
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Performance Analysis 
GenAccel vs DSAs 

Baseline – 4 wide OOO core (Intel 3770K) 
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DSA GeoMean

GAC  vs.  Conv. 
(1 Unit) 

GAN  vs.  NPU 
(1 Unit) 

GAD  vs. DianNao 
(8 Units) 

GAQ  vs. Q100 
(4 Units) 

Domain Provisioned 
GenAccel (GA) 

Domain Provisioned GenAccels 
 

Performance: GenAccel able to match DSA 
 

Main contributor to speedup: Concurrency 
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Domain Provisioned GenAccels 

 
GenAccel area & power compared to a single DSA ? 
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Domain Provisioned GenAccels 
Area and Power Analysis 
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Area Comparison Power Comparison 

 
 
 

Domain provisioned GenAccel overhead 
 

1x – 4x worse in Area 
 

2x – 4x worse in Power 
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Balanced GenAccel design 

Area and power of GenAccel Balanced design, 
when multiple domains mapped* ? 

* Still provisioned to match the performance of each DSA 
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Area-Power Analysis 

Area Power  
 

Balance GenAccel design overheads 
 

Area efficient than multiple DSAs 
 

2.5x worse in Power than multiple DSAs 
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Outline 
• Introduction 

 

• Principles of architectural specialization 

 Embodiment of principles in DSAs 
 

• Modeling mechanisms exploiting specialization 
principles  for a generic programmable accelerator 
(GenAccel Model) 
 

• Evaluation of GenAccel with 4 DSAs                                    
(Performance, power & area) 
 

• System-level energy efficiency tradeoffs with 
GenAccel and DSA 
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Conclusion – Modeling Programmable 
Hardware Acceleration 

• 5 common principles for architectural specialization 
 

• Modeled the mechanisms embodying the specialization principles – 
Design of a Generic Programmable accelerator (GenAccel Model) 
 

• GenAccel model competitive with DSA performance and overheads 
of only up to 4x in area and power 
 

• Power overhead inconsequential when system-level energy 
tradeoffs considered 
 

• GenAccel Model  as a baseline for future accelerator research 
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Dissertation Research Goal 

1.  Explore the commonality in the way the DSAs  specialize – 
Specialization Principles 

Programmable Hardware Acceleration 

2. General Mechanisms for the design of a generic programmable 
hardware accelerator matching the efficiency of DSAs 

3. A programmable/re-configurable accelerator architecture 
with an efficient accelerator hardware-software (ISA) interface 

4. Easy adaptation of new acceleratable algorithms 
in a domain-agnostic way  
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Contributions 
Modeling Programmable  

Hardware Acceleration 
Architectural Realization with 
Stream-Dataflow Acceleration 

• Exploring the common principles 
of architectural specialization 
 

• Modeling a general set of 
mechanisms to exploit the 
specialization principles – 
GenAccel Model 
 

• Quantitative evaluation of 
GenAccel Model with four DSAs 
 

• System-Level Tradeoffs of 
GenAccel Model vs. DSAs 

• Stream-Dataflow  programmable 
accelerator architecture with: 

 Programming abstractions 
and execution model 

 ISA interface 
 

• Detailed micro-architecture with  
an efficient architectural 
realization of stream-dataflow 
accelerator  – Softbrain 
 

• Quantitative evaluation of 
Softbrain with state-of-the-art  
DSA solutions 
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*Published in ISCA 2017, Submitted to IEEE Micro Top-Picks 2018 

Stream-Dataflow Acceleration* 
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Architectural Realization of 
Programmable Hardware Acceleration 

• Workloads characteristics: 
 Regular streaming memory accesses with straightforward patterns 
 Computationally intensive with long execution phases 
 Ample data-level parallelism with large datapath 
 Small instruction footprints with simple control flow 

 
• Accelerator architecture to accelerate data-streaming applications 

 Instantiates the hardware primitives from GenAccel model 
 Exploit all the five specialization principles 

 Stream-Dataflow high-performance compute substrate with Dataflow 
and Stream specialization components  

 Exposes a novel stream-dataflow ISA interface for programming the 
accelerator 
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Exploit common accelerator application behavior: 

 
 

• Stream-Dataflow Execution model  – 
Abstracts typical accelerator           
computation phases 

 
 
 
 
 

• Stream-Dataflow ISA encoding and 
Hardware-Software interface –        
Exposes parallelism available in these 
phases 

 
 

• Barrier commands to facilitate data 
coordination and data consistency  
 

Stream-Dataflow Acceleration 

Dataflow 
 Graph 

To Memory 

Memory  
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storage 

R
e

cu
rren

ce
 Stre

am
 

From Memory 

Dataflow Computation 

Stream Patterns and Interface 

+ 

x x 

+ 
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Stream-Dataflow Acceleration 

+ 

x x 

+ Dataflow 
 Graph 
(DFG) 

To Memory 

Memory  
Stream 

Reuse 
Stream 

Local 
storage 
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From Memory 

Memory Interface 

... Input Data  
Streams ... 

Output Data  
Streams 

Recurring 
Data  
Streams 

Local Storage 
(Programmable 

Scratchpad) 

Input Data  
Streams 

Reuse  
streams 

Output Data  
Streams 

Memory/Cache Hierarchy 

Programmable Stream-Dataflow 
Accelerator 

 

 

• Data-parallel program kernels streaming data from 
memory 
 

• Dataflow computation fabric operates on data streams 
iteratively 
 

• Computed output streams stored back to memory 

Re-configurable 
Computation Fabric 

Stream-Dataflow Model 
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Outline 
• Overview 

 

• Stream-Dataflow Execution Model 

 

• Hardware-Software (ISA) Interface for Programmable 
Hardware Accelerator 

 

• Stream-Dataflow Accelerator Architecture                        
and Example program 

 

• Stream-Dataflow Micro-Architecture  – Softbrain 

 

• Evaluation and Results 
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Stream-Dataflow Execution Model 

+ 

x x 

+ 

Dataflow based firing 
of  data from  
vector ports 

A(3) Acc(1) B(3) 

Out(3) R(1) 

Input Vector Ports 
(width) 

Output Vector Ports 
(width) 

 

• Computation abstraction – Dataflow Graph 
(DFG) with input/output vector ports 
 

 

• Data abstraction – Streams of data fetched 
from memory and stored back to memory 
 

• Reuse abstraction – Streams of data fetched 
once from memory, stored in local storage 
(programmable scratchpad) and reused again 
 

• Communication abstraction – Stream-Dataflow 
data movement commands and barriers 
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Stream-Dataflow Execution Model 
Programmer Abstractions for Stream-Dataflow Model 

To Memory 

Memory  
Stream 
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storage 

R
ecu

rre
n

ce Stream
 

From Memory 

+ 
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Dataflow 

 Graph 

Read 
 Data 

Compute 
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Time 

 

• Computation abstraction – Dataflow Graph 
(DFG) with input/output vector ports 
 

 

• Data abstraction – Streams of data fetched 
from memory and stored back to memory 
 

• Reuse abstraction – Streams of data fetched 
once from memory, stored in local storage 
(programmable scratchpad) and reused again 
 

• Communication abstraction – Stream-Dataflow 
data movement commands and barriers 

Read Barrier 

All Barrier 
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• Separates the data-movement from computation  
 

• Achieves high-concurrency through the execution of 
coarser-grained data streams alongside dataflow 

computation 
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Outline 
• Overview 

 

• Stream-Dataflow Execution Model 

 

• Hardware-Software (ISA) Interface for Programmable 
Hardware Accelerator 

 

• Stream-Dataflow Accelerator Architecture                        
and Example program 

 

• Stream-Dataflow Micro-Architecture – Softbrain  

 

• Evaluation and Results 
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Programs 

General 
Language 

General ISA 

Compiler 

General Purpose 
Hardware 

Traditional 
Arch. 

Accelerator  
(DSA) 

Domain-Specific 
Programs 

Application/Domain  
Specific Hardware 

Tiny  
H/W-S/W 
Interface 

10-1000x  Performance/Power or Performance/Area 
(completely lose generality/programmability) 

Progammable 
Hardware Accelerator 

Programs 
(“Specialized”) 

Re-Configurable 
Hardware 

H/W-S/W 
Interface 

H/W 
Parameters 

Can the specialized programs be adapted in a domain-
agnostic way with this interface? 
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Stream-Dataflow ISA Interface  
 

Express any data-stream pattern of accelerator 
applications using simple, flexible and yet efficient 

encoding scheme 
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Stream-Dataflow ISA 
 

• Set-up Interface:  
        SD_Config – Configuration data stream for dataflow computation fabric (CGRA) 

 
 

 

• Control Interface: 
SD_Barrier_Scratch_Rd,  SD_Barrier_Scratch_Wr, SD_Barrier_All 
 
 

• Stream Interface  SD_[source]_[dest] 
Source/Dest Parameters:  Address (memory or local_storage),  DFG Port number  
Pattern Parameters: access_size, stride_size, num_strides 
 

Local Storage 
(Scratchpad) 

Compute 
Fabric 

Memory 
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Stream-Dataflow Programming 
Interface 

Source 
Memory, 

Local Storage, 
DFG Port 

Access Pattern 
Destination 

Memory, 
Local Storage, 

DFG Port 

Stride 

Access Size 

Start Address 

Number of Strides 

mem_addr 
= 0xA 

 memory_stride = 8 

num_strides 
= 2 

access_size = 4 

Overlapped 
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Linear 

Example 
Access 
Patterns 

Strided 

Offset-Indirect 

2D Direct  
Streams  

2D Indirect  
Streams  
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Stream-Dataflow ISA Encoding 

Stream: 

for i = 1 to 100: 
  ... = a[2*i]; 
  ... = b[i]; 
  c[b[i]] = ... 

a 

b 

c 

Time <address, access_size, stride_size, length> 

<stream_start, offset_address> 

Stream Encoding 

   Eg:  <a, 1,  2, 100> 
 

          <b, 1, 1, 100> 
 

          IND<[prev], c, 100> 

Dataflow: 

× × × 

+ 
+ 

Dataflow 
 Graph 

Vector A[0:2] Vector B[0:2] 

C 

Specified in a 
Domain Specific 
Language (DSL) 
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Example Pseudo-Code: Dot 
Product 

for(int i = 0 to N) { 
  c += a[i] * b[i]; 
}  

Put  a[0: N]  P1  
Put   b[0: N]  P2  
Recur  P3, N - 1 
Get P3  c 

Stream ISA Encoding 

Original Program 

Dataflow Encoding 

× 
+ 

P1 P2 

P3 
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New ISA Class for Programmable 
Hardware Acceleration 

Dissertation Talk 

 

Stream-Dataflow ISA 
• Expresses long memory streams and 

access patterns efficiently 
– Address generation hardware becomes 
much simpler 

 

• Decouples access and execute phases 
 

• Reduces instruction overheads 
 

• Dependences are explicitly encoded 
 

• Reduces cache requests and pressure by 
encoding alias-free memory requests 

– Implicit coalescing for concurrent 
memory accesses 

 

• Separates architecture abstractions from 
the implementation details 
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Local Storage 
(Scratchpad) 

ASIC Hardware 
For Computation 

Memory 

 

A New ISA Paradigm for Acceleration 
• Need to embody common accelerator 

principles and execution model 
 

• Need to represent  programs without 
requiring complex micro-architecture 
techniques for performance 

– VLIW, SIMT and SIMD have their own 
drawbacks for accelerators 

 

• Micro-Architecture for C-programmable 
ASICs  

– Enables ‘hardened’ ASIC compute 
substrate implementation  
– Separates the memory interface 
primitives and interaction 



Outline 
• Overview 

 

• Stream-Dataflow Execution Model 

 

• Hardware-Software (ISA) Interface for Programmable 
Hardware Accelerator 

 

• Stream-Dataflow Accelerator Architecture                        
and Example program 

 

• Stream-Dataflow Micro-Architecture – Softbrain  

 

• Evaluation and Results 
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Requirements for Stream-
Dataflow Accelerator Architecture 

1. Should employ the common specialization principles and            
hardware mechanisms  explored in GenAccel model 

          (*IEEE Micro Top-Picks 2017: Domain Specialization is Generally Unnecessary for Accelerators) 
 

2. Programmability features without the inefficiencies of existing  
    data-parallel architectures (with less power, area and control 
    overheads) 

+ 
S 

S 

FU 

S 

S FU 

Computation Data Reuse Concurrency Coordination Communication 

Multiple-Tiles Problem-Specific 
FUs 

Spatial Fabric 
(CGRA) 

Scratchpad Low-Power Core 
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Inefficiencies in Data-Parallel 
Architectures 

Control 
Core 

Vector 
Register File 

SIMD Vector 
Units 

Sub-SIMD 

SIMD & Short Vector SIMD 
Warp Scheduler +  
Vector Dispatch 

Large Register File + 
Scratchpad  

Vector Lanes 

… 

Memory Coalescer 

SIMT 
Control Core + 

Vector Dispatch 

Scalar Dispatch 

Register File 

Vector Thread 

… 

Vector Lanes 

Vector Fetch Support 

Spatial Dataflow 

Distributed PEs 

Scalar Dispatch 

Addressing & 
Communication 

• Unaligned 
addressing  

• Complex scatter-
gather  

• Mask & merge 
instructions 

• Redundant address 
generation  

• Address coalescing 
across  threads 

• Non-decoupled access-
execute phases 

• Redundant 
address 
generation 

 

 

• Redundant address 
generation  

• Inefficient memory 
b/w for local accesses 

Resource 
Utilization  
&  
Latency hiding 
 

 

• Core-issue width  

• Fixed vector width 

• Core to reorder 
instructions 

• Thread scheduling 

• Multi-ported large 
register file & cache 
pressure 

• Redundant 
dispatchers 

• Core issue width 
and re-ordering  

• Redundant dispatch  

Irregular 
execution 
support 

• Inefficient general 
pipeline 

• Warp divergence 
hardware support 

• Re-convergence 
for diverged 
vector threads 

                    - 

–  Control 
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• Vector architectures – Efficient parallel memory interface 

 

• Spatial Architectures – Efficient parallel computation interface 
 

• Application/Domain Specific Architectures – Efficient 
datapath for pipelined concurrent execution 

 



Stream-Dataflow Accelerator 
Architecture Opportunities 

Memory Interface 

Scratchpad 
C

o
m

m
an

d
  C

o
re

 

Coarse-Grained 
Reconfigurable Arch. 

Vector Interface 

Vector Interface 

Stream Dataflow 

• Reduce address generation & duplication overheads 
 

• Distributed control to boost pipelined    concurrent 
execution  
 

• High utilization of execution resources w/o massive multi-
threading, reducing cache    pressure or using multi-
ported scratchpad 
 

• Decouple access and execute phases of programs 
 

• Simplest hardware fallback mechanism for irregular 
memory access support 

 

• Able to be easily customizable/configurable for new 
application domain 
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Scrathcpad Stream Engine 

Scratchpad 
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FU FU 

FU FU 
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. . .  

. . .  

. . .  

. . .  

Output Vector Port Interface 

Input Vector Port Interface 

Memory Stream 
Engine 

To/from 
memory hierarchy  

In
d

irect V
ecto

r Po
rt In

terface
 

Dataflow:  
• Coarse grained reconfigurable architecture 

(CGRA) for data parallel execution 
 

• Direct vector port interface into and out               
of CGRA for vector execution 
 

Stream Interface:  
 

• Programmable scratchpad and supporting 
stream-engine for data-locality and data-reuse 
 

• Memory stream-engine to facilitate data 
streaming in and out of the accelerator 
 

• Recurrence stream-engine to support      
recurrent data stream 
 

• Indirect vector port interface for streaming 
addresses (indirect load/stores) 

Stream-Dataflow Accelerator 
Architecture 512b              64b    

+ 

x x 

+ 

A(3) Acc(1) B(3) 

Out(3) R(1) 
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Stream-Dataflow Accelerator 
Architecture 

Stream 
Command 
Dispatcher 

Stream Commands 

 
Tiny  

In-order core 

D$ I$ 

Coarse-grained  Stream 
commands issued by core 
through a command queue 

 

• Stream command 
interface exposed to a 
general purpose 
programmable core 
 

• Non-intrusive 
accelerator design 

Put  a[0: N]  P1  
Put   b[0: N]  P2  
Recur  P3, N - 1 
Get   P3  c 

Stream ISA Encoding 
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Stream-Dataflow Accelerator 
Architecture Integration 

. . . 

Memory/Cache Hierarchy 

Multi-Tile Stream-Dataflow Accelerator 

• Each tile is connected to higher-L2 cache interface 
 

• Need a simple scheduler logic to schedule the offloaded stream-
dataflow kernels to each tile 
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1. Specify Datapath for the CGRA 
– Simple Dataflow Language for DFG 

 

2. Orchestrate the parallel execution of hardware components 
– Coarse-grained stream commands using the stream-interface 

Data Flow Graph 

Input 
Ports: 

CGRA 
Instructions 

Output 
Ports: 

Scratchpad Memory 

CGRA 
(Execution 
Resources) 

Input Ports 

Output Ports 

. . .  

. . .  

Tiny  
In-order 

Core 

Programming Stream-Dataflow  
Accelerator 
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Classifier Layer (Original) 

#define Ni 8 
#define Nn 8 
 
// synapse and neurons – 2 bytes 
uint16_t synapse[Nn][Ni];  
uint16_t neuron_i[Ni]; 
uint16_t neuron_n[Nn]; 
 
for (n = 0; n < Nn; n++) { 
  sum = 0; 
 
  for (i = 0; i < Ni; i++) { 
    sum += synapse[n][i] * neuron_i[i]; 
  } 
 
  neuron_n[n] = sigmoid(sum); 
} 
 

Input Neurons (Ni) 

O
u

tp
u

t 
N

eu
ro

n
s 

(N
n

) 

× 
∑ 

Synapses (Nn x Ni) 
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Dataflow Graph (DFG)  
for CGRA: Classifier Kernel 

sum += synapse[n][i] * neuron_i[i]; 
Computation DFG for 

Input: do_sig 
Input: acc 
Input: N 
Input: S 
 
M = Mul16x4(N, S) 
R = Red16x4(M, acc) 
out = Sig16(R, do_sig) 
 
 
Output: out 

Input 
Ports: 

CGRA 
Instructions 

Output 
Ports: 

N – Input neuron (Ni) port 
S – Synapses (synapse) port 
do_sig – Input sigmoid predicate port 
acc – Input accumulate port 
out – Output neurons (Nn) port 

class_cfg   
(Configuration data for CGRA) 

Compilation +  
Spatial scheduling 
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Stream Dataflow Program:  
Classifier Kernel 

// Configure the CGRA 
SD_CONFIG(class_cfg, sizeof(class_cfg)); 
 
// Stream the data from memory to ports 
SD_MEM_PORT(synapse,  8, 8, Ni * Nn/ 4, Port_S); 
SD_MEM_PORT(neuron_i, 8, 8, Ni/4,       Port_N); 
   
for (n = 0; n < Nn/nthreads; n++) { 
  // Stream the constant values to constant ports 
  SD_CONST(Port_acc,    0, 1); 
  SD_CONST(Port_do_sig, 0, Ni - 1);   
 
  // Recur the computed data back for accumulation 
  SD_PORT_PORT(Port_out, N - 1, Port_acc); 
   
  // Sigmoid computation and output neuron written 
  SD_CONST(Port_do_sig, 1, 1); 
  SD_PORT_MEM(Port_out, 2, 2, 1, &neuron_n[n]); 
} 
   
SD_BARRIER_ALL(); 

class_cfg   
      (Configuration data  

for CGRA) 

Compilation +  
Spatial scheduling 
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Performance Considerations 
• Goal: Fully pipeline the largest dataflow graph 

– Increase performance [CGRA Instructions / Cycle] 

– Increase throughput [Graph computation instances per cycle] 
 

• Primary Bottlenecks: 

– Computations per Size of Dataflow Graph 

 

– General Core (for Issuing Streams) 

 

– Memory/Cache Bandwidth 

 

– Recurrence Serialization Overhead 

 

 

Increase through Loop Unrolling/Vectorization 

Increase “length” of streams 

Use Scratchpad for data-reuse 

Increase Parallel Computations (tiling) 
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Outline 
• Overview 

 

• Stream-Dataflow Execution Model 

 

• Hardware-Software (ISA) Interface for Programmable 
Hardware Accelerator 

 

• Stream-Dataflow Accelerator Architecture                        
and Example program 

 

• Stream-Dataflow Micro-Architecture – Softbrain 

 

• Evaluation and Results 
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Dissertation Talk 

 
Micro-Architecture Design Principles 

 
1. Low-overhead control structures 

 
2. Efficient execution of concurrent stream commands 

with simple resource dependency tracking 
 

3. Not introduce power hungry or large CAM-like 
structures 

 
4. Parameterizable design 
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Micro-Architecture of Stream-Dataflow 
Accelerator – Softbrain 
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Stream-Dispatcher of Softbrain 

Dissertation Talk 63 

• Issues the stream commands to stream-engines 
 

• Resource dependency tracking  
 Simple vector-port to stream-engine scoreboard mechanism 

 
• Barriers – Enforces the explicit stream-barriers for data-consistency in 

scratchpad as well as memory state 
 

• Interfaces to the low-power core using a simple queue-based custom 
accelerator logic 

11/16/2017 



Micro-Architecture of Stream-Dataflow 
Accelerator – Softbrain 
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Stream-Engine of Softbrain 

Dissertation Talk 65 

• Arbitration of multiple stream command requests  
 

• Responsible for address generation for various data-stream access patterns  
 

• Manages concurrent accesses to vector ports, scratchpad and the 
cache/memory hierarchy 
 

• Dynamic switching of streams to account for L2 cache misses and maintain 
the high-bandwidth memory accesses 
 

Memory Stream-Engine (MSE) Scratchpad Stream-Engine (SSE) 
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Softbrain Stream-Engine Controller  
Request Pipeline 

• Responsible for address generation for both direct and indirect data-streams 
 

• Priority based selection among multiple queued data-steams 
 

• Direct streams – Affine Address Generation Unit (AGU) generates memory 
addresses 
 

• Indirect Streams – Non-affine AGU gets addresses, offsets from indirect vector 
ports 
 

Stream-Engine Controller 
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Stream Request Pipeline 
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Outline 
• Overview 

 

• Stream-Dataflow Execution Model 

 

• Hardware-Software (ISA) Interface for Programmable 
Hardware Accelerator 

 

• Stream-Dataflow Accelerator Architecture                        
and Example program 

 

• Stream-Dataflow Micro-Architecture – Softbrain  

 

• Evaluation and Results 
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Stream-Dataflow Implementation: 
Softbrain 

Hardware 

Accelerator 
Model 

Configuration 

Chisel Parameterizable 
Accelerator 

Implementation 

RISCV ISA 
Accelerator 
Cycle-level 
Simulator 

Chisel-
generated 

Verilog 
Synthesis + 
Synopsis DC 

Stream-
Dataflow Code 

(C/C++) 

DFG 
File 

DFG 
Compiler 

(ILP Solver) 

RISCV 
GCC 

 
RISCV 
Binary 

Softbrain 

Config. DFG.h 

Software Stack 

Evaluation 

Softbrain 
RTL 
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Evaluation Methodology 
• Workloads 

 Deep Neural Networks (DNN) – For domain provisioned comparison 

 Machsuite Accelerator Workloads – For comparison with application specific 
accelerators 
 

• Comparison  
 Domain Provisioned Softbrain vs. DianNao DSA 

 Broadly provisioned Softbrain vs. ASIC design points – Aladdin* generated 
performance, power and area 

 

• Area and Power of Softbrain 
 Synthesized area, power estimates 

 CACTI for cache and SRAM estimates 

*Sophia, Shao et al. – Aladdin: a Pre-RTL, power-performance accelerator simulator enabling large design space  
  exploration of customized architectures 
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Domain-Specific Comparison 
(Softbrain vs DianNao DSA) 
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Speedup Relative to OOO4 (DNN Workloads) 

SoftBrain DianNao
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Area-Power Estimates of  
Domain Provisioned Softbrain 

Components Area (mm2) @ 28nm Power (mW) 

Rocket Core 
(16KB I$ + D$) 

0.16 39.1 

CGRA 

Network 0.12 31.2 

FUs (5 x 4) 0.04 24.4 

Total CGRA 0.16 55.6 

5 x Stream Engines 0.02 18.3 

Scratchpad (4KB) 0.1 2.6 

Vector Ports (Input & 
Output) 

0.03 

1 Softbrain Unit 0.47 119.3 

8 Softbrain Units 3.76 954.4 

DianNao DSA 2.16 418.3 

Softbrain / DianNao 
Overhead 

1.74 2.28 
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Softbrain vs Diannao (DNN DSA) 
 

• Perf. – Able to match the performance 
• Area – 1.74x Overhead 
• Power – 2.28x Overhead 
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Broadly Provisioned Softbrain vs ASIC 
Performance Comparison 

Aladdin* generated ASIC design points – Resources constrained to be in ~15% of Softbrain Perf. 
to do iso-performance analysis 
*Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space Exploration of Customized Architectures. Sophia Shao , .et. al 
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Broadly Provisioned Softbrain vs ASIC 
Area & Power Comparison 
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Softbrain vs ASIC designs 

 
• Perf. – Able to match the performance 
• Power – 1.6x overhead 
• Energy – 1.5x overhead 
• Area – 8x overhead* 

 

*All 8 ASICs combined  2.15x more area than Softbrain 
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Conclusion – Stream-Dataflow 
Acceleration 

 
• Stream-Dataflow Acceleration 

 Stream-Dataflow Execution Model – Abstracts typical accelerator 
computation phases using a dataflow graph 

 Stream-Dataflow ISA Encoding and Hardware-Software Interface – Exposes 
parallelism available in these phases 

 

• Stream-Dataflow Accelerator Architecture 
 CGRA and vector ports for pipelined vector-dataflow computation  

 Highly parallel stream-engines for low-power stream communication 
 

• Stream-Dataflow Prototype & Implementation – Softbrain 
 Matches performance of domain provisioned accelerator                 (DianNao 

DSA) with ~2x overheads in area and power 

 Compared to application specific designs (ASICs), Softbrain has ~2x overheads 
in power and ~8x in area 
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Dissertation Research Goal 

1.  Explore the commonality in the way the DSAs  specialize – 
Specialization Principles 

Programmable Hardware Acceleration 

2. General Mechanisms for the design of a generic programmable 
hardware accelerator matching the efficiency of DSAs 

3. A programmable/re-configurable accelerator architecture 
with an efficient accelerator hardware-software (ISA) interface 

4. Easy adaptation of new acceleratable algorithms 
in a domain-agnostic way  
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Conclusion – Programmable 
Hardware Acceleration 

 
• New acceleration paradigm in specialization era  

 Programmable Hardware Acceleration breaking the limits of acceleration 
 

• Foundational specialization principles abstracting the acceleration 
primitives 
 

• Enables programmable accelerators instantiation in IOT, embedded, 
cloud environment to support Edge Computing 
 

• A new accelerator ISA paradigm for an efficient programmable 
accelerator hardware implementation  
 

• Reduce the orders of magnitude overheads of programmability and 
generality compared to ASICs 
 

• Drives future accelerator research and innovation 
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Getting There !! 
 

A good enabler for exploring general purpose 
programmable hardware acceleration …. 



Future Work 
• Multiple DFG executions 

 Configuration cache for CGRA to switch between DFGs 
 

• Further distribute the control into vector ports 
 Dynamic deadlock detection for buffer overflow 
 Concurrent execution of different set of streams (of different DFGs) 

 

• Low-power dynamic credit-based CGRA schedule 
 Allow vector ports to run out-of-order reducing the overall latency 

 

• 3D support for streams in ISA 
 

• Partitioned scratchpad to support data dependent address 
generation 
 

• Support for fine-grained configuration through FPGA slices (along 
with SRAM mats) next to CGRA for memory-dependent algorithm 
acceleration 
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Related Work 

• Programmable specialization architectures:  
 Smart memories, Charm, Camel, Mosphosys, XLOOPS, Maven-VT 

 
• Principles of Specialization 

 GPPs inefficient and need specialization – Hameed. et. Al 
 Trace processing – Beret 
 Transparent Specialization – CCA, CRIB etc, 

 
• Heterogeneous Cores  – GPP + Specialized engines 

 Composite cores, DySER, Cambricon 
 

• Streaming Engines:  
 RSVP arch, Imagine, Triggered instructions, MAD, CoRAM++ 
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Other Works  
• Open Source GPGPU – MIAOW 

 Lead developer and contributor  to open source hardware GPGPU – MIAOW  
 AMD Southern Island based RTL implementation of GPGPU able to execute unmodified 

AMDAPP OpenCL kernels 
 Published in [ACM TACO 2015, HOTCHIPS’ 2015, COOLCHIPS’ 2015, HiPEAC’ 2016] 

 

• Von-Neumann/Dataflow Hybrid Architecture 
 A hybrid architecture aimed to exploit ILP in irregular applications 
 Lead developer of the micro-architecture of the dataflow offload engine – Specialized 

Engine for Explicit Dataflow (SEED) 
 Published in [ISCA‘ 2015, IEEE MICRO Top Picks 2016] 

 

• Open-source Hardware: Opportunities and Challenges 
 A position article on the advantages of open-source hardware for hardware innovation 
 Huge believer in open-source hardware and contribution  
 To be published in IEEE Computer’ 17 
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Back Up 
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Programmable Hardware 
Acceleration 

Idea 1: Specialization principles can be exploited in a general way 

 

Idea 2: Composition of known Micro-Architectural mechanisms 
embodying the specialization principles  

    

GenAccel as a programmable hardware design template     
  to map one or many application domains   

Stencil, Sort, Scan, AI 

Balanced GenAccel 

Deep Neural  

Domain provisioned GenAccel 

*Figures not to scale 

Programmable Hardware 
Accelerator  (GenAccel) 
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Principles in DSAs 

Computation Data Reuse Concurrency Coordination Communication 
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PE 

PE 

PE 

PE 

PE PE 

PE PE 

In
 F
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 Bus Sched 

O
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t 
Fi

fo
 

General Purpose Processor 

Weight Buf. 

Fifo 

Out Buf.  

Cont-
roller Acc Reg. 

Sigmoid 

NPU – Neural Proc. Unit 

Mult-Add 

• Match hardware concurrency to that 
of algorithm 

• Problem-specific computation units 

• Explicit communication as opposed to 
implicit communication 

• Customized structures for data reuse 

• Hardware coordination using simple 
low-power control logic 
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Accelerator Workloads 

DNN Database Streaming 

Neural Approx. Convolution 

1.  Ample Parallelism   2.  Regular Memory 

3.  Large Datapath   4.  Computation Heavy 
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GenAccel Modeling Strategy 
• Phase 1.  Model Single-Core with PIN + Gem5 based trace 

simulation 
 The algorithm to specialize in the form of c-code/binary 

 Potential Core Types, CGRA sizes, any specialized instructions 

 Degree of memory customization (which memory accesses to be 
specialized, either with DMA or scratchpad) 

 Output: single-core perf./energy for “Pareto-optimal” designs 

 

• Phase 2. Model coarse-grained parallelism 
 Use profiling information to determine parallel portion of the 

algorithm (or tell user to indicate or estimate) 

 Use simple Amdahl's law to get performance estimate 

 Use execution time, single-core energy estimate, and static power 
estimate to get overall energy estimate 
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GenAccel in Practice 

Synthesis 

              Perf. 
App. 1:    ... 
App. 2:    ... 
App. 3:    ... 

Performance 
Requirements 

1. Design Synthesis 

 FU Types 
 No. of FUs 
 Spatial fabric size 
 No. of GenAccel tiles 

2. Programming 

For each application: 
 
 Write Control Program  
      (C Program + Annotations) 
 
 Write Datapath Program 
      (spatial scheduling) 

Programmable Accelerator 
(GenAccel) 

Area goal:       ... 
Power goal:    ... 

Hardware  
Constraints 

Design  
decisions 

H
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3. Runtime 

Configure 
for App. 1 

Run App. 1 

Configure for App. 2 
(etc.) 

Runtime configuration 
(Serial) 

Configure for App. 1 

Run App. 1 

Configure for App. 2 

Run App. 2 

Configure for App. 3 

Run App. 3 

Runtime configuration 
(Parallel) 
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Programming GenAccel 

#pragma genaccel cores 2 
#pragma reuse-scratchpad weights 
 
void nn_layer(int num_in, int num_out, 
              const float* weights, 
              const float* in,  
              const float* out )  
{ 
   for (int j = 0; j < num_out; ++j)  
   { 
       for (int i = 0; i < num_in; ++i)  
       {      
           out[j] += weights[j][i] *in[i]; 
       } 
       out[j] = sigmoid(out[j]);      
   } 
} 

Pragmas 

Sp
atial Fab

ric 

Output Interface 

Input Interface 

Scratchpad DMA 

Memory 

Low-power Core 

D$ 

x x x 

x x x 

+ + 

+ 

x 

x 

+ + 

+ 

+ 

Ʃ 

Loop Parallelize, Insert Communication,  
Modulo Schedule 

Resize Computation (Unroll), Extract Computation Subgraph, Spatial Schedule 

LSSD Insert data transfer 
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GenAccel Design Point Selection 

Design Concurrency Computation Communication Data Reuse 
No. of 

GenAccel 
Units 

GAN 
24-tile CGRA  
(8 Mul,  8 Add, 1 Sigmoid) 

2k x 32b sigmoid 
lookup table 

32b CGRA; 256b 
SRAM interface 

2k x 32b  
weight 
buffer 

1 

GAC 
64-tile CGRA 
(32 Mul/Shift, 32 Add/logic) 
 

Standard 16b 
FUs 
 

16b CGRA; 512b 
SRAM interface 

512 x 16b 
SRAM for 
inputs 

1 

GAD 
64-tile CGRA  
(32 Mul, 32 Add, 2 Sigmoid) 

Piecewise linear 
sigmoid unit 

32b CGRA; 512b 
SRAM interface 

2k x 16b 
SRAMs for 
inputs 

8 

 
GAQ 

32-tile CGRA  
(16 ALU, 4 Agg, 4 Join) 

Join + Filter units 64b CGRA; 256b 
SRAM interface 

SRAMs for 
buffering 4 

GAB 
32-tile CGRA  
(Combination of above) 

Combination of 
above FUs 

64b CGRA; 512b 
SRAM interface 

4KB SRAM 
8 

Mul: Multiplier, Add: Adder 
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Synthesis – Time Run – Time 

Concurrency No. of GenAccel Units Power-gating unused GenAccel 
Units 

Computation Spatial fabric FU mix Scheduling of spatial fabric  
and core 

Communication Enabling spatial datapath 
elements,  & SRAM interface 
widths 

Configuration of spatial datapath, 
switches and ports, memory access 
pattern 

Data Reuse Scratchpad (SRAM) size Scratchpad used as DMA/reuse 
buffer 

Design-Time vs. Runtime 
Decisions 
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NPU (DSA)

Performance Analysis (1) 
GAN   vs.  NPU 

Baseline – 4 wide OOO core (Intel 3770K) 

N 
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Source of Accelertion Benefits 

Algorithm/Concurrency 

Sp
e

ci
al

iz
at

io
n

 

NPU 

Q100 

Diannao 

Convolution  
Engine 

Massive benefits from 
straightforward algorithm 

parallelization. 
 

Some benefit from vector 
and bit-with specialization. 

Massive benefit from 
optimizing the algorithm to 

avoid data copying. 
 

Significant benefit from 
algorithmic modifications 
to improve concurrency. 

 
Some benefit from 

specialized weight buffer 
and inter-layer broadcast. 

Some benefit for 
optimizing algorithm to 

expose concurrency/reuse. 
 

Some benefit from 
specialized shift registers 

and graph fusion unit. 

Overall, specialization of 
the hardware is never the 
sole factor, and rarely the 

larger factor. 
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Performance Analysis (2) 
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GenAccel Area & Power Numbers  
Area  (mm2) Power (mW) 

Neural 
Approx. 

GAN 0.37 149 

NPU 0.30 74 

Stencil 
GAC 0.15 108 

Conv. Engine 0.08 30 

Deep Neural. 
GAD 2.11 867 

DianNao 0.56 213 

Database 
Streaming  

GAQ 1.78 519 

Q100 3.69 870 

GABalanaced 
 

2.74 352 

*Intel Ivybridge 3770K  CPU 1 core Area –  12.9mm2    |  Power – 4.95W 

*Source: http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3 
+Estimate from die-photo analysis and block diagrams from wccftech.com 

*Intel Ivybridge 3770K  iGPU 1 execution lane Area  –  5.75mm2 

+AMD Kaveri APU Tahiti based GPU 1CU Area – 5.02mm2 

Dissertation Talk 93 11/16/2017 

http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3
http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3


Power & Area Analysis (1) 
GAN 

1.2x more Area than DSA 
2x more Power than DSA 

1.7x more Area than DSA 
3.6x more Power than DSA 

GAC 
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Power & Area Analysis (2) 
GAD 

3.8x more Area than DSA 
4.1x more Power than DSA 

0.5x more Area than DSA 
0.6x more Power than DSA 

GAQ 
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Power & Area Analysis (3)  

2.7x more Area than DSAs 
2.4x more Power than DSAs 

0.6x more Area than DSA 
2.5x more Power than DSA 

LSSDB  Balanced LSSD design 
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Unsuitable Workloads  
for GenAccel /Stream-Dataflow 

• Memory-dominated workloads 

• Specifically small-memory footprint, but “irregular” 

• Heavily serialized data dependent address generation 

• Memory compression for example 

– A Scalable High-Bandwidth Architecture for Lossless 
Compression on FPGAs, Fower et. al 

• Other examples: 

– IBM PowerEN Regular Expression 

– DFA based codes 

 

Dissertation Talk 97 11/16/2017 



GenAccel vs. FPGA 

 

 

 

• FPGAs are much lower frequency (global-routing and too 
fine-grained) 

• BlockRAMs too small to gang-up 

• Logical Multi-ported Register File needed to pass values 
between DSP slices to match high operand-level 
concurrency 

• Altera’s Stratix 10 seems headed exactly this direction 
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GenAccel’s power overhead of        
  2x - 4x matter in a system with accelerator?  

In what scenarios you want to build    
DSA over GenAccel? 
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Energy Efficiency Tradeoffs 

Accel. energy System energy Core energy 

Pacc * (U/S) * t Pcore * (1 - U) * t Psys * (1 – U + U/S) * t E  =  + +  

S: accelerator’s speedup 
 
U: accelerator utilization 

Overall energy of the computation executed on system 

*Power numbers are example representation 

 t: execution time 

OOO 
Core 

System with accelerator 

System Bus 

Pcore: 5W 

Psys: 5W 

Pacc: 0.1 – 5W 

System power 

Core power Accelerator power 

Caches 

Memory 

Accel. 
(GenAccel 

 or 
 DSA) 

Dissertation Talk 100 11/16/2017 



Speedupga = Speedupdsa      (Speedup w.r.t OOO) 

Energy Efficiency Gains of   
GenAccel & DSA over OOO core 
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Accelerator Speedup w.r.t OOO core 

Pga  = 0.5W 500mW (5x)Power overhead 

Baseline – 4 wide OOO core 
Efficiency gains of both GenAccel and DSA  are almost similar & 

At higher speedups both get “capped” due to large system power Dissertation Talk 101 11/16/2017 



GenAccel’s power overhead of        
  2x - 4x matter in a system with accelerator? 

  
When Psys >> Pga, 2x - 4x power overheads of 

GenAccel become inconsequential 
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Energy Efficiency Gains of   
DSA over GenAccel 
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Accelerator Speedup w.r.t OOO core 

 U = 1

 U = 0.95

 U = 0.9

 U = 0.75

Speedupga = Speedupdsa      (Speedup w.r.t OOO) 

Baseline – GenAccel 𝑬𝒇𝒇𝒅𝒔𝒂
𝒈𝒂   is no more than 10% even at 100% utilization At lower speedups, DSA’s energy efficiency gains 6 - 10% over GenAccel At higher speedups, benefits of DSA less than 5% on energy efficiency 

𝑬𝒇𝒇𝒅𝒔𝒂
𝒈𝒂    =  (1 / DSA energy) / (1 / GenAccel energy) 

  =  GenAccel energy / DSA energy   
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In what scenarios you want to build    
DSA over GenAccel? 

 
Only when application speedups are small &       
small energy efficiency gains too important  
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When does accelerator power            
or DSA matter? 

• GenAccel cannot match DSA for performance 

• Accelerator is a “vertically-integrated” accelerator 

– Logic attached to memory or IO, that Psys is affected 

– ShiDianNao for example (DNN attached to image 
sensor) 

• Speedups are “small” and 10% energy difference 
is “valuable” 
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Energy Efficiency Gains of   
DianNao over GenAccel 

SpeedupGA = SpeedupDianNao     (Speedup w.r.t OOO) 
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Accelerator Speedup w.r.t OOO 
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Does Accelerator power matter? 

• At Speedups > 10x, DSA eff. is around 5%, when 
accelerator power == core power 
 

• At smaller speedups, makes a bigger difference, up to 35% 
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Detailed Example of Stream-
Dataflow Execution Model 

X 

Input Ports: 

Output Port: 

Stream Commands 
C1) Mem  Scratch 

P
ro

gram
 O

rd
e

r 

C2) Scratch Wr Barrier 

C3) Scratch  Port A 

C4) Mem  Port B 

C5) Port C  Mem 

C6) Mem  Port B 

C7) All Barrier 

CGRA fabric state 

Low-power core state 

Time 

Maps to two i/p scalar  
vector ports 

Maps to an o/p  
scalar vector port 

Maps to multiplier of  
CGRA substrate 

Command 
generation 

Resume 

Scratchpad 

A B 

C 

Processing 

X 

 
Enqueued  
Dispatched 
Resource idle 
Resource in use 
All data at dest. 

Barrier 
Dependency 
Iter. boundary 

Legend: 

C[i] = A[i] * B[i] 

 
1. Dataflow based pipelined concurrent execution 

 
2. High Computation Activity Ratio:  

Number of Computations/Stream Commands 

Stream-Dataflow Accelerator Potential 
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Example Code: Dot Product 
(Instruction Comparisons) 

for(int i = 0 to N) { 
  dot_prod += a[i] * b[i] 
} 

for(i = 0 to N) { 
  Send a[i] -> P1 
  Send b[i] -> P2 
} 
Get P3 -> result 

for(i = 0 to N, i+=vec_len) { 
  Send a[i:i+vec_len] -> P1 
  Send b[i:i+vec_len] -> P2 
} 
Get P3 -> result 

× 
+ 

P1 P2 

P3 

Send a[i:i+N] -> P1 
Send b[i:i+N] -> P2 
Get P3 -> result 

Scalar Vector Stream-Dataflow 

~2N Instructions 
~2N/vec_len Instructions 

~3 Instructions 

Original Program Computation 
Graph: 
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Stream-Dataflow ISA vs. TPU ISA 

Dissertation Talk 

 

Google TPU ISA  
 

• Design goal of TPU ISA 
– To be a programmable ISA with less instruction overheads 
 

• Restricted to neural networks domain only  More of programmable ISA for NN 
domain 
 

• CISC principle to run complex tasks  To run fast multiple-add accumulations 
 

• Uses matrix as a primitive instead of vector or scalar  
        – Huge performance benefit for neural network applications 

– Reduced latency for inference [< 7ms] 
– ISA restricted heavily for certain type of computations 
   [Read_Host_Memory, Read_Weights, MatrxMultiply/Convolve, Activate, Write_Host_Memory]  

 

• Heavily relies on host processor to send the instructions. Host software will be a 
bottleneck 
 

• Does not decouple the memory and computation phases 
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TPU Compute Capability 

Dissertation Talk 

 

• 700 Mhz target frequency with 40W TDP. External accelerator and PCIe based 
interconnect to host – 12.5GB/s effective bandwidth 
 

• An inference chip for MLPs, CNN and LSTM  Matrix-Matrix multiplication support 
    –  65K operations per cycle using a 256 x 256 systolic array 2D pipeline 

 

• Quantization helps performance to operate on 8-bit integers only 
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Potential Performance  
Bottlenecks 

1. Computations Per CGRA Instance 

2. General Core Instructions 

3. Cache  GRA Bandwidth 

4. Initialization/Draining Latency (Memory & CGRA) 

5. Length of Recurrence through CGRA 
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1. Computations Per CGRA 
Instance 

HINT: This usually involves unrolling a loop – but not necessarily 
the inner loop. 

Principle: Few instructions control many computation 
instances 
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2. General Core Instructions 

• Principle: Few core instructions control many computation 
instances 
– Use as long streams as possible 

– Computation Instances > 2 * Number of Commands 

for(int i = 0; i < 128; ++i) { 
  SB_MEM_PORT(array[i], stride_size, 
         acc_size, num_times, Port);  
   … 
} 

for(int i = 0; i < 128; i+=2) { 
  SB_MEM_PORT(array[i], stride_size,  
       acc_size, num_times*2, Port);  
   … 
} 

114 

 SB_MEM_PORT(array[0], stride_size,  
       acc_size, num_times*128, Port); 
  
for(int i = 0; i < 128; ++i) { 
  … 
} 
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3. Cache  CGRA Bandwidth (1) 

Memory 
Scratchpad 

• Principle 1:  Only 64-bytes per cycle can come from memory 
– Can feed One 8-wide port, Two 4-wide ports, Four 2-wide ports 

– Use scratch streams to supplement memory streams 
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3. Cache  CGRA Bandwidth (2) 

• Principle 2:  Not-accessed elements within a 64-byte cache 
line COUNT towards bandwidth 

Stream: 
access_size = 16 bytes 
stride_size = 24 bytes 

Address Pattern: 16  8  8  16  8  

Cache Line Size: 

64  

HINT 1: Don’t use access patterns with “gaps” smaller than 
the cache line size. 

116 

HINT 2: Try to align accesses with cache line boundaries 
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Optimizing Classifier Layer 

Computation DFG Computation DFG 

Optimization:  
Size of DFG 

Optimization: Scratch for Memory B/W 

SD_Config(classifier_cfg,  
          sizeof(classifier_config)); 
 
SD_Mem_Port(synapse, 8,  
            8, Ni * Nn/4, Port_S); 
 
SD_Mem_Port(neuron_i, Ni * 2,  
            Ni * 2, Ni, Port_N); 
 
for (n = 0; n < Nn; n++) { 
  SD_Const_Port(0, 1, Port_acc); 
  SD_Const_Port(0, Ni – 1, Port_do_sig); 
  SD_Port_Port(Port_out, Ni - 1, Port_acc); 
  SD_Const_Port(1, 1, Port_do_sig); 
  SD_Port_Mem(Port_out, 1, &neuron_n[n]); 
} 
 
SD_Barrier_All; 

SD_Config(classifier_cfg, sizeof(cfg)); 
 
SD_Mem_Port(synapse, 8,    
            8, Ni * Nn/4,Port_S); 
 
SD_Mem_Scratch(neuron_i, Ni * 2,  
               Ni * 2, 1, 0); 
SD_Barrier_Scratch_Wr(); 
SD_Scratch_Port(0, Ni * 2, 
                Ni * 2, 1, Port_N); 
 
for (n = 0; n < Nn; n++) { 
  SD_Const_Port(0, 1, Port_acc); 
  SD_Const_Port(0, Ni/4 - 1, Port_do_sig); 
  SD_Const_Port(1, 1, Port_do_sig); 
  SD_Port_Port(Port_out, Ni/4 - 1, Port_acc); 
  SD_Port_Mem(Port_out, 1, &neuron_n[i]) 
} 
 
SD_Barrier_All; 
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6. Initialization/Draining Latency  

(Memory & CGRA) 
 

• Principle:  Hide memory latency by having “longer pipelined 
phases” 

Memory 

~15-cycles 

~100-cycle  (or ~20-cyces from cache) 

~100-cycle  (or ~20-cyces from cache) 
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7. Length of Recurrence 
 through CGRA 

• Principle:  Number of independent instances should be > the length 
of the longest recurrence. 

Latency = 15 Cycles 
 
Instances / Cycle = 1 / 15 

B[0] B[1] B[2] B[3] 

Dot 
Product of 
arrays B 
and A 

A[0] A[1] A[2] A[3] 0 

B[4] B[5] B[6] B[7] A[4] A[5] A[6] A[7] Carry 

B[8] B[9] B[10] B[11] A[8] A[9] A[10] A[11] Carry 

B[12] B[13] B[14] B[15] A[12] A[13] A[14] A[15] Carry 

119 11/16/2017 Dissertation Talk 



7. Length of Recurrence 
 through CGRA (2) 

Latency=15 Cycles 
 
Instances / Cycle = 2 / 15 

B[0] B[1] B[2] B[3] 

Dot 
Product of 
arrays B 
and A A[0] A[1] A[2] A[3] 0 

B[4] B[5] B[6] B[7] A[4] A[5] A[6] A[7] 0 

B[8] B[9] B[10] B[11] A[8] A[9] A[10] A[11] Carry1 

B[12] B[13] B[14] B[15] A[12] A[13] A[14] A[15] Carry2 

120 
Carry1 

Carry2 
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Recurrence Serialization Overhead 

Recurrence  
Length = 12 Cycles 

Maximum Computation Rate =  
# Pipelinable Instances / Recurrence Length 

Max. Computation 
Rate = 1 / 12 Cycles 
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Pipelining Classifier Layer 

122 

SD_Config(classifier_cfg) 
 
SD_Mem_Scratch(neuron_i, 0,Ni*2,1, 0) 
SD_Barrier_Scratch_Write() 
 
for (n = 0; n < Nn; n+=tile_h) { 
  SD_Constant(0, tile_height, Port_acc) 
  for(i = 0; i < Ni; i+=tile_w) { 
    if(not last_iter) { 
      SD_Constant(0,   tile_h,P_do_sig) 
      SD_Port_Port(P_out, tile_h,P_acc)  
    } else { 
      SD_Constant(0,      tile_h,P_do_sig) 
      SD_Port_Mem(Port_out, 1, &neuron_n[i]) 
    } 
    SD_Scratch_Port(i*2, 0, 8*tile_w, 1,      
                    Port_N) 
    SD_Mem_Port(&synapse[n][i],  
               2*Ni, 8*tile_w, tile_h, Port_S) 
  } 
} 
SD_Barrier_All(); 

Input Neurons (Ni) 

O
u
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t 
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s 
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n

) 
Synapses (Nn x Ni) 

tile_w 

ti
le

_h
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2D Stencil Example 

123 

Stencil Array Input Array Output Array 

× ∑ 

for (r=0; r<row_size-2; r++) {  
  for (c=0; c<col_size-2; c++) {  
    temp = (TYPE)0;  
    for (k1=0;k1<3;k1++) { //Row access  
      for (k2=0;k2<3;k2++) { //column access  
        mul = filter[k1*3 + k2] * orig[(r+k1)*col_size + c+k2];  
        temp += mul;  
      }  
    }  
    sol[(r*col_size) + c] = temp;  
  }  
}  
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“Easy” Approach 

124 

Stencil Array Input Array Output Array 

× ∑ 

for (r = 0; r < row_size - 2; r++) {  
  for (c = 0; c < col_size - 2; c++) {  
    SD_Constant(P_stencil_sb_carry, 1, 1);  
    for (k1 = 0; k1 < 3; k1++) {  
      SD_Mem_Port((orig + (r + k1) * col_size + c),          
               sizeof(TYPE), sizeof(TYPE), 4, P_stencil_sb_I);   
      SD_Mem_Port(filter + (k1 * 3),  
               sizeof(TYPE), sizeof(TYPE), 4, P_stencil_sb_F);  
    }  
    SD_port_Port(P_stencil_sb_R, P_stencil_sb_carry, 2);    
    SB_Port_Mem(P_stencil_sb_R, sizeof(TYPE),  
               sizeof(TYPE), 1, sol + (r * col_size) + c);  
  }  
}  
SB_Barrier_All();  
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Easy Approach’s Bottlenecks 

1. Computations Per CGRA Instance  (only 3 mults!) 

2. General Core Instructions (core insts == CGRA insts) 

3. Cache  CGRA Bandwidth  (wasted b/c of acc_size) 

4. Initialization/Draining Latency  

5. Length of Recurrence through CGRA  

     (no independent computations through CGRA) 
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Better Approach (probably not best) 
Stencil Array Input Array Output Array 

× ∑ 
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Better Approach (probably not best) 
Stencil Array Input Array Output Array 

× ∑ 
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Better Approach (probably not best) 
Stencil Array Input Array Output Array 

× ∑ 
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Better Approach (probably not best) 
Stencil Array Input Array Output Array 

× ∑ 

for (r=0; r<row_size-2; r++) {  
  for (c=0; c<col_size-2; c++) {  
    temp = (TYPE)0;  
    for (k1=0;k1<3;k1++) { //Row access  
      for (k2=0;k2<3;k2++) { //column access  
        mul = filter[k1*3 + k2] * orig[(r+k1)*col_size + c+k2];  
        temp += mul;  
      }  
    }  
    sol[(r*col_size) + c] = temp;  
  }  
}  

11/16/2017 Dissertation Talk 



Better Approach’s Bottlenecks 

1. Computations Per CGRA Instance  (up to 8 mults!) 
2. General Core Instructions (core insts << CGRA insts) 
3. Cache  CGRA Bandwidth  (acc_size > cache_size) 
4. Scratchpad  CGRA Bandwidth  
5. Memory  Cache Bandwidth 
6. Initialization/Draining Latency  
7. Length of Recurrence through CGRA (if you stripmine the 

c-loop past the DFG width, you can stream multiple 
independent computations through the CGRA!) 
 
 
 

 
 

 
 

 

130 11/16/2017 Dissertation Talk 



Programming Restrictions 

• CGRA Instruction Types & Data-width 

• Shape of the stream (strided) 

• Width of input/output ports 

• Number of simultaneous streams 

• Issue to free-port (data always balanced) 
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Pipelining Classifier Layer 
SD_Config(classifier_cfg, sizeof(cfg)) 
 
SD_Mem_Scratch(neuron_i, Ni * 2, 
               Ni * 2, 1, 0); 
SB_Barrier_Scratch_Wr(); 
 
for (n = 0; n < Nn; n += tile_h) { 
  SD_Const_Port(0, tile_h, Port_acc); 
 
  for(i = 0; i < Ni; i += tile_w) { 
    if(not last_iter) { 
      SD_Const-Port(0, tile_h, Port_do_sig); 
      SD_Port_Port(P_out, tile_h, Port_acc);  
    } else { 
      SD_Const_Port(0, tile_h, Port_do_sig); 
      SD_Port_Mem(Port_out, 1, &neuron_n[i]); 
    } 
    SB_Scracth_Port(i * 2, 8 * tile_w, 
                    8 * tile_w, 1, Port_N); 
    SB_Mem_Port(&synapse[n][i], 2 * Ni,  
                8 * tile_w, tile_h, Port_S); 
  } 
} 
SD_Barrier_All; 

Input Neurons (Ni) 
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CGRA – Vector Port Interface 
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Input Vector Port Interface 

Output Vector Port Interface 

0      1      2     3      4      5     6     7 Vector Offsets   

4 Entry Vector Port  (512b or 64B wide) – 
 Each element 8B or 64b) 

• Vector ports facilitate “vector/SIMD execution and 
can store entire cache-line in a cycle (8 wide) 
 

• Vector ports’ offsets are connected to CGRA input 
links – Mapping done by hardware architects 
recorded as Softbrain Hardware Parameter Model 
 

• Hardware parameter model is passed to 
scheduler/compiler for mapping software DFG 
ports to hardware vector ports 
 

• Enable flexible hardware-software interface for 
variable width SIMD-execution 

VPORT_IN 0:     0:2, 1:5, 2:8,   3:11, 4:17, 5:20, 6:23, 7:26 
VPORT_IN 1:     0:4, 1:7, 2:10, 3:16, 4:19, 5:22, 6:25, 7:31 
 
VPORT_OUT 0:  0:1, 1:3, 2:5,   3:6, 4:8, 5:9, 6:11, 7:12 

Example vector port to CGRA links mapping 
[VPORT_Num]: [Offset]:[CGRA Link Num] 
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Workload Characterization for 
Application Specific Softbrain 
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Softbrain vs. DianNao vs. GPU 
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ASIC Area Relative to Softbrain 
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Softbrain vs. ASIC  
Power Efficiency Comparison 
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Softbrain vs. ASIC  
Energy Efficiency Comparison 
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Design Space Exploration for  
ASIC Comparison 
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DSA Architectures 
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NPU Convolution Engine 

Q100 DianNao 



Convolutional Neural Network 
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Rocket Core RoCC Interface 
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Recurrent Neural Network 
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ASICs 

FPGAs 

Source: Bob Broderson, Berkeley Wireless group 

More gains the lower you go Specialization Spectrum 
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