

Programmable Hardware Acceleration

Vinay Gangadhar

PhD Final Examination Thursday, Nov 16th, 2017

Advisor: Karu Sankaralingam

Committee: Mark Hill, Mikko Lipasti, David Wood, Dimitris Papailiopoulos

Computing Trends

Device scaling slowdown (or dead) & Dark silicon problem

Emerging applications driving computing with new demands

The Big-Data Future Has Arrived

Dissertation Talk

Era of Specialization

Input Stream

W bytes per cycle

Character Clas

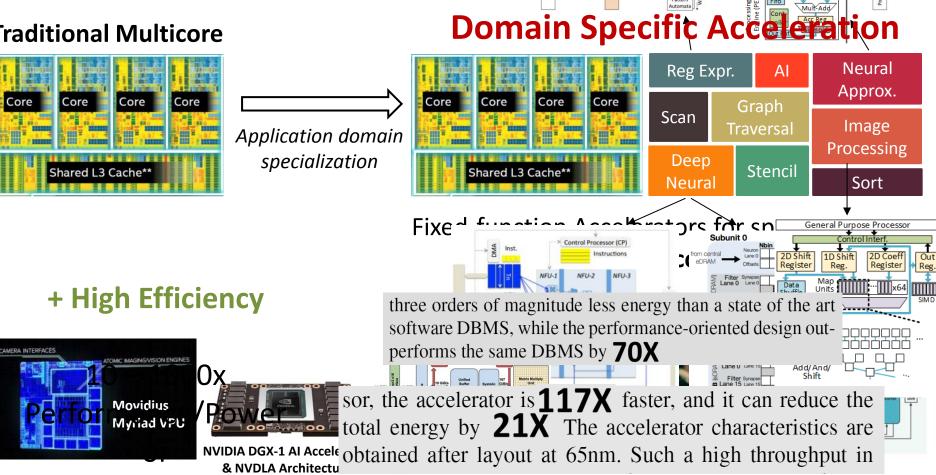
General Purpose Processor

PE PE Bus Sched

PE PE

0 0

Traditional Multicore

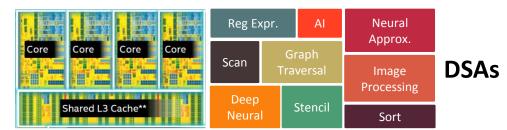


11/16/2017

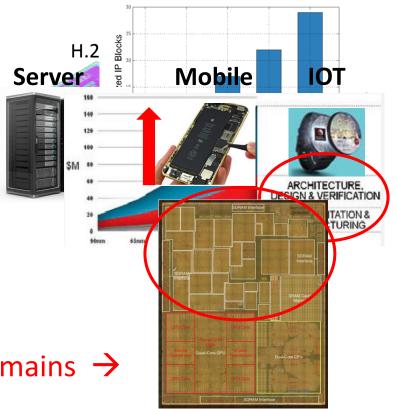
Performance/Area

Dissertation Talk

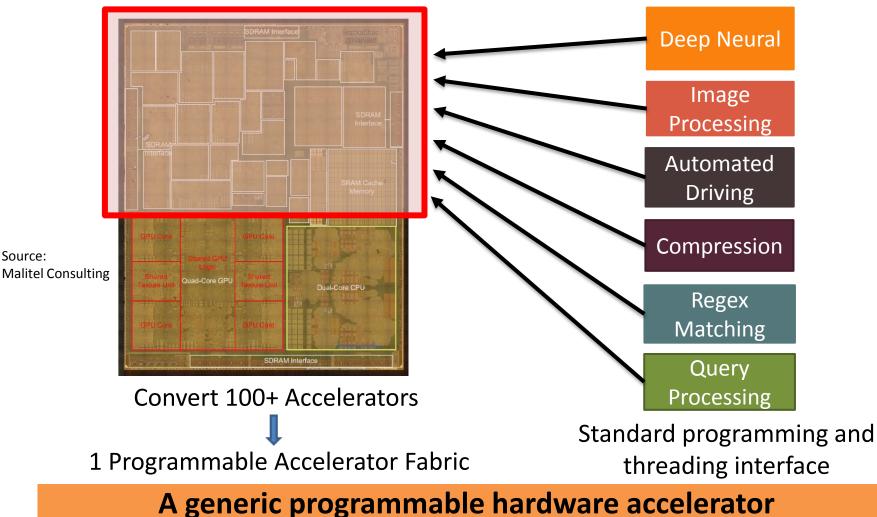
Caveats of Domain-Specific Accelerators (DSAs)



- Minimally programmable/ Not Re-configurable
- Obsoletion prone
- Domains targeting each device type
- Architecture, design, verification and fabrication cost
- Multi-DSA chip for "N" application domains →
 Area and cost inefficient
 11/16/2017 Dissertation Talk

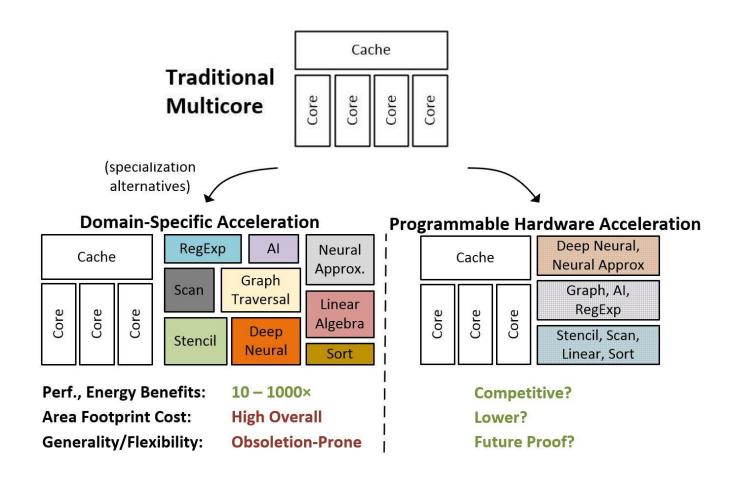


The Universal Accelerator Dream...

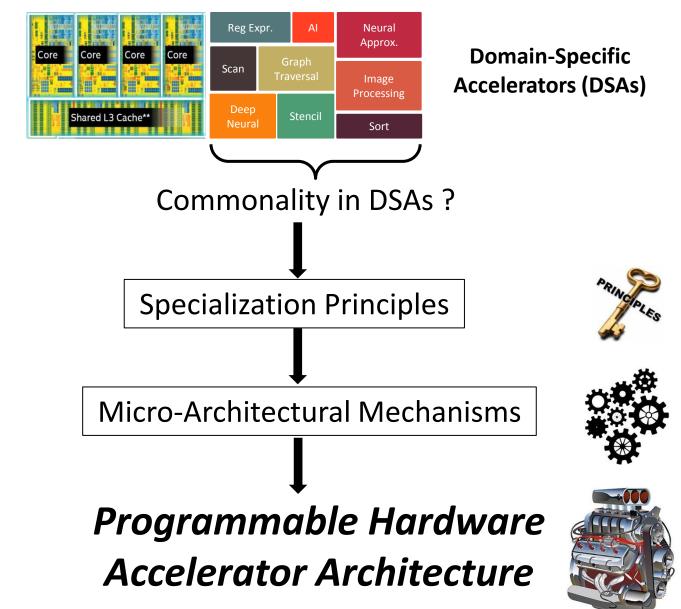


matching the efficiency of Domain Specific Accelerators (DSAs) with an efficient hardware-software interface

Specialization Paradigms

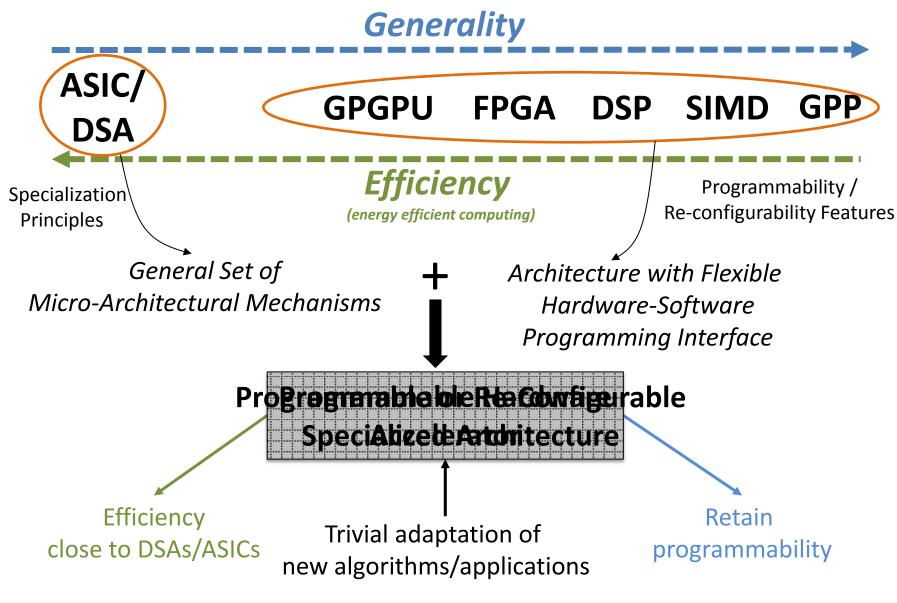


Research Overview



Dissertation Talk

Research Overview



Dissertation Research Goal

Programmable Hardware Acceleration

- 1. Explore the commonality in the way the DSAs specialize *Specialization Principles*
- 2. **General Mechanisms** for the design of a generic programmable hardware accelerator matching the efficiency of DSAs

3. A programmable/re-configurable accelerator architecture with an efficient accelerator hardware-software (ISA) interface

4. Easy adaptation of new acceleratable algorithms in a domain-agnostic way

Dissertation Statement

Programmable Hardware Acceleration

A *programmable hardware accelerator* nearing the efficiency of a domain-specific accelerator (DSA) is feasible to build by:

- Identifying the common principles of architectural specialization
- Applying general set of micro-architectural mechanisms for the identified principles
- Having an efficient hardware-software interface to be able to express any typical accelerator application

Contributions

Modeling Programmable Hardware Acceleration

- Exploring the common principles of architectural specialization
- Modeling a general set of mechanisms to exploit the specialization principles – GenAccel Model
- Quantitative evaluation of GenAccel Model with four DSAs
- System-Level Tradeoffs of GenAccel Model vs. DSAs

Architectural Realization with Stream-Dataflow Acceleration

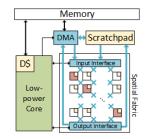
- Stream-Dataflow programmable accelerator architecture with:
 - Programming abstractions and execution model
 - ISA interface
- Detailed micro-architecture with an efficient architectural realization of stream-dataflow accelerator – Softbrain
- Quantitative evaluation of Softbrain with state-of-the-art DSA solutions

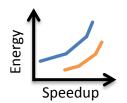
Modeling Programmable Hardware Acceleration*

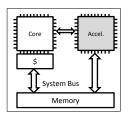
*Published in HPCA 2016, IEEE Micro Top Picks 2017

Outline

- Principles of architectural specialization
 - Embodiment of principles in DSAs
- Modeling mechanisms exploiting specialization principles for a generic programmable accelerator (GenAccel Model)
- Evaluation of GenAccel with 4 DSAs (Performance, power & area)
- System-level energy efficiency tradeoffs with GenAccel and DSA

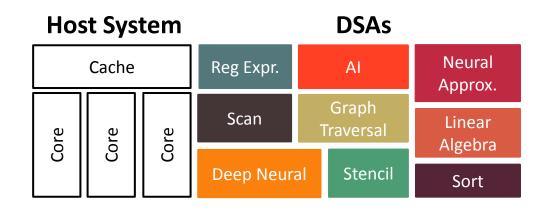




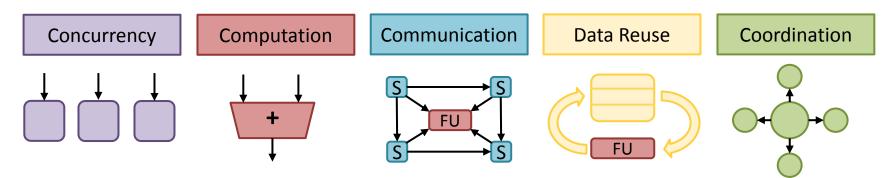


11/16/2017

Key Insight: Commonality in DSAs' Specialization Principles

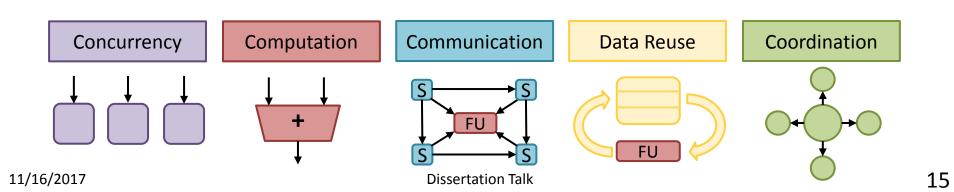


Most DSAs employ 5 common Specialization Principles

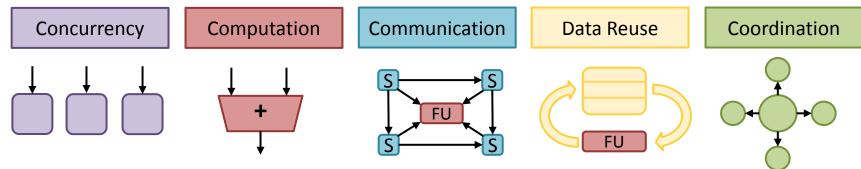


Principles of Architectural Specialization

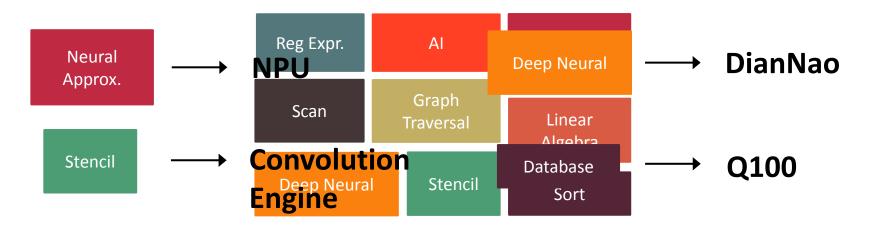
- Match hardware **concurrency** to that of algorithm
- Problem-specific **computation** units
- Explicit communication as opposed to implicit communication
- Customized structures for data reuse
- Hardware coordination using simple low-power control logic



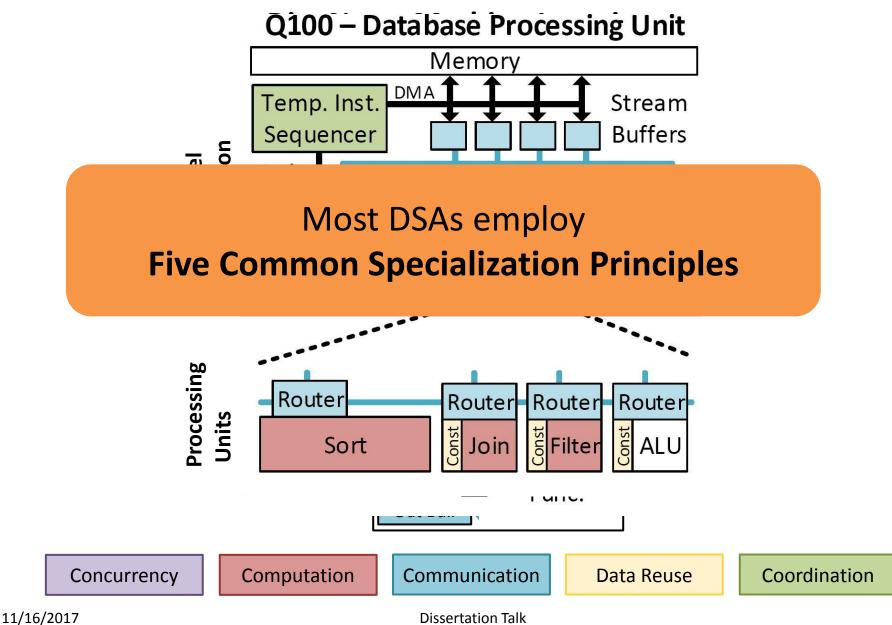
5 Specialization Principles



How do DSAs embody these principles in a domain specific way ?

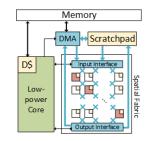


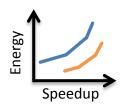
Principles in DSAs

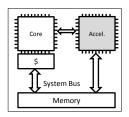


Outline

- Principles of architectural specialization
 - Embodiment of principles in DSAs
- Modeling mechanisms exploiting specialization principles for a generic programmable accelerator (GenAccel Model)
- Evaluation of GenAccel with 4 DSAs (Performance, power & area)
- System-level energy efficiency tradeoffs with GenAccel and DSA







11/16/2017

Implementation of Principles in a General Way

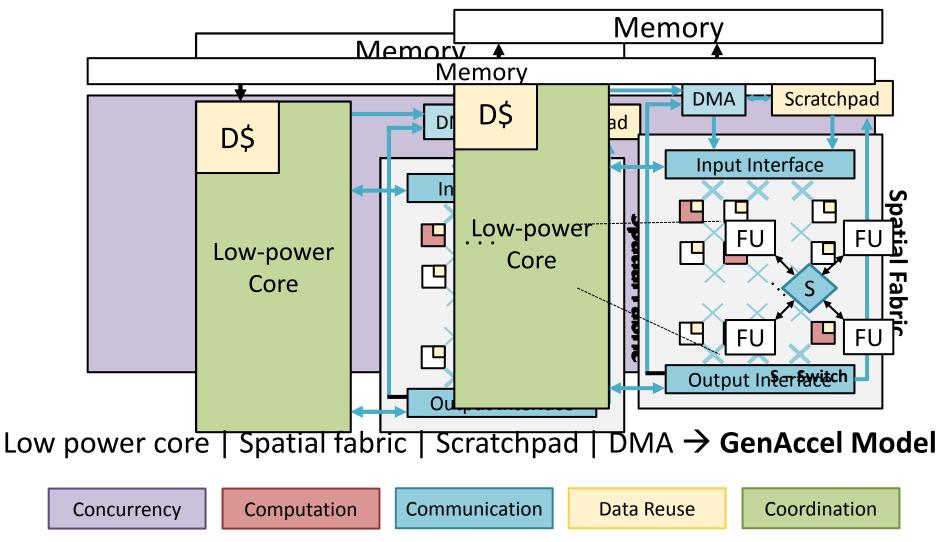
Composition of simple micro-architectural mechanisms

- Concurrency: Multiple tiles (Tile hardware for coarse grain unit of work)
- Computation: Special FUs in spatial fabric
- **Communication:** Dataflow + spatial fabric
- Data Reuse: Scratchpad (SRAMs)
- **Coordination:** Low-power simple core

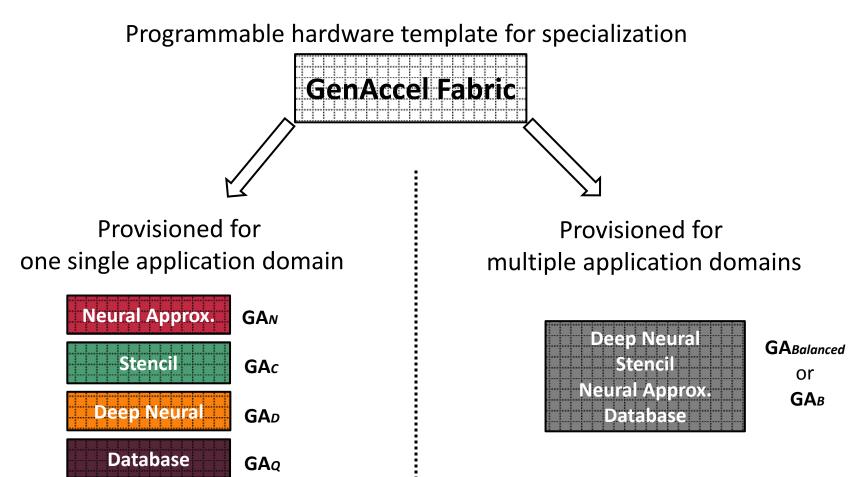
Each Tile

Modeling the Generic

Programmable Accelerator Design



Instantiating GenAccel



GenAccel Usage, Design point selection & Synthesis etc. More details in backup.....

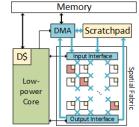
[★]F/g6/⁄20\$1not to scale

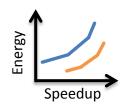
Dissertation Talk

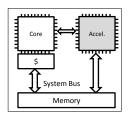
Outline

- Principles of architectural specialization
 - Embodiment of principles in DSAs
- Modeling mechanisms exploiting specialization principles for a generic programmable accelerator (GenAccel Model)
- Evaluation of GenAccel with 4 DSAs (Performance, power & area)
- System-level energy efficiency tradeoffs with GenAccel and DSA

Concurrency





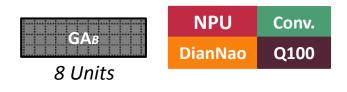


11/16/2017

Methodology

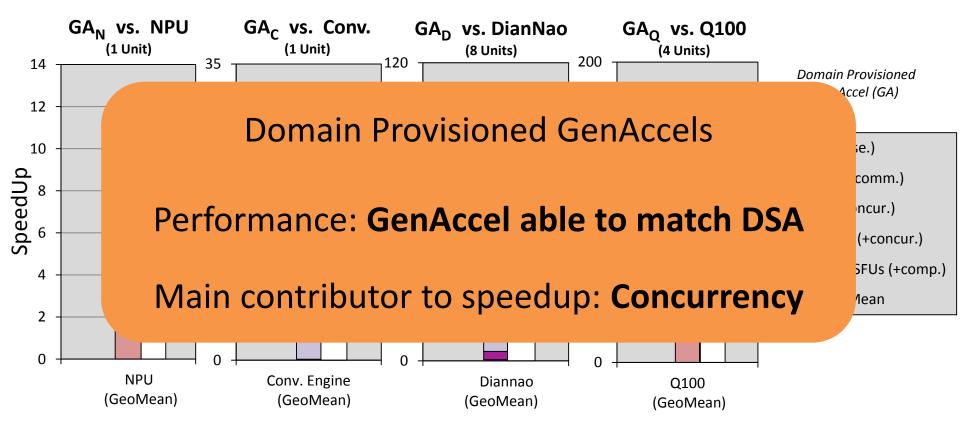
- Modeling framework for GenAccel
 - Performance: Trace driven simulator + application specific modeling
 - Power & Area: Synthesized modules, CACTI and McPAT
- Compared to four DSAs (published perf., area & power)
- Four parameterized GenAccels

One combined balanced GenAccel



- Provisioned to *match* performance of DSAs
 - Other tradeoffs possible (power, area, energy etc.)

Performance Analysis GenAccel vs DSAs

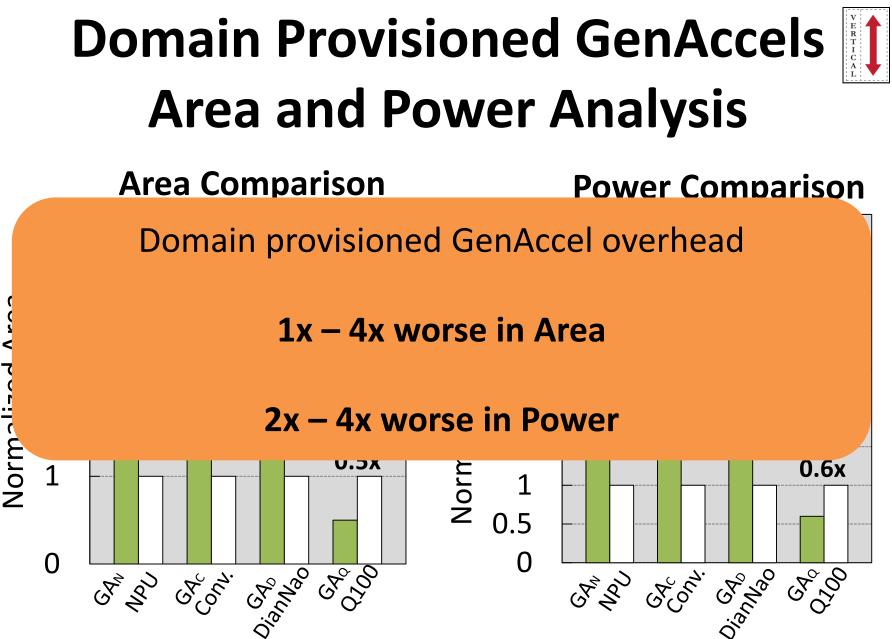


Baseline – 4 wide OOO core (Intel 3770K)

Dissertation Talk

Domain Provisioned GenAccels

GenAccel area & power compared to a single DSA ?

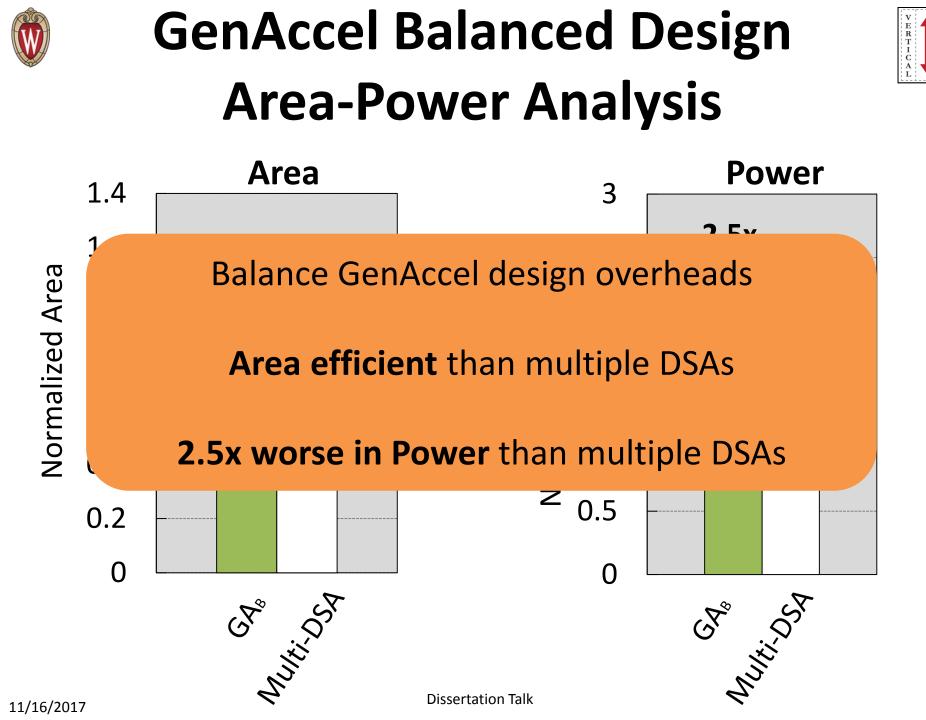


*Detailed area breakdown in backup

Balanced GenAccel design

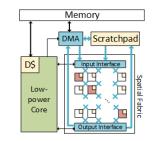
Area and power of GenAccel Balanced design, when multiple domains mapped* ?

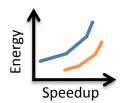
* Still provisioned to match the performance of each DSA

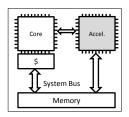


Outline

- Introduction
- Principles of architectural specialization Embodiment of principles in DSAs
- Modeling mechanisms exploiting specialization principles for a generic programmable accelerator (GenAccel Model)
- Evaluation of GenAccel with 4 DSAs (Performance, power & area)
- System-level energy efficiency tradeoffs with GenAccel and DSA 11/16/2017

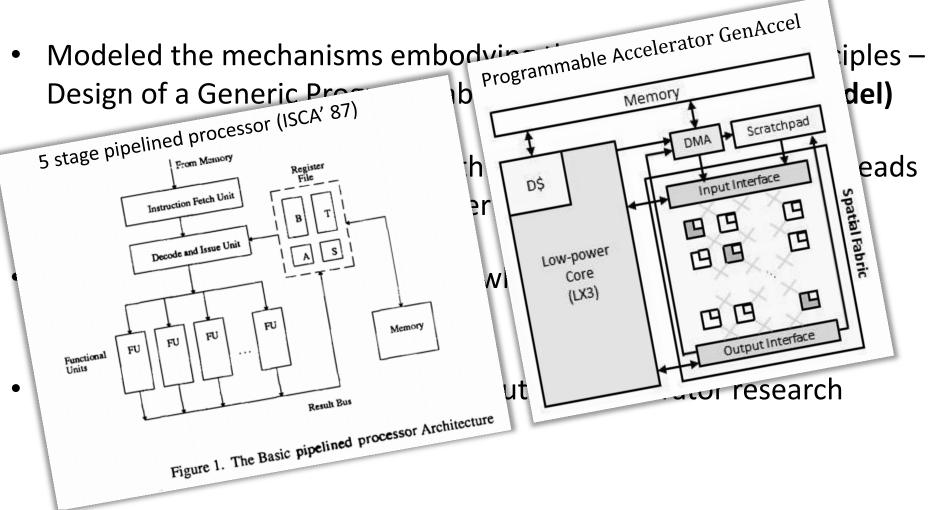






Conclusion – Modeling Programmable Hardware Acceleration

• 5 common principles for architectural specialization



Dissertation Talk

Dissertation Research Goal

Programmable Hardware Acceleration

- 1. Explore the commonality in the way the DSAs specialize *Specialization Principles*
- 2. **General Mechanisms** for the design of a generic programmable hardware accelerator matching the efficiency of DSAs

3. A programmable/re-configurable accelerator architecture with an efficient accelerator hardware-software (ISA) interface

4. Easy adaptation of new acceleratable algorithms in a domain-agnostic way

Contributions

Modeling Programmable Hardware Acceleration

- Exploring the common principles of architectural specialization
- Modeling a general set of mechanisms to exploit the specialization principles – GenAccel Model
- Quantitative evaluation of GenAccel Model with four DSAs
- System-Level Tradeoffs of GenAccel Model vs. DSAs

Architectural Realization with Stream-Dataflow Acceleration

- Stream-Dataflow programmable accelerator architecture with:
 - Programming abstractions and execution model
 - ISA interface
- Detailed micro-architecture with an efficient architectural realization of stream-dataflow accelerator – Softbrain
- Quantitative evaluation of Softbrain with state-of-the-art DSA solutions

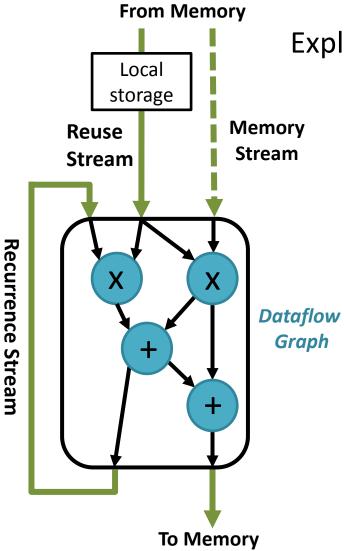
Stream-Dataflow Acceleration*

*Published in ISCA 2017, Submitted to IEEE Micro Top-Picks 2018

Architectural Realization of Programmable Hardware Acceleration

- Workloads characteristics:
 - Regular streaming memory accesses with straightforward patterns
 - Computationally intensive with long execution phases
 - Ample data-level parallelism with large datapath
 - Small instruction footprints with simple control flow
- Accelerator architecture to accelerate data-streaming applications
 - Instantiates the hardware primitives from GenAccel model
 - Exploit all the five specialization principles
 - Stream-Dataflow high-performance compute substrate with *Dataflow* and *Stream* specialization components
 - Exposes a novel stream-dataflow ISA interface for programming the accelerator

Stream-Dataflow Acceleration



Exploit common accelerator application behavior:

Dataflow Computation

 Stream-Dataflow Execution model – Abstracts typical accelerator computation phases

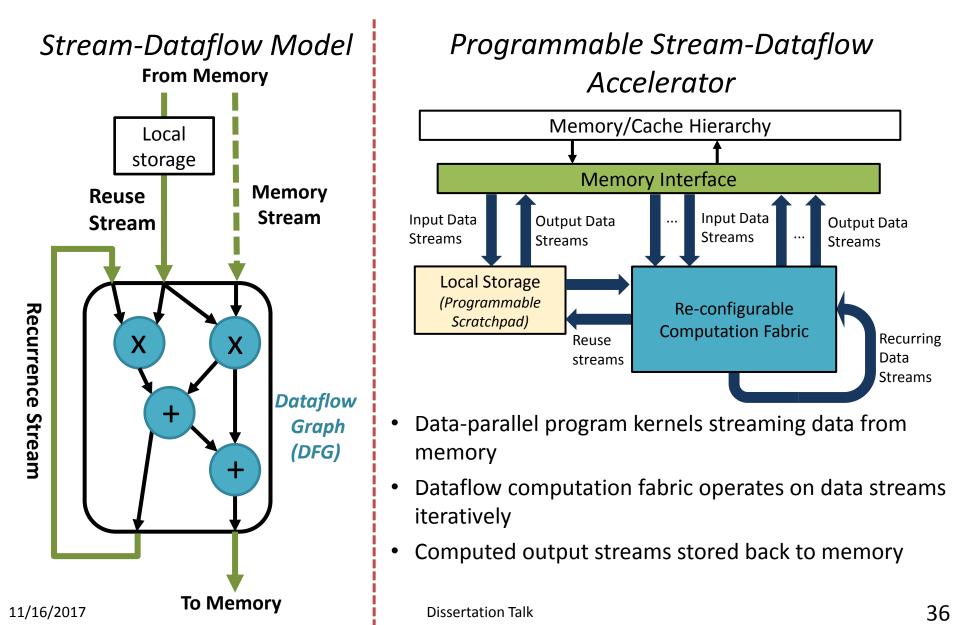
Stream Patterns and Interface

 Stream-Dataflow ISA encoding and Hardware-Software interface – Exposes parallelism available in these phases

Synchronization Primitives

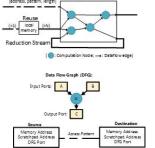
 Barrier commands to facilitate data coordination and data consistency

Stream-Dataflow Acceleration



Outline

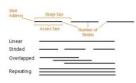
- Stream-Dataflow Execution Model
- Hardware-Software (ISA) Interface for Programmable Hardware Accelerator
- Stream-Dataflow Accelerator Architecture and Example program
- Stream-Dataflow Micro-Architecture *Softbrain*
- Evaluation and Results

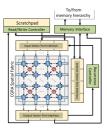


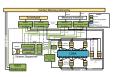
Dataflov

Computation

Memory Stream

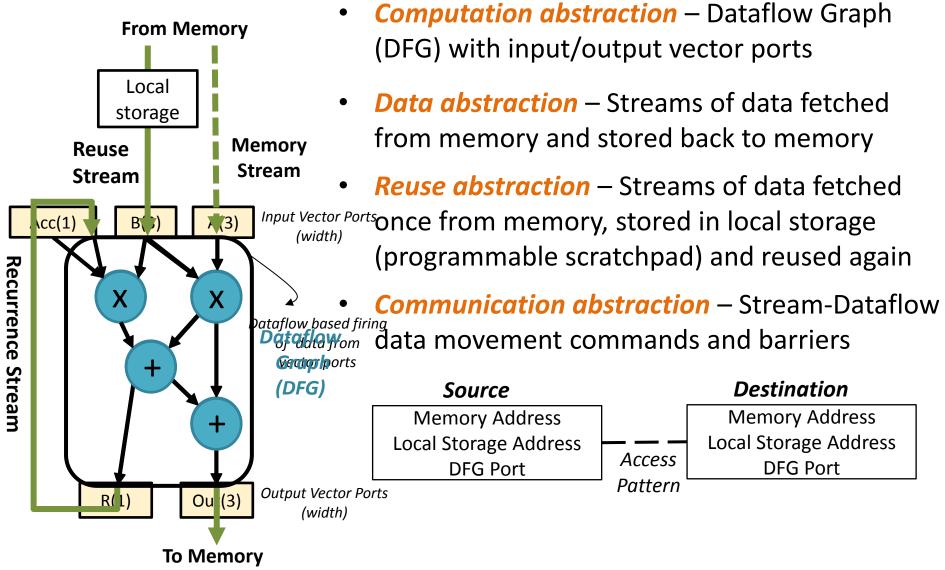






Stream-Dataflow Execution Model

Architectural Abstractions for Stream-Dataflow Model



Dissertation Talk

Stream-Dataflow Execution Model

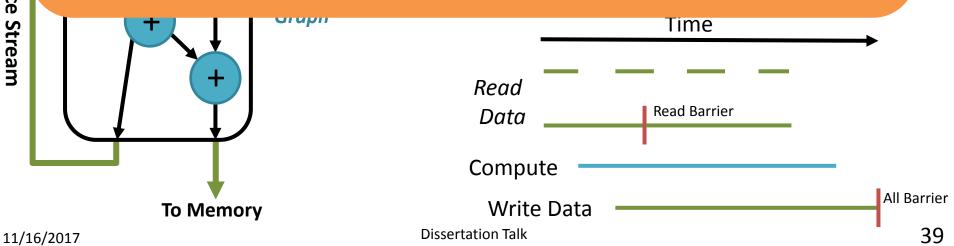
W

Programmer Abstractions for Stream-Dataflow Model

 Computation abstraction – Dataflow Graph (DFG) with input/output vector ports

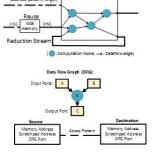
Data abstraction - Streams of data fetched

- Separates the data-movement from computation
- Achieves high-concurrency through the execution of coarser-grained data streams alongside dataflow computation



Outline

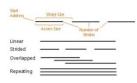
- Stream-Dataflow Execution Model
- Hardware-Software (ISA) Interface for Programmable Hardware Accelerator
- Stream-Dataflow Accelerator Architecture and Example program
- Stream-Dataflow Micro-Architecture Softbrain
- Evaluation and Results

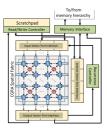


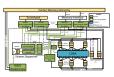
Dataflow

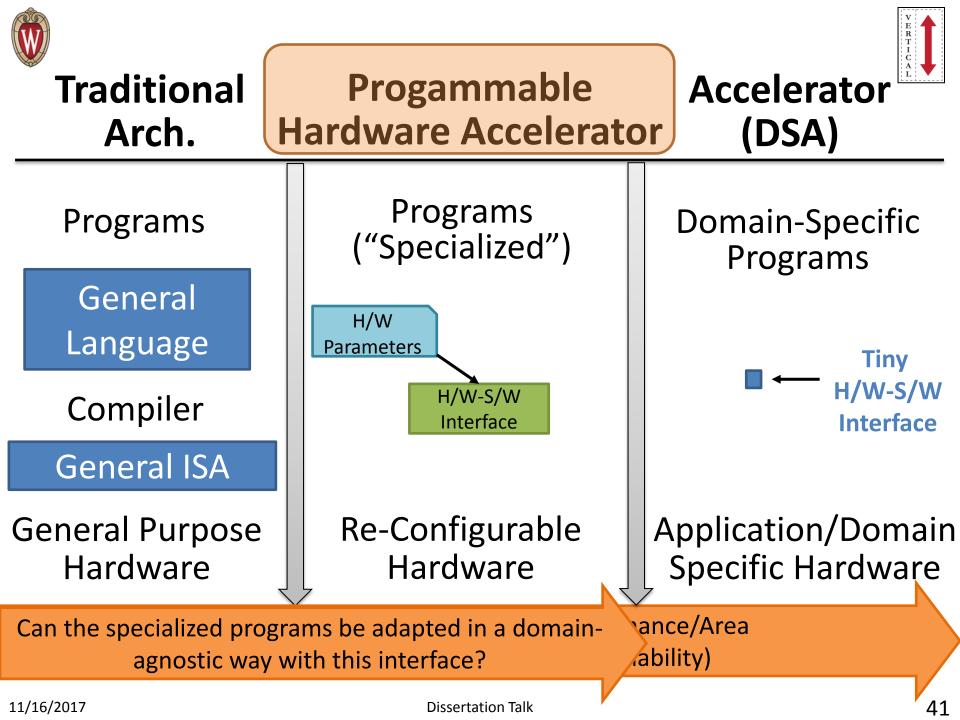
Computat

Aemory Stream









Stream-Dataflow ISA Interface

Express any data-stream pattern of accelerator applications using simple, flexible and yet efficient encoding scheme

Stream-Dataflow ISA

V E R T I C A L

• Set-up Interface:

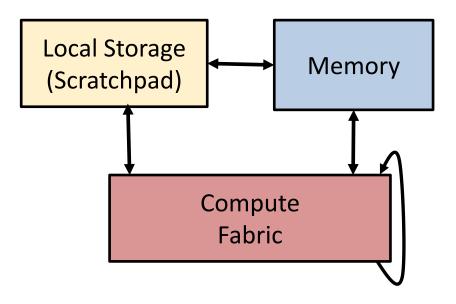
SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:

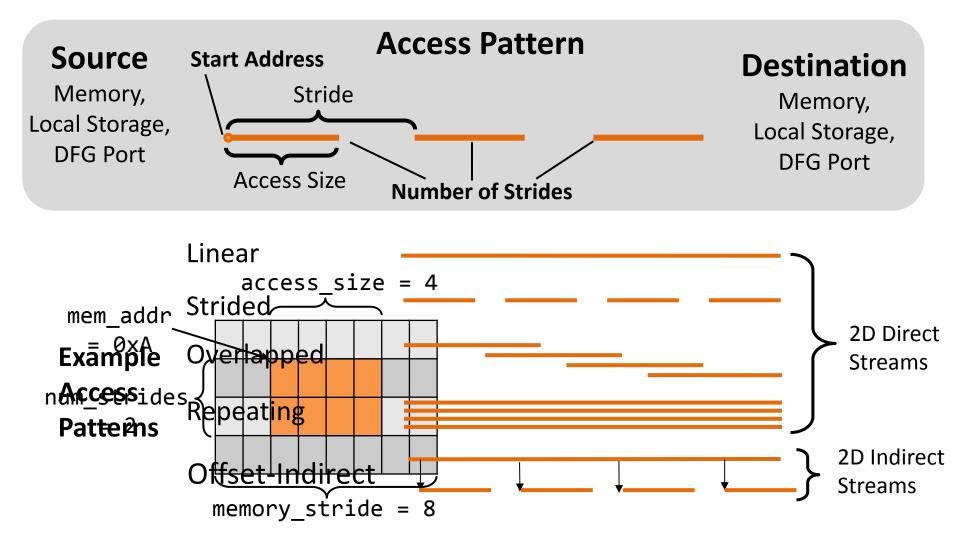
SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

Stream Interface → SD_[source]_[dest]

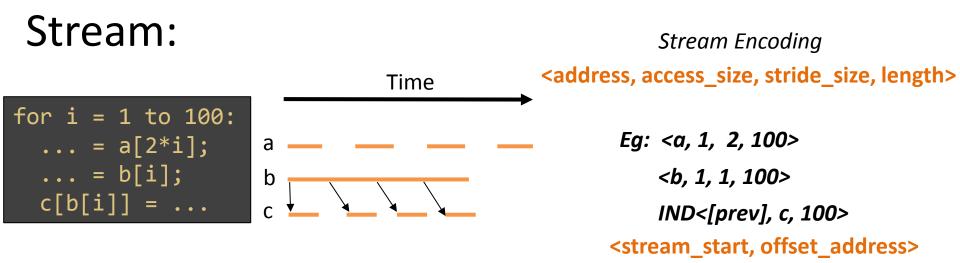
Source/Dest Parameters: Address (memory or local_storage), DFG Port number Pattern Parameters: access_size, stride_size, num_strides



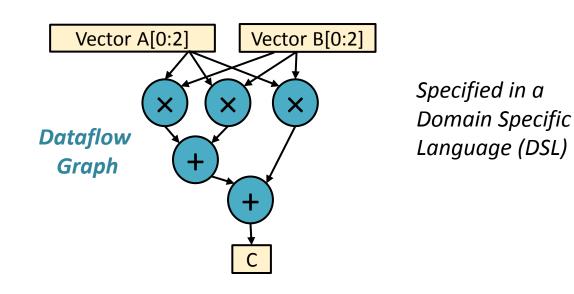
Stream-Dataflow Programming Interface



Stream-Dataflow ISA Encoding



Dataflow:

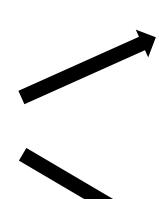


11/16/2017

Example Pseudo-Code: Dot Product

Original Program

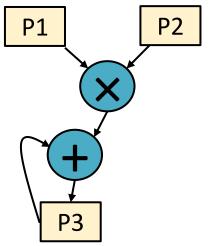
for(int i = 0 to N) { c += a[i] * b[i]; }



Stream ISA Encoding

Put	a[0: N]	→ P1
Put	b[0: N]	→ P2
Recur	P3, N -	1
Get P3	→ c	

Dataflow Encoding

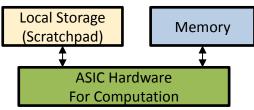


New ISA Class for Programmable Hardware Acceleration

Stream-Dataflow ISA

- Expresses long memory streams and access patterns efficiently
 - Address generation hardware becomes much simpler
- Decouples access and execute phases
- Reduces instruction overheads
- Dependences are explicitly encoded
- Reduces cache requests and pressure by encoding alias-free memory requests

 Implicit coalescing for concurrent memory accesses
- Separates architecture abstractions from the implementation details

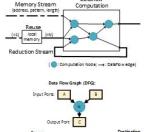


A New ISA Paradigm for Acceleration

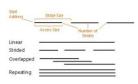
- Need to embody common accelerator principles and execution model
- Need to represent programs without requiring complex micro-architecture techniques for performance
 - VLIW, SIMT and SIMD have their own drawbacks for accelerators
- Micro-Architecture for C-programmable ASICs
 - Enables 'hardened' ASIC compute substrate implementation
 - Separates the memory interface primitives and interaction

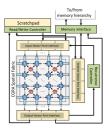
Outline

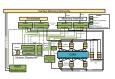
- Stream-Dataflow Execution Model
- Hardware-Software (ISA) Interface for Programmable Hardware Accelerator
- Stream-Dataflow Accelerator Architecture and Example program
- Stream-Dataflow Micro-Architecture Softbrain
- Evaluation and Results



Dataflos

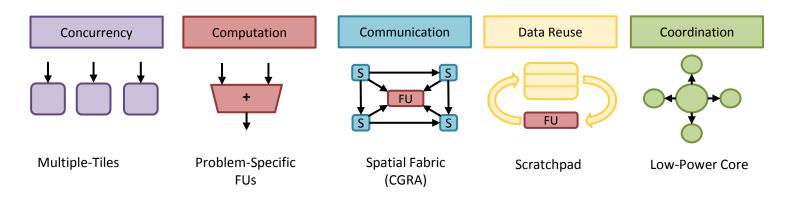






Requirements for Stream-Dataflow Accelerator Architecture

1. Should employ the common specialization principles and hardware mechanisms explored in GenAccel model (*IEEE Micro Top-Picks 2017: *Domain Specialization is Generally Unnecessary for Accelerators*)

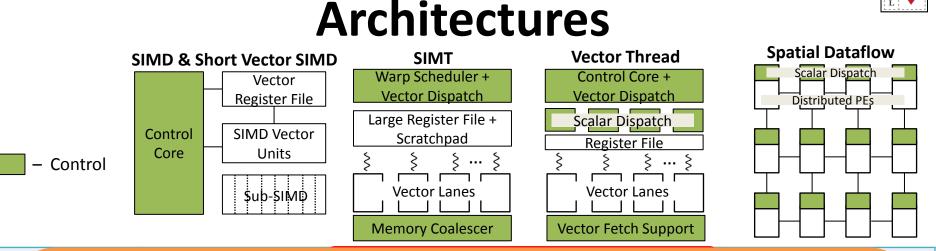


 Programmability features without the inefficiencies of existing data-parallel architectures (with less power, area and control overheads)

R L

8

Inefficiencies in Data-Parallel



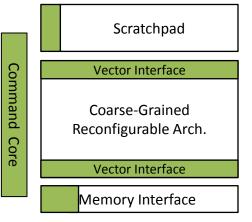
- Vector architectures Efficient parallel memory interface
- Spatial Architectures Efficient parallel computation interface
 - Application/Domain Specific Architectures Efficient datapath for pipelined concurrent execution

Irregular execution support	 Inefficient general pipeline 	 Warp divergence hardware support 	 Re-convergence for diverged vector threads 	-
11/16/2017		Dissertation Talk		50

Stream-Dataflow Accelerator Architecture Opportunities

- Reduce address generation & duplication overheads
- Distributed control to boost pipelined concurrent execution
- High utilization of execution resources w/o massive multithreading, reducing cache pressure or using multiported scratchpad
- Decouple access and execute phases of programs
- Simplest hardware fallback mechanism for irregular memory access support
- Able to be easily customizable/configurable for new application domain

Stream Dataflow

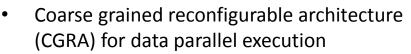


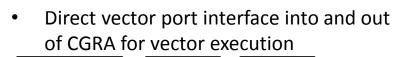
Stream-Dataflow Accelerator

Dataflow:

Acc(1)

512b --- 64b



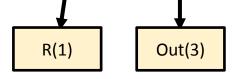


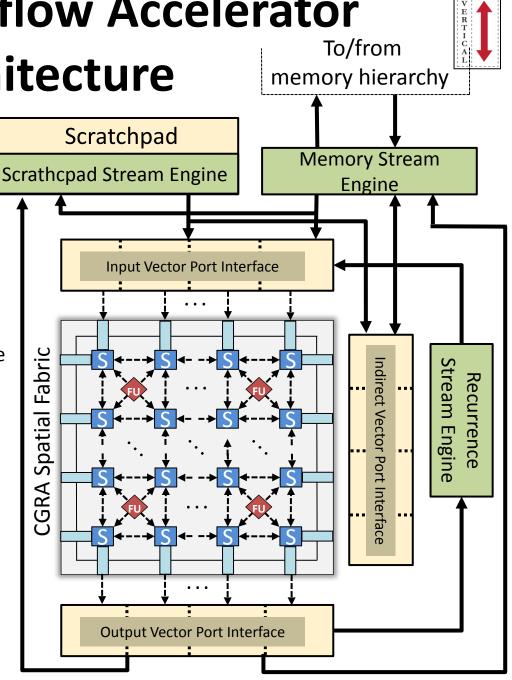
B(3)

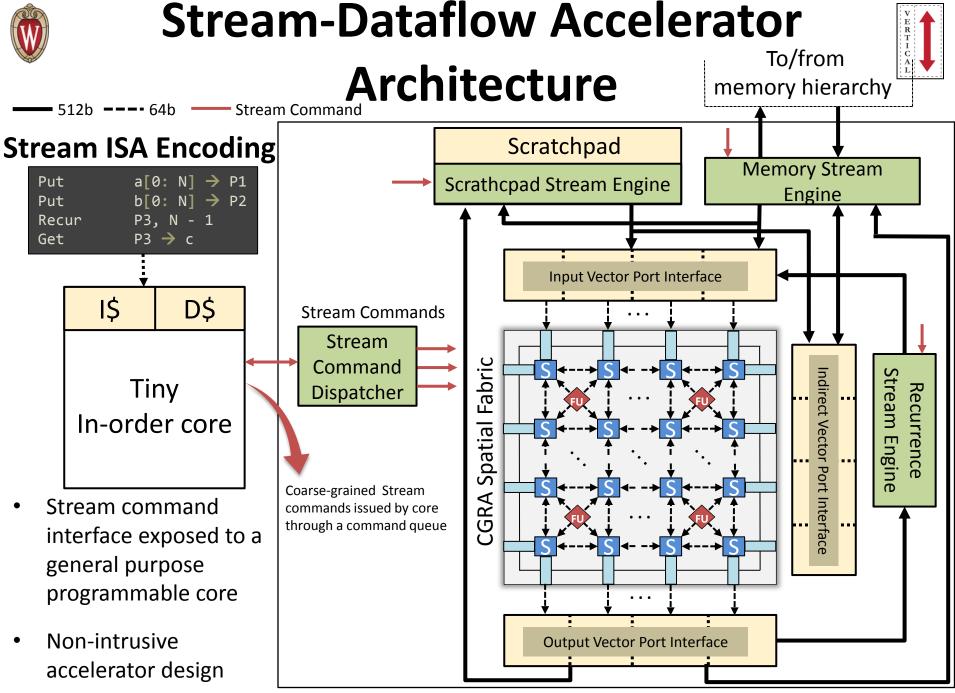
Programmable scratch page and supporting stream-e X or data y and data-reuse X

A(3)

- Memory stream-engine to racilitate data streaming in and of the accelerator
- + Recurrence st engine to support recurrent data stream
- Indirect vector port int for streaming addresses (indirect load, _____res)





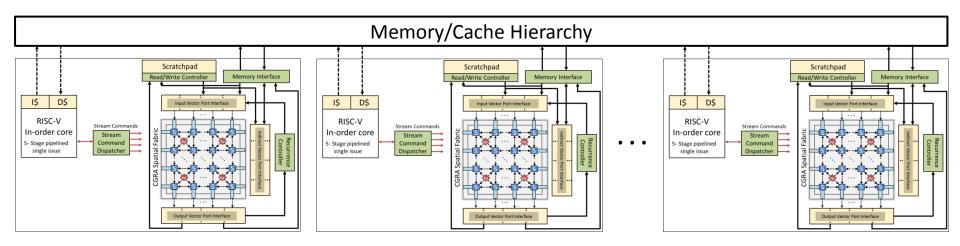


11/16/2017

Dissertation Talk

Stream-Dataflow Accelerator Architecture Integration

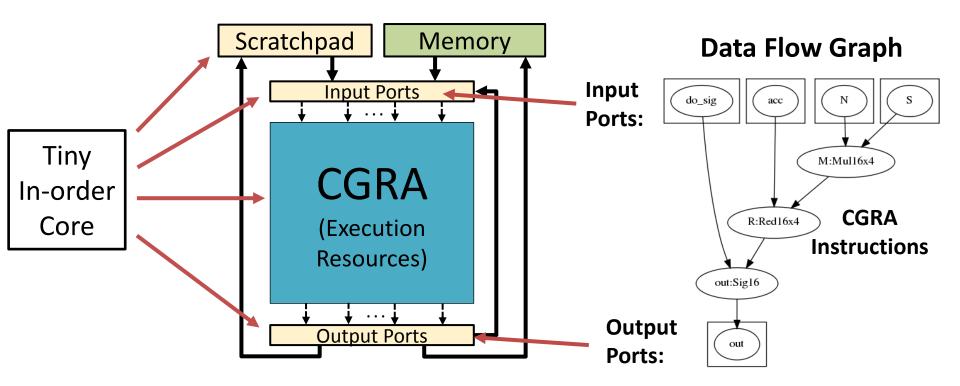
Multi-Tile Stream-Dataflow Accelerator



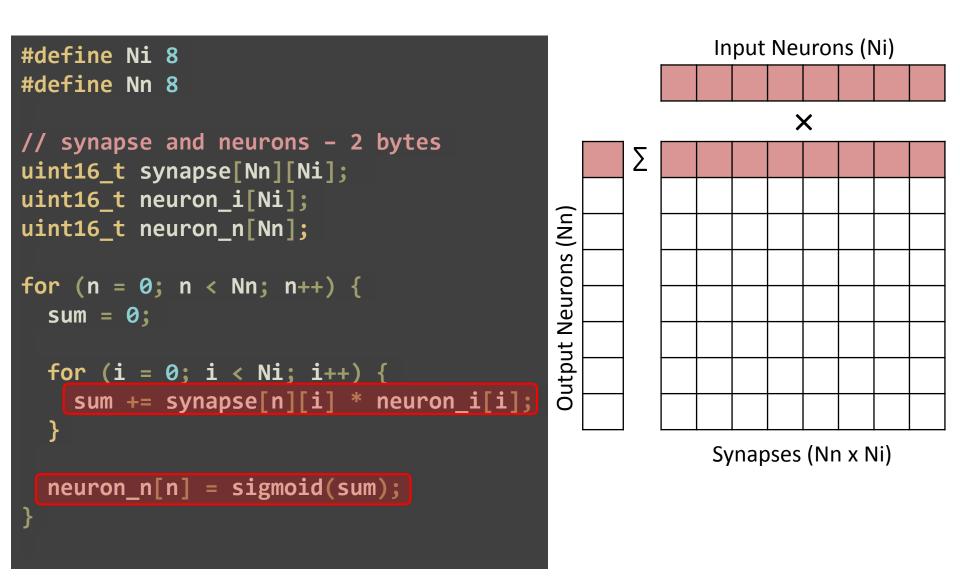
- Each tile is connected to higher-L2 cache interface
- Need a simple scheduler logic to schedule the offloaded streamdataflow kernels to each tile

Programming Stream-Dataflow Accelerator

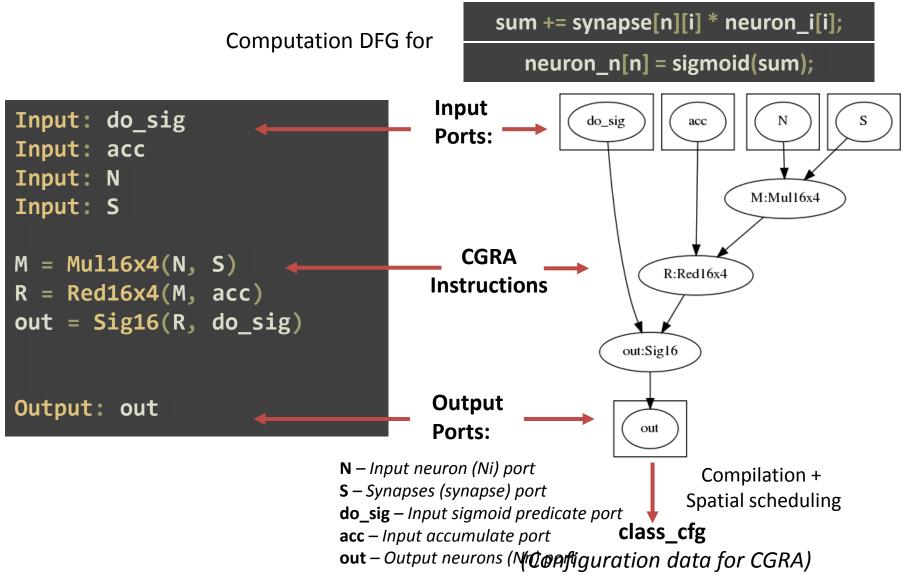
- 1. Specify Datapath for the CGRA
 - Simple Dataflow Language for DFG
- 2. Orchestrate the parallel execution of hardware components
 - Coarse-grained stream commands using the stream-interface



Classifier Layer (Original)



Dataflow Graph (DFG) for CGRA: *Classifier Kernel*



Dissertation Talk

Stream Dataflow Program: Classifier Kernel

// Configure the CGRA
SD_CONFIG(class_cfg, sizeof(class_cfg));

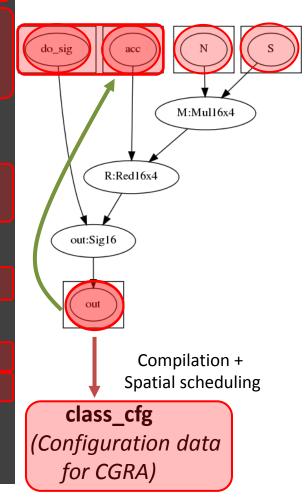
// Stream the data from memory to ports
SD_MEM_PORT(synapse, 8, 8, Ni * Nn/ 4, Port_S);
SD_MEM_PORT(neuron_i, 8, 8, Ni/4, Port_N);

for (n = 0; n < Nn/nthreads; n++) {
 // Stream the constant values to constant ports
 SD_CONST(Port_acc, 0, 1);
 SD_CONST(Port_do_sig, 0, Ni - 1);</pre>

// Recur the computed data back for accumulation
SD_PORT_PORT(Port_out, N - 1, Port_acc);

// Sigmoid computation and output neuron written
SD_CONST(Port_do_sig, 1, 1);
SD_PORT_MEM(Port_out, 2, 2, 1, &neuron_n[n]);

SD_BARRIER_ALL();

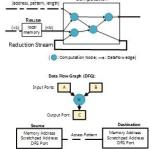


Performance Considerations

- Goal: Fully pipeline the largest dataflow graph
 - Increase performance [CGRA Instructions / Cycle]
 - Increase throughput [Graph computation instances per cycle]
- Primary Bottlenecks:
 - Computations per Size of Dataflow Graph
 Increase through Loop Unrolling/Vectorization
 - General Core (for Issuing Streams)
 Increase "length" of streams
 - Memory/Cache Bandwidth
 Use Scratchpad for data-reuse
 - Recurrence Serialization Overhead
 Increase Parallel Computations (tiling)

Outline

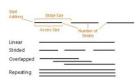
- Stream-Dataflow Execution Model
- Hardware-Software (ISA) Interface for Programmable Hardware Accelerator
- Stream-Dataflow Accelerator Architecture and Example program
- Stream-Dataflow Micro-Architecture Softbrain
- Evaluation and Results

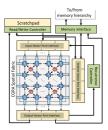


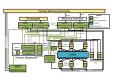
Dataflos

Computation

Memory Stream



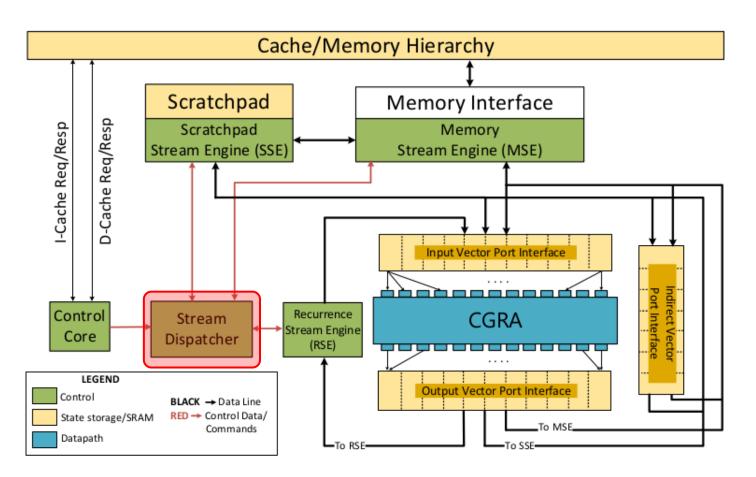




Micro-Architecture Design Principles

- 1. Low-overhead control structures
- 2. Efficient execution of concurrent stream commands with simple resource dependency tracking
 - 3. Not introduce power hungry or large CAM-like structures
 - 4. Parameterizable design

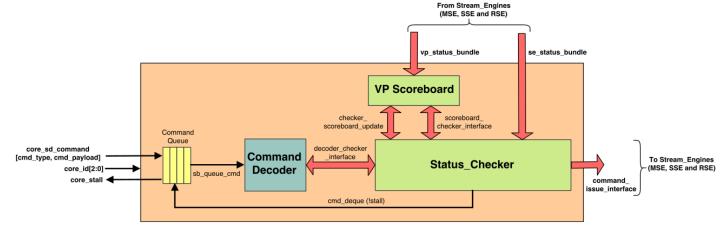
Micro-Architecture of Stream-Dataflow Accelerator – *Softbrain*



Dissertation Talk

E R T

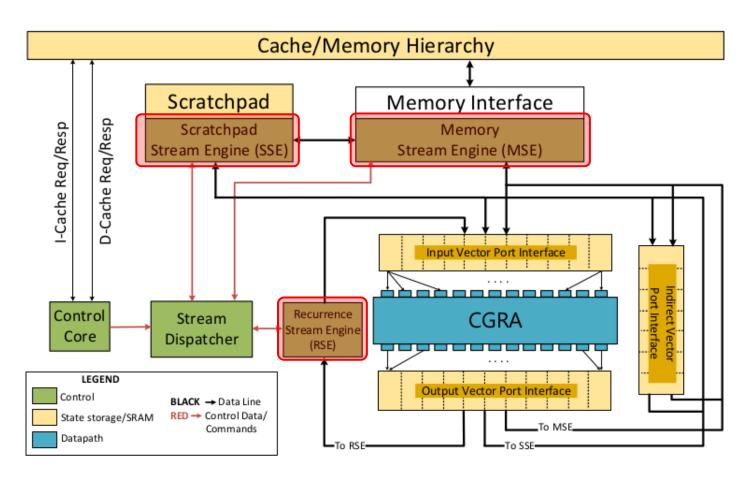
Stream-Dispatcher of Softbrain



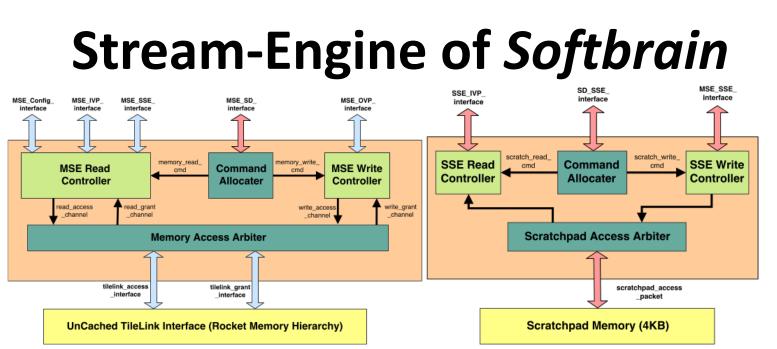
- Issues the stream commands to stream-engines
- Resource dependency tracking
 - Simple vector-port to stream-engine scoreboard mechanism
- Barriers Enforces the explicit stream-barriers for data-consistency in scratchpad as well as memory state
- Interfaces to the low-power core using a simple queue-based custom accelerator logic

Dissertation Talk

Micro-Architecture of Stream-Dataflow Accelerator – *Softbrain*



E R T I C A L

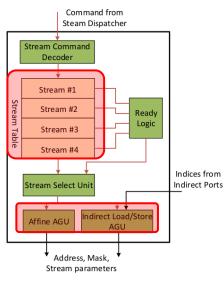


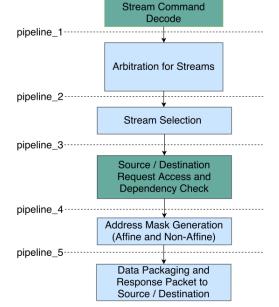
Memory Stream-Engine (MSE)

Scratchpad Stream-Engine (SSE)

- Arbitration of multiple stream command requests
- Responsible for address generation for various data-stream access patterns
- Manages concurrent accesses to vector ports, scratchpad and the cache/memory hierarchy
- Dynamic switching of streams to account for L2 cache misses and maintain the high-bandwidth memory accesses

Softbrain Stream-Engine Controller Request Pipeline





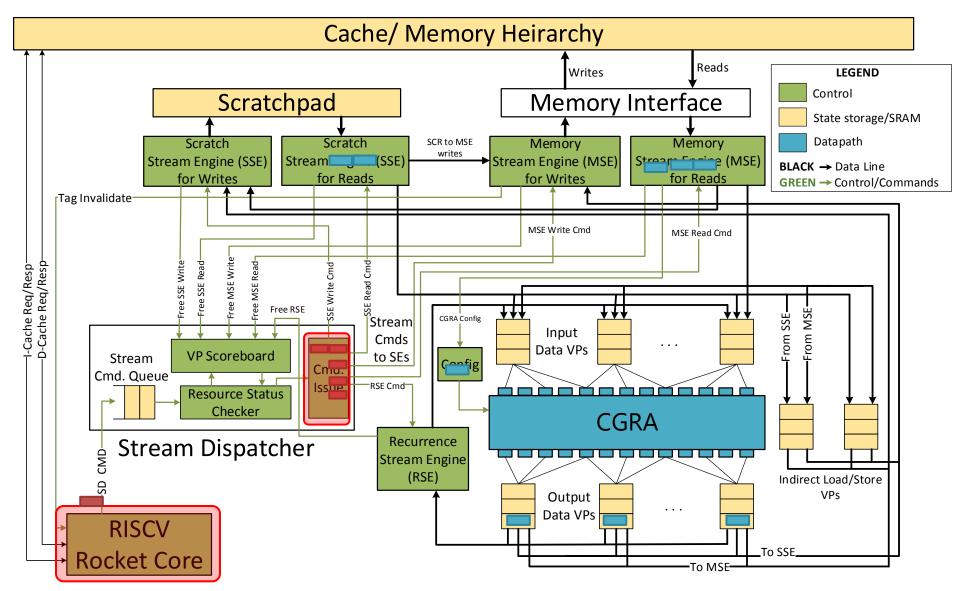
Stream-Engine Controller

Stream Request Pipeline

- Responsible for address generation for both *direct* and *indirect* data-streams
- Priority based selection among multiple queued data-steams
- Direct streams Affine Address Generation Unit (AGU) generates memory addresses
- Indirect Streams Non-affine AGU gets addresses, offsets from indirect vector ports

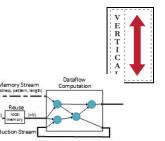
Dissertation Talk

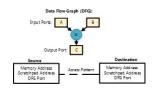
Micro-Architecture Flow of Softbrain

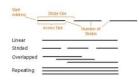


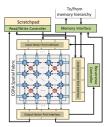
Outline

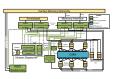
- Overview
- Stream-Dataflow Execution Model
- Hardware-Software (ISA) Interface for Programmable Hardware Accelerator
- Stream-Dataflow Accelerator Architecture and Example program
- Stream-Dataflow Micro-Architecture Softbrain
- Evaluation and Results



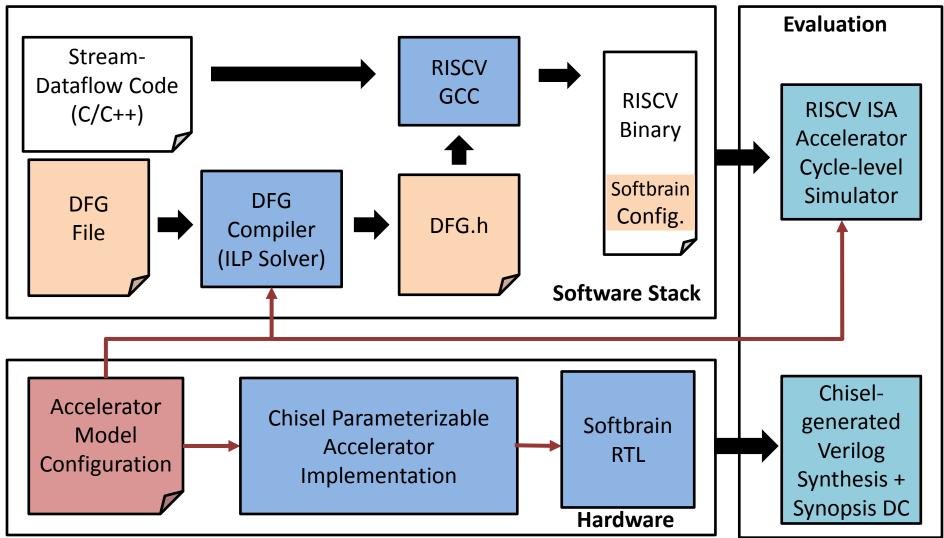








Stream-Dataflow Implementation: Softbrain



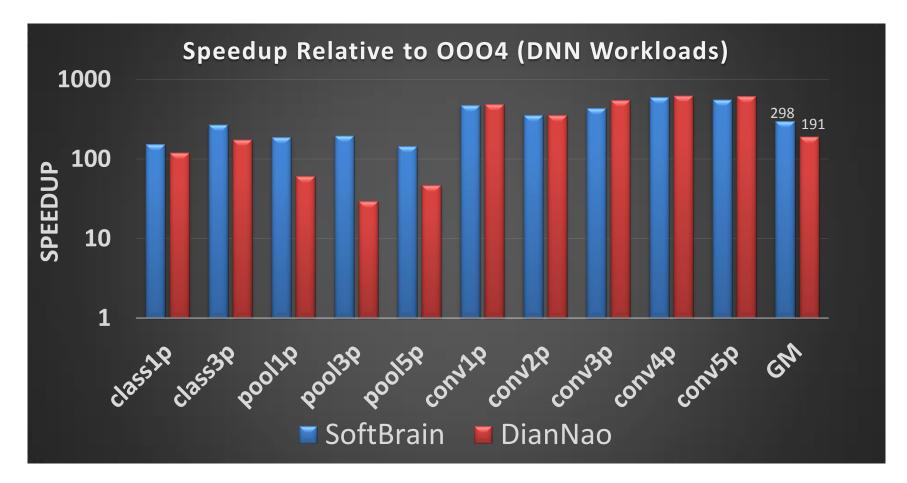
11/16/2017

Evaluation Methodology

- Workloads
 - Deep Neural Networks (DNN) For domain provisioned comparison
 - Machsuite Accelerator Workloads For comparison with application specific accelerators
- Comparison
 - Domain Provisioned Softbrain vs. DianNao DSA
 - Broadly provisioned Softbrain vs. ASIC design points Aladdin* generated performance, power and area
- Area and Power of Softbrain
 - Synthesized area, power estimates
 - CACTI for cache and SRAM estimates

*Sophia, Shao et al. – Aladdin: a Pre-RTL, power-performance accelerator simulator enabling large design space exploration of customized architectures

Domain-Specific Comparison (Softbrain vs DianNao DSA)



Area-Power Estimates of Domain Provisioned Softbrain

Components Area (mm2) @ 28nm Power (mW)

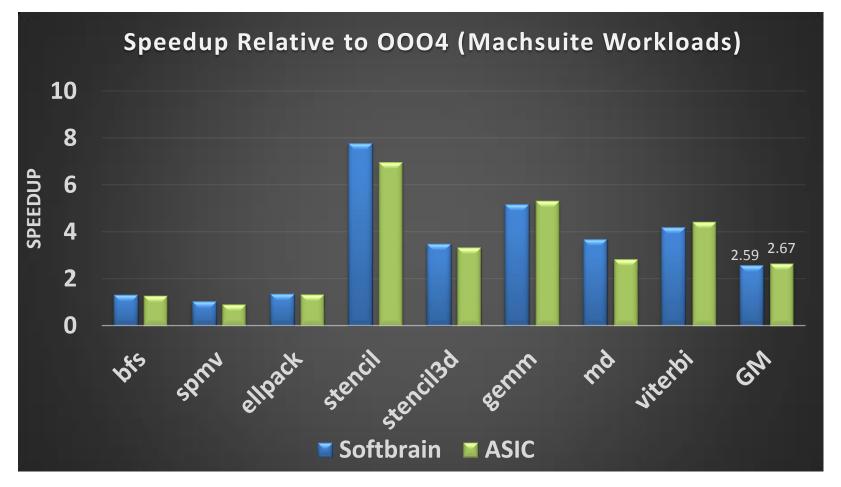
Softbrain vs Diannao (DNN DSA)

- Perf. Able to match the performance
- Area 1.74x Overhead
- Power 2.28x Overhead

1 Softbrain Unit	0.47	119.3
8 Softbrain Units	3.76	954.4
DianNao DSA	2.16	418.3
Softbrain / DianNao Overhead	1.74	2.28

11/16/2017

Broadly Provisioned Softbrain vs ASIC Performance Comparison



Aladdin* generated ASIC design points – Resources constrained to be in ~15% of Softbrain Perf. to do iso-performance analysis

*Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space Exploration of Customized Architectures. Sophia Shao , .et. al

11/16/2017

Dissertation Talk

Broadly Provisioned Softbrain vs ASIC Area & Power Comparison

ASIC Area Relative

Softbrain vs ASIC designs

Energy Efficiency

- Perf. Able to match the performance
- Power **1.6x** overhead
- Energy **1.5x** overhead
- Area 8x overhead*

Power Efficiency Relative to

*All 8 ASICs combined \rightarrow 2.15x more area than Softbrain

Surprain	ASIC	SUILDIAIII	ASIC	GM

Conclusion – Stream-Dataflow Acceleration

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface Exposes parallelism available in these phases
- Stream-Dataflow Accelerator Architecture
 - CGRA and vector ports for pipelined vector-dataflow computation
 - Highly parallel stream-engines for low-power stream communication
- Stream-Dataflow Prototype & Implementation Softbrain
 - Matches performance of domain provisioned accelerator (DianNao DSA) with ~2x overheads in area and power
 - Compared to application specific designs (ASICs), Softbrain has ~2x overheads in power and ~8x in area

Dissertation Research Goal

Programmable Hardware Acceleration

- 1. Explore the commonality in the way the DSAs specialize *Specialization Principles*
- 2. **General Mechanisms** for the design of a generic programmable hardware accelerator matching the efficiency of DSAs

3. A programmable/re-configurable accelerator architecture with an efficient accelerator hardware-software (ISA) interface

4. Easy adaptation of new acceleratable algorithms in a domain-agnostic way

Conclusion – *Programmable Hardware Acceleration*

d.

- New acceleration paradigm in specialization era
 - Programmable Hardware Acceleration breaking the limits of acceleration

A good enabler for exploring general purpose programmable hardware acceleration

- Reduce the orders of magnitude overheads of programmability and generality compared to ASICs
- Drives future accelerator research and innovation 11/16/2017 Dissertation Talk

Future Work

- Multiple DFG executions
 - Configuration cache for CGRA to switch between DFGs
- Further distribute the control into vector ports
 - Dynamic deadlock detection for buffer overflow
 - Concurrent execution of different set of streams (of different DFGs)
- Low-power dynamic credit-based CGRA schedule
 - Allow vector ports to run out-of-order reducing the overall latency
- 3D support for streams in ISA
- Partitioned scratchpad to support data dependent address generation
- Support for fine-grained configuration through FPGA slices (along with SRAM mats) next to CGRA for memory-dependent algorithm acceleration

Related Work

- Programmable specialization architectures:
 - Smart memories, Charm, Camel, Mosphosys, XLOOPS, Maven-VT
- Principles of Specialization
 - □ GPPs inefficient and need specialization Hameed. et. Al
 - Trace processing Beret
 - Transparent Specialization CCA, CRIB etc,
- Heterogeneous Cores GPP + Specialized engines
 Composite cores, DySER, Cambricon
- Streaming Engines:
 - □ RSVP arch, Imagine, Triggered instructions, MAD, CoRAM++

Other Works

- Open Source GPGPU MIAOW
 - Lead developer and contributor to open source hardware GPGPU MIAOW
 - AMD Southern Island based RTL implementation of GPGPU able to execute unmodified AMDAPP OpenCL kernels
 - Published in [ACM TACO 2015, HOTCHIPS' 2015, COOLCHIPS' 2015, HiPEAC' 2016]
- Von-Neumann/Dataflow Hybrid Architecture
 - A hybrid architecture aimed to exploit ILP in irregular applications
 - Lead developer of the micro-architecture of the dataflow offload engine Specialized Engine for Explicit Dataflow (SEED)
 - Published in [ISCA' 2015, IEEE MICRO Top Picks 2016]
- Open-source Hardware: Opportunities and Challenges
 - A position article on the advantages of open-source hardware for hardware innovation
 - Huge believer in open-source hardware and contribution
 - To be published in *IEEE Computer'* 17

Back Up

Programmable Hardware Acceleration

Idea 1: Specialization principles can be exploited in a general way

Idea 2: Composition of known *Micro-Architectural mechanisms* embodying the specialization principles

P	ro	gra	an	hr	al	ole	H	ar	dv	vare
		: :	: :							cel)
		LC		aı		-				LEIJ

GenAccel as a programmable hardware design template to map **one** or **many** application domains

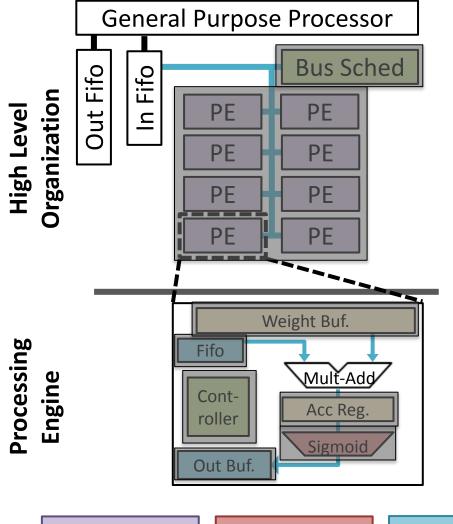
Deep Neural

Domain provisioned GenAccel

Balanced GenAccel

Principles in DSAs

NPU – Neural Proc. Unit



Computation

- Match hardware concurrency to that of algorithm
- Problem-specific **computation** units
- Explicit communication as opposed to implicit communication
- Customized structures for data reuse
- Hardware **coordination** using simple low-power control logic

11/16/2017

Concurrency

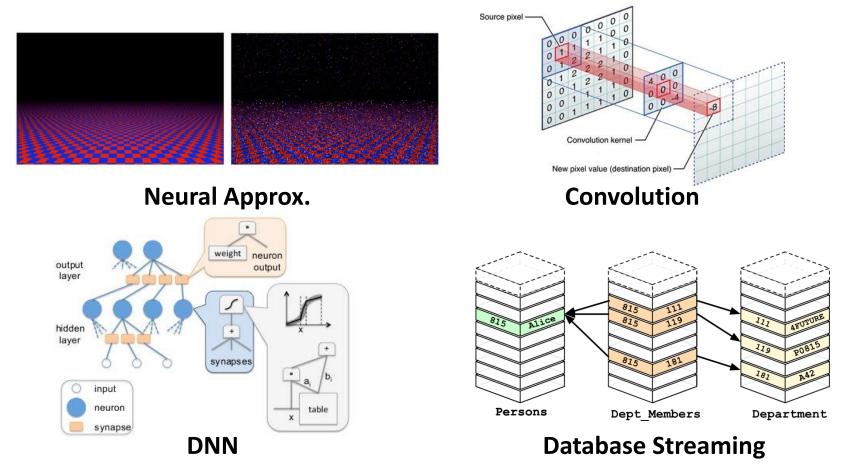
Dissertation Talk

Communication

Data Reuse

Coordination

Accelerator Workloads



- 1. Ample Parallelism
- 3. Large Datapath

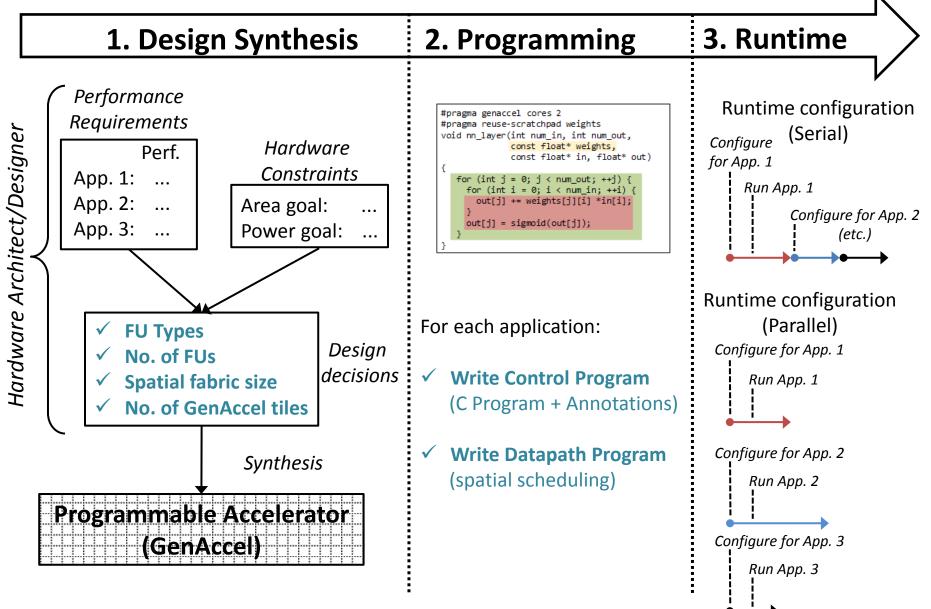
- 2. Regular Memory
- 4. Computation Heavy

Dissertation Talk

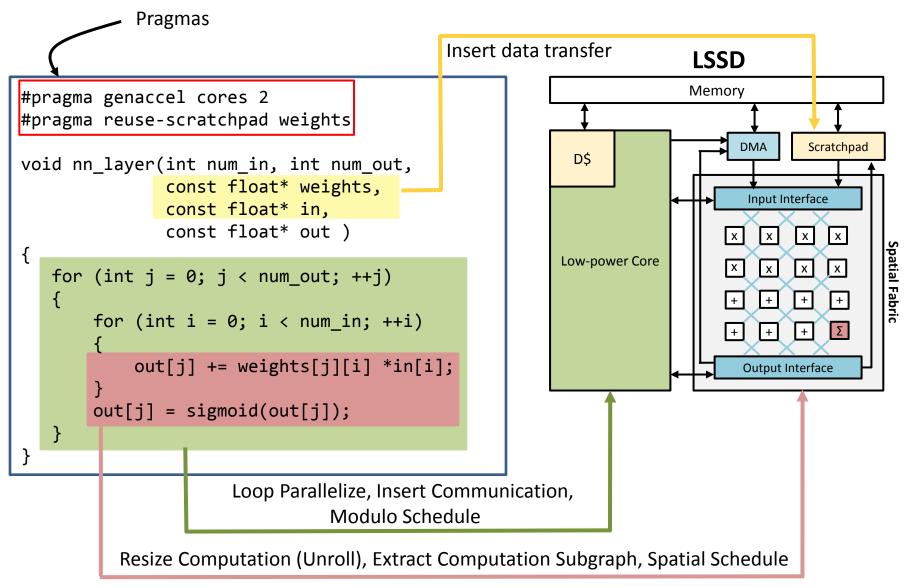
GenAccel Modeling Strategy

- Phase 1. Model Single-Core with PIN + Gem5 based trace simulation
 - The algorithm to specialize in the form of c-code/binary
 - Potential Core Types, CGRA sizes, any specialized instructions
 - Degree of memory customization (which memory accesses to be specialized, either with DMA or scratchpad)
 - Output: single-core perf./energy for "Pareto-optimal" designs
- Phase 2. Model coarse-grained parallelism
 - Use profiling information to determine parallel portion of the algorithm (or tell user to indicate or estimate)
 - Use simple Amdahl's law to get performance estimate
 - Use execution time, single-core energy estimate, and static power estimate to get overall energy estimate

GenAccel in Practice



Programming GenAccel



GenAccel Design Point Selection

Design	Concurrency	Computation	Communication	Data Reuse	No. of GenAccel Units
GA _N	24-tile CGRA (8 Mul, 8 Add, 1 Sigmoid)	2k x 32b sigmoid lookup table	32b CGRA; 256b SRAM interface	2k x 32b weight buffer	1
GA _c	64-tile CGRA (32 Mul/Shift, 32 Add/logic)	Standard 16b FUs	16b CGRA; 512b SRAM interface	512 x 16b SRAM for inputs	1
GA _D	64-tile CGRA (32 Mul, 32 Add, 2 Sigmoid)	Piecewise linear sigmoid unit	32b CGRA; 512b SRAM interface	2k x 16b SRAMs for inputs	8
GA _Q	32-tile CGRA (16 ALU, 4 Agg, 4 Join)	Join + Filter units	64b CGRA; 256b SRAM interface	SRAMs for buffering	4
GA _B	32-tile CGRA (Combination of above)	Combination of above FUs	64b CGRA; 512b SRAM interface	4KB SRAM	8

Mul: Multiplier, Add: Adder

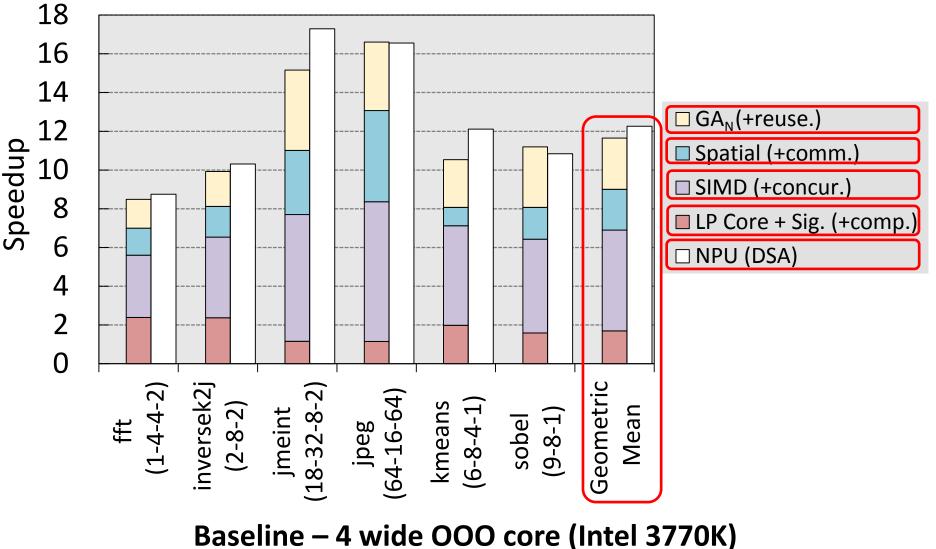
Dissertation Talk

Design-Time vs. Runtime Decisions

	Synthesis – Time	Run – Time
Concurrency	No. of GenAccel Units	Power-gating unused GenAccel Units
Computation	Spatial fabric FU mix	Scheduling of spatial fabric and core
Communication	Enabling spatial datapath elements, & SRAM interface widths	Configuration of spatial datapath, switches and ports, memory access pattern
Data Reuse	Scratchpad (SRAM) size	Scratchpad used as DMA/reuse buffer

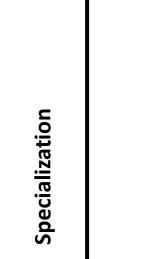
Performance Analysis (1)

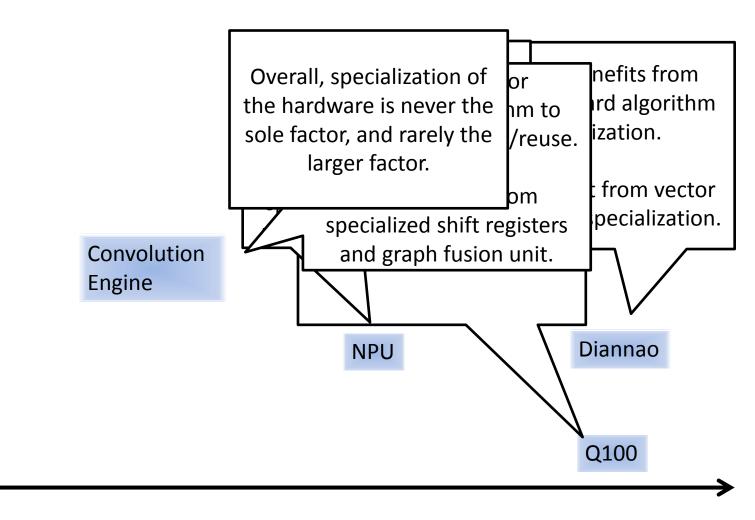
 GA_N vs. NPU



Dissertation Talk

Source of Accelertion Benefits



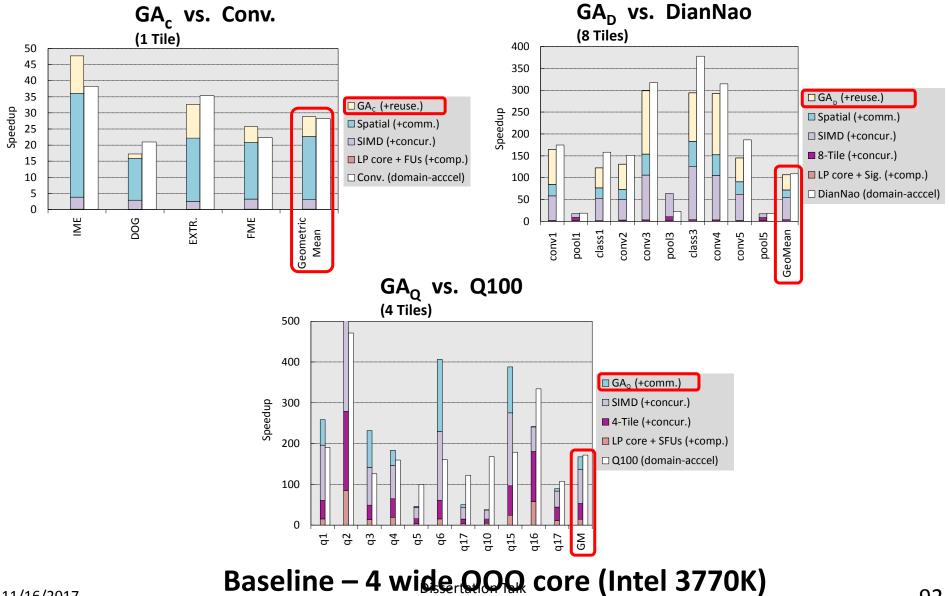


Algorithm/Concurrency

Dissertation Talk

91

Performance Analysis (2)



GenAccel Area & Power Numbers

		Area (mm²)	Power (mW)
Neural Approx.	GA _N	0.37	149
	NPU	0.30	74
a . 1	GA _c	0.15	108
Stencil	Conv. Engine	0.08	30
Deep Neural.	GA _D	2.11	867
	DianNao	0.56	213
Database	GA _Q	1.78	519
Streaming	Q100	3.69	870
	GA _{Balanaced}	2.74	352

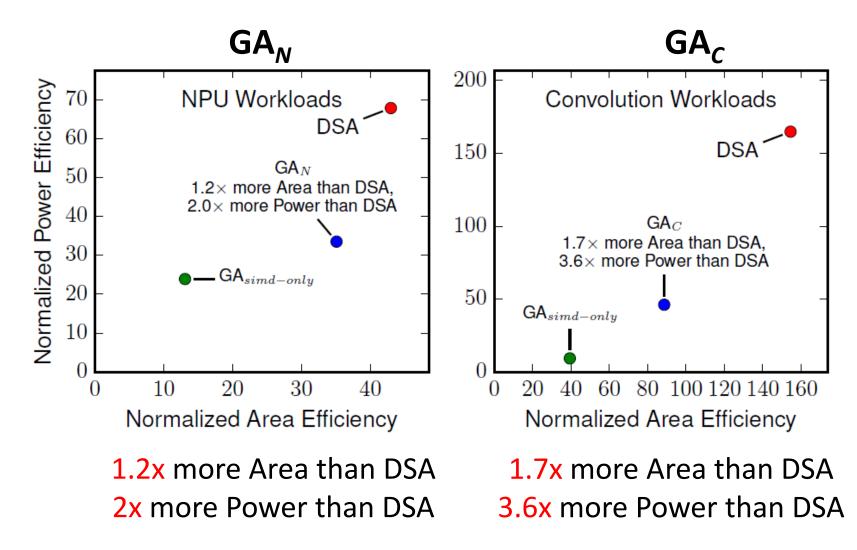
*Intel Ivybridge 3770K CPU 1 core Area – **12.9mm²** | Power – **4.95W**

^{*}Intel Ivybridge 3770K iGPU 1 execution lane Area – 5.75mm²

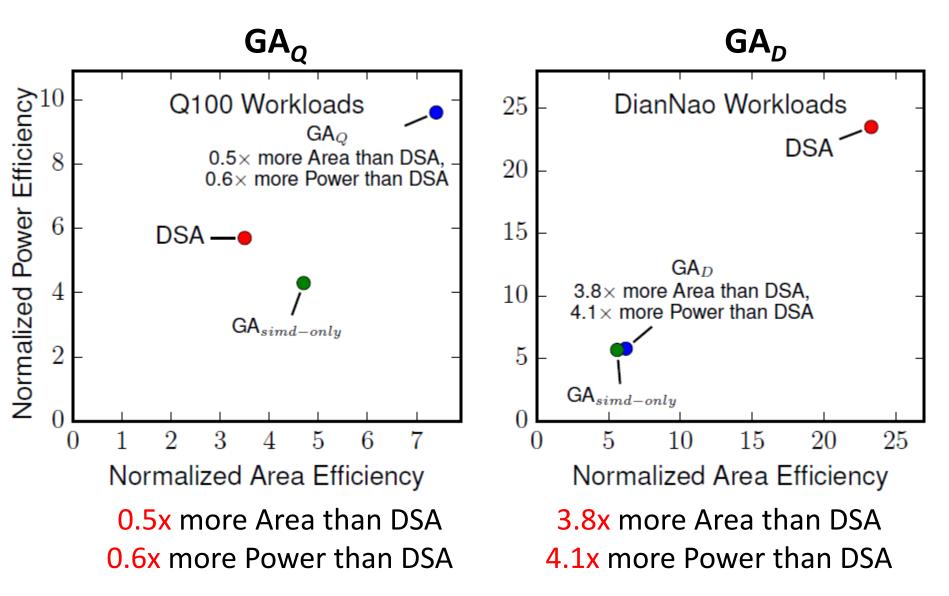
⁺AMD Kaveri APU Tahiti based GPU 1CU Area – 5.02mm²

^{*}Source: http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-iZ-3770k-review/3

Power & Area Analysis (1)

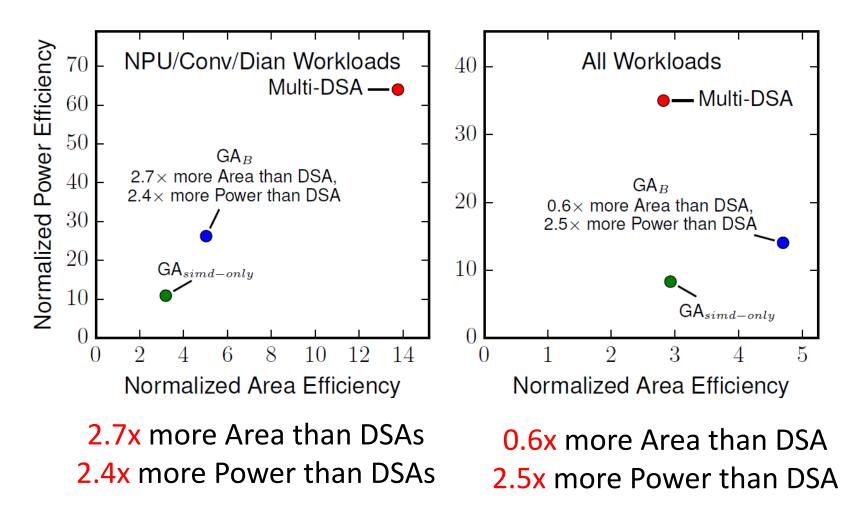


Power & Area Analysis (2)



Power & Area Analysis (3)

$LSSD_B \rightarrow Balanced LSSD design$



Unsuitable Workloads for GenAccel /Stream-Dataflow

- Memory-dominated workloads
- Specifically small-memory footprint, but "irregular"
- Heavily serialized data dependent address generation
- Memory compression for example
 - A Scalable High-Bandwidth Architecture for Lossless Compression on FPGAs, Fower et. al
- Other examples:
 - IBM PowerEN Regular Expression
 - DFA based codes

GenAccel vs. FPGA

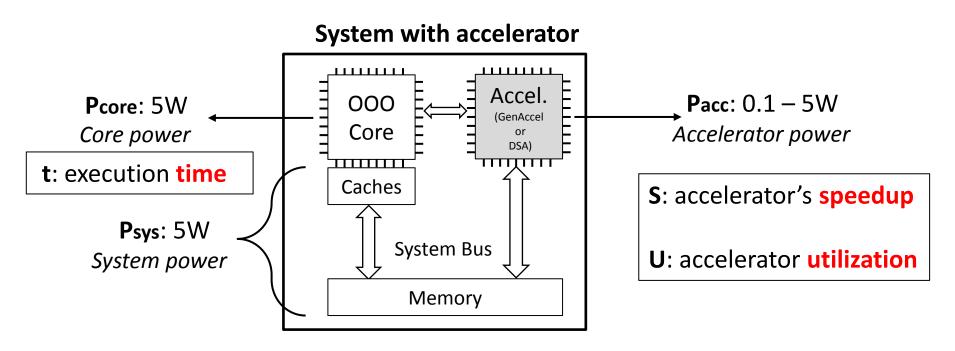
Domain Kernel	Number of States
NPU	17
Convolution Engine	14
Diannao	86

- FPGAs are much lower frequency (global-routing and too fine-grained)
- BlockRAMs too small to gang-up
- Logical Multi-ported Register File needed to pass values between DSP slices to match high operand-level concurrency
- Altera's Stratix 10 seems headed exactly this direction

GenAccel's power overhead of 2x - 4x matter in a system with accelerator?

In what scenarios you want to build DSA over GenAccel?

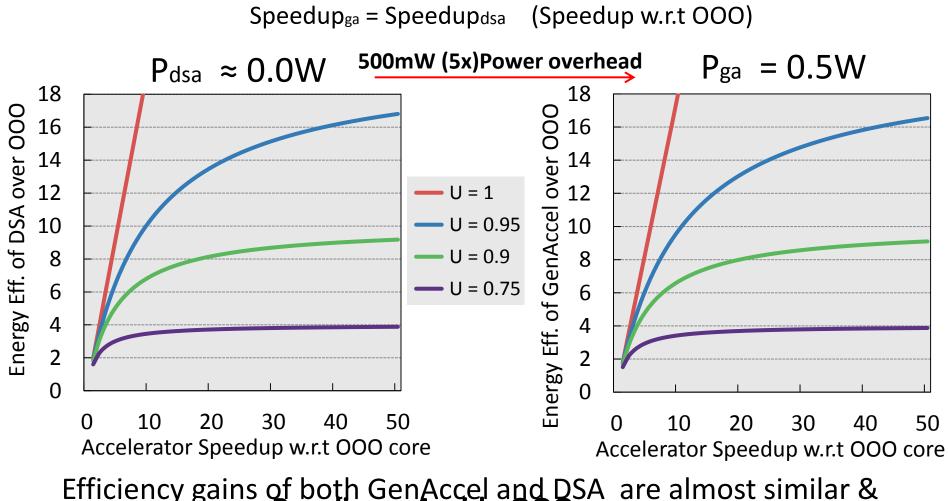
Energy Efficiency Tradeoffs



Overall energy of the computation executed on system

$$E = Pacc * (U/S) * t + Psys * (1 - U + U/S) * t + Pcore * (1 - U) * t$$
Accel. energySystem energyCore energy

Energy Efficiency Gains of GenAccel & DSA over OOO core



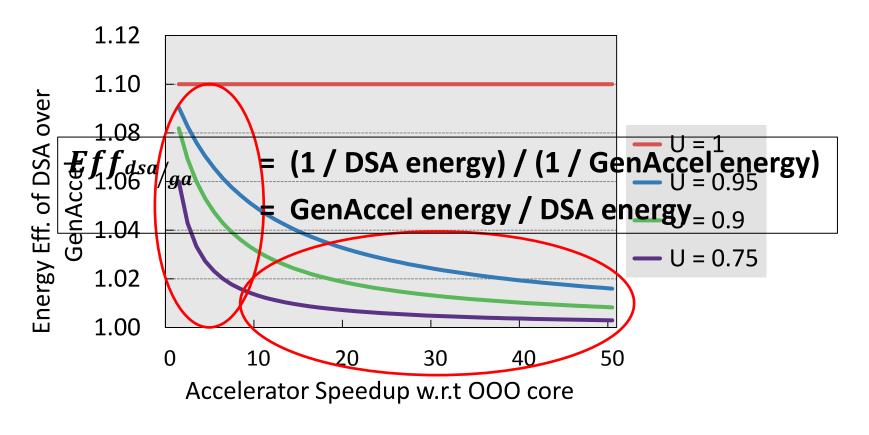
Efficiency gains of both GenAccel and DSA are almost similar & Baseline – 4, wide OOO core At higher speedups both get "capped" due to large system power 11/16/2017

GenAccel's power overhead of 2x - 4x matter in a system with accelerator?

When P_{sys} >> P_{ga}, 2x - 4x power overheads of GenAccel become inconsequential

Energy Efficiency Gains of DSA over GenAccel

Speedup_{ga} = Speedup_{dsa} (Speedup w.r.t OOO)



AAtonigerespendents as **Realing Contracting 15% And 18% engand** feri Ancel

Dissertation Talk

In what scenarios you want to build DSA over GenAccel?

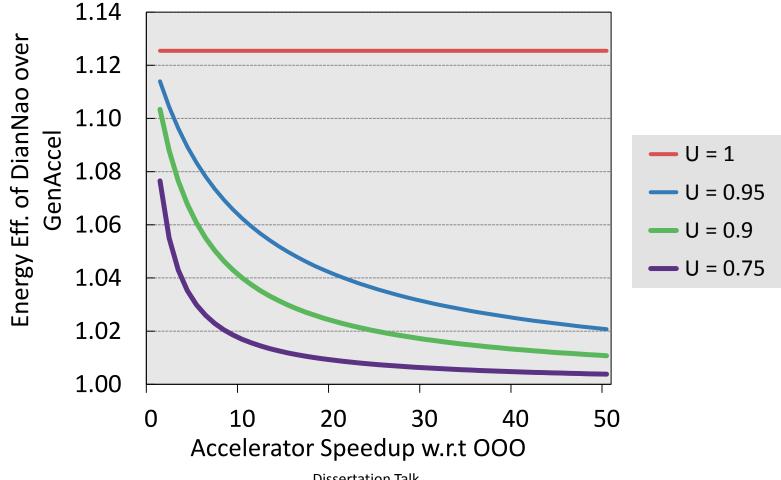
Only when application speedups are small & small energy efficiency gains too important

When does accelerator power or DSA matter?

- GenAccel cannot match DSA for performance
- Accelerator is a "vertically-integrated" accelerator
 - Logic attached to memory or IO, that P_{sys} is affected
 - ShiDianNao for example (DNN attached to image sensor)
- Speedups are "small" and 10% energy difference is "valuable"

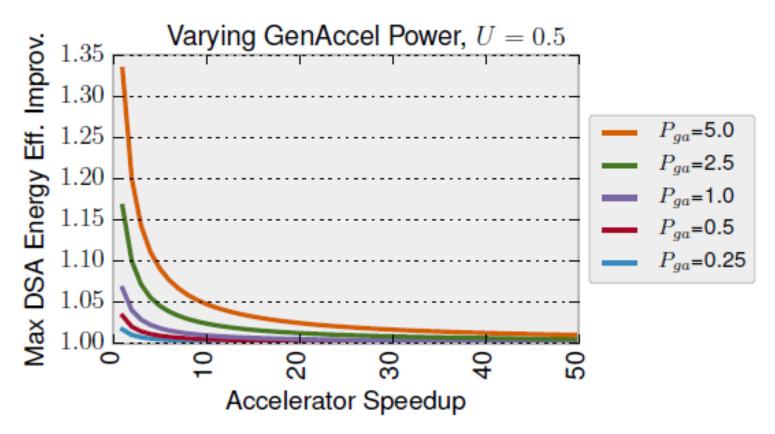
Energy Efficiency Gains of DianNao over GenAccel

Speedup_{GA} = Speedup_{DianNao} (Speedup w.r.t OOO)



Dissertation Talk

Does Accelerator power matter?



- At Speedups > 10x, DSA eff. is around 5%, when accelerator power == core power
- At smaller speedups, makes a bigger difference, up to 35%

Dissertation Talk

Enqueued

Dispatched

R

Resource idle

Detailed Example of Stream-Dataflow Execution Model

Ο

Barrier

Dependency

Stream-Dataflow Accelerator Potential

1. Dataflow based pipelined concurrent execution

2. High Computation Activity Ratio: Number of Computations/Stream Commands

C6) Mem \rightarrow Port B

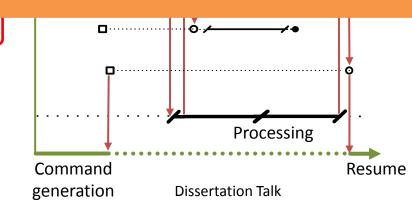
C7) All Barrier

CGRA fabric state

Low-power core state

11/16/2017

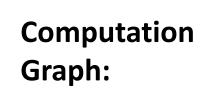
Program Order

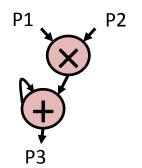


Example Code: Dot Product (Instruction Comparisons)

Original Program

for(int i = 0 to N) {
 dot_prod += a[i] * b[i]
}





Scalar	Vector	Stream-Dataflow
<pre>for(i = 0 to N) { Send a[i] -> P1 Send b[i] -> P2 } Get P3 -> result</pre>	<pre>for(i = 0 to N, i+=vec_len) { Send a[i:i+vec_len] -> P1 Send b[i:i+vec_len] -> P2 } Get P3 -> result</pre>	Send a[i:i+N] -> P1 Send b[i:i+N] -> P2 Get P3 -> result
~2N Instructions	~2N/vec_len Instructions	~3 Instructions

Stream-Dataflow ISA vs. TPU ISA

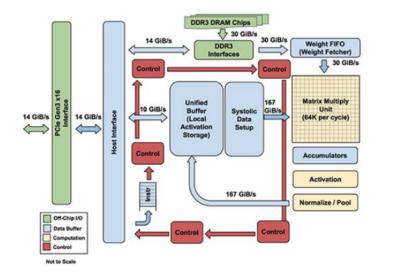
Google TPU ISA

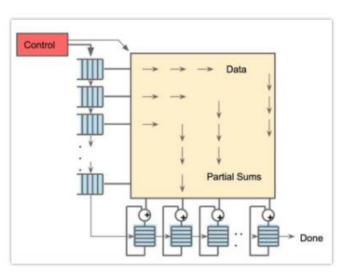
- Design goal of TPU ISA
 - To be a programmable ISA with less instruction overheads
- Restricted to neural networks domain only → More of programmable ISA for NN domain
- CISC principle to run complex tasks \rightarrow To run fast multiple-add accumulations
- Uses matrix as a primitive instead of vector or scalar
 - Huge performance benefit for neural network applications
 - Reduced latency for inference [< 7ms]
 - ISA restricted heavily for certain type of computations

Read_Host_Memory, Read_Weights, MatrxMultiply/Convolve, Activate, Write_Host_Memory]

- Heavily relies on host processor to send the instructions. Host software will be a bottleneck
- Does not decouple the memory and computation phases
 Dissertation Talk

TPU Compute Capability





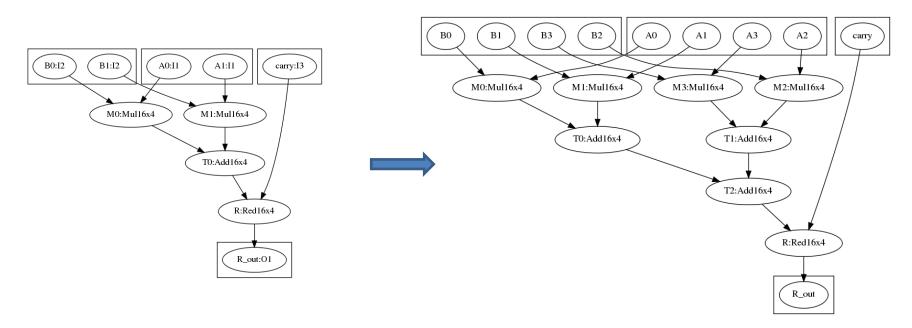
- 700 Mhz target frequency with 40W TDP. External accelerator and PCIe based interconnect to host – 12.5GB/s effective bandwidth
- An inference chip for MLPs, CNN and LSTM → Matrix-Matrix multiplication support
 65K operations per cycle using a 256 x 256 systolic array 2D pipeline
- Quantization helps performance to operate on 8-bit integers only

Potential Performance Bottlenecks

- 1. Computations Per CGRA Instance
- 2. General Core Instructions
- 3. Cache \rightarrow GRA Bandwidth
- 4. Initialization/Draining Latency (Memory & CGRA)
- 5. Length of Recurrence through CGRA

1. Computations Per CGRA Instance

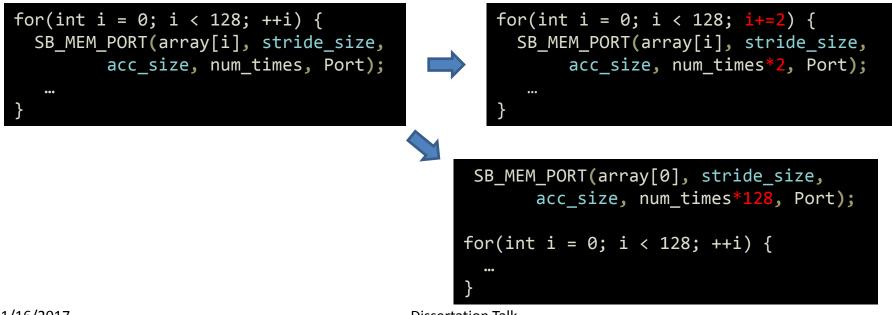
Principle: Few instructions control many computation instances



HINT: This usually involves unrolling a loop – but not necessarily the inner loop.

2. General Core Instructions

- **Principle:** Few core instructions control many computation instances
 - Use as long streams as possible
 - Computation Instances > 2 * Number of Commands



3. Cache → CGRA Bandwidth (1)

- Principle 1: Only 64-bytes per cycle can come from memory
 - Can feed One 8-wide port, Two 4-wide ports, Four 2-wide ports
 - Use scratch streams to supplement memory streams



3. Cache → CGRA Bandwidth (2)

• **Principle 2:** Not-accessed elements within a 64-byte cache line **COUNT** towards bandwidth

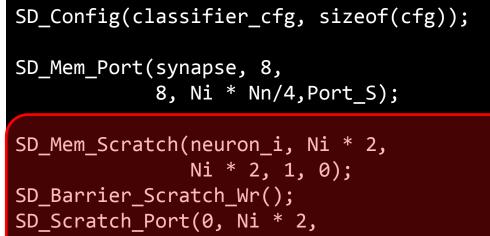
Stream: access_size = 16 bytes stride_size = 24 bytes

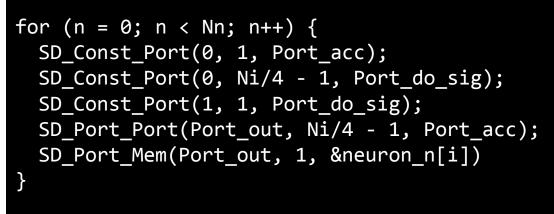
Address Pattern:	16	8	16	8	8	
Cache Line Size:						
		64	Ļ			

HINT 1: Don't use access patterns with "gaps" smaller than the cache line size.

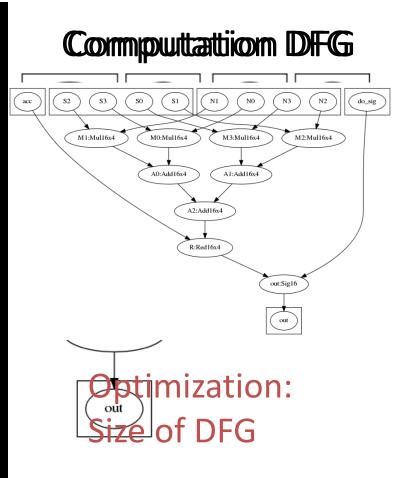
HINT 2: Try to align accesses with cache line boundaries

Optimizing Classifier Layer





Ni * 2, 1, Port N);



SD_Barrier_All;

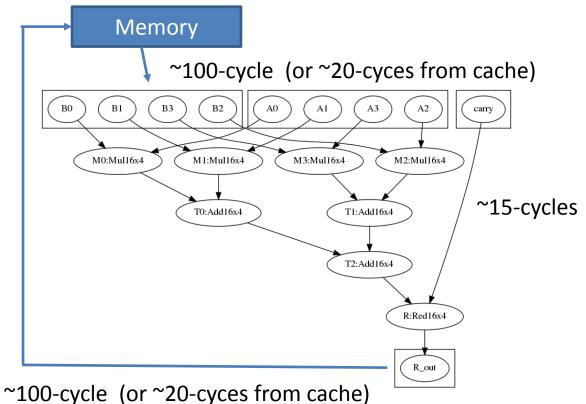
Optimization: Scratch for Memory B/W

11/16/2017

Dissertation Talk

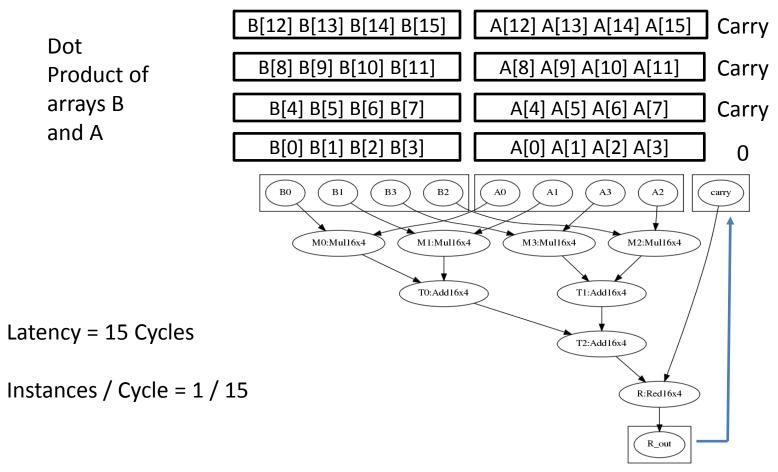
6. Initialization/Draining Latency (Memory & CGRA)

Principle: Hide memory latency by having "longer pipelined phases"

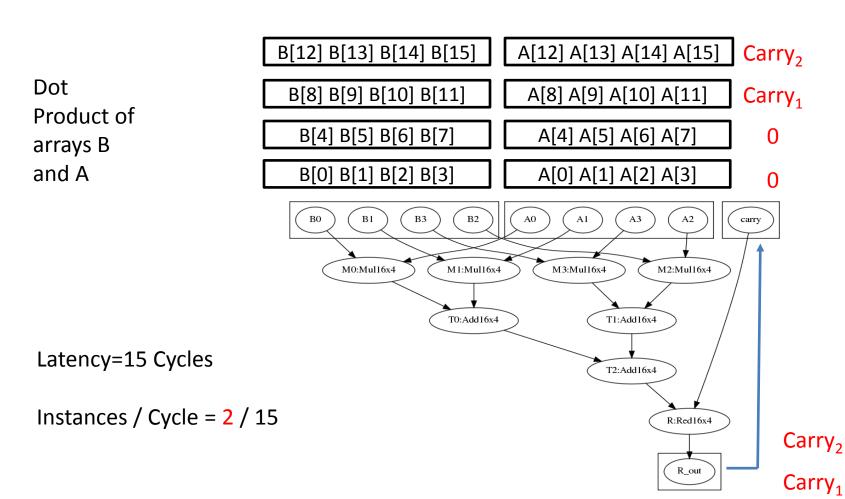


7. Length of Recurrence through CGRA

• **Principle:** Number of independent instances should be > the length of the longest recurrence.

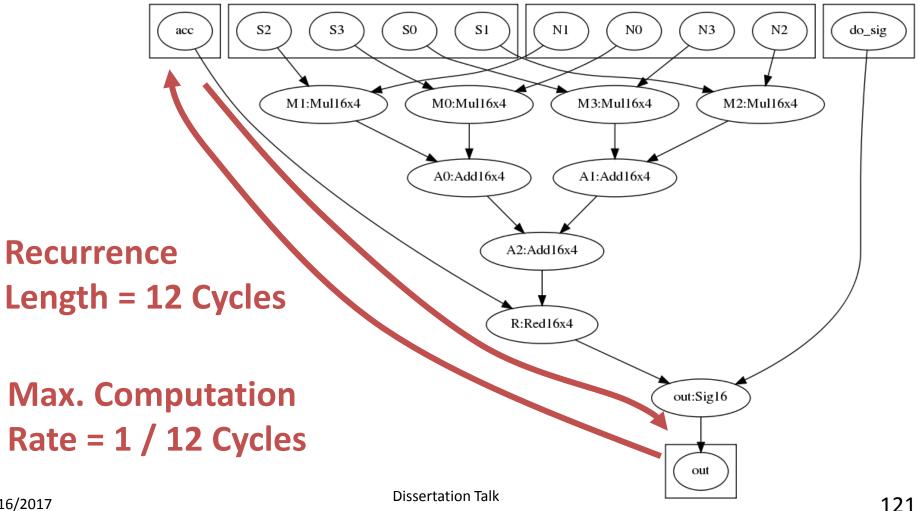


7. Length of Recurrence through CGRA (2)

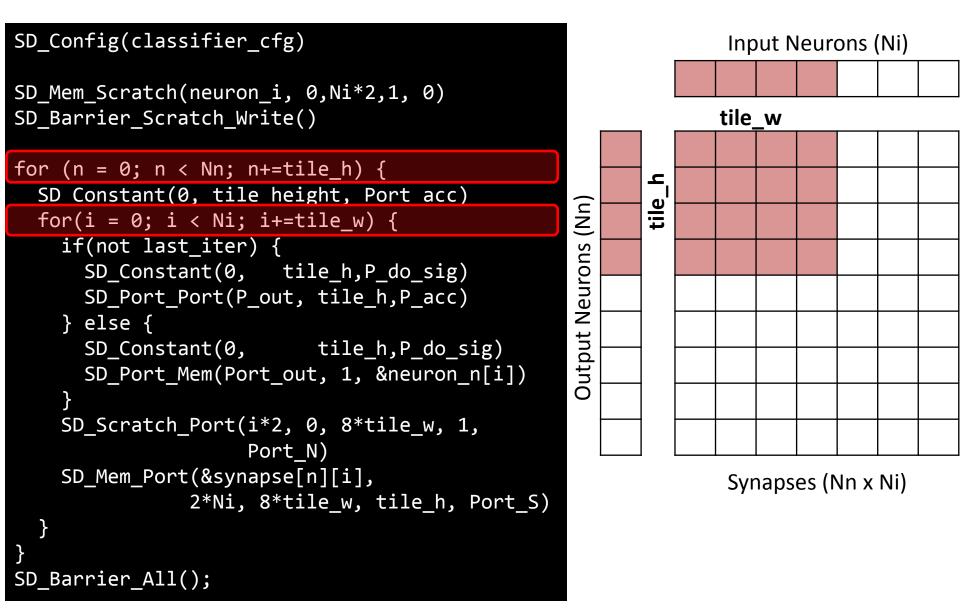


Recurrence Serialization Overhead

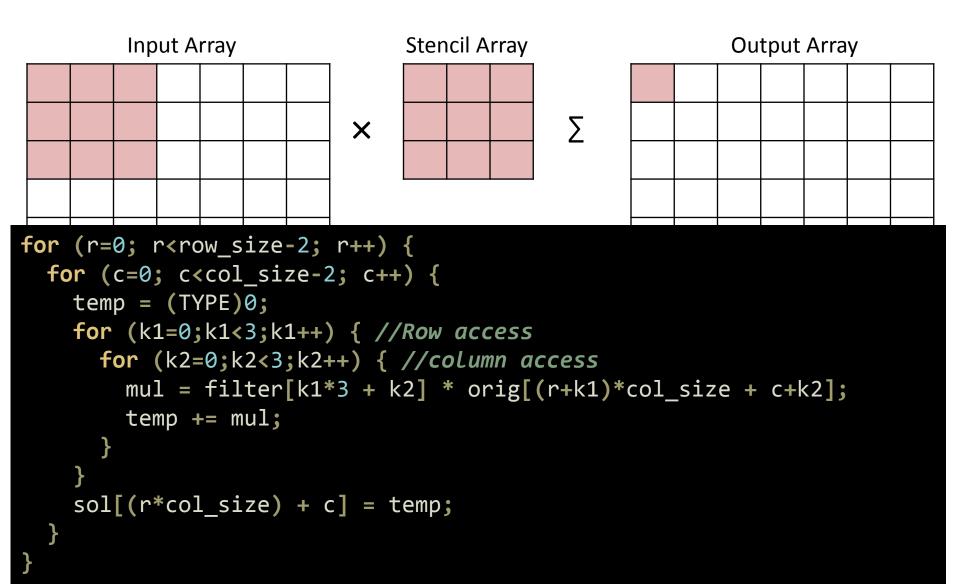
Maximum Computation Rate = **#** Pipelinable Instances / Recurrence Length



Pipelining Classifier Layer



2D Stencil Example



"Easy" Approach


```
Stencil Array
       Input Array
                                                        Output Array
                                          Σ
                         X
for (r = 0; r < row_size - 2; r++) {</pre>
  for (c = 0; c < col size - 2; c++) {</pre>
    SD_Constant(P_stencil_sb_carry, 1, 1);
    for (k1 = 0; k1 < 3; k1++) {
      SD_Mem_Port((orig + (r + k1) * col_size + c))
                sizeof(TYPE), sizeof(TYPE), 4, P_stencil_sb_I);
      SD Mem Port(filter + (k1 * 3),
                sizeof(TYPE), sizeof(TYPE), 4, P_stencil_sb_F);
    }
    SD_port_Port(P_stencil_sb_R, P_stencil_sb_carry, 2);
    SB_Port_Mem(P_stencil_sb_R, sizeof(TYPE),
               sizeof(TYPE), 1, sol + (r * col_size) + c);
SB_Barrier_All();
                                                                        24
```


Easy Approach's Bottlenecks

- 1. Computations Per CGRA Instance (only 3 mults!)
- 2. General Core Instructions (core insts == CGRA insts)
- 3. Cache → CGRA Bandwidth (wasted b/c of acc_size)
- 4. Initialization/Draining Latency
- 5. Length of Recurrence through CGRA

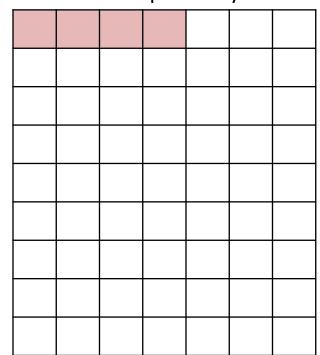
(no independent computations through CGRA)

Х

Input Array

Stencil Array

Output Array

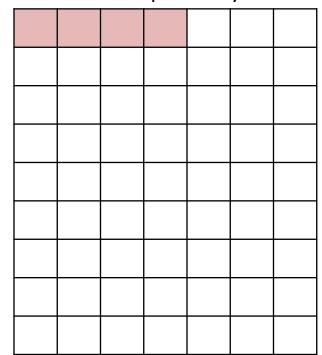


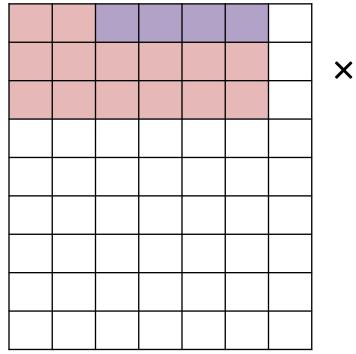
Х

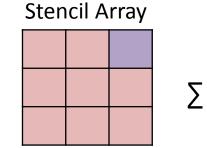
Input Array

Stencil Array

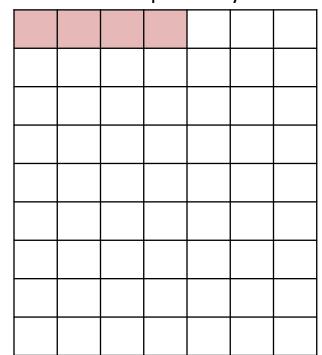
Output Array

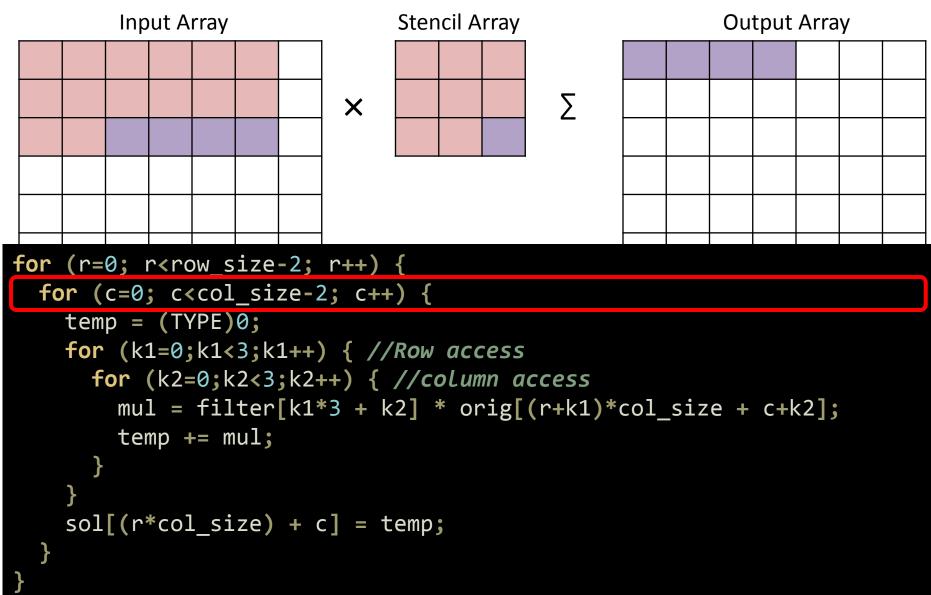






Output Array





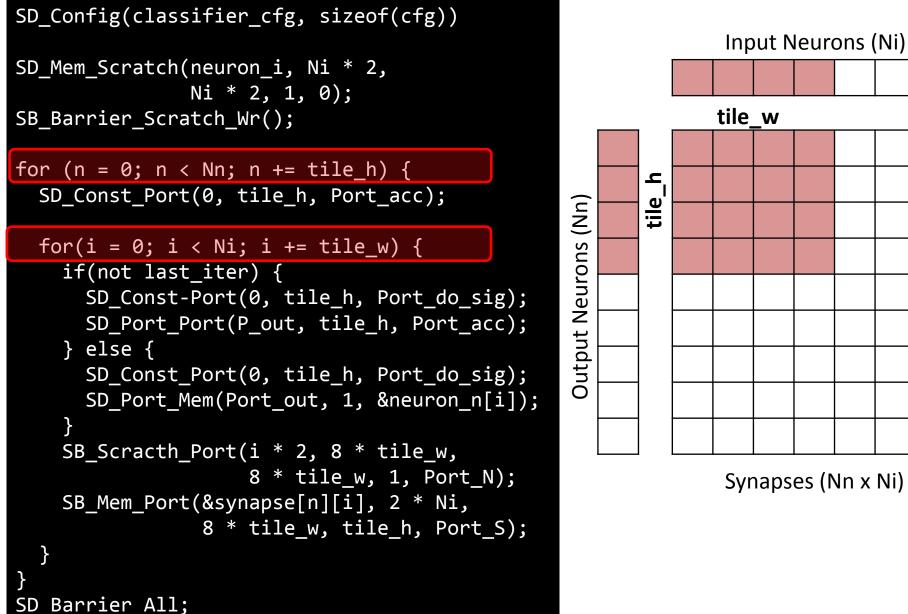
Better Approach's Bottlenecks

- 1. Computations Per CGRA Instance (up to 8 mults!)
- 2. General Core Instructions (core insts << CGRA insts)
- 3. Cache → CGRA Bandwidth (acc_size > cache_size)
- 4. Scratchpad \rightarrow CGRA Bandwidth
- 5. Memory \rightarrow Cache Bandwidth
- 6. Initialization/Draining Latency
- 7. Length of Recurrence through CGRA (if you stripmine the c-loop past the DFG width, you can stream multiple independent computations through the CGRA!)

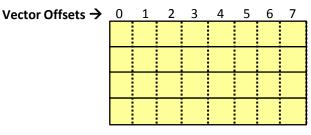
Programming Restrictions

- CGRA Instruction Types & Data-width
- Shape of the stream (strided)
- Width of input/output ports
- Number of simultaneous streams
- Issue to free-port (data always balanced)

Pipelining Classifier Layer



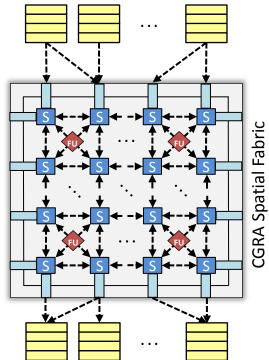
CGRA – Vector Port Interface



4 Entry Vector Port (512b or 64B wide) – Each element 8B or 64b)

- Vector ports facilitate "vector/SIMD execution and can store entire cache-line in a cycle (8 wide)
- Vector ports' offsets are connected to CGRA input links – Mapping done by hardware architects recorded as *Softbrain Hardware Parameter Model*
- Hardware parameter model is passed to scheduler/compiler for mapping software DFG ports to hardware vector ports
- Enable flexible hardware-software interface for variable width SIMD-execution

Input Vector Port Interface



Output Vector Port Interface

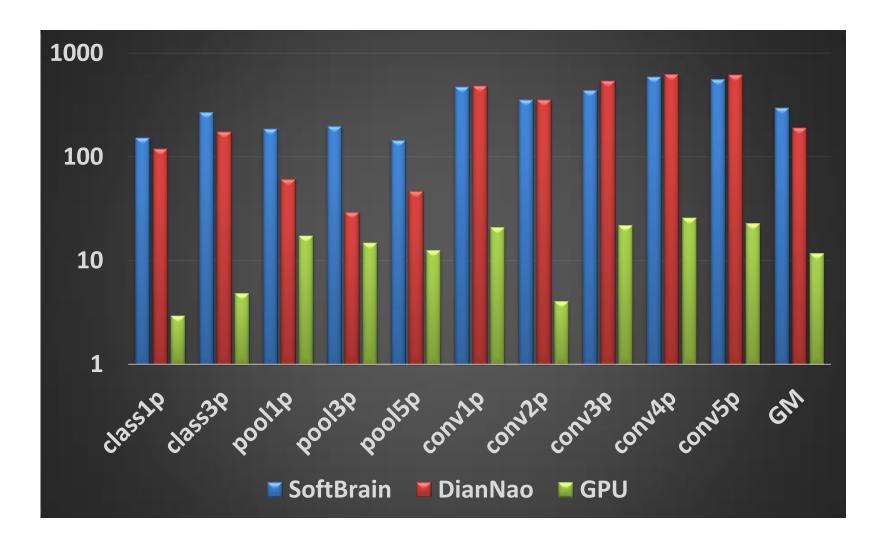
Example vector port to CGRA links mapping [VPORT_Num]: [Offset]:[CGRA Link Num]

VPORT_IN 0:	0:2, 1:5, 2:8, 3:11, 4:17, 5:20, 6:23, 7:26
VPORT_IN 1:	0:4, 1:7, 2:10, 3:16, 4:19, 5:22, 6:25, 7:31
VPORT_OUT 0	: 0:1, 1:3, 2:5, 3:6, 4:8, 5:9, 6:11, 7:12

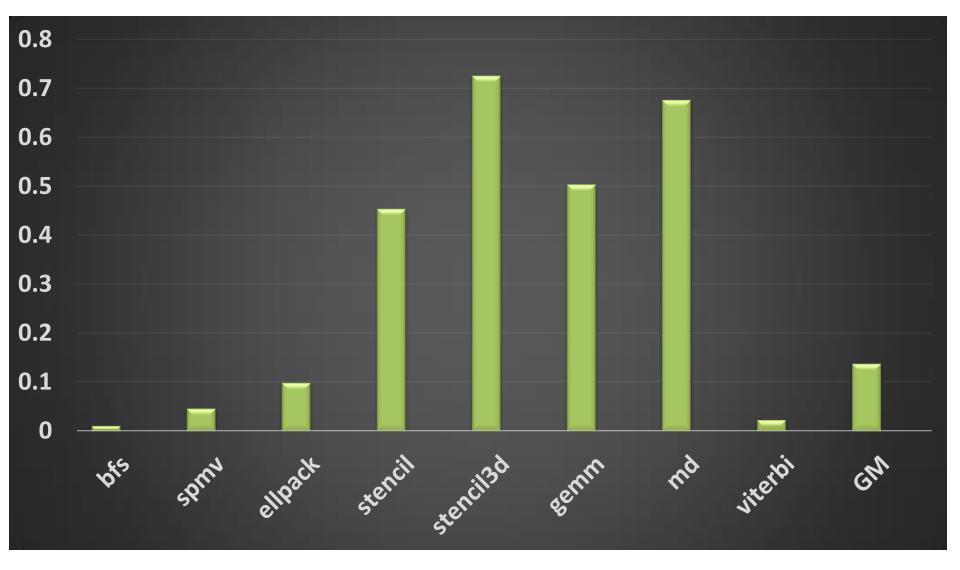
Workload Characterization for Application Specific Softbrain

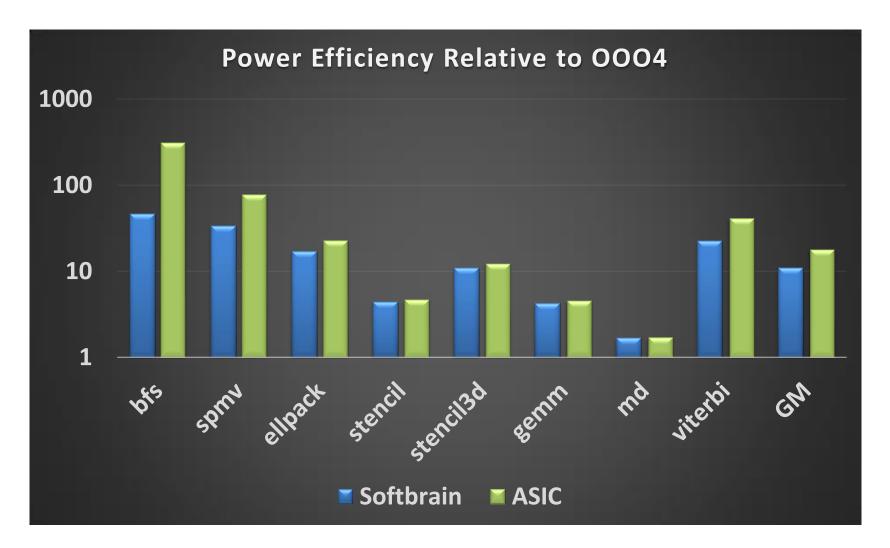
Implemented Codes	Stream Patterns	Datapath	
bfs	Indirect Loads/Stores, Recurrence	Compare/Increment	
gemm	Affine, Recurrence	8-Way Multiply-Accumulate	
md-knn	Indirect Loads, Recurrence	Large Irregular Datapath	
spmv-crs	Indirect, Linear	Single Multiply-Accumulate	
spmv-ellpack	Indirect, Linear, Recurrence	4-Way Multiply-Accumulate	
stencil2d	Affine, Recurrence	8-Way Multiply-Accumulate	
stencil3d	Affine	6-1 Reduce and Multiplier Tree	
viterbi	Recurrence, Linear	4-Way Add-Minimize Tree	
Unsuitable Codes	Reason		
aes	Byte-level data manipulation		
kmp	Multi-level indirect pointer access		
merge-sort	Fine-grain data-dependent loads/control		
radix-sort	Concurrent reads/writes to same address		

Softbrain vs. DianNao vs. GPU

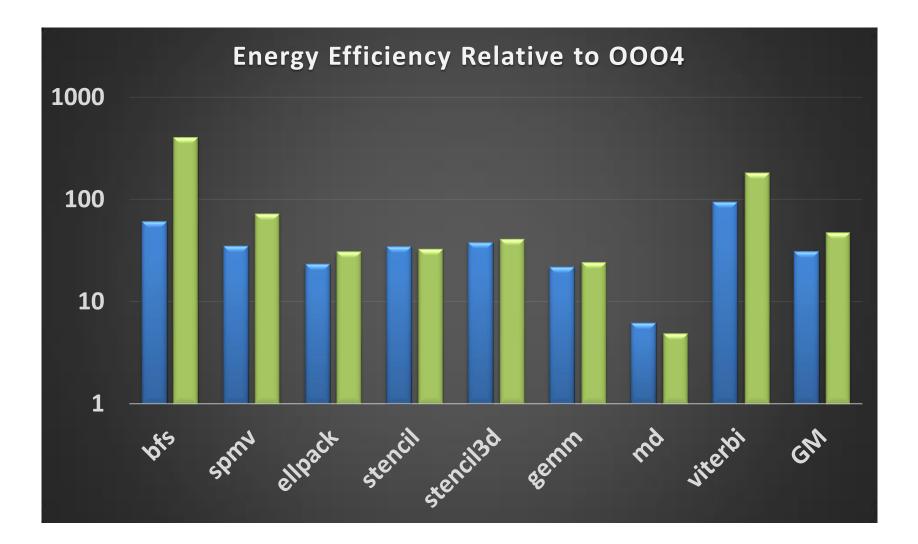


ASIC Area Relative to Softbrain

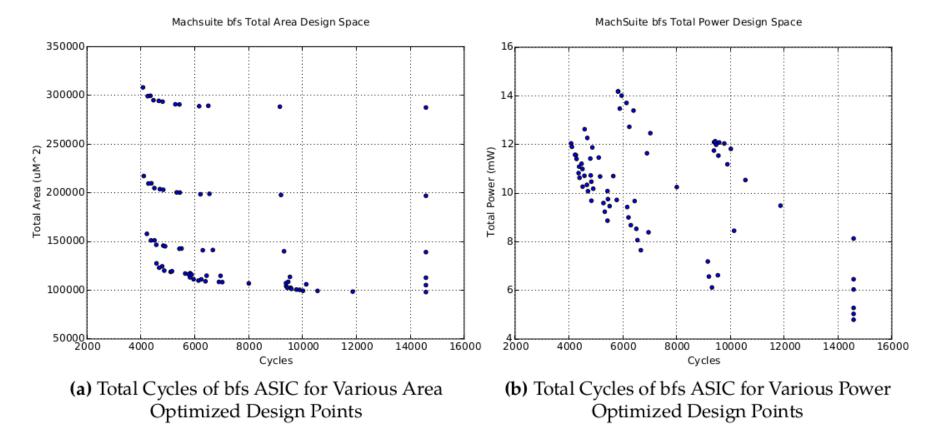




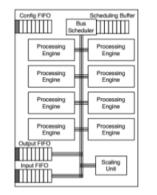
Softbrain vs. ASIC Energy Efficiency Comparison

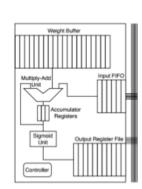


Design Space Exploration for ASIC Comparison



DSA Architectures

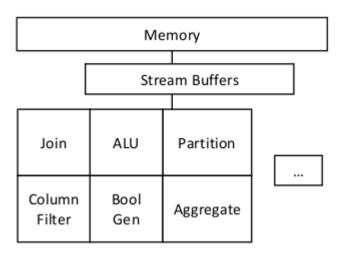




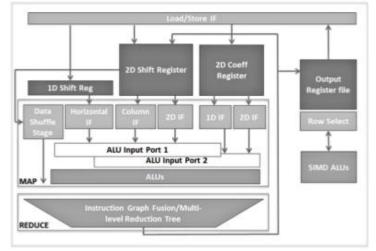
a) 8-PE NPU

b) Single processing engine (PE)

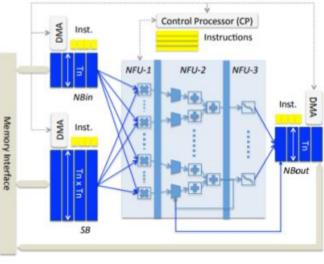
NPU



Q100

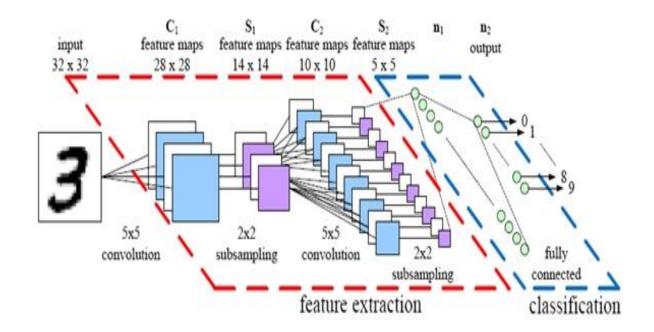


Convolution Engine

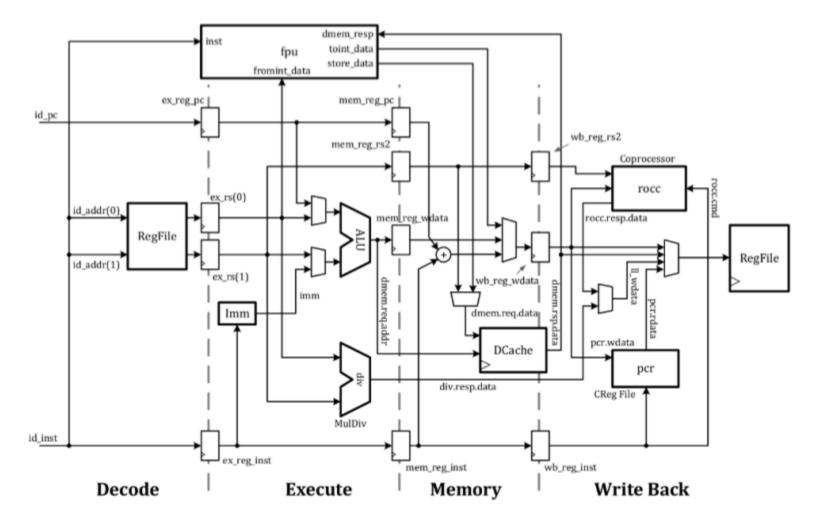


11/16/2017

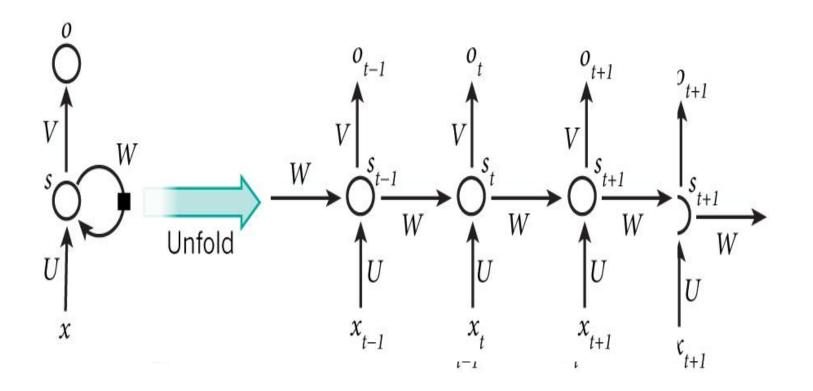
Convolutional Neural Network



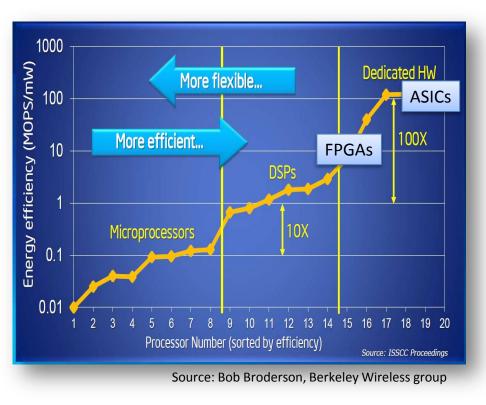
Rocket Core RoCC Interface



Recurrent Neural Network



Specialization Spectrum



More gains the lower you go

