
Memory	Processing	Units	(MPU)

(PhD	Defense)

Vijay	Thiruvengadam

Committee	Members:
Advisor:	Karthikeyan Sankaralingam

Mikko Lipasti,	Parameswaran Ramanathan,	Michael	Swift,	Jignesh Patel

1



• Problem:	It	is	unclear	if	a	general	architecture	can	fully	exploit	Processing-In-
Memory	(PIM)	for	high	performance	and	energy	efficiency,	while	supporting	wide	
array	of	workloads
o Most	existing	solutions	specialize	for	particular	workload	domains
o Some	others	incur	significant	energy	overheads	to	retain	generality

• Solution:	Memory	Processing	Units	(MPU)
o More	efficient	than	state-of-art	4-core	“Skylake”	processor	for	a	wide	array	of	workloads	with	
varying	degrees	of	memory	locality

o More	efficient	than	general	PIM	architectures targeting	low	locality	workloads
o Close	to	efficiency	achieved	by	a	domain-specialized	PIM	architecture,	for	graph	workloads	(low	
locality)		

Executive	Summary



• Adhere	to	three	principles:
o Performance	through	massive	concurrency	to	exploit	PIM	bandwidth

ØLarge	array	of	cores	placed	in	memory
o Energy	savings	through	low-power	computation

ØTiny	cores	that	idle	efficiently
o Flexible	Programming	Model

ØRPC-like	offload	mechanism

• Ensure	easy	integration	to	commercial	OoO processors	requiring	minimal	
modifications	to	the	processor	hardware	structure	or	the	operating	system	support
o Stand	alone	co-processor	to	the	main	processor

3

MPU	Design	Approach



MPU	Overview

MPU

Host
CPU

Da
ta
	st
ru
ct
ur
e	
(k
ey
-v
al
ue

	ta
bl
e)

Compute	
tile

Page

MPU
Vaults

(a)	Logical	organization

(b)	Hardware	organization

MPU
controllerCPU

core

CPU
core HM

C	
co
nt
ro
lle
r

1	tile	per	vault

DRAM
stack

HMC
vault

Tile	0

R

Tile	3

R

R R

Tile	13 Tile	15

.	.	.

.	.	.

.	.	.

.	.	.

Original	code

for	(	i	=	0;	I	<	N;	i++	)
result[i]	=	GetValue(key[i]);

MPU	host	code

kernel	=	“GetValueK”;

for	(	i =	0;	I	<	N;	i++	)
mbox[i]	=	MPU_Enqueue(kernel,	key,	i,	vault_id);

MPU	kernel	code

Int GetValuek(void*	key_addr,	
int thread_id);

Core	array

4



5

Landscape	of	Solutions	in	PIM	Space	targeting	
low	locality	workloads

Low

Low High

High

Programmability

Pe
rf
or
m
an

ce
	&
	E
ne

rg
y	
Ef
fic
ie
nc
y

PIM-Enabled	Instructions	
(Ahn et	al,	ISCA’15)

GraphPIM
(Nai et	al,	HPCA’17)

Tesseract		(Ahn et	al,	ISCA’15)

Memory	
Processing	Units	
(This	Proposal)

NDC	(Pugsley	et	al,	ISPASS’14)

FlexRAM (Kang	
et	al,	ICCD’99)



Recent	works	in	PIM	domain	seem	to	suggest	that	
specialization	is	necessary	to	achieve	high	performance	and	
energy	efficiency	and	a	general	PIM	architecture	can	only	
provide	modest	benefits.

MPU	shows	it	is	possible	to	realize	a	general	PIM	architecture	
that	can	come	close	to	the	efficiency	of	proposed	specialized	
solutions	AND	can	be	significantly	more	efficient	than	recent	
proposals	of	general	PIM	architectures.

6

Thesis	Statement



Contribution	of	this	Thesis

• Memory	Processing	Units	(MPU):	A	detailed	PIM	hardware	architecture,	system	
architecture	and	programming	model,	non-intrusively	deployable	on	today’s	
processors

• Detailed	evaluation	across	a	variety	of	workloads,	that
o Shows	that	composition	of	“known”	mechanisms,	that	implement	3	key	principles,	suffices	to	
achieve	general	and	efficient	processing

o Provides	insights	into	source	of	performance	and	energy	benefits	and	scaling	trends

7



Post-Prelim	Work	

• Had	relatively	late	prelim,	with	most	of	the	work	completed	before	Prelims

• Post	prelims,	the	following	was	added	to	my	research	and	this	presentation:
o Qualitative	and	quantitative	comparison	to	related	work	– “Tesseract”	and	“PIM-enabled	
Instructions”

o Baseline	for	data	analysis	changed	from	Westmere to	state-of-art	Skylake processor
o 2	text	analytics	workloads	added	– dfagroup and	htmltok
o Refinements/optimizations	to	hardware	architecture,	system	architecture	and	programming	
model

8



Outline

• Overview	of	Programming	Model
• Overview	of	Hardware	Architecture
• Overview	of	System	Design
• Evaluation	Methodology
• Results	&	Analysis
• Comparison	against	Related	Work

9



Overview	of	Programming	Model

10

Data	Abstraction

vault

Computation	Abstraction

mailboxes

mailboxes

kernelA

kernelB
kernelA

<collect	results>

MPU_Enqueue(kernelA,..)

MPU_Enqueue(kernelB,..)

MPU_Enqueue(kernelA,..)

MPU_Wait()



Vanilla	HMC

MPU	è HMC	Augmented	
with	Compute	Logic	
(shown	in	orange)	

Vault	Ctrl. Vault	Ctrl. Vault	Ctrl.

Compute
Tile

R

Compute
Tile	1

Compute
Tile	15

Crossbar	Switch

Compute
Tile	0

R

.		.		.
MPU

Controller

LIC LIC LIC LIC

R R R

11

Logic	base

One
vault

Crossbar	switch

Processor
links

Vault	
controller	15

Vault	
controller	0 .	.	.

Link	
interface	
controller

Link	
interface	
controller

Link	
interface	
controller

Link	
interface	
controllerDRAM

Overview	of	Hardware	Architecture



Overview	of	System	Design

Code+Globals Region

Heap	Region

Stack	Region
8	MB,	1	MB	per	core

256	MB	per	Vault

Vault	0

Vault	1

Vault	15

m
m
ap
ed

’e
d
Re

gi
on

code
heap
stack

Vault	0

code
heap
stack

Vault	15

Host	CPU	Virtual	
Address	Space

MPU	Physical	Memory

• Consistent	pointers

• No	TLBs,	no	page	
table

• Custom API	for	
memory	allocation

12



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis
• Comparison	against	Specialized	Architectures

13



Evaluation	Objectives
• What	are	the	dominant	factors	dictating	speedup	over	a	state-of-art	multi-core	
OoO processor?
• What	are	the	dominant	sources	of	power	savings?
• Can	we	get	MPU-like	benefits	with	a	simpler	architecture?

• How	scalable	is	the	MPU	design?

14

(b)	SKY+HMC (d)	SKY+MPU

(planar	DDR3	replaced	by	HMC)

L3

HMC

(c)	SKY+HMC+128Tiny

(128	tiny	cores	on	host	CPU)
HMC

L3

Skylake Skylake

Skylake

128	Tiny	Cores

Shaded	cores	are	
deactivated

(a)	SKY+DDR3

Skylake Skylake

Skylake Skylake

L3

DDR3 HMC

Skylake Skylake

Skylake Skylake

128	Tiny
Cores

L3

(near-memory	cores)

Skylake Skylake

Skylake Skylake Skylake



Choice	of	Workloads

• Wide	array	of	workloads	chosen	based	on	multiple	objectives:
o Commonly	used	kernels/micro-benchmarks	that	ease	detailed	analysis

§ stringmatch,	kmeans,	histogram,	scan,	aggregate,	hashjoin,	buildhashtable
o Workloads	best	suited	for	MPU

§ 5	graph	analytics	workloads	(pagerank,	shortestpath,	averageteenage,	vertexcover,	conductance)
o Workloads	that	allow	analyzing	impact	of	load	balancing

§ Graph	analytics	workloads
o Good	mixture	of	serial	and	parallel	phases	to	model	impact	of	Amdahl’s	law

§ 6	queries	from	database	analytics	domain	(TPCH)
o Other	commercially	important	workloads	that	may	be	a	good	candidate	for	MPU

§ Text	analytics	workloads

• Evaluation	uses	MPU	and	pthread (for	baseline)	programs	developed	for	all	20	
workloads	

15



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	
• What	are	the	dominant	factors	dictating	MPU	speedup?
• What	are	the	dominant	sources	of	power	savings?	
• Can	we	achieve	MPU-like	benefits	with	a	simpler	architecture?
• How	scalable	is	the	MPU	design?

• Comparison	against	Specialized	Architectures

16



Factors	Dictating	MPU	Speedup	over	Baseline	

• Compute	capability	(IPC)	of	a	single	MPU	core	relative	to	single	CPU	core
o MPUspeedup =	Frequencyratio x	Concurrencyratio x	IPCratio,	assuming	perfect	load	balancing	across	
all	cores,	100%	parallelizable

o After	accounting	for	workload-independent	factors	of	frequency	and	core	count,	to	achieve	
speedup,	CPU_IPC	must	be	less	than	4.57x	MPU_IPC

• Load	balancing	across	cores

• Degree	of	parallelization	

17



• Kernels,	Text	Workloads	èWell	load	
balanced	+	~100%	concurrent	

• Graph	Workloads	è Bad	load	balancing	+	
`100%	concurrent

• Database	(TPCH)	Workloads	è Good	load	
balancing	+	varying	degrees	of	concurrency	

• For	kernels	&	text	workloads,	mean	
CPU_IPC ~	2xmean	MPU_IPC
o Mean	CPU	IPC	= 1.18
o Mean	MPU	IPC	=	0.6

Factors	Dictating	Speedup	- IPCratio

18

Takeaway:	For	highly	concurrent	workloads	
that	we	evaluate,	OoO+Caching

mechanisms	in	CPU	do	not	help	extract	
enough	IPC	to	outperform	MPU	

• For	graph	workloads,	mean	CPU_IPC is	
less	thanmean	MPU_IPC
o Mean	CPU	IPC	=	0.13
o Mean	MPU	IPC	=	0.19



Factors	Dictating	Speedup	– Load	Balancing

19

• Perfect	load	balancing	è
Instructions	equally	distributed	
among	all	cores

• Slowest	core	extra	load	è
MPU(~60%)	>	Baseline(~44%)	

• Perfect	load	balancing	èMPU	
speedup					up	to	40%

Takeaway:	Load	balancing	has	non-trivial	impact	on	MPU	speedup.	
The	impact	is	a	function	of	graph	structure	and	partitioning	algorithm



Factors	Dictating	Speedup	– Degree	of	Parallelization

20

• Degree	of	Parallelization
o tpch 5,	6,	14	è Very	high	

(99%)
o tpch 1	è High	(96%)
o tpch 3,	tpch 10	è Low	

(86%,	73%)

Takeaway:	As	per	Amdahl’s	law,	degree	of	parallelization	has	a	significant	
impact	on	performance	and	leads	to	low	speedup	with	MPU



21

Takeaway	from	Performance	Analysis

Maximum	Speedup	with	MPU	over	state-of-art	OoO processor	is	achieved	
with	following	workload	behavior:

High	Thread	Level	Parallelism
Low	instruction	level	parallelism

Low	Cache	Locality
Good	load	balancing



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	
• What	are	the	dominant	factors	dictating	MPU	speedup?
• What	are	the	dominant	sources	of	power	savings?	
• Can	we	achieve	MPU-like	benefits	with	a	simpler	architecture?
• How	scalable	is	the	MPU	design?

• Comparison	against	Specialized	Architectures

22



Sources	of	Power	Savings

• Four	sources	of	power	savings	with	MPU	relative	to	Baseline:
o All	but	1	host	SKY	core+cache absent,	providing	static	core+SRAM power	reduction	(2.9x)
o 3	of	4	HMC	links	turned	off	as	only	1	core	active,	providing	static	memory	power	
reduction	(1.7x)

o Lower	memory	access	energy	per	bit	(40%)	since	accesses	originate	from	HMC	logic	die
oMPU	cores	run	at	much	lower	power	than	baseline	out-of-order	cores	(6mW	vs	~3W)

23

SKY+MPUSKY+DDR3

Skylake Skylake

Skylake Skylake

L3

DDR3 HMC

Skylake Skylake

Skylake Skylake

128	Tiny
Cores

L3

(near-memory	cores)



• Static	core+SRAM power accounts	for	50-80%	baseline	power
• Power	savings	with	MPU	è 2.9x

• Static	DRAM	power	accounts	for	~10%	baseline	power
• Power	savings	with	MPU	è 1.7x

• For	highly	memory	intensive	and	low	locality	behavior	(graph	analytics),	dynamic	
DRAM	power	accounts	for	25-40%	baseline	power
• Power	savings	with	MPU	è 3%-7%	

24

Power	Savings	Analysis

Takeaway:	Most	power	savings	come	from	the	absence	of	3	out-of-order	
cores+SRAM compared	to	the	baseline



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	
• What	are	the	dominant	factors	dictating	MPU	speedup?
• What	are	the	dominant	sources	of	power	savings?	
• Can	we	achieve	MPU-like	benefits	with	a	simpler	architecture?
• How	scalable	is	the	MPU	design?

• Comparison	against	Specialized	Architectures

25



Can	we	achieve	MPU-like	benefits	with	a	simpler	
architecture?

• SKY+MPU	Design	(Proposed	Design)	– Provides	high	concurrency,	highest	bandwidth	availability,	lowest	
memory	access	energy,	no	change	required	to	host	chip

• SKY+HMC+128Tiny	– Provides	equivalent	concurrency,	lower	bandwidth	and	higher	memory	access	energy	
than	proposed	design
o With	good	cache	locality,	and	thus	lower	bandwidth	demand,	this	can	be	as	almost	as	good	as	SKY+MPU,	
both	from	performance	and	energy	standpoint

• SKY+HMC	– Baseline	design	with	HMC.	Provides	higher	bandwidth	availability	than	baseline
• With	low	concurrency	and/or	high	ILP	in	the	workload,	this	can	be	as	good	(or	better)	as	SKY+MPU	from	a	
performance	standpoint

26

(b)	SKY+HMC (d)	SKY+MPU

(planar	DDR3	replaced	by	HMC)

L3

HMC

(c)	SKY+HMC+128Tiny

(128	tiny	cores	on	host	CPU)
HMC

L3

Skylake Skylake

Skylake

128	Tiny	Cores

Shaded	cores	are	
deactivated

(a)	SKY+DDR3

Skylake Skylake

Skylake Skylake

L3

DDR3 HMC

Skylake Skylake

Skylake Skylake

128	Tiny
Cores

L3

(near-memory	cores)

Skylake Skylake

Skylake Skylake Skylake



Can	we	achieve	MPU-like	benefits	with	a	simpler	
architecture?

27

Takeaway:	For	most	workloads	(11	of	20),	MPU	proves	to	be	the	best	design	by	
significant	margin.	For	remaining	9	workloads,	either	HMC+128Tiny	or	HMC	

designs	proves	sufficient	



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	
• What	are	the	factors	dictating	MPU	speedup	over	baseline?
• What	are	the	dominant	sources	of	power	savings?	
• Can	we	achieve	MPU-like	benefits	with	a	simpler	architecture?
• How	scalable	is	the	MPU	design?

• Comparison	against	Specialized	Architectures

28



Scalability	of	MPU	Benefits	- multi-MPU	System

MPU_1Cube

HMC

Skylake
L3

(near-memory	cores)

MPU_4Cube

HMC

L3

(near-memory	cores)

HMC

(near-memory	cores)

HMC

(near-memory	cores)

HMC

(near-memory	cores)

1	HMC	Link
4	HMC	Links

• 4	MPU	system	compared	against	single	MPU
• 1	SERDES	channel	active	per	MPU

29

128	cores 128	cores 128	cores 128	cores 128	cores

Skylake

Skylake Skylake

Skylake

Skylake

Skylake

Skylake



Scalability	of	MPU	Benefits	- multi-MPU	System

30

Takeaway:	Increase	in	BW	(4x)	significantly	improves	IPC	(2-3x)	for	many	
workloads.	Not	reflected	in	overall	speedup	due	to	serialization,	load	

balancing,	other	algorithmic	effects



Maximum	energy	savings	only	
1.4x,	despite	higher	speedup
• Primarily	due	to	increase	in	all	power	
components,	with	dynamic	DRAM	
power	contributing	the	most

Scalability	of	MPU	Benefits	– multi-MPU	System

31

Takeaway:	On	scaling	MPU	system,	energy	savings	does	not	keep	up	with	
speedup	due	to	large	power	overhead	of	more	simultaneous	DRAM	accesses



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	

• What	are	the	factors	dictating	MPU	speedup	over	baseline?
• Can	we	achieve	similar	benefits	with	a	simpler	design?
• How	much	energy	reduction	does	MPU	achieve?	What	are	the	sources?	
• How	does	MPU	speedup	and	energy	reduction	scale	with	a	large	MPU	system?

• Comparison	against	other	PIM	Architectures

32



33

Landscape	of	Solutions	in	PIM	Space	targeting	
low	locality	workloads

Low

Low High

High

Programmability

Pe
rf
or
m
an

ce
	&
	E
ne

rg
y	
Ef
fic
ie
nc
y

PIM-Enabled	Instructions	
(Ahn et	al,	ISCA’15)

Tesseract		(Ahn et	al,	ISCA’15)
Memory	Processing	Units	
(This	Proposal)



• “Tesseract”	by	Ahn et	al	features	a	specialized	hardware	architecture	and	specialized	
programming	API	for	graph	processing
o 1	core	per	vault
o Per-vault	List	Prefetcherè to	retrieve	neighboring	vertices	
o Per-vault	Message	Prefetcherèto retrieve	vertex	data	upon	inter-vault	computation	transfer
o Requires	message	passing	API	for	out-of-vault	computations

34

Tesseract	(ISCA’15)

Tesseract Hardware	Architecture PageRank	Computation	in	Tesseract



35

MPU	versus	Tesseract (ISCA’15)

0
5

10
15
20
25
30

PR

SS
SP AT
F CT VCSp
ee
du

p	
O
ve
r	B

as
el
in
e

Performance	Comparison

Tesseract	
wo/	
Prefetchers

Tesseract	w/	
Prefetchers

MPU
0
5

10
15
20
25

PR

SS
SP AT
F CT VCEn
er
gy
	R
ed

uc
tio

n	
ov
er
	

Ba
se
lin

e

Energy	Comparison

Tesseract	w/	
Prefetchers

MPU

Baseline:	32	4GHz	4-issue	OoO +	128GB	HMC*MPU	provisioned	with	same	capacity	and	
vault	count	as	Tesseract

Takeaway:	MPU	comes	close	in	performance	and	energy	efficiency	to	a	
specialized	architecture	for	graph	analytics



• “PIM-Enabled	Instructions”	by	Ahn et	al	features	a	general	architecture	that	requires	
minimal	modifications	to	programming	API,	operating	system,	coherence	support,	etc
o 1	PCU/ALU	per	vault
o Offloads	atomic basic-blocks	to	PIM	ALU	units
o Requires	modifications	to	host	HW	to	identify	low	locality	memory	accesses,	so	it	could	only	
offload	those	blocks	of	work	that	are	likely	to	miss	the	cache	hierarchy

36

PIM-Enabled	Instructions	(ISCA’15)

PEI	Hardware	Architecture PageRank	Computation	in	PEI



37

MPU	versus	PIM-Enabled	Instructions	(ISCA’15)

0

5

10

15

PR SSSP ATFSp
ee
du

p	
O
ve
r	B

as
el
in
e

Performance	Comparison

PEI

MPU

0
5

10
15
20
25

PR SSSP ATFEn
er
gy
	R
ed

uc
tio

n	
ov
er
	

Ba
se
lin

e

Energy	Comparison

PEI

MPU

Baseline:	16	4GHz	4-issue	OoO +	32GB	HMC*MPU	provisioned	with	same	capacity	and	
vault	count	as	PEI

Takeaway:	MPU	significantly	outperforms	and	reduces	energy	compared	to	a	
recently	proposed	general	PIM	architecture



38

Comparison	Against	Other	PIM	Architectures

Takeaway:	MPU	shows	it	is	possible	to	realize	a	general	PIM	architecture	that	
can	come	close	to	the	efficiency	of	proposed	specialized	solutions	AND	can	be	
significantly	more	efficient	than	recent	proposals	of	general	PIM	architectures.



Thank	You	– Questions?

39



BACKUP	SLIDES

40



MPU:	New	“Offload”	Chip

3D-stacked	
DRAM	+	

simple	cores

3D-stacked	
DRAM	+	

simple	cores

3D	Stacked	
DRAM	+ simple	
in-order	cores,	

caches

MPU	Chip

Multiple	
Partitions(Vaults)

CPU	DRAM

Memory	Bus

● Co-processor	
● 3D	Memory (HMC	from	Micron) +	Simple Cores	on	logic	base
● Enables work offload from	CPU
● Up	to	~16X	better	throughput,	~38X	lower	energy

Memory	Bus

41



Overview	of	Programming	Model

• CUDA-like	offload	model,	with	some	differences:
• CUDA	focuses	on	organizing	computation	with	thread	hierarchies,	directly	

supporting	SIMD	computation
• MPU	model	focuses	on	data	layout	and	irregular	code,	allowing	non-SIMD	

independent	computations 42

Data	Abstraction

vault

Computation	Abstraction

mailboxes

mailboxes

kernelA

kernelB
kernelA

<collect	results>

MPU_Enqueue(kernelA,..)

MPU_Enqueue(kernelB,..)

MPU_Enqueue(kernelA,..)

MPU_Wait()



Computation	Abstraction

• Offload	using	MPU_Enqueue(),	an	RPC-like	memory	procedure	call
• Wait	for	return	value	using	MPU_Wait()
• Read	mailboxes	to	gather	results

43

void KVApplication(Input in[N])	{
MPU_Init(“mpu_kernels.o”)
MPUMailbox mbox[1024];				
kernel1	=	“GetValueK”;
kernel2	=	“SetValueK”;

for (	int c	=	0,	i	=	0;	i	<	N;	i++	)
vid	=	<assign	vault	number>
if (	data[i]->type	==	GET	)
mbox[c]	=	MPU_Enqueue(kernel1,	in,	i,	vid);

else
mbox[c]	=	MPU_Enqueue(kernel2,	in,	i,	vid);

if (	++c	==	1024	)	{
MPU_Wait();
CollectResults(mbox);
c	=	0;

}
}

}

HTValue GetValueK(Input*	in,	int tid)
{
Bucket* b	=	in[tid]->bucket;
Key k	=	in[tid]->key;
for (	unsigned i =	0;	i <	B_SIZE;	i++	)
{
if (	b[i].key	==	k	)
return	b[i].value;

}

return	DEFAULT_VALUE;
}

(c)	Key-Value	store	application	kernels(b)	Key-Value	store	host	CPU	code

int SetValueK(Input*	in,	int tid)
{
Bucket* b	=	in[tid]->bucket;
Key k	=	in[tid]->key;
Value v	=	in[tid]->value;
for (	unsigned i =	0;	i <	B_SIZE;	i++	)
{
if (	b[i].key	==	k	)	{
b[i].value	=	v;
return	SUCCESS;

}
}

return	NOT_FOUND;
}

mpu_kernels.chost.c

(a)	Execution	flow	for	MPU	applications

Ke
rn
el
A(
i3
)

CPU	Thread

MPU_Enqueue(KernelA,in1,..)

MPU_Enqueue(KernelA,in3,..)
MPU_Enqueue(KernelB,in2,..)

MPU_Wait()

Ke
rn
el
A(
i1
)

Ke
rn
el
B(
i2
)

Mailboxes

<Collect	results>

Mailboxes



Data	abstraction

● No	flat	memory	view
o Large	data sets	must	be	sharded

● Each	MPC	tied	to	256MB	DRAM	slice/vault
o All	data	and	code	“ideally”	should be	

local
o Out-of-vault	accesses	possible	and	

allowed,	though	at	a	higher	cost
o MPU	kernel	code	operates	on	virtual

addresses

Slice/
Vault

44



MPU	Controller	

• Command	Register	– Identify	command	type	(Init,	
Enqueue,	Wait)	+	other	information

• Device	Registers	
o 1024	Mailbox	Registers	– store	incoming	MPU_Enqueue data
o 6	Initialization	Registers	– store	information	for	device	init

• Mailbox	Registers
o 24	bytes	each	– kernel	address,	argument	address,	thread	ID,	

vault	ID

45

Command
Register

Packet	Generator/
Decoder

Router

Controller	
Logic

Device
Registers



MPU	Compute	Tile	(s)

• Compute	Fabric

o 8	Tensilica LX3	cores	+	private	L1	data	&	
instruction	cache	

o LX3	core	è Single	issue,	in-order	(600x	
smaller	than	Intel	Ivybridge)

o No	hardware	cache	coherence	support

Router

Core	0

D$ I$

Core	7

D$ I$.	.	

Bank	
Scheduler

Compute	
scheduler

Vault	controller

Address	
Translation	

Unit

Compute	Fabric

46



Ensuring	Coherence	w/o	HW	Cache	Coherence

• Hardware	cache	coherence	eschewed	to	reduce	design	complexity	and	traffic	
on	interconnect	network

• Coherence	ensured	with	two	mechanisms,	both	of	which	require	some	
programmer	involvement:
o Global	variables	always	bypass	L1	cache.	Achieved	by	placing	global	variables	in	specific	
region	(code	section)	in	vault	0	and	having	each	core	monitor	if	a	load/store	access	falls	
within	that	region

o Coherence	for	read-write	shared	heap	variables	ensured	by	enclosing	accesses	within	
critical	section.	At	end	of	critical	section,	cache	lines	made	dirty	within	critical	section	
are	written-back	and	all	lines	read	or	written	are	invalidated.	

47



Guiding	Principles	of	MPU	System	Design

• No	modifications	to	host	CPU,	to	ensure	easy	integration

• Minimal	or	no	modifications	to	the	host	operating	system

• Consistent	pointers	between	host	code	and	kernel	code	to	ease	program	
development

• Minimal	hardware	overhead	on	MPU	for	address	translation

48



Address	Space	Management

Code+Globals Region

Heap	Region

Stack	Region
8	MB,	1	MB	per	core

256	MB	per	Vault

Vault	0

Vault	1

Vault	15

m
m
ap
ed

’e
d
Re

gi
on

code
heap
stack

Vault	0

code
heap
stack

Vault	15

Host	CPU	Virtual	
Address	Space

MPU	Physical	Memory

• To	enable	consistent	
pointers,	MPU	physical	
memory	linearly	
mapped	to	host	virtual	
address	space	using	
mmap()

• MPU	API	for	memory	
allocation	inside	
mmap’ed range	

49



Code/Data	Access	Mechanism

50

L1D+L1I	Private	Cache

LX3	
Core

Virtual	
Address	(VA)

Base	
Register

Bound	
Register

HMC	Vault	
DRAM

VA

Cache	Miss

Physical	
Address	(PA)	
=	VA	– Base PA

VIVT
In
st
ru
ct
io
n	
an
d	
Da

ta
	A
cc
es
s	P

at
h =			

MMAP	Base DRAM	Size



Performance	Model

• Built	upon	ZSim,	a	fast	multi-core	simulator
o Instruction	driven	simulation,	based	on	dynamic	binary	translation	(DBT)
o Modified	to	model	MPU	architecture
o ~150-200x	slower	than	real	hardware	

• Why	is	it	fast?
o Based	on	DBT	(Intel	PIN	),	so	no	functional	simulation	required
o No	full	system	simulation,	emulates	system	calls
o Bound-Weave	algorithm	to	reduce	slowdown	due	to	core-to-core	interaction

51

Baseline MPU

Skylake Skylake

Skylake Skylake

DDR3

L3

HMC

Skylake Skylake

Skylake Skylake

L3

(near-memory	cores)



Power	Model

• McPAT-like	power	model	integrated	with	Zsim

• Built	using	power/energy	data	from	published	literature	and	datasheets	for	
DDR3,	HMC,	LX3,	Westmere

• Cache	power	model	using	CACTI

52



Main	Findings	- Energy	Reduction	Analysis
• HMC	versus Baseline

o HMC	provides	substantially	lower	(12x)	access	energy	
per	bit	than	DDR3	and	higher	(6x)	bandwidth	at	the	cost	
of	higher	(2.5x)	interface	power	

o Still,	HMC	provides	energy	reduction	for	very	few	
workloads	– scan,	conductance,	tpch6,	over	baseline.	
For	other	workloads,	10%	more	energy	consumed	than	
baseline

o Reason:	Insufficient	bandwidth	utilization

• HMC_128Tiny	versus HMC
o Most	power	savings	come	from	turning	off	the	3	out-of-

order	cores+cache on	the	baseline	(2.9x).	
o Overall,	1.3x	to	3.1x	power	reduction.

53



Main	Findings	- Energy	Reduction	Analysis
• MPU_1Cube versus	HMC_128Tiny

o Main	source	of	power	saving	is	the	4x	reduction	in	static	
DRAM	interface	power	due	to	fewer	SERDES	links

• MPU_1Cube	versus Baseline
o Most	power	savings	come	from	turning	off	the	3	out-of-

order	cores+cache on	the	baseline
o Baseline	spends	most	power	on	static	core	power (50-

80%).	MPU_1Cube	achieves	most	power	reduction	
(2.9x)	on	this	component

54



55

MPU	versus	Tesseract (ISCA’15)

0
5

10
15
20
25
30

Sp
ee
du

p	
O
ve
r	B

as
el
in
e

Performance	Comparison

Tesseract

MPU

0

5

10

15

20

25

PR SSSP ATF CT VCEn
er
gy
	R
ed

uc
tio

n	
ov
er
	

Ba
se
lin

e

Energy	Comparison

Tesseract

MPU

Baseline:	32	4GHz	4-issue	OoO +	128GB	HMC*MPU	provisioned	with	same	capacity	and	
vault	count	as	Tesseract



Specification Value

Skylake Specifications 4	cores,	4-issue,	3.5	GHz,	32KB	8-way	L1D,	256	KB	8-
way	L2,	8MB	16-way	shared	L3

MPU	Specifications 128	cores,	in-order,	500	MHz,	16	KB	private	L1D	&	L1-I

MPU	Latencies 1	cycle	hit,	20	cycle	miss	(40ns),	1	cycle	non-memory	
insts,25-cycle	out-of-vault	latency

MPU	Power 0.0056W dynamic	[25],	0.0014W	static	(per	
core),0.03W	SRAM	static	power

56

Hardware	Specification



Parameter Value

Skylake Power	Factor 1.1;	1-core	DynamicPower=1.1*IPC

Skylake Static	Power 11.88W;	2.97W	per	core	x	4;	assuming	35%	uncore

SRAM Static	Power	 0.03W;	lstp devices	assumed

DDR3	Static	Power 2.5;	static	power	at	12.8	GB/sec

DDR3	Access	Energy 23.3nJ	per	64-byte;	70	pJ/bit	at	12.8	GB/sec	&	2.5W	
static	power

HMC	Static	Power 6W;	all	4	HMC	links	ON

HMC	Internal	Access	Energy 1.95nJ;	per	64-byte	access,	3.8	pJ/bit

HMC	External	Access	Energy 3.06nJ;	per	64-byte	access	at	5.98	pJ/bit

HMC	Internal	Read	Bandwidth 160	GB/sec

HMC	External	Read	Bandwidth 80	GB/sec;	Assuming	all	4	HMC	links	are	ON

57

Power/Energy	Simulation	Parameters



Specification Value

Area	and	Power	of	LX3 Core 0.044mm2, 7.1mW

Area	of	LX3 core	including	caches 0.257mm2

Area	and	Power	of	1	Compute	Tile 2.06mm2,	57mW

Total	Area	and	Power	of	MPU	Logic	Die 33.4mm2, 3.5W

58

MPU	Area/Power



Previously	Completed	Research

• ISA	Wars:	Understanding	the	relevance	of	ISA	in	modern	processors	being	RISC	or	
CISC	to	Performance,	Power	and	Energy	on	Modern	Architectures
o Undertook	this	research	in	first	year	as	PhD	student
o Main	Takeaway:	Decades	of	compiler	and	hardware	research	has	enabled	efficient	handling	
of	both	RISC	and	CISC	ISAs.	Thus,	ISA	being	RISC	or	CISC	is	not	relevant	to	performance	or	
energy.

o Published	in	ACM	Transactions	on	Computer	Systems	(TOCS),	March	2015

• Design	and	Analysis	of	an	APU	for	Exascale Computing
o Undertook	this	research	over	Summer	2016	as	a	Co-Op	at	AMD	Research
o Presents	quantitative	and	qualitative	analysis	of	the	various	aspects	of	the	APU	architecture	
(chiplets,	interposers,	3D	die	stacking,	multi-level	memories,	among	others)	for	a	future	
Exascale supercomputer	

o Main	Takeaways:	3D	stacked	DRAM	critical	to	meet	area,	performance,	power	constraints	set	
by	DOE,	additional	level	of	planar	DRAM	necessary	to	meet	capacity,	chiplet-based	design	to	
ensure	high	die	yield	and	re-usability	across	market	segments	

o Published	in	High	Performance	Computer	Architecture	(HPCA),	February	2017
59


