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• Problem:	It	is	unclear	if	a	general	architecture	can	fully	exploit	Processing-In-
Memory	(PIM)	for	high	performance	and	energy	efficiency,	while	supporting	wide	
array	of	workloads
o Most	existing	solutions	specialize	for	particular	workload	domains
o Some	others	incur	significant	energy	overheads	to	retain	generality

• Solution:	Memory	Processing	Units	(MPU)
o More	efficient	than	state-of-art	4-core	“Skylake”	processor	for	a	wide	array	of	workloads	with	
varying	degrees	of	memory	locality

o More	efficient	than	general	PIM	architectures targeting	low	locality	workloads
o Close	to	efficiency	achieved	by	a	domain-specialized	PIM	architecture,	for	graph	workloads	(low	
locality)		

Executive	Summary



• Adhere	to	three	principles:
o Performance	through	massive	concurrency	to	exploit	PIM	bandwidth

ØLarge	array	of	cores	placed	in	memory
o Energy	savings	through	low-power	computation

ØTiny	cores	that	idle	efficiently
o Flexible	Programming	Model

ØRPC-like	offload	mechanism

• Ensure	easy	integration	to	commercial	OoO processors	requiring	minimal	
modifications	to	the	processor	hardware	structure	or	the	operating	system	support
o Stand	alone	co-processor	to	the	main	processor
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MPU	Design	Approach



MPU	Overview
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Original	code

for	(	i	=	0;	I	<	N;	i++	)
result[i]	=	GetValue(key[i]);

MPU	host	code

kernel	=	“GetValueK”;

for	(	i =	0;	I	<	N;	i++	)
mbox[i]	=	MPU_Enqueue(kernel,	key,	i,	vault_id);

MPU	kernel	code

Int GetValuek(void*	key_addr,	
int thread_id);

Core	array
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Landscape	of	Solutions	in	PIM	Space	targeting	
low	locality	workloads
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Recent	works	in	PIM	domain	seem	to	suggest	that	
specialization	is	necessary	to	achieve	high	performance	and	
energy	efficiency	and	a	general	PIM	architecture	can	only	
provide	modest	benefits.

MPU	shows	it	is	possible	to	realize	a	general	PIM	architecture	
that	can	come	close	to	the	efficiency	of	proposed	specialized	
solutions	AND	can	be	significantly	more	efficient	than	recent	
proposals	of	general	PIM	architectures.
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Thesis	Statement



Contribution	of	this	Thesis

• Memory	Processing	Units	(MPU):	A	detailed	PIM	hardware	architecture,	system	
architecture	and	programming	model,	non-intrusively	deployable	on	today’s	
processors

• Detailed	evaluation	across	a	variety	of	workloads,	that
o Shows	that	composition	of	“known”	mechanisms,	that	implement	3	key	principles,	suffices	to	
achieve	general	and	efficient	processing

o Provides	insights	into	source	of	performance	and	energy	benefits	and	scaling	trends
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Post-Prelim	Work	

• Had	relatively	late	prelim,	with	most	of	the	work	completed	before	Prelims

• Post	prelims,	the	following	was	added	to	my	research	and	this	presentation:
o Qualitative	and	quantitative	comparison	to	related	work	– “Tesseract”	and	“PIM-enabled	
Instructions”

o Baseline	for	data	analysis	changed	from	Westmere to	state-of-art	Skylake processor
o 2	text	analytics	workloads	added	– dfagroup and	htmltok
o Refinements/optimizations	to	hardware	architecture,	system	architecture	and	programming	
model
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Outline

• Overview	of	Programming	Model
• Overview	of	Hardware	Architecture
• Overview	of	System	Design
• Evaluation	Methodology
• Results	&	Analysis
• Comparison	against	Related	Work
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Overview	of	Programming	Model
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MPU_Enqueue(kernelA,..)

MPU_Wait()



Vanilla	HMC
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Overview	of	System	Design
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• Consistent	pointers

• No	TLBs,	no	page	
table

• Custom API	for	
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Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis
• Comparison	against	Specialized	Architectures
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Evaluation	Objectives
• What	are	the	dominant	factors	dictating	speedup	over	a	state-of-art	multi-core	
OoO processor?
• What	are	the	dominant	sources	of	power	savings?
• Can	we	get	MPU-like	benefits	with	a	simpler	architecture?

• How	scalable	is	the	MPU	design?
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Choice	of	Workloads

• Wide	array	of	workloads	chosen	based	on	multiple	objectives:
o Commonly	used	kernels/micro-benchmarks	that	ease	detailed	analysis

§ stringmatch,	kmeans,	histogram,	scan,	aggregate,	hashjoin,	buildhashtable
o Workloads	best	suited	for	MPU

§ 5	graph	analytics	workloads	(pagerank,	shortestpath,	averageteenage,	vertexcover,	conductance)
o Workloads	that	allow	analyzing	impact	of	load	balancing

§ Graph	analytics	workloads
o Good	mixture	of	serial	and	parallel	phases	to	model	impact	of	Amdahl’s	law

§ 6	queries	from	database	analytics	domain	(TPCH)
o Other	commercially	important	workloads	that	may	be	a	good	candidate	for	MPU

§ Text	analytics	workloads

• Evaluation	uses	MPU	and	pthread (for	baseline)	programs	developed	for	all	20	
workloads	
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Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	
• What	are	the	dominant	factors	dictating	MPU	speedup?
• What	are	the	dominant	sources	of	power	savings?	
• Can	we	achieve	MPU-like	benefits	with	a	simpler	architecture?
• How	scalable	is	the	MPU	design?

• Comparison	against	Specialized	Architectures
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Factors	Dictating	MPU	Speedup	over	Baseline	

• Compute	capability	(IPC)	of	a	single	MPU	core	relative	to	single	CPU	core
o MPUspeedup =	Frequencyratio x	Concurrencyratio x	IPCratio,	assuming	perfect	load	balancing	across	
all	cores,	100%	parallelizable

o After	accounting	for	workload-independent	factors	of	frequency	and	core	count,	to	achieve	
speedup,	CPU_IPC	must	be	less	than	4.57x	MPU_IPC

• Load	balancing	across	cores

• Degree	of	parallelization	
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• Kernels,	Text	Workloads	èWell	load	
balanced	+	~100%	concurrent	

• Graph	Workloads	è Bad	load	balancing	+	
`100%	concurrent

• Database	(TPCH)	Workloads	è Good	load	
balancing	+	varying	degrees	of	concurrency	

• For	kernels	&	text	workloads,	mean	
CPU_IPC ~	2xmean	MPU_IPC
o Mean	CPU	IPC	= 1.18
o Mean	MPU	IPC	=	0.6

Factors	Dictating	Speedup	- IPCratio
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Takeaway:	For	highly	concurrent	workloads	
that	we	evaluate,	OoO+Caching

mechanisms	in	CPU	do	not	help	extract	
enough	IPC	to	outperform	MPU	

• For	graph	workloads,	mean	CPU_IPC is	
less	thanmean	MPU_IPC
o Mean	CPU	IPC	=	0.13
o Mean	MPU	IPC	=	0.19



Factors	Dictating	Speedup	– Load	Balancing
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• Perfect	load	balancing	è
Instructions	equally	distributed	
among	all	cores

• Slowest	core	extra	load	è
MPU(~60%)	>	Baseline(~44%)	

• Perfect	load	balancing	èMPU	
speedup					up	to	40%

Takeaway:	Load	balancing	has	non-trivial	impact	on	MPU	speedup.	
The	impact	is	a	function	of	graph	structure	and	partitioning	algorithm



Factors	Dictating	Speedup	– Degree	of	Parallelization
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• Degree	of	Parallelization
o tpch 5,	6,	14	è Very	high	

(99%)
o tpch 1	è High	(96%)
o tpch 3,	tpch 10	è Low	

(86%,	73%)

Takeaway:	As	per	Amdahl’s	law,	degree	of	parallelization	has	a	significant	
impact	on	performance	and	leads	to	low	speedup	with	MPU



21

Takeaway	from	Performance	Analysis

Maximum	Speedup	with	MPU	over	state-of-art	OoO processor	is	achieved	
with	following	workload	behavior:

High	Thread	Level	Parallelism
Low	instruction	level	parallelism

Low	Cache	Locality
Good	load	balancing



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	
• What	are	the	dominant	factors	dictating	MPU	speedup?
• What	are	the	dominant	sources	of	power	savings?	
• Can	we	achieve	MPU-like	benefits	with	a	simpler	architecture?
• How	scalable	is	the	MPU	design?

• Comparison	against	Specialized	Architectures
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Sources	of	Power	Savings

• Four	sources	of	power	savings	with	MPU	relative	to	Baseline:
o All	but	1	host	SKY	core+cache absent,	providing	static	core+SRAM power	reduction	(2.9x)
o 3	of	4	HMC	links	turned	off	as	only	1	core	active,	providing	static	memory	power	
reduction	(1.7x)

o Lower	memory	access	energy	per	bit	(40%)	since	accesses	originate	from	HMC	logic	die
oMPU	cores	run	at	much	lower	power	than	baseline	out-of-order	cores	(6mW	vs	~3W)
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• Static	core+SRAM power accounts	for	50-80%	baseline	power
• Power	savings	with	MPU	è 2.9x

• Static	DRAM	power	accounts	for	~10%	baseline	power
• Power	savings	with	MPU	è 1.7x

• For	highly	memory	intensive	and	low	locality	behavior	(graph	analytics),	dynamic	
DRAM	power	accounts	for	25-40%	baseline	power
• Power	savings	with	MPU	è 3%-7%	
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Power	Savings	Analysis

Takeaway:	Most	power	savings	come	from	the	absence	of	3	out-of-order	
cores+SRAM compared	to	the	baseline



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	
• What	are	the	dominant	factors	dictating	MPU	speedup?
• What	are	the	dominant	sources	of	power	savings?	
• Can	we	achieve	MPU-like	benefits	with	a	simpler	architecture?
• How	scalable	is	the	MPU	design?

• Comparison	against	Specialized	Architectures
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Can	we	achieve	MPU-like	benefits	with	a	simpler	
architecture?

• SKY+MPU	Design	(Proposed	Design)	– Provides	high	concurrency,	highest	bandwidth	availability,	lowest	
memory	access	energy,	no	change	required	to	host	chip

• SKY+HMC+128Tiny	– Provides	equivalent	concurrency,	lower	bandwidth	and	higher	memory	access	energy	
than	proposed	design
o With	good	cache	locality,	and	thus	lower	bandwidth	demand,	this	can	be	as	almost	as	good	as	SKY+MPU,	
both	from	performance	and	energy	standpoint

• SKY+HMC	– Baseline	design	with	HMC.	Provides	higher	bandwidth	availability	than	baseline
• With	low	concurrency	and/or	high	ILP	in	the	workload,	this	can	be	as	good	(or	better)	as	SKY+MPU	from	a	
performance	standpoint
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Can	we	achieve	MPU-like	benefits	with	a	simpler	
architecture?
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Takeaway:	For	most	workloads	(11	of	20),	MPU	proves	to	be	the	best	design	by	
significant	margin.	For	remaining	9	workloads,	either	HMC+128Tiny	or	HMC	

designs	proves	sufficient	



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	
• What	are	the	factors	dictating	MPU	speedup	over	baseline?
• What	are	the	dominant	sources	of	power	savings?	
• Can	we	achieve	MPU-like	benefits	with	a	simpler	architecture?
• How	scalable	is	the	MPU	design?

• Comparison	against	Specialized	Architectures
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Scalability	of	MPU	Benefits	- multi-MPU	System

MPU_1Cube

HMC
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(near-memory	cores)
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(near-memory	cores)

1	HMC	Link
4	HMC	Links

• 4	MPU	system	compared	against	single	MPU
• 1	SERDES	channel	active	per	MPU
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Scalability	of	MPU	Benefits	- multi-MPU	System
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Takeaway:	Increase	in	BW	(4x)	significantly	improves	IPC	(2-3x)	for	many	
workloads.	Not	reflected	in	overall	speedup	due	to	serialization,	load	

balancing,	other	algorithmic	effects



Maximum	energy	savings	only	
1.4x,	despite	higher	speedup
• Primarily	due	to	increase	in	all	power	
components,	with	dynamic	DRAM	
power	contributing	the	most

Scalability	of	MPU	Benefits	– multi-MPU	System
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Takeaway:	On	scaling	MPU	system,	energy	savings	does	not	keep	up	with	
speedup	due	to	large	power	overhead	of	more	simultaneous	DRAM	accesses



Outline

• Programming	Model
• Hardware	Architecture
• System	Design
• Evaluation	Methodology
• Results	&	Analysis	

• What	are	the	factors	dictating	MPU	speedup	over	baseline?
• Can	we	achieve	similar	benefits	with	a	simpler	design?
• How	much	energy	reduction	does	MPU	achieve?	What	are	the	sources?	
• How	does	MPU	speedup	and	energy	reduction	scale	with	a	large	MPU	system?

• Comparison	against	other	PIM	Architectures
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Landscape	of	Solutions	in	PIM	Space	targeting	
low	locality	workloads
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• “Tesseract”	by	Ahn et	al	features	a	specialized	hardware	architecture	and	specialized	
programming	API	for	graph	processing
o 1	core	per	vault
o Per-vault	List	Prefetcherè to	retrieve	neighboring	vertices	
o Per-vault	Message	Prefetcherèto retrieve	vertex	data	upon	inter-vault	computation	transfer
o Requires	message	passing	API	for	out-of-vault	computations
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Tesseract	(ISCA’15)

Tesseract Hardware	Architecture PageRank	Computation	in	Tesseract
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MPU	versus	Tesseract (ISCA’15)
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Baseline:	32	4GHz	4-issue	OoO +	128GB	HMC*MPU	provisioned	with	same	capacity	and	
vault	count	as	Tesseract

Takeaway:	MPU	comes	close	in	performance	and	energy	efficiency	to	a	
specialized	architecture	for	graph	analytics



• “PIM-Enabled	Instructions”	by	Ahn et	al	features	a	general	architecture	that	requires	
minimal	modifications	to	programming	API,	operating	system,	coherence	support,	etc
o 1	PCU/ALU	per	vault
o Offloads	atomic basic-blocks	to	PIM	ALU	units
o Requires	modifications	to	host	HW	to	identify	low	locality	memory	accesses,	so	it	could	only	
offload	those	blocks	of	work	that	are	likely	to	miss	the	cache	hierarchy
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PIM-Enabled	Instructions	(ISCA’15)

PEI	Hardware	Architecture PageRank	Computation	in	PEI
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MPU	versus	PIM-Enabled	Instructions	(ISCA’15)
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Takeaway:	MPU	significantly	outperforms	and	reduces	energy	compared	to	a	
recently	proposed	general	PIM	architecture
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Comparison	Against	Other	PIM	Architectures

Takeaway:	MPU	shows	it	is	possible	to	realize	a	general	PIM	architecture	that	
can	come	close	to	the	efficiency	of	proposed	specialized	solutions	AND	can	be	
significantly	more	efficient	than	recent	proposals	of	general	PIM	architectures.



Thank	You	– Questions?
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BACKUP	SLIDES
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MPU:	New	“Offload”	Chip

3D-stacked	
DRAM	+	

simple	cores

3D-stacked	
DRAM	+	

simple	cores

3D	Stacked	
DRAM	+ simple	
in-order	cores,	

caches

MPU	Chip

Multiple	
Partitions(Vaults)

CPU	DRAM

Memory	Bus

● Co-processor	
● 3D	Memory (HMC	from	Micron) +	Simple Cores	on	logic	base
● Enables work offload from	CPU
● Up	to	~16X	better	throughput,	~38X	lower	energy

Memory	Bus
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Overview	of	Programming	Model

• CUDA-like	offload	model,	with	some	differences:
• CUDA	focuses	on	organizing	computation	with	thread	hierarchies,	directly	

supporting	SIMD	computation
• MPU	model	focuses	on	data	layout	and	irregular	code,	allowing	non-SIMD	

independent	computations 42

Data	Abstraction

vault

Computation	Abstraction

mailboxes

mailboxes

kernelA

kernelB
kernelA

<collect	results>

MPU_Enqueue(kernelA,..)

MPU_Enqueue(kernelB,..)

MPU_Enqueue(kernelA,..)

MPU_Wait()



Computation	Abstraction

• Offload	using	MPU_Enqueue(),	an	RPC-like	memory	procedure	call
• Wait	for	return	value	using	MPU_Wait()
• Read	mailboxes	to	gather	results

43

void KVApplication(Input in[N])	{
MPU_Init(“mpu_kernels.o”)
MPUMailbox mbox[1024];				
kernel1	=	“GetValueK”;
kernel2	=	“SetValueK”;

for (	int c	=	0,	i	=	0;	i	<	N;	i++	)
vid	=	<assign	vault	number>
if (	data[i]->type	==	GET	)
mbox[c]	=	MPU_Enqueue(kernel1,	in,	i,	vid);

else
mbox[c]	=	MPU_Enqueue(kernel2,	in,	i,	vid);

if (	++c	==	1024	)	{
MPU_Wait();
CollectResults(mbox);
c	=	0;

}
}

}

HTValue GetValueK(Input*	in,	int tid)
{
Bucket* b	=	in[tid]->bucket;
Key k	=	in[tid]->key;
for (	unsigned i =	0;	i <	B_SIZE;	i++	)
{
if (	b[i].key	==	k	)
return	b[i].value;

}

return	DEFAULT_VALUE;
}

(c)	Key-Value	store	application	kernels(b)	Key-Value	store	host	CPU	code

int SetValueK(Input*	in,	int tid)
{
Bucket* b	=	in[tid]->bucket;
Key k	=	in[tid]->key;
Value v	=	in[tid]->value;
for (	unsigned i =	0;	i <	B_SIZE;	i++	)
{
if (	b[i].key	==	k	)	{
b[i].value	=	v;
return	SUCCESS;

}
}

return	NOT_FOUND;
}

mpu_kernels.chost.c

(a)	Execution	flow	for	MPU	applications
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Data	abstraction

● No	flat	memory	view
o Large	data sets	must	be	sharded

● Each	MPC	tied	to	256MB	DRAM	slice/vault
o All	data	and	code	“ideally”	should be	

local
o Out-of-vault	accesses	possible	and	

allowed,	though	at	a	higher	cost
o MPU	kernel	code	operates	on	virtual

addresses

Slice/
Vault
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MPU	Controller	

• Command	Register	– Identify	command	type	(Init,	
Enqueue,	Wait)	+	other	information

• Device	Registers	
o 1024	Mailbox	Registers	– store	incoming	MPU_Enqueue data
o 6	Initialization	Registers	– store	information	for	device	init

• Mailbox	Registers
o 24	bytes	each	– kernel	address,	argument	address,	thread	ID,	

vault	ID
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MPU	Compute	Tile	(s)

• Compute	Fabric

o 8	Tensilica LX3	cores	+	private	L1	data	&	
instruction	cache	

o LX3	core	è Single	issue,	in-order	(600x	
smaller	than	Intel	Ivybridge)

o No	hardware	cache	coherence	support

Router

Core	0

D$ I$

Core	7

D$ I$.	.	

Bank	
Scheduler

Compute	
scheduler

Vault	controller

Address	
Translation	

Unit

Compute	Fabric
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Ensuring	Coherence	w/o	HW	Cache	Coherence

• Hardware	cache	coherence	eschewed	to	reduce	design	complexity	and	traffic	
on	interconnect	network

• Coherence	ensured	with	two	mechanisms,	both	of	which	require	some	
programmer	involvement:
o Global	variables	always	bypass	L1	cache.	Achieved	by	placing	global	variables	in	specific	
region	(code	section)	in	vault	0	and	having	each	core	monitor	if	a	load/store	access	falls	
within	that	region

o Coherence	for	read-write	shared	heap	variables	ensured	by	enclosing	accesses	within	
critical	section.	At	end	of	critical	section,	cache	lines	made	dirty	within	critical	section	
are	written-back	and	all	lines	read	or	written	are	invalidated.	

47



Guiding	Principles	of	MPU	System	Design

• No	modifications	to	host	CPU,	to	ensure	easy	integration

• Minimal	or	no	modifications	to	the	host	operating	system

• Consistent	pointers	between	host	code	and	kernel	code	to	ease	program	
development

• Minimal	hardware	overhead	on	MPU	for	address	translation
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Address	Space	Management

Code+Globals Region

Heap	Region

Stack	Region
8	MB,	1	MB	per	core

256	MB	per	Vault

Vault	0

Vault	1

Vault	15

m
m
ap
ed

’e
d
Re

gi
on

code
heap
stack

Vault	0

code
heap
stack

Vault	15

Host	CPU	Virtual	
Address	Space

MPU	Physical	Memory

• To	enable	consistent	
pointers,	MPU	physical	
memory	linearly	
mapped	to	host	virtual	
address	space	using	
mmap()

• MPU	API	for	memory	
allocation	inside	
mmap’ed range	
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Code/Data	Access	Mechanism
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Performance	Model

• Built	upon	ZSim,	a	fast	multi-core	simulator
o Instruction	driven	simulation,	based	on	dynamic	binary	translation	(DBT)
o Modified	to	model	MPU	architecture
o ~150-200x	slower	than	real	hardware	

• Why	is	it	fast?
o Based	on	DBT	(Intel	PIN	),	so	no	functional	simulation	required
o No	full	system	simulation,	emulates	system	calls
o Bound-Weave	algorithm	to	reduce	slowdown	due	to	core-to-core	interaction
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Power	Model

• McPAT-like	power	model	integrated	with	Zsim

• Built	using	power/energy	data	from	published	literature	and	datasheets	for	
DDR3,	HMC,	LX3,	Westmere

• Cache	power	model	using	CACTI
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Main	Findings	- Energy	Reduction	Analysis
• HMC	versus Baseline

o HMC	provides	substantially	lower	(12x)	access	energy	
per	bit	than	DDR3	and	higher	(6x)	bandwidth	at	the	cost	
of	higher	(2.5x)	interface	power	

o Still,	HMC	provides	energy	reduction	for	very	few	
workloads	– scan,	conductance,	tpch6,	over	baseline.	
For	other	workloads,	10%	more	energy	consumed	than	
baseline

o Reason:	Insufficient	bandwidth	utilization

• HMC_128Tiny	versus HMC
o Most	power	savings	come	from	turning	off	the	3	out-of-

order	cores+cache on	the	baseline	(2.9x).	
o Overall,	1.3x	to	3.1x	power	reduction.
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Main	Findings	- Energy	Reduction	Analysis
• MPU_1Cube versus	HMC_128Tiny

o Main	source	of	power	saving	is	the	4x	reduction	in	static	
DRAM	interface	power	due	to	fewer	SERDES	links

• MPU_1Cube	versus Baseline
o Most	power	savings	come	from	turning	off	the	3	out-of-

order	cores+cache on	the	baseline
o Baseline	spends	most	power	on	static	core	power (50-

80%).	MPU_1Cube	achieves	most	power	reduction	
(2.9x)	on	this	component
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MPU	versus	Tesseract (ISCA’15)
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Specification Value

Skylake Specifications 4	cores,	4-issue,	3.5	GHz,	32KB	8-way	L1D,	256	KB	8-
way	L2,	8MB	16-way	shared	L3

MPU	Specifications 128	cores,	in-order,	500	MHz,	16	KB	private	L1D	&	L1-I

MPU	Latencies 1	cycle	hit,	20	cycle	miss	(40ns),	1	cycle	non-memory	
insts,25-cycle	out-of-vault	latency

MPU	Power 0.0056W dynamic	[25],	0.0014W	static	(per	
core),0.03W	SRAM	static	power
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Parameter Value

Skylake Power	Factor 1.1;	1-core	DynamicPower=1.1*IPC

Skylake Static	Power 11.88W;	2.97W	per	core	x	4;	assuming	35%	uncore

SRAM Static	Power	 0.03W;	lstp devices	assumed

DDR3	Static	Power 2.5;	static	power	at	12.8	GB/sec

DDR3	Access	Energy 23.3nJ	per	64-byte;	70	pJ/bit	at	12.8	GB/sec	&	2.5W	
static	power

HMC	Static	Power 6W;	all	4	HMC	links	ON

HMC	Internal	Access	Energy 1.95nJ;	per	64-byte	access,	3.8	pJ/bit

HMC	External	Access	Energy 3.06nJ;	per	64-byte	access	at	5.98	pJ/bit

HMC	Internal	Read	Bandwidth 160	GB/sec

HMC	External	Read	Bandwidth 80	GB/sec;	Assuming	all	4	HMC	links	are	ON
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Specification Value

Area	and	Power	of	LX3 Core 0.044mm2, 7.1mW

Area	of	LX3 core	including	caches 0.257mm2

Area	and	Power	of	1	Compute	Tile 2.06mm2,	57mW

Total	Area	and	Power	of	MPU	Logic	Die 33.4mm2, 3.5W
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Previously	Completed	Research

• ISA	Wars:	Understanding	the	relevance	of	ISA	in	modern	processors	being	RISC	or	
CISC	to	Performance,	Power	and	Energy	on	Modern	Architectures
o Undertook	this	research	in	first	year	as	PhD	student
o Main	Takeaway:	Decades	of	compiler	and	hardware	research	has	enabled	efficient	handling	
of	both	RISC	and	CISC	ISAs.	Thus,	ISA	being	RISC	or	CISC	is	not	relevant	to	performance	or	
energy.

o Published	in	ACM	Transactions	on	Computer	Systems	(TOCS),	March	2015

• Design	and	Analysis	of	an	APU	for	Exascale Computing
o Undertook	this	research	over	Summer	2016	as	a	Co-Op	at	AMD	Research
o Presents	quantitative	and	qualitative	analysis	of	the	various	aspects	of	the	APU	architecture	
(chiplets,	interposers,	3D	die	stacking,	multi-level	memories,	among	others)	for	a	future	
Exascale supercomputer	

o Main	Takeaways:	3D	stacked	DRAM	critical	to	meet	area,	performance,	power	constraints	set	
by	DOE,	additional	level	of	planar	DRAM	necessary	to	meet	capacity,	chiplet-based	design	to	
ensure	high	die	yield	and	re-usability	across	market	segments	

o Published	in	High	Performance	Computer	Architecture	(HPCA),	February	2017
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