

Tony Nowatzki⁺, **Vinay Gangadhar***, Newsha Ardalani*, Karu Sankaralingam*

> 44th ISCA, Toronto, ON, Canada Accelerator Session (6A-4) Tuesday June 27th, 2017

*University of Wisconsin-Madison *University of California, Los Angeles

Traditional Multicore

Application domain specialization

Out Fifo

Processing ingine (PE

UCLA

Traditional Multicore

SR

Traditional Multicore

Application domain specialization

NVIDIA DGX-1 AI Accelerator

Traditional Multicore

Application domain specialization

Domain Specific Acceleration

Fixed-function Accelerators for specific domain: **Domain Specific Accelerators (DSAs)**

+ High Efficiency

10 – 100x Performance/Power or Performance/Area three orders of magnitude less energy than a state of the art software DBMS, while the performance-oriented design outperforms the same DBMS by **70X**

sor, the accelerator is **117X** faster, and it can reduce the total energy by **21X** The accelerator characteristics are obtained after layout at 65nm. Such a high throughput in

UCI A

Traditional Multicore

Application domain specialization

Domain Specific Acceleration

UCLA

Fixed-function Accelerators for specific domain: **Domain Specific Accelerators (DSAs)**

+ High Efficiency

10 – 100x Performance/Power or Performance/Area

- Not programmable/re-configurable & Obsoletion prone
- Architecture, design, verification and fabrication cost
- Multi-DSA chip for "N" application domains Area and cost inefficient 2

June 27, 2017

The Universal Accelerator Dream...

matching the efficiency of Domain Specific Accelerators (DSAs) with an efficient hardware-software interface

June 27, 2017

Generality

ASIC/ DSA	GPGPU				
Efficiency					

(energy efficient computing)

Generality

Generality

Generality

Background Work*

*IEEE Micro Top-Picks 2017: Domain Specialization is Generally Unnecessary for Accelerators

Our Work: Stream-Dataflow Acceleration

Exploit common accelerator application behavior:

Our Work: Stream-Dataflow Acceleration

Exploit common accelerator application behavior:

Dataflow Computation

- Stream-Dataflow Execution model
 - Abstracts typical accelerator computation phases

Our Work: Stream-Dataflow Acceleration

Exploit common accelerator application behavior:

Dataflow Computation

- Stream-Dataflow Execution model
 - Abstracts typical accelerator computation phases

Stream Patterns and Interface

- Stream-Dataflow ISA encoding and Hardware-Software interface
 - Exposes parallelism available in these phases

Programmable Stream-Dataflow Accelerator

Motivation and Overview

• Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

Dataflov

Memory Stream

address nattern len

Outline

Motivation and Overview

• Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

UCLA

Computation

Memory Stream

address nattern lens

Programmer Abstractions for Stream-Dataflow Model

UCLA

Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model

 Computation abstraction – Dataflow Graph (DFG) with input/output vector ports

Programmer Abstractions for Stream-Dataflow Model

 Computation abstraction – Dataflow Graph (DFG) with input/output vector ports

Stre

Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- **Data abstraction** Streams of data fetched from memory and stored back to memory

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- *Reuse abstraction* Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- *Reuse abstraction* Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time

Read Data

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time

Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model

- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time

ISCA 2017 Stream-Dataflow Acceleration Talk

Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model

- **Computation abstraction** Dataflow Graph (DFG) with input/output vector ports
- **Data abstraction** Streams of data fetched from memory and stored back to memory
- **Reuse abstraction** Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- **Communication abstraction** Stream-Dataflow data movement commands and barriers Time

Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model

 Computation abstraction – Dataflow Graph (DFG) with input/output vector ports

- Data abstraction Streams of data fetched from memory and stored back to memory
- *Reuse abstraction* Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time

Motivation and Overview

• Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

Outline

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

Dataflov

Motivation and Overview

Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

Stream-Dataflow Accelerator Architecture

Evaluation and Results

Memory Stream

address nattern lens

Dataflov

Computation

Outline

Stream-Dataflow ISA Interface

Express any data-stream pattern of accelerator applications using simple, flexible and yet efficient encoding

- Set-up Interface:
 - **SD_Config** Configuration data stream for dataflow computation fabric (CGRA)

• Set-up Interface:

SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

• Set-up Interface:

SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

Stream Interface → SD_[source]_[dest]

• Set-up Interface:

SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

Stream Interface → SD_[source]_[dest]

Command Name	Parameters	Description
SD_Config	Address, Size	Stream CGRA configuration from given address
SD_Mem_Scratch	Source Mem Address, Stride, Access Size, Num Strides, Dest. Scratch Address	Read from memory with pattern to scratchpad
$SD_Scratch_Port$	Source Scratch Address, Stride, Access Size, Strides, Input Port $\#$	Read from scratchpad with pattern to input port
SD_Mem_Port	Source Mem Address, Stride, Access Size, Num Strides, Input Port $\#$	Read from memory with pattern to input port
SD_Const_Port	Constant Value, Num Elements, Input Port $\#$	Send constant value to input port
SD_Clean_Port	Num Elements, Output Port $\#$	Throw away some elements from output port
SD_Port_Port	Output Port $\#$, Num Elements, Input Port $\#$	Issue recurrence between input-output port pairs
$SD_Port_Scratch$	Output Port $\#$, Num Elements, Scratch Address	Write from port to scratchpad
SD_Port_Mem	Output Port #, Stride, Access Size, Num Strides, Dest. Mem Address	Write from port to memory with pattern
SD_Mem_IndPort	Source Mem Address, Stride, Access Size, Num Strides, Indirect Port $\#$	Read the addresses from memory with pattern to indirect port
$SD_IndPort_Port$	Indirect Port #, Offset Address, Input Port #	Indirect load from addresses present in indirect port
${\rm SD_IndPort_Mem}$	Indirect Port #, Output Port #, Dest. Offset Address	Indirect store to addresses present in indirect port
SD_Barrier_Scratch_Rd		Barrier for scratchpad reads
$SD_Barrier_Scratch_Wr$	-	Barrier for scratchpad writes
SD_Barrier_All	~	Barrier to wait for all commands completion

- Set-up Interface:
 - SD_Config Configuration data stream for dataflow computation fabric (CGRA)
- Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

Stream Interface → SD_[source]_[dest]

• Set-up Interface:

SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

• Stream Interface → SD_[source]_[dest]

Access Pattern

Source

Memory, Local Storage, DFG Port Destination

UCLA

Memory, Local Storage, DFG Port

Stream-Dataflow ISA Encoding

Stream:

Dataflow:

Stream-Dataflow ISA Encoding

Stream:

Dataflow:

Specified in a Domain Specific Language (DSL)

Stream:

Stream Encoding <address, access_size, stride_size, length>

Dataflow:

Specified in a Domain Specific Language (DSL)

Stream-Dataflow ISA Encoding

Stream Encoding <address, access_size, stride_size, length>

Dataflow:

Specified in a Domain Specific Language (DSL)

Specified in a Domain Specific Language (DSL)

Example Code: Dot Product

Original Program

Example Code: Dot Product

Original Program

for(int i = 0 to N) {
 c += a[i] * b[i];
}

Dataflow Encoding

Example Code: Dot Product

Stream ISA Encoding

P3

- Outline
- Motivation and Overview

• Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

Memory Stream (sociest, pattern, length) Reuse (sociest, pattern, length) (sociest, pattern, len

Motivation and Overview

• Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

UCL A

Requirements for Stream-Dataflow UCLA Accelerator Architecture

1. Should employ the common specialization principles and hardware mechanisms

(*IEEE Micro Top-Picks 2017: Domain Specialization is Generally Unnecessary for Accelerators)

 Programmability features without the inefficiencies of existing data-parallel architectures* (with less power, area and control overheads)

*More detailed analysis contrasting data-parallel architectures and stream-dataflow architecture in paper

Stream-Dataflow Accelerator -- 64b Architecture

— 512b **———** 64b

Stream-Dataflow Accelerator Architecture

—— 512b **———** 64b

Dataflow:

• Coarse grained reconfigurable architecture (CGRA) for data parallel execution

— 512b **–––** 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

— 512b **–––** 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

— 512b **–––** 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

— 512b **–––** 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:

Architecture

— 512b **–––** 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:

 Programmable scratchpad and supporting stream-engine for data-locality and data-reuse

Architecture

512b --- 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:

- Programmable scratchpad and supporting stream-engine for data-locality and data-reuse
- Memory stream-engine to facilitate data streaming in and out of the accelerator

Architecture

512b --- 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:

- Programmable scratchpad and supporting stream-engine for data-locality and data-reuse
- Memory stream-engine to facilitate data streaming in and out of the accelerator
- Recurrence stream-engine to support recurrent data stream

UCL A

Architecture

512b --- 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:

- Programmable scratchpad and supporting stream-engine for data-locality and data-reuse
- Memory stream-engine to facilitate data streaming in and out of the accelerator
- Recurrence stream-engine to support recurrent data stream
- Indirect vector port interface for streaming addresses (indirect load/stores)

UCL A

ISCA 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

Outline

Motivation and Overview

Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

Stream-Dataflow Accelerator Architecture

Evaluation and Results

Dataflov

Computation

Memory Stream

address natiena lene

Motivation and Overview

• Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

Memory Stream

address natiena lene

Dataflow

Computation

21

Stream-Dataflow Implementation: UCLA Softbrain

- Workloads
 - Deep Neural Networks (DNN) For domain provisioned comparison
 - Machsuite Accelerator Workloads For comparison with application specific accelerators

- Comparison
 - Domain Provisioned Softbrain vs. DianNao DSA
 - Broadly provisioned Softbrain vs. ASIC design points *Aladdin* generated performance, power and area

UCI A

Domain-Specific Accelerator UCLA Comparison (Softbrain vs DianNao)

Domain-Specific Accelerator UCLA Comparison (Softbrain vs DianNao)

DianNao Area: 2.16 mm² DianNao Power: 420 mW

Softbrain Area: **3.76 mm²** Softbrain Power: **950 mW**

Softbrain vs ASIC Designs Comparison

UCLA

Aladdin* generated ASIC design points – Resources constrained to be in ~15% of Softbrain Perf. to do iso-performance analysis

*Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space Exploration of Customized Architectures. Sophia Shao , .et. al June 27, 2017 ISCA 2017 Stream-Dataflow Acceleration Talk 25

Softbrain vs ASIC Comparison

Power Efficiency Relative to OOO4 (GM)

Energy Efficiency Relative to OOO4 (GM)

ASIC Area Relative to Softbrain (GM)

Softbrain vs ASIC Comparison

Power Efficiency Relative to OOO4 (GM)

Energy Efficiency Relative to OOO4 (GM) ASIC Area Relative to Softbrain (GM)

Softbrain vs ASIC designs

- Perf. Able to match the performance
- Power ~1.6x overhead
- Energy Efficiency ~1.5x overhead
- Area ~8x overhead*

*All 8 ASICs combined \rightarrow 2.15x more area than Softbrain

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface Exposes parallelism available in these phases

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface Exposes parallelism available in these phases
- Stream-Dataflow Accelerator Architecture
 - CGRA and vector ports for pipelined vector-dataflow computation
 - Highly parallel stream-engines for low-power stream communication

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface Exposes parallelism available in these phases
- Stream-Dataflow Accelerator Architecture
 - CGRA and vector ports for pipelined vector-dataflow computation
 - Highly parallel stream-engines for low-power stream communication
- Stream-Dataflow Prototype & Implementation Softbrain
 - Matches performance of domain provisioned accelerator (DianNao DSA) with ~2x overheads in area and power
 - Compared to application specific designs (ASICs), Softbrain has ~2x overheads in power and ~8x in area

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface –

Getting There !!

A good enabler for exploring general purpose programmable hardware acceleration

 Compared to application specific designs (ASICs), Softbrain has ~2x overheads in power and ~8x in area

n

Backup

C[i] = A[i] * B[i]

C[i] = A[i] * B[i]

ISCA 2017 Stream-Dataflow Acceleration Talk

UCLA **1** Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued 0 Barrier Dispatched 0 Dependency Resource idle Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch ••**O**•; Scratchpad Program Order Х С **CGRA** fabric state Low-power core state Command June 27, 2017 generation 2017 Stream-Dataflow Acceleration Talk 30

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched 0 Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A Х С **CGRA** fabric state Low-power core state Command June 27, 2017 generation 2017 Stream-Dataflow Acceleration Talk 30

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched 0 Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B С **CGRA** fabric state Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched 0 Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С П. О..... **CGRA** fabric state Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched 0 Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С П. О..... C6) Mem \rightarrow Port B **CGRA** fabric state Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A Х C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С П. О..... C6) Mem \rightarrow Port B C7) All Barrier **CGRA** fabric state Low-power core state Command generation 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

Image: Stream-Dataflow Execution Model UCLA Detailed Example Image: Stream-Dataflow Execution Model Image: Dependency Image: Dispatched O Dependency Resource idle Iter. boundary

Time

n.....

C7) All Barrier CGRA fabric state Low-power core state

June 27, 2017

Program Order

All data at dest.

Stream Commands

C1) Mem \rightarrow Scratch

C2) Scratch Wr Barrier

C3) Scratch \rightarrow Port A

C4) Mem \rightarrow Port B

C5) Port C \rightarrow Mem

C6) Mem \rightarrow Port B

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A Х C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С C6) Mem \rightarrow Port B **D**.....**O**

CGRA fabric state Low-power core state

C7) All Barrier

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C → Mem С C6) Mem \rightarrow Port B C7) All Barrier

CGRA fabric state Low-power core state

June 27, 2017

Command generation 2017 Stream-Dataflow Acceleration Talk

Processing

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С C6) Mem \rightarrow Port B C7) All Barrier **CGRA** fabric state Processing Low-power core state Command

generation 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

30

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С **D**··**O**····· C6) Mem \rightarrow Port B 0 C7) All Barrier **CGRA** fabric state Processing Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С C6) Mem \rightarrow Port B 0 C7) All Barrier **CGRA** fabric state Processing Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \cap Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С C6) Mem \rightarrow Port B Ó C7) All Barrier **CGRA** fabric state Processing Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \cap Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A C4) Mem \rightarrow Port B Х 0.0.4 C5) Port C \rightarrow Mem С **D**··**O**····· C6) Mem \rightarrow Port B 0 C7) All Barrier **CGRA** fabric state Processing

Command

Low-power core state

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \cap Dependency **Resource idle** Iter. boundary Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A C4) Mem \rightarrow Port B Х 0.0.4 C5) Port C → Mem С C6) Mem \rightarrow Port B 0 C7) All Barrier **CGRA** fabric state Processing Low-power core state

generation 2017 Stream-Dataflow Acceleration Talk

Resume

Command

June 27, 2017

Stream-Dataflow Execution Model UCLA Detailed Example

Stream-Dataflow Accelerator Potential

1. Dataflow based pipelined concurrent execution

2. High Computation Activity Ratio: Number of Computations/Stream Commands

C6) Mem → Port B C7) All Barrier CGRA fabric state

Low-power core state

June 27, 2017

Program Order

Inefficiencies in Data-Parallel UCLA

Architectures

Stream-Dataflow Accelerator

Architecture Opportunities

- Reduce address generation & duplication overheads
- Distributed control to boost pipelined concurrent execution
- High utilization of execution resources w/o massive multi-threading, reducing cache pressure or using multi-ported scratchpad
- Decouple access and execute phases of programs
- Able to be easily customizable/configurable for new application domain

Stream-Dataflow Accelerator Architecture

— 512b **———** 64b **—**—— Stream Command

Multi-Tile Stream-Dataflow Accelerator

- Each tile is connected to higher-L2 cache interface
- Need a simple scheduler logic to schedule the offloaded streamdataflow kernels to each tile

UCLA

June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

Softbrain Stream Engine Request Pipeline

- Responsible for address generation for both affine and non-affine data-streams
- Priority based selection among multiple queued data-steams
- Affine streams Affine Address Generation Unit (AGU) generates memory addresses
- Non-affine AGU gets addresses and offsets from indirect vector ports
- Similar stream request pipeline is used for scratchpad stream-engines with minimal changes

UCI A

Programming Stream-Dataflow Accelerator

- 1. Specify Datapath for the CGRA
 - Simple Dataflow Language for DFG
- 2. Orchestrate the parallel execution of hardware components
 - Coarse-grained stream commands using the stream-interface

Example Code: Dot Product

Original Program

for(int i = 0 to N) {
 dot_prod += a[i] * b[i]
}

Scalar	Vector	Stream-Dataflow	
<pre>for(i = 0 to N) { Send a[i] → P1 Send b[i] → P2 } Get P3 -> result</pre>	<pre>for(i = 0 to N, i+=vec_len) { Send a[i:i+vec_len] → P1 Send b[i:i+vec_len] → P2 } Get P3 -> result</pre>	Send a[i:i+N] → P1 Send b[i:i+N] → P2 Get P3 -> result	

~2N Instructions

~2N/vec_len Instructions

~3 Instructions

Existing Architectures for Data Parallel

Vector Processor

(eg. ARM Neon, X86 SSE)

Spatial Processor

(eg. Tilera, TRIPS, Wavescalar)

- Amortized Instruction Issue
- Efficient Vector-Memory

- Efficient Dataflow b/t Units
- Flexible Computation Patterns

June 27, 2017

Existing Architectures for Data Parallel

Vector Processor

(eg. ARM Neon, X86 SSE)

Spatial Processor

(eg. Tilera, TRIPS, Wavescalar)

Vectorized memory interface + Spatial Datapath + Amortized Issue

Dataflow Graph (DFG) for CGRA

Stream Dataflow Program:

```
uint16_t synapse[Nn][Ni];
uint16 t neuron i[Ni];
uint16_t neuron_n[Nn];
SD CONFIG(dfg config, dfg size);
SD DMA READ(synapse, 8, 8,Ni*Nn/4,P_dfg_S);
SD DMA READ(neuron i, 0,Ni*2,Nn, P dfg N);
for (n = 0; n < Nn/nthreads; n++) {
  SD_CONST(P_dfg_acc,0,1);
  SD RECURRENCE(P dfg out,Ni/4-1,Port acc);
  SD CONST(P dfg do sig,0,Ni/4-1);
  SD_CONST(P_dfg_do_sig,1,1);
  SD_DMA_WRITE(P_dfg_out,2,2,1,&neuron_n[n]);
SD WAIT ALL();
```


Performance Considerations

- Goal: Fully Pipeline the Largest Data Flow Graph!
- Primary Bottlenecks:

Size of Data Flow Graph

Increase through Loop Unrolling/Stripmining

General Core (for Issuing Streams)

Increase "length" of streams

Memory/Cache Bandwidth

Use Scratchpad for reused Data

Recurrence Serialization Overhead

Either: 1. Increase Parallel Computations (tiling) 2. Use internal accumulation ΠΟΙ Φ

Optimized DFG

Optimized Classifier Layer

Synapses (Nn x Ni)

Optimized Classifier Layer

Synapses (Nn x Ni)

Output Neurons (Nn)

DianNao Power/Area Comparison

		area(mm ²)	power (mw
Control Core + 16kB I & D\$		0.16	39.1
	Network	0.12	31.2
CGRA	FUs (4×5)	0.04	24.4
	Total CGRA	0.16	55.0
5×Stream Engines		0.02	18.3
Scratchpad (4KB)		0.1	2.0
Vector Ports (Input & Output)		0.03	3.0
1 Softbrain Total		0.47	119.3
8 Softbrain Units		3.76	954.4
DianNao		2.16	418.
Softbrain / DianNao Overhead		1.74	2.28

Table 3: Area and Power Breakdown / Comparison (All numbers normalized to 55nm process technology)

Softbrain vs. DianNao vs. GPU

ASIC Area Relative to Softbrain

Softbrain vs. ASIC Power Efficiency Comparison

Softbrain vs. ASIC Energy Efficiency Comparison

