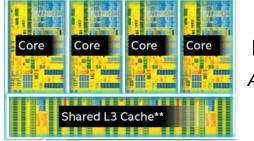


Tony Nowatzki⁺, **Vinay Gangadhar***, Newsha Ardalani*, Karu Sankaralingam*

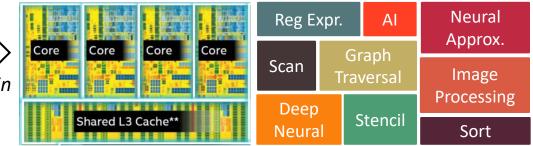
> 44th ISCA, Toronto, ON, Canada Accelerator Session (6A-4) Tuesday June 27th, 2017

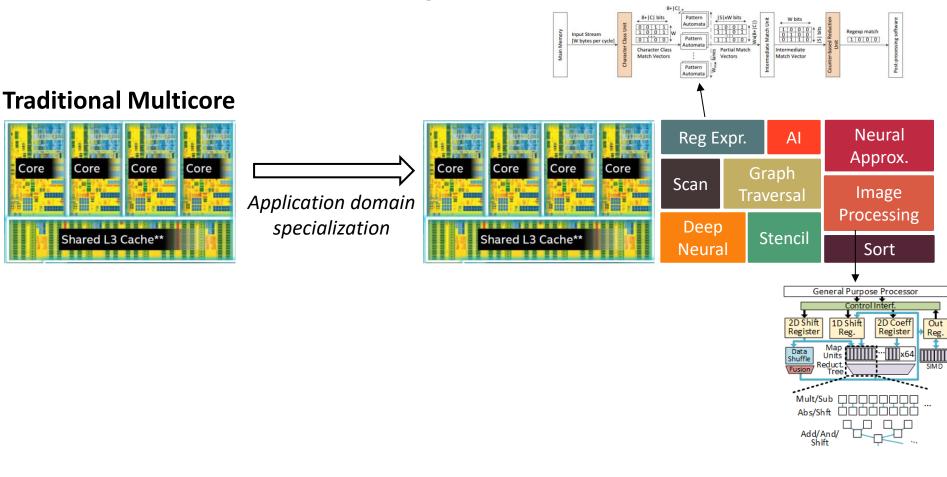
*University of Wisconsin-Madison *University of California, Los Angeles

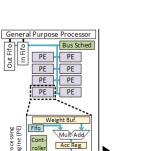
Traditional Multicore



Application domain specialization





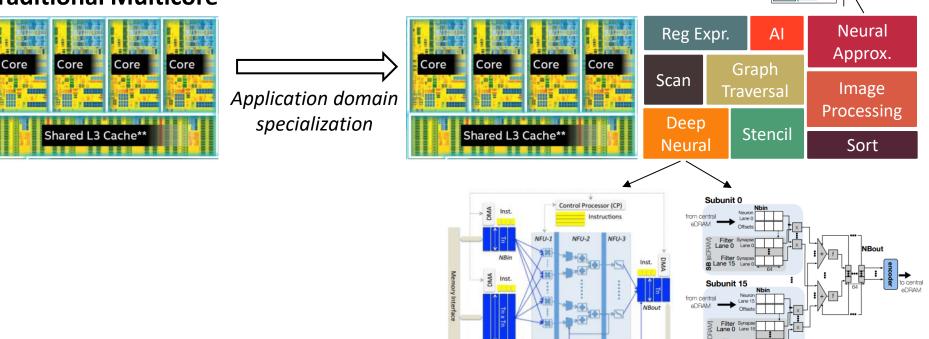


Out Fifo

Processing ingine (PE

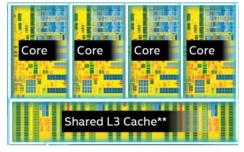
UCLA

Traditional Multicore

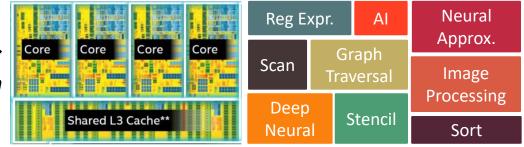


SR

Traditional Multicore



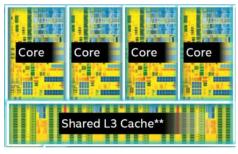
Application domain specialization



NVIDIA DGX-1 AI Accelerator

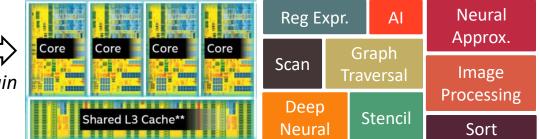


Traditional Multicore



Application domain specialization

Domain Specific Acceleration



Fixed-function Accelerators for specific domain: **Domain Specific Accelerators (DSAs)**

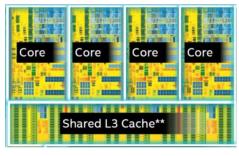
+ High Efficiency

10 – 100x Performance/Power or Performance/Area three orders of magnitude less energy than a state of the art software DBMS, while the performance-oriented design outperforms the same DBMS by **70X**

sor, the accelerator is **117X** faster, and it can reduce the total energy by **21X** The accelerator characteristics are obtained after layout at 65nm. Such a high throughput in

UCI A

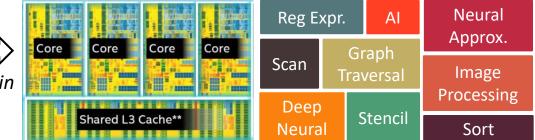
Traditional Multicore



Application domain specialization

Domain Specific Acceleration

UCLA



Fixed-function Accelerators for specific domain: **Domain Specific Accelerators (DSAs)**

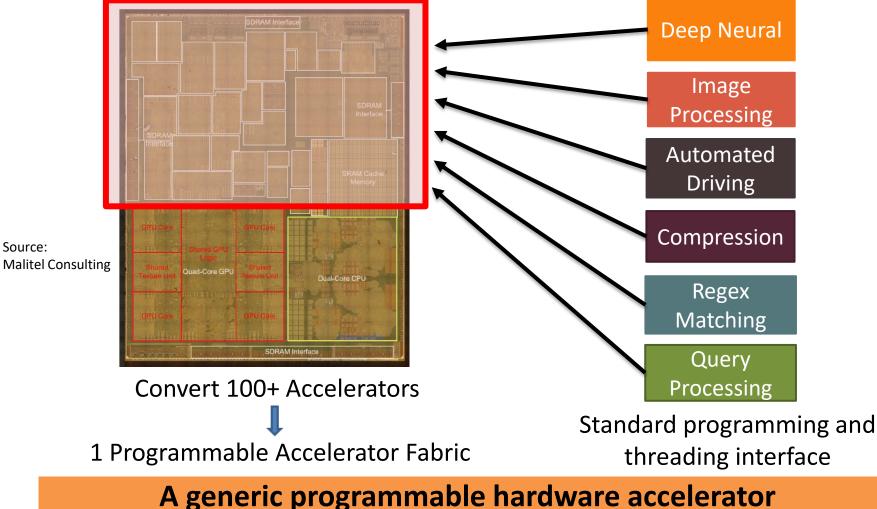
+ High Efficiency

10 – 100x Performance/Power or Performance/Area

- Not programmable/re-configurable & Obsoletion prone
- Architecture, design, verification and fabrication cost
- Multi-DSA chip for "N" application domains Area and cost inefficient 2

June 27, 2017

The Universal Accelerator Dream...



matching the efficiency of Domain Specific Accelerators (DSAs) with an efficient hardware-software interface

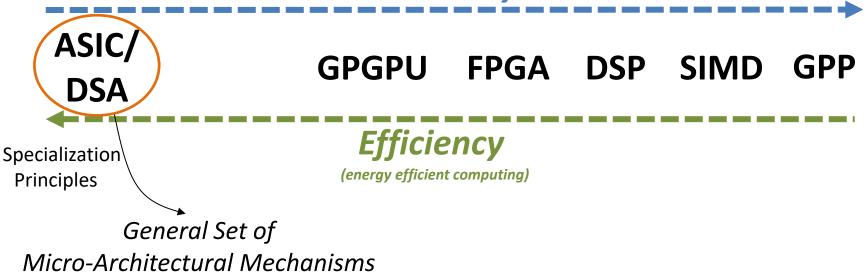
June 27, 2017

Generality

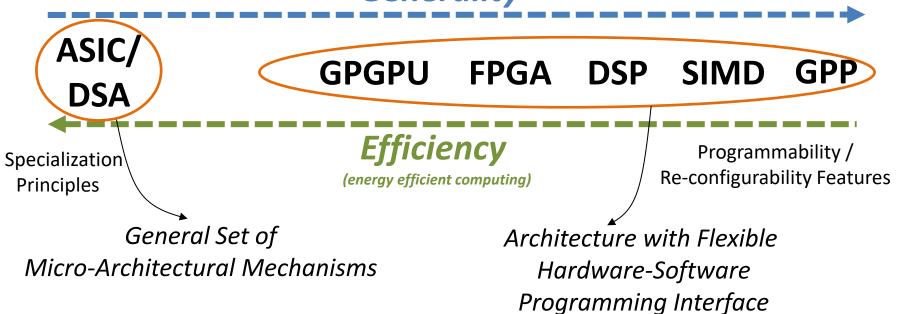
ASIC/ DSA	GPGPU				
Efficiency					

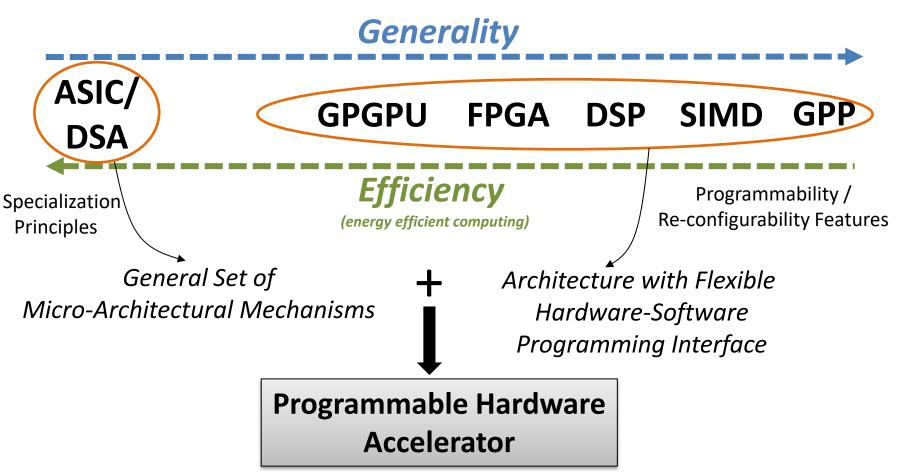
(energy efficient computing)

Generality

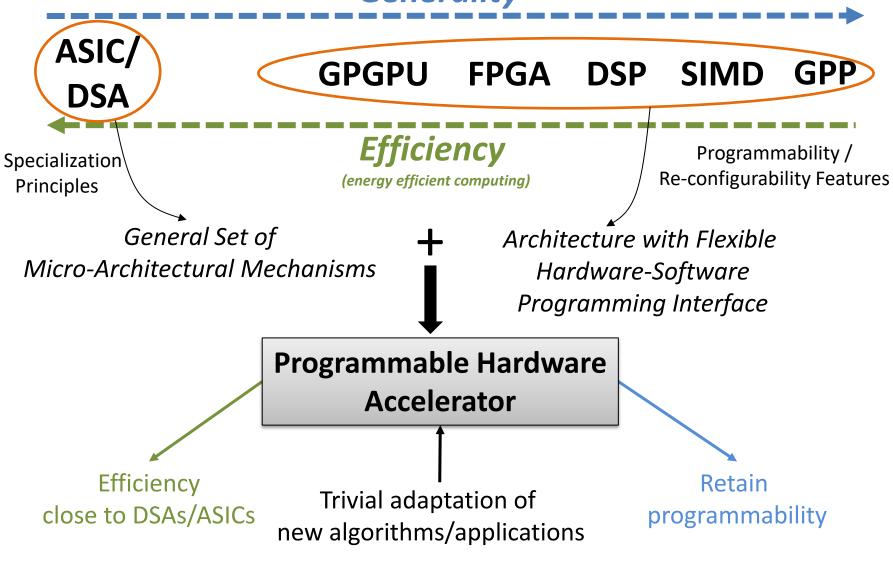


Generality



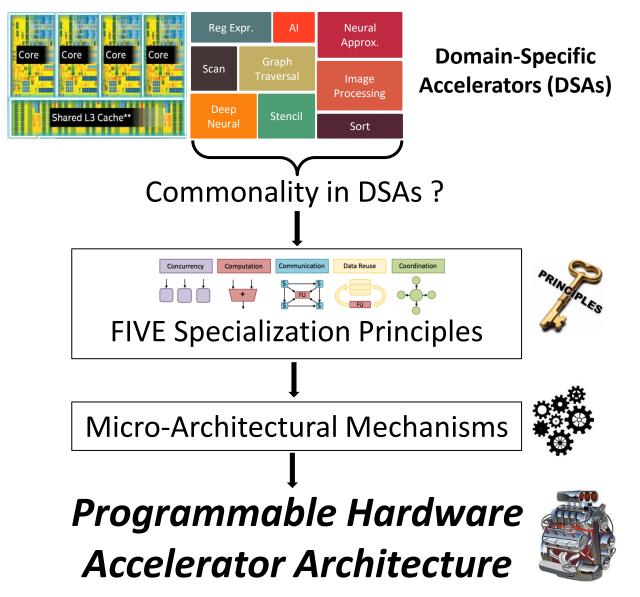


Generality



Background Work*

*IEEE Micro Top-Picks 2017: Domain Specialization is Generally Unnecessary for Accelerators



Our Work: Stream-Dataflow Acceleration

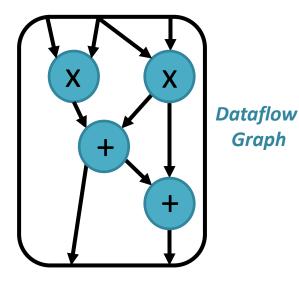
Exploit common accelerator application behavior:

Our Work: Stream-Dataflow Acceleration

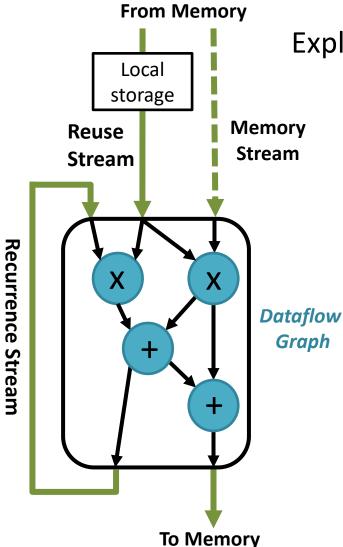
Exploit common accelerator application behavior:

Dataflow Computation

- Stream-Dataflow Execution model
 - Abstracts typical accelerator computation phases



Our Work: Stream-Dataflow Acceleration



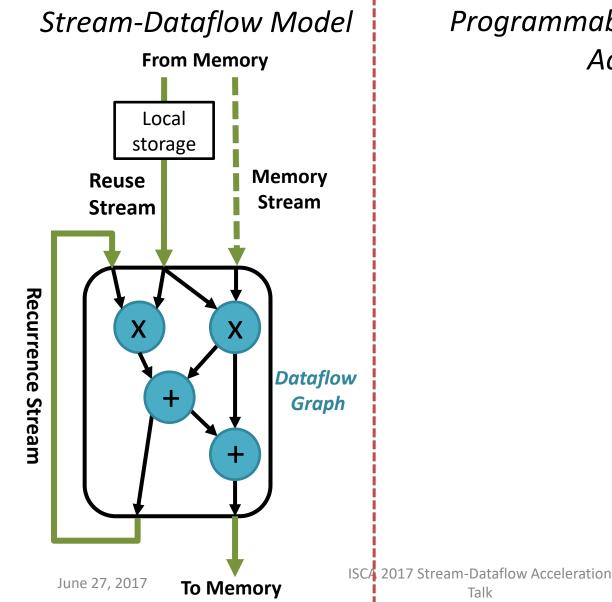
Exploit common accelerator application behavior:

Dataflow Computation

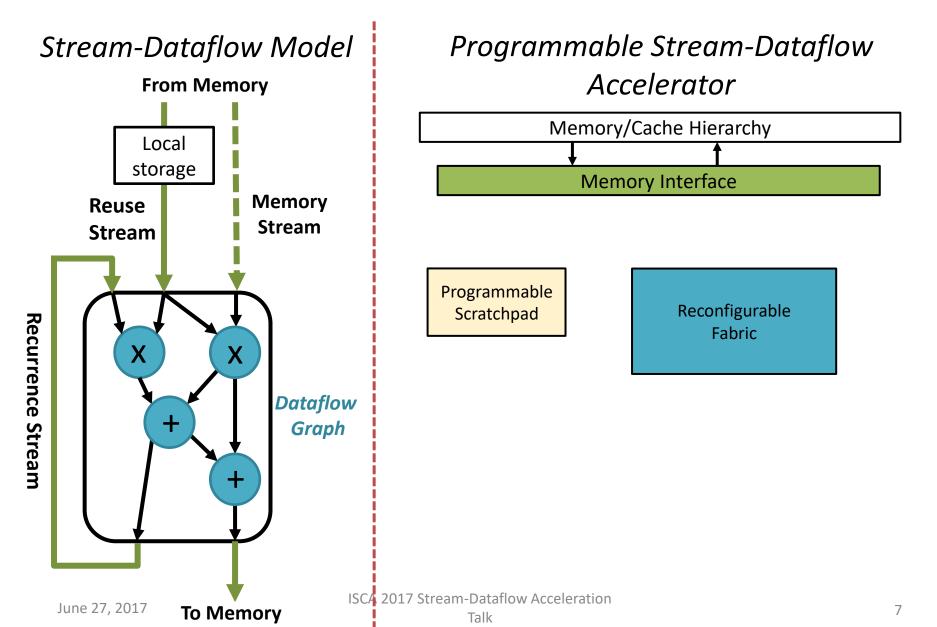
- Stream-Dataflow Execution model
 - Abstracts typical accelerator computation phases

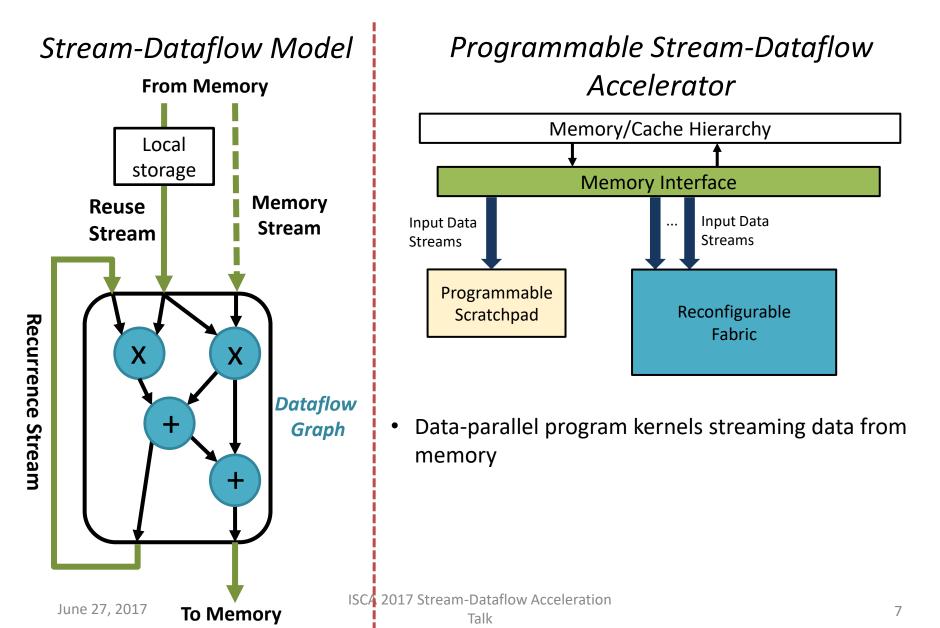
Stream Patterns and Interface

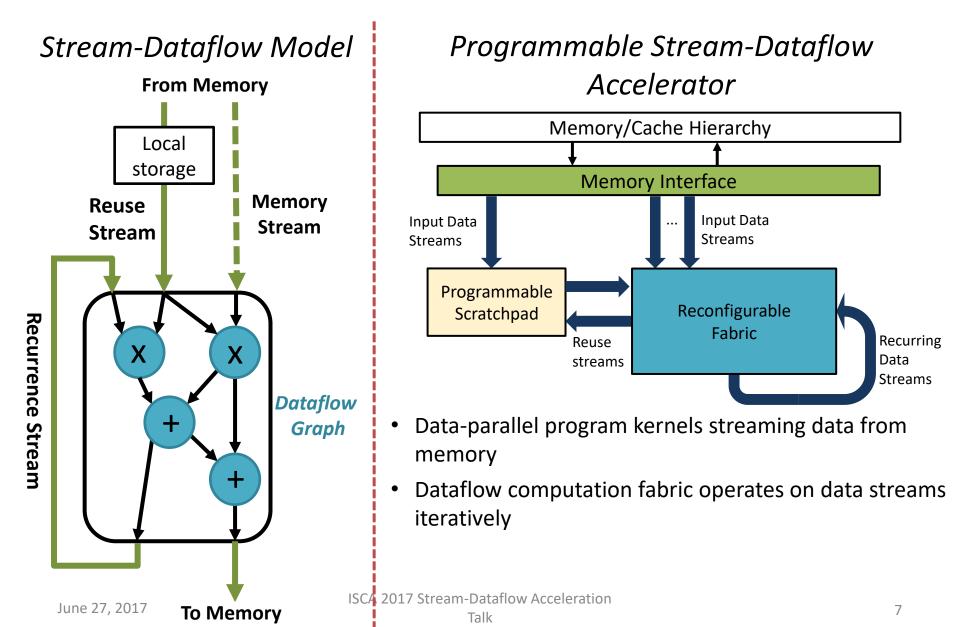
- Stream-Dataflow ISA encoding and Hardware-Software interface
 - Exposes parallelism available in these phases

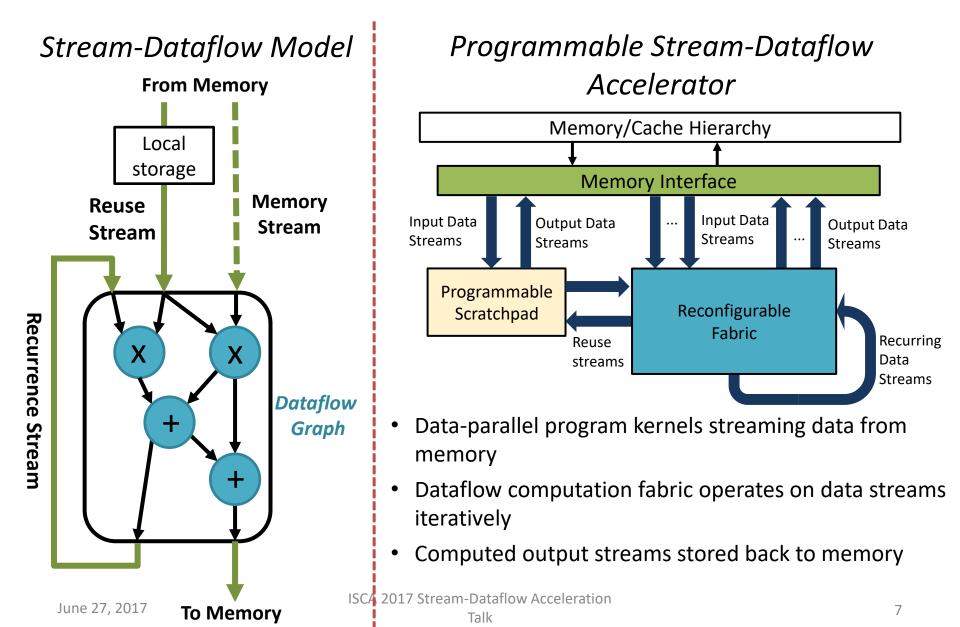


Programmable Stream-Dataflow Accelerator









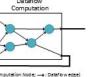
Motivation and Overview

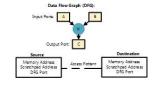
• Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

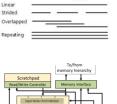




Dataflov

Memory Stream

address nattern len



Outline

Motivation and Overview

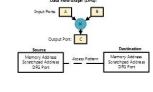
• Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

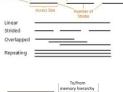
UCLA

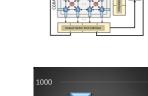


Computation

Memory Stream

address nattern lens





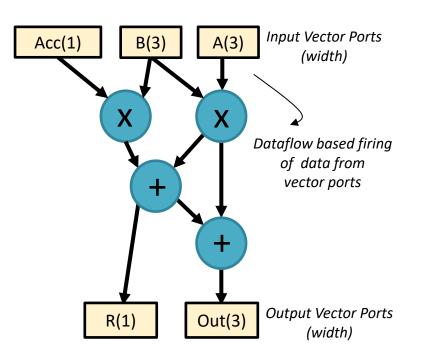
Programmer Abstractions for Stream-Dataflow Model

UCLA

Stream-Dataflow Execution Model

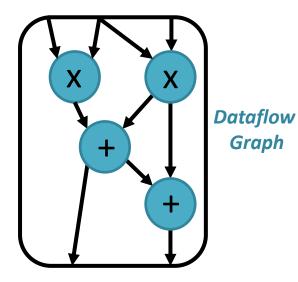
Programmer Abstractions for Stream-Dataflow Model

 Computation abstraction – Dataflow Graph (DFG) with input/output vector ports



Programmer Abstractions for Stream-Dataflow Model

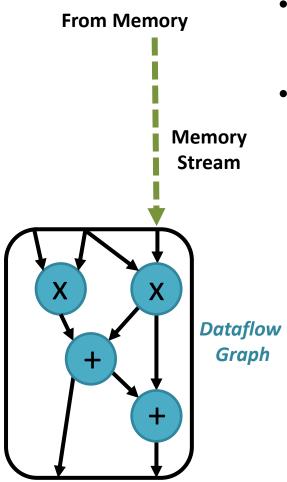
 Computation abstraction – Dataflow Graph (DFG) with input/output vector ports



Stre

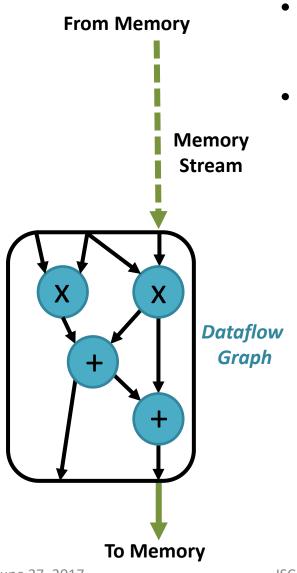
Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model



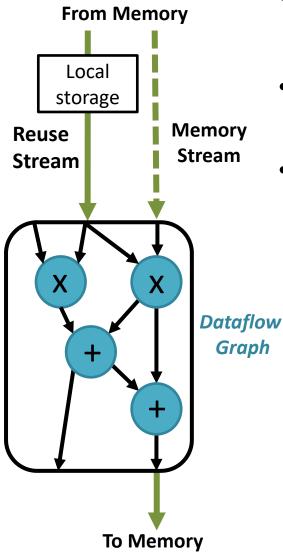
- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory

Programmer Abstractions for Stream-Dataflow Model



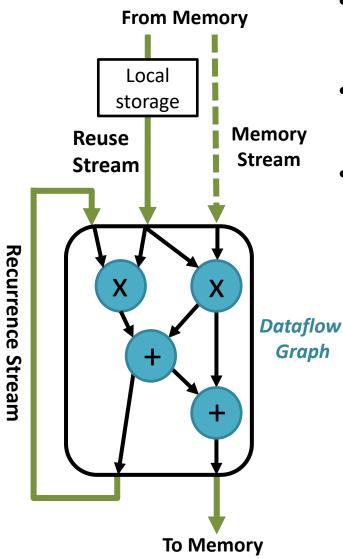
- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- **Data abstraction** Streams of data fetched from memory and stored back to memory

Programmer Abstractions for Stream-Dataflow Model



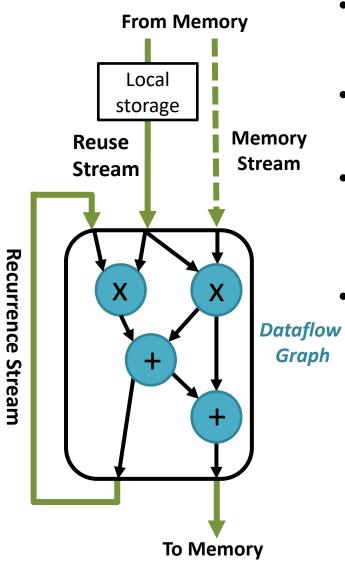
- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again

Programmer Abstractions for Stream-Dataflow Model

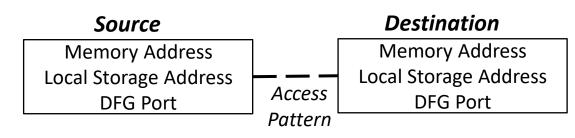


- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- *Reuse abstraction* Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again

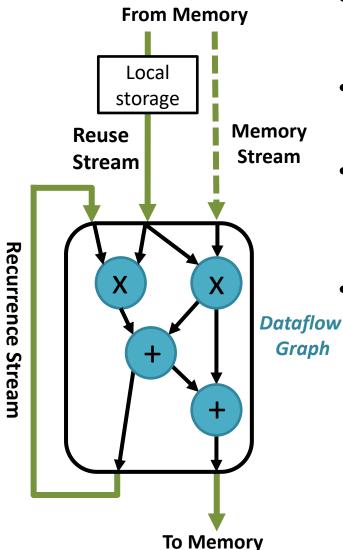
Programmer Abstractions for Stream-Dataflow Model



- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers

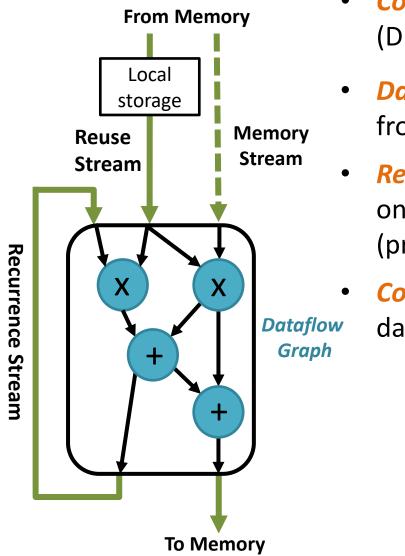


Programmer Abstractions for Stream-Dataflow Model



- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time

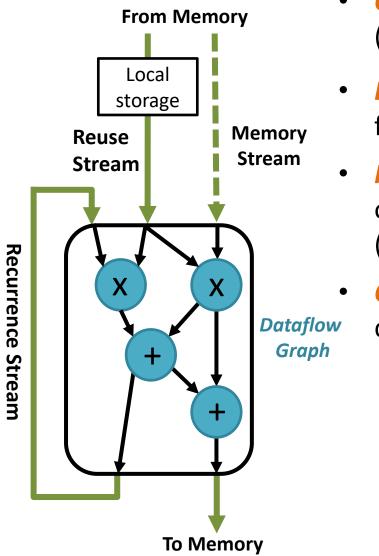
Programmer Abstractions for Stream-Dataflow Model



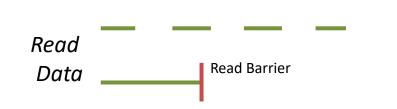
- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- *Reuse abstraction* Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time

Read Data

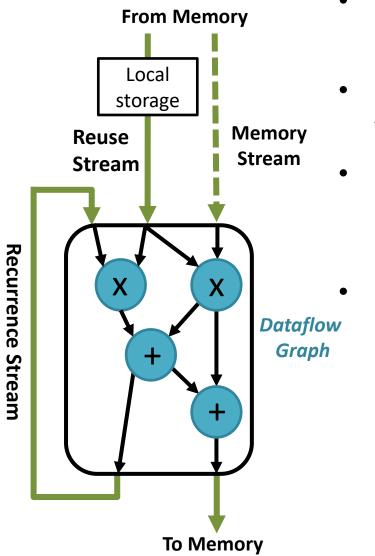
Programmer Abstractions for Stream-Dataflow Model



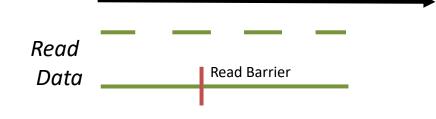
- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time



Programmer Abstractions for Stream-Dataflow Model

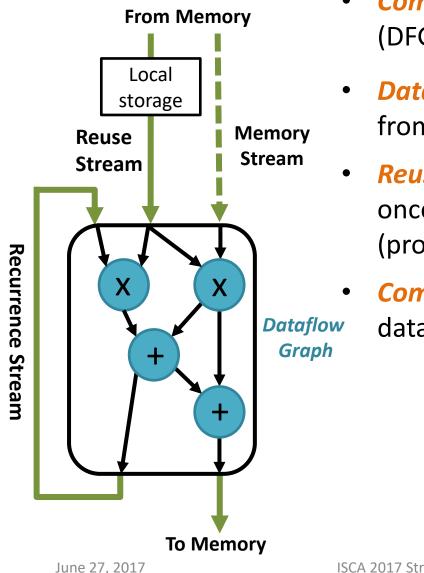


- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time

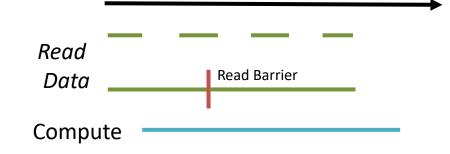


Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model



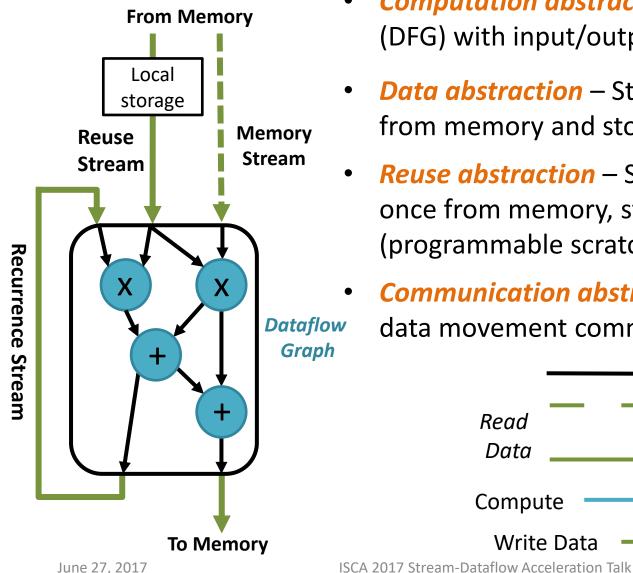
- Computation abstraction Dataflow Graph (DFG) with input/output vector ports
- Data abstraction Streams of data fetched from memory and stored back to memory
- Reuse abstraction Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time



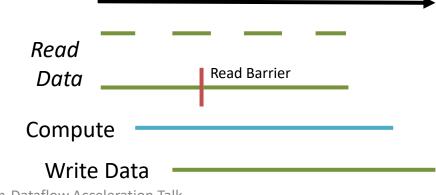
ISCA 2017 Stream-Dataflow Acceleration Talk

Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model

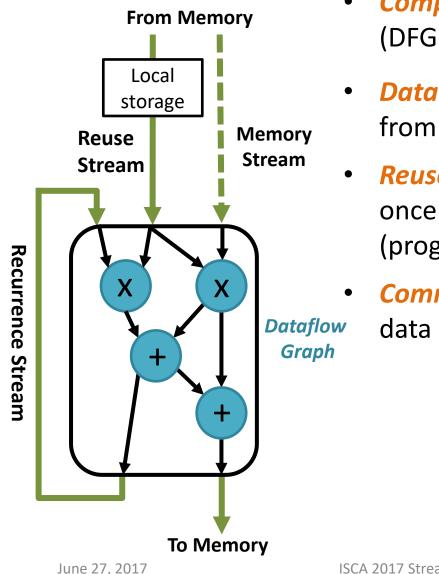


- **Computation abstraction** Dataflow Graph (DFG) with input/output vector ports
- **Data abstraction** Streams of data fetched from memory and stored back to memory
- **Reuse abstraction** Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- **Communication abstraction** Stream-Dataflow data movement commands and barriers Time



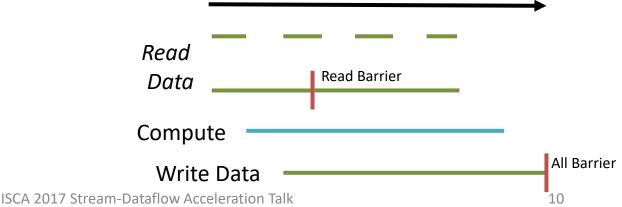
Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model



 Computation abstraction – Dataflow Graph (DFG) with input/output vector ports

- Data abstraction Streams of data fetched from memory and stored back to memory
- *Reuse abstraction* Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- Communication abstraction Stream-Dataflow
 data movement commands and barriers
 Time



Motivation and Overview

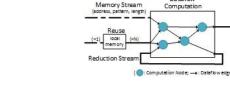
• Stream-Dataflow Execution Model

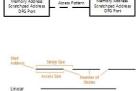
Hardware-Software Interface and Example program

Outline

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results





Dataflov

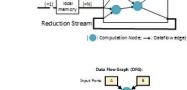
Motivation and Overview

Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

Stream-Dataflow Accelerator Architecture

Evaluation and Results



Memory Stream

address nattern lens

Dataflov

Computation



Outline

Stream-Dataflow ISA Interface

Express any data-stream pattern of accelerator applications using simple, flexible and yet efficient encoding

- Set-up Interface:
 - **SD_Config** Configuration data stream for dataflow computation fabric (CGRA)

• Set-up Interface:

SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

• Set-up Interface:

SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

Stream Interface → SD_[source]_[dest]

• Set-up Interface:

SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

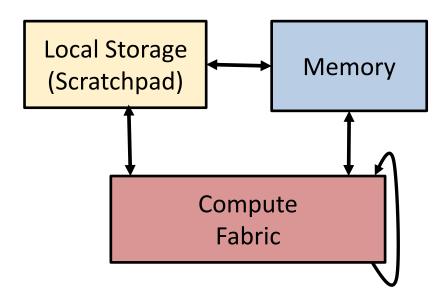
Stream Interface → SD_[source]_[dest]

Command Name	Parameters	Description
SD_Config	Address, Size	Stream CGRA configuration from given address
SD_Mem_Scratch	Source Mem Address, Stride, Access Size, Num Strides, Dest. Scratch Address	Read from memory with pattern to scratchpad
$SD_Scratch_Port$	Source Scratch Address, Stride, Access Size, Strides, Input Port $\#$	Read from scratchpad with pattern to input port
SD_Mem_Port	Source Mem Address, Stride, Access Size, Num Strides, Input Port $\#$	Read from memory with pattern to input port
SD_Const_Port	Constant Value, Num Elements, Input Port $\#$	Send constant value to input port
SD_Clean_Port	Num Elements, Output Port $\#$	Throw away some elements from output port
SD_Port_Port	Output Port $\#$, Num Elements, Input Port $\#$	Issue recurrence between input-output port pairs
$SD_Port_Scratch$	Output Port $\#$, Num Elements, Scratch Address	Write from port to scratchpad
SD_Port_Mem	Output Port #, Stride, Access Size, Num Strides, Dest. Mem Address	Write from port to memory with pattern
SD_Mem_IndPort	Source Mem Address, Stride, Access Size, Num Strides, Indirect Port $\#$	Read the addresses from memory with pattern to indirect port
$SD_IndPort_Port$	Indirect Port #, Offset Address, Input Port #	Indirect load from addresses present in indirect port
${\rm SD_IndPort_Mem}$	Indirect Port #, Output Port #, Dest. Offset Address	Indirect store to addresses present in indirect port
SD_Barrier_Scratch_Rd		Barrier for scratchpad reads
$SD_Barrier_Scratch_Wr$	-	Barrier for scratchpad writes
SD_Barrier_All	~	Barrier to wait for all commands completion

- Set-up Interface:
 - SD_Config Configuration data stream for dataflow computation fabric (CGRA)
- Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

Stream Interface → SD_[source]_[dest]



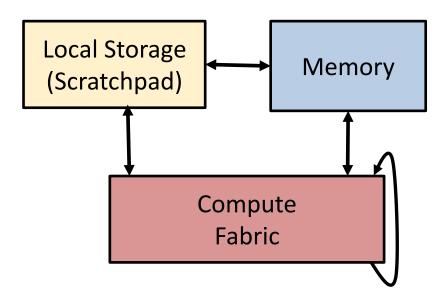
• Set-up Interface:

SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• Control Interface:

SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

• Stream Interface → SD_[source]_[dest]



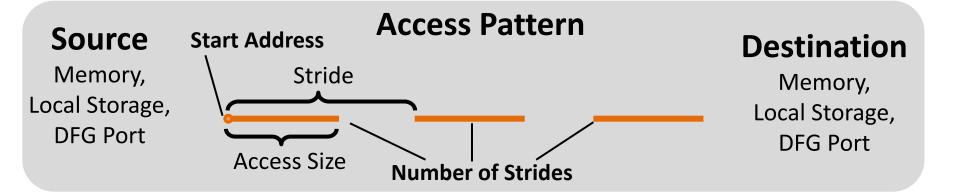
Access Pattern

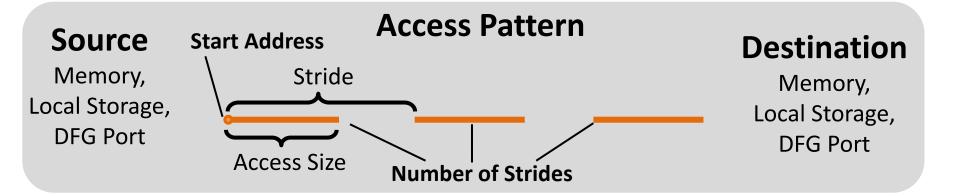
Source

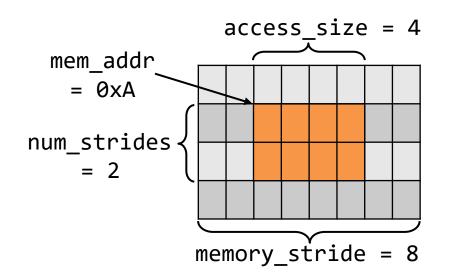
Memory, Local Storage, DFG Port Destination

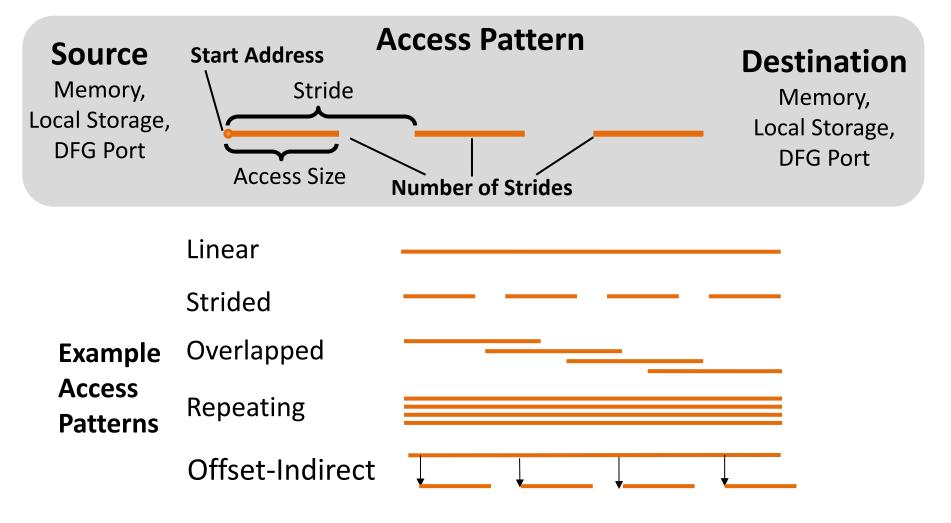
UCLA

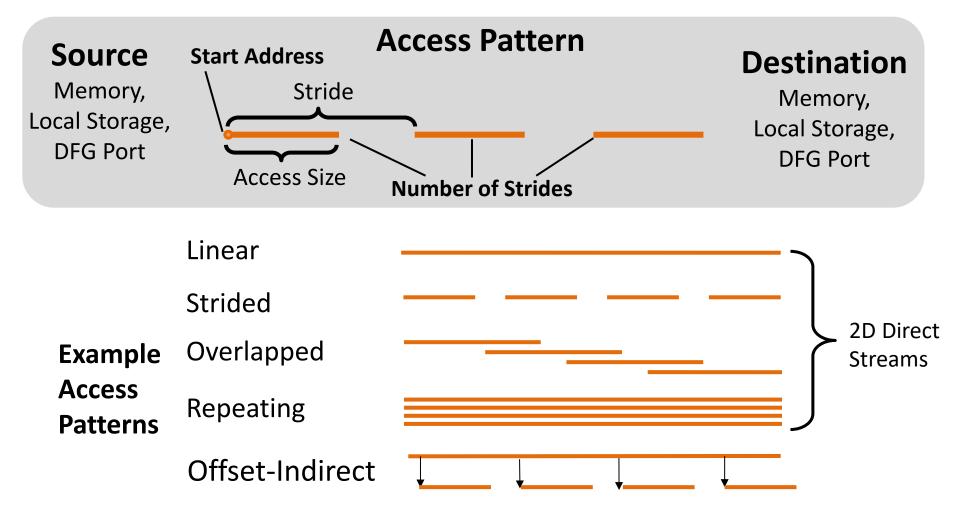
Memory, Local Storage, DFG Port

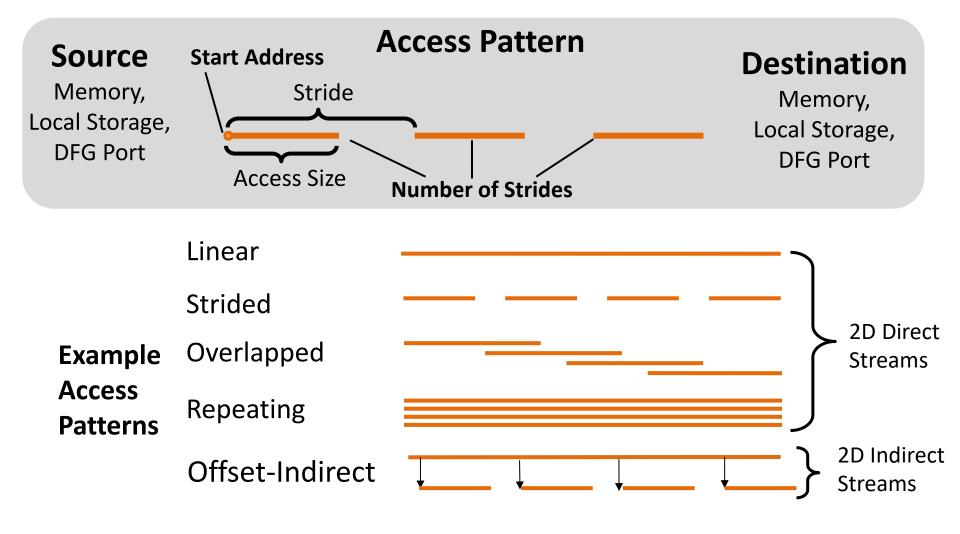












Stream-Dataflow ISA Encoding

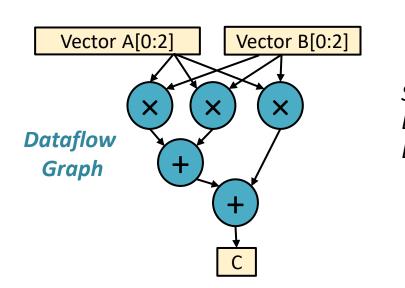
Stream:

Dataflow:

Stream-Dataflow ISA Encoding

Stream:

Dataflow:

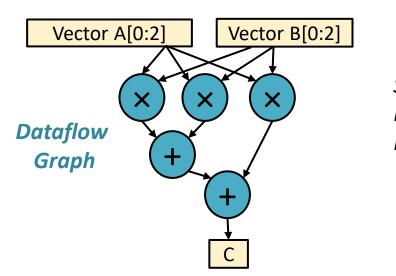


Specified in a Domain Specific Language (DSL)

Stream:

Stream Encoding <address, access_size, stride_size, length>

Dataflow:

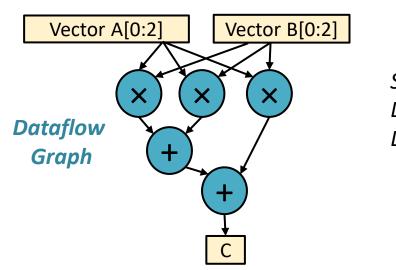


Specified in a Domain Specific Language (DSL)

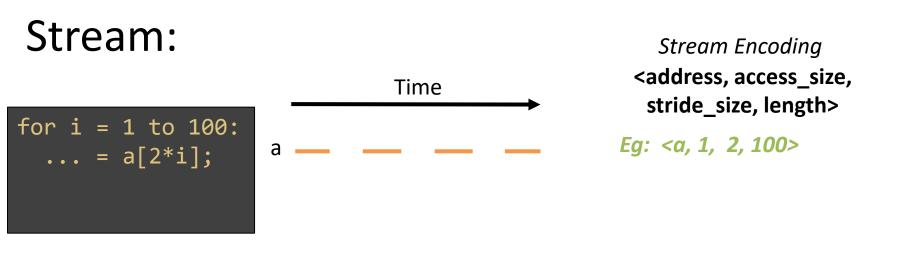
Stream-Dataflow ISA Encoding

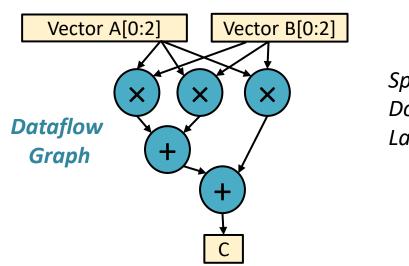
Stream Encoding <address, access_size, stride_size, length>

Dataflow:

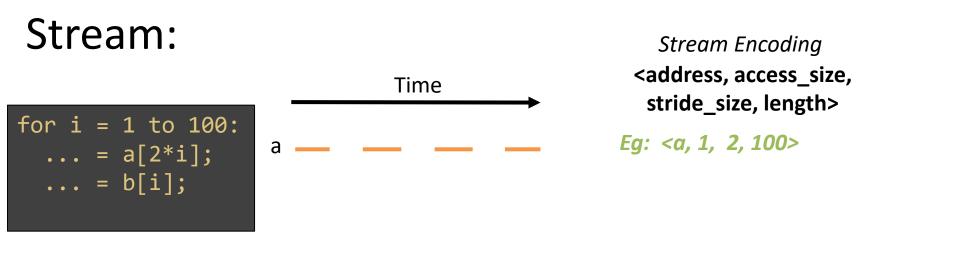


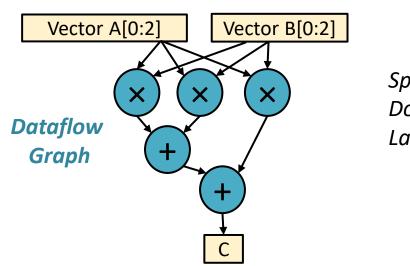
Specified in a Domain Specific Language (DSL)



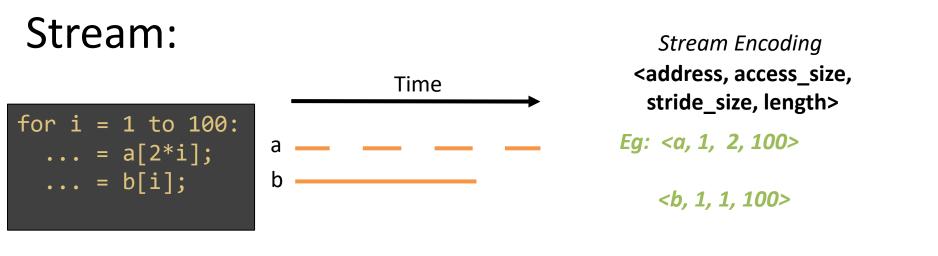


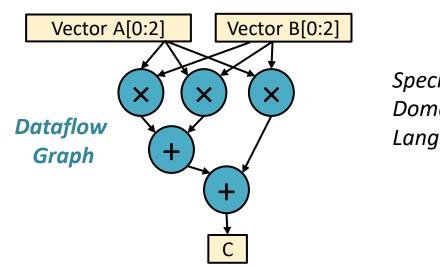
Specified in a Domain Specific Language (DSL)



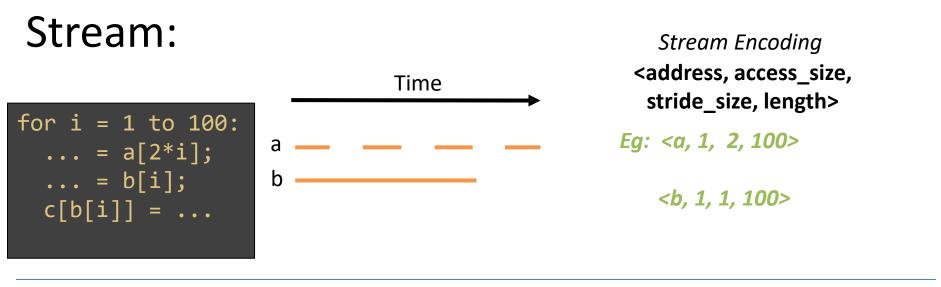


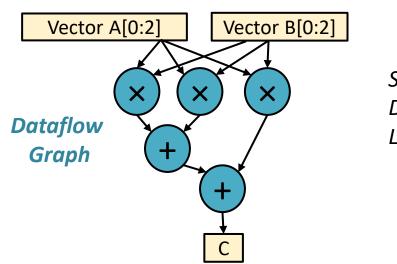
Specified in a Domain Specific Language (DSL)



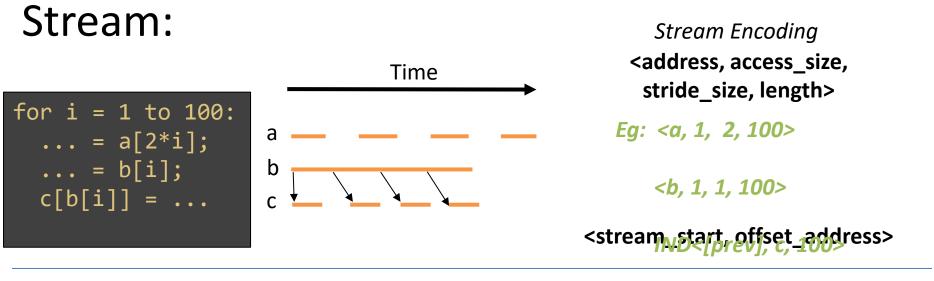


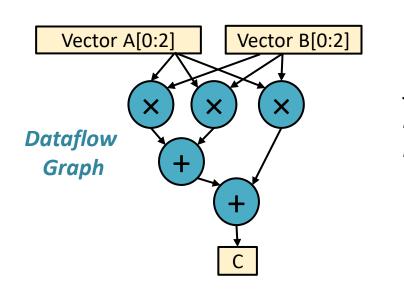
Specified in a Domain Specific Language (DSL)





Specified in a Domain Specific Language (DSL)

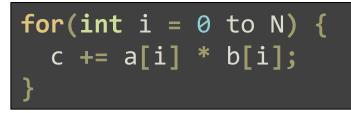




Specified in a Domain Specific Language (DSL)

Example Code: Dot Product

Original Program

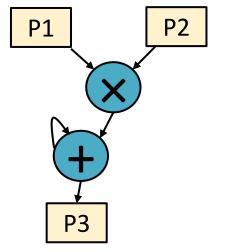


Example Code: Dot Product

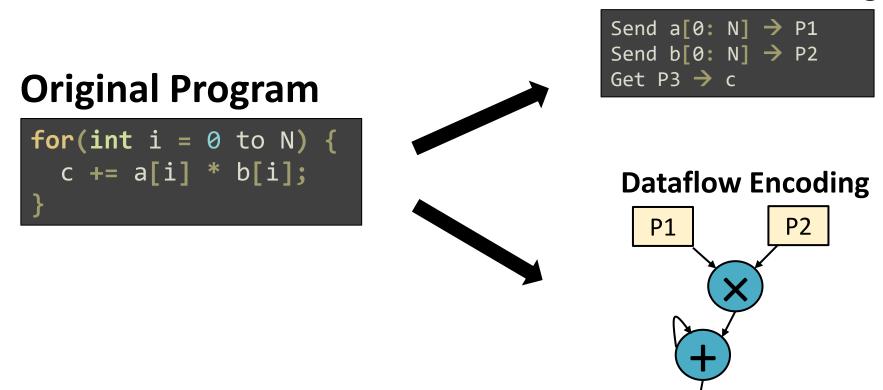
Original Program

for(int i = 0 to N) {
 c += a[i] * b[i];
}

Dataflow Encoding



Example Code: Dot Product



Stream ISA Encoding

P3

- Outline
- Motivation and Overview

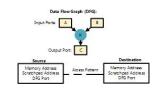
• Stream-Dataflow Execution Model

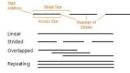
Hardware-Software Interface and Example program

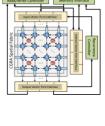
• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

Memory Stream (sociest, pattern, length) Reuse (sociest, pattern, length) (sociest, pattern, len







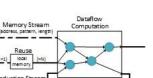
Motivation and Overview

• Stream-Dataflow Execution Model

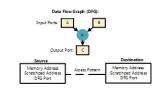
Hardware-Software Interface and Example program

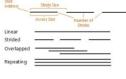
• Stream-Dataflow Accelerator Architecture

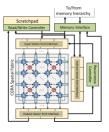
• Evaluation and Results



UCL A



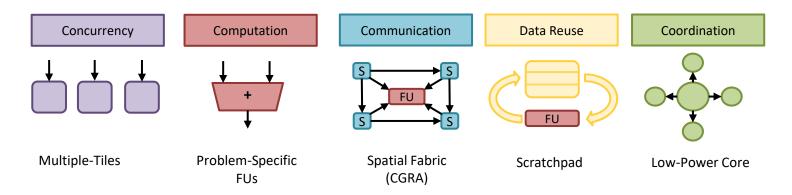




Requirements for Stream-Dataflow UCLA Accelerator Architecture

1. Should employ the common specialization principles and hardware mechanisms

(*IEEE Micro Top-Picks 2017: Domain Specialization is Generally Unnecessary for Accelerators)



 Programmability features without the inefficiencies of existing data-parallel architectures* (with less power, area and control overheads)

*More detailed analysis contrasting data-parallel architectures and stream-dataflow architecture in paper

Stream-Dataflow Accelerator -- 64b Architecture

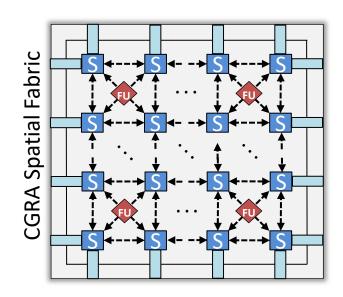
— 512b **———** 64b

Stream-Dataflow Accelerator Architecture

—— 512b **———** 64b

Dataflow:

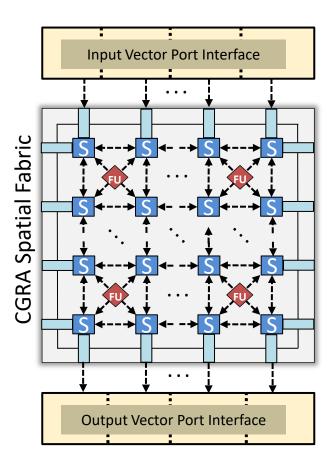
• Coarse grained reconfigurable architecture (CGRA) for data parallel execution



— 512b **–––** 64b

Dataflow:

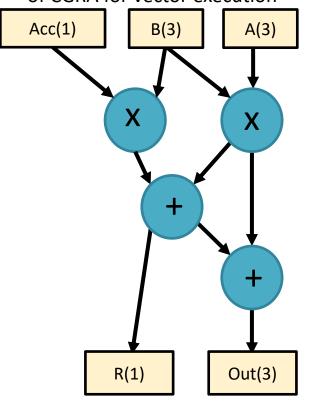
- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

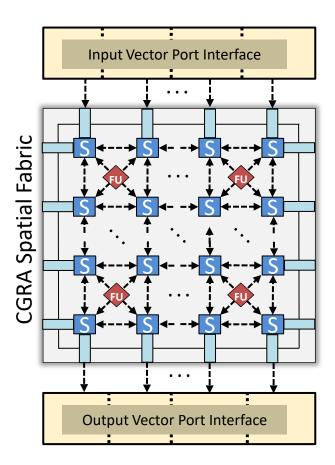


— 512b **–––** 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

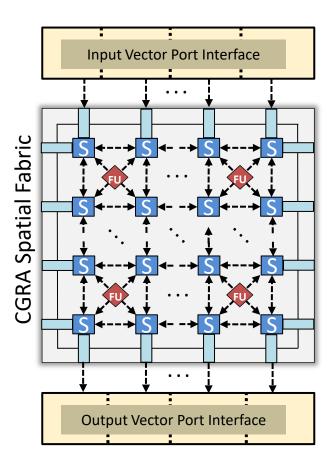




— 512b **–––** 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

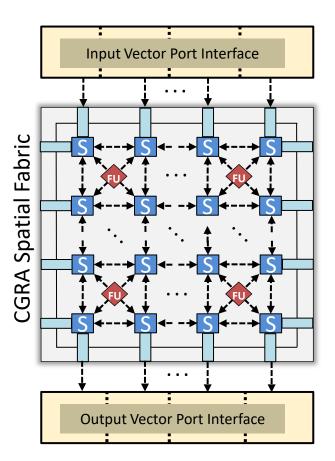


— 512b **–––** 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:



Architecture

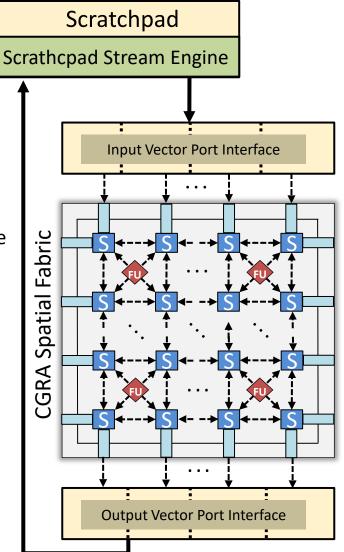
— 512b **–––** 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:

 Programmable scratchpad and supporting stream-engine for data-locality and data-reuse



Architecture

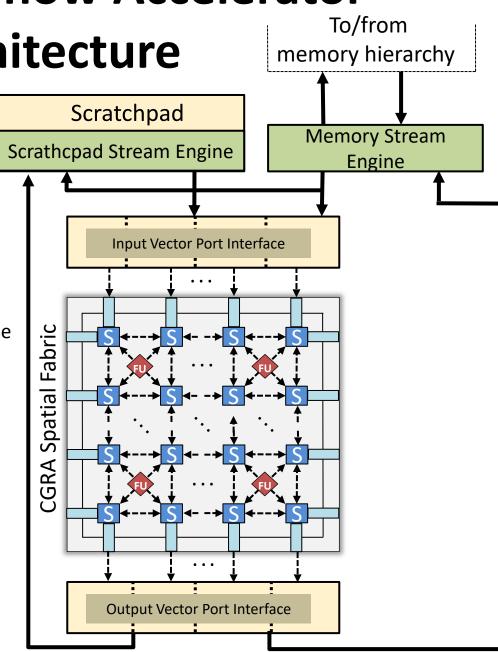
512b --- 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:

- Programmable scratchpad and supporting stream-engine for data-locality and data-reuse
- Memory stream-engine to facilitate data streaming in and out of the accelerator



Architecture

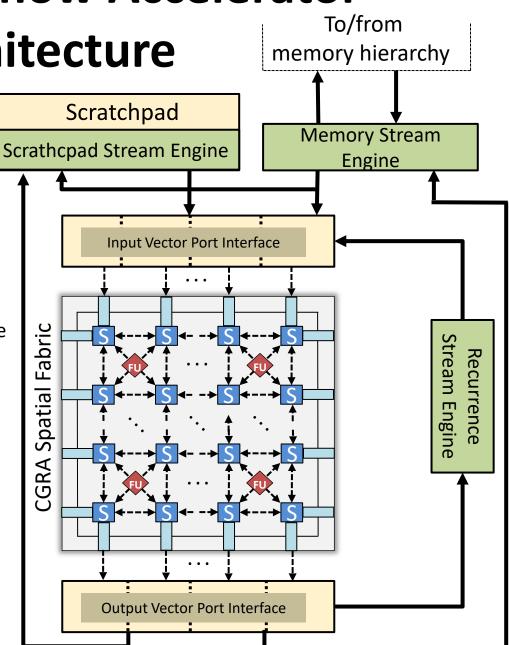
512b --- 64b

Dataflow:

- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:

- Programmable scratchpad and supporting stream-engine for data-locality and data-reuse
- Memory stream-engine to facilitate data streaming in and out of the accelerator
- Recurrence stream-engine to support recurrent data stream



UCL A

Architecture

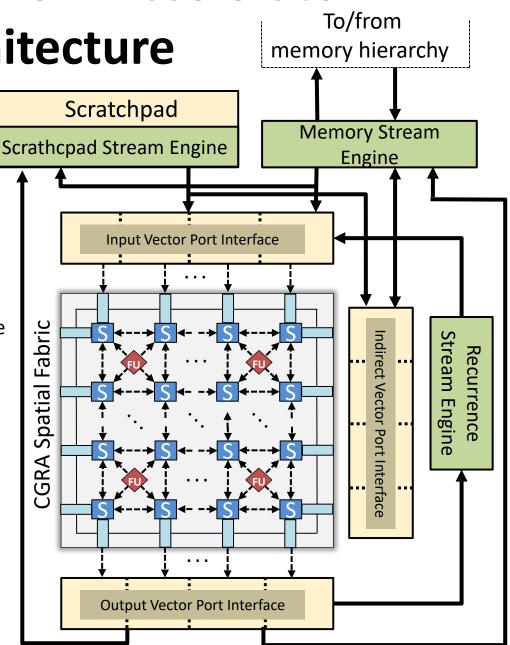
512b --- 64b

Dataflow:

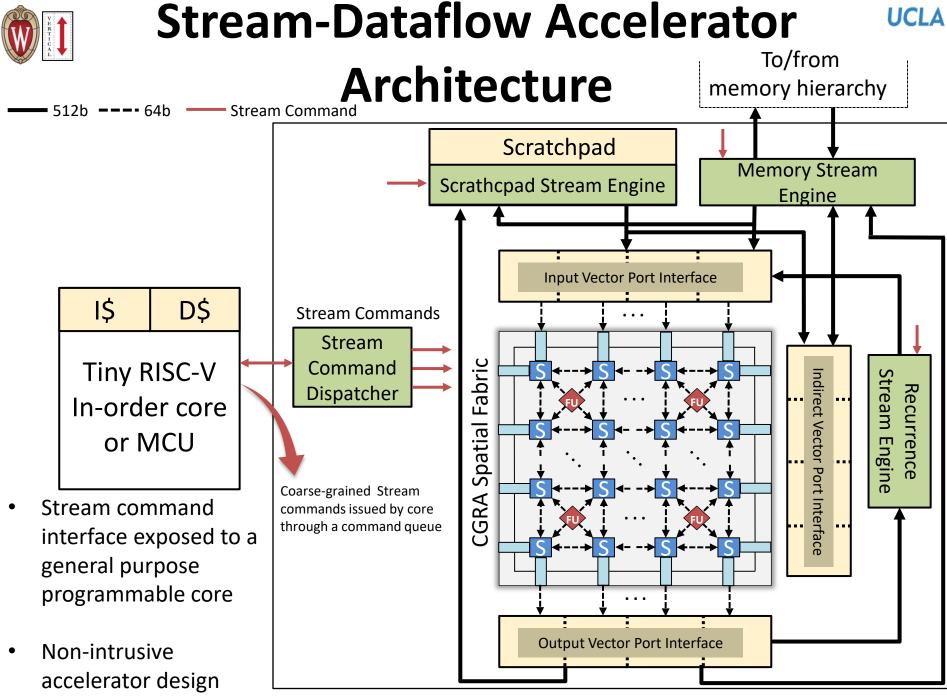
- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution

Stream Interface:

- Programmable scratchpad and supporting stream-engine for data-locality and data-reuse
- Memory stream-engine to facilitate data streaming in and out of the accelerator
- Recurrence stream-engine to support recurrent data stream
- Indirect vector port interface for streaming addresses (indirect load/stores)

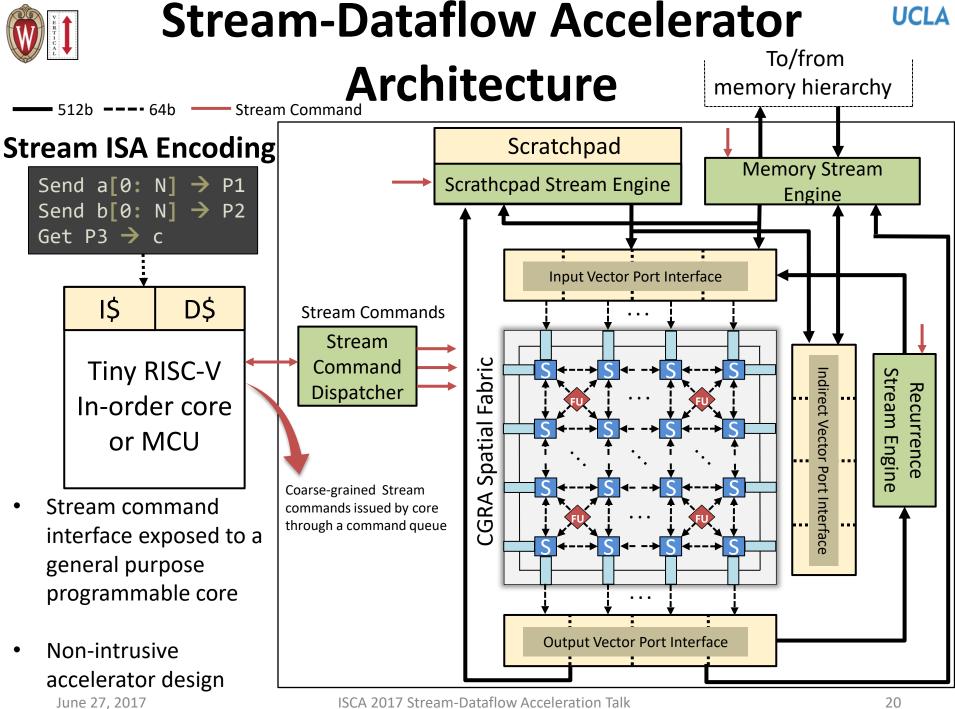


UCL A

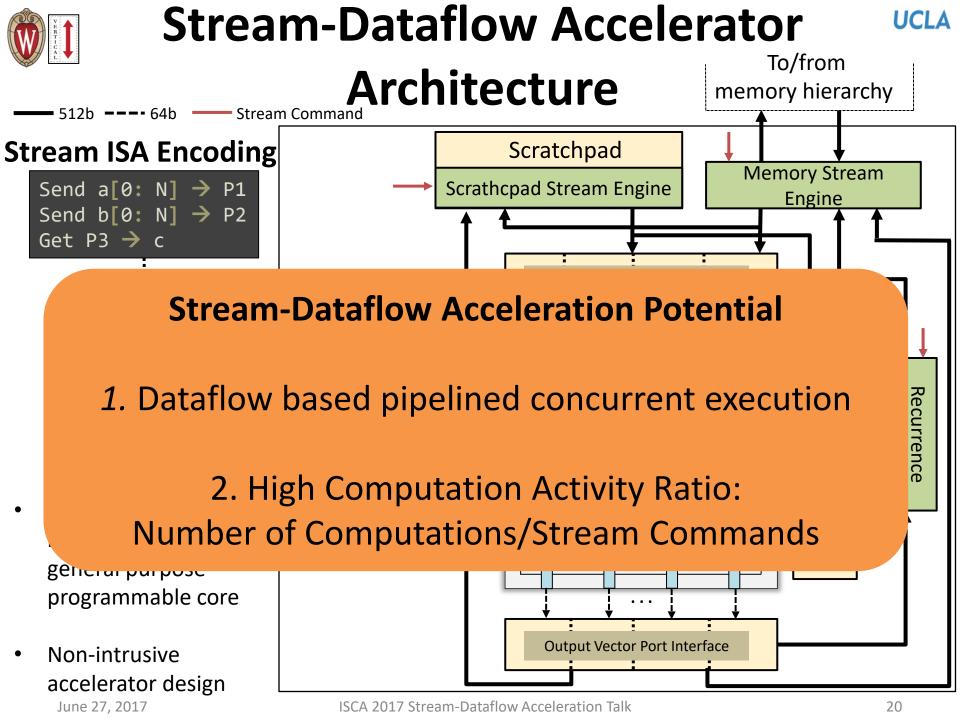


ISCA 2017 Stream-Dataflow Acceleration Talk

June 27, 2017



ISCA 2017 Stream-Dataflow Acceleration Talk



Outline

Motivation and Overview

Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

Stream-Dataflow Accelerator Architecture

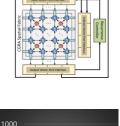
Evaluation and Results

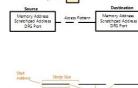
Dataflov

Computation

Memory Stream

address natiena lene





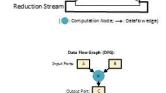
Motivation and Overview

• Stream-Dataflow Execution Model

Hardware-Software Interface and Example program

• Stream-Dataflow Accelerator Architecture

• Evaluation and Results

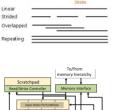


Memory Stream

address natiena lene

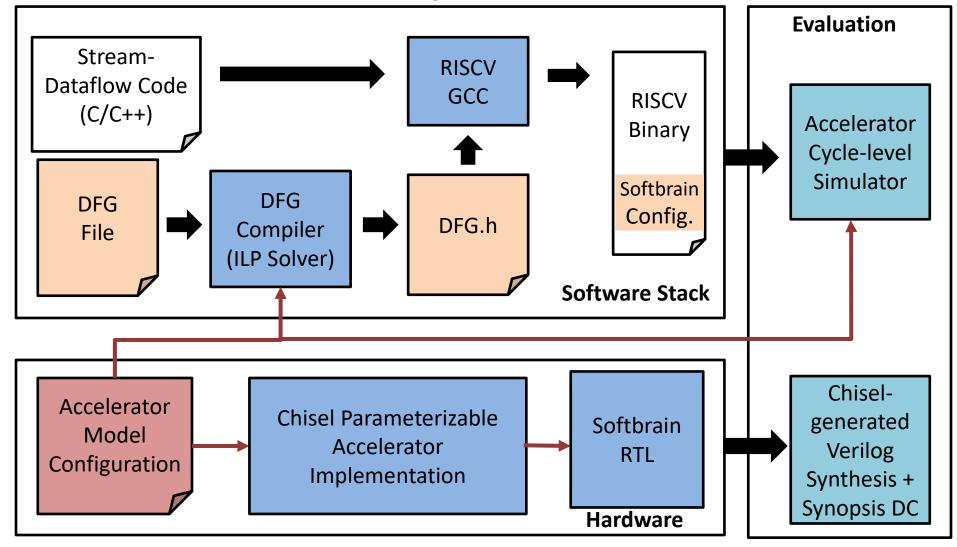
Dataflow

Computation



21

Stream-Dataflow Implementation: UCLA Softbrain

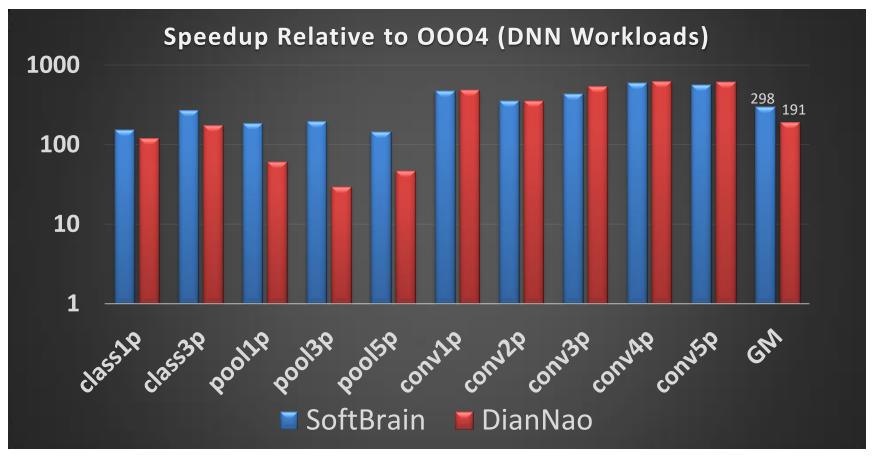


- Workloads
 - Deep Neural Networks (DNN) For domain provisioned comparison
 - Machsuite Accelerator Workloads For comparison with application specific accelerators

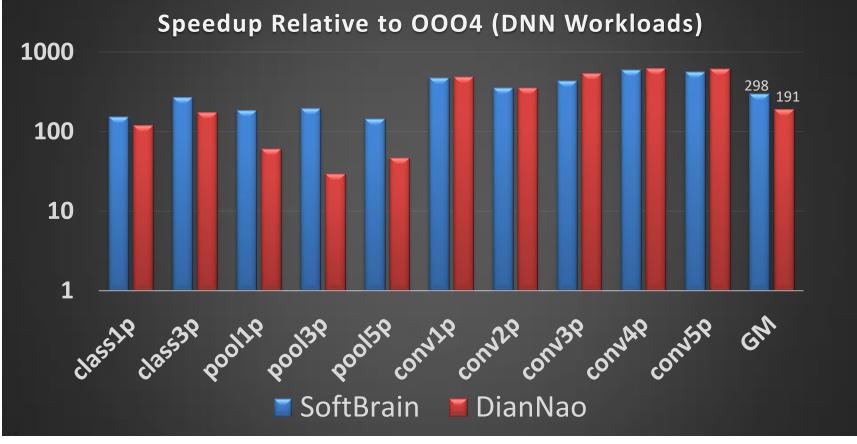
- Comparison
 - Domain Provisioned Softbrain vs. DianNao DSA
 - Broadly provisioned Softbrain vs. ASIC design points *Aladdin* generated performance, power and area

UCI A

Domain-Specific Accelerator UCLA Comparison (Softbrain vs DianNao)

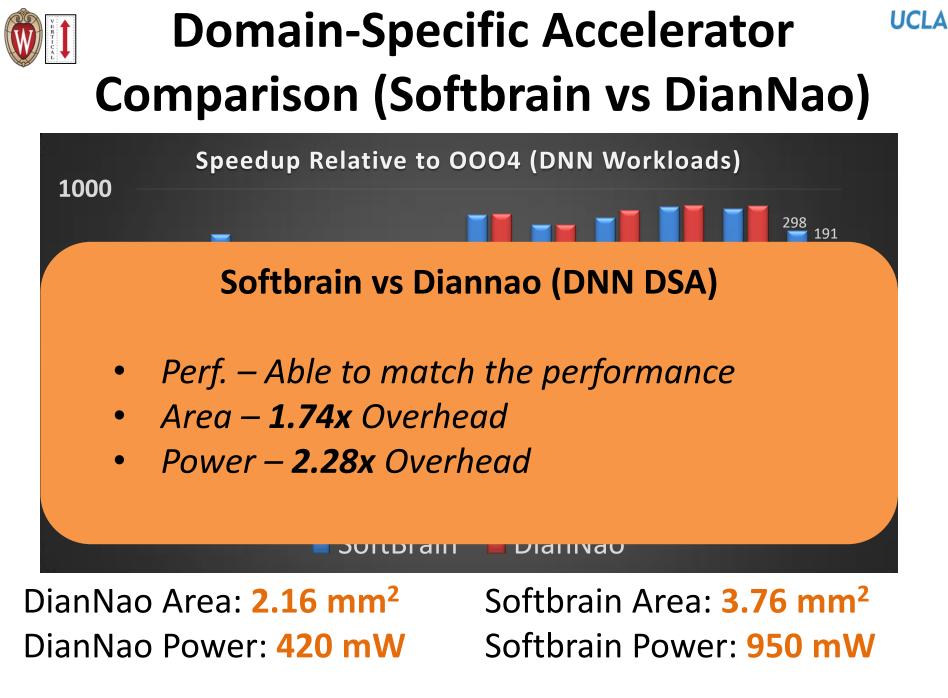


Domain-Specific Accelerator UCLA Comparison (Softbrain vs DianNao)



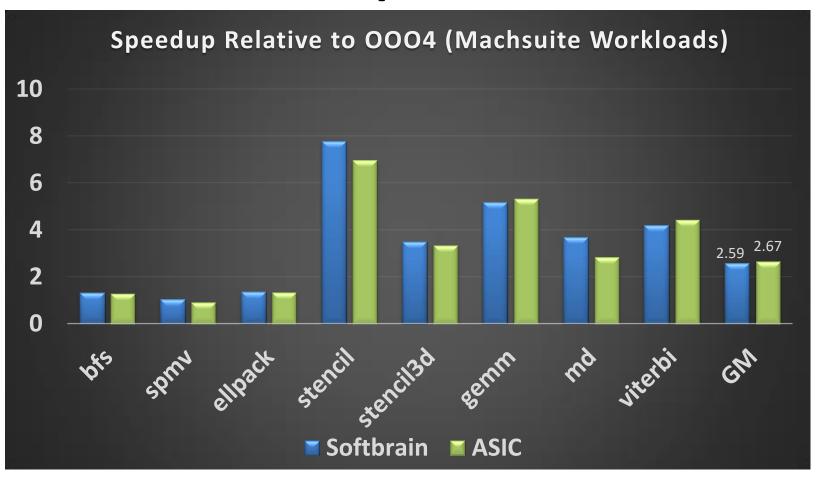
DianNao Area: 2.16 mm² DianNao Power: 420 mW

Softbrain Area: **3.76 mm²** Softbrain Power: **950 mW**



Softbrain vs ASIC Designs Comparison

UCLA

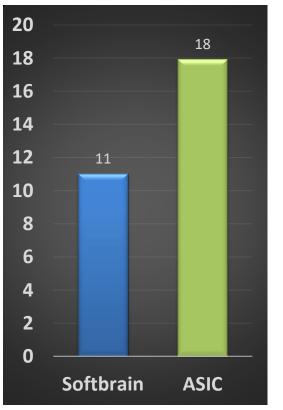


Aladdin* generated ASIC design points – Resources constrained to be in ~15% of Softbrain Perf. to do iso-performance analysis

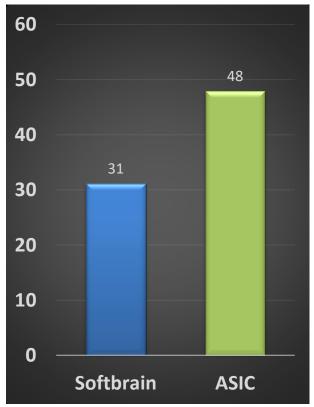
*Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space Exploration of Customized Architectures. Sophia Shao , .et. al June 27, 2017 ISCA 2017 Stream-Dataflow Acceleration Talk 25

Softbrain vs ASIC Comparison

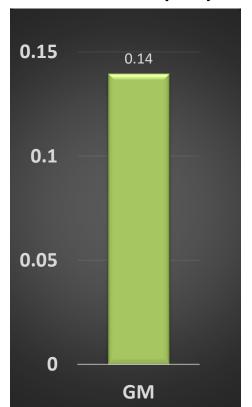
Power Efficiency Relative to OOO4 (GM)



Energy Efficiency Relative to OOO4 (GM)



ASIC Area Relative to Softbrain (GM)



Softbrain vs ASIC Comparison

Power Efficiency Relative to OOO4 (GM)

Energy Efficiency Relative to OOO4 (GM) ASIC Area Relative to Softbrain (GM)

Softbrain vs ASIC designs

- Perf. Able to match the performance
- Power ~1.6x overhead
- Energy Efficiency ~1.5x overhead
- Area ~8x overhead*

*All 8 ASICs combined \rightarrow 2.15x more area than Softbrain

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface Exposes parallelism available in these phases

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface Exposes parallelism available in these phases
- Stream-Dataflow Accelerator Architecture
 - CGRA and vector ports for pipelined vector-dataflow computation
 - Highly parallel stream-engines for low-power stream communication

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface Exposes parallelism available in these phases
- Stream-Dataflow Accelerator Architecture
 - CGRA and vector ports for pipelined vector-dataflow computation
 - Highly parallel stream-engines for low-power stream communication
- Stream-Dataflow Prototype & Implementation Softbrain
 - Matches performance of domain provisioned accelerator (DianNao DSA) with ~2x overheads in area and power
 - Compared to application specific designs (ASICs), Softbrain has ~2x overheads in power and ~8x in area

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface –

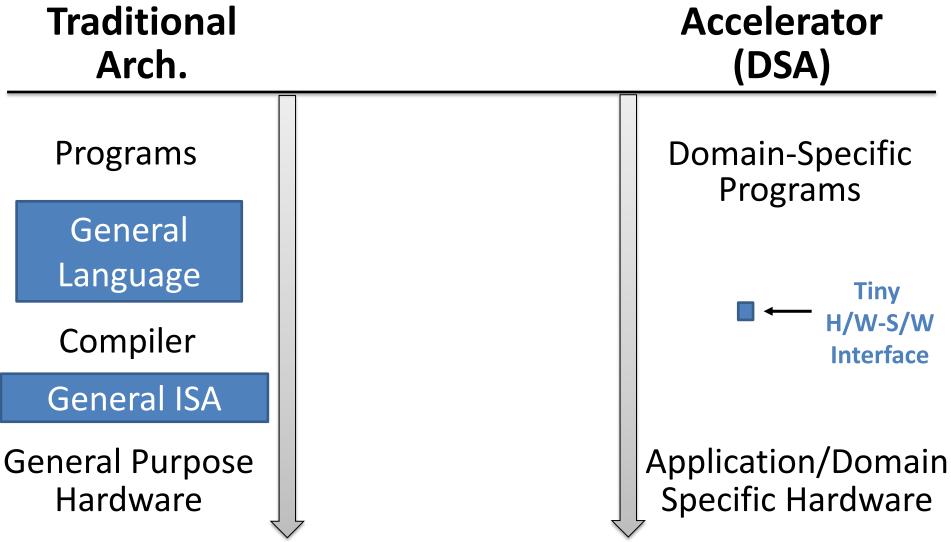
Getting There !!

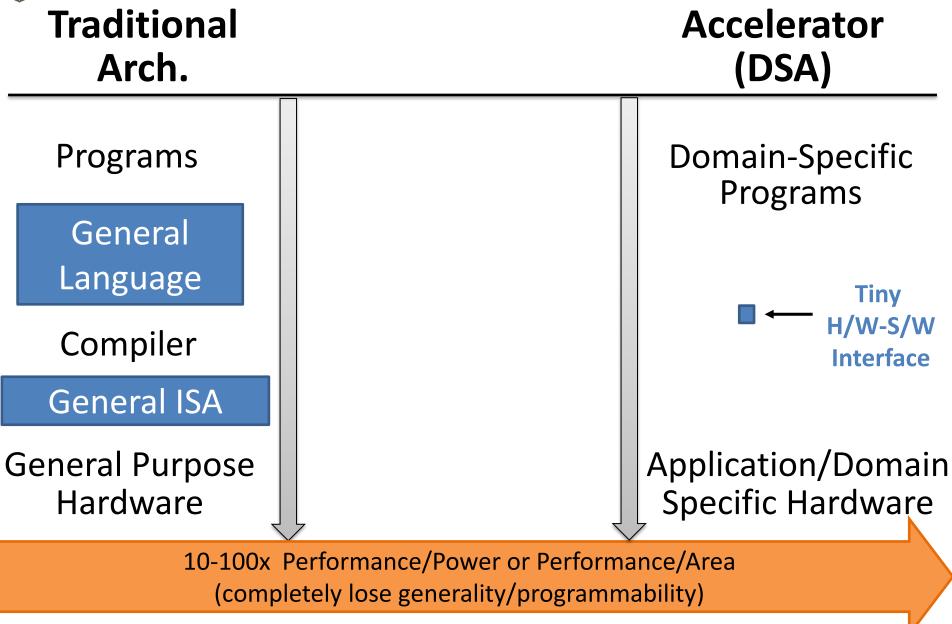
A good enabler for exploring general purpose programmable hardware acceleration

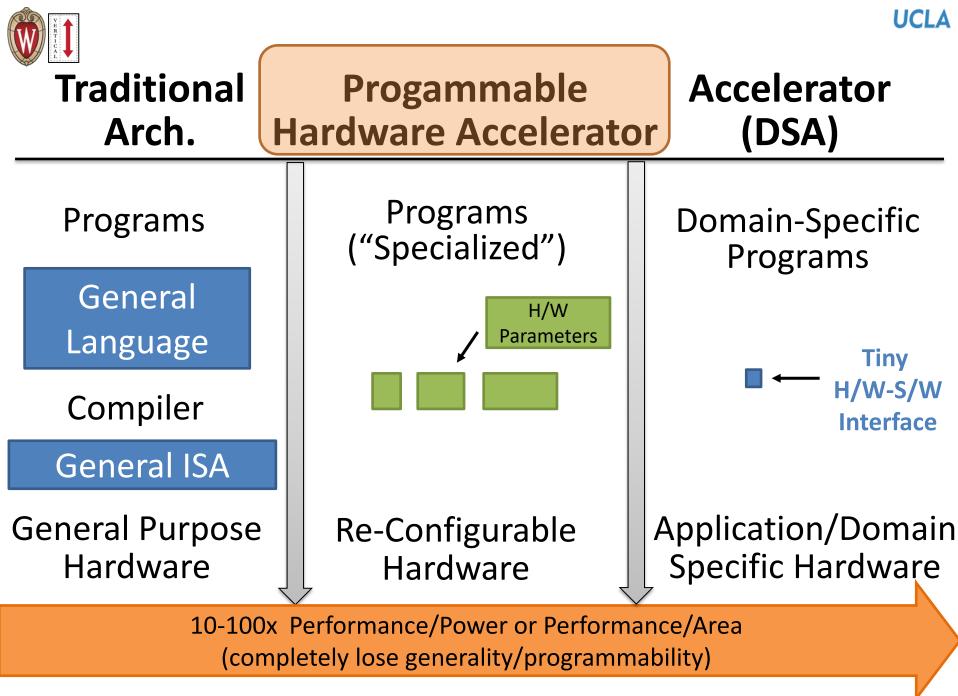
 Compared to application specific designs (ASICs), Softbrain has ~2x overheads in power and ~8x in area

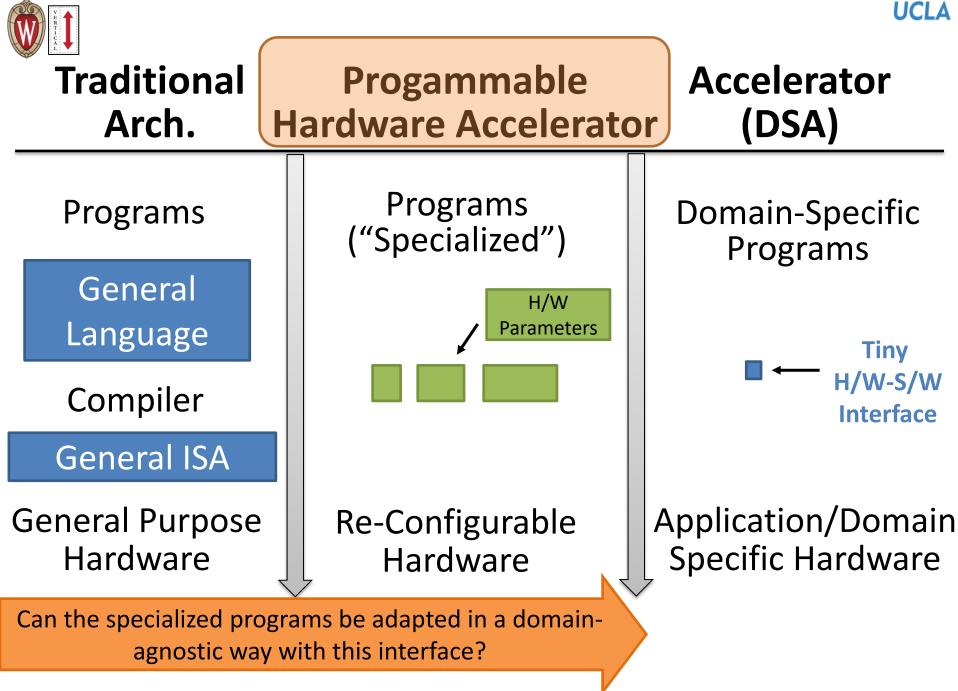
n

Backup

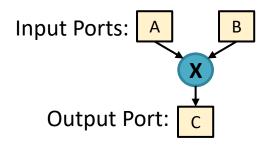




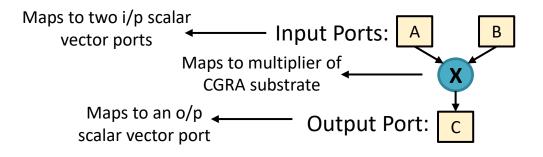


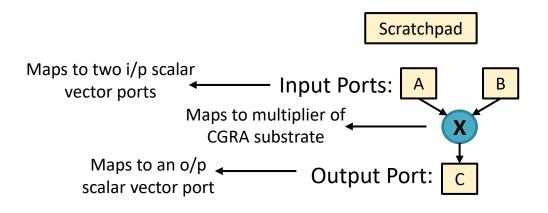


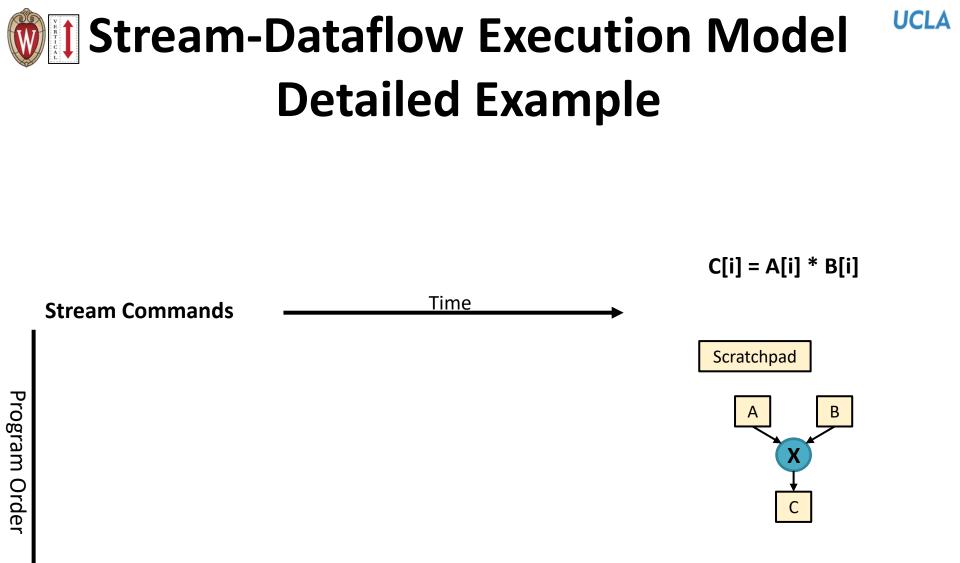
C[i] = A[i] * B[i]

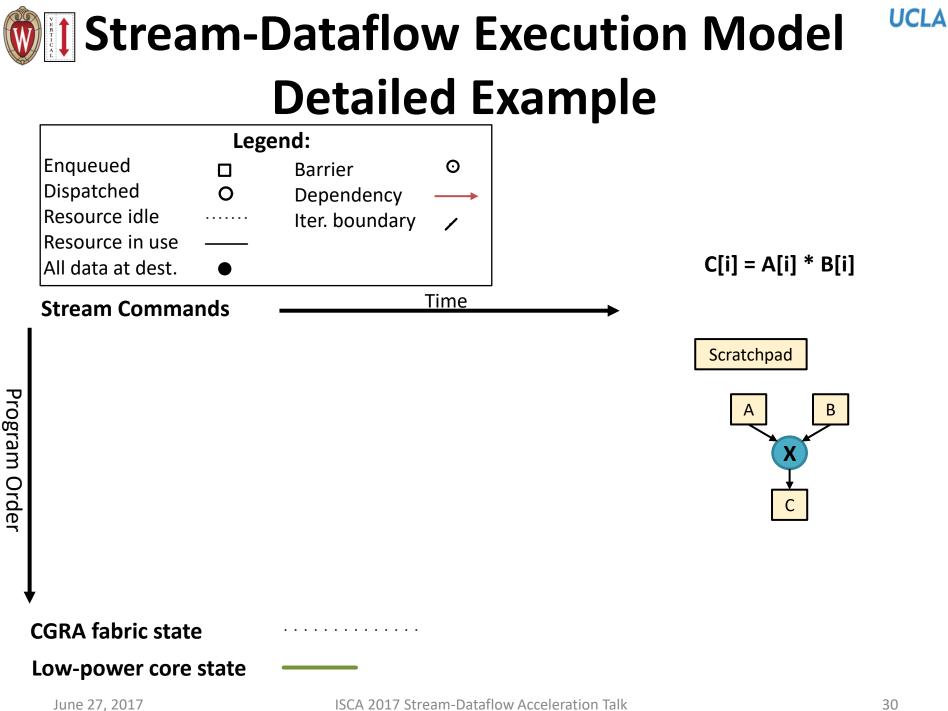


C[i] = A[i] * B[i]









ISCA 2017 Stream-Dataflow Acceleration Talk

UCLA **1** Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued 0 Barrier Dispatched 0 Dependency Resource idle Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch ••**O**•; Scratchpad Program Order Х С **CGRA** fabric state Low-power core state Command June 27, 2017 generation 2017 Stream-Dataflow Acceleration Talk 30

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched 0 Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A Х С **CGRA** fabric state Low-power core state Command June 27, 2017 generation 2017 Stream-Dataflow Acceleration Talk 30

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched 0 Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B С **CGRA** fabric state Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched 0 Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С П. О..... **CGRA** fabric state Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched 0 Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С П. О..... C6) Mem \rightarrow Port B **CGRA** fabric state Low-power core state Command

June 27, 2017

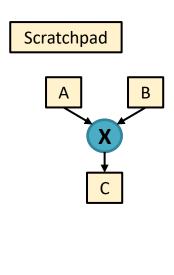
UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A Х C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С П. О..... C6) Mem \rightarrow Port B C7) All Barrier **CGRA** fabric state Low-power core state Command generation 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

Image: Stream-Dataflow Execution Model UCLA Detailed Example Image: Stream-Dataflow Execution Model Image: Dependency Image: Dispatched O Dependency Resource idle Iter. boundary

Time

n.....



C7) All Barrier CGRA fabric state Low-power core state

June 27, 2017

Program Order

All data at dest.

Stream Commands

C1) Mem \rightarrow Scratch

C2) Scratch Wr Barrier

C3) Scratch \rightarrow Port A

C4) Mem \rightarrow Port B

C5) Port C \rightarrow Mem

C6) Mem \rightarrow Port B

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A Х C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С C6) Mem \rightarrow Port B **D**.....**O**

CGRA fabric state Low-power core state

C7) All Barrier

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C → Mem С C6) Mem \rightarrow Port B C7) All Barrier

CGRA fabric state Low-power core state

June 27, 2017

Command generation 2017 Stream-Dataflow Acceleration Talk

Processing

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С C6) Mem \rightarrow Port B C7) All Barrier **CGRA** fabric state Processing Low-power core state Command

generation 2017 Stream-Dataflow Acceleration Talk

June 27, 2017

30

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С **D**··**O**····· C6) Mem \rightarrow Port B 0 C7) All Barrier **CGRA** fabric state Processing Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \mathbf{O} Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С C6) Mem \rightarrow Port B 0 C7) All Barrier **CGRA** fabric state Processing Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \cap Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier **n**..... Program Order C3) Scratch \rightarrow Port A X C4) Mem \rightarrow Port B C5) Port C \rightarrow Mem С C6) Mem \rightarrow Port B Ó C7) All Barrier **CGRA** fabric state Processing Low-power core state Command

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \cap Dependency **Resource idle** Iter. boundary / Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A C4) Mem \rightarrow Port B Х 0.0.4 C5) Port C \rightarrow Mem С **D**··**O**····· C6) Mem \rightarrow Port B 0 C7) All Barrier **CGRA** fabric state Processing

Command

Low-power core state

June 27, 2017

UCLA Stream-Dataflow Execution Model **Detailed Example** Legend: Enqueued \odot Barrier Dispatched \cap Dependency **Resource idle** Iter. boundary Resource in use C[i] = A[i] * B[i]All data at dest. Time **Stream Commands** C1) Mem \rightarrow Scratch Scratchpad C2) Scratch Wr Barrier Program Order C3) Scratch \rightarrow Port A C4) Mem \rightarrow Port B Х 0.0.4 C5) Port C → Mem С C6) Mem \rightarrow Port B 0 C7) All Barrier **CGRA** fabric state Processing Low-power core state

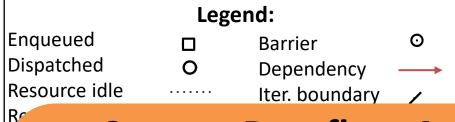
generation 2017 Stream-Dataflow Acceleration Talk

Resume

Command

June 27, 2017

Stream-Dataflow Execution Model UCLA Detailed Example



Stream-Dataflow Accelerator Potential

1. Dataflow based pipelined concurrent execution

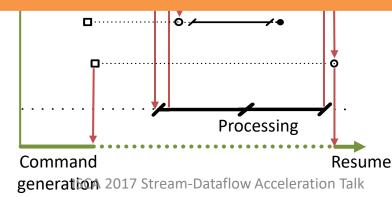
2. High Computation Activity Ratio: Number of Computations/Stream Commands

C6) Mem → Port B C7) All Barrier CGRA fabric state

Low-power core state

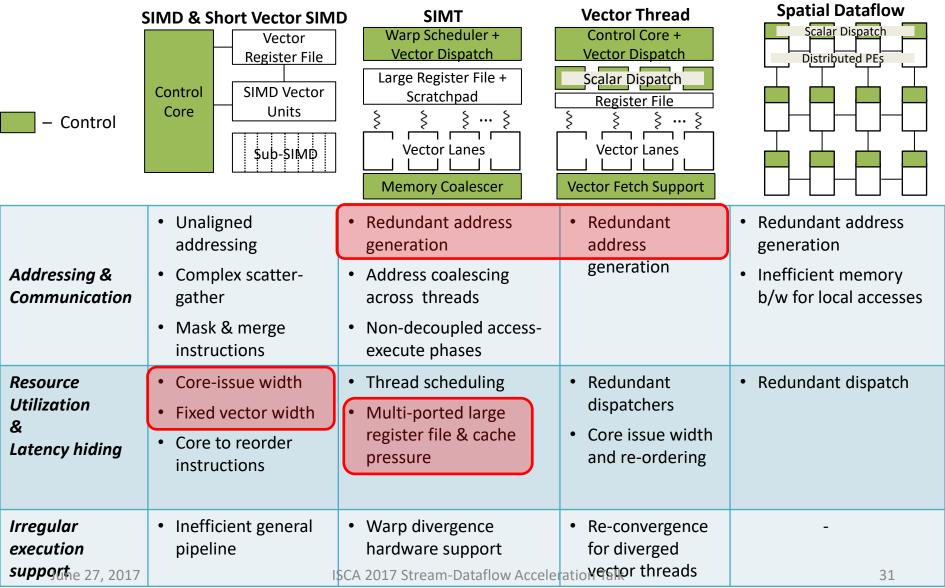
June 27, 2017

Program Order



Inefficiencies in Data-Parallel UCLA

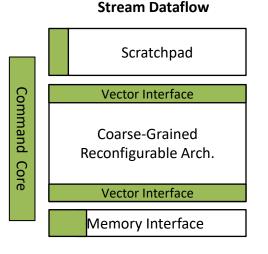
Architectures



Stream-Dataflow Accelerator

Architecture Opportunities

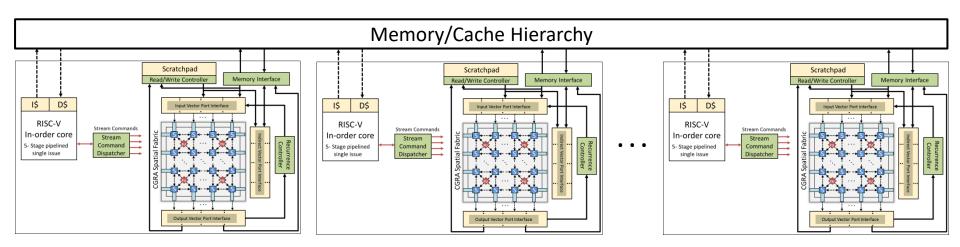
- Reduce address generation & duplication overheads
- Distributed control to boost pipelined concurrent execution
- High utilization of execution resources w/o massive multi-threading, reducing cache pressure or using multi-ported scratchpad
- Decouple access and execute phases of programs
- Able to be easily customizable/configurable for new application domain



Stream-Dataflow Accelerator Architecture

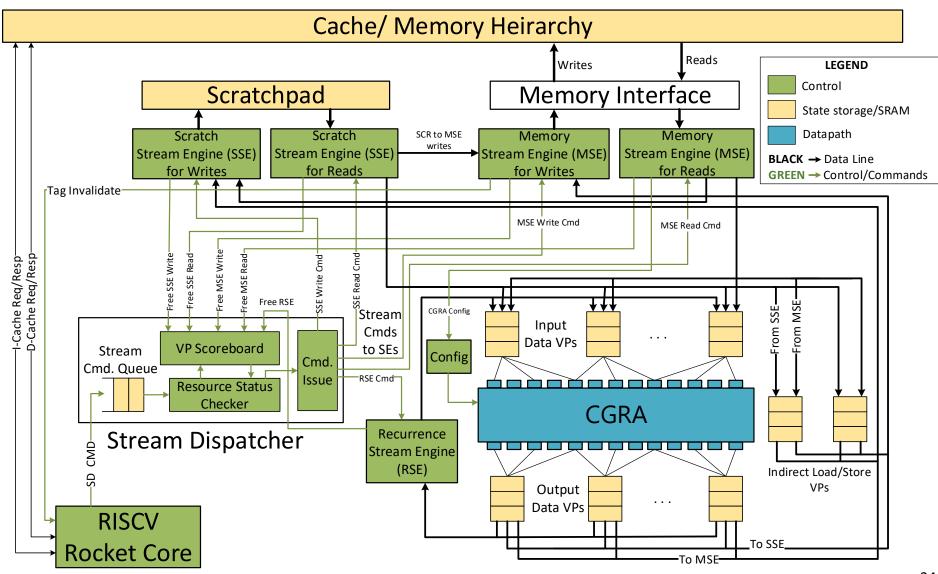
— 512b **———** 64b **—**—— Stream Command

Multi-Tile Stream-Dataflow Accelerator



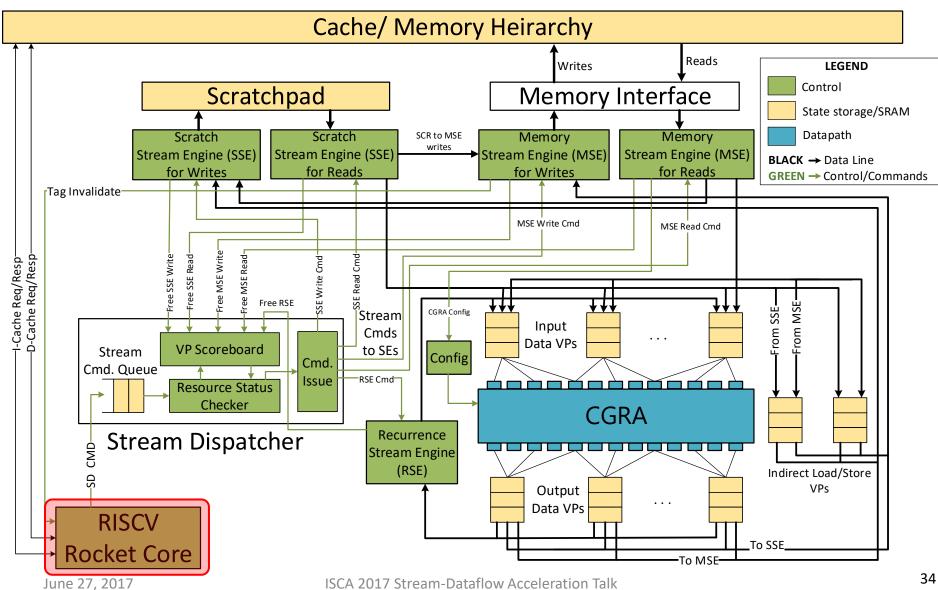
- Each tile is connected to higher-L2 cache interface
- Need a simple scheduler logic to schedule the offloaded streamdataflow kernels to each tile

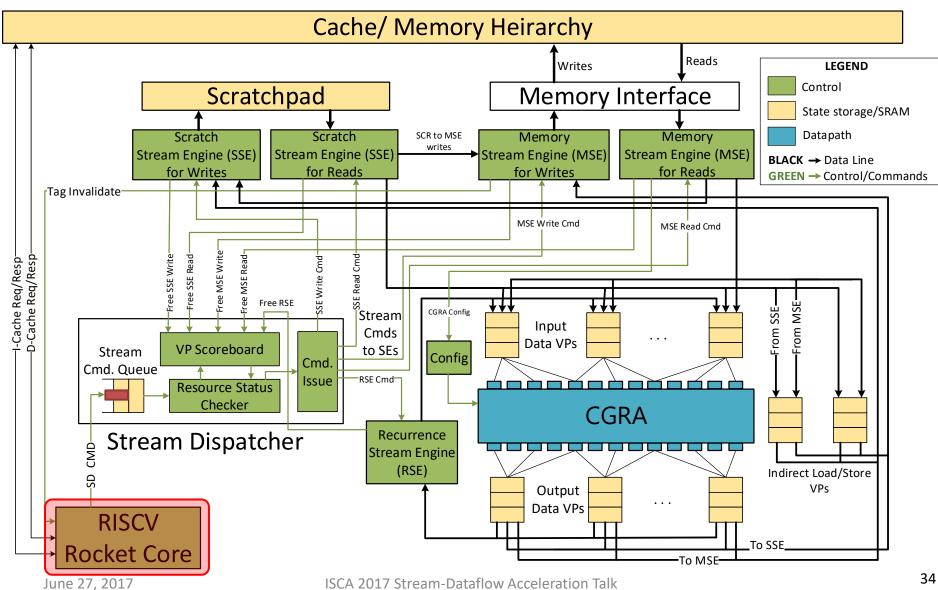
UCLA

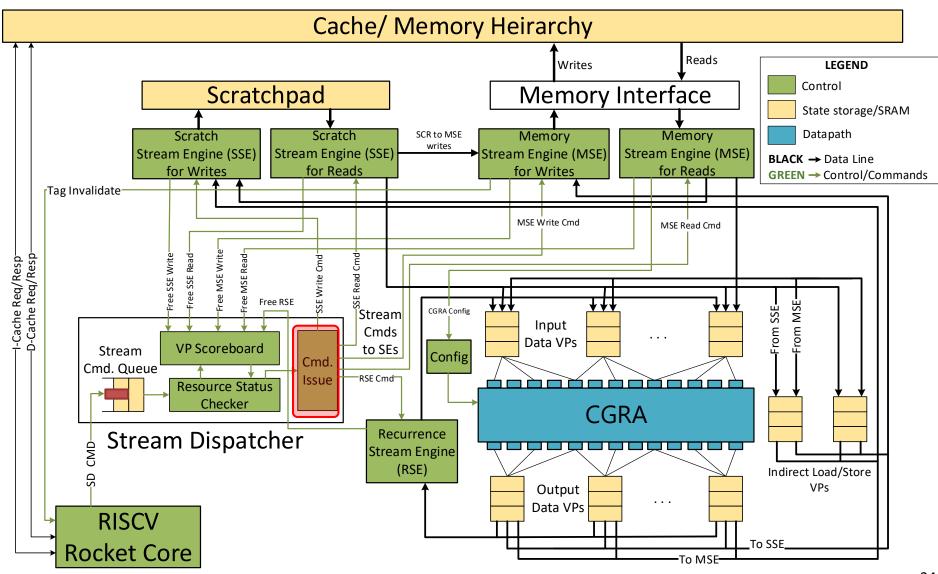


June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

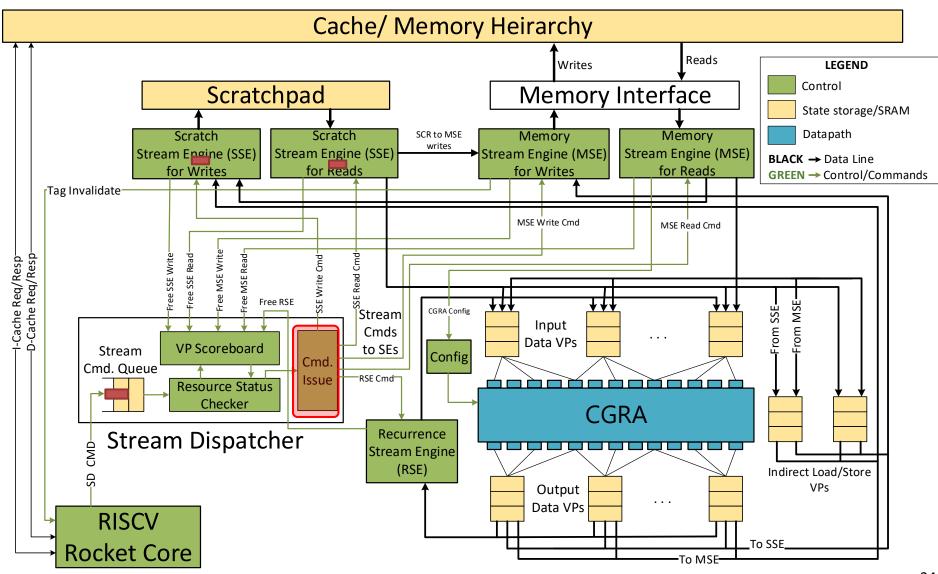






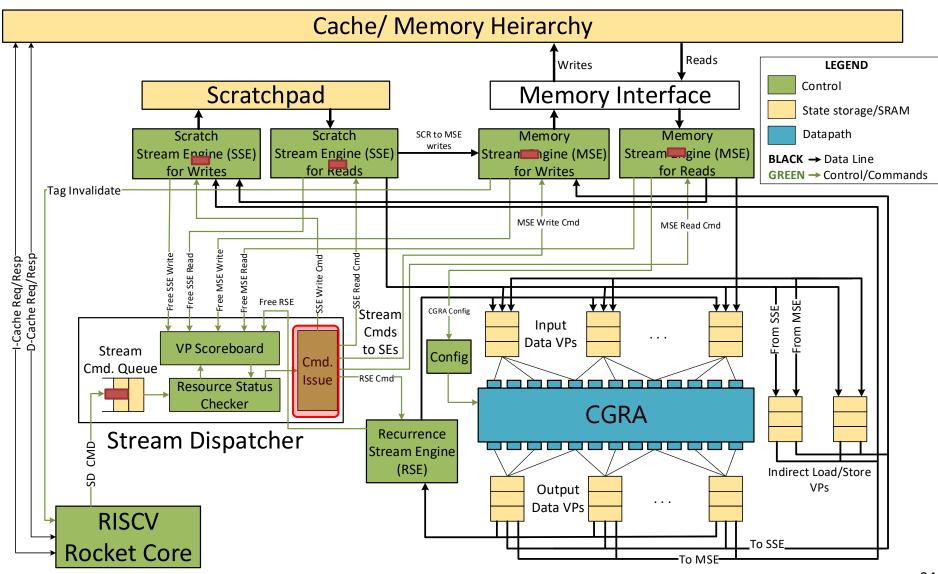
June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk



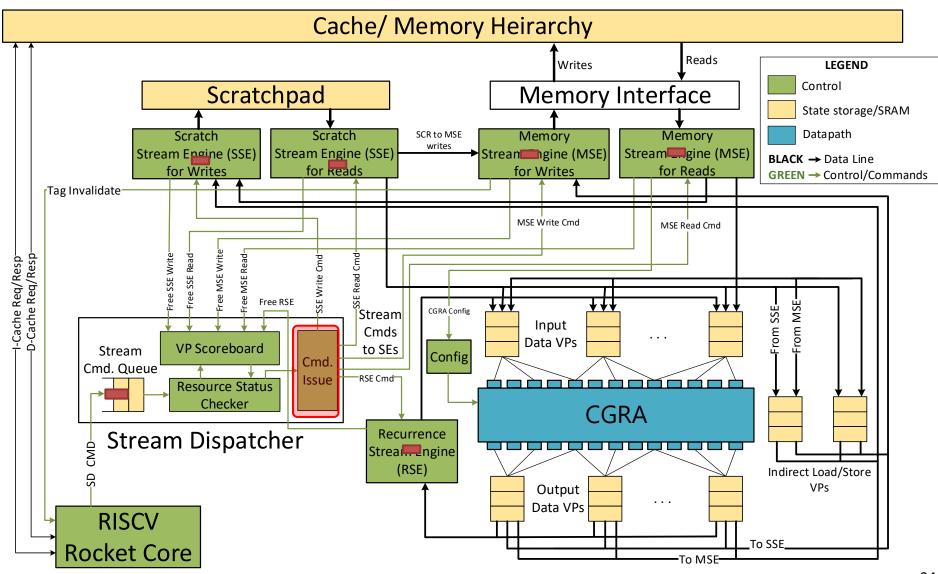
June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk



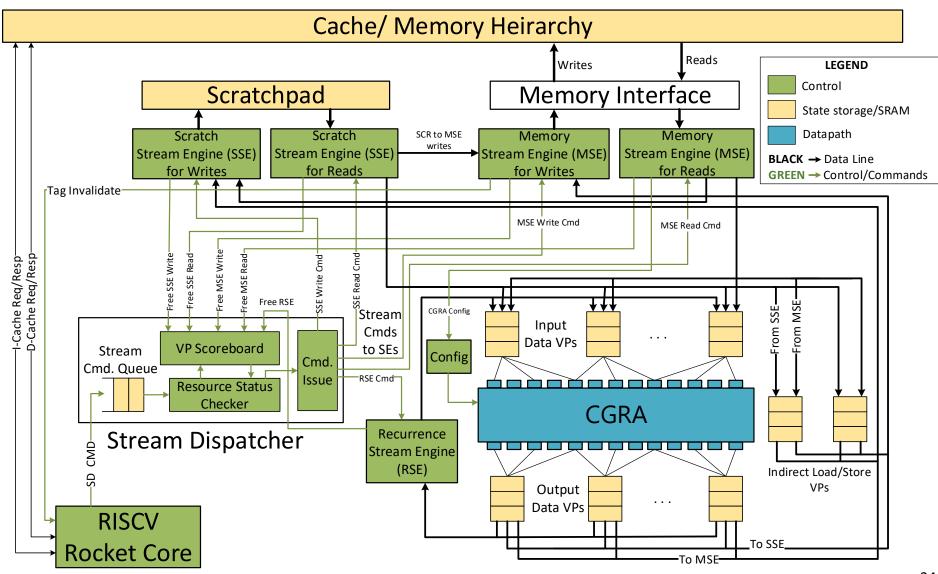
June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk



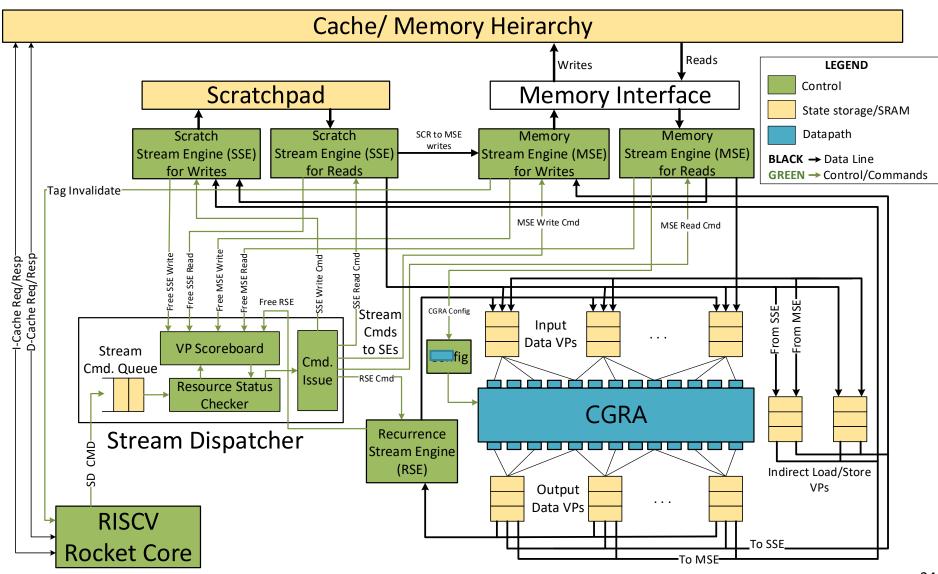
June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk



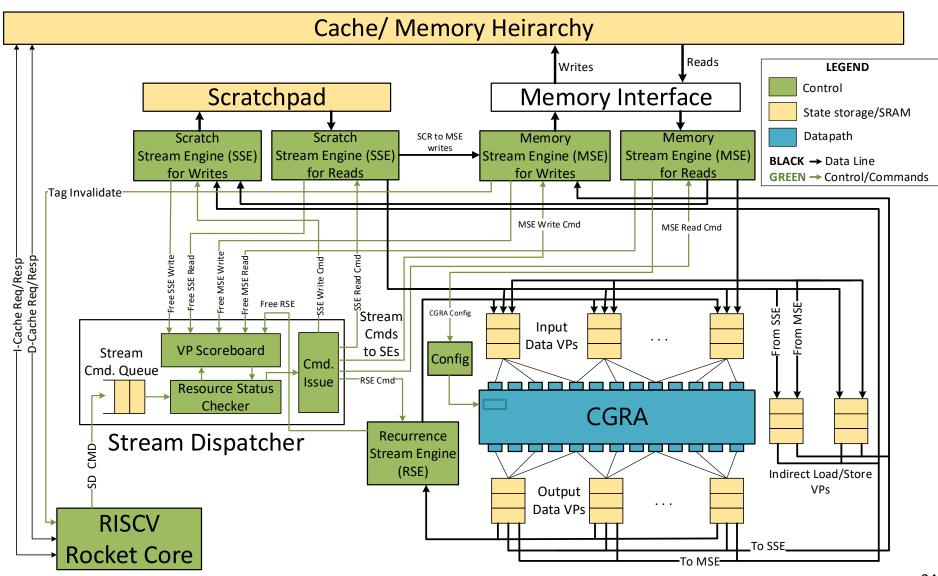
June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

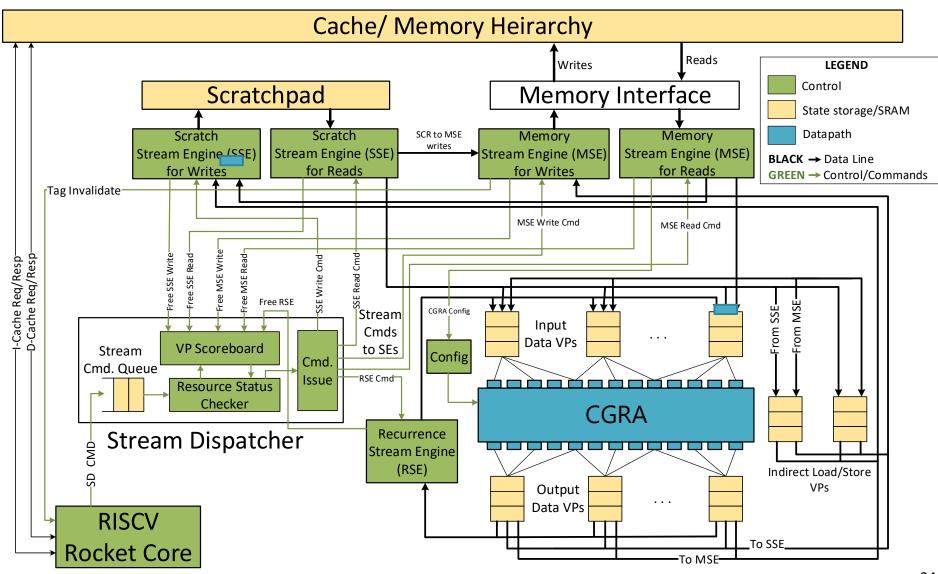


June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

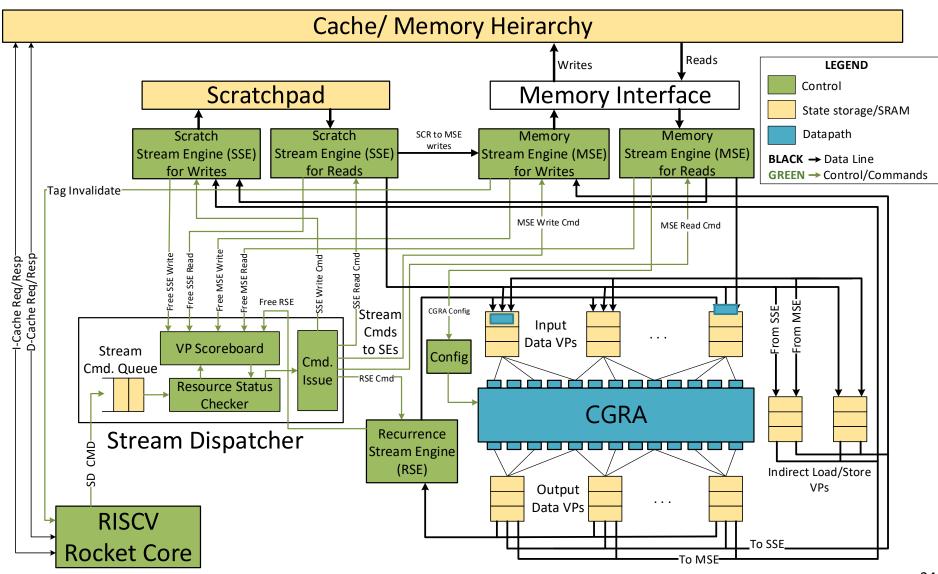


June 27, 2017



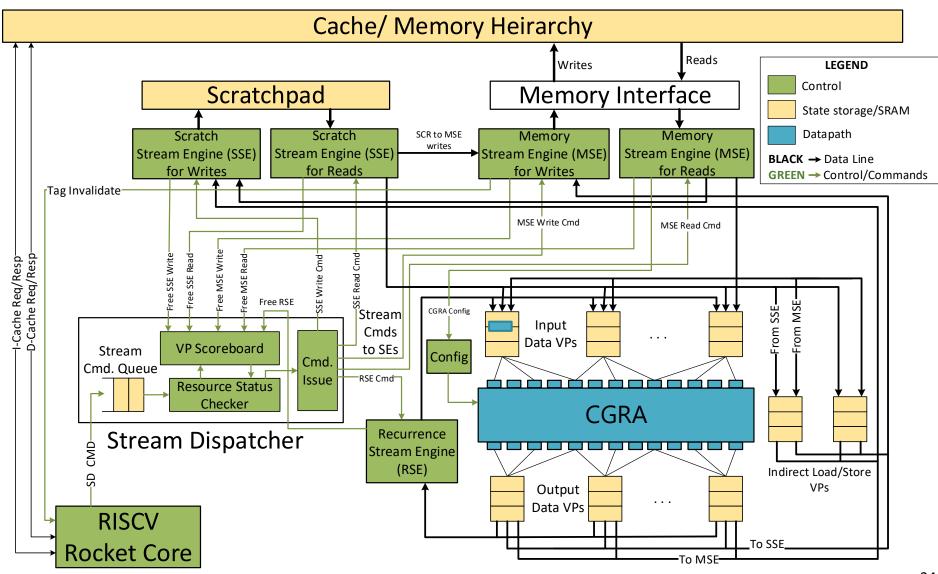
June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk



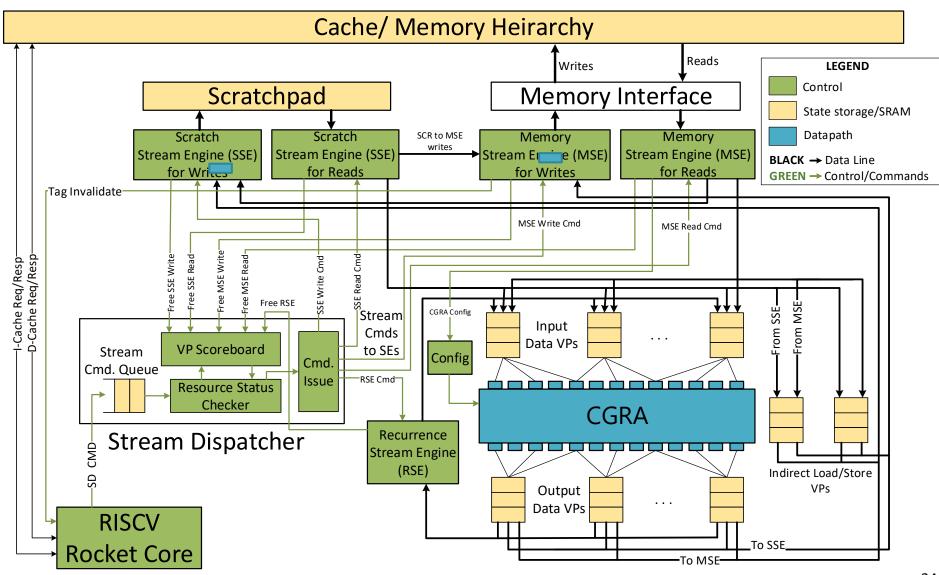
June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk



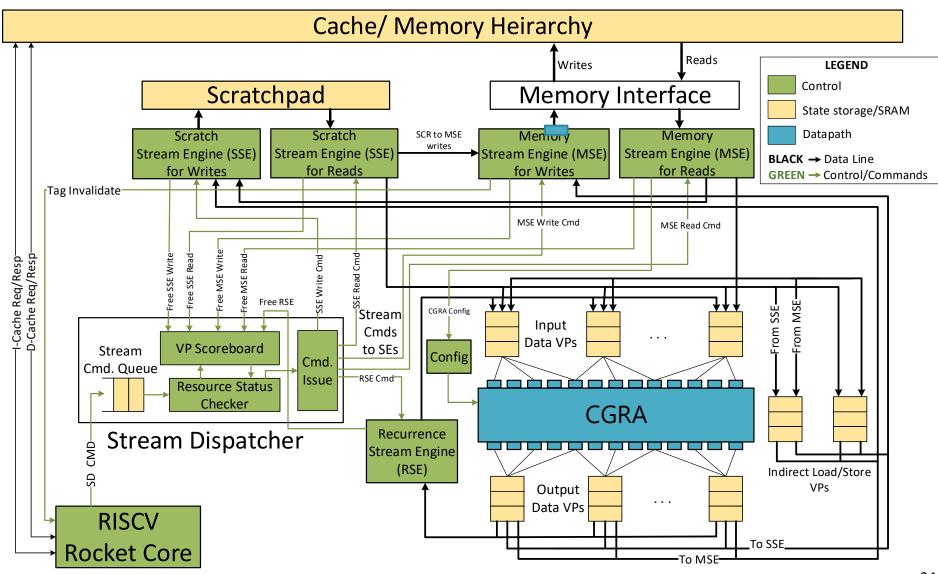
June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk



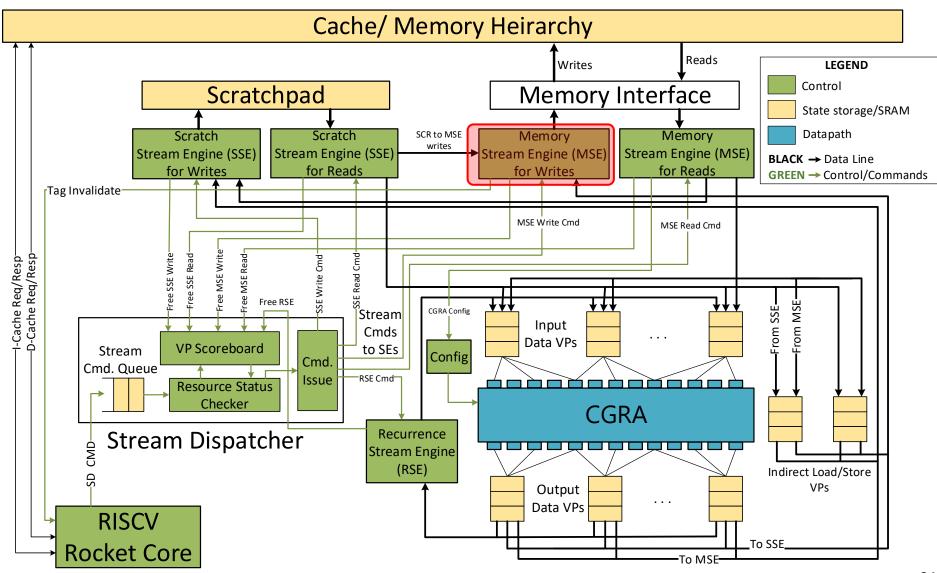
June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk



June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

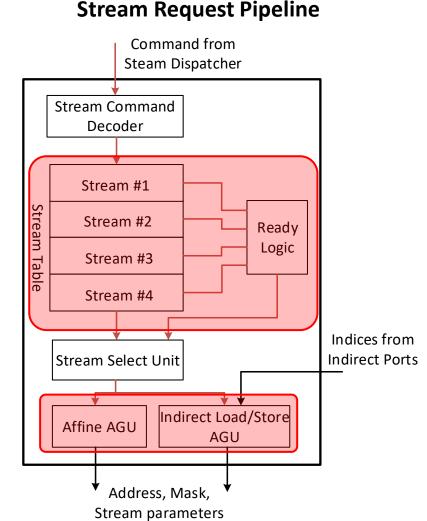


June 27, 2017

ISCA 2017 Stream-Dataflow Acceleration Talk

Softbrain Stream Engine Request Pipeline

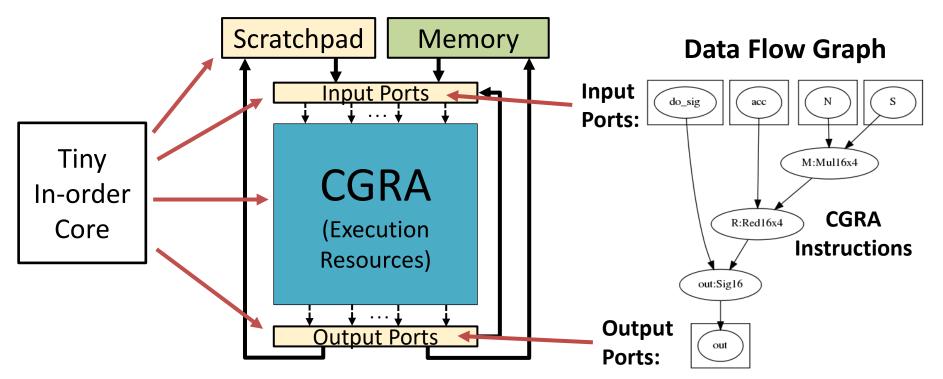
- Responsible for address generation for both affine and non-affine data-streams
- Priority based selection among multiple queued data-steams
- Affine streams Affine Address Generation Unit (AGU) generates memory addresses
- Non-affine AGU gets addresses and offsets from indirect vector ports
- Similar stream request pipeline is used for scratchpad stream-engines with minimal changes



UCI A

Programming Stream-Dataflow Accelerator

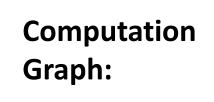
- 1. Specify Datapath for the CGRA
 - Simple Dataflow Language for DFG
- 2. Orchestrate the parallel execution of hardware components
 - Coarse-grained stream commands using the stream-interface

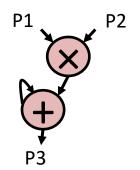


Example Code: Dot Product

Original Program

for(int i = 0 to N) {
 dot_prod += a[i] * b[i]
}





Scalar	Vector	Stream-Dataflow	
<pre>for(i = 0 to N) { Send a[i] → P1 Send b[i] → P2 } Get P3 -> result</pre>	<pre>for(i = 0 to N, i+=vec_len) { Send a[i:i+vec_len] → P1 Send b[i:i+vec_len] → P2 } Get P3 -> result</pre>	Send a[i:i+N] → P1 Send b[i:i+N] → P2 Get P3 -> result	

~2N Instructions

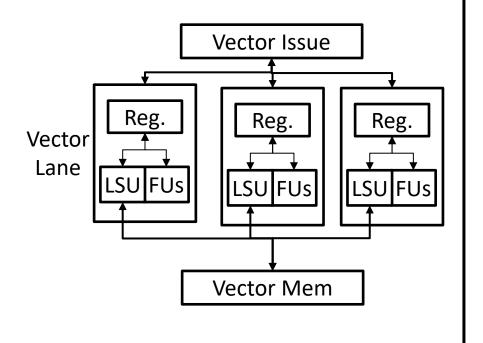
~2N/vec_len Instructions

~3 Instructions

Existing Architectures for Data Parallel

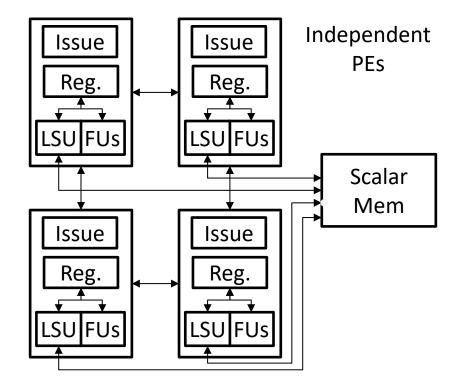
Vector Processor

(eg. ARM Neon, X86 SSE)



Spatial Processor

(eg. Tilera, TRIPS, Wavescalar)



- Amortized Instruction Issue
- Efficient Vector-Memory

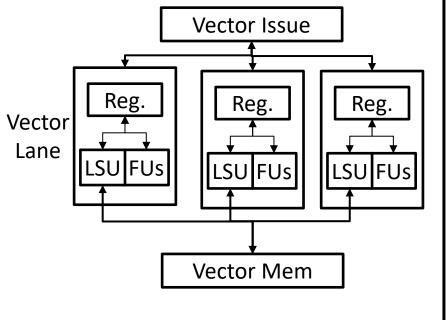
- Efficient Dataflow b/t Units
- Flexible Computation Patterns

June 27, 2017

Existing Architectures for Data Parallel

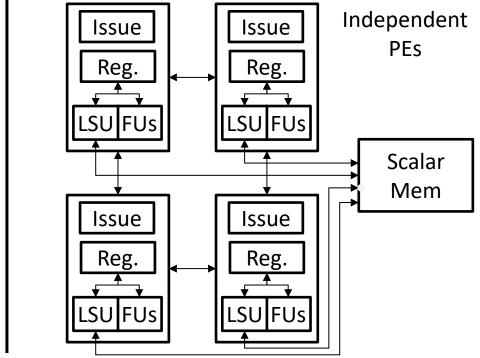
Vector Processor

(eg. ARM Neon, X86 SSE)



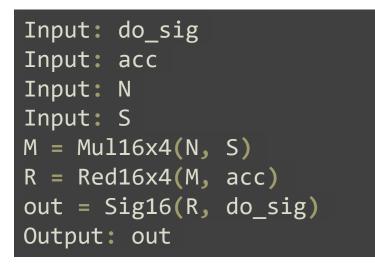
Spatial Processor

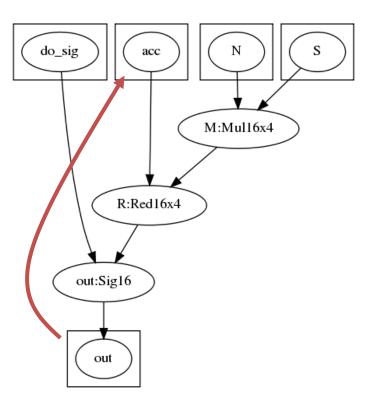
(eg. Tilera, TRIPS, Wavescalar)



Vectorized memory interface + Spatial Datapath + Amortized Issue

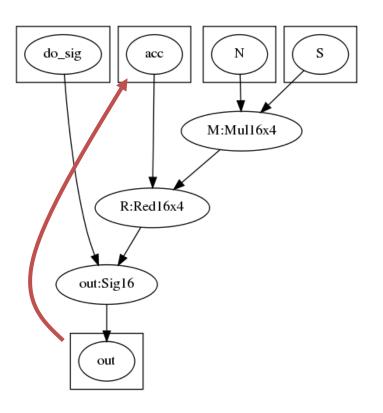
Dataflow Graph (DFG) for CGRA





Stream Dataflow Program:

```
uint16_t synapse[Nn][Ni];
uint16 t neuron i[Ni];
uint16_t neuron_n[Nn];
SD CONFIG(dfg config, dfg size);
SD DMA READ(synapse, 8, 8,Ni*Nn/4,P_dfg_S);
SD DMA READ(neuron i, 0,Ni*2,Nn, P dfg N);
for (n = 0; n < Nn/nthreads; n++) {
  SD_CONST(P_dfg_acc,0,1);
  SD RECURRENCE(P dfg out,Ni/4-1,Port acc);
  SD CONST(P dfg do sig,0,Ni/4-1);
  SD_CONST(P_dfg_do_sig,1,1);
  SD_DMA_WRITE(P_dfg_out,2,2,1,&neuron_n[n]);
SD WAIT ALL();
```



Performance Considerations

- Goal: Fully Pipeline the Largest Data Flow Graph!
- Primary Bottlenecks:

Size of Data Flow Graph

Increase through Loop Unrolling/Stripmining

General Core (for Issuing Streams)

Increase "length" of streams

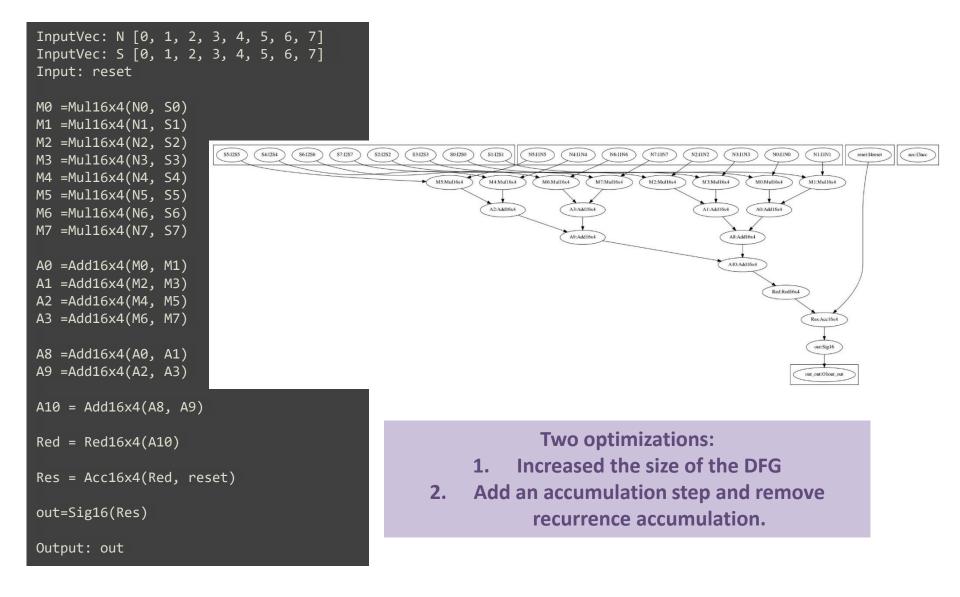
Memory/Cache Bandwidth

Use Scratchpad for reused Data

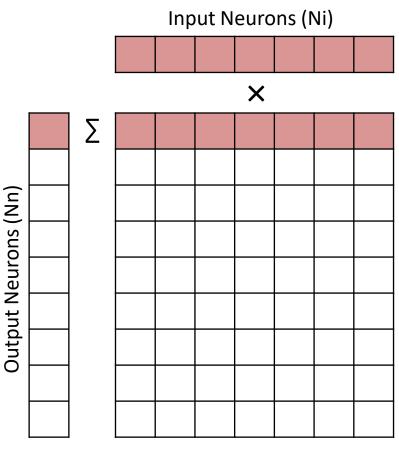
Recurrence Serialization Overhead

Either: 1. Increase Parallel Computations (tiling) 2. Use internal accumulation ΠΟΙ Φ

Optimized DFG

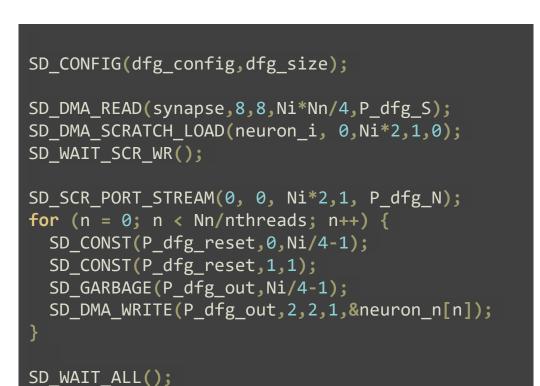


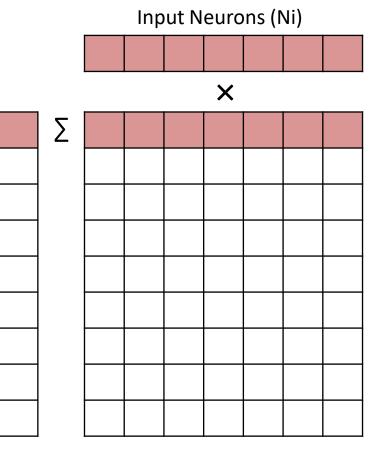
Optimized Classifier Layer



Synapses (Nn x Ni)

Optimized Classifier Layer





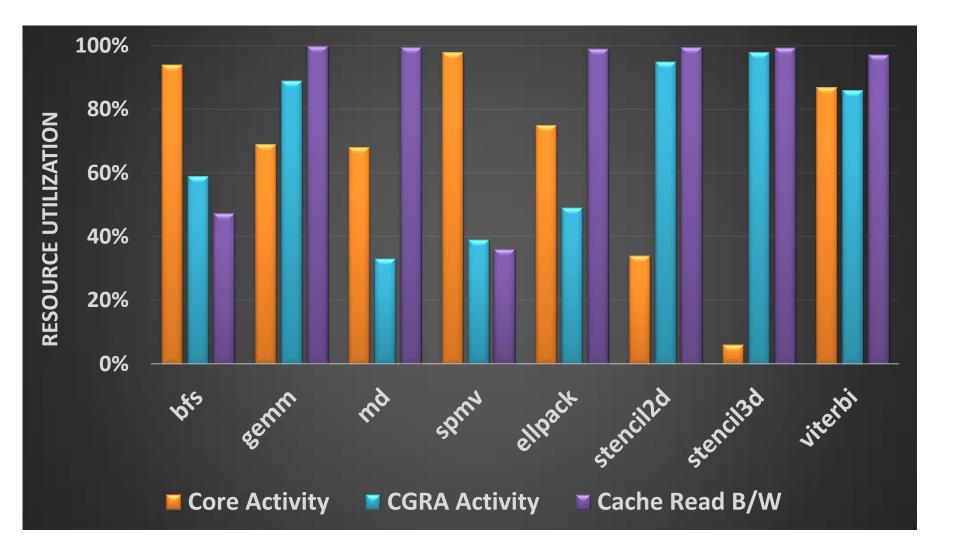
Synapses (Nn x Ni)

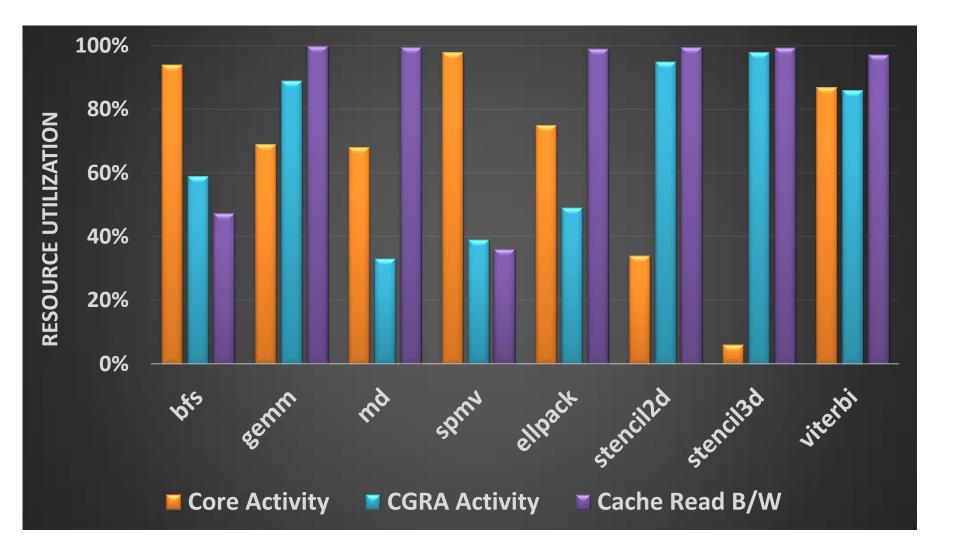
Output Neurons (Nn)

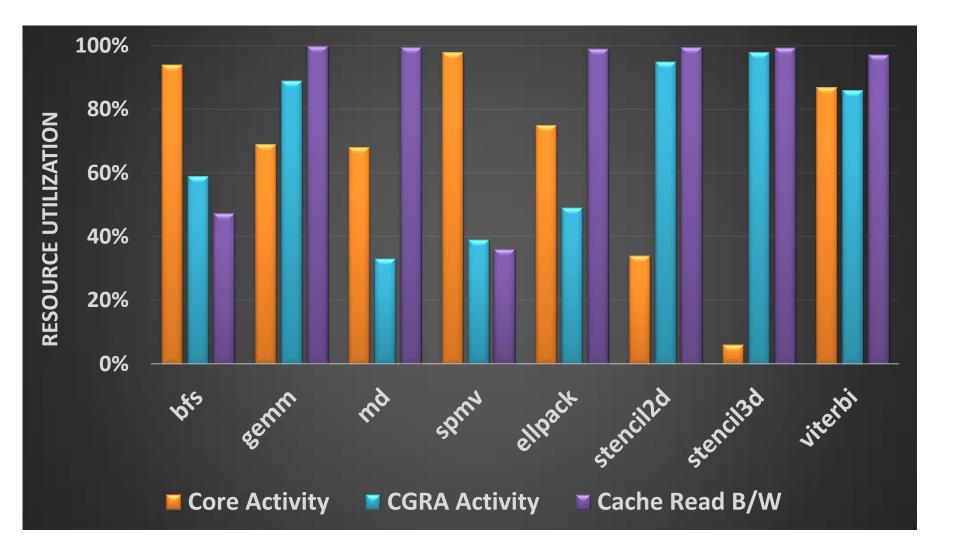
DianNao Power/Area Comparison

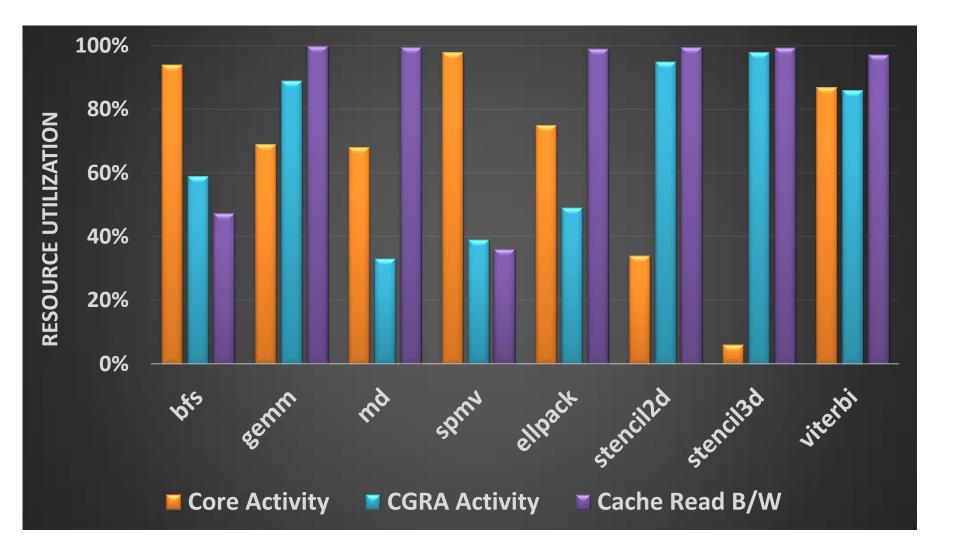
		area(mm ²)	power (mw
Control Core + 16kB I & D\$		0.16	39.1
	Network	0.12	31.2
CGRA	FUs (4×5)	0.04	24.4
	Total CGRA	0.16	55.0
5×Stream Engines		0.02	18.3
Scratchpad (4KB)		0.1	2.0
Vector Ports (Input & Output)		0.03	3.0
1 Softbrain Total		0.47	119.3
8 Softbrain Units		3.76	954.4
DianNao		2.16	418.
Softbrain / DianNao Overhead		1.74	2.28

Table 3: Area and Power Breakdown / Comparison (All numbers normalized to 55nm process technology)

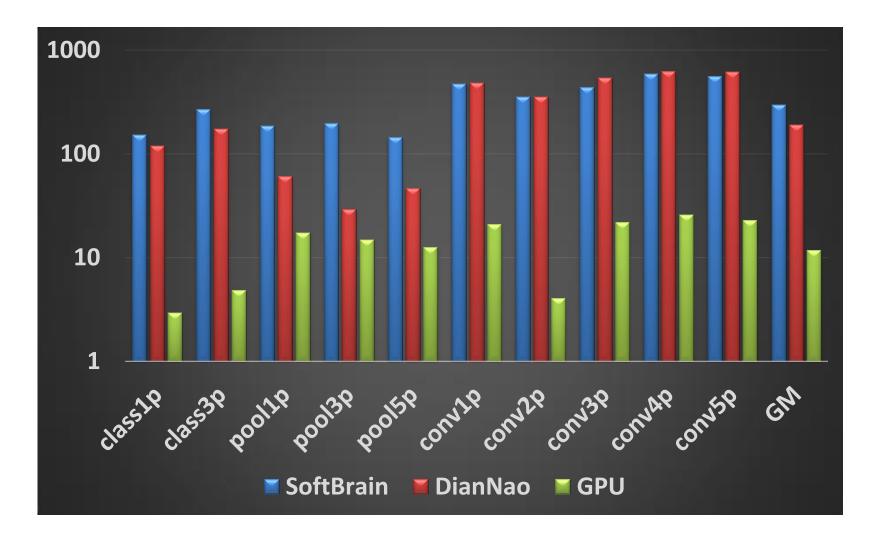




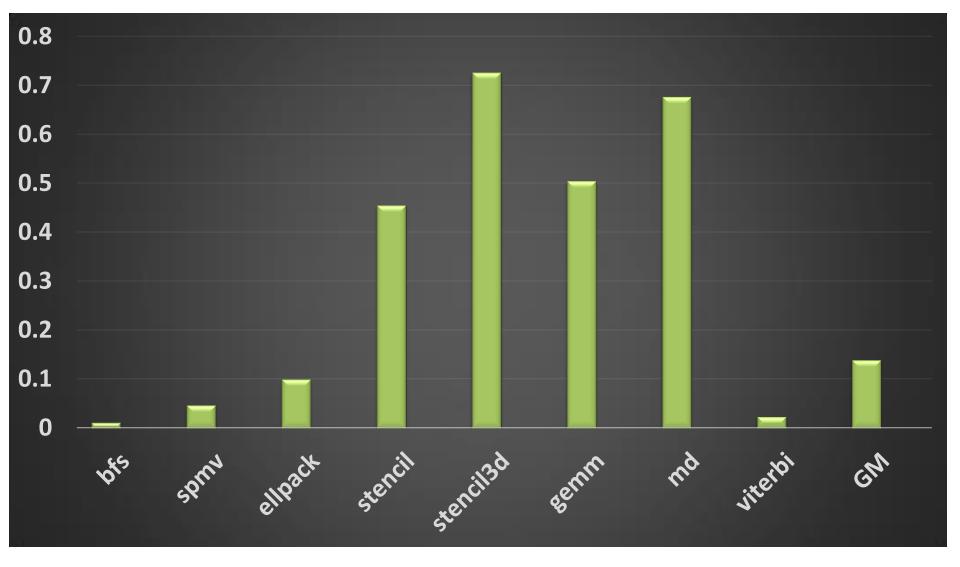




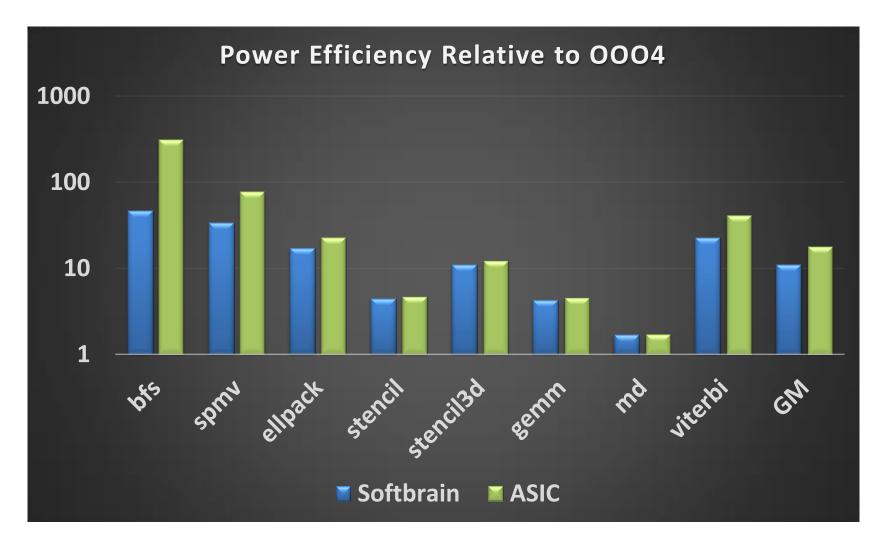
Softbrain vs. DianNao vs. GPU



ASIC Area Relative to Softbrain



Softbrain vs. ASIC Power Efficiency Comparison



Softbrain vs. ASIC Energy Efficiency Comparison

