Soul of a New x52 Machine
Outline

- Background & overview of CS Dept and me
- Soul of a new Freshman CS252 Machine
 - Teaching Computer Science by Building Computers
 - Feedback and thoughts from Katie and Peter
- Soul of a new Senior CS552 Machine
 - Building the very chip used in Freshman year: Theo
- Connections back to research
 - Powering future datacenters with these ideas!

Memory Processing Units: Theo
UW-CS 50 Years of Teaching & Research

- July 1964 founded as 2nd CS department

- Over 6,000 graduates who are flourishing in:
 - **Companies**: built, run and more: AOL, Autodesk, Epic, Microsoft, Oracle, Palo Alto Networks, Rocket Fuel Media, WebMD, and Yahoo!

- Research
 - Early Internet development, Microprocessor innovations w/ a billion shipped, Computing foundation for finding Higgs boson, Fundamental advances in graphics & approximation, principles of data management for “big data”
About me: 2007 - now

- Research: Building better microprocessors
 - 3.95 PhDs, 11 Masters students, 11 patents
 - 4th student is defending Oct 30th 😊
- Teaching: Freshman, senior undergrad, grad courses

- Select publications
 - Memory Processing Units, Hotchips 2014 Poster, Best Poster award, co-authored with Theo Dahlen
 - “A General Constraint-centric Scheduling Framework for Spatial Architectures”, PLDI Distinguished Paper award, CACM Highlights nomination (4 of about 400 papers awarded yearly), presented by under-grad Michael-Sartin Tarm
 - “Hands-on Introduction to Computer Science at the Freshman Level”, SIGCSE, 4 under-grad student authors
Outline

- Background & overview of CS Dept and me

- **Soul of a new Freshman CS252 Machine**
 - Teaching Computer Science by Building Computers
 - Feedback and thoughts from Katie and Peter

- Soul of a new Senior CS552 Machine
 - Building the very chip used in Freshman year: Theo

- Connections back to research
 - Powering future datacenters with these ideas!

Memory Processing Units: Theo
Spring 2012: Freshman project
Hobbyist Computing in 80s
30 years ago, computers not ubiquitous, but...

building your own computer was cool, fun, educational, and common
Today, computers everywhere…
Can they learn by building a computer?

Better pedagogy and more fun
Arduino

Atmel chip, 14 digital input/output pins, 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, 32KB Flash, 2KB SRAM

Costs $75
Family of Plugin Extensions
Intuitive programming IDE

```cpp
// Blink
// Turns on an LED on for one second, then off for one second.
// This example code is in the public domain.

void setup() {
  // initialize the digital pin as an output.
  // Pin 13 has an LED connected on most Arduino boards:
  pinMode(13, OUTPUT);
}

void loop() {
  digitalWrite(13, HIGH);  // set the LED on
  delay(1000);            // wait for a second
  digitalWrite(13, LOW);  // set the LED off
  delay(1000);            // wait for a second
}
```
Principles of Programming & Computing

Structure

- `setup()`
- `loop()`

Control Structures
- `if`
- `if...else`
- `for`
- `switch case`
- `while`
- `do...while`
- `break`
- `continue`
- `return`
- `goto`

Variables

Constants
- `HIGH | LOW`
- `INPUT | OUTPUT`
- `INPUT_PULLUP`
- `true | false`
- `integer constants`
- `floating point constants`

Data Types
- `void`
- `boolean`
- `char`
- `unsigned char`
- `byte`
- `int`
- `unsigned int`
- `word`
- `long`
- `unsigned long`

Functions

Digital I/O
- `pinMode()`
- `digitalWrite()`
- `digitalRead()`

Analog I/O
- `analogReference()`
- `analogRead()`
- `analogWrite()` - PWM

Advanced I/O
- `tone()`
- `noTone()`
- `shiftOut()`
- `shiftIn()`
- `pulseIn()`

Time
- `millis()`
- `micros()`

Further Syntax

- `;` (semicolon)
- `{}` (curly braces)
- `//` (single line comment)
- `/* */` (multi-line comment)
5 hands-on building projects to teach computer science

Freshman course: CS 252 Introduction to Computer Engineering
Ultrasonic sensor
void loop()
{
 if (ultrasoundValue <= 15 && ultrasoundValue >= 5
 && ultrasoundValueLeft > 10
 && ultrasoundValueRight > 10) { //spin clockwise
 digitalWrite(E1,HIGH);
 analogWrite(M1,150);
 digitalWrite(E2,LOW);
 analogWrite(M2,150);
 } else if (ultrasoundValue <= 15 && ultrasoundValue >= 5
 && ultrasoundValueLeft <= 10
 && ultrasoundValueRight > 10) { //spin clockwise
 digitalWrite(E1,HIGH);
 analogWrite(M1,150);
 digitalWrite(E2,LOW);
 analogWrite(M2,150);
 } else ...

Learning Objectives

- Programming
 - Loops, conditionals, data-structures

- Systems
 - Notion of interrupts, concurrent programming, event-loop, device IO, wireless stack, interference, polling, noise, overcoming noise, Ethernet stack

- Algorithms
 - Communication and hand-shake, maze traversal

- Working with incompletely defined problems

- Working in a team, planning, asking for help
 - Proposal, revised proposal, 3 progress reports, final report
Instance 1 (Spring 2012)

- Extra credit – 5% of the course, Optional
- > 50% of the class participated
- 15 had no prior software experience
- Got them all hardware required
- Pointers to getting-started software
- All but one team completed!
- 2 teams went way beyond what we expected
Instance 2 (Spring 2013) - Improvements

- Instructional webpages
 - Detailed setup instructions
 - Demo videos
 - Step-by-step project plans
 - Intentionally open-ended!

- Support from multiple “Undergrad TA’s”
- Online platform for collaborative discussions
Instance 2 (Spring 2013) - Feedback

More hands-on opportunities needed
- 86.7% Strongly Agree
- 13.3% Agree

I learned a lot from this project
- 73.3% Strongly Agree
- 26.7% Agree

The amount of help was sufficient
- 80.0% Strongly Agree
- 20.0% Agree

2 person group able to finish project
- 73.3% Strongly Agree
- 26.7% Agree
Student feedback

- My team put a lot of work into the project. If possible the Arduino project could be used to form another credit for the class and in that case maybe the projects could be a little bit tougher.

- This was much more interesting than anything else we did in class and I wish we could expand on it.

- I thought it was great. It is a lot of fun, and we are still making improvements on the robot.

- Some step by step instructions or more constructed demo.
Impact and Recognition

- SIGCSE paper
 - Premier publication venue for CS Education

- Matt Doran from instance 1 (undergrad freshman who created website for instance 2)
 - Astronaut Scholarship 1 of 40 offered nationally in all science disciplines

- Used in other offerings of 252

- Awards for me!
 - Emil H Steiger Distinguished Teaching award
 - Letters and Science Philip R. Certain - Gary Sandefur Distinguished Faculty Award in 2013
Lessons Learned

- Challenge: Diversity in student’s technical backgrounds
 - Projects of different complexity

- Challenge: Improving student enthusiasm and uptake
 - Instructional videos, open-ended projects

- Challenge: Too much information is bad!
 - Intentionally vague how-tos

- Challenge: Want more!
Can we extend and develop these hands-on projects through the entire curriculum?
A Hands-on Curriculum

202, 252, 352: Overview of computing concepts
- Arduino Lab with 2-person team projects
- Core curriculum

536: Intro to Programming Languages and Compilers
- Build compiler for Arduino’s language

537: Intro to Operating systems
- Build Arduino OS and device drivers

552: Intro to Computer Architecture
- Build Arduino processor, map to FPGA, drive shields
- Run their Freshman project on their chip and software!
Integration with Research

- Students gain exposure to research
 - Matt Sinclair (PhD at UIUC, Qualcomm Fellowship), Sam Wasmundt (PhD at UCSD)

- Realized Arduino processor is a great processor for data center!

32KB Flash, 2KB SRAM
Outline

- Background & overview of CS Dept and me
- Soul of a new Freshman CS252 Machine
 - Teaching Computer Science by Building Computers
 - Feedback and thoughts from Katie and Peter
- Soul of a new Senior CS552 Machine
 - Building the very chip used in Freshman year: Theo
- Connections back to research
 - Powering future datacenters with these ideas!
 - Memory Processing Units: Theo
Outline

- My experiences as a student
 - What I did, what I learned, impact on me

- My experiences as a TA
 - What I did, what I learned, impact on me
Background in ECE

- ECE 252 first engineering course to introduce CMPE/CS concepts
- Had no prior experience in any ECE/CS topics
What I did

- Took opportunity for hands-on experience: joined project to create Arduino robots
- Created an ‘Obstacle Avoidance Robot’
What I learned

- Introduced hardware/MCU programming
- Learned various hardware protocols
Impact on me

- Kick started interest in continuing work in the field of CMPE/CS
- Introduced me to branch of ECE that I am now most interested in: MCU & Internet of Things
Outline

- My experiences as a student
 - What I did, what I learned, impact on me

- My experiences as a TA
 - What I did, what I learned, impact on me
What I did

- **1st two weeks in Fall**
 - Revise website
 - Assemble/disassemble projects

- **During semester**
 - Hold office hours
 - Trouble shoot
 - Email answers
What I learned?

- How to teach students hardware concepts on a basic but intuitive level
- How to effectively teach basic coding concepts
- How to gauge material/course based on feedback
Impact on me

- Teaching helped to reinforce CS/CMPE concepts
- Saw first hand student and faculty interest
Outline

- Background & overview of CS Dept and me
- Soul of a new Freshman CS252 Machine
 - Teaching Computer Science by Building Computers
 - Feedback and thoughts from Katie and Peter
- Soul of a new Senior CS552 Machine
 - Building the very chip used in Freshman year: Theo
- Connections back to research
 - Powering future datacenters with these ideas!
 - Memory Processing Units: Theo
Overview

- GROWL: extending Arduino projects into senior year
- What I learned
- Applied skills to MPU research
Background: Senior course

- “Build” a microprocessor
 - Very cool, but... “build” defined as run random programs, look at waveforms, verify correctness.
 - Nothing you can hold in your hands
 - Can we build a real chip?
$75 Gets You
$125 Gets You
Meet GROWL
How did I get there?

- ISA manual, FPGA board, design tools
- Six months of LOTs of work
- Internet
What we have done

- Designed and implemented Arduino processor
- Built testing infrastructure
- Verified implementation
- Loaded on FPGA
Design and Implementation
Verification Infrastructure

- Figure out how to test the processor
- What to test it with?
- How do I know if it is working as expected?
Verification
Map on FPGA: $20 million vs $125
What I learned

- Deeper understanding of how hardware works
- Technical skillset to work on hardware design problems
 - Tools
 - Languages
- Insight: this simple processor can play a role in big servers
Today’s servers

5pJ to do an operation but 360pJ to access memory
Runs for 1ns and waits for 40ns for memory

Far away memory!

Hot power hungry processor
MPU Idea

- Processing in Memory with new 3D stacked memory
- Simple Arduino cores running at 250 MHz
- 5X to 10X faster and lower energy
MPU Results Relative to Today’s Server

- **Speedup**
 - Database: 5
 - Networking: 3.5
 - Graph Search: 4.9

- **Energy Reduction**
 - Database: 18
 - Networking: 12
 - Graph Search: 17
MPU Contributions

- Co-developed refinements to architecture
- Leading workload analysis
- Developing simulation infrastructure
- Prototype physical chip design using FPGA
Summary

● GROWL is ready for a trial with students

● Skills I learned from GROWL prepared me for MPU research
Soul of a New x52 Machine
Concluding Thoughts

- CS enrollments soaring

- These and other innovations are part of department’s vision to:
 - Make CS major more accessible
 - Teach broadly applicable courses, CS certificate
 - Research expanding into exogenic (externally motivated) area