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Abstract

The rising dark silicon problem and the waning benefits of device scaling has caused a push towards

specialization and hardware acceleration in last few years. While existing programmable and

general purpose data-parallel architectures like SIMD engines and GPGPUs are orders of magnitude

more efficient than their scalar counterparts, these benefits are still insufficient for the emerging

applications. Recently, computer architects both in industry and academia have followed the trend of

building custom high performance hardware engines for individual application domains, generally

called as Domain-Specific Accelerators (DSAs). DSAs have been shown to achieve 10 to 1,000

times performance and energy efficiency improvements over general-purpose and data-parallel

architectures for various application domains like machine learning, computer vision, databases

and others. While providing these huge benefits, DSAs sacrifice programmability for efficiency

and are prone to obsoletion due to domain volatility. The stark trade-offs between efficiency and

generality at these two extremes poses an interesting question: Is it possible to have an architecture

which has the best of both – programmability and efficiency, and how close can we get to such a

design?

This dissertation explores how far the efficiency of a programmable architecture can be pushed,

and whether it can come close to the performance, energy, and area efficiency of a domain-specific

based approach. We specifically propose a type of hardware acceleration called “Programmable

Hardware Acceleration”, with the design, implementation and evaluation of a hardware accelerator

which is programmable using an efficient hardware-software interface and yet achieve efficiency

close to DSAs. This work has several observations and key findings. First, we rely on the insight

that ‘acceleratable’ algorithms have common specialization principles and most of the DSAs employ

these. Second, these specialization principles can be exploited in a hardware architecture with a

right composure of programmable and configurable micro-architectural mechanisms. Third, these
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mechanisms can be used as hardware primitives in building a generic programmable hardware

accelerator. Fourth, the same primitives can also be exposed to the programmers as a hardware-

software interface to take benefit of the programmable hardware acceleration. Finally, our evaluation

and analysis suggest that a programmable hardware accelerator can achieve performance as close

as DSAs with only 2x overheads in area and power. Along with these findings, we also believe that

this programmable hardware accelerator can serve as a meaningful baseline to measure the true

benefits of specialization and also enable future accelerator innovation by acting as a platform to

discover more programmable specialization mechanisms. In summary, this work shows a principled

approach in building hardware accelerators by pushing the limits of their efficiency while still

retaining the programmability.



1

1 | Introduction

Data processing continues to dominate the global economy – from the scale of web services and

warehouse computing, to networked Internet of things and personal mobile devices [1, 2]. Especially

in recent times, as the requirements and applications in these areas have evolved, general purpose

processors have become increasingly less effective, and have fallen out of focus, because of the

energy and performance overheads of traditional VonNeumann architectures [3, 4].

For many years, general-purpose processor (GPP) architectures and micro-architectures have

taken advantage of Dennard scaling and Moore’s Law, exploiting increased circuit integration to

deliver higher performance and lower energy computation. As has been noted [5, 6, 7], those physical

trends are slowing, and thus there has been a recent surge of interest in more narrowly-applicable

architectures in the hope of continuing system improvements in at least some significant application

domains. This is far from an academic movement and this trend has been observed even in industries.

For large scale computing, Microsoft has deployed the Catapult FPGA (Field-Programmable Gate

Array) accelerator [8] in its datacenters, and likewise Google’s Tensor Processing Unit (TPU) for

distributed machine learning [9, 10]. For scalable and confiruable acceleration of the deep learning

inference, NVIDIA has released a custom hardware solution along with a system architecture [11].

Internet of things devices and modern mobile systems on chip (SOCs) are already laden with

custom hardware, and innovation continues in this space with companies like Movidius developing

specialized processors for computer vision [12]. These examples also point out how General Purpose

Programmable Graphics Processing Units (GPGPUs) and many-core SIMD1 engines are becoming

insufficient for power-optimized data processing tasks.

In the aspect of building such narrowly-applicable architectures, a popular approach so far has

been – Domain Specific Accelerators (DSAs); hardware engines capable of performing computations
1Some have argued that GPGPUs and multi-core + SIMD are essentially the same [13, 14], simply trading off caches

for register files.
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of one application domain with high performance and energy efficiency. Acceleration with DSAs

is generally called as Domain Specific Acceleration or Specialization. DSAs have been developed for

machine learning [15, 16, 17], cryptography [18], XML processing [18], regular expression match-

ing [19, 20, 21], H.264 decoding [3], databases [22, 23], speech recognition [24] and many others.

Together, these works have demonstrated that, for many important workloads, accelerators can

achieve between 10× to 1,000× performance and energy benefits over high performance, power hun-

gry general purpose processors. For all of their efficiency benefits, DSAs sacrifice programmability

and generality and are prone to obsoletion. Critically, the alternative to domain specific accelerators

are not necessarily standard general-purpose processors, but rather programmable and re-configurable

architectures which employ similar micro-architectural mechanisms for specialization.

This dissertation proposes a new paradigm in hardware acceleration called the “Programmable

Hardware Acceleration”, which enables us to have a programmable architecture composed of

specialization elements. This specialized architecture called as Programmable Hardware Accelerator

will be able to achieve efficiency as close as DSAs while still retaining the programmability. With

regards to that, we first make a fundamental observation that DSAs, though differing greatly in

their design choices, all employ a similar set of specialization2 principles. Based on this important

observation, the primary insight of the dissertation is that these common specialization principles

can be exploited in a general way by composing known programmable and configurable micro-

architectural mechanisms and arrive at a programmable architecture with efficiency close to DSA. We

examine the specialization benefits of those mechanisms by first building a Generic Programmable

Hardware Accelerator model called GenAccel which acts as a proof-of-concept model for evaluating

the performance, area and power efficiency of programmable hardware acceleration.

Based on the model, we then consider a specific instance of programmable hardware acceleration

called Stream-Dataflow Acceleration aimed at accelerating typical data-streaming applications. We

propose a detailed architecture with programming abstractions, execution model, an ISA interface
2We broadly make use the terms specialization and acceleration interchangeably, as acceleration (both hardware and

software) is achieved by specializing certain aspects of a general purpose architecture execution.
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and a low-level micro-architecture implementation for the stream-dataflow accelerator. In summary,

this dissertation explores a principled approach of modeling and designing a programmable hard-

ware accelerator along with its architecture, micro-architecture, execution model and compilation

techniques by adapting a hardware-software co-design methodology.

The rest of the chapter briefly describes hardware acceleration and domain-specific acceleration in

general and then delves into the dissertation’s main theme Programmable Hardware Acceleration by in-

troducing two different specialization paradigms. We finally end the chapter with the contributions

of the thesis and dissertation organization.

1.1 Hardware Acceleration

Hardware Accelerators are units of hardware logic which specialize certain aspects of a general

purpose processor’s execution to improve performance and/or energy efficiency. Since, the ap-

plication phases amenable to acceleration are offloaded to the hardware accelerators from a host

general purpose processor, these accelerators are also called as co-processors. These accelerators are

composed of custom hardware logic specifically designed to execute important program phases of

an application which would otherwise incur lot of power and performance overheads in general

purpose architectures. Especially, with the recently explored dark silicon problem [25, 26, 27], its

important to utilize the available transistors to do meaningful computation in an efficient way, thus

achieving better performance and higher energy efficiency. Even from an industry perspective,

hardware accelerators are very important for reducing the overall total cost of ownership (TCO),

by utilizing the chip area efficiently and also reducing the power consumption for doing the same

amount of computation.

In hardware accelerators, this process of giving up generality for efficiency on a single workload,

workload domain or workload type is called architectural specialization. They firstly do this by

exploiting particular aspects of a target application domain and building the specialized custom
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logic to execute those application phases. The specialized hardware logic might include customized

functional units (FUs), memory interfaces, datapaths and interconnect architectures. Second,

hardware accelerators sometimes may expose a minimal software interface with computation

abstractions to be tuned by the programmer. A popular example is SIMD, which specializes for

data-parallel computation, and another is Coarse Grain Reconfigurable Architectures (CGRAs),

which specialize for computation pattern re-use. In the last decade, General Purpose Computing

on Graphical Processing Units (GPGPUs) have gained traction and are prevalent for executing

both data-parallel and thread-parallel applications [28, 14]. The way that accelerators rely on

applications for certain properties is what we call accelerator-application interaction. In addition to

exploiting properties of applications, accelerators also use specific hardware techniques to reduce

the overheads of a general purpose processor. SIMD processors have parallel datapaths, and reduce

instruction count, CGRAs employ reconfigurable datapaths and GPGPUs have thousands of tiny-

cores to exploit thread-level parallelism. The strategies by which accelerator’s specialize the general

purpose core is what we call the accelerator-core interaction.

There are associated challenges with hardware acceleration in general. Data transfer and integra-

tion with host processor are two main challenges and has tradeoffs with respect to power, area and

performance. In case of closely-coupled hardware accelerators, these two are related to each other as

the accelerator needs to be tightly integrated to processor pipeline in order for a faster data transfer

and avoid the switching overhead. Hardware-software co-design is another challenge in accelera-

tors where right hardware abstractions need to be exposed to the programmers in-order to take

advantage of the specialized hardware. Designing the accelerator with set of micro-architectural

mechanisms supporting the hardware-software co-design is very important affecting the factors

like chip cost, efficiency and speedup. And finally modifying the application to take advantage of

the hardware acceleration and compiling the application to produce the right set of instructions to

reduce runtime overheads also needs to be addressed when designing the hardware accelerator.

We address all these challenges in detail for a programmable hardware accelerator in Chapter 2.
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1.2 Domain-Specific Acceleration

As performance improvements from general-purpose processors have proved elusive in recent

years, it has lead to a surge of interest in narrowly-applicable architectures in the hope of continuing

system improvements in some emerging application domains like – Machine Learning, database

streaming, image processing, speech recognition, neural networks etc. Since, these architectures

specialize/accelerate a particular application domain by giving up generality, the acceleration is

called as Domain-Specific Acceleration. When generality is no longer a requirement, a range of

engineering approaches opens up from fully custom digital systems design, through hardware-

software co-design. In many cases, such as in systems-on-chips (SoCs), the system as a whole may

remain general purpose (or multi-purpose), while multiple domains are candidates for specialization

within it. Domain-Specific accelerators have become pervasive in recent heterogeneous systems

where a ‘sea of diverse customized accelerators’ [29, 30] are deployed on a SoC to take advantage of

orders of magnitude improvements in energy efficiency.

There is another subclass of accelerators where a purely fixed-function digital approach is used

without providing any flexibility and is generally fabricated as a stand-alone hardware chip. These

are called as fixed-function accelerators or more commonly as ASICs. It has its own discipline and

history and is very popular in multi-media, embedded systems and recently in Internet of Things

(IOT) domain. This dissertation does not consider such accelerators and instead restricts discussion

to domain-specific hardware that exists alongside or integrated with general-purpose processors.

1.3 Programmable Hardware Acceleration

The main principle behind programmable hardware acceleration is that common accelerator ap-

plication behaviors can be exploited using a generic hardware accelerator design with an efficient

hardware-software interface exposed to the programmers.
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Figure 1.1: Specialization Paradigms and Tradeoffs

Specialization Paradigms Figure 1.1 depicts the two specialization paradigms at a high level,

which also leads to the central question of this work: how far can the efficiency of programmable

architectures be pushed, and can they be competitive with domain-specific designs? As shown in the

figure, the goal is to move towards programmable acceleration paradigm by understanding the

caveats of domain-specific acceleration and be able to map multiple accelerator applications on to a

programmable fabric which is competitive with the DSA designs.

In terms of achieving programmable hardware acceleration, ideally what we require is a hard-

ware that is capable of executing these data-intensive algorithms at high performance with much

lower power overheads than existing programmable architectures, while remaining broadly ap-

plicable and adaptable. The promise of such an architecture is high efficiency and the ability to

be flexible across multiple application domains. Given that requirement, following are the five

hypotheses that must hold true for programmable acceleration to be effective:



7

1. Specialization Principles – Most of the DSAs executing the accelerator applications have com-

monality in the way they specialize these algorithms and these common properties can be

categorized as “Principles of Architectural Specialization“.

2. Mechanisms – A programmable hardware accelerator design must exploit the common spe-

cialization principles of the accelerator applications, to be competitive with DSAs. Such a

design can be implemented by known programmable and reconfigurable micro-architecture

mechanisms associated with each of the specialization principle.

3. Programming Interface – The programming interface must express the accelerator’s hardware

mechanisms as software primitives to take advantage of the specialization. The efficiency of

the programmable accelerator derives from this hardware-software co-design.

4. Application Adaptability – Any new algorithm or application in general amenable to hard-

ware acceleration is easy to adapt with the programming interface and get the benefits of

programmable hardware acceleration.

This dissertation with two main pieces of work –

i) Building a generic programmable accelerator model called GenAccel to explore the viability

and efficiency of programmable hardware acceleration;

ii) A detailed architecture with programming abstractions, execution model, accelerator ISA in-

terface for a programmable hardware acceleration instance called Stream-Dataflow Acceleration

aimed at accelerating data-streaming applications ;

shows that the four hypotheses mentioned above are true and it is possible to have a programmable

accelerator with efficiency close to DSAs and still retain programmability. We discuss the need for

such a programmable accelerator fabric, the primitives needed to build such fabric along with the

challenges in Chapter 2.
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1.4 Thesis Statement

A programmable hardware accelerator nearing the efficiency of a domain-specific accelerator

is feasible to build by: i) identifying the common principles of architectural specialization, ii)

applying general set of micro-architectural mechanisms for the identified principles and iii)

having an efficient hardware-software interface to be able to express any typical accelerator

application.

1.5 Contributions

This dissertation proposes a specialization paradigm called programmable hardware acceleration

along with its high-level principles and mechanisms needed to achieve it. It focuses on a hardware-

software co-design approach by describing the ISA interface needed for such programmable ar-

chitecture alongside micro-architecture details for the implementation of the same. It discusses

the potential impact of having such a programmable accelerator able to achieve efficiency close

to domain-specific hardware for future applications without having the overheads of existing

data-parallel architectures. We describe the detailed contributions below:

Accelerator Modeling to Explore Principles of Architectural Specialization

In this line of research we first explore, identify and propose principles of architectural specialization

common to many domain-specific accelerators (DSAs). We then validate these principles in DSAs by

building simple analytical architectural models based on instruction counts, trace-based simulation

of the DSA workloads and show the application of the identified principles to the DSA models.

These accelerator models are used to identify the sources of efficiency in each workload domain

and also relate to the specialization principle defined.
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Mechanisms to Exploit Specialization Principles

Once we have identified the common specialization principles, we identify the fundamental pro-

grammable and configurable micro-architectural mechanisms for each of the principles in order to

achieve programmable acceleration. We build a model of the generic programmable accelerator

fabric/layout called GenAccel, composed of the identified mechanisms. We explore different phases

of GenAccel design, its usage including the programming phase and runtime configuration. This

work finally describes a systematic design point selection of GenAccel model by provisioning the

resources to map various applications from a single or multiple domains.

Quantitative Evaluation and Analysis of a Generic Programmable Accelerator Model

In order to understand the efficiency of a generic programmable accelerator design, we quantitatively

evaluate GenAccel model with DSAs of four prominent application domains (Neural Approximation,

Image processing, Deep Neural Networks and Database Queries) for performance, area and power

and analyze its potential sources of efficiency. We also explore the cost of programmability added

with regards to area and power for two designs of GenAccel model – a performance matched single

domain-provisioned GenAccel and a multi-domain provisioned balanced GenAccel. We show that

a generic programmable accelerator like GenAccel can match DSAs’ performance, limiting the

overheads of programmability to only 2× to 4×, as opposed to the 100× to 1000× inefficiency of

large Out-Of-Order (OOO) processor cores.

System-Level Trade-offs with Programmable Hardware Accelerator and DSA

It becomes important to understand the significance of the area and power overheads of a pro-

grammable accelerator compared to DSAs, when considering system-level energy benefits and

economic costs, rather than just evaluating the stand-alone accelerator. This part of work analyzes

such broader system-level understanding of having a programmable accelerator (with limited

area/power overheads) in a chip over DSA, provided both of them have same speedups. We also

provide an analytical reasoning for the design decision question – In what scenarios would one
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employ a DSA over programmable accelerator in a System-On-Chip setting? We show that when

programmable accelerator like GenAccel and DSAs have equivalent performance, the potential

further system-level energy savings by using a DSA over GenAccel in a SoC is marginal.

Stream-Dataflow Acceleration – Architecture, Programming Interface and Execution Model

Based on the analysis of the generic programmable accelerator model (GenAccel), we define a

detailed architecture for an instance of programmable hardware acceleration called Stream-Dataflow

Acceleration. In specific, we define an execution model and an ISA interface for stream-dataflow

acceleration aimed at accelerating regular data-streaming applications from many domains. We

also define a detailed architecture for stream-dataflow accelerator by taking advantage of the

opportunities available, after studying the overheads and inefficiencies present in existing data-

parallel architectures. We illustrate the programmability of the stream-dataflow accelerator with

a detailed workload example. We show that these programmer abstractions are simple enough,

are effective for mapping diverse set of applications and also can efficiently and easily express any

acceleratable workload.

Stream-Dataflow Accelerator Micro-Architecture Design – Softbrain

In order to have lower-overheads compared to exiting data-parallel architectures and be as energy

efficient as application specific designs, efficient micro-architecture is needed in programmable

accelerators. Stream-dataflow accelerator also has such requirements along with the need to have

support for highly concurrent execution for both computation and memory access phases of the

program. We describe a detailed, low-level micro-architecture design for stream-dataflow accelerator

called Softbrain enabling pipelined concurrent execution with a reconfigurable computation fabric,

data-reuse with a programmable scratchpad, a memory interface handling low-overhead address

generation and a simple controller core for co-ordinating the data streams.

Stream-Dataflow Accelerator (Softbrain) Implementation

To evaluate stream-dataflow architecture for performance, area, power with domain-specific im-
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plementations and to prove its broader applicability to different application domains we need

the hardware implementation of the accelerator alongside the support of a complete software

stack comprising of compiler, simulator etc., We describe the software and hardware infrastructure

support for end-to-end application execution of stream-dataflow programs on a stream-dataflow

accelerator hardware. We explain the details of software stack comprised of a dataflow-graph

compiler, a modified RISCV assembler (part of RISCV GNU compiler toolchain) for compiling

stream-dataflow programs and a C++ based cycle-level architectural simulator for modeling stream-

dataflow performance evaluation.

We also describe a detailed chisel based hardware prototype implementation of stream-dataflow

accelerator (softbrain) with details of its interfaces and pipeline implementation.

Quantitative Evaluation of Softbrain

We evaluate our implementation of stream-dataflow accelerator – softbrain for performance, power,

area and energy efficiency for two different classes of workloads. We first show the domain-specific

application adaptability of stream-dataflow programmable accelerator by comparing domain-

provisioned softbrain’s performance with DSAs designed for that application domain. These

applications include standard state-of-the-art deep neural network (DNN) kernels. Softbrain when

rightly provisioned can match the performance of the DSAs corresponding to these application

domains with around 2x average overheads in area and power. Next, we also show broader

applicability of stream-dataflow architecture on a more challenging accelerator application suite

called Machsuite, which has both irregular memory accesses and computation patterns. Broadly

provisioned softbrain can again match the performance of application-specific design points (ASICs)

for each application with around 2x average overheads in power and energy. This quantitative

analysis proves that softbrain can be used as a generic programmable accelerator design to accelerate

wide variety of accelerator workloads. We also do a detailed area estimation of softbrain’s RTL

synthesized and compare it to both domain-specific hardware and application specific ASICs.
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In summary, the contributions of the dissertation lies in identifying the general specialization

principles, accelerator modeling to analyze different mechanisms, system-level trade-offs of having

such a programmable accelerator. We also describe an efficient programming interface with applica-

tion compilation techniques, execution model, architecture details and a detailed micro-architecture

implementation to evaluate with state-of-the-art domain-specific hardware designs.

1.6 Dissertation Organization

Chapter Topic
2 A Case for Programmable Acceleration
3 Principles of Architectural Specialization
4 Mechanisms for Programmable Acceleration
5 Evaluation of GenAccel Model
6 Stream-Dataflow Acceleration
7 Micro-Architecture of Softbrain
8 Evaluation of Softbrain
9 Related Work
10 Conclusion

Table 1.1: Dissertation Organization
Related Publications: HPCA 2016 [31], IEEE Micro Top Picks 2017 [32], ISCA 2017 [33]

The disseration organization is outlined in Table 1.1. We first establish a case for programmable

hardware acceleration and provide the motivation for this disseration in Chapter 2. We then

describe the common principles of architectural specialization in Chapter 3. Chapter 4 details the

mechanisms for the common specialization principles. We also explain the modeling and designing

of the generic programmable hardware accelerator (GenAccel) in this chapter. Chapter 5 describes

the evaluation of the GenAccel model with four prominent DSAs. Next, Chapter 6 describes the

steam-dataflow acceleration and an execution model, programming interface and the architecture

for the same. Chapter 7 details the low-level micro-architecture details and implementation of the

stream-dataflow accelerator called Softbrain. Chapter 8 describes the evaluation of implemented

Softbrain for prominent and emerging applications. Finally, related work is explained in Chapter 9

and Chapter 10 summarizes the disseration and its future implications.
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2 | A Case for Programmable Acceleration

In this chapter, we first describe the specialization spectrum and show how existing architectures

align with regards to generality and efficiency. We then motivate the need for programmable

hardware acceleration by discussing the caveats of domain-specific acceleration and the primitives

needed for designing and building a programmable hardware accelerator. We then discuss the

challenges associated with modeling, design, implementation and compiling applications for a

programmable hardware accelerator. We end the chapter by briefly explaining the evaluation

approach used in this dissertation.

2.1 Specialization Spectrum

This section provides an overview of how different architectures line up in the specialization

spectrum with generality and efficiency. We first briefly clarify the definitions of generality and

efficiency from this dissertation’s perspective below.

Generality is the feature of hardware architecture to be able to be programmable for any algorithm

and also be able to execute any computation even after chip fabrication and remain future proof

with a considerable performance goal. These hardware architectures generally conserve the area by

reusing and time multiplexing the expensive active circuitry for different functions of the application.

Such architectures are called as "general-purpose" or application-indifferent as any application

can be programmed using a high-level language and executed on the hardware by compiling it

to the architecture’s ISA. One such popular general architecture is the general-purpose processor

(GPP) or simply put micro-processor. Although processors have different micro-architectural

implementations to achieve different performance and frequency ratings across embedded, desktop

and server market, they still remain general enough to map any software and present a system-
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Figure 2.1: Generality and Efficiency Spectrum of Different Architectures

(ASIC: Application Specific Integrated Circuit, DSA: Domain Specific Accelerator, GPGPU: General Purpose Computing
using Graphics Processing Unit, FPGA: Field Programmable Gate Arrays, DSP: Digital Signal Processors, SIMD: Single

Instruction Multiple Data engines, GPP: General Purpose Processor)

independent programming model to a large base of applications. In recent years, with specialization

efforts to achieve higher performance even processors specialize the floating point execution with

floating point units (FPU), vector execution with MMX, SSE etc.

Efficiency is generally associated with power, area, energy and cost efficiency of any architecture

for executing different applications. Although, a more pedantic definition of efficiency is associated

with "performance per watt" or energy efficiency of a hardware architecture, different metrics are

used for embedded, IOT, desktop and server space designs. Specialized architectures generally have

higher energy efficiency as they consume less power to execute certain portions of the algorithm

with high performance, as they possess custom hardware circuitry to perform the computations

when compared to a general purpose design. Power efficiency is associated with how much less

power a hardware unit spends in order to achieve the same performance. Area and cost efficiency

are generally associated with "performance per mm2" and "performance per dollar" metrics. For the

purpose of discussion, this dissertation considers power, area and energy efficiency w.r.t hardware

accelerators and other general purpose architectures.

Figure 2.1 shows the spectrum of generality and efficiency across existing general purpose

processors, data-parallel architectures and the custom application-specific hardware. Towards the

extreme right end of the generality spectrum are general purpose processors, which are highly-

inefficient in order to be too general to support the mapping of all the applications or algorithms
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using a software-only approach. And towards extreme left end of the efficiency spectrum are the

application specific hardware (ASICs) and domain-specific hardware or DSAs) which sacrifices

generality to be very efficient. SIMD engines and DSPs even though have better efficiency for

vectorized and Very-Long Instruction Word (VLIW) code execution compared to GPPs, they are very

restrictive designs and are power hungry because of large register file accesses and data-alignment

constraints. GPGPUs even though are generic enough to be programmable and are current goto

solutions for data-parallel algorithms, are power hungry for typical accelerator applications with

all the unnecessary overhead control structures and redundant mechanisms supported. On the

other hand, FPGAs are generic enough to map any workload but lack in efficiency (frequency and

power) because of fine-grained programmability and global routing mechanisms. FPGAs are also

hard to program as algorithms need to be expressed in low-level hardware specific languages.

Though Coarse-Grained Reconfigurable Architectures (CGRAs) with dynamic routing mechanism

are good candidates for efficiency, are not general enough to map any algorithm and would be

power inefficient if lot of coarse-grained functional units (FUs) are used to map all the workloads. A

careful analysis of algorithms and a design-space exploration of FUs could make CGRA better from

generality perspective. Future SOCs with special purpose hardware engines need a good balance

between programmability and efficiency in order to push high performance computing to a new

horizon.

2.2 Why Programmable Hardware Acceleration?

In this section, we establish a case for the need of a programmable hardware accelerator in the

current era of specialization to accelerate emerging applications. We first describe the caveats of

domain-specific hardware and then delve into the motivation for programmable acceleration.
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2.2.1 Caveats of Domain-Specific Acceleration

We briefly introduced domain-specific acceleration in Section 1.2 and stressed the importance of

such architectures in the current era of specialization to achieve orders of magnitude efficiency

improvements over general purpose architectures.

For all of their efficiency benefits, DSAs have their own shortcomings and pose many challenges.

Below we list some major caveats of domain-specific acceleration:

• Hardware Re-design to Support Evolving Algorithms: DSAs in order to achieve high effi-

ciency give up on programmability - a high price to pay. This makes DSAs prone to obsoletion -

the application domains which needs to be specialized, as well as the best algorithms to use,

are constantly evolving at an alarming rate with scientific progress and changing user needs.

As algorithms rapidly change, hardware must be re-architected, re-designed and re-verified

which is burdensome in terms of development cost and time-to-market in new application

areas. This is arguably true today for Augmented Reality and other emerging technologies.

Moreover, this domain-specific approach burdens developers with problem-specific APIs and

system stack modifications. Even the relevant application domains change between device

types like server, mobile, wearables and hence the accelerator must be architected with new

performance, power and area goals which restricts the architecture to be flexible.

• Domain-Specific Hampering Algorithm Innovation: As a corollary to the above caveat,

innovation in algorithms becomes more difficult without access to flexible hardware. Even

from the academic research viewpoint, it is much more difficult to formalize and apply

improvements to a domain-specific hardware for new algorithms and in general to the broader

field of computer architecture, thus limiting the scientific impact of such work.

• Domain-Specific Hardware Cost: While programmable hardware can be time-shared across

multiple applications, that is not possible in DSAs, making it more expensive in terms of

silicon. More subtly, most devices run several different important workloads (e.g. mobile
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chips), and therefore multiple DSAs will be required – this may mean that though each DSA

is area-efficient, a combination of multiple DSAs in a System-On-Chip (SOC) may not be.

2.2.2 Motivation for Programmable Hardware Acceleration

In addition to the above mentioned disadvantages of DSAs, the cost per transistor in leading-edge

process technologies is now increasing with each generation [34]. Thus, just when the pressure

towards specialization is increasing inorder to continue delivering performance and functionality

improvements, the cost of specialization is increasing too. It is therefore insufficient to consider

each accelerator proposal in isolation. From programmability purposes and for overall better

system-level optimization it is important that accelerators are considered in a common context to

identify duplication and resource-sharing possibilities.

The academic literature, however, has tended to treat accelerator proposals in a standalone

manner, as point solutions for a particular problem domain. Typically, each study demonstrates

a worthwhile performance and power advantage relative to a general-purpose (out-of-order, su-

perscalar) processor core – and, typically, even that baseline is different for each study. With no

common frame of reference, it can be hard to abstract the real insight and contribution of each

design, and to relate alternative partially-overlapping proposals to each other. Furthermore, its

difficult to understand whether these point solutions have contributions that are valuable beyond

their niche, if they are merely applications of well-understood engineering principles.

The alternative to domain specific acceleration is not necessarily general purpose cores, but a

spectrum of more or less narrow programmable architectures – those which are applicable across

several but perhaps not all workload domains. If a programmable architecture could be designed

to capture most of the benefits of a DSA, then it could alleviate their design time, programming,

and area burdens, and serve as a common baseline and framework to understand other accelerator

proposals. The problem then becomes how to design a programmable yet specialized alternative for

a variety of commonly accelerated workloads. As described earlier, such programmable accelerator
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Figure 2.2: Provisioning Techniques for Programmable Accelerator Fabric

architectures need to be composed of simple domain-agnostic micro-architectural mechanisms

exploiting the common specialization principles of DSAs. We abstract this hardware architecture

with the mechanisms as Programmable Acceleration Fabric for the purpose of discussion. Such fabrics

can achieve programmable acceleration either by mapping one or many application domains on to

the fabric’s hardware substrate.

The acceleration fabric can be provisioned in multiple ways to achieve programmable accelera-

tion, but it needs to have minimum overheads pertaining to programmability and must reach reason-

able efficiency targets. Figure 2.2 shows different techniques for provisioning such a programmable

accelerator fabric. The acceleration fabric is useful in several specialized-design paradigms. First, it

can simply be a parameterizable fabric to produce DSAs, where its purpose is to reduce design time.
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This is called as Tuned Accelerator Fabric and has overheads in terms of area and design cost but

requires very less design time as it involves straight forward application of a domain to the hardware

substrate. However, this is not a reasonable design choice when multiple application domains need

to be mapped as it almost has same caveats as domain-specific hardware except the parameterization

advantage. Alternatively, to achieve highly programmable and general acceleration, the fabric can

be time-shared to execute all the application domains in the same hardware substrate. The fabric

can synthesize the desired applications into a smaller set of homogeneous units. This is called as

an Over-Provisioned Shared Accelerator Fabric and has moderate design time and higher generality

compared to the tuned fabric. This can improve the area efficiency if workloads can time-share

the fabric. However, if multiple applications need to be executed then the fabric units must be

duplicated which could add to the area of the chip.

Finally, its possible to intelligently-provision a small number of programmable accelerator

fabrics, each synthesized for a subset of workload domains. This paradigm costs modest design

time and area and provides significant specialization benefits. Though we focus on synthesizing

a single domain at a time in this work, we see this as the logical endpoint for a programmable

accelerator architecture.

Besides facilitating implementations, this fabric also serves as a reference point along a spectrum of

specialization techniques – a programmable architecture well suited for many commonly-specialized

domains. We argue this enables it to serve as a standard baseline for the exposition and evaluation of

different accelerator proposals, or even for side-by-side comparisons of DSAs from different domains.

Given a problem-specific set of algorithmic insights, a workload synthesized into the fabric can be

compared against a newly proposed DSA. The contributions of the DSA proposal then becomes

much clear – i.e, any additional benefit can be attributed either to its ability to exploit algorithmic

insights that did not synthesize well into standard fabric, or to more efficient underlying hardware

mechanisms. These problem-specific insights and mechanisms could eventually be integrated into

the programmable accelerator model. Its also conceivable to modify the programmable accelerator
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fabric over time by generalizing domain-specific insights and integrating new principles and

hardware mechanisms.

Overall, on a general note a common framework for presenting and evaluating accelerator

proposals is urgently needed on all fronts. Also, when you specialize the architecture, the relevant

and most insightful comparison point is not the general purpose core, but a spectrum of more

or less narrow accelerators that would also apply to the problem domain. For example, while a

domain specific accelerator achieving 100× performance over an out-of-order does not tell us much,

achieving 5× over a programmable accelerator engine tells us a lot – that specific micro-architectural

innovations have bought 5× over the reasonable alternative of building something more generally

useful for a variety of tasks.

Thus, this dissertation based on these insights and findings propose a programmable acceler-

ator fabric using a principled approach of applying fundamental primitives involving common

specialization principles of DSAs, mechanisms to exploit those principles and software interface to

express these primitives. For the scope of the evaluation, we consider only tuned-fabric and the

over-provisioned shared fabrics, as designing an intelligently provisioned accelerator fabric needs

a detailed design-space exploration and is out of the scope for this dissertation. We discuss the

primitives needed for building a programmable hardware accelerator in the upcoming section.

2.3 Primitives for Building a Programmable Hardware Accelerator

In this section, we discuss the fundamental requirements and primitives needed for a hardware

architecture to achieve programmable acceleration. Figure 2.3 extends the specialization spectrum

and implies the primitives that can be used to arrive at a programmable accelerator architecture.

We explain each of them below:
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2.3.1 Specialization Principles

As alluded in Section 1.3, in order to achieve the benefits of specialization as domain-specific

hardware, the programmable accelerator needs to derive inspiration from DSAs and employ the

common specialization principles. And based on our primary observation, we find that most of the

DSAs have similarity in the way they specialize the algorithmic properties of the application domain.

So, the first primitive needed for building a programmable accelerator fabric is to employ the same

common specialization principles as DSAs or ASICs in order for the programmable hardware

accelerator to have its efficiency close to them. We discuss these principles in detail in Chapter 3.

2.3.2 Micro-Architecture Mechanisms

To exploit the common specialization principles in hardware, the programmable accelerator needs

to embed general set of mechanisms in its micro-architecture implementation. These micro-
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architecture mechanisms need to be general enough so as to make the programmable accelerator

fabric parameterizable for different application domains, but not have the power and area overheads

of general purpose hardware mechanisms. For example, having expensive CAM like structures,

large storage and control overhead structures gives generality but effects the efficiency of the ac-

celerator design. So, the second fundamental primitive for an efficient programmable hardware

accelerator design is to have simple configurable and programmable micro-architecture mechanisms

exploiting the specialization principles either in decoupled/stand-alone fashion or all-together

as integrated hardware components. Another important point to consider is that the accelerator

design must also take into account of how it gets integrated into the host system or what is the

mechanism for data transfer when accelerator applications are offloaded. A general design princi-

ple for accelerators has been that, it must be as non-intrusive as possible without disturbing the

hardware interface of the host system too much or incurring overheads on the hardware-software

co-design side to support the accelerator invocation from the host.

The abstract generic accelerator model capturing the general mechanisms needed to exploit

the specialization principles is discussed in Chapter 4. We discuss the detailed micro-architecture

implementation for stream-dataflow programmable accelerator employing these mechanisms along

with support of ISA interface in Chapter 7.

2.3.3 Hardware-Software Interface

Finally, the third and important primitive for programmable accelerator architecture is to have an

efficient programming interface by having synergy between the software and hardware primitives.

A new ISA interface is needed for programmable accelerator for efficiently mapping the computation

and memory access patterns to the hardware. This interface must encode the hardware primitives

used for specialization and must express it to the software layer. By using this hardware-software

co-design approach, we can get the efficiency of specialized architectures by retaining the pro-

grammability or reconfigurability features of general programmable architectures. Figure 2.4 shows

a typical arrangement of software stack for three different types of architectures. Domain-specific
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acceleration typically has a very ad-hoc interface and is customized only for that application domain

it specializes. Hence, it achieves 10× to 1000× efficiency benefits compared to the most generic

interface of general purpose architectures. What we need is an efficient hardware-software or an

ISA interface for programmable acceleration which can express common accelerator principles and

embodies the execution model by representing the programs to hardware. This also enables the

hardware to have much simpler structures without having it to artificially extract the computation

or memory access patterns which would be power and area inefficient. This interface must encode

multiple operations in fewer instructions in order to achieve high computation ratio for the amount

of data it operates on. This is possible only by expressing the hardware primitives to the software

interface and mapping the application characteristics directly to hardware mechanisms. We discuss

such programming abstractions needed for the stream-dataflow programmable accelerator along

with a new accelerator ISA interface in Chapter 6.

2.4 Challenges

In this section, we briefly discuss some key challenges in realizing the programmable hardware

acceleration from accelerator modeling, compiler and architecture design perspectives.
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2.4.1 Accelerator Modeling

Before realizing the architecture and programming interface for programmable hardware accel-

eration, it is important to evaluate the primitives discussed in Section 2.3 for typical accelerator

applications by constructing simple yet effective analytical and simulation based accelerator models.

But this is not trivial as there are no sophisticated accelerator models developed in research com-

munity for programmable hardware accelerators. There are modeling tools developed to study the

efficiency benefits and perform design space exploration of fixed-function or domain-specific accel-

erators [29, 35, 36]. But, there exists very limited modeling techniques for exploring programmable

accelerator designs. So, we in our research use a framework combined of trace-based simula-

tion [37, 38] and a python based domain-specific modeling approach to evaluate domain-specific

designs and extend that to involve the hardware primitives needed for programmable hardware

accelerator design. We also rely on the accelerator specific graph-based transformation tool from

Nowatzki et. al, [39], to extract out the acceleration phases from the applications and analyze its

interaction with host system, memory access patterns and instruction scheduling. The computa-

tion phases and memory access patterns of accelerator workloads are generally straight-forward

to analyze and we model the specialization hardware primitives and its impact on performance,

area and power for each of these phases. We also consider different optimization techniques like

loop-unrolling, software-pipelining, vectorization and parallel phases in our modeling framework.

Overall, we address the challenge of programmable accelerator modeling by using a simple frame-

work able to capture the impact of specialization primitives on the accelerator application phases

and evaluate the efficiency of such designs. We explain the strategy used to model the generic

programmable accelerator (GenAccel) in Section 4.3 and detail our evaluation methodology for

other domain-specific accelerator models in Section 5.1.
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2.4.2 Compilation Techniques

Compiling the application code for a programmable accelerator is quite challenging, as it needs to

map the computation and memory access phases from the accelerator workload to the hardware

substrate. To achieve that, the compiler needs to be aware of the accelerator’s hardware capabil-

ity and also to find the right mapping of the computation subgraph to the accelerator fabric, it

needs extensive modifications. The compiler is also responsible for inserting the communication

instructions before and after the accelerator invocation code. We address these compiler challenges

by using the traditional decoupled access-execute technique. First, for mapping the computation

subgraph to the specialized accelerator hardware we use Integer Linear Programming (ILP) based

scheduling technique [40]; of-course this is dependent on what micro-architecture mechanisms

are chosen for the computation elements in the accelerator hardware; Second, we rely on compiler

intrinsics to generate the communication code to coordinate with the accelerator hardware by

also exposing the special ISA interface of the programmable accelerator to the compiler. Thus,

any general purpose program can still be mapped to the accelerator with minimum modifications

to the compiler. We explain the typical programming interface and compilation technique for a

programmable hardware accelerator in Section 4.2.2.

2.4.3 Application Adaptability

As the programmable hardware accelerator exposes a programming interface to the application-

level, the workloads need to be modified to suit the new programming abstractions and interface. By

doing that, we need to be careful to not modify the accelerator algorithm thus losing the performance

benefit we get. Also, we need to analyze what kind of applications suit the accelerator hardware and

whether the workload can take advantage of the specialization principles and accelerator hardware

mechanisms. Applications can have lot of control-flow, data-parallelism, thread-level parallelism

and streaming behaviors and each of these characteristics must be exploited in order to accelerate

such workloads. Generally, the specialized architectures find it hard to accelerate irregular memory
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access workloads, and hence the mechanisms for programmable accelerator need to take care of

such applications for them to be adaptable to the new architecture. We discuss the application

adaptability and the ease of using the programming interface developed for our programmable

accelerator in Section 6.5 and Section 6.6.

2.4.4 Micro-Architecture Design

Once we have identified the micro-architecture mechanisms for specialization principles it is impor-

tant to consider the design complexity and the overheads it introduces. Extra care need to be taken

with how the accelerator substrate is integrated to the host system as modifying the host processor

pipeline or cache subsystem increases the design complexity and also makes the verification hard.

The functional units also needs special attention in the way they specialize floating point and

wide-vector SIMD operations as they consume lot of area and power. Large storage structures

or control-heavy structures also introduce power and area inefficiency and micro-architecture

design should consider these design decisions into consideration. Chapter 7 has a detailed micro-

architecture implementation for the stream-dataflow programmable accelerator and considers all

these critical design decisions made to have a highly efficient programmable accelerator hardware.

2.5 Evaluation Approach

To summarize, we propose that programmable hardware acceleration is an essential type of spe-

cialization to explore and it is important to evaluate such programmable designs both from the

accelerator modeling perspective and also by a more detailed architectural realization. In the

upcoming chapters, we provide more details about the primitives we discussed for building a pro-

grammable hardware accelerator along with a detailed accelerator architecture for stream-dataflow

paradigm. Below we briefly discuss the two evaluation approaches we follow for this dissertation:
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2.5.1 Generic Programmable Accelerator (GenAccel) Modeling

We first evaluate the mechanisms implementing the specialization principles by building a generic

programmable accelerator model called GenAccel. We detail our GenAccel modeling approach in

Section 4.3, but at a high-level it models the hardware primitives chosen to exploit each of the acceler-

ator specialization principle. We use workloads from four application domains which are all single-

threaded and have domain-specific implementations. We study the trade-offs of programmable

hardware acceleration by comparing our generic programmable accelerator model GenAccel against

DSAs from these four diverse application domains and conclude that programmable accelerator ar-

chitectures like GenAccel can be within 2× - 4× power and area efficiencies of specialized hardware

(ASICs/DSAs), while being able to still program/re-configure and not using any domain specific

architectural abstractions.

2.5.2 Architectural Realization of Stream-Dataflow Programmable Accelerator

Based on the findings from modeling results and the GenAccel model evaluation, we believe that

it is important to validate those results by realizing a more detailed architecture alongside the

hardware-software interface. As introduced in Chapter 1, we propose a detailed architecture

for a programmable hardware accelerator by studying an instance of programmable acceleration

called stream-dataflow acceleration. The stream-dataflow paradigm consists of an architecture

with a set of programming abstractions, an execution model, ISA interface and a detailed micro-

architecture design of a programmable hardware accelerator. We evaluate this architecture by

using a Chisel [41] based hardware prototype implementation of the stream-dataflow accelerator

along with a complete software stack implementation comprising computation subgraph scheduler,

cycle-level performance simulator and compiler toolchain. We consider a class of applications

involving regular streaming memory access patterns with computationally intensive dataflow

execution phases for domain-specific evaluation of the stream-dataflow accelerator. To distill the

limitations of the stream-dataflow programmable accelerator design and to perform application-
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specific evaluation, we also consider a broader set of typically-accelerated workloads consisting of

irregular memory accesses and complex computation patterns. We evaluate the performance of

stream-dataflow accelerator using a RISCV based cycle-level performance simulator compared to

state-of-the art domain-specific and application-specific accelerator designs. and evaluate the power,

area efficiency using the synthesized RTL design. We provide more details of this architecture

implementation and evaluation in Chapter 8.
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3 | Principles of Architectural Specialization

Domain specific accelerator (DSAs) achieve efficiency through the employment of five common

specialization principles. In this chapter, we first discuss those common principles of specialization

in detail (Section 3.1) and then contrast the application of these principles with the mechanisms

and algorithms used in four prominent and diverse DSAs (Section 3.2). We have chosen these four

DSAs as we believe they are representative of the application domains they are targeting and all

these domains are very important and relevant for current technology trend. Broadly, we see this as

a counterpart to the insights from Hameed et. al [3]. While they describe the sources of inefficiency

in a general purpose processor, we explain the sources of potential efficiency from specialization.

3.1 Defining the Principles of Specialization

In this section, we now define the five common principles of architectural specialization found

in most of the DSAs based on the accelerator application analysis. Figure 3.1 shows the five

principles and we discuss the potential area, power, and performance trade-offs of targeting each in

a programmable accelerator design.

3.1.1 Concurrency Specialization

The concurrency of a workload is the degree to which its operations can be performed in parallel and

simultaneously. Specializing for a high degree of concurrency means organizing the hardware to

perform work in parallel by favoring lower overhead hardware structures. Examples of specialization

strategies include employing many independent processing elements with their own controllers or

using a wide vector model with a single controller.

Applying hardware concurrency increases the performance and efficiency of parallel workloads,

while increasing power, at a close-to-linear ratio while parallelism exists.
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3.1.2 Computation Specialization

Computations are individual units of work in a workload algorithm. The hardware which per-

forms this work are functional units (FUs) – which typically take few inputs and produce a single

output. Specializing computation means creating problem-specific FUs. For instance, a custom sin

FU would much more efficiently compute the sine function than iterative methods on a general

purpose processor. It is arguable whether certain FUs can be considered specialized. There is no

set answer here and in this work we rely on the intuition that FUs that are not typically found in a

general purpose processor should be considered specialized. Specializing computation improves

performance and power by reducing the total work. We note some computation specialization can

be problem-specific. However, commonality between and inside domains is almost guaranteed.

3.1.3 Communication Specialization

Communication is the means of transmission of data values and control information between

and among storage and functional units. Specialized communication is simply the instantiation of

communication channels, and potentially buffering the data elements between the hardware units to

ultimately facilitate a faster operand throughput to the FUs. This reduces power by lessening access

to intermediate storage like register-files or local memory, and potentially area if the alternative

is a general communication network. One example is a broadcast network for efficiently sending

immediately consumable data to many compute units or a shuffling network to exploit more complex

mappings of producers to consumers. This type of explicit communication is also very efficient if
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the workloads have lot of producer-consumer relationship.

3.1.4 Data-Reuse Specialization

Data-reuse is an algorithmic property where intermediate values are consumed multiple times.

The specialization of data reuse means using custom storage structures for these temporaries. To

be more precise, algorithmic reuse can be exploited by direct communication when values can

be directly communicated from producer to consumer. Specializing reuse benefits performance

and power by avoiding the more expensive access to a larger global memory or register files. A

classic example of reuse specialization is caches. In the context of accelerators, access patterns

are often known a priori, meaning that low-ported, wide scratchpads are most effective as caches

spend energy in banking, tag lookup and wires. Accelerators also specialize the reuse of constant

values, either through read-only memories or FU-specific storage, if the constants are specific to

one static operation. Streaming buffers used in accelerators is one more example for efficiently

storing memory which is accessed through DMA. Indeed, the relationship between communication,

computation, and reuse specialization is non-trivial. The presence of better or more computational

resources can potentially obviate the need for reuse specialization, and the properties of specialized

communication channels (e.g. width) must be often co-designed with memory structures for reuse.

3.1.5 Coordination Specialization

Hardware coordination is the management of hardware units and their timing to perform the

overall work. Instruction sequencing, command dispatch, control flow, signal decoding and address

generation are all examples of coordination tasks. Specializing it usually involves the creation of

small finite state machines to perform each task, rather than relying on a brawny general purpose

processor and out-of-order instruction scheduling. Performing more coordination specialization

typically means less area and power compared to something more programmable, at the price of

generality.
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Figure 3.2: Application of Specialization Principles in NPU and Convolution Engine DSAs

3.2 Relating Specialization Principles to Accelerator Mechanisms

In this section, we contrast the specialization principles discussed with four prominent and diverse

domain specific accelerators. Appendix A describes all the four DSAs and their architecture in more

detail. Figure 3.2 and 3.3 depicts the block-diagrams of the four DSAs belonging to four different

application domains that we study. In the figure, the colors indicate the types of specialization

for each component. The specialization mechanisms and algorithmic properties exploited are

summarized in Table 3.1, and are explained below.

3.2.1 Neural Processing Unit (NPU) for Neural Approximation

NPU [42] shown in Figure 3.2(a) is a DSA for approximate computing using the neural network

algorithm, integrated to the host core through a FIFO interface. NPU is designed to exploit the

concurrency of each level of a neural network, using parallel processing entities (PEs) to pipeline
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the computations of eight neurons simultaneously. NPU specializes data-reuse with accumulation

registers and per-PE weight buffers. For communication, NPU employs a broadcast network

specializing the large fan-outs of the neural network, and specializes computation with sigmoid

FUs for activation of output neurons. A bus scheduler and PE controller are used to specialize the

hardware coordination.

3.2.2 Convolution Engine for Image Processing

Convolution Engine [43] shown in Figure 3.2(b) accelerates stencil-like computations for image

processing applications. The host core uses special instructions to coordinate control of the hard-

ware through a control interface. It exploits concurrency through both wide-vector and pipeline

parallelism and relies heavily on reuse specialization by using custom memories/registers for

storing pixels and coefficients. In addition, column and row interfaces provide shifted versions of in-

termediate pixel values. These, along with other wide buses, provide communication specialization.

Finally, it specializes reduction computation using a specialized graph-fusion unit.

3.2.3 Q100 for Database Streaming

Q100 [44] shown in Figure 3.3(a) is a DSA for streaming database queries, which exploits the

pipeline concurrency of database operators and intermediate outputs. To support a streaming

model, it uses the stream buffers as staging area to prefetch the required database columns. Q100

specializes the communication by providing dynamically routed channels between FUs to prevent

memory spills. Finally, Q100 relies on custom database FUs like Join, Sort, and Partition. Reuse

specialization happens inside these FUs when storing constants (ALUs, filters, partitioners) and

reused intermediates (aggregates, joins). The communication network configuration and stream

buffers are coordinated using an temporal instruction sequencer.
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Figure 3.3: Application of Specialization Principles in Q100 and DianNao DSAs

3.2.4 DianNao for Deep Neural Networks

Diannao [15] shown in Figure 3.3(b) is a DSA for deep-learning neural networks. It achieves concur-

rency by applying a very wide vector computation model (multiply-accumulate), and uses wide

memory structures (4096-bit wide SRAMs) for reuse specialization of neurons, accumulated values

and synapses/weights. DianNao also relies on specialized sigmoid FUs for activation of output

neurons. Point-to-point links between FUs, with little bypassing, specializes the communication. A

specialized control processor is used for coordination.

We believe that these principles are not an exhaustive list to capture the specialization mecha-

nisms of all DSAs, but based on our analysis and observation, these principles are common in many

more such DSAs belonging to the same application domains.
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3.3 Chapter Summary

In this chapter, we described the five common principles of specialization found in most of the

DSAs. We then contrasted each of the principle and their application in the four DSAs we studied.

For the programmable hardware accelerator to achieve the benefits of specialization as DSAs, it

needs to employ these principles.
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4 | Mechanisms for Programmable Acceleration

Our primary insight as described in Chapter 2 is that well-understood mechanisms can be composed

to target the same specialization principles that domain specific accelerators (DSAs) use, but in a

programmable fashion. In this chapter, we first explain the general set of mechanisms in Section 4.1.2

that can be used to exploit the specialization principles detailed in Chapter 3. We also describe

the design of a generic programmable accelerator (GenAccel), and highlight how it performs

programmable acceleration. We then briefly describe how to use such a design in practice over

the phases of its life-cycle in Section 4.2. In Section 4.3, we then explain the modeling of the

GenAccel design using the basic building blocks of implementation along with the strategy used

for performance, power and area models. In Section 4.4, we describe two important design points

of correctly provisioned GenAccel model for four application domains, which will be used in the

evaluation. Finally, we end the chapter by discussing the other alternative choices that can be used

for programmable acceleration mechanisms.

4.1 Design of a Generic Programmable Accelerator

Before describing the mechanisms in detail, we briefly discuss the requirements for the design of a

programmable accelerator below. We then delve into the mechanisms based on the requirements

and also describe the GenAccel design which is an abstract design capturing all the specialization

principles mechanisms.

4.1.1 Design Requirements

At a high-level, we outline three intuitive requirements for a programmable accelerator design:

1. Is programmable: While some DSAs provide limited programmability, this is usually appli-
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cable only for a specific domain they are specialized to. A generic programmable accelerator

architecture provides domain-agnostic programmability and quick trivial adaption to any

new domain being mapped.

2. Applies specialization principles: For achieving energy and performance efficiency compet-

itive with DSAs, they must apply the specialization principles described in Chapter 3 in a

general and domain-agnostic way.

3. Design is parameterizable: At design/synthesis time, we must provide a parameterizable

interface to allow customizing the aspects of the design and to meet the combined requirements

of the targeted domains.

4.1.2 Mechanisms for GenAccel Design

As we will describe, it is possible to construct an accelerator design which embodies the special-

ization principles by selecting a set of mechanisms from well known techniques. This is not the

only possible set of mechanisms, but they are a simple and effective set commonly found in many

architectures.

The most critical principle is exploiting concurrency, of which there is typically an abundant

amount when considering acceleratable workloads. The requirement of high concurrency pushes

the design towards simplicity, and the requirement of programmability implies the use of some

sort of programmable core with a small cache. The natural way to fill these combined requirements

is to use an array of tiny low-power cores, which communicate through memory. Also in terms

of supporting virtual memory support TLB’s are a source of energy inefficiency, which DSAs

typically sidestep. We imagine that programmable accelerator architectures will support limited

virtual memory through large pages and small TLBs or using simple base-bound based translation.

This is a sensible trade-off as commonly-specialized workloads exhibit little communication and

synchronization between the coarse-grained parallel units. The main benefit also here is natural
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programmability, using standard programs, with an added benefit that known irregular memory

accesses can benefit from using the cache. We call each of the concurrent structures with the low-

power core and all other components (described later) as one "GenAccel" Unit. Also, using many

units having this core, as opposed to a wide-vector model with a single controller, has a flexibility

advantage. When memory locality is not possible, parallelism can still be achieved through multiple

execution threads. The remainder of the design is a straight-forward application of the remaining

specialization principles for each of the units.

Achieving communication specialization of intermediate and computed transient values requires

an efficient distribution mechanism for operands that avoids expensive intermediate storage like

multi-ported register files. Arguably, the best known approach is an explicit routing network,

which is exposed to the ISA to eliminate the hardware burden of dynamic routing. This property

is what defines spatial architectures (as well as the early explicit-dataflow machines that inspired

them [45]), and therefore we add a spatial fabric/architecture as our first mechanism. This serves

three additional purposes. First, it is an appropriate place to instantiate problem-specific custom

functional units to achieve computation specialization. Second, it accommodates the data-reuse of

constant values associated with specific computations by instantiating simple flip-flops at each FU.

Third, when coarse-grained parallelism of concurrent thread executions with multiple GenAccel

units is not possible, independent instruction-level computations in spatial fabric of each GenAccel

unit benefits concurrency at instruction-level.

To achieve communication specialization with the global memory, a natural solution is to add a

Direct-Memory Access (DMA) engine and a configurable local-storage like scratchpad, with a wide-

vector interface to the spatial architecture. The scratchpad, configured as a DMA buffer, enables the

efficient streaming of data values from memory by decoupling memory access phases from the

execute/computation phases of spatial architecture. This mechanism of decouple access-execute has

in-turn been explored in traditional architectures [46] and recently in some of the spatial-dataflow

architectures [47]. When configured differently, the scratchpad can act as a reuse buffer to achieve
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Figure 4.1: Mechanisms Used in Modeling the
Generic Programmable Accelerator (GenAccel) Design

data-reuse specialization. In either context, a single-ported SRAM-based scratchpad is enough, as

access patterns are usually simple and known ahead of time in accelerator workloads. Spatial fabric

also has an input-output interface to support the wide-vector interface to scratchpad and DMA.

Even with the above mechanisms and four specialization principles satisfied, we are still not

adequately addressing the generality and efficiency requirements from two perspectives. A spatial

architecture which is designed to be general needs to hold significant state and perform all possible

functionality and is unattractive because this generality adds too much complexity in terms of area

and power. Secondly, the lack of a traditional cache has severe efficiency consequences for workloads

with any kind of irregular memory access. We address these shortcomings by explaining the last

and important mechanism to exploit the co-ordination specialization principle. In a programmable

hardware accelerator, we require an efficient mechanism for coordinating the above hardware units

like for example configuring the spatial architecture or synchronizing DMA with the computation

in each GenAccel unit. Again, here we propose relying on the simple core, as this brings a huge

programmability and generality benefit. Furthermore, the cost is low – if the core is low-power

enough, and the spatial architecture is large enough, the overheads of co-ordination can be kept low.
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Figure 4.2: Phases of GenAccel’s Design and Use

Generally speaking, this low-power core takes the place of the state machines in a DSA, serving as a

memory fetching engine and as a fall-back for irregular computations which are not suited for the

spatial architecture.

To summarize the generic programmable accelerator (GenAccel) design, each unit contains

a – Low-power core, a flexible and reconfigurable Spatial architecture, a programmable local-storage

like Scratchpad and a DMA engine as shown in Figure 4.1. This design satisfies the aforementioned

requirements: programmability, efficiency through the application of specialization principles, and

simple parameterizability. We believe that this design is simple enough through the integration of a

small number of architectural building blocks. Note that, we do believe that there are other different

baseline architectures that can be used to evolve into a programmable hardware accelerator by

applying the same principles and is discussed in the Section 4.5.

4.2 GenAccel Usage

We now explain the typical usage of the GenAccel design and the advantages of a parameteriz-

able accelerator enabling to perform accelerator design space exploration in large. Preparing the

GenAccel fabric for use occurs in three phases, as shown in the Figure 4.2.
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1. Choose the most general single-output problem-specific FUs which suits the algorithm.
2. Determine the total number of FU resources required to attain the desired throughput.
3. Divide FUs into groups, where each group accesses a limited amount of data per cycle,

excluding per-instruction constants. We use 64 bytes maximum per-cycle (cache line size),
resulting in a reasonable scratchpad line-size usable by many algorithms. The number of
these groups is the number of GenAccel units.

4. If the algorithm has reuse within a small working set, then size the number of SRAM
entries to match that.

Figure 4.3: Procedure for provisioning each GenAccel fabric and number of GenAccel units

4.2.1 Design Synthesis

For specialized architectures, design synthesis is the process of provisioning an architecture for given

performance, area and power goals. It involves examining one or more workloads or workload

domains, and choosing the appropriate functional units, the datapath size, the scratchpad sizes and

widths, and the degree of concurrency exploited through multiple instantiations of the GenAccel

fabric. In GenAccel, this phase involves the selection of its hardware parameters to suit the chosen

workload domain(s) performance, area and power constraints 1. This is usually done by the hardware

architects or designers, before the design closure of the GenAccel fabric which is provisioned and

synthesized on chip to execute the chosen application domain(s).

Though many optimization strategies are possible, in this work we consider the primary con-

straint of the programmable architecture to be "performance" – i.e. there exists some throughput

target that must be met by the design, and the overall power and area should be minimized, while

still retaining some degree of generality and programmability. Figure 4.3 outlines a simple strategy

used to provision GenAccel design for an application or domain(s). GenAccel fabric has a small

number of tunable/configurable parameters – total number of units, width and size of the scratch-

pad, FU mix, layout and the size the spatial architecture. In the context of a real design, GenAccel’s
1Our treatment of synthesis-time configurability is reminiscent of architectures like Smart Memories [48] and Custom

Fit Processors [49], and we revisit these in the related work.
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#pragma genaccel cores 2
#pragma reuse-scratchpad weights
void nn_layer(int num_in, int num_out,
              const float* weights,
              const float* in, float* out) 
{
   for (int j = 0; j < num_out; ++j) {
     for (int i = 0; i < num_in; ++i) {     
       out[j] += weights[j][i] *in[i];
     }
     out[j] = sigmoid(out[j]);     
   }

}

Loop Parallelize, Insert Communication, Modulo Schedule

Resize Computation (Unroll), Extract Computation Subgraph, Spatial Schedule

Insert Data 
Transfer

...

Local Storage
(Scratchpad)

Low-power
Core

D$

DMA

Reconfigurable

 Spatial Fabric

Figure 4.4: Example GenAccel Program and Compiler Passes
(Arrows labeled with required compilation passes)

synthesis-time parameters would be chosen to maximize performance of several workloads under

area and power constraints. Of course, if multiple application domains has to be targeted, then the

superset of the above hardware features should be chosen. Section 4.4 discusses the design points

chosen to match the workload domains studied in this work.

4.2.2 Programmability of GenAccel

This phase involves programming GenAccel accelerator fabric using a typical general purpose

language programming interface. We model the programmability of GenAccel by generating

the control program and the spatial datapath configuration to carry out the computation of the

algorithm. In order to model the hardware-software interface for programmability of GenAccel,

it must involve two major components – i) creation of the coordination or control code for the

low-power core to perform unrolling, parallelizing and coordinating the accelerator components;

and ii) generation of the configuration data for the spatial datapath to execute the computation

subgraph and to match the available hardware resources. Programming for GenAccel in intrinsic

assembly may be reasonable because of the simplicity of both the control and data portions. In

practice, using standard languages like OpenACC [50] or C++AMP with #pragma annotations, or

even languages like OpenCL [51] kernel style programming would likely be effective.
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Though we do not explain the compiler implementation and programming model details in

this initial work of accelerator modeling (See Section 5.1 for our modeling approach), for illustrative

purposes, Figure 4.4 shows an example annotated code for computing a simple neural network

layer, along with a provisioned GenAccel. This code computes one neural approximation layer for

NPU. The figure also shows the compilation steps to map each portion of the code to the accelerator

fabric. At a high level, the compiler will use annotations to identify arrays for use in the scratchpad

SRAM (either as a stream buffer or scratchpad) and also number of GenAccel units needed for the

concurrent execution. In the example, the weights can be loaded into the scratchpad, and reused

across neural network invocations. Subsequently, the compiler will unroll computations and create a

large-enough datapath to match the resources present in the spatial fabric, which could be spatially

scheduled using known techniques [40]. Communication instructions would be inserted into the

main coordination code, as well as instructions to control the DMA access for streaming inputs into

the scratchpad or spatial fabric input interface, and also to drain out the data out of spatial fabric to

memory or scratchpad. Finally, the coordination loop would be modulo scheduled to effectively

pipeline the spatial architecture.

4.2.3 Runtime Configuration

Finally, the GenAccel need to be configured at runtime between the execution of multiple ap-

plications or domains. The configuration is switched for execution of the computation of each

application or accelerator kernel. Table 4.1 highlights the distinction of synthesis-time and run-time

configuration parameters for the GenAccel fabric.

4.2.4 GenAccel Integration to Host System

Before describing the modeling strategy and design point selection of GenAccel for chosen example

application domains, we briefly discuss about GenAccel’s interface to the host system and benefits

of coarse-grained versus fine-grained integration. At the time of design-synthesis, there are funda-
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Synthesis-Time Run-Time

Concurrency Number of instantiated GenAccel units
to map multiple application(s) and
domain(s); Size of spatial datapath;
SIMD width of functional units

Power-gating unused GenAccel units
during execution

Computation Spatial architecture functional unit
(FU) mix

Scheduling of spatial architecture and
low-power core

Communication Spatial datapath and SRAM interface
widths

Configuration of spatial datapath and
input/output ports

Data Reuse Scratchpad (SRAM) size and line-size Use of Scratchpad as DMA or reuse
buffer

Table 4.1: Configurable Parameters for GenAccel Fabric
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Figure 4.5: Integration of GenAccel to Host System

mentally two different ways to integrate the specialization fabric, and GenAccel is suitable for both

(with some caveats) as shown in Figure 4.5. In coarse-grained integration, each of many GenAccel

units along with low-power core has access to the host’s memory system, and does not interact

with host core itself. Host core can be power-gated after offloading GenAccel application kernels.

Contrastingly, acceleration is often profitable at a finer granularity, and it becomes beneficial

to explore integration with the host processor’s caches. For example, if acceleration happens at a

granularity of tens of cycles, then the overhead of memory transfer every time is prohibitive. To

minimize these overhead in fine-grained integration, we let the host core serve the role of low-power

core and drop the superfluous low-power core.
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4.3 Modeling the GenAccel Design

In this section, we describe the strategy used to model the generic programmable accelerator design

(GenAccel). We first delve into the basic building blocks used for GenAccel model implementation

and then discuss performance, power and area modeling of GenAccel.

4.3.1 Building Blocks of GenAccel Implementation

We use several existing components, both from the literature and from available designs, as building

blocks for the GenAccel fabric. The spatial architecture we leverage is a modified version of DySER

coarse-grained reconfigurable architecture (CGRA) [52], which is a lightweight statically-routed

mesh of FUs. To avoid the power overheads of credit-based packet switched routers of DySER, we

instead consider the circuit-switched statically routed switches. We believe this does not affect the

performance of our spatial fabric as the static spatial schedule generated for the CGRA considers

the amount of data needed for each instance of the computation and the resources available. Also,

this statically scheduled CGRA provides a throughput oriented dataflow computation without the

power overheads and design complexity of a traditional dynamically routed CGRA like DySER.

Note that we will use CGRA and "spatial architecture" interchangeably henceforth. The spatial

fabric belongs to a family of similar architectures like CCA [53], BERET [54], SGMF [55] and others in

how they specialize the communication, concurrency and data-reuse. This choice is a good trade-off

between efficiency and configuration time. Because of the CGRA’s network organization, we use

only FUs which have single-outputs and low-area footprints. It also supports a vector interface

with configurable mapping between offset of vector elements and spatial architecture ports, which

enables more efficient irregular memory access patterns.

The processor core we leverage is a Tensilica LX3 [56], which is a simple VLIW based core-design

featuring a low-frequency (1GHz) with 7-stage deep pipeline. This core is chosen because of its very

low area and power footprint (0.044 mm2 and 14mW at 1GHz, 45nm), and is capable of running

irregular code. An equally viable candidate is the similarly smaller core like Cortex M3 [57].
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4.3.2 Modeling GenAccel Performance

The insight we use for estimating performance is that GenAccel design is quite simple and the tar-

geted workloads have straightforward memory access and computation patterns, making execution

time straightforward to capture. Our strategy uses a combined PIN [58] based trace-simulator and

application-specific modeling framework to capture the role of the compiler and the GenAccel pro-

gram execution. The framework is parameterizable for different FU types, concurrency parameters

(SIMD width and GenAccel unit counts), reuse and communication structures.

Our framework considers execution stages, each corresponding to a particular computation or

kernel. For each workload, we customize the general model to account for the specific data amount,

types of computation, available parallelism, working-set sizes and global memory accesses required

by each phase. Kernels in NPU are individual neural network layers, while Convolution Engine has

scratchpad-load and map/reduce computation phases. Each Q100 stage is a compound database

operation like the “temporal instruction” as they call, and DianNao has convolution, classifier

and pooling phases. All of these have significant parallelism, are generally long running, non-

overlapping, and contain many pipelined computations. The latency of each phase is either bound

by the memory bandwidth, instruction execution rate (considering FU contention and issue-width),

cache or scratchpad ports, cache or scratchpad fill rate and the critical path latency.

4.3.3 Modeling GenAccel Power and Area

For the LX3 core parameters, we rely on published datasheets [56]. For the integer FUs, we use

the estimates from the DianNao work [15], and for floating point FUs we use DySER implementa-

tion’s [59, 52] synthesized estimates. To estimate CGRA-network power, we synthesized RTL of

a router using a 55nm ARM library and did a sanity check against the Orion [60] network model.

We obtained the vector interface estimates from DySER work again. SRAMs for data-reuse and

buffering were estimated using CACTI 6.5 [61] and McPAT [62]. Specialized FU properties (Sigmoid,

Paritioner, Sort etc.) were taken from the original works.



48

4.4 Design Point Selection and Provisioning GenAccel

We now briefly describe the GenAccel design points that we study in this work for evaluation, with

their rationale, and how workloads map to them.

4.4.1 Synthesized GenAccel Designs and Program Mapping

For our evaluation, we consider synthesized GenAccel designs for four application domains that we

target – Neural Approximation, Deep Neural Networks, Image Processing and Database Querying.

We provision GenAccel similar to the corresponding application domain’s DSA in order to achieve

the same throughput with performance being the primary optimization target. For the purposes of

evaluation in Section 5.2, we consider two different design scenarios:

• Domain-provisioned GenAccel – programmable accelerator’s resources target a single appli-

cation domain;

• Balanced GenAccel – programmable accelerator resources target many different application

domains.

Both sets of design points are attained using the procedure explained in Figure 4.3 and are

characterized in Table 4.2. We now discuss in detail how each of the design point is selected,

synthesized and provisioned for different application/workload or domain chosen.

GAN for NPU’s Neural Approximation Domain

We provision GAN to meet NPU’s performance by including the same datapath size to perform

8 neuron computations in parallel and hence 8 32-bit multipliers, adders, and sigmoid units. As

alluded to in the neural network layer example (Figure 4.4), the read-only weights are stored in

scratchpad, and since we need to read a maximum of 8 32-bit words per cycle (256-bit total), the

SRAM line size becomes 256-bit. We use a 2K entry SRAM for the weight re-use and the size is

based on the average re-use distance between multiple invocations of neural network layer. For the



49

Name Equivalent
DSA

Concurrency Computation Communication Data-Reuse

GAN NPU 24-Tile CGRA (8 Add, 8 Mul &
8 Sigmoid); Single GenAccel
Unit

2048 x 32-bit Sig-
moid Lookup Table

32-bit CGRA; 256-
bit SRAM interface

2048 x 32-bit
Weight Buffer

GAC Convolution
Engine

64-Tile CGRA (32 Mul/Shf, 32
Add/Logic); Single GenAccel
Unit

Standard 16-bit
units

16-bit CGRA; 512-
bit SRAM interface

512 x 16-bit
SRAM for
image inputs

GAQ Q100 32-Tile CGRA (16 ALU, 4 Ag-
gregate, 4 Join); 4 GenAccel
Units

Aggregate Unit +
Filter Unit

64-bit CGRA; 256-
bit SRAM interface;

SRAMs for
buffering

GAD DianNao 64-Tile CGRA (32 Mul, 30 Add,
2 Sigmoid); 8 GenAccel Units

Piecewise linear
sigmoid FU

16-bit x 2 CGRA;
512-bit SRAM inter-
face;

2048 x 16-bit
Weight Buffer

GAB Balanced 64-Tile CGRA (combination of
above); 8 GenAccel Units

Combination of
above FUs

64-bit CGRA; 512-
bit SRAM interface;

(2048 entries
x 16-bit) 4KB
SRAM

Table 4.2: Configuration of GenAccel (GA) Design-Points Provisioned for each Application Domain
(Add: Adder, Mul: Multiplier, Shf: Shifter)

co-ordination program, we consider different implementations of the neural network layer, which

vectorize across either input or output neurons, depending on which is larger.

GAC for Convolution Engine’s Domain

The primary operation in convolution engine is a map operation (on the image inputs) followed

by reduce, with shifted version of input pixels. We assume 32 16-bit multipliers/subtractors for

the map stage, and 32 16-bit ALUs for the reduction (Although Convolution engine uses a more

custom 10-bit datapath, we use 16-bit as it is general.) The input shift can be performed internally

by the CGRA network, which allows input splitting. To feed these FUs, we only need 512-bits of

data per cycle, meaning we can use one 512-bit wide SRAM and a single GenAccel unit.

GAQ for Q100’s Streaming Database Queries

To target Q100’s streaming query workloads, we start with some of the same database query-oriented

functional units, like Filter and Aggregate, for which we include the same number as the original.
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However, there are several functional units which do not fit well into the type of CGRA we propose

using, which we outline next.

First, Q100’s Join unit requires data-dependent data-consumption, and adding this capability is

non-trivial as it complicates the CGRA itself as well as its communication with the DMA engine

(increasing the CGRA’s area). Also, Q100’s Partitioner and Sorter, used in tandem for fast sorting2,

do not fit naturally into the paradigm of our spatial fabric. The Q100-Partitioner produces output-

pairs (destination-bucket,value) and is quite large (0.94mm2 at 32nm [44]). The Q100-Sorter sorts

1024 elements simultaneously and also has a large area footprint (0.19mm2). Therefore, we do

not include the above Q100 units, and instead employ the low-power core for executing the same

algorithm. Unlike for the other domains, the mismatch in FUs means that we had to size the number

of cores and GenAccel units empirically to match Q100, which turned out to be 4.

Programming the Q100 unit in practice would likely be different than the others as well, as

it would need to be integrated into some database management system (DBMS). The DBMS will

need to generate a query plan which is composed of subgraphs containing streaming operators

(or temporal instructions in Q100’s terminology). Each one of these operator subgraphs can be

converted to an GenAccel program by applying standard code-generation techniques.

GAD for DianNao’s Deep Learning Domain

DianNao’s fundamental operation is a parallel multiply-reduce followed by an optional non-linear

function. To match DianNao’s performance, GAD includes 256 16-bit multipliers, 240 adders, and

16 non-linear sigmoid units, which are split up among 8 cores or units. It includes a 512-bit SRAM

interface to feed the 32 multiplier per unit. Each unit includes a 2K entry 16-bit SRAM, primarily

used for streaming in neural weights (16-bit each), and the neurons are stored in the core’s cache.
2We assume Q100 uses a “sample sort”, which first range-partitions into 1024 size buckets, then sorts each bucket.
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GAB Balanced Design

To create a more balanced programmable accelerator design with generality across the above four

domains, we consider a design point which can achieve the same performance goals as each DSA.

Essentially, we create this design point by taking the largest design (GAD in this case) (or generically

a superset if more domains considered), and distributing the necessary FUs and storage elements

among the remaining units, creating a homogeneous GenAccel. This design point enables the study

of how increased programmability affects the area and power of balanced GenAccel design. Note,

that a balanced design need not include all the application domains in a single programmable

architecture, but an intelligent division of multiple domains into many balanced design points

creating heterogeneous GenAccel designs. We have not considered such design for our current

work as evaluate only four application domains, but we believe the results still hold good for

heterogeneous GenAccel design.

4.5 Evolution Towards Programmable Acceleration

The approach we took in designing GenAccel in Section 4.1 was to start with a concurrent architecture

and evolve it by applying specialization principles with the micro-architectural mechanisms. Here

we explain how perhaps equally effective and plausibly similar designs could be arrived at by

starting with different baseline architectures and applying the same principles.

Large Cores: One possible path forward is to begin with traditional, large out-of-order cores,

and add mechanisms to achieve more concurrency and specialized execution. One example is

MorphCore [63], which specializes for concurrency by adding an in-order SMT mode to an OOO

core. WiDGET [64] is similar in that as it decouples the execution resources from threads, allowing it

to specialize the concurrency and coordination of different threads. Another example is specializing

for communication by adding reduction instructions to SIMD. While a valuable direction, this style
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of approach is arguably more difficult as it necessarily retains some of the power overheads of the

large core.

General Purpose Computing using Graphics Processing Units (GPGPUs): GPGPUs are interest-

ing as they already apply many specialization principles – concurrency through many independent

SIMD/SIMT units, computation through transcendental functions, and data-reuse through pro-

grammable scratchpads. That said, they do not specialize for operand communication, instead

relying on large register files and shared memory. Some research architectures have even explored

such specialization through the addition of spatial fabrics, like SGMF [55].

Making a GPGPU more suitable for programmable acceleration would also mean removing or

scaling back features geared towards more general computation, which are simply not needed if

only targeting towards commonly accelerated workloads. Some candidates for simplification may be

the hardware for coalescing memory, as access patterns are usually known a priori (specializing for

communication), or the hardware that handles diverging control flow (specializing for coordination).

We suspect that a straightforward application of specialization principles to the GPGPU may lead

to a similar design as GenAccel.

Field Programmable Gate Arrays (FPGAs): FPGAs are an interesting starting point as they al-

ready apply all specialization principles – DSP slices for computation, configurable networks for

communication, block RAMs for data-reuse, configurable logic for coordination, and ample LUT

resources for concurrency. They are also programmable, with a spectrum of language choices

spanning HDL design, HLS and even OpenCL. Furthermore, they allow further specialization of

the coordination using efficient finite state machines rather than a general purpose core.

Given the simple control-flow nature of the accelerator workloads, they easily fit inside an

FPGA’s resources. Table 4.3 lists the number of control states for the largest kernels from three

application domains (belonging to the DSAs explained in Section 3.2) synthesized on an Altera

Cyclone-V FPGA using LegUp [65].



53

Application-Domain Kernel Number of States in FSM

NPU 17

Convolution Engine 14

DianNao 86

Table 4.3: Number of FSM states on Cyclone-V FPGA for Three DSA Applications

However, FPGAs today lack in efficiency (both in frequency and power) because of the mecha-

nisms they rely on – fine-grained programmability, bit-level datapath configurability and global

routing. Also, the workloads we specialize require large scratchpad/reuse buffers and the small

size of block RAMs (2 to 5 KB each) in FPGAs mean that many must be chained or composed to

support the needed access patterns, leading to area and power overheads. Furthermore, when

considering the fact that many operations can occur in parallel, effectively a multi-ported register

file must be constructed to pass intermediates between the DSP slices. Indeed these challenges can

all be addressed by constraining global routing by performing physical layout to achieve the benefits

of tiled architectures, and allowing customization of DSP slices to emerging workload needs. These

innovations are achieved in recent Altera’s 1GHz Stratix 10 [66] FPGAs. Exploring these customized

FPGA solutions is an alternative avenue for extending the generality and efficiency of accelerators.

Recent FPGA designs are beginning to overcome these burdens by relaxing fully global overheads,

and using more efficient routing. System-On-Chip FPGAs (SOC-FPGAs) are also getting faster by

using high frequency general purpose processors like ARM Cortex A53 on chip [67]. In the aspect

of programming FPGAs, OpenCL and OpenCV based solutions are gaining lot of traction in both

industry and academic research [68, 69]. Recent software releases of Intel and Altera’s SDK [70, 71]

are proofs that FPGAs are evolving to become programmable architectures for masses. If we allow

the tailoring of DSP slices to the workloads in question (eg. adding a sigmoid unit), FPGAs with

improved frequency and wider SRAMS may eventually be viable architectures for programmable

acceleration.
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In summary, the stronger argument against using any particular off-the-shelf FPGA as our

programmable acceleration design point, or in fact any other existing off-the-shelf product is to do

with a lack of parameterizability. If we do not allow the parameterization of the number and type of

functional units (DSP slices), scratchpad (block RAMs) line sizes, or total design size (and other

factors) then these will become the primary reasons for the differences between a programmable

architecture and a DSA. This would not allow us to achieve one of the dissertation’s goal, which

is to discover how low can the cost of programmability be? What we need is an architectural

specialization “fabric” like GenAccel which can be customized to a set of chosen workload domains.

4.6 Chapter Summary

This chapter described the general set of mechanisms needed to exploit the specialization principles

for programmable acceleration in a domain-agnostic way. It proposed an abstract design for a

generic programmable accelerator called GenAccel capturing all the mechanisms discussed. It

then briefly introduced how GenAccel could be used with design-synthesis, programming and

runtime phases. We discussed our strategy in modeling GenAccel design with building blocks

of implementation along with the performance, area and power modeling. We explained the

provisioning technique for GenAccel model by discussing four domain specific design-points to

execute four different application domains and also a more generic and balanced design-point to

execute all four application domains in the same architecture. We use these design-points in for our

model evaluation in the upcoming chapter. We finally ended the chapter by discussing the possible

alternatives to arrive at a design like GenAccel.
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5 | Evaluation of GenAccel Model

In this chapter we evaluate our generic programmable accelerator (GenAccel) model’s efficiency

(performance, power and area) by comparing the designs provisioned for four application domains

with corresponding DSAs of those domains. We also evaluate the balanced GenAccel design’s area

and power efficiency in Section 5.2.3, when provisioned to match the performance/throughput

to execute all four application domains. In Section 5.3, we discuss the impact of power and area

overheads of a programmable accelerator like GenAccel from an overall system’s perspective and

critique the usage of GenAccel vs. DSA in a SoC environment. Finally, we conclude the chapter by

discussing benefits of programmable acceleration along with some limitations of this model.

We first explain the evaluation methodology we use, which includes workloads evaluated, DSA

models and baseline used for evaluation, power and area numbers of the DSAs in the following

section and then delve into the detailed evaluation.

5.1 Methodology

At a high level, our methodology attempts to fairly assess GenAccel model’s trade-offs across

workloads from four different accelerators by obtaining data from the literature, past works and the

original authors. We perform GenAccel’s evaluation by applying performance modeling techniques,

using sanity checks against real systems and using standard area/power models as discussed in

Section 4.3. Wherever assumptions are necessary, we made those that favored the benefits of the

DSA. The remainder of this section provides details.

5.1.1 Workloads

For fair comparisons, we use the same algorithms where possible, and use the workloads from the

original works. For NPU we use the neural network topologies from the original work [42]. Our
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DSA Workload Characteristics

NPU Layer Topology – Number of input and output neurons

Convolution Engine Image block and Stencil Size; map-reduce functions

Q100 Query plans; database column format and sizes

DianNao Feature map and kernel sizes; tiling parameters

Table 5.1: Workload Inputs to Modeling Framework

results include the approximate regions only 1. For Convolution Engine, we used the four basic

convolution kernels [43]. As these kernels do not use the DSA’s graph fusion unit, we do not include

it in its area calculation. We use all DianNao topologies [15] for comparison. Table 5.1 gives an

overview of workload characteristics used for comparison of GenAccel with four DSAs.

For Q100 we use 11 TPCH-queries [72] with the same TPCH scale factor (0.01) as the original

Q100 paper [44]. We use the same query plan for each, though the GenAccel version sometimes has

more phases as its FUs differ (see Section 4.4.1).

5.1.2 Evaluation Strategy

To compare the synthesized domain-provisioned and balanced GenAccel model, we consider the

domain-specific models for each application domain. Below we discuss the comparison points

and the DSA models built for each each application domain. We also briefly discuss the how we

validate our model with regards to DSA specific data points and the comparison strategy.

DSA and Baseline Characteristics

As explained earlier we use four DSAs for comparison against GenAccel and hence need DSA’s

estimates. Each DSAs’ performance, area and power were obtained as shown in Table 5.2 below.
1If we used GenAccel on the non-approximate regions as well, GenAccel’s performance would surpass NPU on

several kernels.
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DSA Execution Time Power Area

NPU Authors Provided MCPAT-based estimation

Convolution Engine Authors Provided MCPAT-based estimation

Q100 Optimistic Model In Original Paper

DianNao Optimistic Model In Original Paper

Table 5.2: Sources for Domain-Specific Accelerator Characteristics

For NPU and Convolution Engine execution times, we directly use the baseline numbers and DSA

performance numbers provided by the authors. For the performance of the Q100 and DianNao DSAs,

we constructed a model consistent with the GenAccel framework, which is generally optimistic for

the DSA. For Q100, we built a model which takes query-plans as inputs in our own python-based

domain-specific language. We validated this DSA model against execution times provided by

the authors in their paper, and our model is always optimistic, at most by a factor of 2×. We use

our model for Q100 because it allowed us to make the same assumptions about the query plans.

For DianNao, we used an optimistic performance model, based on its maximum computation

throughput and memory bandwidth.

For NPU power and area, we used CACTI for each internal storage structures, since this was

similar to the strategy used in the original work itself. Though we did receive the power for

Convolution Engine from the authors, we used our own estimates, as these were more consistent

with our results 2. For Q100 and DianNao we used the power and area estimates from the paper.

All area and power estimates are scaled and normalized to 28nm.

Model Validation

Table 5.3 shows the techniques used for validating the core component of the accelerator models

inorder to evaluate DSAs. The approach we took for validating these modeling techniques was
2Using convolution engine power, area estimate would have been favorable to GenAccel.
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GenAccel Modeling Strategy Model Inputs Baseline Validation

Common Analytical cycle-count models
for impact of each specialization
principle

#Cores, #FUs/types, memory
bandwidth, SRAM size and width,
CGRA size with SIMD widths

Against modified
gem5 [37] or instruction
counts from PIN

NPU Model for neural-network compu-
tation based on topology

Layer Topology (Number of Input
and Output Neurons)

Developed code genera-
tion for neural-network
approximation; Used gem5

Convolution
Engine

Model for map and reduce stages
of convolution kernels

Image block size, map/reduce
functions, stencil sizes

Implemented convolution
kernels; Used gem5

Q100 Streaming database query model,
queries partitioned into com-
pound operations

Query plans written in domain-
specific language, Database-FU
latency

Implemented single-core
query; PIN instruction
counts

DianNao Convolutional/Pooling/Classifier
neural networks topology model

Input/output feature maps and
its size, kernel size, and tiling
parameters

Used published DianNao
kernels [15]; Used gem5

Table 5.3: GenAccel Modeling Techniques, Model Inputs and Baseline Validation

to cross-check the model’s cycle count prediction against a simulated version where possible, or

if the execution time was too large (as for Q100), instead use a PIN model for instruction count,

and approximate the execution time. In all the cases, the developed model is within 30% of the

predicted execution cycles.

Integration of GenAccel and Number of Units

GAN and GAC only required a single unit of GenAccel for achieving the DSA’s performance,

meaning that these architectures could be directly integrated with a host core. Therefore we do

not include the LX3 core’s area in the estimation for these design points. Whereas, GAD and GAQ

needed 8 and 4 GenAccel units respectively, and hence includes the LX3 core area, power.

Comparison to Baseline General Purpose Processor

Much of our results use an Out-Of-Order (OOO) core as a baseline and intuitive reference point.

We use the Intel 3770K (IvyBridge) processor, and estimate the power and area based on datasheets

and die-photos [73]. All the performance, power and area results are normalized based on this
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baseline. We scale its frequency to 2GHz, as this is similar to the baseline used in the other DSA

works [42, 15]. An exception to this is the Q100 results, where we use their estimated performance

of MonetDB (on a 2.2GHz Intel Xeon E5620), as this proved more consistent than the version of

MonetDB we had available.

5.2 Evaluation

We now explain the detailed evaluation of our GenAccel model and is mainly organized around

three main questions:

Q1. Can GenAccel match the performance of DSAs, and what are the sources of its performance?

Q2. What is the cost of general programmability in terms of area and power overheads?

Q3. If multiple workloads are required on-chip, can GenAccel ever surpass the area or power

efficiency?

We answer all the three questions in following subsections. and our primary result is that GenAc-

cel is a viable and programmable accelerator alternative for DSAs, matching their performance with

only modest (max 2× to 4×) power and area overheads.

5.2.1 GenAccel Performance Analysis (Q1)

In this section, we compare the performance of the DSAs and domain-provisioned GenAccel

designs normalized to our baseline, 4-wide OOO core. To elucidate the sources of benefits of each

specialization principle in GenAccel, we also include five additional sub-design points (four in

case of single GenAccel unit based designs), where each builds on the capabilities of the previous.

Note that these intermediate design points are not area or power-normalized, their purpose is to

demonstrate the sources of performance. Figure 5.1 shows the performance comparison of GenAccel

with four DSAs; the colored bars with legend also indicate five other sub-design points which is

explained in detail below:
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1. Core + SFU – The LX3 core with added problem-specific functional units (computation

specialization).

2. Multicore – LX3 multi-core system (+concurrency) (Applicable for multiple GenAccel units

designs – Q100 and DianNao).

3. SIMD – An LX3 core with SIMD capability, its width corresponding to GenAccel’s memory

or SRAM interface (+concurrency).

4. Spatial – An LX3 core where, the spatial architecture (with SIMD capability) replaces the

SIMD units (+communication).

5. GenAccel – Previous design points with scratchpad (+reuse)

Across workload domains, GenAccel matches the performance of the DSAs, seeing performance

improvements over a modern OOO core between 10× and 150×. We argue this is the most insightful,

as specialized FUs are generally required to achieve even reasonable performance, and it therefore

makes apparent the contributions of the other specialization principles. These DSA works have

already shown large speedups over OOO cores, so we do not attempt to reproduce that baseline

result here.

NPU versus GAN : Figure 5.1(a) shows GenAccel versus NPU performance, with the neural

network topology and size of network listed in parenthesis of each workload. NPU’s and GenAccel’s

organizations differ greatly – independent processing elements in NPU versus the core + CGRA

hardware organization of GenAccel. However, their performance is nearly the same, as replicating

the neuron values across processing entities is essentially as good as storing these together and

reading through vectorized loads. In terms of speedup sources, concurrency (SIMD) provides the

most benefit – around 4× speedup. Communication specialization (Spatial) and reuse specialization

(GenAccel) together provide only 1.7× speedup.
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Figure 5.1: GenAccel versus DSA Performance Across Four Domains

Convolution Engine versus GAC : Figure 5.1(b) shows GenAccel versus Convolution Engine

performance for four important image processing and motion estimation kernels. Convolution

engine is essentially a wide vector mapping and reduction accelerator engine that allows fast

accesses to shifted image rows/columns and coefficients. Though GAC performs similarly to the

DSA, it has 0.84× clock-to-clock performance. This is because the DSA is running at a slower

800MHz frequency. For the DOG kernel, GenAccel loses performance as the scratchpad size could

not fit all of the image sizes needed for the computation. Overall, the major reason for performance

difference is also because of a lack of a custom shift-register interface. Currently, the CGRA’s vector

interface needs to reorganize the data to produce shifted versions of inputs. The major performance

contribution among specialization principles for GAC design is from concurrency – around 31×

from SIMD. Note that the LX3 Core + FUs bar is below 1, as it is slower than the baseline. CGRA’s

spatial communication and reuse play a lesser role, with benefits around 7.3× and 1.3× respectively.
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Q100 versus GAQ: Figure 5.1(c) shows GenAccel versus Q100 performance for 11 database-

streaming kernels using MonetDB. Though the 4-unit GAQ performs similarly with Q100 overall

(only 2% difference), performance varies across individual queries. Specifically, queries 5, 7 and 10

are sort-heavy (and 16 and 17 to a lesser extent), and Q100 benefits from the specialized Sort and

Partition FUs. We also emphasize here that the benefits of both GenAccel and Q100 over MonetDB

reduce by around a factor of 10 on larger databases (e.g. TPCH scale factor = 1), but we report

this scale factor of 0.1, as it is what Q100 was optimized for. The major source of performance is

concurrency – around 3.60× from multi-core or units, 2.58× from SIMD. Some workloads benefit

significantly from the CGRA, which is helpful when the bandwidth is not saturated and the work-

load is not dominated by sorts or joins. Note that to be consistent with the Q100 work, the baseline

here is an OOO core running MonetDB, while Q100 and GenAccel model manually-optimized

queries. This explains why even the LX3 core with special FUs can outperform the baseline. As an

example, we ran an optimized q1 (matching the GenAccel/Q100 algorithm) on the OOO core, and

it was 35x faster than the MonetDB version.

DianNao versus GAD: Figure 5.1(d) shows GenAccel versus DianNao DSA performance for the

classifier, convolution and pooling kernels of a typical deep-neural network application. Perfor-

mance is similar on most workloads. GAD has minor instruction overhead in managing the DMA

engine to stream the neurons and weights. But it gains back some ground on one of the pooling

workloads, because the decoupled design of GenAccel allows it to load neurons at a higher band-

width and hence is not memory saturated. Again, concurrency was most important for performance

– around 8× from multi-core and 14.4× from SIMD. The CGRA provides an additional small benefit

by reducing instruction management. Also, adding a reuse buffer reduces cache contention. The

combined speedup from CGRA and reuse buffers is 1.9×.

Takeaway: GenAccel designs have competitive performance with DSAs. The performance benefits come

mostly from concurrency than any other specialization technique.
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5.2.2 GenAccel Area and Power Overheads (Q2)

As we have shown so far, GenAccel is generally able to compete with the more specialized designs

in terms of performance – this makes sense as each of those domain-provisioned GenAccel models

were designed for equivalent throughput. The main costs are in the in the area and power overheads

which in-turn reflect the programmability overheads, and the breakdown of area and power for

each GenAccel design-point is shown in Table 5.4 respectively.

Area (mm2) GAN GAC GAQ GAD

Br
ea

kd
ow

n

Core + Cache 0.09 0.09
SRAM 0.04 0.02 0.04 0.04
Functional Unit 0.24 0.02 0.09 0.02
CGRA Network 0.09 0.11 0.22 0.11
Unit Total 0.37 0.15 0.44 0.26
GA Total Area 0.37 0.15 1.78 2.11

DSA Total Area 0.30 0.08 3.69 0.56

GA/DSA Overhead 1.23 1.74 0.48 3.76

Power (mW) GAN GAC GAQ GAD

Core + Cache 41 41 41 41
SRAM 9 5 9 5
Functional Unit 65 7 33 7
CGRA Network 34 56 46 56
Unit Total 149 108 130 108
GA Total Power 149 108 519 867

DSA Total Power 74 30 870 213

GA/DSA Overhead 2.02 3.57 0.60 4.06

Table 5.4: GenAccel (GA) Power and Area Breakdown/Comparison
(normalized to 28nm)

To elucidate the costs of programmability, Figure 5.2 shows the power and area efficiency for

four performance-equivalent designs, using a single OOO core as the baseline. We also show an

intermediate design-point GAsimd−only, because it is a more standard reference point. It does not

employ scratchpads or a CGRA network but does have specialized FUs with SIMD capability. We do

not show the single-core or multi-core only points, as scaling up their cores to meet the performance

target does not result in practical designs.

Overall, GenAccel has some, but not excessive overheads – up to 3.8× area and 4.1× power

compared to the DSAs. Even so, the GenAccel designs are between 6× to 90× area-efficient (less-

area) than a single core, and between 5× and 40× power-efficient (less power consumed). Also,

the GenAccel designs are generally better than the performance-normalized SIMD design point,

implying that the spatial fabric and reuse buffers are effective for reducing the overheads, compare
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Figure 5.2: Area and Power Trade-offs Using Performance Equivalent GenAccel Designs
(Baseline: Core + L1 + L2 from I3770K processor; higher and to-the-right is better

to SIMD vector lanes.

GAD has the worst case area and power overheads of 3.8× and 4.1× respectively compared to

DianNao. The CGRA network dominates the area and power, because it supports relatively tiny

16-bit FUs and routing of 16-bit values adds lot of power overhead. This is a reasonable trade-off

given DianNao uses a mostly fixed datapath, while GenAccel supports a highly configurable mesh.

GAC also has overheads of 1.7× area and 3.6× power. Besides the CGRA network overhead,

Convolution Engine optimizes for a non-standard datapath width (10-bit versus 16-bit in GenAccel),

and runs at a lower frequency of 800MHz.

For the NPU workloads, the GAN is similar area and has a 2× power overhead. The reason for

these relatively low overheads in this case is the high contribution of floating point and sigmoid

FUs, amortizing the overhead of the LX3 core and CGRA network in GenAccel. Overall for area,

this is sensible because the specialization of computation (sigmoid FU, implemented with a large

lookup table) is the largest contributor to area, and is identical across designs. For power, the

most significant source of overhead is the core itself, but NPU also has power overhead in its

per processing entity controllers and bus scheduler. Compared to a simpler SIMD-based design,

GenAccel is nearly 2×more power and energy efficient, due to the large benefits of the scratchpad

storing the read-only neural weights.
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Surprisingly, GAQ has 0.5× the area and 0.6× the power of Q100. One reason for this is that

GenAccel does not embed the expensive Sort and Partition units, which did lead to performance

loss on several queries, but was arguably a reasonable trade-off overall. GenAccel also uses a simple

circuit-switched CGRA, whereas Q100 uses highly-buffered routers based on the Intel Teraflops

chip [74].

Overall, the programmable core and the CGRA were the largest contributors for power and area.

The scratchpads for for reuse specialization played a small role in the overhead – this is natural

because similar sized SRAMs can be used in both the DSA and GenAccel designs. CGRA network

costs overheads, but including it enables the specialization of communication, which is important

for performance. More importantly, it enables run-time reconfigurability, and therefore generality.

Even with significant overheads versus the less general DSA designs, the GenAccel design points

still achieved high area and power efficiency advantages over a single OOO core.

Takeaway: With suitable engineering, the overheads of programmability can be reduced to small factors of

2× to 4×, as opposed to the 100× to 1000× inefficiency of large OOO cores.

Evaluation of Area-Power Normalized GenAccel Design’s Performance with DSAs

Up to this point, we have considered GenAccel designs targeted to each DSA’s performance, then

measured the power and area overheads. We now consider the opposite – restricting the design to

target either the DSA power or area (within 15%), and observe the other metrics. Table 5.5 shows

the results.

When area is constrained, the GAC requires the most cuts to resources, at about 1/2 of the CGRA

size. The area constrained GenAccel designs are 1.2× slower than the DSAs in average and have

about almost equivalent power. When power is constrained, DianNao is the most affected, requiring

us to cut 6/8 GenAccel units. In this scenario, the geometric mean performance is 1.37× slower and

the area is 0.76× that of the DSAs.
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Area < 1.15× DSA NPU Convolution Engine Q100 DianNao

Execution Time Ratio 1.19 2.27 0.53 2.78
Area Ratio 1.1 1.1 0.23 1.14
Power Ratio 1.1 0.75 0.55 1.74
GenAccel Changes 3/4 size 1/2 size None 3/8 units

Power < 1.15× DSA NPU Convolution Engine Q100 DianNao

Execution Time Ratio 1.19 1.33 0.53 4.17
Area Ratio 1.1 1.72 0.23 0.76
Power Ratio 1.1 1.09 0.55 1.15
GenAccel Changes 3/4 size 7/8 size None 2/8 units

Table 5.5: Area limited (top) and power limited (bottom) GenAccel Characteristics
(lower is better)

5.2.3 Supporting Multiple Application Domains (Q3)

Until now, we evaluated only the domain provisioned GenAccel designs and estimated the cost of

added programmability. We now in this subsection mainly try to answer the third question asked

in Section 5.2 – If multiple workloads are required on a single-chip, can GenAccel ever surpass the

area or power efficiency compared to having multiple-DSAs? In order to answer this question, we

evaluate the most general Balanced GenAccel design described in Section 4.4.1 below:

If multiple workload domains require programmable acceleration on the same chip or SOC,

but do not need to be run simultaneously, it is possible that GenAccel can be more area efficient

than a Multi-DSA design. Figure 5.3 shows the geometric-mean area and power trade-offs for two

different workload domain sets, comparing the Multi-DSA chip to the balanced GAB design.

The domain set [NPU/Convultion-Engine/DianNao] excludes our best result (Q100 workloads).

In this case, GAB still has 2.7× area and 2.4× power overhead. However, with Q100 added (All

four application domains), GAB is only 0.6× the area of all DSAs combined. And we believe, with

more domains targeted for GenAccel, the balanced GenAccel design will be more area and power

efficient than all DSAs area and power combined.
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Figure 5.3: Area and Power Comparison of Multi-DSA vs Balanced GenAccel Design (GAB)
(Baseline: Core + L1 + L2 from I3770K processor; higher and to-the-right is better)

Takeaway: If only one domain needs to be supported at a time in Multi-DSA chip, GenAccel can become

more area efficient than using multiple DSAs.

5.3 System Level Trade-offs with Programmable Accelerator and DSA

With a detailed evaluation of the GenAccel model, we have explored the relative power, area,

and performance trade-offs of using a programmable accelerator over a DSA, but it is important

to understand how this affects the overall decision of which architecture to employ in a SOC.

Specifically, while the speedups of DSAs and a Programmable Accelerator (GenAccel Model) can

be similar, an important question to consider is – by how much does the power and area overheads

affect the energy benefits and economic costs, when accelerating a general purpose chip. We use

simple analytical reasoning in this section to explore the trade-offs.

5.3.1 Energy Efficiency Trade-offs

In this subsection, we analytically bound the possible energy efficiency improvement of a general

purpose system accelerated with a DSA versus a GenAccel design, by considering a zero-power

DSA – meaning the DSA is most power efficient with consuming almost zero power.
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We first define the overall relative energy, E, for an accelerated system in terms of:

• S – the accelerator’s speedup.

• U – the accelerator utilization as a fraction of the original execution time.

• Pcore – general purpose core power.

• Psys – overall system power.

• Pacc – accelerator power.

The core power includes components which are generally not used when the computation is

offloaded by invoking the accelerator. he system power includes chip components that are active

while accelerating, which could include higher level caches and DRAM, or other SOC components,

for example. The total energy then becomes:

E = Pacc(U/S) + Psys(1−U + U/S) + Pcore(1−U) (5.1)

Based on the above equation, the energy efficiency improvement of a DSA versus GenAccel (GA)

system (Effdsa/ga), given that their speedups are held equivalent, becomes:

Effdsa/ga =
Pga(U/S) + Psys(1−U + U/S) + Pcore(1−U)
Pdsa(U/S) + Psys(1−U + U/S) + Pcore(1−U) (5.2)

Based on our earlier assumption, by setting the DSA power to zero and rearranging, the equation

now becomes:

Effdsa/ga <
Pga(U/S)

Psys(1−U + U/S) + Pcore(1−U) + 1 (5.3)

The best case for the DSA would be 100% utilization, and in that case we get the intuitive result

that maximum energy efficiency improvement is: Effdsa/ga < Pga/Psys + 1. Since GenAccel’s power
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is usually very low, perhaps a factor of 10 less than system power, the maximum system energy

efficiency savings is less than 10%, even with a perfect DSA.

More interesting scenario to consider is a plausible but still optimistic accelerator utilization like

50%. Under these settings, the maximum efficiency becomes:

Effdsa/ga|(U = 0.5) < 0.5 ×
Pga/S

Psys/S + Psys + Pcore
+ 1 (5.4)

Since we are assuming high-performance accelerators, a reasonable value for S (speedup) is 10×,

and we could again assume that GenAccel’s power is 10× less than the core and system power. In

this setting the maximum possible energy efficiency gain from a DSA is less than 0.5%.

We characterize these trade-offs across different accelerator utilizations and speedups in Figure 5.4,

using 5W as the core and system power. Figure 5.4(a) shows that the maximum benefits from a DSA

reduce both as the utilization goes down (stressing core power), and when accelerator speedup

increases (stressing both core and system power). For a reasonable utilization of U=0.5 and speedup

of S=10, the maximum energy efficiency gain from a DSA is less than 0.5%. Figure 5.4(b) shows a

similar graph where GenAccel’s power is varied, while utilization is fixed at U=.5. Even considering

an GenAccel with power equivalent to the core, when GenAccel has a speedup of 10×, there is only
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5% potential energy savings remaining for a DSA to optimize.

Takeaway: Putting the above together, we claim that when an GenAccel can match the performance of

a DSA, the further potential energy benefits of a DSA are usually very small. In other words, a 4× power

overhead for GenAccel versus a DSA is generally inconsequential.

5.3.2 Economic Trade-offs

DSAs are a reality today and without a significant reason to invest in the programmable accelerator

based SOC, its possible that GenAccel would not ever become economically viable. That said, we

argue that there are tangible reasons why an GenAccel-based approach could be economically

advantageous.

First, the fixed costs of targeting some domain may indeed be much lower for GenAccel. Once

the GenAccel hardware is designed, targeting a domain is a matter of hardware parameterization

and relatively straightforward software development. In some cases, GenAccel may be able to

target new domains without any hardware changes or parameterization. It is also true that for a

given application domain, GenAccel’s recurring area costs are factors higher. However, GenAccel is

relatively small compared to a modern general purpose multi-core, and when targeting multiple

domains, GenAccel’s area overheads are amortized.

5.4 Discussion

In this section, we briefly discuss some primary limitations of GenAccel model with regards to the

workload generality and also the advantages of it compared to DSAs.

5.4.1 Limitations

Accelerator Workload Generality: For our evaluation, we made several assumptions about the

type of workloads targeted which are generally computationally intensive, have lots of parallelism



71

with simple control flow and regular memory access patterns. The implication is that there are

workload varieties that GenAccel design will not be suitable for, as well as at least several existing

accelerators which GenAccel will not be able to match. One example would be the packet classifica-

tion, which would require too much irregular memory accesses, but Spitznagel et al. [75] is able to

create effective specialized hardware with extended TCAMs. Another example is the unsuitable

bit-level optimizations that Fowers et al. uses to design an accelerator for lossless compression on

FPGAs [76].

It is possible that, when considering a broader or different set of workload properties, the

specialization principles and their mechanisms identified here may not be the most operative. Even

so, a GenAccel reference point could help identify what should be these new mechanisms, or

perhaps even help to expose additional specialization principles.

5.4.2 Advantages of GenAccel Model

Characterizing Generality: Contrasting to the above mentioned limitations, GenAccel also pro-

vides a certain degree of flexibility. For example, considering the NPU approximate computing

accelerator, GenAccel can be used for non-approximate code as well. Another example is in the case

of the TPCH queries that Q100 supports where, the query plans including non-streaming operators

(e.g. hash-join) are not supported by the DSA – but this is natural for GenAccel as it has fall-back

mechanism in the form of low-power core. For DianNao, a recent extension added is the architecture

support for more machine learning algorithms [16]. A GenAccel design could achieve the same

through synthesis-time reconfiguration rather than re-inventing a new architecture. Quantifying

and characterizing the achievable generality more rigorously is future work. In some cases (e.g.

kmeans) non-approximate acceleration is significantly more effective [52, 42].
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5.5 Chapter Summary

In this chapter, we studied a detailed evaluation of domain-provisioned GenAccel designs against

four different application domains and their DSAs. When provisioned to match the throughput of

the target applications, GenAccel design can easily match the performance of DSAs with modest

overheads in area and power. We also explore the advantages of a more generic balanced GenAccel

design which can map all four application domains onto a single programmable accelerator fab-

ric with better area efficiency and minimal power overheads. An analytical model is developed

exploring the system-level energy efficiency trade-offs of having a DSA versus a programmable

accelerator like GenAccel. We conclude that when the system power dominates and speedups

of applications accelerated are less with lower accelerator utilization, then it is economically and

logically not viable to build DSA over a programmable accelerator.
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6 | Stream-Dataflow Acceleration

Using the generic programmable accelerator model GenAccel we showed that programmable accel-

erators can be designed with performance matched to domain-specific hardware with minimum

overheads in area and power. In this chapter, we introduce a particular programmable acceleration

paradigm called Stream-Dataflow Acceleration to accelerate data-streaming applications and realize it

with a detailed architecture, execution model, ISA interface and programming abstractions.

We first provide an overview of the stream-dataflow paradigm in the following section. We then

motivate the need for a stream-dataflow accelerator in Section 6.2 by contrasting it with existing data-

parallel architectures and discuss available opportunities for stream-dataflow in Section 6.3. Then

in Section 6.4, we delve into the architecture details by explaining the programming abstractions

and the stream-dataflow execution model. Finally, we end the chapter by discussing the new

ISA interface proposed for programmable accelerators and illustrate a simple stream-dataflow

application written using that interface.

6.1 Introduction to Stream-Dataflow Acceleration

An important observation, as alluded to in the literature [31, 3] and in Section 3.1, is that typically-

accelerated workloads have common characteristics:

1. High computational intensity with long phases.

2. Small instruction footprints with simple control flow.

3. Straightforward memory access and re-use patterns.

The reason for this is simple – these properties lend themselves to very efficient hardware

implementations through exploitation of concurrency. Furthermore, data processing algorithms

either naturally have these properties, or new algorithms are crafted with these properties in mind,
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to enable high performance on data-parallel hardware architectures. Existing data-parallel hardware

solutions perform well on these workloads, but in their attempt to be far more general, sacrifice too

much efficiency to supplant domain-specific hardware. This also sheds light on why traditional

data parallel architectures have overheads: As an example, short-vector SIMD relies on inefficient

general pipelines for control and address generation, but accelerated codes typically do not have

complex control and memory access. GPGPUs hide memory latency using hardware for massive

multi-threading, but accelerated codes’ memory access patterns can usually be trivially decoupled

without multi-threading.

To take advantage of this opportunity, we propose an accelerator architecture and execution

model for acceleratable workloads, whose hardware implementation can approach the power

and area efficiency of specialized designs, while remaining flexible across application domains.

Because of its fundamental specialization components, it is called as Stream-Dataflow accelerator.

The architecture explores – how to express the common algorithmic properties of regular streaming

applications in a general way by instantiating the hardware primitives exploiting the common

specialization principles. In the stream-dataflow interface, the dataflow component enables dataflow

computations with high concurrency, and the stream component enables communication and co-

ordination of data-streams at very low power and area overhead. This part of the dissertation

explores the hardware and software implications of the stream-dataflow interface and describes

a detailed architecture and micro-architecture of the specialization mechanisms and hardware

primitives discussed before in Chapter 4.

Stream-dataflow acceleration exposes the high-performance hardware substrate with the follow-

ing three basic abstractions:

• A dataflow graph (DFG) abstracting the repeated, pipelined execution of computations from

typical accelerator applications.

• Stream-based commands for facilitating efficient data-movement and communication across
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Figure 6.1: Stream-Dataflow Abstractions and Implementation

the hardware components and memory; The source and destination architectural locations

include the memory address space, DFG vector ports, and the scratchpad address space used

for efficient data-reuse.

• Barrier commands to facilitate coordination between different parallel phases of the algorithm.

Figure 6.1(a) depicts the programmer view of stream-dataflow, consisting of the dataflow graph

(DFG) itself, and explicit stream communication support for memory access, data read reuse and

recurrence. The intuition behind this architecture is that the dataflow based execution will be

similar to the datapath of an ASIC, and the specialized stream based communication will have low

overheads, similar to that of an ASIC. The abstractions lead to an intuitive hardware implementation;

Figure 6.1(b) shows our high-level design of the stream-dataflow accelerator implementation called

Softbrain.

It consists of a coarse-grained reconfigurable architecture, a locally addressed scratchpad and a

memory interface control connected with wide buses to memory. All the components are controlled

from the simple controller core, which sends stream commands to be executed concurrently by

the memory interface controller, CGRA and scratchpad controller. Infact, all these mechanisms

are inspired from the findings and discussions in Section 4.1. The architecture for stream-dataflow

is derived from straight-forward application of those mechanisms along with the software pro-

gramming interface enabled hardware primitives. This coarse-grained nature of the stream-based

interface enables the core to be incredibly simple, while still enabling highly concurrent execution
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in CGRA. Also, to keep the datapath modifications of the low-power core as minimal as possible

and have non-intrusive integration, we have a special dispatcher called stream-dispatcher which is

responsible for taking the commands from low-power core essentially decoupling the core off the

critical path to continue execution while co-ordinating the other components. The stream access

patterns and restricted memory semantics enable efficient address generation and co-ordination

hardware compared to traditional architectures.

Relative to a domain specific architecture, a stream-dataflow processor can reconfigure its

datapath and memory streams, so it is far more general and adaptable. Moreover, because it

explicitly separates the implementation of data movement from computation, the architecture

becomes trivially parameterizable for various sets of domains. Relative to existing solutions like

GPGPUs or short-vector SIMD, the power and area overheads are significantly less on amenable

workloads. An implementation can also be deployed flexibly in a variety of settings, either as a

standalone chip or as a block on a SoC. It could be integrated with virtual memory, and either use

caches or directly access memory. By restricting the algorithms that can run on the architecture, the

hardware can perform each primitive task (memory access, computation etc,) at a much coarser

grain – effectively eliminating the per-instruction overheads that plague traditional architectures.

Over the next few sections, we first define stream-dataflow, describe its execution model, and

explain why it provides specialization benefits over existing architectures. We then discuss the ISA

and programmability before describing an example program for stream-dataflow. To demonstrate

the generality of this architecture and this implementation’s capabilities, we compare the stream-

dataflow implementation against a state-of-the-art machine learning accelerator, as well as fixed

function accelerators for MachSuite workloads. Our evaluation shows it can achieve equivalent

performance to the accelerators, with orders-of-magnitude area and power efficiency improvement

over CPUs. Compared to the machine learning accelerator, we average only 2× power and area

overhead. On the broader set of MachSuite workloads, compared to custom ASICs, the average

overhead was 2× power and 8× area. We discuss our hardware implementation – Softbrain and

the evaluation in detail in Chapter 7 and 8.
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Our specific contributions for stream-dataflow acceleration part of the dissertation are:

• We describe the inefficiencies common to many existing data-parallel hardware architectures,

and opportunities to reduce them through specialization (Section 6.2 and 6.3).

• We define a stream-dataflow architecture for accelerating workloads (Section 6.4), with a

general set of abstractions that can efficiently express acceleratable workloads. We believe

these abstractions can serve as a natural program representation for compiling to different

programmable architectures can be directly executed on an architecture which exposes the

hardware primitives of streams and independent computation blocks. The implementation of

such an architecture is competitive with custom solutions, and is suitable for trivial domain-

adaptation.

• We present a detailed, low-level micro-architecture details of the stream-dataflow architecture

and elucidate its generality, performance, area and power trade-offs (Chapter 7).

• We further implement a chisel-based prototype of stream-dataflow architecture called Softbrain

combined with an open-source RISCV core, with simple programming interface, and we

evaluate its performance, power and area characteristics respective to state-of-the-art general

purpose processors and accelerators (Chapter 8).

6.2 Motivation

For a broad class of data-processing algorithms, the mere existence of domain-specialized hardware,

and the typical orders of magnitude performance and/or energy benefits they provide over existing

general purpose and data-parallel hardware techniques indicates that the overheads in current

existing architectures are significant. By definition, the strategy that domain-specific accelerators

employ is to limit the programming interface to support a much narrower set of functionality suitable

for the domain, and in doing so simplify the hardware design and improve efficiency. We further
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hypothesize that the efficiency gap between domain-specific and general purpose architectures is

fundamental to the way general purpose programs are expressed at an instruction-level, rather

than a facet of the micro-architectural mechanisms employed.

So far, existing programmable architectures like SIMD, SIMT, Spatial-Dataflow have shown some

promise, but have only had limited success in providing a hardware-software interface that enables

the same specialized micro-architecture techniques that more customized designs have employed.

Therefore, our motivation is to discover what are the architectural abstractions that would enable

micro-architectures with the execution style and efficiency of a customized design, at least for a

broader and important class of applications that have long phases of data-processing and streaming

memory behavior. To get insights into the limitations of current architectures and opportunities,

this section examines the inefficiencies in existing programmable hardware paradigms. We then

discuss how their limitations can inspire a new set of architecture abstractions for stream-dataflow

paradigm in the following section. Overall, we believe that the stream-dataflow abstractions we

propose could serve as the basis for future programmable accelerator innovation.

6.2.1 Inefficiencies in Existing Approaches

An application or domain-specific accelerator achieves performance by feeding a highly concurrent

datapath with streaming data from memory and efficiently reusing data through custom scratchpad

memories. It does this using control logic specific to the application, avoiding the power and area

overheads of general purpose architectures. Several fundamentally different architecture paradigms

have been explored in an attempt to enable programmable hardware acceleration and the prominent

classes are shown in Figure 6.2. 1.

Generally speaking, relative to DSA or ASIC, these architectures have three broad sources of

overheads as listed below:

1. Address generation and communicating with the caches or memory subsystem.
1We discuss here the core micro-architecture. Integration into multi-processor systems is mostly orthogonal to this

discussion.
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2. Mechanisms for attaining high utilization of execution resources through concurrency.

3. Non-decoupling of access-execute phases in the program. They also have overheads in how

they handle irregular or otherwise unsuitable code.

Table 6.1 summarizes these overheads for the above three categories, and we discuss them in

detail below.

SIMD and SIMT

Both SIMD and SIMT hardware provide fixed-length vector abstractions in their ISA, which enables

micro-architectures that amortize instruction dispatch and enable fewer, wider memory accesses.
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The specification of computation at the instruction-level, however, means that neither can avoid

instruction communication through large register files. In addition, both architectures do not

provide inexpensive support of high hardware utilization. Because the vector length is fixed and

relatively short, short-vector SIMD processors constantly rely on the general purpose core for

dynamically scheduling the parallel instructions. Scaling issue width, reordering logic and register

file ports is expensive both in area and power. Also, fixed-length vector execution causes unaligned

accesses thus increasing the bandwidth pressure. For complex access patterns, SIMD requires either

masking and merging instructions, or complex scatter-gather hardware. SIMD extensions also lack

programmable scratchpads for efficient data reuse.

SIMT hardware like GPGPUs expose massive multi-threading capability to enable high hardware

utilization, by allowing concurrent execution of many warps, which are groups of threads that issue

together. This requires large multi-ported register files to hold live state, complex warp-scheduling

hardware, and incurs cache pressure from many independent warps. SIMT improves handling of

irregular accesses, but then require redundant address generation units across many threads for

spatially local accesses and also need additional expensive logic for address coalescing hardware.

They also improve SIMD by using a simple frontend pipeline to dispatch each instruction to multiple

vector execution lanes.

Vector Threads ( [77, 78])

A vector-thread data-parallel architecture is similar to SIMT, but exposes the programming ability

to specify both SIMD-style and scalar execution of the computation lanes. They make use of their

vector and scalar dispatch units for flexibly executing such non data-parallel codes. While this does

eliminate the control divergence penalty, it faces many of the same limitations as SIMD. Specifically,

it cannot avoid register file access due to the instruction-level specification of computation, and the

limited vector-length means it must rely on control core’s pipeline to achieve high utilization. It

also introduces redundant hardware for address generation and in dispatching instructions.
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Spatial Dataflow ( [79, 80, 81, 82, 83])

Spatial dataflow architectures further distribute the control and expose the routing and communi-

cation channels of an underlying computation fabric through their hardware-software interface.

This enables a distributed instruction dispatch, and eliminates the need for register file accesses

between live instructions. The dispatch overheads can be somewhat amortized using a configuration

step. The distributed nature of this abstraction also enables high utilization without the need for

multi-threading or multi-issue logic.

However, these architectures are unable to specialize for the memory accesses to the same

degree. Micro-architectural implementations typically perform redundant address generation and

issue more and smaller cache accesses for spatially local accesses. This is because the spatially

distributed memory address generation and accesses are more difficult to coalesce into vector-

memory operations and can incur inefficient bandwidth utilization.

Application Specific Hardware

Application-specific or Domain-specific accelerators achieve performance by providing highly

concurrent pipelined execution, and high energy efficiency by minimizing the overheads of commu-

nication and control. At a high level, these architectures generally consist of a pipelined datapath

supporting very high utilization, ad-hoc address generation, custom buses to access a memory

space, and custom memories like scratchpads to enable efficient data-reuse. To get these specializa-

tion benefits with minimum overheads programmable accelerators must keep the same essential

execution model, but add programmable abstractions.

Summary and Observations

First, being able to specify vectorized memory accesses is extremely important, not just for paral-

lelism and reducing memory accesses, but also for reducing address generation overheads. On the

other hand, though vectorized instructions do reduce instruction dispatch overhead, the separation
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of the work into fixed-length instructions requires inefficient operand communication through

register files and requires high-power mechanisms to attain higher utilization. Exposing a spatial

dataflow substrate to software solves the above problems, but complicates and disrupts the ability

to specify and take advantage of vectorized memory access.

6.3 Overview

Based on our study and analysis of inefficiencies in different existing architectures explained in the

previous section, we take away three important attributes for stream-dataflow model to explore:

• Eliminate redundant address generation logic and inefficient communication, through efficient

hardware support for common data stream patterns.

• Distribute the control logic in the architecture and thus decentralizing the control of concur-

rency without duplicating control logic for the same task.

• Provide the simplest possible hardware for the uncommon case of executing irregular or

non-concurrent code regions.

At the heart of the previous observations of inefficiencies also lies the fundamental trade-off

between vector and spatial architectures – vector architectures expose a far more efficient parallel memory

interface, while spatial architectures expose a far more efficient parallel computation interface. For it to be

conceivable that a programmable accelerator architecture can be competitive with an application-

specific or domain-specific hardware, it must expose both efficient interfaces.

While achieving the benefits of spatial and vector architectures in the general case is perhaps

impossible, we argue that it is possible in a restricted but important workload setting. In particular,

many data-processing algorithms exhibit the property where their computation and memory

access components can be specified independently. Following the principles of decoupled access-

execute [84] mechanism, we propose an architecture combining stream and dataflow abstractions –
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Figure 6.3: Stream-Dataflow Programmable Accelerator

stream-dataflow. The stream component exposes a vector-like memory interface, and the dataflow

component exposes a spatial specification of computation.

The stream-dataflow paradigm is naturally derived from these insights and observations. By

restricting the scope of data-parallel programs, a stream-dataflow model can obviate the need for

many of the overhead structures in data-parallel hardware. To explain, we briefly describe the

stream-dataflow accelerator below and then explain the opportunities.

6.3.1 Stream-Dataflow Programmable Accelerator

Inspired from the specialization principles and mechanisms needed for a programmable accel-

erator discussed in Chapter 4, at a high-level stream-dataflow accelerator is also designed with a

programmable scratchpad memory for data-reuse, a coarse-grained reconfigurable dataflow fabric

(CGRA) for computation and communication specialization, and a memory interface facilitating

easy communication with memory hierarchy, as shown in the Figure 6.3. A special vector interface

is embedded on input and output side of the CGRA to facilitate vector-wide execution. The parallel
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communication between these hardware units is controlled by arbitrary-length stream commands

issued from simple control core and so the control becomes distributed among concurrent units of

the architecture. A stream dispatcher enforces architectural dependences between data streams.

The control core can execute arbitrary programs, but is programmed to offload as much work as

possible to the stream-dataflow hardware.

Abstractions: The following is a brief overview of the abstractions, as shown in Figure 6.4. The

stream interface provides support for an ordered set of stream commands, which is embedded within

an existing Von Neumann ISA. Stream commands specify long and concurrent patterns of memory

accesses and general expressible access patterns include contiguous, strided, and indirect. We add

a separate "scratchpad" address space, which can be used to efficiently collect and access re-used

data. Data Streams are defined by a source and a destination pair along with an access pattern. The

dependences between architecture locations are enforced dynamically. Finally, the dataflow interface

exposes computation instructions and their dependences through a dataflow graph (DFG). The

input and output interfaces of the DFG are named ports with configurable vector-width, that are

part of the sources and destinations for stream commands.
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6.3.2 Opportunities

Stream-dataflow implementations enable coalesced memory accesses and because stream-dataflow

model has special support for streaming the data with variable access patterns (discussed in detail

in Section 6.5), it can significantly reduce the address generation overheads. Unaligned accesses

only becomes burdensome at the beginning and end of stream accesses and rest of the data fits

nicely into cache-line based data requests. Strided access patterns are simple to support without

additional mask and merge instructions on the critical path unlike vector-SIMD units. There is no

redundant address generation or need for memory coalescing, as the memory interface generates

access requests at the width of the entire cache-line (64B) or required memory interface. This

also enables a cleaner decoupling of access and execute phases of the program without explicitly

depending on the memory interface to get all the data to a storage, before starting the computation.

The computation phase can overlap with the access phase effectively achieving higher degree of

concurrency.

In terms of gaining high resource utilization, stream-dataflow model does require programs to

be pipelinable with low initiation intervals, but does not require massive multi-threading support

or multi-issue pipeline logic to hide the latency. High utilization is provided by using a dataflow

computation substrate, which also avoids large register file access to communicate values. Even the

caches do not have to be designed around supporting many independent contexts which in-turn can

cause a large working set. Also, because the control is distributed across architectural components,

it becomes easier to scale up the hardware concurrency, without needing to rely on general purpose

cores which must enforce instruction ordering at a more finer granularity. Flexible-length (typically

long) stream commands mean the control core can be very simple, as it is needed only to generate

streams and not to manage their execution.

A final opportunity is in regards to stream-dataflow’s ability to be easily customizable to a certain

application domain. Traditional SIMD-based architectures use wide vector lanes of homogeneous

functional units. This makes it more difficult to scale the number of execution resources to the
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proportional demand inside a particular domain or domains to be targeted. A reconfigurable fabric

like CGRA can easily support arbitrary proportions of functional units without causing pipeline

inefficiencies. A disadvantage is that fine-grain control relies on predication (power overhead),

and coarse-grain control requires reconfiguration (performance overhead). But generally both are

somewhat rare in typically accelerated workloads.

6.4 Architecture for Stream-Dataflow Acceleration

In this section, we describe the stream-dataflow architecture through its programming abstractions

and an execution model.

6.4.1 Architectural Abstractions

Stream-dataflow architecture abstracts computation as a dataflow graph, and communication

as streams and barriers, as shown in Figure 6.4. We describe these abstractions, the associated

commands, and any dependencies which must be enforced below.

Dataflow Graph (DFG)

The DFG abstraction is an acyclic graph (as shown in Figure 6.4(a)) containing computation instruc-

tions and dependences to be mapped to the CGRA substrate. Note that we do support cycles for

direct accumulation, where an instruction produces a value accumulated by a later instance of itself.

More general cyclic dependences are supported through "recurrence streams", which we describe

later.

Inputs and outputs are named as ports with explicit vector widths. These ports are used to

facilitate vector-wide communication to CGRA substrate. For every set of inputs that arrive at the

input ports one set of outputs are generated. The execution is very much similar to the traditional

dataflow firing where in this case, the ports are monitored for the arrival of data (input ports) and

draining of data (output ports). This one execution iteration of the entire dataflow graph through the
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input ports, computation units and output ports is called as computation-instance in stream-dataflow

model. Dataflow graphs can be switched through a configuration command, which must logically

happen after any outstanding computations, initiated by streams.

Streams

Data-Streams are defined by a source architectural location, a destination and an access pattern as

shown in Figure 6.4(b). Since a private scratchpad address space is exposed, locations are either a

memory address or programmable scratchpad address, or a named DFG port. Ports either represent

communication channels to the inputs or outputs of the DFG, or they can be indirect ports which are

used to facilitate indirect memory accesses. Streams from DFG outputs to inputs support recurrence.

Access patterns for DFG ports are first-in-first-out (FIFO) only, while access patterns for scratchpad

and memory can be more complex (linear, strided, repeating, indirect, scatter-gather etc.), but a

restricted subset of patterns may be chosen at the expense of generality.

Streams generally execute concurrently, but streams with the same DFG port must logically

execute in program order, and streams that write from output DFG ports wait until that data is

available. Also, streams from DFG outputs to DFG inputs can be used to represent inter-iteration

dependences which we call as recurrence.

Barriers and Concurrency

Barrier instructions serialize the execution of certain types of commands. They include a location,

either scratchpad or memory, and a direction (read or write). The semantics is that any following

stream command must logically enforce the "happens-before" relationship between itself and any

prior commands described by the barrier. For example, a scratch read barrier would enforce that a

scratch write which accesses address A must come after a scratch read of A issued before the barrier.

Barriers can also optionally serialize the control core, to coordinate when data is available to the

host.
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Note that in the absence of barriers, all streams are allowed to execute concurrently. Therefore,

if two stream-dataflow commands read and write the same scratchpad or memory address, with

no barrier in-between them, the semantics of that operation are undefined. It could effectively end

up reading or overwriting the corrupted data in the source-destination locations respectively. The

same is true between the low-power core memory instructions and the stream-dataflow commands.

In general, the principle is that the programmer or compiler is responsible for enforcing memory

dependencies.

6.4.2 Programming and Execution Model

A stream-dataflow program consists of an ordered set of configuration, data-stream, and barrier

commands, that interact with and are ordered with respect to the instructions of a general program.

These are generated from a general purpose low-power core, and their ordering can be considered

to be a part of the total program order. Programs generally use the stream-dataflow accelerator in

phases, which are initiated by reading memory and end at a final barrier, after which the core can

initiate its memory instructions. Phases can last anywhere from one to millions of computation

instances.

Figure 6.5(a) shows a vector dot-product code region before and after transformation to the

stream-dataflow architecture. The memory streams for the accesses of a, b and r are now explicitly

represented, and the computation has been completely removed (it is represented in the DFG

in Figure 6.4). Also note that the loop is completely removed as well as the loop control is now

implicitly coupled with the stream length. This also indicates the vast reduction in the total number

of dynamic instructions required on the control core.

Execution Model

Stream-dataflow programs execute in phases, each starting with a stream command to initiate data

movement and ending at a final barrier which synchronizes the control core. Phases have arbitrary

length consisting of many computation instances. A simple example in Figure 6.5(b) demonstrates
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Figure 6.5: Stream-Dataflow Program Transformation and Execution

how the execution model exposes concurrency. The state of the stream commands, CGRA, and

control core is shown over time. For each stream we note where it was enqueued from the control

core, dispatched to execute in parallel, and completed, and we mark the duration in which it has

ownership of the source resource for data transfers. The red arrows show dependences between

events.

To explain, the first two commands are generated on the control core. They are enqueued for

execution and dispatched in sequence, as there are no resource dependences between them. Both

streams share the memory fetch bandwidth. As soon as 3 items worth of data are available on

ports A and B (3 being the port vector-width), the computation begins. Meanwhile the last two

commands are generated and enqueued. As soon as one instance of the computation is complete,
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the computed data starts streaming to memory. When all data is released into the memory system,

the barrier command’s condition is met, and the control core resumes.

Performance

The abstractions and execution model lead to intuitive implications for achieving higher-performance.

First, the DFG size should be as large as possible to maximize instruction parallelism. Second,

streams should be as “long” as possible to avoid instruction overheads on the control core. Third,

reused data should be pushed to the scratchpad to reduce bandwidth to memory.

Appendix B explains a more detailed stream-dataflow execution model example including the

scratchpad streams and usage.

6.5 Stream Dataflow ISA Interface

In this section, we describe the ISA interface exposed inorder for the low-power core to communicate

to the stream-dataflow accelerator. We first describe the access patterns it supports and then present

the details of the ISA. At the end of the section, we also illustrate an example of stream-dataflow

program.

6.5.1 Access Patterns

We mainly focus on common memory address streams, for which we can build simple hardware to

perform address generation for the specified access patterns. The first type of stream we support

are – two dimensional affine streams (we refer to these as just affine hereafter). They are defined by

an access size (size of lowest level access), a stride (size between consecutive accesses) and number of

strides. This abstraction along with different example patterns it can generate is shown in Figure 6.6.

We emphasize here that only the lowest level of a data-structure in the program should have some

stride or contiguous access patterns for this abstraction to be effective, as the low-power core is free

to generate arbitrary addresses as the starting locations of streams.
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Figure 6.6: 2D Affine Access Patterns

The other type of stream we support are indirect streams. Indirect memory operations essentially

take another data-stream as input (either an affine stream, or another indirect stream), and uses

those values to generate irregular memory addresses. Indirect streams can be chained to create

multi-indirect access patterns (eg. a[b[c[i]]]). Note, currently the indirect stream abstraction

can only support simple irregular memory access patterns with one induction variable. It become

complex and induces overheads to support address streams with combination of induction variables

like for eg. i + j, i * j and we believe its very rare to see such patterns in acceleratable streaming

applications.

6.5.2 Stream Dataflow ISA

Table 6.2 lists the ISA instructions for the stream-dataflow accelerator’s programming interface.

Note that although, this ISA interface is not as low-level as SIMD SSE intrinsic, on contrary its

neither as high-level as an OpenCL API. We believe this is a starting step towards achieving a

cleaner API, and at this stage this can act more like a hardware-programming interface (HPI).
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DFG Specification

The first command is a configuration instruction for the computation substrate (CGRA), which

takes an address and size of configuration array stored in memory. Configuration data mainly

specifies widths of the each vector port used, DFG computation operations and dependences. We

leave the specific encoding format of the configuration out of the ISA, as the computation substrate

may differ between implementations (CGRA or FPGA), and efficiency is gained only by exposing

interface at this level.

Stream Specification

The next set of instructions are for affine stream patterns. One instruction is listed for every

combination of source and destination location, and their parameters follows the access pattern

convention described earlier, except when the source or destination is a port. In the case of ports,

we simply use an element count for the length parameter. We also add a SD_Const_Port command

to support sending in a constant value several times (rather than loading from memory), and an

SD_Clean_Port command to dump unneeded values from an output port (rather than reading them

to some arbitrary location and then discarding). Both commands are useful in software pipelining

the CGRA.

The next set of commands are for the indirect load and store streams. The first instruction in

that class is to load the addresses present in memory with the specified pattern to an indirect port.

Following two commands take an indirect port as input, and use it to load/store the data from

memory/output port to an input port/memory pair respectively. They also take an offset address

parameter, which is added to addresses before accessing memory. This is useful for accessing

streams where the values are indices rather than direct addresses.
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Barrier Specification

The last three instructions are the barrier instructions for scratchpad read/writes and for synchro-

nizing with the low-power core and memory system. Stream commands are embedded into the

low-power core ISA to enable fast command communication between the core and stream-dataflow

processor. Each command can be embedded as 1-3 instructions in a fixed-width core ISA.

Additional ISA Exposed Elements

In addition to the stream-dataflow commands, there are four other ISA-exposed elements:

1. Functional unit limitations of the CGRA i.e, max total instructions of each type.

2. Maximum width of a DFG port – number of items which can be consumed per stream per

cycle. The vector width of a computation.

3. Scratchpad size and the line-width.

4. The longest recurrence allowable.

Recurrence length must be exposed because there is limited buffering in any implementation,

and completely filling the input buffer before the associated dependent output buffer can drain may

cause deadlock (depending on other dependences). Reasonable values for maximum dependence

length is 16-64 for scalar values; note that the scratchpad itself can be used for longer dependence

chains (and of course memory) if proper barriers are employed.

These exposed elements have intuitive implications for achieving high-performance. The most

important are – i) the DFG size should be as large and as pipelined as possible to maximize instruction

parallelism; ii) streams should be as “long” as possible to avoid the overhead of coordinating streams

and per-instruction decode overheads; iii) reused data should be pushed to the scratchpad to reduce

bandwidth to memory.
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Figure 6.7: Dataflow Graph (DFG) for DNN classifier
(S: Synapse Port, N: Input Neuron Port, out: Output Neuron Port, acc: Accumulator Port, do_sig: Sigmoid Predicate Port;

Mul16x4: 4 x 16-bit Multiplier, Add16x4: 4 x 16-bit Adder, Red16x4: 4 x 16-bit Reducer, Sig16: 16-bit Sigmoid)

6.6 Example Stream-Dataflow Program

We now illustrate an example of stream-dataflow program and show the program transformation.

Figure 6.8 is an example classifier neural-network layer written in C language, showing the original

code and the stream-dataflow program, whose ISA is exposed through the interface detailed in

Section 6.5. Figure 6.7 shows the dataflow graph (DFG) mapped to CGRA for the computation. The

original program is essentially a dense matrix-vector multiply of synapses and input neurons.

The transformation to a stream-dataflow version pulls the entire loading of neurons and synapses

out of the inner-loop with long stream commands (lines 5-8). The input neurons are loaded into

scratchpad while simultaneously reading the synapses into the synapse (S) port. Inside the single

loop (lines 11-17) are streams which co-ordinate the accumulation, activation with sigmoid and then

send out the final value for each layer to memory. Note, that the number of instructions executed

by the core is dramatically reduced, by roughly a factor of Ni, which can be 10-1000× in practice.
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Original Code:

1 // Neural Network Size
2 #define Ni 784
3 #define Nn 10
4
5 // Synapse and input/output neurons
6 uint16_t synapse[Nn][Ni];
7 uint16_t neuron_i[Ni];
8 uint16_t neuron_n[Nn];
9

10 // iterate over each output neuron
11 for (n = 0; n < Nn; n++) {
12 sum = 0;
13
14 // iterate over each input neuron
15 for (i = 0; i < Ni; i++){
16 sum += synapse[n][i] * neuron_i[i];
17 }
18 neuron_n[n] = sigmoid(sum);
19 }

Stream-Dataflow Program:

1 // Streaming CGRA configuration
2 SD_Config(classifier_config)
3
4 // Scratchpad load and memory to port loading
5 SD_Mem_Port(synapse, Ni * 2, Ni * 2, Nn, Port_S)
6 SD_Mem_Scratch(neuron_i, Ni * 2, Ni * 2, 1, 0)
7 SD_Barrier_Scratch_Wr()
8 SD_Scratch_Port(0, Ni * 2, Ni * 2, 1, Port_N)
9

10 // iterate over each output neuron
11 for (n = 0; n < Nn; n++){
12 SD_Const_Port(0, 1, Port_acc)
13 SD_Const_Port(0, Ni/4 - 1, Port_do_sig)
14 SD_Const_Port(1, 1, Port_do_sig)
15 SD_Port_Port(Port_out, Ni/4-1, Port_acc)
16 SD_Port_Mem(Port_out, 1, &neuron_n[i])
17 }
18
19 SD_Barrier_All();

Figure 6.8: Stream-Dataflow Program Example for DNN Classifier
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7 | Micro-Architecture of Softbrain

Our goal in constructing a micro-architecture for the stream-dataflow ISA and architecture is

to have lower overheads compared to data-parallel architectures and efficiency as close as to an

application or domain-specific design. Therefore, we adopt three fundamental design principles in

implementing the stream-dataflow ISA:

1. First, we should not introduce any control-heavy or large power hungry structures like multi-

ported memories or Content-Addressable-Memories (CAMs).

2. Second, we must exploit the full degree of concurrency that the ISA exposes. Also, the design

decisions must support efficient execution of concurrent stream commands with simple

resource dependency tracking.

3. Third, we should not significantly hamper any programmability features through architectural

decisions.

In the following sections, we describe our stream-dataflow detailed micro-architecture imple-

mentation called Softbrain and how it accomplishes the above goals.

7.1 Overview

Figure 7.1 shows the high-level overview of the stream-dataflow micro-architecture. There are five

core components, which we summarize below, and describe them in detail in the following sections:

• Reconfigurable Fabric – CGRA: The coarse-grained reconfigurable architecture enables

pipelined computation of dataflow graphs. The spatial nature of the CGRA avoids the

overheads of accessing register files or memories for live values and facilitates direct commu-

nication of intermediate values produced by the functional units (FUs).
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Figure 7.1: Stream-Dataflow Micro-Architecture Implementation – Softbrain

• Vector Ports: The vector ports are the staging interface elements between the computation

performed in the CGRA and the incoming and/or outgoing data streams. They are also

responsible for storing the data-elements in vector width specified in the DFG. In addition, a

specific type of vector ports called Indirect vector Ports not connected to the CGRA are used for

storing the address streams of indirect loads/stores.

• Stream Engines: Concurrent data-stream communication is carried out through three special

control engines called stream engines – one for memory facilitating wide memory accesses,

one for scratchpad for efficient data-reuse, and one for DFG recurrences enabling immediate

re-use of reduced data without memory storage or registers.

• Stream Dispatcher: The stream dispatcher manages the concurrent execution of the stream

engines by tracking resource dependencies among streams and issued commands to stream
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Figure 7.2: Stream Dispatcher Micro-Architecture

engines. It is also the only component which is interfaced to the low-power core which receives

the stream-dataflow ISA instructions.

• Low-Power Control Core: A tiny, low-power single-issue in-order core which generates ISA

instructions for the stream dispatcher. It facilitates programmability without introducing

much power or area overhead.

7.2 Stream Dispatcher and Low-Power Core Integration

The role of the stream dispatcher is to issue the stream commands to the requested stream-engines as

soon as there is storage available to take new stream commands, and also if there are no concurrently

executing streams with the same resource dependencies. It also enables synchronization with the

core. Figure 7.2 shows the micro-architecture details of the stream-dispatcher.

7.2.1 Resource Management

Subsequent streams that have the same source or destination port must be issued in program order,

i.e., the dynamic order of the streams on the control core. The stream dispatch unit is responsible for

maintaining this order, and does so by tracking vector port and stream engine status in a scoreboard.

Before issuing a stream, it checks the state of these scoreboards.
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Memory based dependencies are not implicitly enforced, but dependencies through the vector

ports are, and these are tracked through the vector port status scoreboard (VP scoreboard in

Figure 7.2). The state of a vector port is either taken, free, or all-requests-in-flight. The final state

indicates that all the requests for a memory stream are completely sent to the memory system, but

the response have not yet arrived or still in streaming stage. This state exists as an optimization to

enable two memory streams using the same vector port to have their requests in-flight to memory

system at the same time enabling highly-concurrent execution of data-streams.

7.2.2 Barriers

Recall that barriers can enforce ordering for either memory or scratchpad accesses as mentioned in

Section 6.5. The approach we take for implementing these is simple – we issue the barrier commands

to respective stream-engine (scratchpad or memory) and the stream-engines are responsible for not

processing any new stream command until the on-going barrier’s condition is met. For example,

no outstanding scratchpad writes, while the scratchpad read command has been issued. This

works efficiently because the other active streams can continue to perform useful work while the

stream-engine waits for the completion of enforced barrier. The SD_BARRIER_ALL is a special

synchronous barrier instruction which allows the control core to stall to not process any new stream-

dataflow instructions to respect the memory consistency model. This restriction can be relaxed and

programmer has the flexibility to make sure the data operated by control core gets visible to the

Softbrain accelerator.

7.2.3 Interface to the Low-Power Core

The basic interface to the core is straight-forward with the core sending the encoded stream-dataflow

ISA instructions to stream-dispatcher’s command queue. The dispatcher also has a stall interface

back to core as a back-pressure signal. Stalls occur when either the stream dispatcher cannot

accept any more commands, or when a SD_Barrier_All command is in the command queue. The
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command queue entries is configurable and can be parameterized based on the application domain

you want to target. For our implementation of the control core, we rely on the readily available

open-source based RISCV Rocket Core [85]. Its a simple 5-stage pipelined single issue in-order

processor core which executes RISCV64G instruction set. To interface into our accelerator, we only

need to modify a special accelerator interface specific decode stage and hazard generation logic of

the Rocket core. This special interface for accelerator integration in rocket core is called as Rocket

Custom Co-Processor (RoCC) and enables easy and non-intrusive integration of loosely-coupled

accelerators. We do not discuss the core’s datapath here and interested readers can look at the

detailed Rocket’s micro-architecture here in Appendix C.

7.3 Stream Engines

We now describe the critical component responsible for address generation for the data-streams

based on the access patterns. Stream engines manage concurrent access to various resources

(memory interface, scratchpad, output vector port) by many active streams. They are critical to

achieving high parallelism with low power overhead, by fully utilizing the associated resources

through arbitrating stream accesses. There are total three stream engines – for memory, scratchpad

and recurrence control. Figure 7.3 shows the micro-architecture of two stream-engines – memory

stream-engine (MSE) and scratchpad stream-engine (SSE).

All stream engines receive commands from the stream dispatcher, coordinate data transfer, and

send notification signals back to the dispatcher when the corresponding vector ports are freed or

when the streams complete after stream-command execution. The stream engines take data-inputs

from memory or scratchpad and deliver it to the vector ports or memory, and each has their own

dedicated wide bus interface (512 bits in our implementation) for both reads and writes. The stream

dispatcher ensures that each stream engine has dedicated write access to the vector ports, which

are used by its active data-streams. Indirect access is facilitated by streams sent to indirect ports

which are not connected to the CGRA, but instead can be the source for indirect streams issued to
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(a) Memory Stream Engine (MSE) (b) Scratchpad Stream Engine

Figure 7.3: Micro-Architecture of Two Stream Engines

either scratchpad or memory.

The rest of this subsection first describes the central control unit in each stream engine – stream

controller along with its stream request pipeline and then describes specific design aspects of each

stream engine.

7.3.1 Stream Controller

The primary role of this unit is to select multiple active stream requests inorder to facilitate sending

or receiving of the associated data. Figure 7.4(a) shows the template for a stream engine controller

along with its request pipeline stages shown in detail in Figure 7.4(b) which is tailored slightly for

each type of stream engine. First, the incoming stream command is decoded for its functionality and

is inserted into a stream table which maintains a set of active streams with each entry containing the

associated data for a stream request. A selector/arbiter uses this to determine a ready stream for

issue based on either a round-robin fashion or a more balanced arbitration based on the data-holding

capacity and data currently available in vector ports. This is the combined stage of stream selection

and dependency checking in the pipeline diagram. A stream is ready if its destination is not full

and its source has data (if it has one).
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If the ready stream is for an affine access, the state is sent to an address generation unit (affine

AGU), which computes the next 64B aligned address. It also generates a mask to indicate which 8B

words of the mask are relevant, based on the access size, stride size and number of strides parameters.

For indirect accesses, an indirect address generation unit will perform the same function, except

that it takes address values from an indirect port. This unit will attempt to combine up to eight

word addresses, if they are increasing and in the same cache line.

7.3.2 Memory Stream Engine (MSE)

A memory stream engine delivers data from or to the memory system, which in case of Softbrain

could be a wide-interface L2 cache. Figure 7.3(a) shows the internal details of MSE. The read and

write engines are separated, and have their own independent stream request pipelines. The memory
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read engine has buffering for outstanding requests, and uses a balance arbitration unit (discussed in

Section 7.5 for stream priority selection. The back-pressure signal for memory reads to the CGRA is

the number of entries free in the buffers associated with the vector ports. For handling back-pressure

on scratchpad writes, a buffer sits between the MSE and SSE. This buffer is allocated on a request

to memory to ensure space exists. The memory write engine uses the data available signals from

vector ports for priority selection.

7.3.3 Scratchpad Stream Engine (SSE)

This unit is similar to the above, except that it manages a scratchpad memory. A single-read,

single-write ported SRAM is sufficient, and its width is sized proportional to the maximum data

consumption rate of the CGRA. Similar to the memory stream engine, the back-pressure signal is

the number of free buffer entries on the vector ports. If there are no entries available i.e, if there

is back-pressure, then the corresponding stream will not be selected for loading data. Multiple

concurrent streams reading and writing into scratchpad can be achieved with a more complex

address checking unit to check overlapping of read-write addresses along with a 2-port scratchpad

memory. Figure 7.3(b) shows the details of SSE.

7.3.4 Reduction/Recurrence Stream Engine (RSE)

A reduction or recurrence stream engine delivers data from the output to input vector ports for

efficiently handling dependences without writes to any memories or temporary storage. It also

is used for sending in "constants" from the stream-commands. It does not require the address

generation unit in its stream request pipeline.

7.4 Computation and Data Firing

The vector ports and CGRA form a deeply pipelined concurrent execution substrate. Figure 7.5

gives a high-level overview of CGRA substrate interface with the input and output vector ports.
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7.4.1 CGRA

Our CGRA acting as the deeply pipelined spatial architecture computation substrate is similar to

prior proposals [86, 52]. Specifically, it is a circuit-switched mesh of processing elements, with each

tile of mesh containing a set of pipelined functional units. It differs from the referenced designs

in that there is no flow-control inside the mesh and is completely statically scheduled (reduces

the area and power of the CGRA). This is enabled by the synchronized dataflow firing of input

vectors. The lack of flow-control also requires the DFG compiler to ensure delay-matching along all

computation paths, including to the output vectors ports. The CGRA’s datapath is 64-bit in our

implementation, and functional units can perform multiple sub-word operations including 32-bit

and 16-bit. Dataflow firing occurs in a coarse-grained fashion, when one instance worth of data

(equal to the vector-port width) is available on all relevant vector ports.

The CGRA’s configuration is initialized by the SD_Config command, which is sent to the memory

stream engine (MSE) to fetch the data configuration, which then is streamed to CGRA in less than

10 cycles if the configuration bytes hit in the cache.
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7.4.2 Vector Ports

As alluded previously, vector ports are the interface between the CGRA and stream engines, and are

essentially 512-bit wide FIFOs that hold values waiting to be consumed by the CGRA. Each vector

port can accept or send a variable number of words per cycle, up to 8 64-bit words depending on the

request size. On the CGRA side, vector ports attach to a heterogeneous set of CGRA ports, which

are selected to spread incoming/outgoing values around the CGRA to minimize contention. This

mapping is fed to the DFG scheduler to map ports of the program DFG to hardware vector ports.

Dataflow firing occurs in a coarse-grained fashion, when one instance worth of data is available on

all relevant vector ports, all of the relevant data is simultaneously released into the CGRA.

7.5 Cross-cutting design issues

We end this section by describing four important issues regarding the overall design.

7.5.1 Buffering and Deadlocks

The Softbrain unit must avoid deadlock by balancing requests to different vector ports. This balanc-

ing only needs to happen with a stream engine, as each stream engine owns a single resource, and

can operate independently. Deadlock can occur, for example, when many long-latency operations

for a single port fill the request pipeline to memory, but data is needed on another port. This can

happen when one stream is strided, but the other is linear, so the effective bandwidth coming into

the port is much higher.

We solve this issue by adding a balance unit to the memory load stream engine. It tracks the

amount-of-unbalance for each active vector port, and heavily unbalanced ports are de-prioritized

for stream access.
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7.5.2 Memory Coherence

Because Softbrain’s memory interface directly accesses the L2 cache, there is the possibility of

incoherence between the control core’s L1 and the L2. To avoid incoherent reads to the Softbrain,

the control core’s L1 is write-through. To avoid incoherent reads on the core, the Softbrain sends

tag invalidation to the control core whenever a stream crosses a page boundary.

7.5.3 Role of the Compiler and Programmer

In this work, we express programs directly in terms of intrinsics for the stream-dataflow commands

(see Figure 6.8 in Section 6.6). So the primary compiler task is to generate an appropriate CGRA

configuration for the DFG and vector port mapping. The DFGs are specified in a simple graph

language, and we extend an integer linear optimization based scheduling approach from prior

work [40].

Though programming is low-level, the primitives are more flexible than their SIMD counterparts.

Compiling to a stream-dataflow ISA from a higher level language (OpenCL/OpenMP/OpenAcc)

seems practical and quite useful, especially to scale the design to more complex workloads. This is

future work.

Integration Softbrain can be integrated into a broader system in a number of ways, including as a

unit in an SoC, through unified virtual memory, or as a standalone chip. In this work we assume a

standalone device for evaluation purposes. It is possible to support integration to a unified virtual

memory with coherent caches. Address translation could be supported at the L2 level (making L1

and L2 virtual) if dedicated accelerator access is assumed, or by integrating TLBs in the memory

stream engine.

There are other design aspects critical to certain settings and systems, like support for precise

exceptions, backwards compatibility, security and virtualization. These are deferred for future

work.
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8 | Evaluation of Softbrain

In this chapter, we discuss the detailed implementation of Stream-Dataflow accelerator (Softbrain),

the experimental methodology and evaluated results of two differently provisioned Softbrain’s

compared to state-of-the art domain-specific accelerators. We also correlate our initial results from

the generic programmable accelerator model GenAccel which was evaluated for four application

domains.

8.1 Implementation

Figure 8.1 shows an overview of our implementation and evaluation methodlogy. This is described

in terms of hardware, software stack, and simulation below.

8.1.1 Hardware

We implemented the design from Chapter 7 in Chisel [41]. The design is parameterizable where

CGRA size, FU types, vector-port widths, scratchpad size and line-width can be modified using an

architecture description model file written in a domain-specific language. This model file is shared

with the software stack and the performance simulator.

8.1.2 Software Stack

For the programming interface implementation, we create a simple wrapper API that is mapped

down into the RISCV-encoding of the stream-dataflow ISA. We modified a GCC cross compiler for

RISCV with stream-dataflow ISA extensions, and implemented our own DFG compiler based on the

integer-linear-programming based scheduler from the related work [40]. Though programming in

stream-dataflow is low-level, the primitives are much more flexible than vector versions. Compiling



110

DFG(s)
DFG

Compiler
cgra_

config.h

RISC-V GCC +
Modifier Assembler

RISC-V
Binary

(with stream-
dataflow 

extensions)

Softbrain
Hardware

Parameter Model

Softbrain
Cycle-level
Simulator

Softbrain
Chisel implementation + 

RTL 

Software Stack

Hardware Implementation Evaluation

RTL Synthesis
+ 

Synopsis DC

Stream-
Dataflow

 C/C++

Figure 8.1: Software and Hardware Evaluation Flow of Softbrain

to a stream-dataflow ISA from a higher level language (OpenCL/OpenMP/OpenAcc) is possible

but is out of the scope for this dissertation.

8.1.3 Simulator

We implement a cycle-level RISCV based simulator for the core and the Softbrain hardware. The

Softbrain simulator is a simple module, which takes stream-dataflow commands and integrates

with the core’s cache interface for load/store requests and this module can be integrated easily to

other core simulators also. The core we use in this simulator is an inorder core. The simulator is

regression checked against our RTL modules.

8.1.4 Hardware-Software Workflow

In practice, the hardware would be provisioned once per chip family. For instance, if it is known

ahead of time that all data types for a particular application market were a maximum of 16-bit

(eg. for machine learning), this could be incorporated into the functional unit composition of

the CGRA. Here, an architect either uses existing knowledge or profiles applications from the

domain(s) in question. Then they would adjust only the FU mix and scratchpad size, recording this
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in the hardware parameter model file. Even in this case, no Chisel or hardware interfaces need

modification.

For each application, the developer constructs DFGs of the computation component, and writes

the stream coordination program (stream commands embedded into a C program). It is future

work to develop compiler techniques to automatically extract/construct DFGs from unmodified

programs, and produce stream commands.

8.2 Experiment Methodology

8.2.1 Workloads

To compare against domain specific accelerators, we use the standard deep neural network (DNN)

workloads from the DianNao accelerator work [15], including classifier, convolutional and pooling

layers. They have high data-parallelism and memory regularity, and vary in their re-use behavior

(and thus memory-bandwidth). Our implementations are tiled to capture locality and concurrency.

We also implemented two end-to-end neural network applications based on the DNN kernels

from DianNao. These applications include popular image classification convolutional neural

network suites – VGGNet and ResNet50. But, the analysis of these applications is out of the scope

for this dissertation.

To capture a broader understanding of the efficiency and generality trade offs, we consider

MachSuite [87], a set of typically-accelerated workloads. Unlike the DNN workloads, these capture

wider program behaviors like regular and irregular memory access patterns, data-dependent

control, and varying computation intensity. We compare these designs against application specific

versions.
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8.2.2 Power and Area

For the power and area of our Softbrain implementation, we synthesize the Chisel-generated verilog

with Synopsis DC and the ARM 55nm technology library, which meets timing at 1GHz. We use

Cacti [61] for SRAM and caches estimates.

8.2.3 Comparison Methodology

For the DNN workloads we compare against the DianNao accelerator using a simple performance

model. This model optimistically assumes perfect hardware pipelining and scratchpad reuse. It is

only bound by parallelism in the neural network topology and by memory bandwidth. We take

the power/area numbers from the relevant publication [15]. For comparison points, we consider

single-threaded CPU implementations, running on a i7 2600K Sandy Bridge machine. We also

compare against GPGPU implementations of these workloads written in CUDA, running on a

Kepler-based GTX 750. It has 4 SMs and 512 total CUDA cores.

For comparing to MachSuite accelerators, we use Aladdin [29], a pre-RTL accelerator modeling

tool. Aladdin determines the fixed-function accelerator performance, power, and area given a

set of prescribed hardware transformations (eg. loop unrolling, loop flattening, memory array

partitioning and software pipelining, which impact the datapath and scratchpad/caches sizes).

We describe a detailed design-exploration technique we used to evaluate the area-power of ASIC

generated from Aladdin with 1-tile of Softbrain unit running each of the Machsuite kernel.

8.3 Evaluation

In this section, we address five important questions for evaluating Softbrain, and we list them here

with brief answers for each:

1. What are the sources of its power and area overhead? – Predominantly CGRA network and

control core with caches.
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2. Can it match the speedup of a domain specialized accelerator? – Yes, when rightly provisioned

with computation resources, softbrain can match the performance with limited power and

area overheads.

3. Is the stream-dataflow paradigm general? – Yes, All DNN and most MachSuite are imple-

mentable using the stream-dataflow abstractions with efficiency close to their domain/appli-

cation specific implementations.

4. What are its limitations in terms of generality? – Algorithmic properties that are not suitable

for softbrain include arbitrary memory-indirection and aliasing, control-dependent loads,

and bit-level manipulations.

5. How does stream-dataflow compare to application-specific hardware? – Only 2× power

and 8× area overhead with performance same as the custom ASIC hardware for each of the

application.

8.3.1 Domain-Specific Accelerator Comparison

Here we explore the power and area of Softbrain compared to a domain-specific accelerator for

deep neural networks, DianNao. Our approach is to compare designs with equivalent performance,

and examine the area and power overheads of Softbrain.

Area and Power Comparison

To make an intuitive comparison, we configure the Softbrain’s functional units to meet the needs of

the DNN workloads. Here, we need four-way 16-bit subword-SIMD multipliers and ALUs, and a

16-bit sigmoid. We also include 8 total tiles (Softbrain units), which enables Softbrain to reach the

same number of functional units as DianNao.

Table 8.1 shows the breakdowns of area and power. All the analysis is normalized to 55nm

process technology. For the power calculations here, we use the maximum activity factors across
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Area(mm2) Power (mw)

Control Core +
16kB I & D$

0.16 39.1

CGRA
Network 0.12 31.2
FUs (4×5) 0.04 24.4

Total CGRA 0.16 55.6

5×Stream Engines 0.02 18.3
Scratchpad (4KB) 0.1 2.6
Vector Ports
(Input & Output)

0.03 3.6

1 Softbrain Total 0.47 119.3
8 Softbrain Units 3.76 954.4

DianNao 2.16 418.3

Softbrain / DianNao
Overhead

1.74 2.28

Table 8.1: Area and Power Breakdown / Comparison of Domain-Provisioned Softbrain
(All numbers normalized to 55nm process technology)

the DNN workloads. The majority of the area comes from the CGRA network, consuming about

one-fourth of the total area and power. The other large factor is the control core, which consumes

a third of the power and the area. Compared to the DianNao accelerator, Softbrain is only about

1.75×more power and a little over twice as large.

Performance Figure 8.2 shows the speedups of the Kepler GPU, DianNao and Softbrain for

the three classes of DNN workloads. Overall, the GPU is able to obtain up to 20× performance

improvement, while DianNao and Softbrain achieve similar performance, around 100× or more on

some workloads. The reason is intuitive: both architectures use the same basic algorithm, and they

are able to keep 100s of FUs active in every cycle by decoupling memory access from deep pipelined

computation. Softbrain does see some advantage in pooling workloads, as its more flexible network
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Figure 8.2: Performance of Softbrain on DNN Workloads.

allows it to reuse many of the subsequent partial sums in neighboring computations, rather than

re-fetching them from memory. This allows it to reduce bandwidth and improve speedup.

8.3.2 Stream-Dataflow Generality

Here we attempt to distill the limitations of the stream-dataflow accelerator in terms of its generality.

To this end, we study a broader set of typically-accelerated workloads from MachSuite, and provision

a single design for them. We first characterize our implementations of these workloads and the

limitations we discovered.

Softbrain Provisioning

To provision Softbrain’s FU resources, we implemented stream-dataflow versions of the MachSuite

workloads targeting a maximum of 20 DFG instructions (the same size we used for the DianNao

comparison). We then provisioned Softbrain’s FU mix to the maximum needed across workloads.

Note that for consistency we used 64-bit integer/fixed-point datatypes. Note that using floating

point would have decreased the relative overheads of Softbrain versus an ASIC, but also decreased

the area/power benefits of acceleration slightly. Hereafter, we refer to this as the broadly provisioned

Softbrain.
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Implemented Codes Stream Patterns Datapath

bfs Indirect Loads/Stores, Recurrence Compare/Increment
gemm Affine, Recurrence 8-Way Multiply-Accumulate
md-knn Indirect Loads, Recurrence Large Irregular Datapath
spmv-crs Indirect, Linear Single Multiply-Accumulate
spmv-ellpack Indirect, Linear, Recurrence 4-Way Multiply-Accumulate
stencil2d Affine, Recurrence 8-Way Multiply-Accumulate
stencil3d Affine 6-1 Reduce and Multiplier Tree
viterbi Recurrence, Linear 4-Way Add-Minimize Tree

Unsuitable Codes Reason

aes Byte-level data manipulation
kmp Multi-level indirect pointer access
merge-sort Fine-grain data-dependent loads/control
radix-sort Concurrent reads/writes to same address

Table 8.2: Workload Characterization

Softbrain Generality

Table 8.2 summarizes the architectural abstractions used in the stream-dataflow program imple-

mentations. It describes the streaming patterns and datapath structure. There were 4 additional

workloads which we have not yet implemented, but do fit into the stream-dataflow paradigm – fft,

md(gridding version), nw and backprop.

We found that each architectural feature was useful across several workloads. Affine accesses

were used in gemm and stencil codes to reduce access penalties. Indirect loads or stores were

required in four workloads (bfs and knn, and spmv versions). Recurrence patterns were useful

across most workloads, mainly for reduction variables. The size and configuration of the datapath

varies greatly, from reduction trees, SIMD-style datapaths, and more irregular datapaths, suggesting

that the flexible CGRA was useful.

There were four workloads that we found could not be efficiently implemented in stream-

dataflow. The aes encryption workload required too much byte-level manipulation (access words

less than 16-bit) that made it difficult to justify offloading onto a coarse-grained fabric. The kmp string
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matching code requires arbitrary-way indirect loads, and the architecture can only support a finite

amount of indirection in an efficient way. The merge-sort code contains fine-grain data-dependent

loads and control instructions, used to decide which list to read from next. The radix-sort workload

has several phases where reads or writes during that phase could be to the same address (and we

don’t provide hardware support for implicit store-load forwarding).

Overall, Softbrain is quite general and applicable across many data-processing tasks, even some

with a significant degree of irregularity. Its limitations are potentially addressable in future work.

8.3.3 Application-Specific Comparison

In this section we compare the broadly provisioned Softbrain from the previous section to cus-

tomized ASICs generated for each application, in terms of their power, performance, energy and

area.

ASIC Design Point Selection

For comparing the broadly provisioned Softbrain with a workload-specific ASIC, we chose to do an

iso-performance analysis, while secondarily minimizing ASIC area and power. To explain in detail

- for each workload we explore a large ASIC design space by modifying hardware optimization

parameters, and find the set of ASIC designs within a certain performance threshold of Softbrain

(within 10% where possible). Within these points, we chose a Pareto-optimal ASIC design across

power, area, and execution time, where power is given priority over area. Appendix D explains the

ASIC design point selection with an example workload and its design space exploration.

Performance

For performance evaluation of Softbrain to ASIC, the execution cycles obtained from our Softbrain

RISC-V based simulator is compared to the execution cycles of the benchmark-specific custom

accelerator generated from Aladdin. For a fair comparison, we provision the CGRA of Softbrain to

have the maximum functional units capability as the ASIC generated for each workload. Figure 8.3
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Figure 8.3: Softbrain Performance Comparison to ASIC

shows the performance of Softbrain compared to benchmark specific Pareto optimal ASICs. For

both ASIC and Softbrain, the execution cycles are normalized to a SandyBridge OOO4(4-wide) core,

with both performing achieving 1-7x speedup. In most cases we found an ASIC design with similar

performance to Softbrain1.

Power, Area and Energy vs. ASIC Designs

As explained above, we choose the iso-performance design points for power, energy and area

comparison of Softbrain to ASIC.

For power analysis, we consider that only benchmark-specific FUs are active during execution

in Softbrain’s CGRA along with other support structures, including the control core, stream en-

gines, scratchpad and vector ports. The static power and area for Softbrain are obtained from the

synthesized design, and the dynamic power estimates reported are based on the activity factor

of each module. Energy estimates are straightforward to get from execution cycles and dynamic

power estimates. ASIC area and power are obtained from Aladdin, using 40nm technology, and are

normalized to 55nm.
1Note that for some workloads (eg. stencil, md) there is an ASIC deign point with better performance than Softbrain,

but falls outside the performance threshold.
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Figure 8.4: Softbrain Power Comparison to ASIC
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Figure 8.5: Softbrain Energy Comparison to ASIC

Figure 8.4 shows the power savings (efficiency) over a Sandybridge OOO4 core2 as the baseline.

Both ASIC and Softbrain have a large power savings of up to 300x compared to the OOO4 core,

which is expected because of the power and area which the OOO4 core spends on supporting

generality. ASICs have better power efficiency than Softbrain overall, but only by 2× across all

benchmarks. With some workloads, ASIC has almost the same power as Softbrain, and this is
2We consider the dynamic power of 1 core at 32nm and scale it to 55nm.
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Figure 8.6: Softbrain Area Comparison to ASIC

due to the fact that Aladdin instantiates larger memory structures (scratchpads, buffers etc.) for

loop-unrolling, essentially flattening the array data-structures in order for the design space to have

performance points close to Softbrain. Note that we include the local memory structures of the

ASICs in their power estimation as Softbrain also has a programmable scratchpad. Most of the

additional power consumption in Softbrain is because of the generality supporting structures, such

as the CGRA network, which is capable of mapping a wide variety of possible DFGs.

Figure 8.5 shows the energy efficiency comparison of Softbrain and the ASICs, showing a high

efficiency advantage for both compared to the baseline OOO4 core. The energy consumption of

Softbrain is within 2x of ASIC, and this is mainly due to the difference in power consumption.

Figure 8.6 shows the area comparison. As Softbrain’s area is fixed across benchmarks, the results

show ASIC area relative to Softbrain’s area. We do not include the ASIC designs’ memory structures

area in their estimates, as most of the time these workloads have streaming behavior and ASICs can

achieve the same performance with more parallel FUs, rather than larger storage structures3. The

mean Softbrain area is 8× that of the ASIC, which is expected as Softbrain is programmable and

must run all workloads. From another perspective, Softbrain is area efficient, as including all eight

MachSuite accelerators would have required 2.54× as much area as only including Softbrain.
3Including the memory structure area for the ASIC estimates would make Softbrain look better in comparison.
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8.4 Chapter Summary

Overall, Softbrain is competitive with ASICs in terms of performance, power, energy and area,

even with the hardware necessary to support significant programmability. This demonstrates that

there is scope to develop programmable architectures by tapping the right synergy between the

algorithm properties of typically accelerated workloads and the micro-architectural mechanisms

supporting stream-dataflow execution.
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9 | Related Work

In this chapter, we discuss the related work to this dissertation for both the generic programmable

accelerator model and the architectural realization of stream-dataflow accelerator – Softbrain.

9.1 Programmable Specialization Architectures

The literature contains many examples of flexible and efficient specialization architectures. Smart

Memories [48], which when configured acts like either a streaming engine or a speculative multipro-

cessor. One of its primary innovations is mechanisms allowing SRAMs to act as either scratchpads

or caches for reuse. Smart Memories is both more complex and more general than GenAccel, though

likely less efficient on the regular workloads we target.

Another example is Charm [88]: composable heterogeneous accelerator-rich microprocessor,

which integrates coarse-grain configurable FU blocks and scratchpads for reuse specialization.

A fundamental difference is in the decoupling of the compute units, reuse structures, and host

cores, allowing concurrent programs to share blocks in complex ways. Camel [89] augments

this with a fine-grained configurable fabric. These architectures provide more choice in mapping

computation but are more complex. The Vector-Thread architecture [78] supports unified vector

and multi-threading execution, providing flexibility across data-parallel and irregularly-parallel

workloads.

The most similar design in terms of micro-architecture to GenAccel is MorphoSys [86]. It also

embeds a low power TinyRisc core, integrated with a CGRA, DMA engine and frame buffer. Here,

the frame buffer is not used for data reuse, and the CGRA is more loosely coupled with the host

core. Still, we consider MorphoSys to be an instance of an GenAccel. To be clear, the goal of our

work is in showing the value of GenAccel model for architectural specialization, not necessarily in

significant micro-architectural innovation.
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There are also a number of related models for exploring energy trade-offs in heterogeneous

environments [90, 91].

9.2 Alternate Approaches

An alternate approach to enable further specialization when area is constrained is to reduce the

footprint of DSAs themselves. Lyons et al. explore sharing SRAMs across accelerators [92], and

their later work explores virtualizing computation components in FGPAs [93].

Our work leverages the notion of synthesis-time reconfigurability, where architectures can

be tuned easily for particular workloads. A prior example of such an approach is Custom Fit

Processors [49], which tunes the VLIW instruction organization to a workload set.

9.3 Principles of Specialization

As mentioned earlier, the work by Hameed et al. [3] studies the principles of specialization from

the opposite perspective: in identifying the sources of inefficiency in a general purpose processor.

While both our work and their work argue that the best way forward appears to be augmenting

general purpose systems with specialization techniques, their proposed methods differ significantly.

In contrast to their work, we argue that large (100-operation) fixed-function units are not neces-

sary to bridge the performance gap between general purpose and ASICs, and that a specialized

programmable architecture can come close.

9.4 Streaming in Data Parallel ISAs

The concept of exposing streams in a core’s ISA to communicate to reconfigurable hardware was

proposed in the Reconfigurable Streaming Vector Processor (RSVP) [94]. RSVP uses similar de-

scriptions of affine streams and dataflow graphs, but have several fundamental limitations. RSVP’s

communication patterns for any given computation cannot change during the streaming phase
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of the execution. This reduces the flexibility of the types of patterns that can be expressed (eg.

ports that are sometimes used for reduction and sometimes written to memory). It also hampers

the ability to prefetch data across different phases – one phase must complete before the data

for another phase can begin, which eliminates performance benefits when phases are not long.

Next, the inter-iteration dependence distance in RSVP can only be 1, which limits programmability.

Finally, the address space of RSVP’s “scratchpad memory” is not exposed to the programmer, and

stream operations cannot address the scratchpad, as they only map linear portions of the address

space to the scratch. Allowing general stream patterns to the scratchpad increases generality and

also potentially performance if data can be compacted into the scratchpad and read multiple times

in a concise format.

An early foundational work in this area is Imagine [95, 96], which is a scalable data parallel

architecture for media processing. Imagine uses concepts of streams for explicit communication

between memory and a so-called stream register file which acts as a scratchpad for communicating

between memory and execution units, as well as between subsequent kernels. Streams here are

restricted to being linear and have a maximum size. Streams are also not exposed in the lower

level interface for controlling the execution resources: a cluster of VLIW pipelines which are all

activated in SIMD fashion by single a micro-controller. A stream based ISA in this context could

reduce the complexity of the controlling VLIW core. From a high-level view, Imagine can be viewed

as stream-dataflow processors which reads all memory through the scratchpad, and where the

reconfigurable fabric is replaced by more rigid SIMD+VLIW execution units.

The problem of efficiently interfacing with reconfigurable hardware also occurs in an FPGA

computation offloading environment. CoRAM++ [97] enables data-structure specific API interfaces

for transferring data to FPGA-synthesized datapaths, which is implemented with specialized soft-

logic for each supported data-structure. This interface is primarily based on streams. DHDL is

framework for producing fixed-function accelerators mapped to FPGAs [98]. Other such FPGA

efforts include [99, 100, 101].

Finally, while stream-dataflow architectures are micro-architecturally quite different to those
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of classic dataflow machines [102, 103], an instance of a stream-dataflow computation can be

viewed in dataflow terms, where dataflow operators are replaced by an instruction DAG, and their

operands are replaced with streams. Dataflow extensions to the GPU model include SGMF [55].

An event-triggered execution model that is orthogonal to dataflow and VonNeumann is Triggered

Instructions [104] also co-opted in MAD [105].

9.5 Removing Data-Parallel Architecture Inefficiencies

A number of works attempt to remove the inefficiencies of existing data parallel architectures. One

example for SIMT is exploiting value structure to eliminate redundant affine address and value

computations [106]. Extensions to classical data-parallel include XLOOPS [107] and Maven-VT [77].

9.6 Heterogeneous Cores

There is a large body of work on combining general purpose cores and reconfigurable or otherwise

specialized engines. Those designed for irregular workloads (eg. Composite Cores [108]) are

orthogonal to the stream-dataflow ISA. Programmable accelerators targeting data parallelism (eg.

DySER [52] or Libra [109]) could benefit from such an architectural interface, and it would be

interesting if more general purpose workloads and compilers could target such architectures.

A highly related work is that of Memory Access Dataflow [110], which is another access-execute

style architecture. It consists of a general purpose core, some sort of compute fabric, and a re-

configurable fabric to perform address computation and memory access. We considered using a

reconfigurable fabric in this work, but found that for the address patterns we needed to support,

the overheads would have been in the order of multiple factors in area because of the large CGRA

required.

One recurring problem in relying on resource-exposed architectures is binary compatibility. The

VEAL work uses a dynamic compilation system to translate the baseline instruction into a template

loop accelerator consisting of address generators for memory streams and a modulo scheduled
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programmable hardware engine [111]. Similar techniques have been proposed to dynamically

compile for dataflow-based CGRAs [112]. Such dynamic compilation techniques can be trivially

applied to stream-dataflow.

9.7 Streaming in Domain Specific Accelerators

Many domain-specific accelerators use streaming and dataflow abstractions. Eyeriss is a domain-

specific accelerator for convolutional neural networks, using streaming access to bring in data,

as well as a dataflow substrate for computation [113]. A recent work, Cambricon [114], proposes

SIMD instruction set extensions which can perform the stream-like access patterns found in DNNs.

Outside the domain of machine learning, Q100 [44] is an accelerator for performing streaming

database queries. It uses a stream-based abstraction for accessing database columns, and a dataflow

abstraction for performing computations.



127

10 | Conclusion

This dissertation proposes a new paradigm in hardware acceleration called the “Programmable

Hardware Acceleration”, which enables us to have a programmable architecture composed of

specialization elements. It focuses on a hardware-software co-design approach by describing the

ISA interface needed for such programmable architectures alongside micro-architecture details for

the implementation of the same. A generic programmable accelerator model called GenAccel is

developed with simple micro-architectural mechanisms exploiting common specialization principles

that pushes the limits of efficiency while retaining generality. GenAccel can achieve efficiency close

to domain-specific implementations of the acceleratable applications with only 2× to 4× overheads

in area and power. This work also evaluates a particular instance of programmable hardware

acceleration called “Stream-Dataflow Acceleration” by realizing a detailed architecture with an

execution model, an accelerator ISA interface, programming abstractions and the micro-architecture.

We implement the stream-dataflow accelerator’s micro-architecture in hardware called Softbrain and

evaluate it with domain-specific and application-specific designs for a wide variety of applications.

From our evaluation, we found out that softbrain can match the performance of these custom

hardware solutions with minimum overheads in power and energy efficiency and better area

efficiency when considered in a SoC environment.

In additions to these results, the dissertation has the following key findings: First, most of the

domain-specific hardware accelerators specialize the applications in a common way and can be

categorized as architectural principles of specialization comprising of – Concurrency, Computation,

Communication, Data-Reuse and Coordination. Second, known general micro-architectural mechanisms

can exploit the above principles and a generic programmable hardware accelerator can be designed

around those. Third, with an efficient ISA interface and programming abstractions exposing the

hardware specialization primitives of the accelerator, we can achieve efficiency close to domain-
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specific hardware and also be future proof to trivially adapt any new accelerator applications out in

the market. Fourth, accelerator models and architectures like GenAccel and Softbrain can actually

be used as a meaningful baseline for future accelerator research as well as exploring new paradigms

with specialization principles and mechanisms.

Finally, we envision that this programmable acceleration paradigm can have a radical simplifying

effect on future chips by reducing the number of specialization blocks. An accelerator fabric like

Softbrain can sit alongside CPU and GPU processors, with functionality synthesized on the fly as

programs encounter suitable phases for efficient offloading. This not only reduces the area and

complexity of having vast arrays of specialized accelerators, it also can mitigate growing design and

verification costs. In such a broad setting, it will be critical to develop effective compilation tools

that can balance the complex trade-offs between parallelism and data reuse that these architectures

provide. Overall, we believe that programmable hardware accelerators have a large role to play

going forward.

We conclude by discussing the implications of this work and future research directions.

10.1 Implications

The broad intellectual impact of this work is to create a canonical accelerator architecture driving

future investigations. As an analogy, the canonical five-stage pipelined processor was simple and

effective enough to serve as a framework for almost three decades of big ideas, policies, and micro-

architecture mechanisms that drove the general-purpose processor era. GenAccel fabric similarly

simple and effective enough – having been shown to be competitive with four award-winning

accelerators from different domains.

Up to now, architects have not focused on an equivalent framework for accelerators. Most

accelerator proposals are presented as a novel design with a unique composition of mechanisms.

Comparing one to another is purportedly meaningless since they target different domains. However,

from an intellectual standpoint, our work shows these accelerators are more similar than dissimilar;
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they exploit the same essential principles with differences in their implementation. This is why we

believe an architecture designed around these principles can serve as a standard framework. Of

course, the development of domain-specific accelerators will continue to be critical for architecture

research, both to enable the exploration of the limits of acceleration, and as a means to extract new

acceleration principles.

To our knowledge, GenAccel model is the first work to generalize accelerators into a common

framework. In this role, our architecture can serve as a baseline for comparison and a framework

for exploring new policies for future accelerators. And stream-dataflow interface has demonstrated

that carefully choosing a set of rich ISA abstractions can simultaneously enable the construction of

extremely efficient and lean hardware, while also retaining significant generality and programma-

bility. The Softbrain accelerator, which is competitive with ASICs and domain specific accelerators,

is evidence that its ISA principles can be exploited by hardware in practice. The overall significance

of the having such programmable accelerators is three-fold – a novel accelerator ISA paradigm with

unique benefits can lead to an architecture that can be put it in the same class as Vector, SIMT, and

VLIW; it has immediate practical value in easing programmable accelerator development, and it

enables specialization beyond just the computational substrate.

A New Baseline to Measure True Benefit of Specialization

In the literature today, DSAs are proposed and compared to conventional high-performance proces-

sors and typically yield several orders of magnitude better measurements on various metrics of

interest. GenAccel model can serve as a better baseline for future DSAs to compare to, and thus

allow measuring the true benefit of specialization. Until the definition of GenAccel and Softbrain,

there has been no framework for authors to compare to, besides the generic OOO processor or a

GPU - but neither is a good target for distilling out the benefits of specialization. For the four DSAs

we have looked at, this true benefit of specialization is only 2× to 4× in area and power and basically

no advantage in performance (when area & power are provisioned to match performance of the

DSA). Using GenAccel as a baseline will reveal more and deeper insights on what techniques are



130

truly needed for a particular problem or domain, as opposed to merely removing the inefficiency of

a general-purpose OOO processor using already known techniques applied in a straightforward

manner to a new domain. Overall, our work can help decouple accelerator research from workload

domains, which we believe can help foster more shared innovation in this space.

Discovering new principles

Orthogonally to using GenAccel as a baseline, it can also serve as a guideline for discovering

big ideas for specialization. Undoubtedly, there are additions necessary to the five principles,

alternative formulation, and microarchitecture extensions. The definition of the principles and

demonstrated coverage on several classes of problems makes specific what types of program

behavior are left untouched, which can be covered with new principles. These include ideas which

have been demonstrated already in an accelerator’s specific context, somewhat straight-forward

general principles, and principles not discovered yet.

Considering some accelerator-specific “extensions” that have already been proposed, it is clear

how GenAccel can serve as a framework for generalizing their mechanisms and conclusions. As

an example, we consider two works from other groups recently - namely Proteus (ICS-2016) and

Cnvlutin (ISCA-16). Both have been proposed and studied as mechanisms meant for one existing ac-

celerator (DianNao). The GenAccel frameworks allows those principles to be easily generalized and

evaluated across multiple workloads and domains. In essence, the idea of bit-serial multiplication

(Proteus) and eliminating zero-computing (Cnvlutin) are equally useful in the database processing

and image processing examples our GenAccel framework has considered. We expect future such

styles of work can be done on GenAccel, freeing them from being restricted to one accelerator. The

framework itself is reproducible completely from the model description provided in the paper and

is being made available to researchers on request.

In terms of general principles that can be integrated into GenAccel, it is clear that programs with

highly irregular memory accesses but yet exhibiting concurrency are poorly served by GenAccel.

DeSC (MICRO-15) has revisited this principle in the general purpose context recently by employing
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the Decoupled Access/Execute principle. The GenAccel framework allows the consideration of such ideas

in the accelerator context in a non-domain specialized way.

Finally, our definition of principles makes clear what workload behaviors are currently uncovered

and need discovery of new principles to match existing accelerators. This direction leads to the more

open question of whether the number of principles are eventually too numerous to be practical to

put in a single substrate, whether efficient mechanisms can be discovered to target many principles

with a single substrate (memory blocks with a TCAM and SRAM mode for example), or whether

they are few in number that one can build a single universal framework. Enabling and starting this

discussion is a key long term impact.

Embedding principles into existing designs

In designing GenAccel, we took a clean slate approach; we started with a simple concurrent

architecture and evolved it by applying specialization principles. However, because these principles

are architecture-independent, one point of long-term impact and significance is likely going to be in

the adoption of individual principles/mechanisms in existing large core CPUs, GPUs, and FPGAs.

Our paper discusses practical strategies to accomplish this by adding hardware mechanisms or

restricting the program/hardware scope. Ultimately, these modifications would help to close the

general purpose to domain-specific accelerator gap.
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An ISA Paradigm for the Specialization Era

Very rarely is a new ISA principle introduced which fundamentally changes architectural tradeoffs,

and there are only a few long-lasting paradigms: VLIW expresses the independence of instructions,

Vector expresses an operation over multiple data items, SIMT, which encodes multiple threads

and their relationship to access locality. We believe that stream-dataflow belongs in this category;

it expresses arbitrarily long patterns of memory access in a single instruction (and the same for

computation in a handful of instructions). In fact, stream-dataflow can be seen as an evolution of

the principle of encoding many independent operations with a single instruction. Where as SIMD

and and VLIW can reduce the instruction overhead by constant factors, a stream-dataflow ISA can

reduce the number of instructions by multiple dimensions (eg. a nested loop in SIMD can become a

constant number of stream-dataflow commands).

Beyond reducing instruction overheads, stream-dataflow confers other benefits over existing

ISA classes. This includes the encoding of the alias free nature of memory instructions, meaning

that concurrent memory access can be achieved without dynamic alias analysis. The encoding of

memory patterns enables specialized address generation hardware for those patterns, which reduces

the hardware overhead over general purpose hardware, reduces the number of cache requests

(implicit coalescing), and removes the penalty of unaliased access. Dependences are explicitly

encoded, either as instruction dependences (inside iteration) or recurrences (across iterations), and

are enforced without consulting memory.

Of course, employing this ISA imposes software challenges. Programming directly is challenging,

and automatic compilers need to support for detecting address patterns, loop-interchange/flattening,

explicit dependence insertion, memory tiling, and much more – certainly beyond what is required

for traditional SIMD. That said, because of where the community is headed with specialization and

programmable accelerators, we see stream-dataflow as one of the best choices going forward, with

a high potential and (intellectually stimulating) challenges that can be overcome.
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Practical Value

Building an extremely low-overhead programmable accelerator with high computational-density is

straight-forward with stream-dataflow, which can be immediately useful for industry and researcher.

The main principles here are that any complex infrequent program behavior can be relegated to

the simple core (for which open source implementations like RISCV Rocket already exist), and

the accelerator implementation is made simple because the concurrency and dependences of the

program are encoded in the ISA directly, rather than needing to be dynamically discovered with

complex hardware. We demonstrated this through the implementation of Softbrain, which took

only a modest effort to prototype.

Moreover, Softbrain is merely one example from an enormous design space admitted by the ISA;

this space includes local/global memory interface, computational substrate, supported access/con-

trol patterns, etc. For example, the design of the computational substrate (the CGRA in Softbrain) is

decoupled from the stream-based memory access interface, and can be trivially replaced with any

number of engines (SIMD, triggered instructions, or a set of ASIC datapaths). As such, the range of

applicable market/application settings for this architecture is quite large – from general purpose

big-data processing engines, to smaller and more fixed-function accelerators in mobile or wearable

devices and IoT.

Beyond Computational Acceleration

The vast majority of the research effort behind accelerators and specialization has been geared

towards making efficient and/or programmable computational pipelines. In any hardware setting

that has a general address space and memory, this leaves an enormous amount of energy inefficiency

in communication and storage in the cache and memory hierarchy. What would be desirable would

be to apply the same principles from computational specialization to the memory system – somehow

exposing more of the inherent nature of the program through to the cache and memory hierarchy.

Before stream-dataflow, it was hard to imagine how exactly specialization could be employed in
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the memory hierarchy. After all, typical memory hierarchies are oblivious to the program which

generates requests, and useful information (eg. for prefetching) must be recovered through costly

dynamic analysis. However, stream-dataflow encodes coarse grain patterns of access, raising the

question of whether this can be used to optimize the memory system, if it was somehow had access

to this information. Everything from cache replacement policies, network arbitration, and off-chip

data access seems like it could benefit highly by knowing with certainty what the future what and

where the “future” program accesses will be from.

10.2 Concluding Thoughts

This dissertation with its proposal of the programmable hardware acceleration paradigm has broken

the limits of accelerators, freeing them from being domain-specific ad-hoc engines. It has identified

the foundational principles of accelerators, creating a general programmable accelerator fabric which

serves as a standard point of reference in exploring new accelerator mechanisms and innovations.

It also defines a new accelerator ISA interface that would shape programmable accelerator research

during the specialization era. With its detailed architecture, micro-architecture implementation,

evaluation and analysis, not only has it opened many difficult questions in programmable accelerator

micro-architectures and compilers, but also has inspired and enabled a unification of specialization

and memory system research.
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A | Architecture Details of the DSAs Studied

In this chapter, we describe the domain-specific accelerators (DSAs) we shave studied and evaluated,

for readers to understand about their architecture in detail. Most of the details can be found in the

original papers, but we summarize them here for the ease of readers.

A.1 Neural Processing Unit (NPU) for Neural Approximation

Acceleration

a) 8-PE NPU b) Single processing engine (PE)

Figure A.1: Architecture Details of Neural Processing Unit (NPU) DSA
(Figure reused from the original NPU [42] paper)

NPU is a DSA for approximate computing using the neural network algorithm, integrated to

the host core through a FIFO interface. It exploits the approximation in accelerator code for better

performance and energy efficiency. The key idea is to learn how an original region of approximable

code behaves and replace the original code with an efficient computation of the learned neural-
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network model. This work proposes a technique for harnessing the domain-specific hardware

for neural networks in general purpose computations. The authors using their evaluation and

workflow show that the regions of imperative code can be replaced with neural networks for variety

of applications and achieve around 2.x× speedup, with 3× energy savings and still have average

accuracy of 90% in all cases.

For NPU acceleration, the original approximable code needs to be annotated using some known

approaches. The code region also has a requirement to have well-defined inputs and outputs.

Once the acceleratable code region has been identified, the compilation workflow implements a

transformation called Parrot transformation in three steps: observation, training and instrumented

binary generation. Observation phase mainly involves the compiler to train the neural network

on a realistic data set. It profiles the normal execution of the code with the input-output set and

produces a training data set for the next stage – training. In the training phase, the compiler uses

the training data from the previous phase and produces a neural network with a topology which

replaces the original function. The compiler here uses the back-propagation technique to train the

neural networks which are multilayer perceptrons in the NPU case. The final phase of workflow

involves the code generation itself where an instrumented binary running on the host core invokes

the NPU accelerator when the replaced NPU neural network code is encountered. The program

configures the NPU when it is first loaded by sending the topology parameters and synaptic weights

to the NPU via a configuration interface. The compiler replaces the calls to the original function

with special NPU instructions that sends the inputs to the NPU and collect the outputs from it.

These configuration, invocation and collection of outputs is achieved through ISA extensions.

Figure A.1(a) shows the NPU architecture with eight identical processing engines (PEs) along

with a bus scheduler and a scaling unit. The scaling unit scales the neural network’s inputs and

outputs if necessary using scaling factors defined in the NPU configuration process. The PEs in the

NPU are statically scheduled. The scheduling information is part of the configuration information

for the NPU, which is based on the neural network topology derived during the training process

and is populated in the configuration FIFO. In the NPU’s static schedule, each neuron in the neural
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network is assigned to one of the eight PEs. The global bus scheduling information is stored in its

circular scheduling buffer and co-ordinates the values being sent between the PEs. Figure A.1(b)

shows the internal structure of a single PE. Each PE performs the computation for all of its assigned

neurons. NPU implements a sigmoid-activation multilayer perceptron, each neuron computes its

output as:

y = sigmoid(
∑

(xi × wi)) (A.1)

where xi is an input to the neuron and wi is its corresponding weight. More detailed evaluation

and workloads used can be found in the paper [42].

A.2 Convolution Engine for Image Processing Acceleration

Figure A.2: Architecture Details of Convolution Engine DSA
(Figure reused from the original Convolution Engine [43] paper)

Convolution Engine (CE) is a DSA which accelerates stencil or convolution-like dataflow compu-

tations for image processing applications. CE achieves energy efficiency by capturing the data-reuse
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patterns, eliminating the data transfer overheads and enabling a large number of operations per

memory access. Based on the evaluation, authors claim that for most of the image processing

applications they are within a factor of 2×-3× the energy and area efficiency of a custom ASIC like

hardware built for each kernel. Figure A.2 shows the convolution-engine architecture. The host

core uses special instructions to coordinate control of the hardware through a control interface or a

load/store interface. It exploits concurrency through both wide-vector and pipeline parallelism and

relies heavily on custom memories/registers for storing pixels and coefficients. The interface units

(IF) (both row and column) connect the register files to the functional units and provide shifted

broadcast to facilitate convolution. Data shuffle (DS) stage combined with Instruction Graph Fusion

(IGF) stage form the Complex Graph Fusion Unit. IGF is integrated into the reduction stage for

greater flexibility. CE abstracts the convolution operation as a map step that transforms each input

pixel into an output pixel. In their implementation, the interface units and ALUs work together to

implement the map operation; the interface units arrange the data as needed for the particular map

pattern and the functional units perform the arithmetic. The reduce functionality is provided by the

complex graph fusion unit.

CE reduces most of the register file overheads with the help of custom shift register file or

a FIFO like storage structure. When such storage structures are augmented with an ability to

generate multiple shifted versions of the input data, it can not only facilitate execution of multiple

simultaneous stencils, but can also eliminate most of the shortcomings of traditional vector register

files. Aided by the ability to broadcast data, these multiple shifted versions can fill sixty four ALUs

from just a small 256-bit register file saving valuable register file access energy as well as area. CE

facilitates further reductions in energy overheads by supporting more complex operation in the

reduction tree, allowing multiple "instructions" to be fused together. This fusion also offers the

added benefit of eliminating temporary storage of intermediate data in big register files saving

valuable register file energy. Furthermore, by changing the shift register to have two dimensions,

and by allowing column accesses and two dimensional shifts, these shift registers possess the

potential to extensively improve the energy efficiency of vertical and two dimensional filtering.



139

As shown in the figure, these 1D and 2D shift registers are the main components facilitating the

acceleration. Details about the programming convolution engine, a 2D filter example written for it

and the evaluation against SIMD units and custom hardware is explained in their paper [43].

A.3 Q100 DSA for Database-Streaming Acceleration

Partition Join 

Column 
Filter 

ALU 

Bool 
Gen 

Aggregate 

Memory 

… 

Stream Buffers 

Figure A.3: Architecture Details of Q100 DSA

Q100 data processing unit (DPU) is a DSA for accelerating streaming database queries, which

exploits the pipeline concurrency of database operators and intermediate outputs. Q100 contains a

heterogeneous collection of fixed function application-specific integrated circuit (ASIC) tiles, each of

which implements a well-known database relational operator, such as a join, sort or partition. The

Q100 tiles operate on streams of data corresponding to tables and columns, over which the micro-

architecture aggressively exploits pipeline and data parallelism. Figure A.3 shows the high-level

architecture of Q100 DSA which consists of custom ASIC tiles for the common relational operators.

It consists of stream buffers acting as a staging area to prefetch the required database columns.

Q100 specializes the communication by providing dynamically routed channels between FUs to

prevent memory spills.

The Q100 ISA implements standard relational operators that manipulate database primitives



140

such as columns, tables, and constants using their instructions. These coarse grained instructions

manipulate streams of data, thereby maximizing pipeline and data parallelism, and minimizing

the need to time multiplex the accelerator tiles and spill intermediate results to memory. The

producer and consumer relationships between operators are captured with dependencies specified

by the instruction set architecture. Queries are represented as graphs of these instructions, with

the edges representing data dependencies between instructions. For execution, a query is mapped

onto a spatial array of specialized processing tiles, each of which carries out one of the primitive

functions. The communication between these functional units or tiles are carried out by dynamically

routed channels, thus avoiding register file accesses or memory spills. In situations where a query

does not fit on the array of available Q100 of tiles, it must be split into multiple temporal stages.

These temporal stages are called temporal instructions and are executed in order. Each temporal

instruction contains a set of spatial instructions, pulling input data from the memory subsystem

and pushing completed partial query results back to the memory subsystem The communication

network configuration and stream buffers are coordinated using a temporal instruction sequencer.

Q100 contains 11 types of hardware tiles corresponding to 11 operators in ISA. Their work also

explores a Q100 design space of 150 configurations, selecting three for further analysis: a small,

power-conscious implementation, a high performance implementation, and a balanced design

that maximizes performance per Watt. The authors also demonstrate that the power-conscious

Q100 handles the TPC-H queries with three orders of magnitude less energy than a state of the

art software DBMS, while the performance-oriented design outperforms the same DBMS by 70×.

More details on their analysis and query plans used for evaluation can be found in the paper [44].

A.4 DianNao DSA for Deep-Neural Network (DNN) Acceleration

DiannNao is a DSA for accelerating convolutional neural networks (CNN) and deep-learning neural

networks (DNN), which are typical machine learning building blocks used for image classification.

In this work, the authors have designed an accelerator for large-scale CNNs and DNNs, with a
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Figure A.4: Architecture Details of DianNao DSA
(Figure reused from the original DianNao [15] paper)

special emphasis on the impact of memory on accelerator design, performance and energy. They

show in their evaluation that it is possible to design an accelerator with a high throughput, capable

of performing 452 Giga-Operations-Per-Second (GOP/s) for key neural network (NN) operations

such as synaptic weight multiplications and neurons outputs additions in a small footprint of

3.02mm2 area and 485 mW power chip. Compared to a 128-bit 2GHz SIMD processor, the DianNao

accelerator is 117.87× faster, and it can reduce the total energy by 21.08×.

The authors first determine the memory bandwidth bottleneck of typical classifier, convolutional

and pooling layers of DNN kernels in the processor based implementation of neural networks.

In order to maximize the computation throughput for available memory bandwidth, they design

a hardware accelerator composed of Neural Function Unit (NFU) aimed at performing neural

computations using hardware neurons. Figure A.4 shows the architecture of DianNao accelerator

with multiple units of NFUs. DianNao performs the traditional matrix-multiply and accumulate

operations of each neural network layer decomposed into multiple stages with each stage mapped to
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NFU. It uses a staggered pipeline to perform the operations. The first or first two stages (respectively

for pooling, and for classifier and convolutional layers) operate as normal pipeline stages, but the

third stage is only active after all additions have been performed (for classifier and convolutional

layers; for pooling layers, there is no operation in the third stage). The accelerator also has split the

total storage into three structures to exploit the locality: an input buffer (NBin), an output buffer

(NBout) and a synapse buffer (SB). The split buffers are streamed with data values from the memory

interface using a DMA engine with explicit DMA instructions. It also makes use of the control

instructions issued from the control processor (CP) to coordinate the neural network layer execution.

Each layer execution is broken down into a set of instructions corresponding to the loop execution of

the layers. Overall, DianNao is used as a state-of-the-art accelerator for DNN applications and also

a well known comparison point for other NN based accelerators. More details on the architecture,

instruction set and their comparison with SIMD processors is in their paper [15].
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B | Detailed Example for Stream-Dataflow Model

In Section 6.4.2, we had provided an overview of the programming and execution model of the

stream-dataflow accelerator. Here, we provide a detailed execution model example with a more

complex case of scratchpad streams being considered.

To give intuition into the nature of the concurrent execution potential of a stream-dataflow

accelerator, we give a simple abstract example in Figure B.1, which shows an example of DFG, and

the state of the stream commands, CGRA and the general core over time. The red arrows between

the events show those that are plausibly on the critical path.

For explanatory purposes, we show streams in one of the four states:

1. Enqueued – stream-command is generated from the core and is enqueued;

2. Dispatched – stream is dispatched and allowed to execute in parallel;

3. Source Resource in Use – stream is actively using the source resource;

4. Complete – all stream’s data has arrived at its destination (for data transfer commands);

To explain the example, the DFG is a simple two input multiply, with A and B as input ports and

C as output port. The first stream-command (C1) reads some memory data into the scratchpad for

later reuse. C2 is a barrier to prevent C3 from reading from the scratchpad until the data is written.

Meanwhile C4 can proceed in parallel because it reads to port B from memory, but C6 (another

memory read) has to wait until C4 is done reading from memory, because it also reads to port B.

Once the C2 barrier has been reached, meaning scratchpad is done writing, C3 can be issued to

read the data from scratchpad to port A. Note that, to show the significance of the data-reuse and

repeated access pattern, we use two stream-iterations worth of data in the example, by streaming

the stored data in scratchpad again to port A second time. Once some data arrives at both ports
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Figure B.1: Detailed Stream-Dataflow Execution Model Example

(C3, C4 in use), the CGRA can start computing the issued instances of the computation data. When

the CGRA finishes some instances of the computation, the memory write command (C5) can begin

sending write requests to port C. Because of two iterations of scratchpad stream and memory to

port B stream, the data produced at port C is equal to total data drained from port A or port B.

Finally, when all write requests are complete (C5), the barrier command (C7) can be completed, and

the general core can resume generating next set of stream commands. Note that the scratchpad

read, memory read, CGRA execution, and memory write can all proceed in parallel. Intuitively,

as the execution phase is lengthened with a larger data-stream, or there is more overlap between

commands, there will be less instruction/control overheads and more concurrent execution.
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C | Rocket Core Micro-Architecture

Figure C.1 shows the detailed 5-stage datapath of the Rocket core [85] which implements the RV64G

instruction set. Rocket core is a simple in-order five stage pipeline processor core which implements

the RISCV RV64G ISA and is aimed at low-power embedded and IOT processing. We use rocket

core’s Rocket Custom Co-Processor (RoCC) accelerator interface to attach the stream-dataflow

accelerator with minimal modifications. RoCC block which gets enabled at the write-back stage

feeds the stream-dataflow accelerator with the commands and also has a stall interface when the

accelerator cannot take in more commands.

Figure C.1: Low-Power Core – RV64G ISA based 5-stage pipelined Rocket Core
(Figure reused from the lowRISC Rocket Core implementation [115])
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D | Pareto-Optimal ASIC Design Point Selection

In Section 8.3.3, we had provided a brief overview of how we perform the ASIC design point

selection for performance, power and area based application-specific comparison of Softbrain. Here,

we provide a detailed example of ASIC design point selection with regards to bfs workload from

the Machsuite application suite. As mentioned earlier, we perform the iso-performance analysis of

the ASIC design versus application-provisioned Softbrain. We use the fixed-function accelerator

specific design space exploration tool Aladdin [29] to generate the ASIC design points for each

of the Machsuite applications. In this example, we chose bfs workload to show how we select the

pareto-optimal design point for comparison.
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Figure D.1: Design Space Exploration of ASIC Design for bfs Application

Figure D.1 shows the area and power optimal ASIC design points generated for bfs workload.

In order to perform iso-performance analysis with Softbrain, we need to choose a design-point with

execution cycles close to Softbrain, and for our evaluation we restricted this to be within 15% of

softbrain cycles for a fair comparison. Now, after this decision, there could be ASIC design points
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both with regards to area and power which are way out of the range of softbrain’s area and power

for each of the kernel. This is because Aladdin tool does a sweep of the entire accelerator design

space for various application parameters like loop unrolling/flattening, software pipelining and

memory partitions. This generates design points with much larger area and power in order to

reach the execution cycle count close to softbrain. This is seen in Figure D.1(a) and Figure D.1(b),

where there are some design points exceeding 3mm2 area and 14mW power for bfs ASIC. This

leads to an unfair comparison putting softbrain in a better position compared to ASIC design points.

So, for our evaluation, we restrict the area and power of the ASIC design points to not exceed

softbrain’s area and power, as custom hardware or ASIC’s area and power cannot be larger than a

much general design like softbrain. This sometimes results in less instantiations of problem specific

FUs and memory partitions in ASICs, as there is a restriction on area and power of the design.

With the limited power budget, the loop unrolling, loop flattening parameters cannot be enabled

to have more FUs instantiated (and thus burn power) and hence the performance drop in case of

fixed-function ASICs. Another way of performing the evaluation is to do an iso-area or iso-power

comparison by restricting the ASIC’s area and power close to softbrain and comparing the execution

cycles.

Overall, we believe that the iso-performance analysis allows us to provision softbrain to match

the performance of custom-hardware solutions and then analyze the overheads of power and area

which can be attributed to generality.
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