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Abstract

In this work, we observe that 3D die-stacking of logic and DRAM provides a unique opportunity

to revisit the ideas of processing-in-memory. Compared to conventional DRAMs, 3D die-stacked

DRAM (embodied by standards like HMC and HBM), have almost an order of magnitude improve-

ment in bandwidth between logic and memory, significant power reductions, and modest latency

reduction as well. We make the case for Memory Processing Units, a co-processor architecture,

which build on logic+DRAM stacking technology embodying three principles: high performance

through massive concurrency, low-energy computation using cores that are efficient at idling, and

generality through a flexible programming model of remote procedure calls. On evaluation across

diverse domains spanning text analytics, end-to-end database analytics, and graph analytics, MPU

provides integer factors better performance and energy savings compared to conventional CPUs,

and matches specialized PIM architectures. Our work demonstrates the following qualitative archi-

tectural insight: a brute-force approach consisting of a large array of low-power cores suffices to

achieve the goals of accelerating computation while reducing energy for many workload domains,

without having to sacrifice generality.
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1 | Introduction

Processing-in-memory (PIM), pioneered in the early 90s to address the memory-wall [1, 2, 3, 4, 5,

6, 7, 8, 9], is a computational paradigm which consists of placing computation physically close to

memory. Then hampered by technology limitations, PIM is now being revisited in various novel

ways due to the recent emergence of cost-effective 3D stacking of memory and logic. However, most

current approaches suffer from narrow specialization, either to specific applications [10, 11, 12, 13]

or specific workload characteristics [14, 15]. The solutions that do not incur this pitfall require

disruptive changes to the main processor architecture, and provide limited benefits both in terms

of performance and energy savings [16]. The question of whether it is possible to build a general

PIM architecture, that can bring integer-factors energy and performance benefits while supporting

a wide variety of workloads, has thus remained open.

In this work, we answer this question in the affirmative by proposing the MPU (Memory

Processing Unit) processing-in-memory architecture. Our architecture applies to a wide range of

practically relevant workloads, leverages an easy-to-use, general programming model, require no

processor modifications and provides significant performance and energy benefits.

The fundamental challenge for PIM systems is workload heterogeneity: algorithms from different

domains present a variety of memory layouts and access patterns, and involve computations with

different degrees of parallelism and complexity. Even within a single workload, regions that

are essentially sequential—which can most efficiently be executed on a conventional CPU—may

alternate with regions with abundant thread-level parallelism and limited required synchronization,
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which are ideal targets for PIM engines. Because of this variety, traditional wisdom is that PIM

systems can only achieve performance and energy improvements by specializing the hardware

to specific classes of workloads (see chapter 3). However, in this work we show that it is indeed

possible to realize a general PIM architecture by adhering to the following principles:

1. Performance through massive concurrency: the MPU architecture includes large arrays of cores

allowing tens of concurrent threads

2. Energy savings through low-energy computation: the MPU architecture uses low-power cores,

that remain efficient when idling (unused or waiting for memory I/O)

3. Generality through flexible programming model: the MPU uses a general approach to PIM offload,

based on low-overhead remote procedure calls. Also, the MPU shares a unified address space

with the CPU.

The MPU design is built around these principles, and consists of a series of extensions to the

Micron HMC 3D-stacking memory. Concurrency (principle 1) is provided by augmenting each

HMC cube with 128 general-purpose cores (Xtensa LX3 in our design). The cores are lightweight,

consisting of a simple 3-stage pipeline, and run at only 500MHz. Therefore, they compute and idle

efficiently (principle 2). The MPU programming model aims at generality and is based on memory

procedure calls (MPC): arbitrary programmer-defined function, which the application posts to

the MPU using an asynchronous queue. This mechanism is generic (principle 3) and enables the

host CPU to quickly offload a batch of MPCs to the MPU and then wait for results. Internally,

non-blocking offload is implemented by a dedicated MPU controller, sitting on the HMC logic layer.

In terms of data layout, our programming model abstracts the organization of HMC memory

into 256-MB DRAM banks (vaults) by exposing memory as a set of 256-MB pages (to simplify

interactions, CPU and MPU share the same address space). The 128 cores in each HMC cube are

also partitioned into 16 tiles with 8 cores each; each tile is directly connected to one vault. Each core
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Context Performance Energy
1-MPU 4-MPU 1-MPU 4-MPU

Database Analytics 1.2× 1.1× 3.1× 1.3×
Graph Analytics 5.9× 15.3× 14.4× 14.5×
Text Analytics 2.1× 6.9× 2.7× 3.8×

Table 1.1: MPU improvements over 4-core WSM + DDR3

can efficiently access memory within its home vault; accessing other vaults is transparent to the

programmer, but incurs an energy and latency cost.

Achieving efficiency within this architecture requires that the workloads are memory intensive

(i.e. they present a high memory access to arithmetic instruction ratio) and can be sharded, i.e.

partitioned into many independent tasks that access separate memory regions. In addition, MPU

particularly shines for workloads exhibiting high concurrency and irregular memory access pattern.

Our evaluation shows that workloads across many domains incorporate large regions meeting

many of these properties. It should be noted that the hardware-managed offloading and the unified

virtual memory space make it easy for the programmer to alternate MPU and CPU phases in a

program: program regions that do not present enough parallelism for the MPU can be simply

executed on the host processor.

Using detailed evaluation comparing our PIM architecture both with specific, previously pro-

posed PIM architectures and a conventional architecture on a variety of workloads, we demonstrate

significant performance and energy gains. The results in Table 1.1 show geomean performance

and energy gains of MPU systems with 1 and 4 HMC cubes over a 4-core OoO Skylake system.

1.1 Dissertation Contribution

PIM Design Principles We present a set of principles for the design of PIM architectures. We note

that the individual conceptual components of our approach—arrays of low-frequency, low-power

cores, concurrency through massive parallelism, offloading via remote procedural calls—have

been individually proposed in the past. The novelty of our work is NOT in any novel mechanisms over
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existing state-of-art, but rather, the novelty lies in showing that a composition of such elements suffices to

achieve general and efficient in-memory processing.

Hardware Architecture Design We present a detailed hardware architecture built around mech-

anisms that implement the principles we have identified.

Programming Model Design We present an intuitive, easy-to-use programming model to enable

programmers to port programs to MPU and offload computation from CPU to MPU. This program-

ming model is built around a remote procedure call like mechanism, that we call memory procedure

calls.

System Level Design To enable non-intrusive integration of MPU to conventional processors, we

present a system architecture design that does not require any hardware modifications or operating

system modifications on the host processor to which MPU is integrated.

Experimental Infrastructure Development - Emulator, Workloads, Simulator We ported several

workloads (18 total) to the MPU programming model, built a multi-threaded emulator to enable

functional testing of these ported workloads on a conventional processor and built a performance

simulator and power model to quantitatively evaluate the potential of our architecture.

Quantitative Analysis of MPU Speedup and Energy Reduction over CPU We quantitatively

evaluate several kernels and several workloads from three different domains - database analytics,

graph analytics and text analytics. With analysis of kernels, we derive the main sources of perfor-

mance benefits, based on the workload behavior and micro architecture, while keeping relatively

complex phenomenon like load balancing and concurrency out of the picture. With analysis of

workloads from graph and database domains, we evaluate impact of these two phenomenon also.

In addition, evaluation across these three important domains helps us gauge the potential of the

MPU architecture for practical, real workloads.
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Quantitative Comparison against Related Work We quantitatively compare MPU against two

recent works that cover different ends of the performance-generality spectrum.

1.2 Dissertation Organization

The dissertation is organized as follows:

Chapter 2 present an overview of MPU, Chapter 3 discusses related work, Chapter 4 describes

the MPU programming model, Chapter 5 describes the MPU architecture, Chapter 6 describes the

system level design, Chapter 7 details our experimental infrastructure and workloads, Chapter 8

compares MPU to a CPU-based (Skylake) architecture, Chapter 9 compares MPU to two other PIM

architectures.
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2 | MPU Overview

As we base our work around Micron’s Hybrid Memory Cube product line, we first describe the HMC

(v1.0) architecture, summarized in Figure 2.1. One HMC chip provides 4GB of storage comprising

8 stacked DRAM dies, one logic die, and SERDES links for I/O. The memory is organized into 16

partitions or vaults. Each vault is a vertical column of DRAM dies, with an associated vault-controller

in the logic layer which handles DRAM command sequencing. Within each die, two banks belong to

a vault, for a total of 16 banks per vault. There are 32 data TSVs per vault that connect the logic die to

the DRAM dies and some number of additional command TSVs. Abstracting away implementation

details, HMC provides two capabilities - Extremely high-bandwidth communication between logic

and memory, enabled by the 32 TSVs within each vault, and Low energy communication enabled

by the physical proximity of logic to memory, avoiding the need for on-chip and off-chip wire energy

and multilevel caches. In particular, we observe that the effective way to utilize this bandwidth and

low access energy is to logically/physically couple cores to DRAM banks.

MPU modification to the HMC design reflect the goals of achieving concurrency, low energy
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Figure 2.1: Micron Hybrid Memory Cube
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consumption and generality on PIM workload, while ensuring the design remains practical to

deploy on today’s architecture.

Principle 1: Concurrency. MPU augments each HMC vault with an array of 8 lightweight process-

ing cores and some coordination logic. As there are 16 vaults in the standard HMC design, the

MPU is a 128-core architecture. The location of cores in the logic layer of each vault is depicted in

Figure 2.2(b). The processing cores can access vault-local memory quickly and remote vaults slowly

and can execute arbitrary computations on behalf of the host CPU. Each core has a dedicated 16KB

instruction and data-cache. In total, MPU die area is about 15% for the cores and 85% for SRAMs

and totals 33mm2 at 45nm process.

Principle 2: Low-energy computation. The large number of cores in the MPU’s computational

substrate enables the architecture to take advantage of the abundant parallelism available in PIM-

oriented workloads while letting cores run at low frequency (500MHz), thus reducing their dynamic

energy. Per-core caches act as a further energy filter, with the additional benefit of reducing latency.

Furthermore, our cores of choice (Tensilica Xtensa-LX3) exhibit extremely low static power (1.4 mW
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per core).

The advantage of this approach is the simplicity of the design: provisioning a large number

of cores while allowing a fraction of them to be idling at any given point in time enables us to

do away with workload-specific schedulers, prefetchers and in general any form of architectural

specialization aimed at optimizing core usage. Contrary to popular belief, this brute-force approach

to parallel computation has little impact on performance and energy compared to specialized

architectures. In other words, our work shows that the cost of achieving generality with PIM architecture

is small, and can be achieved by following simple principles: high parallelism and lightweight computational

elements.

Principle 3: Generality. The programming model makes only one assumption about workloads:

that computation can be partitioned in independent tasks, each mostly accessing only a specific

partition of the application dataset.

Figure 2.2(a) represents this model, including organization of the computation and data layout,

through a simple key-value store application (Figure 2.2(b) illustrates how each conceptual compo-

nent maps to the hardware). The MPU paradigm splits applications (“Original code” in the figure)

in two parts. One part, running on the host (“MPU host code”), loads data, performs initialization,

initiates computation, and retrieves results. The other part consists of one or more programmer-

defined functions, called MPU kernels which run on the MPU and execute the memory-intensive

part of the workload.

Conceptually, memory within each HMC cube is partitioned into sixteen segments/vaults. All

computation is associated to a “home” vault, but can access data from any vault (access to memory

outside the home vault incurs a latency penalty). This is reflected in the hardware organization by

the fact that each HMC vault is associated to one of 16 computing tiles. The programmer is tasked

with partitioning the dataset across vaults and associate computation with each vault. The example

application statically distributes the key-value store across all vaults, and partitions the workload

among them.
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Communication between the host and the MPU-side uses a mechanism of remote procedure

calls, that allow the host CPU to trigger computation on the MPU, and retrieve results. These calls

are triggered by using a host-side MPU API that internally sends commands to the MPU controller.

The controller examines the address targeted by each request, from which it can infer the vault and

route it there to trigger execution of MPU kernels on the vault’s embedded cores.



10

3 | Related Work

3.1 Comparison to works published prior to emergence of cost

effective 3D die stacking

Early PIM studies include several works [1, 2, 3, 4, 5, 6, 7, 8, 9, 17], but were hampered by technological

limitations. Below, we discuss and highlight this dissertation’s contribution over these prior works

(mostly from the 1990’s).

The IRAM article [1] was one of the foundational publications in the PIM space. The authors

bring into question the practice of fabricating memory and logic as two separate chips and lay out

all the problems that arise due to this practice. They propose fabricating memory and logic into

one chip using DRAM fabrication technology, explain why that might be a good solution and the

challenges involved in doing so. Finally, they propose that a Vector processor [2] is more suitable

to be integrated with memory compared to conventional OoO processors. In the MPU work, we

chose not to limit the architecture to single instruction multiple data (SIMD) style programs with

regular memory access pattern (best suited for Vector IRAM proposed in [2] and Computational

RAM proposed in [3]).

Of all the related work in this era, FlexRAM [4, 5, 6] is the most closely related. Though

FlexRAM is designed with similar principles as MPU, the specific architecture and programming

model are different. They have a single in-order management core placed near memory, offloading

computation to several P-Arrays connected to DRAM cells. These P-arrays are RISC pipelined
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computing units that share resources with other P-Arrays. FlexRAM supports page tables and TLBs

for virtual address translation. Finally, the design adds some hardware logic to achieve integration

of memory and logic as 3D stacking was still an unsolved problem at the time. HMC possibly

solves these issues with lower complexity. We cannot make direct quantitative comparison between

MPU and FlexRAM due to different 3D stacking technologies. In terms of programming model,

FlexRAM uses an OpenMP-style model called CFlex. Unlike OpenMP which is suited to express

loop parallel code, CFlex is more flexible as it can express MIMD style execution and programs

with indirect pointer access. We believe that MPU programming model is equally, if not more,

intuitive and flexible as CFlex. The main contribution of this thesis over FlexRAM is our detailed

analysis over a wide spectrum of workloads that shows that a simple and general PIM architecture

with very low hardware overhead can come close to the efficiency of recently proposed specialized

PIM architectures and match or exceed efficiency of state-of-art OoO processors. In fact, this is the

primary contribution of our work over all of the other related work in the PIM space.

Active Pages [7, 8] integrates FPGAs with DRAM. Programmer can define functions that are

mapped into FPGA. They provide a programming API to bind these functions to certain memory

blocks. It is not easy to port existing applications to it due to the complexity of programming

FPGAs.

DIVA [9] proposes a novel architecture that can support virtual memory and concurrent accesses

between host and PIM. The basic mechanisms of using simple in-order, low power cores remain

the same as MPU. Their programming model is message-passing-like. They use parcels to move

computation from one PIM unit to another, and also from host to PIM. This model is arguably

not suited for workload classes that can most benefit from a PIM architecture (graph analytics, for

example). MPU’s contribution over DIVA remains the same as that over FlexRAM.

Centip3De [17] demonstrates the physical feasibility of a 3D design, and studies circuit-level

design issues, 3D floor planing and clock skew introduced by the TSVs. Though it studies the

benefits of a cluster-based CMP architecture with 64 Cortex-M3 cores with L1/L2 caches stacked

on DRAM, it remains mainly a circuit-level project.
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3.2 Comparison to works published post emergence of cost effective

3D die stacking

PIM is now being revisited in various novel ways due to the recent emergence of cost-effective 3D

stacking of memory and logic. However, most approaches either suffer from narrow specialization

or lose out on performance and energy efficiency while trying to stay general.

NDC architecture proposed by Pugsley et al [15] is closely related to our work. It uses similar

mechanisms as MPU to propose an architecture with simple in-order cores stacked near memory.

They propose use of a map-reduce programming model and evaluate on five database kernels.

The main contribution of MPU over NDC is threefold. First, we undertake detailed analysis

across 17 workloads spanning different domains, including end-to-end database queries, which

enables us to make the claim that a general architecture like MPU can be competitive or more

efficient than OoO processors for workloads with good locality, are significantly more efficient

for low locality workloads, and come close to the efficiency of proposed specialized solutions in

the literature. Second, MPU work includes a detailed proposal of a more flexible programming

model, hardware architecture and system architecture that can be non-intrusively deployed on

state-of-art OoO processors. Finally, specifically comparing the programming models, the map-

reduce programming model is less flexible. For instance, it is non-intuitive to write graph analytics

applications in map-reduce that often require atomic/shared accesses to data by multiple threads.

Picoserver [13] also uses similar mechanisms and principles as MPU. However, it is primarily

suited for front end web servers where work is sent over the network along with data required for

that work - there is no shared memory between host and the PIM units. Hence, unlike MPU, it is

unsuitable for workloads with mix of serial and parallel regions.

Each of the studies [10], [11] and [12], target a specific application domain by specializing their

system design. They also specialize their programming model which leads to unintuitive porting

of workloads outside their domain. Gutierrez et al [10] study the potential of 3D die stacking for
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backend key-value stores. They specialize the APIs in the proposed programming model to support

key-value store functionality (GET and PUT requests). Ahn et al [11] propose an architecture and

programming model specialized for graph processing that combines the PIM idea, message-passing

based programming model and hardware prefetching techniques in a novel fashion (discussed and

quantitatively compared against MPU in Chapter 9). Ham et al [12] propose a highly specialized

architecture for graph processing that specializes computation as well as memory accesses using

custom hardware blocks.

There have been recent work like the one proposed by Zhang et al [14] and Vijayaraghavan

et al [18] that utilize GPU as the compute substrate stacked with memory in a 3D fashion. Such

architectures have much to gain from high bandwidth access, critical to GPU performance. Having

said that, GPUs are best suited for workloads that exhibit high data parallelism and regular memory

access pattern, and thus can provide excellent performance and energy efficiency for such workloads.

However, this efficiency cannot be sustained in the presence of irregular memory access pattern

(graph analytics workloads, for instance), as the GPU micro architecture include components like

memory coalescer that burns power without being able to coalesce accesses and boost performance.

MPU, fundamentally, takes a very different approach than GPU to gain energy efficiency and

performance. While GPU invests significant hardware resources to enable massive multithreading

and fast memory accesses for data parallel workloads with regular access pattern, MPU primarily

targets workloads with irregular access pattern, utilizes large number of ultra-low power cores

to gain performance via concurrency, and achieves energy efficiency by waiting efficiently on main

memory accesses.

Conceptually, our goals are similar to Ahn et al [16] who propose a novel, low overhead technique

for exploiting PIM benefits without modifications to the cache coherence protocols, virtual memory

support while requiring minimal changes to the programming model. They provide hardware

support on the host CPU chip to identify and offload low-locality memory accesses to the PIM

substrate to take advantage of the high bandwidth availability, while keeping all the host CPUs

ON to manage the computation. MPU keeps the CPU chip unmodified, but embraces disruptive
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change to the memory chip. It needs only 1 CPU ON (static power savings) to manage computation

and offloads all computation to the massively concurrent, and ultra-low power hardware substrate.

Consequently, it provides much better performance and energy savings as shown in Chapter 9. The

GraphPIM work by Nai et al [19] is similar in concept to this work by Ahn et al, with the added

advantage of not having the programmer annotate variables that would have potentially low-locality

access.

HRL work [20] explores reconfigurable logic (combining ideas of CGRA and FPGA) computation

near memory. They show that their compute units are more efficient/lower area than FPGA, CGRA

and other types of compute units and almost as efficient as custom FUs for the programs they

run. So, they can fully fit these in the PIM and more effectively utilize all the available bandwidth.

However, FPGAs are still hard to program. MPU is much easier to program given the use of

programmable cores and remote procedure call based programming model.

State-of-art processors like Xeon Phi Knights Landing and Knights Corner [21] are related to our

work to the extent that they utilize several cores and die stacking (2.5D) to gain performance and

efficiency. Xeon Phi has the advantage of supporting Linux and thus many existing applications.

However, given that it still retains mechanisms like powerful out-of-order cores and cache coherence,

it is not well suited, in terms of energy efficiency, for applications that have limited data sharing,

irregular access pattern and low compute-to-memory ratio (all of which are exhibited by graph

analytics, for example).
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4 | Programming Model

In this section, we present the MPU programming model by describing its computation abstraction

(Section 4.1) and data abstraction (Section 4.2). In Section 4.3, we discuss the generality of our

model.

Note that, beyond the fundamental mechanisms of memory procedure calls and sharded view

of memory, all of the specific design choices/APIs presented in this section were driven by one main

factor: simplicity. Our objective in this thesis is not to propose the most-optimized programming

model, but to present a design that can be further optimized and improved.

4.1 Computation Abstraction

The fundamental mechanism through which we offload computation is that of remote procedure

calls to offload arbitrary granularity of work to memory. We call these memory procedure calls (MPC

void KVApplication(Input in[N]) { 
    MPU_Init(“mpu_kernels.o”) 
    MPUMailbox mbox[1024];     
    kernel1 = “GetValueK”; 
    kernel2 = “SetValueK”; 
 
    for ( int c = 0, i = 0; i < N; i++ ) 
        vid = <assign vault number> 
        if ( data[i]->type == GET ) 
            mbox[c] = MPU_Enqueue(kernel1, in, i, vid); 
        else 
            mbox[c] = MPU_Enqueue(kernel2, in, i, vid); 
        if ( ++c == 1024 ) { 
            MPU_Wait(); 
            CollectResults(mbox); 
            c = 0; 
        } 
    } 
} 

HTValue GetValueK(Input* in, int tid) 
{ 
    Bucket* b = in[tid]->bucket; 
    Key k = in[tid]->key; 
    for ( unsigned i = 0; i < B_SIZE; i++ ) 
    { 
      if ( b[i].key == k ) 
          return b[i].value; 
    } 
 
    return DEFAULT_VALUE; 
} 

(c) Key-Value store application kernels (b) Key-Value store host CPU code 

int SetValueK(Input* in, int tid) 
{ 
    Bucket* b = in[tid]->bucket; 
    Key k = in[tid]->key; 
    Value v = in[tid]->value; 
    for ( unsigned i = 0; i < B_SIZE; i++ ) 
    { 
        if ( b[i].key == k ) { 
            b[i].value = v; 
            return SUCCESS; 
        } 
    } 
 
    return NOT_FOUND; 
} 

mpu_kernels.c host.c 

(a) Execution flow for MPU applications 

K
er

n
el

A
(i

3
) 

CPU Thread 

MPU_Enqueue(KernelA,in1,..) 

MPU_Enqueue(KernelA,in3,..) 

MPU_Enqueue(KernelB,in2,..) 

MPU_Wait() 

K
er

n
el

A
(i

1
) 

K
er

n
el

B
(i

2
) 

Mailboxes 

 
 
 
 
 
 
 
 
 
 
 
 

<Collect results> 

Mailboxes 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Example application
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in the following). A MPC is an invocation, on behalf of the host CPU, of a computational kernel.

This kernel typically performs the memory-intensive part of the workload being executed, with

the remaining part being run on the host CPU. In order to run code on the MPU, applications

leverage primitives offered by our MPU API. The API consists of 10 calls - 2 related to initialization

(MPU_Init(), MPU_Close()), 2 related to memory management (MPU_Malloc(), MPU_Free()), 2

related to computation management (MPU_Enqueue(), MPU_Wait()) and others for synchronization

and global variable access. In this section, we focus only on the two core API calls used to manage

the computation, MPU_Enqueue() and MPU_Wait() and leave out the rest for brevity’s sake. We

explain the model and API using a running example.

As an example, in this section we consider a slightly more complicated version of our key-

value store application from Figure 2.2. The application, given in Figure 4.1(b) defines two kernels

(Figure 4.1(c)) that respectively retrieve (GetValueK) and update (SetValueK) an entry. It then

processes a set of input commands, each of which calls either kernel.

The host CPU interfaces to the MPC mechanism via a queue abstraction (Figure 4.1(a)). Each

MPC request is enqueued via a call to MPU_Enqueue(). The runtime then allocates a mailbox for

the request. A mailbox is a temporary memory buffer used to store inputs and outputs of a MPC

request; mailboxes are the main interface between the the host CPU application and the MPCs.

The mechanism is asynchronous: each call to MPU_Enqueue() allocates a mailbox, stores input

data in it, forwards the command to the MPU logic, and returns immediately. This favors a batch

processing model (Figure 4.1(a)) where the host CPU can schedule many commands in parallel

(by enqueuing then) without waiting for each command to terminate. Each MPU_Enqueue() in the

example receives 4 parameters: (1) a string describing which kernel to run, (2) the data argument

address (shared by all launched threads), (3) a thread ID and (4) a vault ID on which to Enqueue this

kernel. The thread ID is used by the Enqueue’ed kernel to index into the argument data structure

(which is simple a C structure that can hold multiple datatypes/variables). The MPU runtime and

hardware controller direct the command to the correct vault based on the vault ID argument.

Internally, the MPU kernels (Figure 4.1(c)) manipulate the data structure. If a result is returned, it
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Figure 4.2: MPU Address Map

is stored in the mailbox associated with the command. Note that the mailbox can only store a single

64-bit value, so any results that exceed this limit must be returned via memory (programmer would

need to allocate memory for this return data before launching the kernels). It is also possible to

return all data through memory without using the mailbox. In order to wait for all enqueued threads

to complete and safely retrieve the results, the host CPU must call MPU_Wait(), which stalls until

all the pending MPCs have completed. Once MPU_Wait() returns, the results of issued commands

can be retrieved by the host CPU from the respective mailboxes (and memory, if required).

The goal of the queue-based mechanism is to allow a single host CPU thread to issue a large

number of MPU commands without blocking. This enables massively parallel workloads on the

MPU with only a single host thread managing them, with consequent power/energy savings.

MPU provides a relaxed memory consistency model. Memory operations issued within execu-

tion of a single Enqueue of a kernel commit in-order, but there is no ordering guarantee between

memory accesses issued by different Enqueues. Programmers can use an MPU_Wait() to create a

fence as necessary.
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4.2 Data Abstraction

The MPU does away with the notion of a flat memory space, exposing to the the programmer the

abstraction of 16 memory segments, matching the number of vaults in our underlying hardware. In

our current design, as shown in Figure 4.2, each vault consists of code+globals region, heap region

and stack region. 8MB in each vault is reserved for the stack used by each core (1MB per core). The

size of the code and global variables region is determined by the size of the mpu_kernels executable

(all MPU kernels need to be defined in a separate mpu_kernels.c file and compiled separately for

the target LX3 ISA). The remaining memory is allocated to heap region. Note that, in our current

design, all code and global variables reside in vault 0. In the remaining vaults, this region is unused,

which is reasonable given that this region is expected to take a small portion of the vault.

Each instance of an MPU kernel execution is tuned by the programmer to primarily access data

within a single vault, to maximize performance. However, note that the architecture or programming

model imposes no constraint on data placement. A kernel running on one vault can access data in

another vault the same way it accesses data in the same vault, though it would take a latency hit

due to inter-vault access.

Global variables can be used within the MPU kernels in a fashion similar to conventional global

variable usage. However, to allow the host CPU code to access these variables, an MPU_GetGlobal

API needs to be used with the variable name string as argument. The API extracts the corresponding

symbol from the executable to get the symbol address and returns the address as a pointer to the

global variable.

To deploy the key-value store application in Figure 4.1, the programmer would allocate the

memory required to store the application dataset while passing a vault ID number with each

allocation request (MPU_Malloc(mem_size,vault_id)). A pointer in the host CPU virtual address

space is returned. The programmer would then instantiate a hash table in the allocated memory

in each vault. As certain applications may still need to access data across vaults, MPU uses an

interconnection network in the logic layer to access memory from a remote vault. The same
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underlying mechanism is extended for multi-MPU chips.

4.3 Generality of the programming model

Types of code: Since kernels are off-loaded like remote procedure calls, they can be arbitrary pieces

of code, including pointers, control-flow, recursion, and calls to standard library functions. They

must however avoid any system calls. For the purpose of this work, we do a bare metal compilation

of the mpu_kernels.c file, including only the compiler provided headers (no GLIBC). We use our

own custom implementation of required standard library functions like strlen, strcmp among others.

As mentioned before, all the code resides in vault 0 code section. Some workloads (especially

interpreted code like php, ruby etc.) are known to have an extremely large static code footprint and

are unsuitable for MPU without modifications to our design. The workloads we consider are all C

or C++ and the offloaded portion is user code without system calls or I/O.

Locks, coherence, and races: MPU kernels can also include various forms of synchronization

within/between kernels. We extend the ISA with load-reserved/store-conditional instructions

(LR/SC) to support atomic operations like locks, atomic fetch-and-add, among others, in the MPU

programming API. Since we expect locks and other atomic operations to be used sparingly, and

memory access time is small, any atomic/lock operation is not cached (our proposed LR/SC

instruction implementation ensures this). This avoids the need for hardware coherence protocols.

Comparison with other programming models: The model closest to MPU is OpenCL. The main

conceptual difference between OpenCL and the MPU model is that the former chiefly focuses on

organizing computation, directly supporting SIMD-style operations and hierarchies of threads

collaborating and communicating at different scales. Conversely, the MPU model focuses on data-

layout and irregular code allowing multiple, independent computations. From a syntax standpoint,

MPU applications can be written in OpenCL, and a MPU backend is straight-forward to implement.

Similarly, one could implement a MapReduce backend that targets the MPU - since our underlying
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mechanisms can support Map/Sort/Reduce.

Compiler and Runtime: In order to support application deployment on the MPU, the MPU part

(marked using custom annotation) must be compiled and fed to a modified linker, that must ensure

ABI conventions are matched between the host CPU and the core used on MPU. While deploying

on a real system, the ABI (application binary interface) of the core’s ISA used on MPU should

ideally match the ABI of the host ISA as much as possible to ease integration. Note that we chose

Xtensa LX3, despite it being a VLIW core, throughout this document and analysis primarily because

it represents a micro-controller class ultra low power core with easy to access specifications for

our analysis. Setting up this compiler infrastructure is future work. For simulation studies, we

use the x86 instruction trace 1. Communication between the host and the MPU-based application

components is mediated by the MPU runtime, which implements the MPU API in the form of a

shared library.

1Blem et al [22] show that both ARM and x86 ISAs have similar instruction mix characteristics
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5 | Architecture

Figure 5.1 shows the detailed organization of the MPU. We leave the DRAM dies unmodified and

augment the logic die. The colored components are the modifications and clear white boxes are

components that are part of standard HMC design. We add one compute tile associated with each

vault and physically tightly integrated with the vault controller. We also add an interconnection

network (called the MPU NoC) between the compute tiles to allow a core to access memory in

other vaults. A centralized MPU controller interfaces with the host CPU to offload requests to MPU

compute tiles.

All the design choices presented here are driven by one over-arching objective: choose the

simplest design that matches what is required for the workloads that MPU is best suited for

- highly concurrent, memory intensive workloads that present low cache locality and minimal

synchronization among the concurrent tasks. Also, note that though the design described here is a

Vault Ctrl.  Vault Ctrl.  Vault Ctrl. 

Compute 

Tile 
R 

Compute 

Tile 1 

 

Compute 

Tile 15 

 

Crossbar Switch 

Compute 

Tile 0 

  R 

 .  .  . 
MPU 

Controller 

 

LIC  LIC  LIC  LIC 

R  R  R 

Figure 5.1: MPU High Level Organization



22

Router

Core	0

D$ I$

Core	7

D$ I$.	.	

Bank	
Scheduler

Compute	
scheduler

Vault	controller

(b)	Compute	Tile

Address	
Translation	

Unit

Command
Register

Packet	Generator/
Decoder

Router

(a)	MPU	Controller

Controller	
Logic

Device
Registers

Figure 5.2: Controller and Tile Organization

detailed proposal, it still needs to be refined further for an RTL implementation.

5.1 MPU Controller

The MPU controller interfaces the MPU API to the MPU compute tiles, the HMC vault controller

and implements the mailbox interface. It uses memory-mapped IO to communicate to the host CPU

and receive MPU API’s calls converted into loads and stores. It converts these into MPU messages

delivered on the MPU NoC.

As shown in Figure 5.2(a), the MPU controller consists of controller logic, a command register,

device registers SRAM that serves as a mailbox buffer and store of other necessary registers, packet

generator and router. The mailboxes (within device registers block in the Figure) are addressable

by the host CPU using memory-mapped I/O and x86 strong uncacheable loads and stores. There

are a total of 1024 mailboxes.

Each mailbox entry is 24 bytes long to include a 64-bit kernel address, a 64-bit argument data

address or return data, vault ID and thread ID. These comprise 3 of 7 64-bit device registers. The

other registers are used during initialization to communicate the following information - base

address of virtual memory region on the host CPU to which MPU memory is mapped (explained

in Section 6), total size of MPU memory, stack size per core and stack base offset from start of

vault memory. The command register (64-bit) is used to communicate the MPU API operation

that was last sent by the host. There are four fields in the command register - command ID, 10-bit
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mailbox ID, 1 bit indicating that the last Enqueue was received (set by host CPU on MPU_Wait) and

1 bit indicating completion (set by controller logic on completion of all Enqueues). This requires a

reasonably small SRAM of 24KB for mailboxes and 40 bytes for remaining registers and command

register.

MPU_Enqueue() commands are compiled down into 3x64-bit strong uncacheable stores that write

into a mailbox register, followed by a write into the command field to indicate that an Enqueue was

received and mailbox ID field of the command register to indicate which mailbox was populated.

This triggers the controller logic to read the mailbox, invoke the packet generator to create a fully

formatted NoC message and send it to the correct vault for scheduling the kernel. The controller logic

resets the command register as soon as it has successfully read the previous command, which is an

indication to the host CPU to send the next command (using polling). Note that the MPU_Enqueue()

only needs to block until the controller reads the command, not until completion of the Enqueue.

Values received from the compute tiles are written into the corresponding mailbox entry. The

controller logic keep track of Enqueued kernels and completed kernels. Once all kernels have

completed and the "last enqueue" indicator bit is set, the "done" bit is set in the command register.

Reading the "done" bit would again require polling by the host CPU in this design. Note that

potentially better designs may forego the requirement of polling by the CPU or reduce the frequency

of polling using some timer-based mechanism in the controller.

5.2 Compute tile

The compute tile organization shown in Figure 5.2(b) consists of four sub-components. It includes

an array of eight cores that make up the compute fabric. Its compute scheduler receives enqueue

commands, and assigns work to an available core. The cores execute instructions and they interface

to the DRAM banks with the bank scheduler and block until values return. The address translation

unit converts virtual address, post an L1 miss, into physical address before accessing the bank

scheduler and main memory. Its described in more detail in Section 6.1.3.
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The compute scheduler dequeues MPU requests in-order and schedules them to available cores.

It keeps track of the status of all the cores and when one become free it assigns an MPU request to

that free core. The process of assigning a request entails delivering the input arguments and code

address for the request (i.e. the parameters for the MPU kernel code) to the compute fabric and

the specific core. Once assigned, the core executes the kernel code and on-termination notifies its

completion status to the compute scheduler. Return values are delivered to the MPU controller

through the MPU NoC, and from there to the host CPU.

The compute fabric comprises eight simple micro-controller class cores. The choice of core

count is driven by the goal of building enough compute capability to maximize the utilization

of the available bandwidth in the vault. Each vault consists of 16 banks. In our initial design,

we provisioned 16 cores in the vault to sustain concurrent accesses to each bank. However, upon

studying the actual access pattern and performance achieved by our workload set with 16 and 8

cores, we settled on 8 cores per vault. Further design space exploration is required to optimize

the core count and cache sizes. In this specific paper, we consider a design with Xtensa LX3 cores

since it allows us to estimate power and area1. We assume the ISA is extended with uncacheable

ld/store instructions and LR/SC instructions to implement locks and other atomic operations like

fetch-and-add. The core pipeline is short and blocks on memory access. The cores also include

private small (16KB) level-1 data and instruction caches. The primary purpose of the caches is for

stack access and to act as an energy filter - accessing a 128-bit line from SRAM is almost 10× less

energy than a DRAM bank access, from models like CACTI [23] and other estimates [24, 25]. The

cores access memory through a bank scheduler which keeps track of the status of all 8 banks and

schedules accesses to these banks while adhering to DRAM timing requirements. The compute

scheduler allows the cores to “complete” out of order since this has no impact on correctness and the

programming model semantics expose this to the programmer. It is important to note here that the

cores are really small in area and eschew many sophisticated features that make general-purpose

cores large. According the detailed area estimates, at 45nm place-and-route area of one core is
1We ignore its VLIW issue capability and treat it as single issue in-order for performance modeling
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0.044mm2 [26], including the L1 caches its area is 0.257mm2; scaled to 22nm this is 0.064mm2. In

contrast one core (excluding L2 and L3) of the Intel Ivybridge processor at 22nm, based on its die

photos [27], has area of 8.57mm2, making it 133× larger. Excluding L1-caches for both, it is roughly

600× larger. Compared to the ND Cores in [15], our core is 2.8× smaller, and 11× lower power.

Our architecture and system design enables consistent pointers between the CPU and MPU,

using a simplified mechanism, without need for additional page table support, TLBs or cache

coherence. The address space that MPU operates on is the regular virtual address space of the CPU.

Any CPU code can access data that belongs to the MPU after a cache flush of all the level-1 data

caches, triggered in HW after all Enqueues complete execution. We discuss our system design in

detail in chapter 6.

The MPU design provides hardware support for atomic operations like locks, fetch-and-add,

among others, by extending the XTensa ISA with load-reserved (LR) and store-conditional (SC)

instructions. These instructions are implemented by making appropriate modifications to the LX3

micro architecture and additional hardware at the vault controller. These two instructions form the

building block for implementing any atomic operation in the software.

Cache coherence (within MPU) issues are avoided using following mechanisms. Cache coher-

ence between CPU and MPU is discussed in Section 6.

1. Uncacheable accesses to Global Variable Segment: Any access to global variables (including lock

variables) is ensured to be coherent by bypassing the L1 cache. This is achieved using the

following mechanism: All global variables are placed in the .data and .bss segments of

code+global region in vault 0 as shown in Figure 4.2. The start and end address of this

region is placed in 2 registers in each MPU core. On each load and store, the target address

is compared against these registers to see if it is a global memory region access. If so, the

core bypasses the L1 cache and sends the request directly to vault controller. For LR/SC

instructions, coherence is ensured by having these instruction implementations bypass the L1

cache.
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2. Cache flush and invalidation of any data touched within a critical section: To maintain coherence for

data shared in a read-write fashion, but allocated in the heap region of the vault(s), we use the

L1 cache controller to record all cache lines accessed between MPU_Lock and MPU_Unlock.

On MPU_Unlock, the core writes back and invalidates dirtied lines, and also invalidates lines

that were only read. It is necessary to do the later (invalidate lines that were read but not

written) as they might get written by another core (say core#2) that enters the critical section

after core#1, and core#1 might read the line again in a future entry to the critical section. We

assume good programmer behavior where these racy accesses are enclosed within a critical

section (using MPU_Lock, MPU_Unlock). To reduce hardware overhead in the cache controller,

a more coarse grained recording of the cache lines may be more appropriate (for instance,

recording address of one cache line might represent that the adjacent cache line was also

accessed, even though it wasn’t - false positive).

5.3 Implementation

The compute fabric can be built using off-the-shelf embedded processor cores like the Xtensa LX3

(which is highly configurable and hence our choice for this paper) and existing interrupt and

memory-mapped mechanisms can be used for interfacing to other components. Based on product

sheets [26], the Xtensa-LX3 has power of 7.1mW at 500 MHz and 0.044mm2 at 45nm (excluding

cache areas). From CACTI the area of two 16KB caches built with LOP transistors (to minimize

leakage power) totals to 0.213 mm2 with an access time of 1.5ns. We expect our custom logic

added to the core and L1 cache to have minimal area and power overhead. Considering 8 such

cores running at 500 MHz gives 57 mW power and 2.06mm2 area for the compute fabric. In our

evaluation section, we account for the cache access energy which varies based on the workload. For

the interconnection network, we use a lightweight network mesh network commonly used in spatial

architectures [28, 29]. The router area is 0.012mm2. Considering the entire MPU which consists of

16 such tiles, and a 64 KB SRAM, its total area is 33.4 mm2. We use low power cores, since thermal
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containment in 3D integration is important. Our logic die power at 45nm (including SRAMs = 2.4

watts on average) is similar in power to two HMC links ( 3.5 W). Similar to others [15], we propose

keeping only one SERDES link ON during MPU execution (computation by LX3 cores).
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6 | System Level Design

The MPU system design adheres to two primary guiding principles:

1. Consistent Pointers: In order to enable high programmer productivity for new applications

and ease of porting existing ones, the design must support consistent pointers between CPU

and MPU code.

2. Unmodified Host CPU Chip: In order to enable plug-and-play integration to existing CPU SoCs,

the design must not require any hardware modification to the CPU die, and require minimal

modifications to the operating system.

This section details our design approach that adheres to these principles. We first present

an overview describing the address map, how we maintain coherence between CPU and MPU,

hardware support required on MPU for address translation, the challenges associated with this

approach and how we resolve them. We then present an example pseudo-code of an MPU program

that ties together the system architecture and the programming model described in Chapter 4.

Note that the design presented here is a proposal and might need further refinement for actual

implementation.
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6.1 Overview

6.1.1 CPU Virtual to MPU Physical Address Map

Figure 4.2 lays out the address map of the MPU physical memory. The code, heap and stack regions

for each vault are contiguously located. These regions are allocated and managed at a megabyte

(MB) granularity by the MPU software library running on the CPU. Each vault is sized 256 MB.

To enable consistent pointers between CPU and MPU code, we provision a simple address trans-

lation mechanism without any additional page table and TLB support. Figure 6.1 shows how MPU

physical memory is mapped into the host CPU virtual address space. The entire physical memory

on MPU is mapped into the CPU virtual address space using the mmap system call at the beginning

of the program. Essentially, this can be thought of as mapping the entire MPU memory with a

single large page, thus required only a single base address for address translation (refer Figure 6.2.

The programming model provides APIs for allocation (MPU_Malloc) and deallocation (MPU_Free)
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Figure 6.2: Code/Data Access Mechanism

of memory into a particular vault in this mmap’ed region. The MPU software library on host CPU

manages memory allocation and deallocation using a modified malloc library implementation.

6.1.2 CPU and MPU Coherence

Since the mmap memory region mapped to the HMC can be accessed by both CPU and MPU code,

maintaining coherence between the CPU and MPU caches is a concern. We do not support hardware

cache coherence, and instead make a simplifying requirement of good programmer behavior where

the CPU and MPU cores are not accessing this memory at the same time. We believe this is a

reasonable choice for the type of workloads that we target, where the CPU hands off work to the

MPU and does not touch the data associated with that work until MPU has finished the assigned

work. We ensure that the caches of CPU or MPU are flushed and invalidated before transfer of

execution from CPU to MPU or vice-versa.

6.1.3 Code/Data Access Mechanism

Each of the three sections (code, stack and heap) are accessed using a common translation mechanism

as shown in Figure 6.2. As mentioned earlier, the MPU kernel code uses virtual addresses, both

for code and data. The L1 data and instruction cache are virtually indexed, virtually tagged, so no

translation is required for cache accesses. On an L1 miss, the virtual address is translated to MPU
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physical address using a simple base-and-bound mechanism. The base and bound registers are

initialized during initialization phase of the program along with the mmap call (base register to the

mmap base and bound register to the size of MPU physical memory). This mechanism is built into

an address translation unit located in each compute tile.

Each MPU core uses a fixed 1MB stack page to store local variables. To ensure that stack pointer

increments do not exceed its allocated 1MB space, each increment to the stack pointer will generate

a check against the stack bound register (not shown in Figure 6.2). This register and checking

mechanism is built into the core. The stack pointer and bound registers are also initialized along

with the base and bound registers during MPU_Init().

6.1.4 Challenges

There are four main challenges to this approach from the system software perspective, as listed

below:

1. Ensuring cache flush and invalidation of dirty CPU/MPU cache lines while transferring

execution between CPU and MPU

2. Ensuring that the mmap’ed virtual address space is kept contiguous in physical address space,

as shown in Figure 4.2

3. Ensuring that the mmap’ed virtual memory region is mapped to the HMC physical memory

ONLY, instead of some other physical memory in the system

4. Ensuring that the contiguous physical addresses are mapped to a single vault, followed by

the next vault and so on.

Challenges 1 and 2 would require use of new/existing kernel functions, which would in turn

require corresponding new system calls so that these kernel functions can invoked by the user-

space MPU memory manager. The other two challenges can be resolved more easily without OS
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modifications. Below, we briefly describe a proposed solution each challenge. Note that these are

only preliminary solution proposals, and need to refined further.

Cache Flush On execution transfer from CPU to MPU, we would need a a kernel function similar

to dma_cache_wback_inv() to flush and invalidate potentially dirty cache lines on the CPU (across

all levels of cache). This particular function was designed for DMA purposes, and hence cannot be

directly used for our design. This flushing would have to be invoked by the programmer using a

cache flush invocation API. For the other transfer direction (MPU to CPU), on MPU_Wait, hardware

support for flushing all the L1 data caches would be required. We expect the latency of walking

the L1 caches on MPU and generating the flushes to not have much overhead (few hundreds of

cycles) given the total cache size of only 2 MB. Walking the CPU cache and flushing is expected to

have a much larger overhead (around tens of thousands of cycles - assuming 10 MB cache flush, 80

GB/sec bandwidth). This should be acceptable as we expect the MPU programs to execute for a

much longer duration. The workloads that we have evaluated consume several hundred thousand

to millions of cycles.

Contiguous Physical Memory To ensure contiguous physical memory for the mmap’ed region,

a kernel function similar to kmalloc [30] would be required. kmalloc is meant for contiguous

physical allocation of relatively smaller request sizes (up to around 128 KB).

Using HMC Memory for mmap’ed Virtual Region To ensure that HMC memory chip is used to

back the mmap’ed virtual address region, a system call similar to mbind() [31] would be required.

This call binds the specified virtual address range to a specific memory node. It is meant for

non-uniform memory access (NUMA) machines, and can be readily used for our design.

Physical Address to Device-Specific Location Mapping The mapping of physical address to

physical locations of the memory device is handled by the particular memory controller, not the

operating system. The HMC memory controller allows configuration of how the addresses are
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mapped to vaults and to banks within a particular vault. This can be achieved by setting the

"Address Mapping Mode" register as described in the HMC specification [32].

6.2 Example MPU Program Pseudo-Code

This example MPU program ties together the MPU programming model and the proposed address

space management technique. Each MPU thread in the program takes two arrays, adds the corre-

sponding elements and writes it to an output array. As each thread completes it work, it atomically

increments a global variable.

To aid understanding, the code has been heavily commented. The code is presented in two parts

- host.c for the host CPU setup code and mpu_kernels.c for the MPU kernel code.

// ******************************************//

// ************** host.c code *****************//

// ******************************************//

// Argument structure (to be passed to the MPU kernel )

typedef struct {

int* input1_array ;

int* input2_array ;

int* output_array ;

int array_length ;

} args_t ;

int main(void) {

// Allocate 4 GB worth of virtual address space on the host

// Initialize base , bound , stack base and stack bound registers on MPU

MPU_Init ();



34

// Allocate memory on MPU physical memory heap for input and output data

// for each thread

int length = 100;

int vault_id = 0;

for(int i=0; i< NUM_THREADS ; i++ ) {

input1_ptr [i] = MPU_Malloc (length , vault_id );

input2_ptr [i] = MPU_Malloc (length , vault_id );

output_ptr [i] = MPU_Malloc (length , vault_id );

populate ( input1_ptr [i], length , ..., ...);

populate ( input2_ptr [i], length , ..., ...);

vault_id = ( vault_id + 1) % MAX_VAULTS ;

}

// Allocate memory on MPU physical memory heap for arguments

args = MPU_Malloc ( sizeof ( args_t ), 0); // allocate in vault 0

args -> input1_array = input1_ptr ;

args -> input2_array = input2_ptr ;

args -> output_array = output_ptr ;

args -> array_length = length ;

kernel = " compute_ct ";

// Schedule the kernel for execution on the MPU compute tiles

vault_id = 0;

for(int i=0; i< NUM_THREADS ; i++) {

// Use of mailbox is optional , used only if there is a return value

MPU_Enqueue (kernel , args , i, vault_id );

vault_id = vault_id % NUM_VAULTS ;
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}

// Block until all scheduled kernels finish execution

MPU_Wait ();

// Print output data

for(int i=0; i< NUM_THREADS ; i++) {

for(int j=0; j < length ; j++) {

print( output_array [i][j]);

}

}

// Print the global variable value

int* globalVal = MPU_GetGlobal (" global_var ");

print (* globalVal );

// Free up MPU memory not required

for(int i=0; i< NUM_THREADS ; i++ ) {

MPU_Free ( input1_ptr [i]);

MPU_Free ( input2_ptr [i]);

MPU_Free ( output_ptr [i]);

}

MPU_Free (args );

MPU_Close ();

}

// ******************************************//

// *********** mpu_kernels .c code *************//

// ******************************************//
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unsigned global_var = 0;

int compute_something (void* args , int thread_id ) {

args_t * arguments = ( args_t *) args;

int* input1 = arguments -> input1_array [ thread_id ];

int* input2 = arguments -> input2_array [ thread_id ];

int* output = arguments -> output_array [ thread_id ];

int length = arguments -> array_length ;

for(int i=0; i <length ; i++)

output [i] = input1 [i] + input2 [i];

MPU_FETCH_AND_ADD (& global_var , 1);

return 0;

}
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7 | Experimental Infrastructure

7.1 Simulation Methodology

The goal of our evaluation is to understand the effectiveness of our principles in achieving goals

of efficiency and generality. In order to do so, we use simulation to determine performance and

energy consumption of a range of workloads on single MPU (Sections 8.1 and 8.2) and multi

MPU configuration (Section 8.3). We also use the same approach to evaluate across various DDR3

and HMC based baselines (Chapter 8). We use a 4-core Intel Skylake processor as the baseline.

Additionally, we compare improvements achieved by MPU with those reported by competing PIM

architectures (Chapter 9).

In addition to the MPU configuration and the baseline CPU, we also model two intermediate

design points as shown in Figure 7.1. Note that, in SKY+HMC as well as SKY+HMC+128Tiny, 4

SERDES links connect the host CPU chip to the MPU while 3 of these links are turned off for the

(b) SKY+HMC (d) SKY+MPU 

(planar DDR3 replaced by HMC) 

L3 

HMC 
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Figure 7.1: Organization of Baseline Designs vs. MPU
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SKY+MPU configuration as only 1 CPU core needs access to the bandwidth. This approach allows

us to determine the individual impact of the three most important aspects of the MPU architecture:

replacement of planar memory with 3D-stacked HMC, array of lightweight cores, and near-memory

placement of cores.

We customized the fast, multi-core ZSim [33] simulator to model the MPU performance. Specifi-

cally, we use ZSim to model a system that consists of a single Westmere core + multiple single-issue

in-order cores with a memory system as described in Chapter 5. We customize ZSim to model

out-of-vault accesses and cache flushes while transfering control from MPU to CPU and vice-versa.

Our canonical baseline CPU is a Skylake system (details in Appendix), for which we obtain mea-

surements from a desktop CPU (i7-6700K). We chose this baseline as Skylake arguably represents

the current state-of-art processor and is widely used in the desktop and server markets.

Note that we use Westmere as the host core for MPU simulation instead of Skylake as ZSim

cannot model a Skylake core faithfully. It has been heavily tuned to model Westmere core. We

believe this is a reasonable infrastructure choice as the MPU performance will be more conservative

with Westmere instead of Skylake as the host core. In addition, most workloads execute relatively

small regions of code on the host CPU compared to MPU.

In order to measure the power and energy of both the baseline and MPU system, we built

a McPAT-like power model and integrated it with ZSim. We used datasheets on DDR3, HMC,

CPU-power, and Xtensa LX3, and CACTI to build this model that leverages access counts from

ZSim and energy-per-access for various structures from literature (Tables A.1, A.2 in Appendix).

Note that we are able to simulate end-to-end programs that include the serial code (modeled on

Westmere) and multiple parallel phases (modeled on in-order cores). This capability allows us to

faithfully model the effect of load-balancing.
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Workload Description Dataset
StringMatch Search file for an encrypted word 50MiB

Kmeans Iterative data-points clustering 100000 points
Histogram Histogram of each RGB component 100MiB image

Scan Scan 1 column of a database table 6 million rows
Aggregate Aggregate 1 column using 2-column

key
6 million rows

HashJoin Join two database tables 6 million rows
BuildHashTable Build hash table to get row index

from actual database item value
6 million rows

Table 7.1: Description of Kernels

7.2 Workloads Description

We have twin goals in our choice of workloads - representation of domain diversity and representa-

tion of “real-world” usage. Our first set of workloads are the commonly used kernels for evaluating

the PIM paradigm. Table 7.1 describes them. Next, we look at graph-processing workloads whose

properties are ideally suited for MPU/PIM. Next, we look at end-to-end database processing by

implementing TPC-H queries end-to-end. The first two workloads-classes do not stress the inter-

mingling of CPU phases with MPU phases. TPC-H queries stresses this aspect of MPU as well - a

single query has up to 15 MPU phases with intermingled CPU phases. Finally, to push the limits

on cache-friendliness and data-level parallelism, we look at state-of-art text analytics (which often

has even specialized accelerators of its own).

Note that we implemented two versions of each workload - pthread API version and MPU API

version. The pthread version is used for baseline simulation while the MPU version is used for

MPU simulation.

The remainder of this subsection describes the workloads.

Graph processing We implement 5 workloads common to two recent PIM papers [11, 16].

1. PageRank (PR): ranks the relevance of a graph vertex based on the relevance of its predecessors,

by performing multiple passes over the graph until vertex ranks stabilize.

2. Single-Source Shortest Path (SSSP): computes the minimum distance of each graph vertex from
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an arbitrary root vertex.

3. Average Teenage Follower (ATF) is used to process social network graphs. It computes for each

node, the average number of predecessors representing a 13 to 19-year old user.

4. Conductance (CT): measures the number of edges in a graph that go outside a specified partition

versus the number of nodes within that partition.

5. Vertex Cover (VC): finds the minimum set of vertices such that each edge of the graph touches

at least one of the vertices in the set.

For all five workloads, we use the same ljournal-2008 dataset used in [11, 16], obtained from [34].

DB processing TPC-H is an important database workload class which even includes dedicated

accelerators [35]. We used the MPU API and implemented the most commonly used operators,

along with 6 queries (1, 3, 5, 6, 10, 14) that use them. These operators - scan, aggregate, sort, hash join,

build hash table and materialize - exhibit varying degrees of memory regularity. The queries involve

heavy intermingling of host CPU code (code that is not offloaded to MPU) with MPU code with

both sharing the same address space, and multiple MPU operator calls per query. We use a 1GB

dataset sharded for the single MPU evaluation.

Our C implementation avoids some loading overheads etc. and is slightly faster than databases

like mysql, postgresql, etc. It provides a fair comparison to MPU, and gives us better control

for making detailed measurements and one-to-one comparisons. We use the query plan from

PostgreSQL.

Text processing We consider two types of finite-state-machine processing. DFAGroup implements

intrusion detection: rules expressed as regular expressions (2612 regexps from the popular Snort

IDS [36]), which are grouped into a set of discrete finite automata (32 DFAs total occupying 3.7GB),

are matched against network packet trace byte-by-byte (Lincoln Lab DARPA set [37]). It is extensively

parallelizable as each packet can be matched against each DFA in parallel, and different packets can

be processed independently.
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The second workload HTMLTOK is a state-of-art tokenization using the data-parallel finite state

machine (DP-FSM) algorithm from [38] which is irregular and concurrent. The algorithm processes

the input from every possible start state, simulating a set of FSMs running in parallel on the same

input (each starting from a different state). This code is SIMDized and multi-threaded for the CPU.

Our MPU implementation breaks the implementation in two phases (processing+tokenization) and

deploys the same FSM on multiple vaults, using each vault to match a different chunk of the input.

The 8 cores within each vault can be used as independent SIMD lanes, each advancing a different

state of the FSM. We used a 2GB Wikipedia text dump as input.

The range of workloads in our evaluation (described in this section) shows that the MPU API and Program-

ming model is sufficiently general to implement diverse applications.
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8 | MPU vs CPU

We seek to understand the effectiveness of our principles in achieving efficiency and generality.

To that end, in this section, we first compare MPU against CPU. We perform a narrow evaluation

by considering a single MPU integrated to a 4-core Skylake class processor. This allows us to

understand the source of MPU’s benefits and isolate how the three principles help.
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8.1 Performance

Figure 8.1 shows the performance of a single MPU across the workloads. MPU provides up to 16× speedup

with geomean speedups of 1.86×, 5.92×, 1.21× and 2.01× across the four workload sets - kernels, graph

analytics, database analytics and text analytics. It also shows break-down of the three intermediate

design points.

Fundamentally, the workloads that are suitable for MPU need concurrency. Sequential code

regions are executed on the CPU (3 of 4 Skylake cores turned off), and concurrent code regions

on the MPU cores, using the MPU’s tightly-coupled offload model. Thus, considering only the

concurrent MPU regions of code, MPU performance compared to a multi-core CPU can be expressed

as: CoreCountratio × Frequencyratio × IPCratio. Only the third term is workload-dependent and

the product of the first two terms is 32 / 7 = 4.57. Thus, (1 / IPCratio) needs to be greater than 4.57

for the baseline to outperform MPU on the concurrent region.

Based on this formula, the insight on why MPU can perform well is two-fold. First, on memory-

intense workloads with irregular access pattern, the IPC on the OOO Skylake CPU is typically low

due to high main memory latency. Second, since MPU runs at a much lower frequency (500 MHz),

the load-to-use and memory access latency (in cycles) are only 1 and 20, respectively. Due to these

reasons, MPU IPC is higher than CPU for some of these workloads (most graph workloads) and

when it is not, the CPU-to-MPU IPC ratio is typically lower than 4.57 (geomean 1.47).

However, note that this simplistic formula only applies when the overall instruction count is

same in baseline program and MPU program and load is equally distributed among all cores. As

we show in the analysis to follow, this does not always hold true. Also, for workloads that are not

100% concurrent (TPCH), Amdahl’s law effect plays its role in determining the speedup.

In our analysis, we also consider two intermediate design points - SKY+HMC and SKY+HMC+128Tiny

- to analyze where the benefits of MPU are coming from. Considering the intermediate design point

of adding only HMC (SKY+HMC), we should see performance improvements when the workload

is bandwidth bound by DDR3 even by the small number of CPU cores. The SKY+HMC+128Tiny
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Workload Speedup Description Suff. Arch.
stringmatch 1.63 Good locality + Parallelism in updating different reference

keys + High mem-to-total-inst ratio (50%) = Medium baseline
IPC (1.63). Good locality = Sufficient BW in HMC+128Tiny.
(1 / IPCratio)=1.83 HMC+128Tiny

histogram 2.29 RAW dependence due to same bucket = Medium CPU IPC
(1.86). High BW demand due to 128 cores = BW throttling in
HMC+128Tiny due to low available BW. Sufficient BW in
MPU_1Cube. (1 / IPCratio)=2.35 MPU_1Cube

kmeans 1.36 Good locality + Parallelism in handling diff points together =
High baseline IPC (3.91). Sufficient BW in HMC+128Tiny.
(1 / IPCratio)=3.95 HMC+128Tiny

scan 1.71 Medium L1D hit rate for baseline (94%) + no temporal locality
= low-medium baseline IPC (0.91) due to high BW demand.
With HMC, CPU IPC = 2.1 leading to 2.3× speedup, better
than 1.71 × speedup with MPU_1Cube. (1 / IPCratio)=2.6 HMC

aggregate 1.83 Serial dependency in aggregating hash table content =
Medium CPU IPC (1.9). High BW demand due to 128 cores
= BW throttling in HMC+128Tiny due to low available BW.
Sufficient BW in MPU_1Cube. (1 / IPCratio)=2.47 MPU_1Cube

hashjoin 1.28 Serial dependency b/w instrs + irregular access pattern
leading to low cache hit rate (88%) = low baseline IPC (0.33).
High BW demand due to 128 cores = BW throttling in HMC+
128Tiny due to low available BW. Less BW throttling in
MPU_1Cube. (1 / IPCratio)=2.75 MPU_1Cube

buildhashtbl 3.76 Serial dependency b/w instrs + irregular access pattern
leading to low cache hit rate (90%) = low baseline IPC (0.3).
Sufficient BW in HMC+128Tiny. (1 / IPCratio)=0.63 HMC+128Tiny

Table 8.1: Kernels Performance Analysis

configuration of adding the array of processing cores to the CPU die can match the performance of

MPU if the workload does not become bandwidth hungry even when running with many tiny cores

- this will happen when a workload has extremely good cache-behavior even on a small L1-cache.

Finally, the MPU_1Cube configuration will outperform both intermediate designs when the work-

load has enough concurrency and irregularity to take advantage of the much higher bandwidth

available internally in HMC than externally via SERDES.

In the following sub-sections, we analyze each class of workloads separately and summarize

the main analysis takeaways. In each section, we use a tabular format to analyze each workload in

detail.
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Workload Speedup Description Suff. Arch.
pagerank 14.63 High serial dependency + Very low locality (50% L1 hit rate) +

= BW throttling in baseline + low baseline IPC (0.05). BW
throttling in HMC+128Tiny also due to insufficient BW.
Less BW throttling in MPU_1Cube. (1 / IPCratio)=0.33.
(slowest core load is 60% > perfect load distribution) MPU_1Cube

shortestpath 2.28 Limited branch predictor behavior on CPU leads to fewer poor
locality accesses in core loop = better CPU IPC (0.23).
Similar MPU behavior and load imbalance as pagerank. (1 /
IPCratio)=1.64.

MPU_1Cube

avgteenage 15.94 Similar analysis findings as pagerank. Load imbalance.
(1 / IPCratio)=0.29. MPU_1Cube

conductance 5.28 Inner loop not taken often, so good load balancing and poor
locality accesses avoided = better CPU IPC (0.14).
(1 / IPCratio)=0.7. For HMC+128Tiny and MPU, no BW
throttling + load balacing much better leading to speedup
closer to (4.57/0.7) HMC+128Tiny

vertexcover 2.59 High serial dependency + good locality (90% L1D hit rate) =
Better baseline IPC (0.56) and MPU IPC (0.45) than other graph
workloads. BW throttling in HMC+128Tiny due to insufficient
BW. Less BW throttling in MPU_1Cube. (1 / IPCratio)=1.24 MPU_1Cube

Table 8.2: Graph Analytics Performance Analysis

8.1.1 Kernels Analysis

Table 8.1 presents performance analysis of each kernel. Below, we summarize the main takeaways

from our analysis.

Takeaway 1: Overall speedup is dependent on the IPCratio, which is affected by a variety of

reasons affecting baseline CPU core and MPU LX3 core performance - cache locality, mem-to-total-

inst ratio, instruction level parallelism.

Takeaway 2: Degree of parallelization and load balancing are other major factors dictating

speedup, but doesn’t affect the kernels evaluated in this section as they are almost 100% parallelizable

and well load balanced. Effect of load balancing is observed for graph workloads (Section 8.1.2)

while effect of parallelizability is observed for TPCH queries (Section 8.1.3).
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8.1.2 Graph Workloads Analysis

Table 8.2 presents performance analysis of 5 important graph analytics workloads1. Below, we

summarize the main takeaways.

Takeaway 3: All 5 graph analytics workloads have a very irregular access pattern leading to a

low first-level cache hit rates ( 50%) and much lower hit rate on lower-level caches for both baseline

and MPU.

Takeaway 4: These workloads all have high serial dependency, leading to low baseline OoO

CPU IPC (0.05-0.56) when combined with the low cache hit rates. For 3 of the 5 workloads (pagerank,

averageteenage, conductance), MPU IPC exceeds CPU IPC.

Takeaway 5: Load balancing is a significant contributor to speedup achieved with MPU for

graph workloads. This is mainly because of the structure of the graph making it hard to statically

do load balancing. We observe that for 4 of 5 graph workloads evaluated, the slowest core executes

60% more instructions than the ideal equally-distributed load scenario.

8.1.3 Database Workloads Analysis

Table 8.3 presents performance analysis of six database analytics queries from the TPCH benchmark

suite. These queries cover a fairly wide behavior pattern. Below, we summarize the main takeaways2.

Takeaway 6: Degree of parallelization of the program (and each operator) is the most significant

contributor to final speedup. We observe highest speedup for queries with maximum parallelism

(TPCH 6 and 14).

Takeaway 7: High degree of parallelization must be coupled with sufficient bandwidth to

ensure high speedup. As seen for tpch 5, we observe low speedup despite high parallelism which

is due to insufficient bandwidth.
1One of these workloads (pagerank) contains FP operations. However, LX3 core micro-architecture does not have an

FPU. Pagerank data here reflects performance and power of a hypothetical LX3 core that includes single-precision FPU
unit

2For some of these queries, we encounter a known simulation issue which under-estimates MPU performance. For
instance, in tpch1, MPU parallel-icount to total-icount is reported by simulator as 96% while it should be close to 100% as
per extensive human-expert analysis. So actual speedup should be higher than 0.54×
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Workload Speedup Description Suff. Arch.
tpch1 0.54 medium parallelism (96%) + medium locality = medium

baseline IPC (1.56). For MPU program, high BW demand
leading to significant BW throttling in HMC+128Tiny
as well as MPU_1Cube (IPC = 0.51) HMC

tpch3 1.28 low parallelism (86%) + low locality + serial dependence in
hash table lookups = low baseline IPC (0.44). For MPU
program, high BW demand leading to BW throttling in
HMC+128Tiny. Less BW throttling in MPU_1Cube MPU_1Cube

tpch5 0.86 Similar behavior as tpch3 but with higher parallelism (99%),
leading to significant BW throttling in HMC+128Tiny
as well as MPU_1Cube (IPC = 0.09). baseline IPC (0.4) HMC

tpch6 2.66 High parallelism (99%) + low-to-medium locality =
low-medium baseline IPC (0.65). For MPU program,
high BW demand leading to BW throttling in HMC+128Tiny.
Less BW throttling in MPU_1Cube MPU_1Cube

tpch10 0.44 Similar behavior as tpch3 but with lower parallelism (73%),
leading to very low speedups on HMC+128Tiny and
MPU_1Cube due to lack of parallelism. baseline IPC (0.42) HMC

tpch14 4.59 Very High parallelism (close to 100%) + low locality = low
baseline IPC (0.35). For MPU program, high BW demand
leading to BW throttling in HMC+128Tiny. Less BW throttling
in MPU_1Cube MPU_1Cube

Table 8.3: Database Analytics Performance Analysis

Workload Speedup Description Suff. Arch.
dfagroup 2.13 Parallelism in processing input chunks in parallel + Good

locality due to few hot state traversals + serial dependency
in core loop = Medium baseline IPC (1.38), but close to max
achievable IPC for MPU (0.9). Good locality = Sufficient BW
in HMC+128Tiny. (1 / IPCratio)=1.53 HMC+128Tiny

htmltok 2.01 SIMD compute in phase 1 to find start states for all input
chunks. DFAGroup-like processing in next phase. Overall,
similar baseline and MPU IPC as DFAGroup. However, more
memory intensity causing BW throttling in HMC+128Tiny
but sufficient BW in MPU_1Cube. (1 / IPCratio)=1.61 MPU_1Cube

Table 8.4: Text Analytics Performance Analysis

Takeaway 8: Compared to graph workloads, it is fairly straight-forward to load-balance the

threads in the TPCH queries. This can be attributed to inherit regular structuring of data in the

database tables.
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Figure 8.2: Energy Benefits of Single MPU

8.1.4 Text Workloads Analysis

Table 8.4 presents performance analysis of 2 two types of finite state machine processing workloads.

Takeaway 9: DFAGroup and htmltok both present good task level parallelism, good cache locality

and serial dependence in the core loop of computation. For these reasons, an MPU-like architecture

with high concurrency and efficient cores to execute low-ILP code regions is well-suited.

Summary Result: MPU proves most effective (in performance as well as energy efficiency)

on workloads exhibiting low cache locality (graph analytics). On other workloads, MPU remains

competitive in performance to state-of-art Skylake multi-core processor while consuming much

less energy.

8.2 Energy

Figure 8.2 shows the energy improvement of MPU. Across all workloads, energy reduction ranges between

1.1× to 38×. We analyze the sources of energy improvement by considering a single MPU attached
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to a CPU. We have four sources of power savings. First, we turn-off all but one host core, providing

static-power reduction (in practice other applications may run on it, charging the power/energy

to those). Second, 3 of the 4 HMC links are turned off since memory traffic from host core will

be low, providing static-power reduction. Third, and a source of small dynamic power savings, is

total memory access energy as we can save on the IO-energy of sending the values all the way to

the processor. Finally, a large source of dynamic power savings is that the MPU cores are more

energy-efficient than the 3 host cores that are turned off. Thus the total energy savings is speedup

multiplied by static power savings combined with the modest dynamic power savings.

Below, we summarize the main takeaways from our power analysis. Note that we choose to

discuss power instead of energy (for the most part except DRAM) to avoid the effect of execution

time on the analysis.

Takeaway 10: Baseline vs MPU_1Cube Configuration For all workloads, the baseline spends most

power (37-69%) on static compute power (core+SRAM) compared to other 3 power components.

MPU_1Cube configuration achieves 2.9× power reduction on this power component, resulting in

1.3× to 3.1× power reduction overall. In other words, most power savings come from turning off 3

of the 4 OoO cores on the baseline.

Takeaway 11: Baseline vs HMC Configuration The advantage of HMC configuration over base-

line lies in the more efficient DRAM access capability (lower dynamic access energy and higher

bandwidth availability), which comes at a cost of 2.4× higher DRAM interface (SERDES) power.

Hence, workloads that have good cache locality (thus fewer DRAM accesses) consume more energy

with the HMC configuration than baseline. This is true for about half of the workloads evaluated.

Takeaway 12: HMC vs HMC_128Tiny Main source of power reduction going from HMC to

HMC_128Tiny configuration is the reduction in static compute (core+SRAM) power (2.9×).

Takeaway 13: HMC_128Tiny vs MPU Configuration Main source of power reduction going from

HMC_128Tiny to MPU_1Cube configuration is the 4x reduction in static DRAM power (due to fewer

SERDES links).

Summary Result: Static power savings from retaining only 1 OoO core and 1 SERDES link, combined
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Figure 8.3: Performance Benefits of 4 MPU over Single MPU

with MPU’s energy efficient cores and energy-efficient access from 3D-stacked memory integration, provide

significant energy savings, which is amplified further with the performance improvements.

8.3 Multi-MPU System Analysis

In this section, we evaluate a multi-cube/multi-MPU system against a single MPU system to

understand how the performance and energy reduction scales. In terms of hardware configuration,

MPU_4Cube differs from the MPU_1Cube in the number of MPU cubes and the number of SERDES

links between host CPU chip and the MPU(s). The 4 MPUs each connect to a single SERDES channel,

thus driving up the total number of SERDES links to 4, compared to 1 in the MPU_1Cube.

Figure 8.3 and Figure 8.4 shows the performance and energy improvement of MPU_4Cube over MPU_1Cube.

Across the workloads, the performance improvement ranges from 0.3× to 3.91× while energy reduction

ranges between 0.18× to 1.5×.

Below, we summarize the main takeaways from our multi-MPU analysis:
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Figure 8.4: Energy Benefits of 4 MPU over Single MPU

Kernels Performance Analysis stringmatch, histogram and kmeans achieve an almost linear

speedup primarily owing to close to 100% parallelizability and perfect load balancing. Histogram

has 99% parallelizability, leading to lower speedup.

scan and aggregate kernels witness an improvement in IPC due to lower bandwidth throttling,

owing to 4× bandwidth compared to MPU_1Cube. This leads to >4× speedup in parallel phase.

However, a small serial phase lowers overall speedup.

hashjoin and buildhashtable witness a slowdown due to significantly higher total instruction

count across all threads compared to MPU_1Cube. This is counter intuitive since the total number

of keys being inserted/looked-up are the same. This is most likely a result of some algorithmic

issue that results in more hash table collisions on the MPU_4Cube configuration compared to

MPU_1Cube. Since these kernels are also used in several TPCH queries, it results in slowdown

in some of those queries too (tpch5, tpch10, tpch14). Detailed investigation was hampered by

debugging infrastructure capability.
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Graph Analytics Performance Analysis Load balancing deteriorates compared to MPU_1Cube

due to larger number of parallel threads. However, IPC improves owing to 4× bandwidth availability.

Overall, this results in 2×-3× speedup over MPU_1Cube.

Database Analytics Performance Analysis Most TPCH queries see a slowdown or a 1.7× speedup

at best over MPU_1Cube. This can be attributed to higher serial phase instruction count in the

reduction phase of the workload and the higher parallel instruction count due to hash table collisions

in the hashjoin and buildhashtable operators/kernels. This again highlights the importance of

concurrency for performance scaling. For most queries, IPC per core improves substantially (2×-3×)

due to lower bandwidth throttling enabled by 4× available bandwidth. However, the reasons

mentioned above prevent this from increasing the overall speedup.

Text Analytics Performance Analysis Given abundant task level parallelism, the text workloads

achieve close to 4× speedup. The DFAGroup has a small sequential code region which results in

lower speedup.

Takeaway 15 (Performance Analysis): Concurrency and load balancing play a significant part in

determining how much we can scale performance with a larger MPU system. With high concurrency

and good load balancing, a larger MPU system can achieve significant performance improvement

owing to the much higher internal- bandwidth (available to MPU cores) to external-bandwidth

(available externally through SERDES) ratio compared to a single-MPU system.

Takeaway 16 (Energy Analysis): Across all workloads, the maximum energy savings going

from MPU_1Cube to MPU_4Cube is 1.4×, despite much higher speedups. This is primarily due

to increase in all power components, with dynamic DRAM power contributing the most. In other

words, whatever power savings were achieved by MPU_1Cube over baseline by a 2.9× reduction

in static core power gets counteracted by an increase in dynamic DRAM+SRAM+Core power and

static DRAM power (due to more HMC links) in the MPU_4Cube configuration, with dynamic

DRAM power contributing most.
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9 | MPU vs Other Specialized PIM Ar-

chitectures

This section compares MPU to two other PIM architectures covering different ends of the performance-

generality spectrum. Tesseract [11] is a specialized PIM accelerator for graph processing with a

specialized programming model. PIM-enabled instructions [16] trades performance for the ability

to support a broader set of workloads while requiring modest changes to hardware and no changes

to the programming model. In our evaluation, we consider all five graph processing workloads

discussed in Chapter 8. All five have been evaluated in the Tesseract work and three of them

evaluated in PIM-enabled (for the same dataset).

For comparison with each of the two works, we model and evaluate an MPU architecture that is

similarly provisioned in terms of total capacity, number of HMC cubes and interconnect network

among the cubes. Each HMC cube is essentially an MPU_1Cube. Also, we sought to model a

similar baseline CPU as their work. Both papers are from the same author and description of the

baseline core is similar in both, thus leading us to believe that both papers used the same baseline.

The capability of their modeled core seems to be in the ballpark of Westmere core, based off of the

instruction queue and load/store queue size information they provide in their paper. To be as close

as possible to their baseline, we also chose to model the Westmere core in ZSim instead of using a

real Skylake CPU machine as the baseline, as we did in Chapter 8.
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PR SSSP ATF CT VC
Arch. Perf. Energy Perf. Energy Perf. Energy Perf. Energy Perf. Energy
MPU∗ 11.75× 9.04× 15.32× 14.4× 22.63× 20.89× 21.02× 10.92× 5.41× 6.6×

Tess.NoPft∗ 8× - 10.3× - 7.3× - 3.5× - 4.7× -
Tess.∗ 14× 10× 26.7× 20× 12× 10× 5.6× 4× 6× 4×
MPU† 5.75× 7.66× 8.34× 13.62× 12.33× 19.76× 11.63× 10.51× 5.8× 12.31×

PIM-e.† 1.58× <25% 1.51× <25% 1.6× <25% - - - -
∗Baseline: 32 4GHz 4-issue OoO + 128GB DDR3
†Baseline: 16 4GHz 4-issue OoO + 32GB HMC

Table 9.1: Comparison w/ Tesseract and PIM-enabled

Methodology Given the large scale of both Tesseract and PIM-enabled architectures (number of

cores, number of HMC cubes, interconnect), we follow a different simulation methodology than

used in Chapter 8. We built an analytical model on top of the zsim simulator to model the two MPU

architectures and two baseline architectures resembling those used in the two works. We obtain

simulation results from zsim for HMC configuration and MPU_4Cube (refer Figure 8.1 and 8.3), for

baseline and MPU modeling, respectively. We then scale various performance and energy estimates

like IPC, each component of power/energy, among others to reflect performance and energy on the

four architectures modeled here (2 MPU architectures, 2 baseline architectures). Finally, we report

Tesseract & PIM-enabled’s performance/energy numbers from their papers.

9.1 Tesseract

Architecture: Tesseract [11] is a PIM accelerator for graph processing workloads. The system

consists of 16 HMC 2.0 memory cubes with total 128 GB capacity and 512 cores. It augments each

cube with one core (2 GHz single-issue) per vault and two hardware prefetchers - a list prefetcher

that retrieves neighbors of vertexes being processed and a message prefetcher that retrieves vertex

content on computation transfer to remote vault. Unlike MPU, processing of each graph vertex

executes within the vault where the node is stored. Out-of-vault memory accesses are dis-allowed;

in such cases, the Tesseract programming model requires computation to be moved on the external
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vault via a continuation-passing mechanism. The baseline CPU is 32 4GHz 4-wide OoO cores and

128 GB of HMC.

MPU organization: For the MPU evaluation, we integrate 32 MPU’s (to get 128 GB capacity) to

the multi-core CPU. As the MPU programming model allows out-of-vault accesses, we simplify

the workload code and take advantage of that instead of generating tail calls as in the Tesseract

implementation. This is a major programmatic advantage that MPU holds over Tesseract.

9.2 PIM-enabled instructions

Architecture: This architecture [16] offloads work at basic-block granularity of (dynamically deter-

mined by hardware predictor - PMU), which have loads/stores likely to generate a cache miss. The

system consists of 16 HMC 1.0 memory cubes with total 64 GB capacity and 128 ALUs (called PCUs

in their work). It augments each HMC 1.0 vault with one PCU. The baseline used in [16] consists of

16 4GHz 4-wide OoO cores and 8 4-GB memory cubes.

MPU organization: The MPU system integrates 16 HMC 1.0 MPUs to the same baseline host

processor.

9.3 Quantitative comparison

Performance. Table 9.1 reports performance and energy results. For Tesseract comparison, we

report data for Tesseract with (Tess.*) and without the prefetchers (TessNoPft.*), from their paper.

Given that MPU provisions 8 cores per vault at 0.5GHz and Tesseract provisions 1 core per vault

running at 2GHz, the ideal speedup of MPU over TessNoPft.* should be 2× (8 ∗ 0.5/2) as this

comparison removes the prefetching advantage of Tesseract. However, the data in the table is not

consistent with our expectation. In some cases (ATF and CT), MPU speedup over Tesseract is well

over 2× while in others, it is about 1.1× to 1.5×. It is not possible to investigate more about this

discrepancy as further details about their simulation methodology and Tesseract architecture is
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unknown. Difference in load balancing of the graph across the threads between MPU and Tesseract

might also be a potential reason. With MPU, we do random partitioning of graph. Load balancing

assumptions in both Tesseract and PIM-enabled are unknown. Load balancing can be achieved

using some static or dynamic partitioning of the graph, both of which are active research topics [39].

After including the prefetching advantage for Tesseract, MPU achieves superior performance

on two of the graph workloads (ATF, CT) while coming within 15% of performance for two others

(PR,VC). Overall, the takeaway here is that MPU comes close to the performance of Tesseract while

not specializing either the hardware or the programming model for graph analytics.

Across all workloads, PIM-enabled instructions achieves modest performance improvements

over the baseline, remaining well below the MPU. This can be explained by observing that this

approach offloads small program regions with irregular access patterns, while the rest of the

computation is done on the host CPU. Thus, concurrency is limited to the number of cores × issue

width.

Energy. In the Tesseract experiments, MPU energy savings are significant but inferior to speedup,

which implies that MPU’s power consumption is higher than the baseline. This is due to the high

number of concurrent memory accesses while executing the workloads, which drives memory

power up. The same phenomenon affects Tesseract.

The PIM-enabled MPU configuration uses a significantly smaller number of memory cubes.

Therefore memory does not dominate MPU power consumption, and overall MPU energy savings

are higher than speedup. PIM-enabled offers limited energy savings; in this architecture the main

cores remain active during memory phases to orchestrate computation, limiting the impact of

offloading on overall energy.

Result: On two of five graph workloads, MPU outperforms a specialized PIM architecture, while remaining

competitive for two other workloads. Over a general PIM architecture, MPU achieves significant speedup

and energy efficiency. This shows that it is feasible to achieve generality in PIM while retaining significant

performance and energy benefits.
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10 | Conclusion

In this dissertation, we have presented a new class of processor called Memory Processing Units

(MPU) that enables efficient processing-in-memory leveraging simple principles: massive con-

currency to achieve performance, simple low frequency cores that idle efficiently, and a general

programming model that covers a large, diverse range of workloads. We have proposed a detailed

hardware architecture, system architecture and programming model that can be non intrusively

deployed on today’s commercial OoO processors. Finally, we have presented a detailed evaluation

study across a wide range of workloads spanning three commercially important workload domains.

This detailed evaluation enabled us to show that a simple, low overhead architecture like MPU can

be competitive or more efficient than commercial state-of-art OoO processors for a wide array of

workloads with a variety of behavior, and come close to efficiency of recently proposed specialized

architectures.

We conclude this dissertation with other thoughts/lessons learnt.

1. General Architecture is a better trade-off: The primary objective of our work is to investigate

whether a simple, general purpose architecture could prove to be a better trade-off between

performance, energy efficiency and flexibility compared to more specialized solutions, for

workloads that exhibit low cache locality, by coming close to the performance and efficiency

of specialized solutions while remaining highly flexible/programmable. I believe a general

architecture like MPU is indeed a better trade-off, given the following insights:
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a) The main performance benefit of PIM architectures comes from exploiting as much of the

available bandwidth as possible. Given the small area and low power characteristics of

tiny micro-controller class cores, we found that the available bandwidth can be saturated

by employing a large array of such cores placed near memory, thus resulting in high

performance and energy efficiency.

b) While additional performance can be attained by specializing the data path and the

memory sub-system (thus sacrificing flexibility), the gain in performance is unlikely

to be much more than what is achieved with a general architecture like MPU (based

on studying the speedup attained by Graphicionado [12] for pagerank and shortest-

path workloads) due to low cache locality and low instruction level parallelism in the

workloads of interest (graph analytics). The gain in energy efficiency is also unlikely to

be much higher than the speedup as memory access power starts to dominate power

consumption as one scales out the number of compute units, and it’s hard to reduce this

power consumption due to the hard-to-predict, irregular access pattern.

2. MPU is NOT a sufficient architecture for all kinds of workloads: We believe that MPU is a

good baseline architecture upon which future work can add more capability to further improve

efficiency. For instance, GPU can be more efficient than MPU for workloads with high concur-

rency and regular memory access pattern. One could imagine some kind of high throughput

engine connected to the MPU cores that provides highly efficient execution of workloads that

have traditionally done well on GPUs, with ideally similar or easier programmability.

3. Small data cache is beneficial: Though the tiny cores on MPU are placed near memory and

run at a much lower frequency than conventional OoO cores, the penalty is still non-trivial

(20 cycles) compared to 1 cycle latency of accessing a small data cache. Though the workloads

best suited for MPU would have a very low cache hit rate for heap accesses, they exhibit

much better cache locality for stack accesses. The stack stores frequently accessed local data
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structures that do not fit in the register file. Hence, we found a small data cache (to the order

of 16KB) to be beneficial for performance and energy efficiency.

In conclusion, we believe that MPU presents a promising direction to better understand the

tradeoffs between generality and specialization in the processing-in-memory space.
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A | Simulation Configuration

Tables A.1 and A.2 detail the baseline and MPU hardware configuration and power model paramemters,

respectively.

Configuration Value
SKY Config 4 cores, 4-issue, 3.5 GHz, 32KB 8-way L1D, 256 KB 8-way L2, 8MB 16-way shared L3
MPU Config 128 cores, in-order, 500 MHz, 16 KB private L1D & L1-I

MPU latencies 1 cycle hit, 20 cycle miss (40ns), 1 cycle non-memory insts,25-cycle out-of-vault latency
MPU power 0.0056 dynamic [26], 0.0014 static (per core),0.03 SRAM static power [23]

Table A.1: Hardware Configuration

Parameter Value
SKY Power Factor 1.1; 1-core DynamicPower=1.1*IPC [40]

SKY Static Power(W) 11.88; 2.97W per core x 4 [40, 41]; assuming 35% uncore.
SRAM Static Power(W) 0.03 lstp devices assumed [23]
DDR3 Static Power(W) 2.5; static power at 12.8 GB/sec [42]

DDR3 Access Energy(nJ) 23.3 per 64-byte; 70 pJ/bit at 12.8 GB/sec & 2.5W static power
HMC Static Power(W) 6; all 4 HMC links ON [15]

HMC External Access Energy (nJ) 3.06; per 64-byte access at 5.98 pJ/bit
HMC Internal Access Energy (nJ) 1.95; per 64-byte access, 3.8 pJ/bit [15]
HMC Internal Rd b/w(GB/sec) 160 [24]
HMC External Rd b/w(GB/sec) 80; Assuming all 4 HMC links are ON [24]

Table A.2: Power Data
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