
Behavior Specialized Processors

by

Tony Nowatzki

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2016

Date of final oral examination: 12/07/2016

The dissertation is approved by the following members of the Final Oral Committee:
Gurindar Sohi, Professor, Computer Science
Mark Hill, Professor, Computer Science
Somesh Jha, Professor, Computer Science
Jeffrey Linderoth, Professor, Industrial Systems Engineering
Karthikeyan Sankaralingam, Associate Professor, Computer Science

© Copyright by Tony Nowatzki 2016
All Rights Reserved

i

For My Dad.

I remember when my dad brought me to Unisys on “take your kid to work day.” At some point,
while we were hanging around in his office, he drew me my first hardware block diagram – boxes

representing cores, caches, and memory. I had no idea what he was talking about, but I always
appreciated that he spoke to me as if I were smart enough to understand. Thank you, Dad, for

instilling in me the love of understanding these crazy complex machines.

ii

acknowledgments

This dissertation would not have been possible without the support, encouragement and critical

advice from many people.

Chief among those is my advisor, Karu Sankaralingam. He taught me much over these last

years – how to express arguments, how to look for topics with the most impact, and how to do

rigorous research without getting lost in the details. He also inspired me to be passionate and speak

passionately about my ideas. What I am most thankful for is how he saw capabilities in me that I

didn’t know I had or could ever have. Karu, I hope that I can inspire others in the same way you

did for me, thank you.

My committee was incredibly helpful throughout my graduate studies, and I want to sincerely

thank them for their feedback and advice. I consider Mark Hill to be my academic role model; I hope

to be as wise as him someday, while remaining as personally balanced and strong. Guri challenged

me intellectually in ways that no one else could, and his perspective and critical feedback has been

invaluable. Thank you Somesh for encouraging me to be a more confident speaker, and many

thanks to Jeff Linderoth for teaching me about optimization and modeling, which was foundational

for much of my work. I would also like to thank the other computer science faculty at Wisconsin.

This especially includes David Wood for his thoughts and insights (and as a never ending source of

great stories).

Thanks to Google for the fellowship award – this allowed me to focus more on research, and it

also incentivized Karu to keep me around longer, thank you so much.

I owe a special thanks to two faculty members from the University of Minnesota. The first is

Professor Wei-Chung Hsu, whose passion for computer architecture and teaching capability was

what got me initially excited about the field. Also, I am grateful to have worked for my undergrad

advisor Paul Woodward, who first introduced me to the academic and publishing world, and the

“coolness” of having a paper with your name on it.

I am grateful to have had such fantastic folks to work with in the Vertical Research Group. I

iii

learned so much from Venkatraman Govindaraju, who was my fearless leader on many research

projects early in my academic career. He taught me that complicated problems could be solved

easily with the right attitude: “it’s nothing dude.” Marc de Kruijf, you were like my second advisor

in my first couple years. To Chen-han and the other DySER BROS, it was a blast. Special thanks

to Zach Marzec and Chris Frericks for your bizarre sense of humor and making the office fun.

Similarly, Jai and Raghu, thanks for your witty sarcasm and love of sparking arguments with Karu;

it was sorely missed when you left. To my closest work buddies: Vijay, I’ve always enjoyed our

conversations and your friendship. Vinay, I cannot thank you enough for all of the hard work you’ve

put into our collaborations; I have your back if you need a favor. Finally, I only just met Mitchell,

Preyas, William, Alex, and Junyong, but I can see your potential and know you’ll go far.

I’ve been fortunate to have so many other great collaborators. To Michael Ferris and Cristian

Estan, I really enjoyed our collaborative writing experience. It was equally a pleasure working with

Amir Yazdanbakhsh, Lorenzo De Carli, and Michael Sartin-Tarm – I truly learned a lot from you.

I will sincerely miss the many other incredible architects that I have been lucky to share the same

floor with: Hongil, Joel, Lena, Marc (while he stuck around), Swapnil, Srinath, Rathijit, Somayeh

and Hamid. A special thanks to Jason, Emily, Shoaib, Jayneel, and Gagan for feedback in reviewing

and critiquing my papers.

To my dear family, I owe you a debt that can never be repaid. Mom and Dad, you have been

there for me without fail, through fear, uncertainty, and doubt. Steve and Paul, thank you for being

such supporting big brothers, you have always been my role models since I was old enough to

remember. Also Paul, I forgive you for trying to dissuade me from pursuing my PhD – turns out I

am crazy enough for this.

Hamisha, thanks for putting up with me.

Newsha – this has been quite a ride, and I know this is the end of just the first adventure we are

going to have in our life together. Thank you for supporting me when I needed you the most, and

thank you for always believing in me.

iv

contents

Contents . iv

List of Tables. vi

List of Figures . vii

Abstract . ix

1 Introduction . 1
1.1 Hardware Specialization . 2
1.2 Behavior Specialization . 5
1.3 Contributions . 6
1.4 Organization . 8

2 The Case for an ExoCore Processor . 10
2.1 ExoCore Organization Overview . 10
2.2 Compilation Overview . 13
2.3 Why Programmer-Transparent Accelerators? . 16
2.4 Why Region Based? . 17
2.5 Why In-Core? . 19
2.6 Evaluated System and Modeling . 20

3 Modeling Behavior Specialization . 22
3.1 Limitations of Existing Evaluation Approaches . 22
3.2 Transformable Dependence Graphs . 23
3.3 TDG Transform Implementations . 28
3.4 Implementation: Prism . 36
3.5 Core and Accelerator Validation . 40
3.6 Limitations of TDG Modeling . 42
3.7 Related Work . 43
3.8 Summary . 43

4 Dataflow Specialization . 44
4.1 Potential of Dataflow Specialization . 44
4.2 SEED: An Architecture for Fine-Grain Dataflow Specialization . 49

v

4.3 SEED Architecture . 50
4.4 SEED Compiler Considerations . 56
4.5 Evaluation Methodology . 57
4.6 Evaluating Dataflow-Specialization Potential . 58
4.7 Related Work . 67
4.8 Summary . 68

5 Multi-behavior Specialization. 70
5.1 Behavior Synergy . 70
5.2 Designing an ExoCore . 73
5.3 BSA Selection . 76
5.4 ExoCore Exploration Methodology . 78
5.5 ExoCore Evaluation . 79
5.6 Related Work . 87
5.7 Summary . 89

6 General Mathematical Accelerator Scheduling . 90
6.1 Spatial Architectures and ILP Primer . 91
6.2 Overview . 92
6.3 General ILP framework . 95
6.4 Architecture-specific modeling . 105
6.5 Implementation and Evaluation . 116
6.6 Discussion . 121
6.7 Related Work . 124
6.8 Summary . 126

7 Conclusion . 127

A Steps in TDG Model Construction . 132

B TDG-Modeling of SEED and Trace-P. 133

Bibliography . 135

vi

list of tables

1.1 Dissertation Organization and Relation to Author’s Prior Work 9

2.1 Examples of Opaque and Transparent Accelerators Base: Baseline; SP: Avg. Speedup;
EN: Avg. Energy Reduction . 16

3.1 Prism’s Intra-Instruction Nodes and Edges . 29
3.2 Inter-Inst. Edges (Fx:Fixed, Cm:Computed, Rc:Recorded) . 31
3.3 Source Lines of TDG Modeling Code . 37
3.4 Validation Results (P: Perf, E: Energy) . 38

4.1 Suitability of Related Architectures for Explicit-Dataflow Specialization 49
4.2 Benchmarks . 57
4.3 GPP Cores . 57
4.4 SEED Area Breakdown . 58
4.5 Region-Wise Comparison of OOO4 to SEED, Showing only top region per benchmark,

Highest to Lowest Relative Perf.
(%Exec. Insts: % of original program executed by SEED; Vectorized: whether the GPP vectorized
the region, SEED IPC: Effective IPC of SEED, Ideal-DF IPC: IPC of Ideal-dataflow, En-Red:
SEED’s Energy Reduction, BPKI: Branches per 1000 µops, BMPKI: Branch Mispred. per 1000
µops, $MPKI: Cache misses per 1000 µops) . 60

5.1 Tradeoffs of Behavior Specialized Accelerators (BSAs) in this Work 74
5.2 Benchmarks . 78
5.3 General Core Configurations . 79

6.1 Relationship between architectural primitives and scheduler responsibilities. 93
6.2 Summary of formal notation used. 97
6.3 Description of MILP model implementation for PLUG . 112
6.4 Tools and methodology for quantitative evaluation . 117
6.5 Benchmark characteristics and MILP scheduler behavior. 120
6.6 Applicability to other Spatial Architectures . 123
6.7 Related work – Legend: i) computation placement ii) data routing iii) event timing

iv) utilization management v) optimization objective . 125

vii

list of figures

1.1 Behavior Specialization Paradigm . 5

2.1 ExoCore Architecture and Execution Model Overview . 11
2.2 ExoCore Modified for Dynamic Binary Translation . 15
2.3 Cumulative % contribution for decreasing dynamic region lengths, shown for different

static region sizes. 18
2.4 Dynamic Region Length (considering inlined nested loops < 1000 static instructions) . 20
2.5 Data Transfer Overhead for Non-In-Core Accelerators (considering 2MB L2 Cache) . . 21

3.1 Approaches for modeling transparent specialization . 24
3.2 Example TDG-Based model for transparent fused multiply-add (fma) specialization. . . 25
3.3 Example TDGs (Nodes/edges in Tables 3.1&3.2.) . 33
3.4 Prism Core Validation . 38
3.5 Prism Accelerator Validation . 39

4.1 Energy/Perf. Tradeoffs of Related Techniques
(See Section 4.5 for methodology) . 45

4.2 Potential of Ideal Explicit-Dataflow Specialization . 46
4.3 Arch. Effectiveness based on App. Characteristics . 48
4.4 High-Level SEED Integration & Organization

(IMU: Instruction Management Unit; CFU: Compound Functional Unit; ODU: Output Distribu-
tion Unit) . 51

4.5 a) Example C loop; b) Control Flow Graph (CFG); c) SEED Program Representation; . . 52
4.6 a) SEED Unit; b) IMU Microarchitecture; c) CFU Microarchitecture; 54
4.7 Compound Instruction Size Histogram . 59
4.8 Per-Region SEED Speedups . 61
4.9 SEED Specialization for Little, Medium, and Big Cores 61
4.10 Sensitivity to GPP Improvements and Region Choice Metric 65
4.11 Comparison with Other Specialization Techniques . 66

5.1 This work’s behavior-space. (Note that non-specializable in this context means that we
do not attempt specialization – not that it is known to be impossible to specialize for) . . 71

5.2 ExoCore-Enabled Heterogeneous System . 73
5.3 Example ExoCore Architecture Organization . 74

viii

5.4 Amdahl Tree – Example of Triple Nested Loop . 77
5.5 ExoCore Tradeoffs Across All Workloads . 80
5.6 Interaction between Accelerator, General Core, and Workloads 81
5.7 Per-Benchmark Behavior and BSA Execution Time and Energy Utilization 82
5.8 ExoCore’s Dynamic Switching Behavior . 83
5.9 Oracle versus Amdahl Tree Scheduler . 84
5.10 Interaction between Accelerator, General Core, and Workloads 85
5.11 Design-Space Characterization. S: SIMD, D: Data-Parallel CGRA (DySER), N: Non-spec

Dataflow (SEED), T: Trace-Processor . 86

6.1 Example of computation G mapped to hardware H . 96
6.2 Placement of computation . 99
6.3 Routing of data. 100
6.4 Example mapping with fictitious cycles. 101
6.5 Timing of computation and communication. 102
6.6 Utilization Management. 103
6.7 Optimizing performance. 105
6.8 Three candidate architectures and corresponding H graphs, considering 4 execution resources

(nodes) for each architecture. 106
6.9 CFU Scheduling Example. Each operation is labeled with its latency, and compound

instruction groups are circled. 108
6.10 Implementation of our ILP scheduler. Dotted boxes indicate the new components added. 117
6.11 Normalized percentage improvement in execution cycles of ILP scheduler compared to special-

ized scheduler. 119

B.1 Example SEED and Trace-P TDGs . 133

ix

abstract

Improvements in the performance and energy consumption of general purpose processors have

slowed dramatically over the last decade. This is due to the combined effect of breakdowns in

transistor scaling, causing severe chip-level power limitations, and monolithic and inefficient general

purpose microarchitecture. Over the last decades, and especially in recent years, the community has

turned towards domain specific processors, where general purpose programmability is jettisoned

for efficiency. These trends threaten the future of general purpose architecture innovation.

This dissertation explores a promising alternative to the domain-specific approach: to specialize

for broad properties of programs which span across domains, which we refer to as program behaviors.

Programmable hardware engines which exploit these characteristics – behavior specialized accelerators

– can be integrated into general purpose cores and used as offload engines to transparently improve

their performance and energy efficiency during amenable program phases. This work addresses key

challenges in accelerator modeling, microarchitecture, compilation and design-space exploration.

The evaluation and analysis herein suggests several key findings. First a small number of

exploitable program behaviors can be used to characterize a majority of applications. Second,

dataflow architectures become practical and useful in hybrid execution with a general purpose core.

Third, synergistic behavior-specialized accelerators combined with simple general core pipelines can

facilitate disruptive microprocessor tradeoffs, enabling mobile-class processor energy-efficiency with

desktop-class performance. In addition to the architectural discoveries, this dissertation proposes

a modeling methodology which enables rapid exploration of behavior specialized processors, as

well as a mathematical formulation for declarative and optimal instruction scheduling on these

architectures. Overall, the paradigm of behavior specialization demonstrates that the future for

general purpose architecture innovation is bright.

1

1 introduction

For many years, general-purpose processor architectures and microarchitectures took advantage

of Dennard scaling and Moore’s Law, exploiting increased circuit integration to deliver higher

performance and lower energy computation. The benefits of microarchitecture-only modifications

were clear; applications were transparently becoming faster and more energy efficient without any

involvement from the programmer or compiler. The synergy between continuous device scaling and

the leverage that it gave for augmenting general purpose microarchitecture has been a foundation

of technological and human advancement over the last decades.

Unfortunately, and as has been lamented numerous times [1, 2, 3], those physical scaling trends

are slowing, and the limited generational improvements to traditional general purpose architectures

are now apparent. For instance, the latest high-end server processors from Intel (the largest vendor of

general purpose processors) has achieved only 5% improvement in performance in its last generation

(the average improvements over the last four generations were only slightly better at 9% [4]). In

previous decades this was typically as high as 30% or more per processor generation.

In spite of the usefulness and value in high performance general purpose cores across server,

desktop and mobile (as evidenced by the large research investments by top companies), the limi-

tations in their improvements have caused a surge of interest in more narrowly-applicable archi-

tectures, which sacrifice generality in the hope of continuing improvements for some important

tasks. By some measures, this has been a largely successful endeavor: often many factors or even

orders-of-magnitude improvement are possible.

In fact, it is this stark disparity between the progress in general purpose architectures and

domain-specific and application-specific architectures that leads to the fundamental question of

this work: Is it possible to achieve the benefits of specialization while retaining general purpose flexibility?

This dissertation explores one possible route to addressing this challenge, and ultimately sug-

gests that it is possible to have the best of both worlds, at least to a large extent. Its fundamental

insight is that rather than specializing for applications, or even domains, we can instead specialize

2

for more broad and generally applicable program behaviors. The principle being to find a small

number of synergistic behaviors to specialize for, and create specialized hardware that is both integer

factors more efficient than a general purpose counterpart, while still being broadly useful. The

challenges in using such an approach simply becomes a matter of creating an effective architecture

organization, a practical execution model, a compilation strategy that limits programmer burden,

and modeling techniques that allow rapid exploration of the behaviors and specialized hardware.

The remainder of this chapter will focus on first defining what is meant by specialization, giving

some definitions and historical context. Subsequently, we discuss the relevant form of specialization

for this dissertation, behavior specialization and how that presents a unique opportunity. Then we

will cover the main contributions of this work and the organization of the dissertation.

1.1 Hardware Specialization

Definitions Hardware specialization is the application of modifications to some reference design

which improves its capabilities (defined by a metric, e.g. performance) for some set of workloads,

while reducing its capabilities for some “larger” set of workloads. Specialization can be strict, mean-

ing that the design is restricted in its applicability to perform certain applications. Specialization

can also be non-strict, meaning that the design is simply tuned to favor certain applications.

A behavior is an aspect of a program that can be conceivably exploited with hardware specializa-

tion, and does not describe the entire computation being performed – in other words, a behavior

is a general characteristic of a program on which hardware specialization relies. For example,

the presence of highly-biased control, data parallelism or memory irregularity are all program

behaviors. Non-behaviors in this context would be the prevalence of basic blocks with odd numbers

of instructions (no conceivable way to exploit), or programs which compute a Fast Fourier Transform

using the Cooley-Tukey algorithm (because this describes the entire computation, not a general

aspect of it).

A related concept to specialization is heterogeneity – the inclusion of multiple components which

3

serve the same purpose but are specialized differently. While heterogeneity generally implies

specialization, it is possible to have specialization without heterogeneity (e.g. application-specific

hardware), and heterogeneity without strict specialization (e.g. a system that contains two general

purpose processors, one “big” and one “small”).

Caveats The definitions above pose some interesting conundrums, and sometimes lead to unsat-

isfying discourse. We call these out here, and explain how we attempt to resolve them as best as

possible.

First, defining what designs or design aspects are specialized is difficult because there is no

definitive standard reference design with which to compare, no standard set of workloads with a

particular composition, and no standard metric for every situation. For example, in a big-little system,

which contains a big out-of-order processor and a little inorder processor, it would be fair to say

that the OOO processor is specialized for performance on workloads with high instruction level

parallelism. It would be equally fair to say that the inorder-core is specialized for energy-efficiency

on memory-latency bound workloads. Future discussions address this issue by being clear about

the reference design, intended workloads, and metrics.

Distinguishing strictness is also difficult. It would be tempting to use computability theory

to make such distinctions, classifying architectures into combinational logic, finite state machine-

capable, pushdown automata-capable, Turing machine-capable, and so on. By such definitions,

most programmable architectures would be technically equivalent in terms of strictness, as they

would be Turing complete. This would ignore the quite meaningful distinction of one architecture

having vastly superior performance for some workloads. An example would be executing floating

point instructions in hardware versus being emulated in software. To make future discussions

intuitive and meaningful, we would consider the above type of order-of-magnitude improvements

to be a form of strict specialization.

By its definition, what classifies as a behavior is subjective and changes over time as new

hardware specialization mechanisms are invented. At one time the prevalence of highly biased

4

control may not have been obviously an exploitable program behavior, but now it clearly is. The

harder part of this definition is in drawing the line between a general behavior, and one that describes

an “entire computation”. For example, is a stencil computation (Bi,j =
∑K

k=0
∑L

l=0Ai+k,j+l) a

complete computation, and therefore not a general behavior, even though it is a smaller part of

many algorithms like a neural network algorithms and image filters? This dissertation will simply

concede that it is a difficult question, and rely on the intuition and evidence for which features are

general or application specific.

Historical Context The concept of specialization has been critical to design decisions for decades

in the field of computer architecture, and we only scratch the surface of the historical context here.

Even the very first electronic general purpose processor, the ENIAC, had a heterogeneous mix of

multiplier, divider, and square-rooter units. Ever since, more specialized components have been

making their way into general purpose processors’ instruction sets.

Beginning in the 1970s, the well-known debate between simple (aka reduced) instruction sets

(RISC) and complex instruction sets (CISC), was largely an issue of specialization. Though not

perhaps originally conceived of in terms of specialization, CISC can be viewed as a specialization of

RISC for certain common instruction patterns, with the goal of reducing instruction size and frontend

pipeline energy. A decade later, VLIW processors specialized for instruction level parallelism by

making this parallelism explicit in the ISA. In the 1990s, ideas from large-scale parallel vector

machines made their way into general purpose architectures in the form of short-vector SIMD

instructions – a form of specialization for data parallelism.

In the same time period, there were many efforts to perform automatic customization to appli-

cations. A small subset of examples includes customizing VLIW processors [5, 6], or even creating

custom ASICs for program phases [7].

Trends in specialization over the last decade have continued to coarsen the program granularity

at which specialization is being performed. The now ubiquitous GPGPU (general purpose graphics

processing unit) serve as specialized offload engines for program regions with massive parallelism.

5

(a) A small number of behaviors can characterize the execution of a majority of programs

(b) Execution is transferred between general core and behavior specialized accelerators (BSAs)

Gen.
Core

BSA
1

BSA
2

BSA
3

Thousands to Millions of Instructions

Time
App. 5
App. 4
App. 3
App. 2
App. 1

Other

Figure 1.1: Behavior Specialization Paradigm

Most recently, domain specific architectures have begun to become popular for tasks that have

typically been performed by general purpose processors, ranging from machine learning [8, 9],

cryptography [10], XML processing [10], regular expression matching [11, 12], H.264 decoding [13],

to databases [14, 15, 16] and many others.

To summarize, specialization has become both more prevalent and coarse-grained over time

(from instructions to entire program regions). As will be described, the concept of behavior special-

ization keeps this trend of coarsening the targeted granularity of specialization, but backs away

from application or domain specialization.

1.2 Behavior Specialization

The main principle of behavior specialization is that programs execute in phases, where each phase

can be characterized by broad yet distinct characteristics or program behaviors (Figure 1.1(a) shows

a cartoon example).

Once these behaviors are identified, specialized hardware engines are created to be highly

6

effective at executing a subset of these behaviors – we call these behavior specialized accelerators

(BSAs). The ultimate goal is to improve a majority of codes (thus retaining generality) by letting the

most appropriate BSA execute each program phase. This is achieved by migrating the execution

dynamically between the cores and accelerators at run-time (see Figure 1.1(b)).

Given the above approach, there are three hypotheses that must be true for behavior specializa-

tion to be effective:

1. In order to limit the amount of hardware and compiler overhead, there must be a small number

of behaviors1, that can be determined through either static or dynamic program analysis,

which together can characterize a large class of general workloads.

2. To achieve enough overall gains, it must be possible to create a specialized architecture for

each behavior, which can achieve significant (at least integer factor) improvements on the

subset of workloads it was designed for.

3. The overheads for communicating to and from the core and memory system to the accelerator

must be low.

This dissertation will attempt to show the above three hypotheses are true.

1.3 Contributions

This dissertation identifies a paradigm shift (due to device scaling and application trends) towards

achieving general purpose efficiency by focusing specialization efforts on broad program behaviors,

and it proposes an execution model and core organization that can exploit this paradigm. The

potential impact of this is to enable continual microprocessor improvements for performance and

energy-efficiency without the need to rely on device scaling. The specific contributions are in terms

of the modeling methodology, identified behaviors for specialization, execution model/architecture

organization for behavior specialization, and compiler techniques.
1Or a set of behaviors which can be co-optimzied for.

7

Modeling Methodology: Programmable acceleration techniques often must dispense with exist-

ing ISAs to achieve efficient execution, and require compiler support to employ code transformations

to make them useful. Building compilers and simulators to evaluate each proposed architecture is

impractical in terms of development time and evaluation-consistency. The first main contribution

is a proposal for an alternate modeling methodology for modeling accelerators. We specifically

propose a graph-based modeling framework which abstracts microarchitecture, application, and

compiler interactions into graph transformations. Though it abstracts some aspects of microarchi-

tectural execution, it retains high-accuracy, enables many accelerators to be evaluated in the same

framework, and can produce models that can be described with either few lines of code or simple

edge-based descriptions. This will serve as the modeling infrastructure for the remainder of this

dissertation.

Demonstrating Synergy between VonNeumann & Explicit-Dataflow: Though there are some

existing behavior-specialized accelerators for regular codes (SIMD for data-parallel code regions),

we lack effective acceleration techniques for irregular codes. The next main contribution is to show

the potential of specialization for irregular codes by exploiting the synergy between traditional

VonNeumann out-of-order (OOO) machines and explicit-dataflow architectures. In particular, there

are two main findings: First, that dataflow machines are more effective when control-flow decisions

and value communication is not on the critical path, or when control decisions are unpredictable.

Second, that it is possible to build an explicit-dataflow co-processor that has low power and area

overheads compared to a conventional OOO processor. This suggests a viable answer to the long-

standing debate in computer architecture over the effectiveness of VonNeumann versus Dataflow

machines – each one is simply better at programs with different behaviors.

Design-Space Exploration of ExoCore Systems The basic architectural organization and execu-

tion model of the behavior specialization paradigm is called ExoCore. The primary challenge in

adopting this organization is to determine the types of accelerator engines which can be combined

8

profitably, without costing excess power and area. The third contribution is the description of a

behavior space which corresponds to a plausible set of behavior-specialized accelerators, which in

our evaluation achieves up to 2.0× average speedup and 1.7× average energy-efficiency, depending

on the baseline general purpose core. In addition, we perform a design space exploration across

cores, accelerators, and workloads, and demonstrate how various ExoCore instances can enable

new design tradeoffs.

Compiler Techniques Finally, one of the primary challenges, from a compilation perspective,

is mapping instructions onto the behavior specialized accelerators to maximize performance or

energy-efficiency. Because behavior-specialized accelerators are explicitly targeted towards certain

program behaviors, it is natural for them to expose more of their underlying hardware up to

the compiler than a traditional architecture – these are termed spatial architectures. The standard

approach is to use heuristic-based schedulers, which are difficult to implement and have solutions

whose optimality is difficult to characterize. The fourth main contribution is a formulation of a

mathematical model for spatial architecture scheduling using purely linear constraints with integer

variables (as an integer linear program), which enables off-the-shelf solvers to efficiently and exactly

solve the problem. Furthermore, this approach is shown to be general across a large variety of

spatial architectures, meaning that scheduling support for architectural features can be trivially

ported across architectures.

1.4 Organization

The organization of this dissertation outlined in Table 1.1, along with the relation to the author’s prior

work. We first discuss an execution model and architectural organization called ExoCore, and make a

case for its essential design decisions (Chapter 2). We then discuss a modeling framework which can

simultaneously model cross-level aspects of such an architecture, including the microarchitecture,

compiler, and application interactions (Chapter 3). Then we focus on one of the largest problems

9

Chap. Topic Author’s Related Prior Work

2 ExoCore Organization and Exe-
cution Model

ISCA 2015 [17], ASPLOS 2016 [18] (execution
model), HPCA 2016 [19] (dynamic compilation)

3 Accelerator Modeling Technique CAL 2015 [20],ASPLOS 2016 [18]
4 Dataflow Specialization ISCA 2015 [17]
5 Multi-behavior ExoCore ASPLOS 2016 [18]
6 Spatial Architecture Scheduling PLDI 2013 [21], ISCA 2015 [17] (SEED Extensions)

Table 1.1: Dissertation Organization and Relation to Author’s Prior Work

in behavior specialization – coming up with exploitable behaviors and associated hardware for

programs with irregular control or memory access (Chapter 4). Afterwards, we generalize, and

explore a design space of many accelerators and general purpose cores across a variety of workload

domains (Chapter 5). Finally, we construct a mathematical scheduling framework for managing the

resource-exposed architectures that are typically integrated as accelerators (Chapter 6).

10

2 the case for an exocore processor

This chapter develops the ExoCore concept, which is the architecture, execution model, and compila-

tion model that serves as the basis for the remainder of the work in the dissertation. In short, ExoCore

is a processor organization in which cores are composed of multiple programmable accelerators,

each limited in scope but more efficient given certain program behaviors.

In this chapter, we make a case for studying an ExoCore design and execution model, starting

by giving an overview of the hardware (Section 2.1) and compilation approach (Section 2.2). We

then discuss the reasons behind focusing on programmer-transparent accelerators (Section 2.3),

region-based execution (Section 2.4), and in-core integration (Section 2.5). Finally, we discuss what

elements of the system are modeled, and why we made these decisions (Section 2.6).

2.1 ExoCore Organization Overview

ExoCore is a microprocessor core organization, consisting of a general core and several behavior

specialized accelerators (BSAs), which are programmable to target many program phases. Accelera-

tors “sit behind” the first level cache, and communicate with the core either via a dedicated data

bus, or they have access to the cache hierarchy directly. Figure 2.1(a) shows an abstract system with

4 BSAs, and Figure 2.1(b) shows how these can be integrated into a multicore system using the

standard approach where each core is identical.

Execution Model The essential execution model of an ExoCore is that an accelerator is handed

execution on a phase-based program granularity corresponding to a static program region, and the

accelerator hands back the execution to the general purpose processor when the region’s phase is

complete. More specifically, accelerators will execute for the duration of a fully-inlined trace, loop,

nested loop, or function call (we discuss the reasons and implications later in Section 2.4). Since only

one accelerator is active a time, there is no contention at the cache interface. Also, accelerators never

11

(a) ExoCore Organization

General
Core

MMU & Private Cache

Fine
BSA

Fine
BSA

Coarse
BSA

Coarse
BSA Core

Shared Cache

Core Core...

Data Interf.

Memory Interf.

Config./Init/Power-Gate Interf.

(b) MultiCore Integration

(c) Region-based Execution Model

Accel Config.
Instruction

Accel Begin
Instruction

Resume
General Core

General Core Phase Accelerator Phase General Core Phase Accel. Phase

Figure 2.1: ExoCore Architecture and Execution Model Overview

communicate with each other; there is always a general purpose core phase between accelerator

phases, which reduces the complexity of integration.

Configuration Stage In this work we consider reconfigurable accelerators which do not fetch their

own instructions from memory – rather they are configured for each upcoming program region.

Therefore, it is useful to begin streaming configuration data before the region starts. Figure 2.1(c)

overviews this processes. The configuration stage for a BSA would start at the moment when region

entry is known to be imminent. At this point, any instruction or configuration information for that

region is streamed in to the accelerator, as well as the initialization of any region-invariant constants.

Region-Lifetime Prediction It may be unknown how long a program region lasts at compile time,

and the overheads of switching to the BSA may be too high if the duration is too short. Therefore,

for any given program region, both the compiled accelerator code and general purpose core code

are available for execution. Also, if the region lasts long enough, it will be worthwhile to power-

down the non-stateful components of the OOO core. To enable these decisions, we keep a simple

direct-mapped table of the running average times of different BSA regions. If it is predicted to be

12

short, we do not enter the BSA region, instead simply using the general purpose core version. If it

is long enough, once the accelerator execution begins, the relevant components of the GPP core

become either clock-gated or power-gated.

Host Instruction Extensions To enable the region-based execution model, two instructions are

added to the host processor. The first, ACCEL_CONFIG, is inserted at the earliest dominating basic

block in the host code, which signals the BSA unit to begin the configuration stage. This instruction

contains the relevant memory addresses for configuration bits. The second added instruction,

ACCEL_BEGIN, is a type of conditional branch, which transfers control to the BSA if it is predicted

to run for long enough to mitigate overheads. If appropriate for the accelerator, this instruction

signals the live value transfer from GPP registers.

Fine and Coarse Grain Integration Accelerators in ExoCore can be integrated either in fine or

coarse grain fashion. Fine grain integration simply implies that the OOO core is active during

the phase – usually for fetching data for the active BSA. The execution model is similar, but of

course there are no benefits of power-gating the host core. Fine grain accelerators are typically

integrated with a vector interface to send data (because otherwise the overhead of communication

is far too high). Coarse grain accelerators have access to the same cache interface as the host general

purpose core – sharing the memory management unit for supporting virtual memory, as well as

any page-table walkers, which can fetch address translations concurrently with the accelerator.

Context Switching There are two basic strategies for handling context switching. The first is to

checkpoint state at known intervals of the program, and throw away any uncommitted state at

the time of a context switch. The alternative is to save live operands, and make these part of the

architectural state. We choose the appropriate strategy for each BSA, basis based on the overheads

of saving architectural state.

13

2.2 Compilation Overview

In an ExoCore approach, behavior specialized accelerators (BSAs) are programmable but not

programmer-exposed. Therefore, it is the compiler’s responsibility to transform the code to best

employ the BSAs. This work considers a compilation environment consisting of profiling and “static”

compilation – though we will discuss how to apply the same sort of architecture and execution

model to other compilation environments later in this section.

There are four main responsibilities of a BSA compiler, corresponding to its required phases, as

described next:

1. Program Region Characterization The first step is to characterize regions to determine

whether they can be legally and likely profitably offloaded. For the BSAs developed in

this work, path-profiling information was sufficient [22] from the perspective of dynamic

information, which is gathered through offline profiling on training data.

2. Per-region Accelerator Selection The next step is to choose which accelerator is most appro-

priate for each region – as it is often the case that it is legal to apply more than one accelerator.

The basic approach is to estimate the metric of interest relative to that of the baseline processor

(performance improvement relative to the OOO core) using a combination of program IR anal-

ysis and profiling information. Since regions can be nested (ie. trace inside loop, loop inside

nested loop, nested loop inside function), the estimations are made at multiple granularities,

and a dynamic programming algorithm is used to select the best combination of sub-regions

and accelerators. We use an algorithm that we go into much more detail on in Section 5.3.

3. Accelerator Program Transformations With the decision made of which accelerator to apply,

the program is first transformed to take advantage of the accelerator (eg. Vectorization for

data parallel accelerators). A common challenge across BSAs is that they put extra burden

on the compiler for scheduling instructions onto their hardware substrate. This is because

they necessarily expose the inner workings of their hardware in ways that are beyond that

14

of traditional ISAs, to get further exploitation of particular program behaviors. For exam-

ple, an accelerator that targets the behavior of code having large-datapaths may expose the

datapath configuration to the compiler. We address this problem by creating general and

mathematically-based code schedulers which are useful across BSAs. The dissertation covers

this in detail in Chapter 6.

4. Accelerator Code Injection Finally, the accelerator code is compiled into the binary. The

host-processor instructions for configuring regions are inserted into the host code. For the

fine-grain accelerators, there is an additional step of introducing vectorized-communication

instructions into the core to transfer live values back and forth. Earlier work covers this process

in detail [23].

Fragility of Compiled Binaries Since each BSA has its own ISA, and because the ISA is exposing

the hardware and is fragile to hardware changes, the above compilation approach is non-ideal –

it lacks binary compatibility. One solution is to check the version of the hardware at load time,

and prevent invocation of accelerator regions which have different versions than the one it was

compiled for. This is acceptable, but means recompilation is necessary to take advantage of changing

hardware – losing some of the benefits of general purpose machines. There are at least two other

compilation environments that are likely much easier to adopt, which we describe below:

Application to Software-Transparent BSA Compilation One possible approach is to use hardware-

assisted dynamic binary translation, which we show one implementation of in Figure 2.2. There

are three main elements: The first, region identification, monitors retiring instructions to construct

candidate regions and selects the most opportune for translation and optimization. Selected regions

are sent to the second element, which would analyze the region and perform the accelerator selection

and program transformations required. This produces configuration information for the BSA and,

if appropriate, modified software for the supporting processor. The third element, region injection,

15

Low-Power Coprocessor
for Performing Dynamic Translation

Region
Cache

BPred

ICache General
Core

Pipeline

Region
Identifier

Config
Cache

BSA

DCache

Figure 2.2: ExoCore Modified for Dynamic Binary Translation

stores the generated software in a special region cache. Future invocations of the region execute

from this cache, and initiate the execution of the BSA.

The choice of using a low-power micro-processor integrated with the standard processor mini-

mizes design effort and facilitates future translation algorithm changes. While adding a coprocessor

does increase design and verification complexity, the overhead should be small since simple and

open-source designs are available to leverage.

This paradigm has been studied in the context of a single BSA in work co-written by the

author [19], and should be extensible to multiple accelerators.

Application to Virtual Machines Another plausible approach for using ExoCore would be inside

existing virtual machine run-times like Java. A significant amount of software is written for Java,

especially in the mobile environment, and already Java run-times use dynamic compilation as a way

to speed up their standard interpreters. Only simple modifications seem necessary to use ExoCore

16

Programmer-Exposed Accelerators Programmer-Transparent Accelerators

Accel. (Domain) Base SP EN Accel. Base SP EN

Convolution Eng. [24] SIMD 6 9 BERET [25] IO1 1.1 1.5
DianNao [8] (Mach-Lrn.) SIMD 118 21 CCA [26] OOO4 1.3
HARP [15] (Database) OOO4 8 8 C-Cores [27] IO2 1.0 1.5
H.264 [13] (Video) OOO3 3 500 DynaSpAM [28] OOO8 1.4 1.2
LINQits [29] (C# Queries) OOO2 18 15 Comp. Cores [30] OOO3 1.0 1.2
NPU [31] (Approx Comp) OOO4 3 4 DySER [32] OOO2 3.2 1.7
WIDX [14] (Database) OOO4 3 7 Libra [33] IO1 10.0 0.3
Cambricon [34] (DNN) OOO6 98 Chainsaw [35] OOO4 1.2 1.5

Table 2.1: Examples of Opaque and Transparent Accelerators Base: Baseline; SP: Avg. Speedup; EN:
Avg. Energy Reduction

in this setting, as region selection, program transformation and region injection can happen as

before. The only change might be that after a region is identified as “hot” for dynamic compilation, it

is instrumented and profiled to aid with accelerator selection. This phase may not even be necessary

depending on the BSAs in question.

2.3 Why Programmer-Transparent Accelerators?

As mentioned, the following three sections discuss the major design choices of ExoCore – starting

with how the accelerator is exposed to the programmer. This discussion is oriented around Ta-

ble 2.1, which gives examples of accelerators that are either programmer-exposed and programmer-

transparent, along with the evaluation baseline and average speedup and energy reduction.

Programmer-exposed techniques rely on the programmer’s knowledge of the application in

order to create specialized hardware which exploits the application’s concurrency, computational

needs, communication patterns, data-reuse needs, and coordination hardware [36]. Therefore, they

able to attain significant potential performance and energy-efficiency advantages over a purely

general approach.

With the considerable advantages of opaque specialization come several drawbacks. The most

self-evident is the programmer burden and associated portability challenges. Also, these accelerators

17

tend to be limited in their applicability, and are focused to either a particular workload, application,

or domain. Lastly, we posit that the nearing end of Moore’s law [1, 3] precludes a “sea” of non-

general-purpose cores because of area constraints. Some amount of hardware generalization, for all

but the most frequent tasks, is inevitable.

On the other hand, a programmer-transparent approach typically provides much more generality

through flexible hardware (of course subject to being applicable for the program behaviors they were

designed for). While transparency is desirable, it seems to come at a high price. According to the

sample in Table 2.1, transparent accelerators seem to provide much less benefit over their respective

baseline processors. This is somewhat intuitive, but also misleading. It is true that programmers

can provide additional information and larger scale algorithm and data-layout transformations than

what is typically possible in a modern compiler. However, these numbers could easily be inflated

relative to transparent techniques because the ignore difficult-to-improve irregular workloads with

less specialization potential.

Therefore, our goal is to explore how far we can push a general, programmer-transparent

paradigm. While we know it is possible to build highly efficient programmer-exposed hardware

for specific problems, we currently do not know how close we can come to bridging the gap with

without the burdensome requirement of involving the programmer.

2.4 Why Region Based?

The accelerators that we target are what we call region-based, meaning that they are programmed

to target fully inlined program regions of a fixed maximum size. The reason is simple: if we only

are executing a finite number of instructions in a large enough period of time, we can simplify the

hardware by eliminating the need to perform general purpose instruction fetch, and thereby reduce

energy consumption significantly. This is a form of strict specialization for the behavior of region

prevalence. The negative consequence, of course, is that there is additional configuration overhead

for any entered-region, and the entire program cannot be legally run on the accelerator.

18

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3
2

M

4
M

5
12

K

6
4

K

8
K

1
K

1
2

8

1
6 2

%
RD

yn
am

ic
RIn

st
sR

C
o

ve
re

d

MinimumRDesiredRRegionRDurationR(inRdynamicRinsts)

256 1024 4096

256 1024 4096

256 1024 4096

Max. Static Insts in Region
Traces
Inner-
Loops
Loop-
Nests

Figure 2.3: Cumulative % contribution for decreasing dynamic region lengths, shown for different
static region sizes.

Example plausible regions include traces (series of repeating basic blocks), loops, and nested

loops. We study their overheads by analyzing a set of irregular workloads (Described in detail

in Chapter 4). Note that this study considers static binaries, and tradeoffs for dynamically-linked

binaries will differ.

Figure 2.3 shows the cumulative distributions of dynamic instruction coverage by dynamic

region granularity. For instance, considering regions with a duration of 8K dynamic instructions or

longer (x-axis), nested loops can cover 70% of total instructions, while inner loops and traces can

cover about 20% and 10% respectively. Considering any duration of region, the total instruction

coverage is 88%, 64%, and 45% for nested loops, inner loops, and traces, respectively. Also, nested

loops greatly increase the region duration (1K to 128K for 50% coverage).

For each region type, we also present different maximum region sizes: 256, 1024 and 4096 instruc-

tions. Targeting 1024 instruction regions presents a good tradeoff between total static instructions

19

(more hardware cost) and dynamic region length.

The conclusion that we draw is that all region types can be useful for targeting a significant

portion of programs, though if we want to target longer duration regions (more potential for

power-gating) with fewer static instructions (more potential area benefits), then larger granularity

regions like loops or nested loops are more effective, and should be preferred if compatible with

the exploited program behavior.

2.5 Why In-Core?

Finally, the last major decision in the ExoCore model is the placement of the accelerator in relation

to the general purpose core’s cache hierarchy. Though we choose to attach the accelerators in-core,

and thus behind the first-level cache, we could have attached them at a shared higher-level cache,

or even close to memory. We present two arguments for why accelerators should indeed be in-core:

1. Regions can be short, meaning that switching is frequent, and overheads must be kept small,

2. Subsequent regions share a significant amount of data, which can be eliminated by sharing

lower-level caches. We explain with data analysis as follows, using the same workloads as the

previous section.

Dynamic Phase Length Figure 2.4 is a histogram of the percentage of total instructions spent in

dynamic phases of different length, for inlined nested loops of with a static region size limit of 1000

instructions. Though around 1/3 of dynamic phases are long (greater than 500K instructions in

length), about as many of them are quite short (shorter than 5K instructions). If we are going to

target these short regions, the overhead of offload must be much shorter than the region’s execution

time. Though putting the accelerator off-core could increase initialization time (for sending live

values), the real overhead is in transferring re-used data already stored in caches, as we explain

next.

20

0%

5%

10%

15%

20%

25%

0-50 50-500 500-5K 5K-50K 50K-500K 500K+

P
e

rc
e

n
ta

ge
 o

f
To

ta
l I

n
st

ru
ct

io
n

s

Dynamic Phase Length (instructions)

Figure 2.4: Dynamic Region Length (considering inlined nested loops < 1000 static instructions)

Dynamic Phase Data Sharing A potentially time-consuming component of accelerator switching

is in transferring the data once the accelerator has begun execution. To measure this potential

overhead, Figure 2.5 again bins regions by their dynamic length, but instead plots their average

additional memory-system traffic per dynamic instruction, that would not have occurred had they

shared a cache hierarchy. What becomes clear is that this is not a concern for longer phases, as data

can be cached and re-used in accelerator caches. However, the same is not true for shorter phases, as

there is not generally enough time to find reuse opportunities in short regions of the code. Regions

that last less than 50K instructions on average must transfer about 1.5 bytes additional data per

dynamic instruction executed. This translates into additional energy overheads, and perhaps even

performance overheads. This overhead can be avoided by integrating accelerators in core, which is

why we made this decision for this work.

2.6 Evaluated System and Modeling

To summarize, ExoCore is a core organization that includes multiple programmer-transparent

accelerators, which are each activated in a phase-based manner with the core, based on the be-

21

0

1

2

3

4

5

6

7

0-50 50-500 500-5K 5K-50K 50K-500K 500K+

B
yt

e
s

P
e

r
In

st
ru

ct
io

n

Dynamic Region Length (instructions)

Figure 2.5: Data Transfer Overhead for Non-In-Core Accelerators (considering 2MB L2 Cache)

haviors of program regions. For evaluating these architectures, we need to be able to study the

features of general purpose applications, compiler transformations targeted at accelerators, and

their microarchitectural interactions.

For applications, we use unmodified single-threaded workloads, because the hardware inter-

actions we care about are all in-core. Next, we use detailed modeling techniques for studying the

compiler transformations and detailed microarchitecture. To be clear, the compiler is modeled in

a low level way (modeling transformations on arbitrary code), but we have not implemented a

compiler itself for these accelerators.

The compilation environment that we model is a static profile plus compilation approach, and

we think the analysis and evaluation results will be similar for a dynamic binary translation envi-

ronment, because of the relatively simple algorithms employed (one exception is the integer linear

programming scheduler, which would not work well in a time-constrained dynamic environment).

We model microarchitecture at a core level, including the cache hierarchy, but we have not

studied multi-core implications or built simulation infrastructure that supports a multi-threaded or

multi-programmed environment. This is because the most relevant hardware interactions occur at

the core level interacting with the general purpose core.

22

3 modeling behavior specialization

As argued earlier, behavior specialization has emerged as a promising paradigm for future micro-

processors, which has been studied previously to some extent in one-off works. In such examples,

it is natural to develop and evaluate such architectures within end-to-end vertical silos spanning

application, language/compiler, hardware design and evaluation tools, leaving little opportunity for

cross-architecture analysis and innovation. This chapter develops a novel program representation

suitable for modeling these heterogeneous architectures with specialized hardware, called the

transformable dependence graph (TDG), which combines semantic information about program

properties and low-level hardware events in a single representation. We demonstrate, using four

example architectures from the literature, that the TDG is a feasible, simple, and accurate modeling

technique for transparent specialization architectures, enabling cross-domain comparison and

design-space exploration.

In this chapter, we first discuss why existing modeling approaches are insufficient (Section 3.1).

We then describe our approach for modeling behavior specialized accelerators – the Transformable

Dependence Graph (TDG) – and go over a simple example (Section 3.2). To substantiate with

more complex examples, we explain how to model four existing architectures from the literature

(Section 3.3). We describe the implementation (Section 3.4) and perform validation (Section 3.5)

and discuss limitations (Section 3.6). We finally cover related work (Section 3.7), and summarize

(Section 3.8).

3.1 Limitations of Existing Evaluation Approaches

There are three known strategies for attaining insights into transparent accelerators. All are insuffi-

cient in different ways.

Analytical Modeling The general problem with analytical modeling is that it is too abstract from

the low-level properties of the application upon which transparent accelerators rely. Often, because

23

these models are detached from the details of the application, a model creator has to make a

judgment call on whether to create a benchmark-specific model (i.e. analyze the benchmark first,

then make the model), or make a benchmark-neutral model. Neither of these options will have the

ability to capture the fine-grained interaction between the accelerators, applications, and baseline

processors.

Simulation/Prototyping The second, arguably standard approach, is simulation (shown in Fig-

ure 3.1(a)). Due to the vertically-integrated nature of this approach, studying even one accelerator

in this context requires extensive effort: accelerator ISA definition, host-ISA extensions, compiler

analysis and transformations, code generation, and simulator implementation. This would be

intractable for many accelerators due to development time. The tradeoffs for FPGA or full hardware

prototypes are even more stark.

Studying Literature A final approach would be to rely on the combined insights of existing

published works. However, having inconsistent GPPs or workloads across studies would lead to a

poor understanding of the design space, and would not allow for the exploration of dividing work

among multiple accelerators.

3.2 Transformable Dependence Graphs

Before discussing our transformable dependence graph modeling approach, we first touch on what

are the requirements of an accelerator modeling technique. Subsequently, we describe an example

model for a simple accelerator.

Requirements for modeling behavior specialization For modeling the workings of behavior spe-

cialized accelerators, a useful evaluation approach must capture the following aspects of execution:

1. General Purpose Core Interaction Since transparent accelerators selectively target certain

code, the general purpose core must be modeled in detail (e.g. pipelining, structural hazards,

24

OOO-Core

Simulator

(b) This Work: Transformable Dependence Graph (TDG) Approach

Program

IR

TDG
Trans-

fomer

Core+Accel. TDG

TDG

Analyzer

C
o

re
 µ

D
G

TDG
Constructor

Compiler

Frontend

Core+Accel.

Simulator

Compiler

Backend

Core+Accel.

Program

Accelerator ISA

Definition

Accel. Sim

Extensions

Accelerator

Code Gen.

Accel. Analysis,

Accel. Transforms

Accel.

Analysis

Original TDG

Accel.

Transforms

(a) Standard Approach: Per-Accelerator Compiler/Simulator Modifications
Core + Accel.

Perf/Energy/

Power Metrics

Figure 3.1: Approaches for modeling transparent specialization

memory-system etc.). In addition, accelerators can interact with different parts of the general

purpose core (e.g. sharing the LSQ), so this must be modeled as well.

2. Application/Compiler Interaction Much of a BSA’s success depends on how well the com-

piler can extract information from the application, both for determining a valid accelerator

configuration, and for deciding which accelerator is appropriate for a given region.

3. Accelerator Behavior Naturally, the low-level detailed workings of the accelerator must be

taken into-account, including the microarchitecture and dynamic aspects of the execution like

memory latency.

A traditional compiler and simulator approach can capture the above aspects very well, but the

effort in building multi-BSA compilers and simulators is time consuming, if not intractable. What

we require are higher-level abstractions.

Leveraging Microarchitectural Dependence Graphs (µDGs) For a higher-level model of microar-

chitectural execution, we turn to the µDG, a trace-based representation of a program. It is composed

of nodes for microarchitectural events and edges for their dependences. It is constructed using

dynamic information from a simulator, and as such, is input-dependent. The µDG has traditionally

25

for dyn_inst in dep_trace:
 if is_fma_multiply(dyn_inst):
 dyn_inst.type=fma
 dyn_inst.e_to_p_edge->lat=4
 set_inst_deps(dyn_inst)

 else if is_fma_add(dyn_inst):
 #attach input deps to fma
 dyn_fma = fma_for(dyn_inst)

add_data_deps(dyn_fma,dyn_inst)

 else: # normal path
 set_inst_deps(dyn_inst)

func set_inst_deps(dyn_inst):
 set_pipe_deps(dyn_inst)

 set_data_deps(dyn_inst) …

for bb in BBs:
 for inst in BB.insts:
 if !inst.isFAdd():
 continue
 for dep_inst in inst.deps:
 if !dep_inst.isFMul():
 continue
 if single_use(dep_inst):
 set_fma(dep_inst,inst)

 break

1

4

1

I1

P

C

E

D

I2

P

C

E

D

3

I3

P

C

E

D

I4

P

C

E

D

1

1

3

1

1

1

1

1

1

1

I5

P

C

E

D

I1

P

C

E

D

I0

P

C

E

D

1

1 1

1

3

1

1

1

1 1

1

1

B
B
0

Program IR

fmul

ld

fmul

fadd

brnz

B
B
1

sub

...

B
B
0

(b) Transformable Dependence Graph (TDG)

Core µDG

TDG
Constructor

Program Binary

(a) TDG Construction

I0:fmul r5, r3,2
I1:ld r2,[r0+r1]
I2:fmul r4,r2,r3
I3:fadd r5,r4,r5
I4:sub r1,r1,4
I5:brnz r1,I1

Simulator

(c) TDG Analyzer (d) TDG Transformer

D: Dispatch, E: Execute, P: Complete, C: Commit

(e) Core+Accel TDG

1

4

1

D

I1

P

C

E

1

4

1

1 1

1

I0

P

C

E

D

I1

P

C

E

D
1

1

1 1

1

1

I2'

P

E

D

C

1

1

3

1

I4

C

E

D

P

I5

P

C

E

D

1

D: Dispatch, E: Execute
P: Complete, C: Commit

Figure 3.2: Example TDG-Based model for transparent fused multiply-add (fma) specialization.

been used for modeling out-of-order cores [37, 38]. Overall, it offers a detailed-enough abstraction

for modeling microarchitecture, yet is still abstract and easy to model modifications/additions of

effects.

What is missing from the above is the capability of capturing compiler/application interactions.

Our insight is that graph transformations on the µDG can capture the effects of behavioral specializa-

tion – after all, a BSA simply relaxes certain microarchitectural dependences while adding others.

To perform these transformations, we require knowing the correspondence between the program

trace and the static program IR. This can be reconstructed from the binary.

The Transformable Dependence Graph

Approach Overview Putting the above together, the crux of our approach is to build the Trans-

formable Dependence Graph (TDG), which is the combination of the µDG of the OOO core, and a

Program IR (typically a standard DFG + CFG) which has a one-to-one mapping with µDG nodes.

As shown in Figure 3.1, a simulator produces dynamic instruction, dependence, and microarchi-

tectural information, which is used by the constructor to build the TDG. The TDG is analyzed to find

acceleratable regions and determine the strategy for acceleration. The TDG-transformer modifies

the original TDG, according to a graph re-writing algorithm, to create the combined TDG for the

general purpose core and accelerator. As part of the representation, the TDG carries information

about overall execution time and energy. The next subsection describes the approach using an

example.

26

Notation To aid exposition, the notation TDGGPP,ACCEL refers to a TDG representation of a partic-

ular general purpose processor (GPP) and accelerator. TDGOOO4,SIMD, for example, represents a

quad-issue OOO GPP with SIMD. As a special case, the original TDG prior to any transformations

(not representing an accelerator) is TDGGPP,∅.

Transformable Dependence Graph Example

Here we define the components of our approach using a running example in Figure 3.2, which is

for transparently applying a simple fused multiply-accumulate (fma) instruction. We intentionally

choose an extremely simple example for explanatory purposes, and note how a more complex

accelerator would implement that component. The detailed modeling of such accelerators is in

Section 3.3.

Constructing the TDG To construct TDGGPP,∅, a conventional OOO GPP simulator (like gem5 [39])

executes an unmodified binary1, and feeds dynamic information to the TDG constructor (Fig-

ure 3.2(a)). The first responsibility of the tool is to create the original µDG, which embeds dynamic

microarchitectural information, including data and memory dependences, energy events, dynamic

memory latencies, branch mispredicts and memory addresses. We note that this makes the TDG

input dependent, which is similar to other trace-based modeling techniques.

To explain an example, Figure 3.2(b) shows the µDG for the original OOO core, which in this case

was a dual issue OOO. Here, nodes represent pipeline stages, and edges represent dependencies

to enforce architectural constraints. For example, edges between alternate dispatch and commit

nodes model the width of the processor (Di−2
1−→ Di, Ci−2

1−→ Ci). The FU or memory latency is

represented by edges from execute to complete (Ei → Pi), and data dependencies by edges between

complete to execute (Pi
0−→ Ej).

The second responsibility of the constructor is to create a program IR (also in Figure 3.2(b))

where each node in the µDG has a direct mapping with its corresponding static instruction in the IR.
1Our implementation assumes that compiler auto-vectorization is off.

27

We analyze the stream of instructions from the simulator, using known techniques to reconstruct

the CFG, DFG with phi-information, and loop nest structure using straightforward or known

techniques [40]. Also, register spill and constant access is identified for later optimization. To

account for not-taken control paths in the program, we augment the program IR with the CFG from

binary analysis.

TDG Analyzer The next step is to analyze the TDG to determine which program regions can

be the legally and profitably accelerated, as well as the “plan” for transformation. This “plan”

represents the modifications a compiler would make to the original program. We explain with our

example.

Figure 3.2(c) shows the algorithm (in pseudo-code) required for determining the fma instructions.

To explain, the routine iterates over instructions inside a basic block, looking for a fadd instruction

with a dependent fmul, where the fmul has a single use. The function set_fma(inst1,inst2)

records which instructions are to be accelerated, and passes this “plan” to the TDG transformer. In

concrete terms, a TDG-analysis routine is a C++ module that operates over the TDG’s trace or IR,

and the “plan” is any resulting information or data-structures that are stored alongside the TDG.

While the above is basic block analysis, more complex accelerators typically operate on the loop

or function level. For example, determining vectorizability in SIMD would require analyzing the IR

for inter-iteration data dependences.

TDG Transformer This component transforms the original TDG to model the behavior of the

core and accelerator according to the plan produced in the previous step. It applies accelerator-

specific graph transformations, which are algorithms for rearranging, removing, and reconstructing

µDG nodes and dependence edges. In our notation, this is the transformation from TDGGPP-X,∅ to

TDGGPP-Y,ACCEL.

Figure 3.2(d) outlines the algorithm for applying the fma instruction, which iterates over each

dynamic instruction in the µDG. If it is an accelerated fmul, it changes its type to fma and updates

28

its latency. If the original instruction is an accelerated fadd, it is elided, and the incoming data

dependences are added to the associated fma.

This simple example operates at an instruction level, but of course more complex accelerators

require modifications at a larger granularity. For instance, when vectorizing a loop, the µDG for

multiple iterations of the loop can be collected and used to produce the vectorized µDG for a single

new iteration.

Core+Accelerator TDG The core+accelerator TDG represents their combined execution, an exam-

ple of which is in Figure 3.2(e), for TDGOOO2,fma. Here, I2’ represents the specialized instruction,

and I3 has been eliminated from the graph. In practice, more complex accelerators require more

substantial graph modifications. One common paradigm is to fully switch between a core and

accelerator model of execution at loop entry points or function calls.

Finally, this TDG can be analyzed for performance and power/energy. The length of the critical

path, shown in bold in the figure, determines the execution time in cycles. For energy, we associate

events with nodes and edges, which can be accumulated and fed to standard energy-modeling

tools.

3.3 TDG Transform Implementations

This section describes the TDG analysis and transformation algorithms for the GPPs and accelerators,

and we begin by describing some preliminaries to ease explanations.

Subsequently, in describing transformations, we assume that TDGGPP-Orig,∅ has already been

constructed, and we are transforming to TDGGPP-New,ACCEL. Though we describe GPP and accelera-

tor transformations separately, these would be applied in-concert to create a new TDG. Figure 3.3

gives example TDGs for all architectures on a simple program.

Also, in our presentation, we avoid formal algorithmic specification, and instead describe models

29

F

W

Fetch

Writeback

GPP Nodes Accel. Nodes

D Dispatch G Group

E Execute E’ Execute

P Complete P’ Complete

C Commit W’ Writeback

Edge Constraint Latency New

F � D Frontend Pipeline Fixed 3

D � E Dispatch before Exec. 0
G � E Group before Execute 0 3

E � P Execution Latency Fixed
E � P Load Latency Recorded
P � C Commit Delay Fixed
C � W Store Latency Recorded 3

Table 3.1: Prism’s Intra-Instruction Nodes and Edges

in informal terms, both because of space limits and to aid in exposition2. One of the contributions

of this work is that these are straightforward transformations. Future work will explore formal

graph-theory representations of transformations.

Preliminaries

In a TDG, the behavior of each dynamic instruction or operation is represented by a set of nodes for

each of its stages of execution. Edges represent dependences between these stages, both inside and

across instructions. Table 3.1 shows the nodes and inter-instruction edges and their latencies for all

GPP and accelerator models discussed in this paper, and Table 3.2 describes inter-instruction edges.

Essential Components To give some intuition of the purpose of various nodes and edges, we

describe common components here, specifically the Execute (E), Complete (P) and Writeback (W)

nodes. The E�P edge captures FU and load latency, while the edge into W (C�W/P�W) captures

store latency. The P�E edge captures data and memory dependences between instructions. The

GPP model also includes Fetch (F) Dispatch (D) and Writeback (W) nodes for representing pipeline

behavior. Other architecture-specific nodes and edges will be described as-needed.
2We also anticipate publicly releasing our entire framework.

30

Representing Resources with Dynamic Edges It is simple to represent microarchitectural re-

sources which are acquired and released in-order, like the one which represents the ROB size

(Ci−robsize � Di).

However, many resources in an architecture are not acquired and released in a pre-specified

order (e.g. functional units).

Our approach for representing these resources is to keep a cycle-indexed data-structure that

tracks which resources are occupied by which originating instruction and when they will be freed.

If all of a certain resource are taken, a dependence is added between the first node which frees the

given resource to the node which is requesting the resource. We refer to these edges as dynamic

edges, because their source and destination instructions change depending on the timing of other

events. These edges are indicated in the “Dyn” column of Table 3.2.

GPP TDG Transformations

Here we describe GPP transformations, which construct a particular GPP’s TDG by transforming

another. We first describe how we elide (rip-up) particular edges, then how we insert edges for

representing the GPP’s execution. We first describe common edges across GPP processors, then

edges which are specific to OOO and inorder GPPs.

Eliding Edges The first step of GPP transformation is to elide or rip-up edges which need to

be modified. These include edges representing architectural features which may be changed, or

they could be dynamic edges which do not have defined start and end nodes. There are certainly

edges that not elided, including data and memory dependences, and edges enforcing pipeline

serialization.

Common GPP Transforms The GPP representation is quite similar to [41], so we focus on newly

proposed components, as indicated in the last column of Tables 3.1&3.2. Broadly speaking, their

model contains edges for representing the issue-width, pipeline dependences, and execution and

31

Edge Constraint Lat Dyn New

C
om

m
on

Pi � Ej Data Dep.; Instj depends on Insti 0
Pi � Ej Mem Dep.; Instj mem depends on Insti 0
Ei � Ej B/W to L1; Memi releases Mem-port to Memj 1 3 3

Pi/Wi � B/W to L2; Loadj proceeds after Loadi releases 1 3 3

Ej/Pj L1 MSHR. Store source/dest nodes after slash. 3

Pi � Pj Load Insti pulls cache line for Load Instj 0

C
om

m
on

G
PP

Fi−1 � Fi Icache Latency; Insti experienced cache miss Rc
Fi−1 � Fi Fetch In-order 0 3

Fi−fw � Fi fw = Fetch Width 1 3

Di−fp � Fi fp = Frontend Pipeline Buffer Size 0 3

Ci−1 � Fi Insti fetch delayed b/c Ctrli − 1 mispredicted, Cm
Ci � Fi+1 Insti is serializing 0 3

Wi � Ej Instj is non-speculative, and Insti is prev. store 0 3

Ei � Ej Execution Resource Conflict 1 3 3

O
O

O
G

PP

Di−1 � Di Dispatch In-order 0
Ci−1 � Ci Commit In-order i 0
Di−dw � Di dw = Dispatch Width 1
Ci−cw � Ci cw = Commit Width 1
Ci−rb � Di rb = Reorder Buffer Size 0
Pi � Dj LQ Size; Instj is lq_size loads after Insti 0 3

Pi � Dj SQ Size; Instj is sq_size stores after Insti 0 3

Pi � Fj Pipe flush; Loadj blocks in the cache b/c of Insti 1 3

Ei � Dj IW Size, Insti blocks Instj from the IW 1 3 3

IO

Pi−1 � Pi Complete In-order 0 3

Pi−1 � Ei Long latency Insti−1 stalls Insti by pipe length Fx 3

C
o-

pr
oc

Gi � Ei Group for Accel Opi begins before execution 0 3

Pi � Gj Complete for Accel Opi before next Group 0 3

Pi � Gj Accel XFER: Complete GPP Insti before Groupj Cm 3

Pi � Fj GPP XFER: Accel Opi before GPP Fetch of Instj Cm 3

D
yS

ER Ei � Ej Enforce issue late for Insts on same FU Fx 3

Pi � Pj Instructions on same FU Complete in-order 1 3

Ei � Pi Data Dep.; Fixed latency models network delay. Fx 3

Table 3.2: Inter-Inst. Edges (Fx:Fixed, Cm:Computed, Rc:Recorded)

32

memory latency. Because we add support for dynamic resources, we can additionally represent

functional unit and memory bandwidth resources using dynamic edges. The L1 bandwidth is

represented by treating load/store ports as resources, and L2 bandwidth is approximated by

considering a finite number of coalescing MSHRs as resources. Note that the memory interface

transforms, including the insertion of memory bandwidth edges, are present in all models.

Out-of-Order (OOO) GPP (TDGGPP-Orig,∅ to TDGOOO,∅) Straightforward edges were added to

model load/store queue size. Using a table of the last queue size loads or stores, we constrain the

dispatch of the current memory operation to go after the complete of the oldest memory operation.

We also model pipeline flushing for loads which block in the L1 cache, to model GPP pipeline

replay. Finally, the instruction window is modeled with dynamic edges.

In-order (IO) GPP (TDGGPP-Orig,∅ to TDGOOO,∅) Only two extra edges are required here: the

first enforces in-order complete, and the second delays the execution of instructions following

long-latency operations. Misprediction delay is also reduced.

Accelerator Transformations

For each accelerator, we first give a brief background, then describe its TDG analysis and transfor-

mation algorithms.

Conservation Cores (C-Cores) TDG

C-Cores are automatically-synthesized circuits for application code. These are meant as simple,

energy-efficient coprocessors, which serialize control and memory access. C-Cores target either

fully-inlined loops or function calls.

TDG Analysis The analysis “plan” is a set of program regions to target using the TDG’s profile

data. We approximate the area using the total number of static operations as a proxy. The goal is to

maximize the total dynamic instructions captured for some limit of static instructions.

33

Original Transformable Dependence GraphProgram

I2 I3 I5 I7I1 I8

SI
M

D

I1:ld (r0), r3
I2:add r0 4 r0
I3:cmp r3 0
I4:bge BB2
I5:sub r2 r3 r2
I6:j I1
I7:add r2 r3 r2
I8:j I1

Example Core+Accelerator TDGs (for two loop iterations)

ld + > - ld + > +

BB1 BB2 BB1 BB3

B
ER

ET
C

-C
o

re
s

ld - > +

SEB1 SEB2

ld - >

SEB1 I1 I2 I3 I4 I7 I8

(replay w/ GPP)Trace-Mispec

Merge Insts I1 I8

D
ySER

I5 I7I3

Vectorized
Computation

I2
(pipeline dep)

DySERized
Computation

> + - φ> + - φ

jmp jmp

ld

add

bge

cmp

addsub

B
B

1

BB2 BB3

I1 I2 I3 I4 I5 I1 I2I6
Iter. 1: Iter. 2...

Program IRCore µDG

Figure 3.3: Example TDGs (Nodes/edges in Tables 3.1&3.2.)

The selection algorithm first builds a set of trees representing the hierarchy of inlineable loops

and function calls. The region selection heuristic performs a bottom-up tree traversal, selecting

code which has the highest dynamic to static instruction ratio.

TDG Transform (TDGGPP,∅ to TDGGPP,SIMD) Inside a C-Cores region of the µDG, according to

the analysis plan, this transform elides all fetch, dispatch and commit nodes and edges. Then,

since C-Cores only handle one control condition and memory request at a time, a Group (G) node

is created for each “basic block,” where they are split to ensure each only contains one memory

operation. Edges are added from the Group node to/from the C-Cores instructions, which serialize

basic blocks’ execution (see Figure 3.3 and coproc rows in Table 3.2).

34

When the entering/exiting a C-Cores region, edges are inserted to model transfer time. This

latency is the amount of live data across regions (computed by analyzing the DFG), divided by the

bandwidth between core and accelerator.

BERET TDG

This coprocessor accelerates hot traces of inner loops. It targets energy efficiency by using compound

functional units, called Serialized Execution Blocks (SEBs). Diverging from the hot loop trace entails

re-execution on the GPP.

TDG Analysis The analysis “plan” is a set of eligible and profitable inner loops, and SEB in-

struction schedules for those loops. Eligible loops with hot traces are found using path profiling

techniques [22]. Loops are selected if their loop back probability is higher than 80%, and their

configuration size fits in the hardware limit. To eliminate over-specialization to the original target

benchmarks, we consider fixed size SEBs, as opposed to specific compound functional units. For

scheduling into SEB groups, we use an optimal integer linear program which minimizes the number

of register file accesses.

TDG Transform (TDGGPP-Orig,∅ to TDGOOO,BERET) This transform resembles that of C-Cores,

where instead of basic blocks, instructions are grouped into SEBs, which are serialized to execute

one at a time.

The GPP interaction is also similar to C-Cores, and uses the same edge insertion algorithm. In

addition, if BERET mispeculates the trace path, instructions from that loop iteration are “replayed”

on the host processor by reverting to the TDGGPP-Orig,∅ to TDGGPP-New,∅ transform (see Figure 3.3).

SIMD (Loop Auto-vectorization) TDG

For SIMD we focus on vectorizing independent loop iterations, as this is the most common form of

auto-vectorization.

35

TDG Analysis The analysis “plan” is as set of legal and profitable loops for vectorization. First,

a pass optimistically analyzes the TDG’s memory and data dependences. Memory-dependences

between loop iterations can be detected by tracking per-iteration memory addresses in consecutive

iterations. Loops with non-vectorizable memory dependences are excluded, and considering loop-

splitting and loop-reordering to break these dependences is future work. Similarly, loops with

inter-iteration data dependences which are not reductions or inductions are excluded.

For vectorizing control flow, the TDG analysis considers an if-conversion transformation, where

basic blocks in an inner-loop are arranged in reverse-post order, and conditional branches become

predicate-setting instructions. This analysis also computes where masking instructions would

need to be added along merging control paths. The TDG decides whether to vectorize a loop by

computing the expected number of dynamic instructions per iteration by considering path profiling

information. If it is more than twice the original, the loop is disregarded.

TDG Transform (TDGGPP,∅ to TDGGPP,SIMD) When a vectorizable loop is encountered, µDG

nodes from the loop are buffered until the vector-length number of iterations are accumulated. The

first iteration of this group becomes the vectorized version, and not-taken control path instructions,

as well as mask and predicate instructions, are inserted. Most instructions are converted to their

vectorized version, except for non-contiguous loads/stores, for which additional scalar operations

are added (as we target non-scatter/gather hardware). At this point, memory latency information

is re-mapped onto the vectorized iteration, and the non-vector iterations are elided. If fewer than the

minimum vector length iterations remain, the SIMD transform is not used.

DySER TDG

DySER is a reconfigurable circuit switched mesh of FUs, meant for exploiting instruction and data

parallelism. It is tightly integrated to the GPP, using custom instructions for communication and a

flexible vector interface.

36

TDG Analysis The analysis “plan” is a set of legal and profitable loops, potentially vectorized,

where for each loop the plan contains the computation subgraph (offloaded instructions). Vectorization

analysis is borrowed from SIMD. Since it only executes computation subgraphs, we use a known

slicing algorithm [32] on the loop’s PDG to partition the instructions between the GPP and accelerator.

Control instructions which do not have forward memory dependences can be offloaded to DySER.

Similar to SIMD, a “DySER-ized” version of inner loops is considered, where the computation

subgraph is removed from the loop, and communication instructions are inserted along the interface

edges. If the loop is vectorizable, the computation can be “cloned” until its size fills the available

DySER resources, or until the maximum vector length is reached, enabling more parallelism.

The analysis algorithm disregards loops with more communication instructions than offloaded

computation.

TDG Transform (TDGGPP,∅ to TDGGPP,DySER) DySER keeps a small configuration cache, so if

a configuration is not found when entering a DySERized loop, instructions for configuration are

inserted into the TDG. Similar to SIMD, µDG nodes from several loop iterations are buffered until

the vectorizable loop length is reached. At this point, if the loop is vectorizable, the first step is to

apply the SIMD transformation as described earlier (TDGGPP,∅ to TDGGPP,SIMD).

Then, DySER-ized instructions are first processed by removing their fetch, dispatch and commit

nodes. Then two additional edges to enforce accelerator pipelining: one for the issue width between

computation instances (E�E), and one for in-order completion (P�P). We model the scheduling

and routing latency by adding a fixed cycle delay on the data dependence edges.

3.4 Implementation: Prism

Our framework’s implementation, Prism, generates the original TDG using gem5 [39], enabling

analysis of arbitrary programs. We implement custom libraries for TDG generation, analysis and

transformation. Since transforming multi-million instruction traces can be inefficient, Prism uses a

37

Common GPP C-Cores BERET SIMD DySER

Analysis 6012 - 169 538 264 507
Transform 2206 2126 448 783 949 1215

Table 3.3: Source Lines of TDG Modeling Code

windowed approach. Windows are large enough to capture specialization granularity (max ∼10000

instructions). The final outputs include cycle count and average power.

Power and Area Estimation Prism accumulates energy event counts for both the GPP and ac-

celerator from the TDG. It then uses McPAT [42] internally for computing power, calling McPAT

routines at intervals over the program’s execution. We use 22nm technology. The GPP core activity

counts are fed to McPAT [42], a state-of-the-art GPP power model. For accelerators, a combination

of McPAT (for FUs) and CACTI [43] is used, and for accelerator-specific hardware we use energy

estimates from existing publications.

Using TDG Models in Practice The TDG can be used to study new BSAs, their compiler in-

teractions and the effect of varying input sets. In practice, running TDG models first requires

TDG-generation through a conventional simulator. The generated TDG can be used to explore

various core and accelerator configurations. Since the TDG is input-dependent, studying different

inputs requires the re-running the original simulation.

Implementing a TDG model is a process of writing IR analysis routines, graph-transformation

algorithms and heuristics for scheduling, as outlined in Appendix A.

In general, this process is simple. To substantiate, Table 3.3 shows the lines of C++ code required

to implement the analysis and the graph transformation for each accelerator (common code need

not be modified to add an accelerator). Lines of code is roughly a measure of the “complexity” of a

technique. But more importantly, the graph transformations are explicit about how the compiler

and accelerator are specializing the processor, and hence are more insightful and easy for designers

to use.

38

Accel. Base P
Err.

P Range E Err. E Range

OOO8�1 – 3% 0.05�1.0 IPC 4% 0.75�2.75 IPE
OOO1�8 – 2% 0.02�5.5 IPC 3% 0.39�1.7 IPE
C-Cores IO2 5% 0.84�1.2× 10% 0.5�0.9×
BERET IO2 8% 0.82�1.17× 7% 0.46�0.99×
SIMD OOO4 12% 1.0�3.6× 7% 0.30�1.3×
DySER OOO4 15% 0.8�5.8× 15% 0.25�1.28×

Table 3.4: Validation Results (P: Perf, E: Energy)

Performance Energy

O
O

O
8

�
O

O
O

1
M

od
el

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1 1.5 2 2.5 3

P
ro

je
ct

e
d

 IP
E

(u
o

p
s/

u
n

it
 e

n
e

rg
y)

Original IPE (uops/unit energy)

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

P
ro

je
ct

e
d

 IP
C

 (
u

o
p

s/
cy

cl
e

)

Original IPC (uops/cycle)

O
O

O
1

�
O

O
O

8
M

od
el

0

1

2

3

4

5

6

0 1 2 3 4 5 6

P
ro

je
ct

e
d

 IP
C

 (
u

o
p

s/
cy

cl
e

)

Original IPC (uops/cycle)

0.0

0.4

0.8

1.2

1.6

2.0

0 0.4 0.8 1.2 1.6 2

P
ro

je
ct

e
d

 IP
E

(u
o

p
s/

u
n

it
 e

n
e

rg
y)

Original IPE (uops/unit energy)

Figure 3.4: Prism Core Validation

39

Performance Energy

C
on

se
rv

at
io

n
C

or
es

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8 1.0 1.2 1.4

P
ro

je
ct

e
d

 S
p

e
e

d
u

p
 o

ve
r

B
as

e

Published Speedup over Base

djpeg-2 cjpeg-2 175.vpr 429.mcf 401.bzip2 256.bzip2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2 1.4

P
ro

je
ct

e
d

 E
n

e
rg

y
R

e
d

u
ct

io
n

Published Energy Reduction

BE
R

ET

0.4

0.6

0.8

1.0

1.2

1.4

0.4 0.6 0.8 1.0 1.2 1.4

P
ro

je
ct

e
d

 S
p

e
e

d
u

p
 o

ve
r

B
as

e

Published Speedup over Base

181.mcf 429.mcf 164.gzip 175.vpr 197.parser 256.bzip2 cjpeg-2 gsmdecode gsmencode

0.4

0.6

0.8

1.0

1.2

1.4

0.4 0.6 0.8 1 1.2 1.4

P
ro

je
ct

e
d

 E
n

e
rg

y
R

e
d

u
ct

io
n

Published Energy Reduction

SI
M

D

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P
ro

je
ct

e
d

 S
p

e
e

d
u

p
 o

ve
r

B
as

e

Measured Speedup over Base

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2 1.4

P
ro

je
ct

e
d

 E
n

e
rg

y
R

e
d

u
ct

io
n

Measured Energy Reduction

D
yS

ER

0

2

4

6

8

10

0 2 4 6 8 10

P
ro

je
ct

e
d

 S
p

e
e

d
u

p
 o

ve
r

B
as

e

Measured Speedup over Base

conv merge nbody radar treesearch
vr cutcp fft kmeans lbm
mm mri-q needle spmv stencil

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2 1.4

P
ro

je
ct

e
d

 E
n

e
rg

y
R

e
d

u
ct

io
n

Measured Energy Reduction

Figure 3.5: Prism Accelerator Validation

40

3.5 Core and Accelerator Validation

We perform validation by comparing the TDG against the published results of four accelerators,

each of which use traditional compiler plus simulator evaluation. These results used benchmarks

from the original publications [27, 25, 32], and Parboil [44] and Intel’s microbenchmarks for SIMD.

The original µDG is generated by fast-forwarding past initialization, then recording for 200 million

instructions. Here, the error is calculated by comparing the relative speedup and energy benefits

over a common baseline, where we configured our baseline GPP to be similar to the reported

baseline GPP. Note that for SIMD and DySER, we were able to adjust the transformations to match

the compiler output, as we had access to these compiler infrastructures.

Table 3.4 presents a validation summary for the OOO core and accelerators, where column

“Base” is the baseline GPP, “Err.” is the average error, and “Range” is the range of compared metrics.

Figures 3.4 and 3.5 shows the validation graphs for each architecture, including performance (left)

and energy (right). Each point represents the execution of one workload, and the distance to the

unit line represents error. The X-Axis is the validation target’s estimate (from published results or

measured from simulation), and the Y-Axis is the TDG’s estimate of that metric. We describe the

validation of the core and accelerators below.

OOO-Core To determine if we are over-fitting the OOO core to our simulator, we perform a

“cross validation” test: we generate a trace based on the 1-Wide OOO core, and use it to predict the

performance/energy of an 8-Wide OOO core, and vice-versa. Figure 3.4 shows the results. The

benchmarks in this study [45] are an extension of those used to validate the Alpha 21264 [46] (we

omit names because there are too many). The high accuracy here (< 4% on average) demonstrates

the flexibility of the model in either speeding up or slowing down the execution.

Conservation Cores are automatically generated, simple hardware implementations of appli-

cation code [27], which are meant as offload engines for in-order cores. We validate the five

benchmarks in the above paper, and achieve an average of 5% and 10% average error in terms

41

of performance improvement and energy reduction. The worst case is for 401.bzip2, where we

under-predict performance by 15%.

BERET is also an offload engine for hot loop traces, where only the most frequently executed

control path is run on the accelerator, and diverging iterations are re-executed on the main pro-

cessor [25]. Efficiency is attained through serialized execution of compound functional units. We

achieve an average error of 8% and 7% in terms of performance improvement and energy reduction.

We over-predict performance slightly on cjpeg and gsmdecode, likely because we approximate

using size-based compound functional units, rather than more restrictive pattern based (to not

over-conform to the workload set).

SIMD validation is performed using the Gem5 Simulator’s implementation, configured as a

4-Wide OOO processor. Figure 3.5(e) shows how we attain an average error of 12% and 7% in terms

of performance improvement and energy reduction. Our predictions for SIMD are intentionally

optimistic, as there is evidence that compilers will continue to see improved SIMD performance

as their analysis gets more sophisticated. We remark that our transformations only consider a

straight-forward auto-vectorization, and will not be accurate if the compiler performs data-layout

transformations or advanced transformations like loop-interchange.

DySER is a coarse grain reconfigurable accelerator (CGRA), operating in an access-execute fashion

with the GPP through a vector interface [32]. On the Parboil and Intel microbenchmarks, we attain

an average error of 15% for both speedup and energy reduction.

In summary, the TDG approach achieves an average error of less than 15% for estimating speedup and

energy reduction, compared to simulator or published data.

42

3.6 Limitations of TDG Modeling

Lack of Compiler Information First, since the TDG starts from a binary-representation, it lacks

native compiler information, which sometimes must be approximated in some way. An example is

memory aliasing between loop instructions, useful for determining vectorization legality. In such

cases, we use dynamic information from the trace to estimate these features, though of course this

is optimistic.

Other Sources of Error Another consequence of beginning from a binary representation are ISA

artifacts in the TDG. One important example is register spilling. In this case, the TDG includes a

best-effort approach to identify loads and stores associated with register spills, which can potentially

be bypassed in accelerator transformations.

The graph representation is itself constraining, in particular for modeling resource contention.

To get around this, we keep a windowed cycle-indexed data structure to record which TDG node

“holds” which resource. The consequence is that resources are preferentially given in instruction

order, which may not always reflect the microarchitecture.

Another source of error is unimplemented or abstracted architectural/compiler features. An

example from this work is the lack of a DySER spatial scheduler – the latency between FUs is

estimated. Of course, TDG models can be made more detailed with more effort.

Flexibility The µDG itself embeds some information about the microarchitectural execution (eg.

memory latency, branch prediction results), meaning that it is not possible to change parameters

that affect this information without also re-running the original simulation. Understanding how

those components interact with specialization would require recording multiple TDGs.

Transformation Expressiveness Some transformations are difficult to express in the TDG, limiting

what types of architectures/compilation techniques can be modeled. In particular, non-local

43

transforms are challenging, because of the fixed instruction-window that the TDG considers. One

example of this would be an arbitrary loop-interchange.

3.7 Related Work

An alternative to modeling architectures with the TDG are analytical models. Relevant works

include those which reason about the benefits of specialization and heterogeneity [47, 48, 49, 50],

high-level technology trend projections [51, 52], or even general purpose processors [53, 54, 55].

There are also several analytical GPU models [56, 57, 58, 59, 60, 61]. The drawback of such models

is that they are either specific to the modeling of one accelerator or general-purpose core, or they

are too generic and do not allow design space explorations which capture detailed phenomenon.

Kismet [62, 63] is a model which uses profiles of serial programs to predict upper-bound

speedups for parallelization. It uses a hierarchical critical path analysis to characterize the available

and expressible parallelism.

Perhaps the most related technique is the Aladdin framework [64], a trace-based tool that uses a

compiler IR interpreter, that enables design space exploration of domain specific accelerators. Using

such an approach for behavioral specialized accelerators is possible, and should reduce errors from

ISA artifacts. The drawback would be that the interaction with the general purpose core in that

framework would be more difficult to capture. However, that style of approach may be an avenue

for improving accuracy in the future.

3.8 Summary

Our work presents a novel program representation for transparent specialization called the TDG,

which consists of a closely coupled µDG and Program IR for analysis. This representation al-

lows for the study of the combined effects of compiler and hardware microarchitecture as graph

transformations. We showed this representation is accurate, intuitive, and simple.

44

4 dataflow specialization

Great strides have been made in the specialization of regular codes, through the development

of SIMD, GPUs, and other designs [65, 32, 66, 67, 33]. These techniques can dramatically cut

per-instruction overheads like the dynamic extraction of the data-dependence graph or in the

maintenance of instruction-precise state. However, for irregular code, current approaches for

specialization either heavily curtail performance or provide simply too little benefit. Interestingly,

well known explicit-dataflow architectures eliminate these overheads by directly executing the data-

dependence graph and eschewing instruction-precise recoverability. However, even after decades

of research, dataflow architectures have yet to come into prominence as a solution. We attribute

this to a lack of effective control speculation and the latency overhead of explicit communication,

which is crippling for certain codes.

In this chapter, we first discuss the potential of dataflow specialization over existing techniques

(Section 4.1). Then we explain the primitives required for fine-grain explicit-dataflow specialization

(Section 4.2), and describe the architecture of a behavior specialized accelerator (SEED) which

meets those primitives (Section 4.3). We discuss compiler responsibilities as well (Section 4.4). To

understand the potential benefits, we present methodology (Section 4.5) and perform detailed

evaluation and design space exploration (Section 4.6). We then discuss related work (Section 4.7),

and summarize (Section 4.8).

4.1 Potential of Dataflow Specialization

In this section, we discuss existing and potential approaches for targeting codes that are irregular,

either in terms of control or memory. Control irregularity includes divergent or unpredictable

branches, and memory irregularity includes non-contiguous or indirect access1.
1This section examines irregular workloads by restricting to SPECint/Mediabench. Observations here apply to

irregular workloads, unless specified.

45

GPP bigLITTLE

InAPlacedLoopdExecw
GPPd f Beret GPPf CCores

LittledhIO0q
MediumdhOOO0q
BigdhOOORq

GPPdType:SpecializationdTechnique:

L
eg
en
d

haqdDefaultdUse:dAlwaysdApply hbqdAdaptive:d<1<:dPerfdLoss

Relat ivedPerform ance

<w8

1w<

1w0

1wR

1w< 1wR 1w8 0w0

1w6

R
e

la
ti

v
e

dE
n

e
rg

y

1w< 1wR 1w8 0w0
Relat ivedPerform ance

GPP GPP

Current
techniques

providedmodest
benefit

Thisdwayd
better

Figure 4.1: Energy/Perf. Tradeoffs of Related Techniques
(See Section 4.5 for methodology)

Primarily, irregular codes are executed on general purpose processors (GPPs), which incur con-

siderable overheads in per-instruction processing, both in extracting instruction-level parallelism

and for maintaining instruction-precise state. Two broad specialization approaches have arisen to

address these challenges. The first is to use simplified and serialized low-power hardware in com-

monly used low-ILP code regions for better energy efficiency. Examples include architectures like

bigLITTLE [68] and Composite Cores [30], which switch to an inorder core when ILP is unavailable,

and “accelerators” like BERET [25], Conservation Cores [27] and QsCores [69]. The other approach

is to enhance the GPP for energy-efficiency, like adding µop caches, loop caches, and in-place loop

execution techniques like Revolver [70].

To highlight the benefits and limitations of existing approaches targeting irregular codes, Fig-

ure 4.1(a) shows their energy and performance advantages when integrated into several GPP cores2.

Figure 4.1(b) is similar, but here an oracle scheduler only allows regions with slowdown of < 10%.
2Note here that we allow switching arbitrarily at a fine-granularity and hence bigLITTLE subsumes Composite Cores.

46

HybridsIdeal7DF GPP7Only

IOA OOO%OOOA

GPPsType:

6a3sHybridsIdeal7DataflowsPerf5s 6b3sOverallsTradeoffs

Relat ivesPerform ance

cj
p

e
g

7E
d

jp
e

g
7E

g
sm

d
e

co
d

e
g

sm
e

n
co

d
e

cj
p

e
g

7A
d

jp
e

g
7A

h
A

>
N

e
n

c
h

A
>

%
d

e
c

jp
g

A
M

M
M

d
e

c
jp

g
A

M
M

M
e

n
c

m
p

e
g

A
d

e
c

m
p

e
g

A
e

n
c

E
>

%
5g

zi
p

E
8

E
5m

cf
E

7
x

5v
p

r
E

9
7

5p
a

rs
e

r
A

x
>

5b
zi

p
A

%
A

9
5m

cf
%

M
N

5g
cc

%
x

8
5s

je
n

g
%

7
N

5a
st

a
r

%
x

>
5h

m
m

e
r

%
M

E
5b

zi
p

A
%

>
%

5h
A

>
%

re
f

G
M

E
A

N

M5M

M5x

E5M

E5x

A5M

A5x

N5M

P
e

rf
o

rm
a

n
ce

sI
m

p
ro

v
e

m
e

n
t

N
N

g
9

7
g

9
8

g
9

N
g

7
7

g
7

9
g

9
9

g
%

>
g

7
x

g
7

N
g

9
9

g
%

g A
7

g N
N

g
8

>
g

x
7

g
M

g
x

>
g

>
7

g 8
%

g
A

g
8

8
g

>
%

g 9
A

g
>

%
g

555

E5
x>

xgsExplicit7
ssssDataflow

E5M E5x A5M A5x N5M

M5%

M5>

M58

E5M

E5A

E5%

E5>

>Axsperf5
andsenergy

benefit

E5xxsperf5
Axsenergy

benefit

R
e

la
ti

v
e

sE
n

e
rg

y

An “ideal”
dataflow processor is only constrained by the program’s control and data-dependencies, and not by any execution

resources. It is also non-speculative, and incurs latency when transferring values between control regions. For its energy
model, only functional units and caches are considered.

Figure 4.2: Potential of Ideal Explicit-Dataflow Specialization

These results show that low-power hardware approaches are effective when integrated to small

inorder cores (1.5× energy-efficiency), but usually cost too much performance to be useful for OOO

GPPs. Techniques like in-place loop execution are also beneficial, but can only improve perfor-

mance/energy by a few percent, because they rely on expensive instruction window, reorder-buffer

and large multi-ported register-file access, even during loop specialization mode. Overall, speedup

and energy benefits are limited to less than 1.1× on large GPPs.

Dataflow The common feature of the above architectures is that they are fundamentally Von

Neumann or “control flow” machines. However, there exist well-known architectures which

eschew complex OOO hardware structures, yet can extract significant ILP, called explicit-dataflow

architectures. These include early Tagged Token Dataflow [71], as well as the more recent TRIPS [72],

WaveScalar [73] and Tartan [74]. But explicit-dataflow architectures show no signs of replacing

conventional GPPs, for at least three reasons. First, control speculation is limited by the difficulty of

47

implementing dataflow-based squashing. Second, the latency cost of explicit data communication

can be prohibitive [75]. Third, compilation challenges have proven hard to surmount [76].

Overall, dataflow machines researched and implemented thus far have failed to provide higher instruction-

level parallelism, and their theoretical promise of low power and yet high performance remains unrealized for

irregular codes.

Unexplored Opportunity What has thus far remained unexplored is fine-grained interleaving of

explicit-dataflow with Von Neumann execution – i.e. the theoretical and practical limits of being

able to switch with low cost between an explicit-dataflow hardware/ISA and a Von Neumann ISA.

The potential benefits of an ideal hybrid architecture (ideal dataflow + four-wide OOO) are

shown in Figure 4.2(a). Above each bar is the percentage of execution time in dataflow mode.

Figure 4.2(b) shows the overall energy and performance trends for three different GPPs.

These results indicate that hybrid dataflow has significant potential, up to 1.5× performance

for an OOO4 GPP (2× for OOO2), as well as over 2× average energy-efficiency improvement,

significantly higher than previous specialization techniques. Furthermore, the preference for

explicit-dataflow is frequent, covering around 65% of execution time, but also intermittent and

application-phase dependent. The percentage of execution time in dataflow mode varies greatly,

often between 20% to 80%, suggesting that phase types can exist at a fine grain inside an application.

When/Why Explicit-Dataflow? To understand when and why explicit-dataflow can provide bene-

fits, we consider the program space along two dimensions: control regularity and memory regularity.

Figure 4.3 shows our view on how different programs in this space can be executed by other ar-

chitectures more efficiently than with an OOO core. Naturally, vector-architectures are the most

effective when memory access and control is highly regular (see 1). When memory latency bound

(see 2), little ILP will be available, and the simplest possible hardware will be the best (a low-power

engine like BERET [25] or CCores [27]). An explicit-dataflow engine could also fill this role.

There are two remaining regions where explicit-dataflow has advantages over OOO. First,

48

 Vector
SIMD/GPU

 (perf+energy
Benefit)

M
em

o
ry

 R
e

gu
la

ri
ty

Control Regularity

Out-of-Order

La
te

n
cy

B

o
u

n
d

 E

xp
licit-D

a
taflo

w
 (e

n
e

rg
y

 b
en

e
fit)

 Simple Core (energy benefit)

Non-CriticalPredictableUnpredictable

Ir
re

g
u

la
r

A
cc

e
ss

R
e

gu
la

r
A

cc
e

ss

Higher
ILP

Figure 4.3: Arch. Effectiveness based on App. Characteristics

when the OOO processor’s issue width and instruction window size limits the achievable ILP (see

3), explicit-dataflow processors can exploit this through more efficient hardware mechanisms,

achieving higher performance and energy efficiency. Second, when control is not predictable, which

would serialize the execution of the OOO core 3 (see 4), explicit-dataflow can execute the same

code with higher energy efficiency by avoiding mispeculation overheads 4.

Overall, this suggests that a heterogeneous Von Neumann/explicit-dataflow architecture with fine-granularity

switching can provide significant performance improvements along with power reduction, and thus lower

energy.

49

Arch. Parame-
ter

TRIPS [77] WaveScalar [73] CCA [26] DySER [78] BERET [25] SEED

Execution
Units

Homogeneous
FUs

Heterog. FUs
and tag match-
ing 1

Triangular
mesh + heterog.
FUs 2

Grid of het-
erogeneous
FUs

Serialized com-
pound FUs 3

Compound
Functional
Units (CFUs)

Storage Struc-
tures

Multiple
SRAMS per
Grid 1

Banked queues Pipelined FIFOs
2

Pipelined
FIFOs 2

CRAM, Internal
Reg. Files

Single ported
SRAM struc-
tures

Interconnection
Network

Large 2D
mesh network
1

Large hierarchi-
cal interconnect
1

Multi-level bus Switches Bus-based Bus-based +
Arbiter

Communication Dynamic rout-
ing 1

Results, tokens
across clusters
3

Configuration,
results over bus

Tightly cou-
pled with GPP
3

Config. mes-
sages, results

Fixed sized
packet based

Control Flow
Strategy

Dataflow pred-
ication 3

φ and φ−1 in-
structions

Control flow
assertion

Predication-
only 2

Speculates hot
traces only 2

Switch instruc-
tions

1 : Low-area & low-power; 2 : Application Generality; 3 : Low-overhead Dataflow;

Table 4.1: Suitability of Related Architectures for Explicit-Dataflow Specialization

4.2 SEED: An Architecture for Fine-Grain Dataflow Specialization

Our primary observation is the potential for exploiting the heterogeneity of execution models

between Von Neumann and Dataflow at a fine grain. Attempting to exploit this raises this paper’s

main concern: how can we exploit dataflow specialization with simple, efficient hardware? We argue that

any solution requires three properties: 1 Has low-area and low-power, so that integration with the

GPP is feasible. 2 Is general enough to target a wide variety of workloads. 3 Achieves the benefits

of dataflow execution with few overheads. Our codesign approach involves exploiting properties

of frequently executed program regions, a combination of power-efficient hardware structures, and

a set of compiler techniques.

First, we propose that requirement 1 , low area and power, can be addressed by strictly spe-

cializing for a common, yet simplifying code type: fully-inlined nested loops with a limited total

static instruction count. Limiting the number of per-region static instructions limits the size of the

dataflow tags, and eliminates the need for an instruction cache; both of which reduce hardware
3Provided predication was not an option
4In addition, instructions after a control flow merge point can be executed before the dependent control decision is

made, because of the dataflow ordering of control. This can help the dataflow processor keep pace with the OOO.

50

complexity. In addition, ignoring recursive regions and only allowing in-flight instructions from a

single context eliminates the need for tag matching hardware – direct communication can be used

instead. Targeting nested-loops also satisfies requirement 2 : these regions can cover a majority of

real applications’ dynamic instructions.

To achieve low-overhead dataflow execution, requirement 3 , the cost of communication must be

lowered as much as possible. We achieve this through a judicious set of microarchitectural features.

First, we use a distributed-issue architecture, which enables high instruction throughput with low

ported RAM structures. Second, we use a multi-bus network for sustaining instruction communication

throughput at low latency. Third, we use compound instructions to reduce the data communication

overhead.

Using the above insights creates new compiler requirements: 1. Ability to create appropriately

sized inlined nested loops matching the hardware constraints. 2. Algorithms for creating compound

instruction groupings which minimize the communication overhead. For the first requirement,

we can use aggressive inlining and loop nest analysis, and the second by employing integer linear

programming models.

To address the architecture and compiler challenges, we propose SEED: Specialization Engine

for Explicit-Dataflow, shown at a high level in Figure 4.4. To achieve this, it uses a distributed

architecture with well-known dataflow principles to achieve high instruction parallelism, and

mitigates the dataflow communication overheads by using compound instructions as the unit of

computation. We explain in more detail in the next section.

4.3 SEED Architecture

We begin the description of SEED by giving insight into why some architectural innovation is

required and how our solution borrows mechanisms from related techniques. We then give an

example SEED program which elaborates the basic mechanics of SEED execution. Subsequently,

we detail the SEED microarchitecture from the bottom-up by describing SEED’s sub-modules, its

51

L1 Cache
...

IMU

CFU1

ODU

SEED Unit 1

...

Config
& Init

Specialization Engine for Explicit-Dataflow (SEED)

D
C

ac
h

e

Store
Buffer

CPU
Transfer

IMU

CFU8

ODU

Bus
Arbiter

OOO
GPP

IC
ac

h
e SEED Unit 8

Figure 4.4: High-Level SEED Integration & Organization
(IMU: Instruction Management Unit; CFU: Compound Functional Unit; ODU: Output Distribution Unit)

interconnection network and GPP integration.

We emphasize here that the organization of SEED is not the primary contribution of this chapter,

rather, it is a tool for understanding the potential of dataflow specialization.

Architectural Innovation

In exploring the opportunity of fine-grain explicit-dataflow, it is important to consider whether

existing architectures would be sufficient. We list five related architectures in Table 4.1, and describe

their execution and storage units and their strategy for value-communication and control flow. Each

cell also lists our opinion of whether the design choice would not meet the previously discussed

requirements (low-area/power, generality, and low-overhead dataflow).

TRIPS and WaveScalar are designed for whole-program dataflow execution, and use higher-

power, higher-area structures. TRIPS uses a large dynamically routed mesh network and WaveScalar

uses complex tag-matching and a large hierarchical interconnect. The remaining architectures have

much lower power and area, but are not general enough. None of them can offload entire loop

52

a
_
ne

x
t

=

0

S

!=0

L

D

S

T

+

8

Switch: Forwards a control or a data value to one
of the two destinations

Decision Unit: Generates a decision value
based on the input

Memory Units: Interfaces with memory sub-
system to load or store values

ALUs: Functional Units which perform a primitive
computation – Add, Multiply, Shift etc.,

Legend

BLACK Data line
PURPLE Control line
BLUE Data from the switch in TRUE path
RED Data from the switch in FALSE path
GREY Token values passed for next iteration

Subgraph 1 mapped to  CFU 1
Subgraph 2 mapped to  CFU 1
Subgraph 3 mapped to  CFU 2
Subgraph 4 mapped to  CFU 2

b)

a = …

LD a_next = anext
if (a_next != 0)

a = a_next
n_val = LD av2
if (n_val < 0)

n_val = -n_val
ST n_val, av2

Ne
xt

 l
o
op

 i
t
e
r
a
t
i
o
n

n_val = n_val + 1
ST n_val, av2

… = a

 struct A {
 int v1,v2;
 A* next;
 };
 …

 A* a = …
 while (anext != 0) {

 a = anext;

 int n_val = av2;

 if (n_val < 0) {
 av2 = -n_val;
 }
 else {
 av2 = n_val+1;
 }
 }

a) c)

Subgraph 3

CFU 2

Subgraph 4

Subgraph 1

CPU Land

Live
Out

Live
In

To Next iteration
(loaded a_next)

a_next

S

av2 ST addr

To Store
Buffer

CFU 2

a/
a_next

a

+

8

!=0
SS

a_next

a_next
addr

L

D

S -nval

0

-

S

T

+

1

S

T

Sn_val
+1

To Store
Buffer

CFU 1

CFU 1

Subgraph 2

Memory
Token

< 0

S S

S

av2
 addr

+

4

L

D

n_val
Memory
Token

a
_
n
e
x
t
 =

0

struct A

v1

v2

next

a

n_val

n_val

Figure 4.5: a) Example C loop; b) Control Flow Graph (CFG); c) SEED Program Representation;

regions in general – only the computation in CCA and DySER or hot loop-traces in BERET.

However, aspects of these architectures can be borrowed: the principle of offloading to a dataflow

processor from DySER, the concept of efficient compound FUs from BERET and mechanisms for

efficient and general dataflow-based control from WaveScalar. The next section describes how SEED

combines these design aspects using an example program.

Example SEED Dataflow Program

Figure 4.5 shows an example loop for a simple linked-list traversal, where a conditional computation

is performed at each node. This figure shows the original program, control flow graph (CFG),

and the SEED program. The SEED representation strongly resembles those of previous dataflow

architectures, where the primary difference is that instructions are grouped here into subgraphs.

Familiar readers may skip ahead.

53

Data-Dependence Similar to other dataflow representations, SEED programs follow the dataflow

firing rule: instructions execute when their operands are ready. To initiate computation, live-in

values are sent. During dataflow execution, each instruction forwards its outputs to dependent

instructions, either in the same iteration (solid line in Figure 4.5(c)), or in a subsequent iteration

(dotted line). For example, the a_next value loaded from memory is passed on to the next iteration

for address computation.

Control-Flow Strategy Control dependencies between instructions are converted into data de-

pendencies. SEED uses a switch instruction, similar to other proposals, which forwards the control

or data values to one of two possible destinations, depending on the input control signal. In the

example, depending on the n_val comparison, v2 is forwarded to either the if or else branch.

This strategy enables control-equivalent regions to spawn simultaneously.

Enforcing Memory-Ordering SEED has a software mechanism to enforce correct memory-ordering

semantics. When the compiler identifies dependent (or aliasing) instructions, the program must

serialize these memory instructions through explicit tokens. In this example, the stores of n_val

can conflict with the load from the next iteration (e.g. when the linked list contains a loop), and

therefore, memory dependence edges are required between these instructions.

Executing Compound Instructions To mitigate communication overheads, the compiler groups

primitive instructions (e.g. adds, shifts, switches, etc.) into subgraphs and executes them on

compound functional units (CFUs). These are logically executed atomically. The example program

contains four subgraphs, mapped to two CFUs.

SEED Microarchitecture

Our microarchitecture achieves high instruction parallelism and simplicity by using distributed

computation units. The overall design is composed of 8 SEED units, where each SEED unit is

54

Operation
Packet [151]

Instruction [19]
Instruction

Info [13]

In
st

ru
ct

io
n

 R
e

ad
y

In
st

ru
ct

io
n

Ta
g

[5
]

Ready Packet [6]

Instruction [19]

In
st

ru
ct

io
n

R
e

ad
y

Destination
Packet [87]

Operand Bus
 [4 x 33]

Instruction Ready Logic

Input Control

Instruction
Storage Unit

Operand Storage Unit

Instruction Selection
Logic

Forward
Packet [87]

Operands [4 x33]

O
p

er
a

nd
 S

ta
tu

s
B

u
s

[2
5

6]

D
at

a
Ta

g
[5

]

IMU_Bus_Data [47]

IMU_Config
Instruction [97]

IMU_Config
Operands [151]

Destination
Storage Unit

To CFUTo ODU
b) c)a)

From Bus Arbiter

From Configuration and
Initialization Network

From Data Cache

To Store Buffer and
Data Cache

From Bus Arbiter

BusArb_SEED_Data[47]

To Bus Arbiter

SEED_BusArb_Data [47]

Output Distribution
 Unit (ODU)

Instruction
Management

Unit (IMU)

Compound
Functional
 Unit (CFU)

Config_SEED
Instruction [97]

SEED_SB_Load
Issue [46]

SEED_SB_Store
Data [78]

SB_SEED_Load
Data [44]

Destination
Packet [87]

Operation
Packet [151]

Result_Packet [78]

Output_Packet [47]

Config_SEED
Operands [141]

Bus_Free

To ODU

CFU_Load
Data [46]

CFU Control

Mux1

Result Collater

ALU

MEM
Unit

 Decision
Unit

Switch

Mux2

In
p

u
t1

 [
32

]

Out1 [32]

Result_Packet [78]

Decision
Out

ALU Out
[32]

Out2 [32]
Out3
[32]

Mem Data [32]

In
p

u
t4

 [
32

]

In
p

u
t3

 [
32

]

M
em

 E
na

b
le

Lo
ad

 D
at

a

A
LU

En

ab
le

Decision
Enable

Operation_Packet [151]

CFU_Load
Issue [46]

CFU_Store
Issue [78]

Switch Switch

[32 x 19b = 76 B] [32 x 87b = 348 B]
[32 x 34b x 4 banks
 x 4 iter = 2176 B]

Figure 4.6: a) SEED Unit; b) IMU Microarchitecture; c) CFU Microarchitecture;

organized around one CFU. The SEED units communicate over a network, as shown in Figure 4.4.

We describe the SEED unit internals and interconnect below (shown in Figure 6.8).

Compound Functional Unit (CFU) As mentioned previously, CFUs are composed of a fixed

network of primitive FUs (adders, multipliers, logical units, switch units etc.), where unused

portions of the CFU are bypassed when not in use. Long latency instructions (e.g. loads) can be

buffered, and passed by subsequent instructions. An example CFU is shown in Figure 6.8 (c). Our

design uses the CFU mix from existing work [25], where CFUs contain 2-5 operations. Our current

design embeds integer hardware, but floating point (FP) units can be added either by instantiating

new hardware or by adding bypass paths into the host processor’s FP SIMD units.

CFUs which have memory units will issue load and store requests to the host’s memory man-

agement unit, which is still active while using SEED. Load requests access a 32-entry store buffer

for store-to-load forwarding.

Instruction Management Unit (IMU) The IMU, shown in Figure 6.8 (b), has three responsibilities:

1. Storing instructions, operands & destinations: The IMU has storage locations for 32 com-

55

pound instructions, each with a maximum of four operands each, and we keep operand

storage space for four concurrent loop iterations. This results in storage of 2600 bytes of data.

All IMUs in eight SEED units combined has ∼20KB of storage. The static instruction storage

is roughly equivalent to a maximum of 1024 non-compound instructions.

2. Firing instructions: Ready logic monitors the operand storage unit, and picks a ready in-

struction (when all operands are available), with priority to the oldest instruction. Then the

compound instruction and its operands and destinations are sent to the CFU.

3. Directing incoming values: The input control pulls values from the network to appropriate

storage locations based on the incoming instruction tag.

The primary unique feature of the IMU is that it allows “unrolled” operand storage for four

iterations of the loop. This allows instructions to directly communicate to dependent instructions

without using power hungry tag-matching CAM structures at each execution node.

Output Distribution Unit (ODU) The ODU is responsible for distributing the output values and

destination packets (SEED unit + instruction location + iteration offset), to the bus network, and

buffer them during bus conflicts.

Bus Architecture and Arbiter SEED uses a bus interconnect for forwarding the output packets

from the ODU to a data dependent compound instruction, present in either the same or another

SEED unit. Note that this means dependent instructions communicating over the bus cannot execute

in back-to-back cycles. To handle network congestion, the bus arbiter monitors the packet requests,

and forwards up to three values on three parallel buses.

Integration with Core The integration with the host core follows the basic strategy outlined in

Chapter 2. The host core communicates with SEED to initialize configuration (for instructions,

destination storage, and loop invariant constants in the operand storage), and send and receive

input/output live values.

56

To handle context switching, the current live operands must become part of the architectural

state. To mitigate the overhead, we delay context switches until the current inner-loop iterations

quiesce. In the worst case, we estimate needing to save 2KB of data, though typically the amount of

live data is much less.

4.4 SEED Compiler Considerations

The two main responsibilities of the compiler are determining which regions to specialize and

scheduling instructions into CFUs inside SEED regions. We discuss scheduling in detail in Chapter 6,

and discuss region selection heuristics here.

As SEED may only execute fully-inlined nested-loops, the compiler must find or create such

regions. There are two main goals: 1. Finding small enough regions to fit the hardware, and 2. Not

hurting performance by aggressively applying SEED, when either the OOO core (through control

speculation) or the SIMD units would have performed better.

For the first goal, a bottom up traversal of the loop-nest tree can be used to find appropriately

sized regions. Enough space can be left for unrolling inner loops, which can increase inter-loop

parallelism when it exists.

For the second goal, either static or dynamic options are possible. For the static approach, simple

heuristics will likely suffice – i.e. do not perform explicit-dataflow when control is likely to be on

the critical path. A dynamic approach can be more flexible; for example, training on-line predictors

to give a runtime performance estimate based on per-region statistics. Other works have shown

such mechanisms to be highly effective [30, 79], and we therefore do not evaluate or implement this

aspect of the compiler/runtime. Instead, we use an oracle scheduler, as described in the evaluation.

Chapter 5 discusses practical scheduling in the context of multiple accelerators.

57

Suite Benchmarks
Mediabench cjpeg, djpeg, gsmdecode, gsmencode

cjpeg2, djpeg2, h263enc, h264dec,
jpg2000dec, jpg2000enc, mpeg2dec,
mpeg2enc

SPECint 164.gzip, 181.mcf, 175.vpr, 197.parser,
256.bzip2 429.mcf, 403.gcc, 458.sjeng,
473.astar, 456.hmmer

Table 4.2: Benchmarks

GPP Characteristics
Little
(IO2)

Dual Issue, 1 load/store port.

Medium
(OOO2)

64 entry ROB, 32 entry IW, LSQ: 16
ld/20 st, 1 load/store ports, speculative
scheduling.

Big
(OOO4)

168 entry ROB, 48 entry IW, LSQ: 64
ld/36 st, 2 load/store ports, speculative
scheduling.

Table 4.3: GPP Cores

4.5 Evaluation Methodology

Benchmark Selection The benchmarks we chose were from SPECint and Mediabench [80], rep-

resenting a variety of control and memory irregularity, as well as some regular benchmarks (see

Table 5.2).

GPP Characteristics All cores are x86, have 256-bit SIMD, and have a common cache hierarchy: a

2-way 32KB I$ and 64KB L1D$, both with 4 cycle latencies, and an 8-way 2MB L2$ with a 22 cycle

hit latency. Also, to exclude the effects of frequency scaling, all cores run at 2Ghz. The differences

between GPP configurations are highlighted in Table 4.3. The OOO4 has 3 ALUs, 2FPs, and 1

Mul/Div unit, which are scaled according to the GPP issue width.

58

Module Area (mm2) Module Area (mm2)

IMU 0.034 Internal Network 0.058
CFU 0.011 Total SEED Unit 0.114
ODU 0.010 Bus Arbiter 0.016

Total (8 SEED Units + Bus Arbiter) 0.926

Table 4.4: SEED Area Breakdown

4.6 Evaluating Dataflow-Specialization Potential

To understand the potentials and tradeoffs of dataflow specialization while exploiting nested-loop

regions, this section attempts to answer the following questions:

Q1. Can adequate instruction groupings be found?

Q2. Is the proposed design practical: what is the area cost?

Q3. How much performance can targeted regions provide?

Q4. What are the sources of performance differences?

Q5. Which GPP cores can we enhance with our technique?

Q6. Would it still be useful if GPPs were more efficient?

Q7. Besides performance/energy, are there other benefits?

Q8. How does SEED compare to related approaches?

Q1. Can adequate instruction groupings be found?

Figure 4.7 is a histogram of per-benchmark compound instruction sizes, showing on average 2-3

instructions. This is relatively high considering that compound instructions cannot cross control

regions. Some singletons are necessary, however, either because control regions lack dependent

computation, or because combining certain instructions would create additional critical-path de-

pendencies.

Answer: Yes, most dynamic instructions are grouped into a compound unit.

59

0%

20%

40%

60%

80%

100%

cj
p
eg
1

d
jp
eg
1

gs
m
d
ec
o
d
e

gs
m
en

co
d
e

cj
p
eg

d
jp
eg

h
26
3
en

c

h
26
4
d
ec

jp
g2
0
0
0d

ec

jp
g2
0
0
0e
n
c

m
p
eg
2
d
ec

m
p
eg
2
e
n
c

1
6
4
.g
zi
p

1
8
1
.m

cf

1
75
.v
p
r

1
9
7
.p
ar
se
r

2
56
.b
zi
p
2

4
2
9
.m

cf

4
58
.s
je
n
g

4
01
.b
zi
p
2

4
73
.a
st
ar

4
03
.g
cc

4
56
.h
m
m
er

4
6
4
.h
2
6
4
re
f

%
 o

f
D

yn
am

ic
 C

o
m

p
o

u
n

d
 In

st
ru

ct
io

n
s

5

4

3

2

1

Figure 4.7: Compound Instruction Size Histogram

Q2. Is the proposed design practical?

To determine the area, we have implemented the SEED architecture in Verilog and synthesized the

design using a 32nm standard cell library with the Synopsys Design Compiler. CACTI [43] was

used for estimating SRAM area. Our results show that each SEED unit occupies reasonable area

and all eight SEED units and bus arbiter together take up an area of 0.93 mm2. Table 4.4 shows the

area breakdown.

We also synthesized the design for 2 GHz, and the estimated power is 90mW based on its default

activity factor assumptions for the datapath5.

Answer: The simple design and low area/power quantitative results show that the SEED unit is practical.
5For fairness of comparing against McPAT-based GPP models, we have also used a McPAT-based model for SEED.

For performance benefit regions (vs OOO4) the McPAT model reports an average power of 125mW , meaning this model
should be conservative.

60

Benchmark Func. for SEED Region % Exec. Vect- OOO4 SEED Ideal-DF SEED BPKI BMPKI $MPKI Explanation
Insts orized IPC IPC IPC En-Red.

Pe
rf

.>
O

O
O

4

jpg2000dec jas_image_encode 50% 2.5 12.8 21.8 9.1 101 0 0 High Exploitable ILP
429.mcf primal_bea_mpp 37% 0.8 2.8 8.3 4.6 152 10 96 Higher Memory Parallelism
cjpeg-1 encode_mcu_AC_refine 24% 2.5 5.9 6.2 4.2 48 0 2 Indirect Memory + High ILP
181.mcf primal_bea_mpp 31% 0.9 1.8 9.6 3.0 170 8 106 Higher Memory Parallelism
djpeg-2 ycc_rgb_convert 33% 2.7 5.4 12.0 3.5 29 0 0 Indirect Memory + High ILP
456.hmmer Viterbi* 73% 2.9 5.4 7.3 4.5 32 0 4 High Exploitable ILP
458.sjeng std_eval 5% 2.4 3.7 4.1 3.8 126 5 0 High Exploitable ILP
gsmdecode Gsm_Short_Term_Syn... 61% 2.4 3.1 3.4 4.5 92 0 0 High Exploitable ILP
cjpeg-2 compress_data 48% 3 2.2 2.7 4.9 3.5 58 8 0 High Exploitable ILP

Pe
rf

.≈
O

O
O

4 gsmencode Gsm_Long_Term_Pred... 49% 1.9 2.2 2.7 3.5 5 0 0 Modest ILP + Comm. Overheads
djpeg-1 decompress_onepass 39% 2.6 2.7 3.6 3.6 18 1 0 Indirect Memory + Moderate ILP
h263enc MotionEstimation 98% 2.0 1.9 8.7 3.2 18 0 0 Comparable Performance
164.gzip inflate 23% 1.9 1.7 2.3 2.0 81 0 10 Modest ILP + Comm. Overheads
473.astar wayobj::fill 96% 1.1 1.0 1.1 3.3 114 31 2 Avoids Branch Misses, Modest ILP
h264dec decode_one_macroblock 21% 0.4 0.4 0.4 1.9 39 0 0 Comparable, Low ILP
jpg2000enc jpc_enc_encpkt 3% 2.1 1.8 2.0 1.3 135 6 2 Comparable Performance

Pe
rf

.<
O

O
O

4 403.gcc ggc_mark_trees 4% 0.5 0.4 0.4 1.0 66 2 2 Comparable, Low ILP
464.h264ref SetupFastFullPelSearch 29% 1.5 1.3 1.7 2.7 40 0 0 Short Region (340 Dyn Insts)
175.vpr try_swap 49% 1.4 1.2 6.9 2.1 88 17 5 Avoids B-Misses, Comm. Overhead
mpeg2enc fullsearch.constprop.3 93% 1.9 1.5 2.9 3.9 17 0 0 Moderate ILP, Comm. Overhead
mpeg2dec conv422to444 31% 2.7 2.1 3.0 2.8 68 0 2 Moderate ILP, Comm. Overhead
197.parser restricted_expression 17% 3.3 1.6 3.7 1.4 108 0 0 Short Region (300 Dyn Insts)
401.bzip2 BZ2_compressBlock 31% 3 4.3 1.5 1.5 0.8 97 3 3 Region Vectorized
256.bzip2 compressStream 99% 3 13.5 2.0 2.0 0.4 83 0 0 Region Vectorized

Table 4.5: Region-Wise Comparison of OOO4 to SEED, Showing only top region per benchmark,
Highest to Lowest Relative Perf.
(%Exec. Insts: % of original program executed by SEED; Vectorized: whether the GPP vectorized the region,
SEED IPC: Effective IPC of SEED, Ideal-DF IPC: IPC of Ideal-dataflow, En-Red: SEED’s Energy Reduction,
BPKI: Branches per 1000 µops, BMPKI: Branch Mispred. per 1000 µops, $MPKI: Cache misses per 1000 µops)

Q3. How much performance benefit is possible?

To understand if there are potential performance benefits, we compare the speedups of SEED to our

most aggressive design (OOO4) on the most frequent nested-loop regions of programs (each >1%

total insts). The results, in Figure 4.8, show that different regions have vastly different performance

characteristics, and some are favored heavily by one architecture.

Answer: Nearly 3-5× speedup is possible, and many regions show significant speedup.

Q4. What are the sources of performance differences?

Table 4.5 presents details on the highest contributing region from each benchmark. Note that the

SEED IPC is an effective IPC which uses the GPP’s instructions as total instructions. This allows

61

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

cj
p
eg
-1

d
jp
eg
-1

gs
m
d
e
co
d
e

gs
m
e
n
co
d
e

cj
p
eg
-2

d
jp
eg
-2

h
2
6
3
en

c

h
2
6
4
d
e
c

jp
g2
0
0
0
d
ec

jp
g2
0
0
0
en

c

m
p
e
g2
d
e
c

m
p
e
g2
e
n
c

1
6
4
.g
zi
p

1
8
1
.m

cf
1
7
5
.v
p
r

1
9
7
.p
ar
se
r

2
5
6
.b
zi
p
2

4
2
9
.m

cf

4
0
3
.g
cc

4
5
8
.s
je
n
g

4
7
3
.a
st
ar

4
5
6
.h
m
m
er

4
0
1
.b
zi
p
2

4
6
4
.h
2
6
4
re
f

5.2

Figure 4.8: Per-Region SEED Speedups

Pe
rf

o
rm

a
n
ce

 I
m

p
ro

ve
m

e
n
t

E
n
e
rg

y
R
ed

u
ct

io
n

cj
p
e
g
-1

d
jp

e
g
-1

g
sm

d
e
co

d
e

g
sm

e
n
co

d
e

cj
p
e
g
-2

d
jp

e
g
-2

h
2
6
3
e
n
c

h
2
6
4
d
e
c

jp
g
2
0
0
0
d
e
c

jp
g
2
0
0
0
e
n
c

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

1
6
4
.g

zi
p

1
8
1
.m

cf
1
7
5
.v

p
r

1
9
7
.p

a
rs

e
r

2
5
6
.b

zi
p
2

4
2
9
.m

cf
4
0
3
.g

cc
4
5
8
.s

je
n
g

4
7
3
.a

st
a
r

4
5
6
.h

m
m

e
r

4
0
1
.b

zi
p
2

4
6
4
.h

2
6
4
re

f
G

M
E
A
N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
4.0

5
6
%

9
2
%

9
7
% 9
0
%

7
5
%

9
0
%

9
9
%

8
9
%

9
9
%

2
3
%

9
9
%

9
9
% 2
6
%

9
7
%

6
4
%

2
5
%

0
%

9
7
%

1
7
%

2
2
%

9
9
%

9
9
%

7
2
%

8
1
%

7
1
%

1
.6

7
x

cj
p
e
g
-1

d
jp

e
g
-1

g
sm

d
e
co

d
e

g
sm

e
n
co

d
e

cj
p
e
g
-2

d
jp

e
g
-2

h
2
6
3
e
n
c

h
2
6
4
d
e
c

jp
g
2
0
0
0
d
e
c

jp
g
2
0
0
0
e
n
c

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

1
6
4
.g

zi
p

1
8
1
.m

cf
1
7
5
.v

p
r

1
9
7
.p

a
rs

e
r

2
5
6
.b

zi
p
2

4
2
9
.m

cf
4
0
3
.g

cc
4
5
8
.s

je
n
g

4
7
3
.a

st
a
r

4
5
6
.h

m
m

e
r

4
0
1
.b

zi
p
2

4
6
4
.h

2
6
4
re

f
G

M
E
A
N

2
4
%

7
2
%

9
2
%

7
7
%

7
6
%

4
0
%

9
9
%

5
4
%

5
6
%

4
% 7
2
%

0
%

2
3
% 3
5
%

1
3
%

3
%

0
%

5
2
%

1
2
%

1
9
%

5
0
%

7
0
%

2
1
% 5
0
%

4
2
%

1
.1

4
x

cj
p
e
g
-1

d
jp

e
g
-1

g
sm

d
e
co

d
e

g
sm

e
n
co

d
e

cj
p
e
g
-2

d
jp

e
g
-2

h
2
6
3
e
n
c

h
2
6
4
d
e
c

jp
g
2
0
0
0
d
e
c

jp
g
2
0
0
0
e
n
c

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

1
6
4
.g

zi
p

1
8
1
.m

cf
1
7
5
.v

p
r

1
9
7
.p

a
rs

e
r

2
5
6
.b

zi
p
2

4
2
9
.m

cf
4
0
3
.g

cc
4
5
8
.s

je
n
g

4
7
3
.a

st
a
r

4
5
6
.h

m
m

e
r

4
0
1
.b

zi
p
2

4
6
4
.h

2
6
4
re

f
G

M
E
A
N

2
6
%

8
9
% 9
7
%

8
7
% 7
4
%

8
4
%

9
9
%

9
0
%

9
8
%

1
1
%

9
9
%

9
9
% 2

3
%

4
5
%

6
2
%

1
7
%

0
%

6
1
%

1
6
%

2
3
%

9
9
%

8
4
%

7
2
%
8
1
%

6
4
%

1
.3

3
x

cj
p
e
g
-1

d
jp

e
g
-1

g
sm

d
e
co

d
e

g
sm

e
n
co

d
e

cj
p
e
g
-2

d
jp

e
g
-2

h
2
6
3
e
n
c

h
2
6
4
d
e
c

jp
g
2
0
0
0
d
e
c

jp
g
2
0
0
0
e
n
c

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

1
6
4
.g

zi
p

1
8
1
.m

cf
1
7
5
.v

p
r

1
9
7
.p

a
rs

e
r

2
5
6
.b

zi
p
2

4
2
9
.m

cf
4
0
3
.g

cc
4
5
8
.s

je
n
g

4
7
3
.a

st
a
r

4
5
6
.h

m
m

e
r

4
0
1
.b

zi
p
2

4
6
4
.h

2
6
4
re

f
G

M
E
A
N

2
4
%

7
2
%

9
2
%

7
7
%

7
6
%

4
0
%

9
9
%

5
4
%

5
6
%

4
%

7
2
% 0
%

2
3
%

3
5
%

1
3
%

3
%

0
%

5
2
%

1
2
%

1
9
%

5
0
% 7

0
%

2
1
% 5

0
%

4
2
%

1
.5

3
x

cj
p
e
g
-1

d
jp

e
g
-1

g
sm

d
e
co

d
e

g
sm

e
n
co

d
e

cj
p
e
g
-2

d
jp

e
g
-2

h
2
6
3
e
n
c

h
2
6
4
d
e
c

jp
g
2
0
0
0
d
e
c

jp
g
2
0
0
0
e
n
c

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

1
6
4
.g

zi
p

1
8
1
.m

cf
1
7
5
.v

p
r

1
9
7
.p

a
rs

e
r

2
5
6
.b

zi
p
2

4
2
9
.m

cf
4
0
3
.g

cc
4
5
8
.s

je
n
g

4
7
3
.a

st
a
r

4
5
6
.h

m
m

e
r

4
0
1
.b

zi
p
2

4
6
4
.h

2
6
4
re

f
G

M
E
A
N

2
6
%

8
9
%

9
7
%

8
7
%

7
4
% 8
4
% 9
9
%

9
0
%

9
8
%

1
1
%

9
9
%

9
9
%

2
3
% 4

5
%

6
2
%

1
7
%

0
%

6
1
%

1
6
%

2
3
%

9
9
%

8
4
%

7
2
% 8
1
%

6
4
%

1
.7

0
x

cj
p
e
g
-1

d
jp

e
g
-1

g
sm

d
e
co

d
e

g
sm

e
n
co

d
e

cj
p
e
g
-2

d
jp

e
g
-2

h
2
6
3
e
n
c

h
2
6
4
d
e
c

jp
g
2
0
0
0
d
e
c

jp
g
2
0
0
0
e
n
c

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

1
6
4
.g

zi
p

1
8
1
.m

cf
1
7
5
.v

p
r

1
9
7
.p

a
rs

e
r

2
5
6
.b

zi
p
2

4
2
9
.m

cf
4
0
3
.g

cc
4
5
8
.s

je
n
g

4
7
3
.a

st
a
r

4
5
6
.h

m
m

e
r

4
0
1
.b

zi
p
2

4
6
4
.h

2
6
4
re

f
G

M
E
A
N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
4.5

5
6
%

9
2
% 9

7
%

9
0
%

7
5
% 9

0
%

9
9
%

8
9
%

9
9
%

2
3
%

9
9
%

9
9
%

2
6
%

9
7
%

6
4
%

2
5
%

0
%

9
7
%

1
7
%

2
2
%

9
9
%

9
9
%

7
2
% 8
1
%

7
1
%

1
.6

5
x

SEED SEED-Adaptive

Little Core (IO2) Medium Core (OOO2) Big Core (OOO4)

Figure 4.9: SEED Specialization for Little, Medium, and Big Cores

62

easier comparison, as many instructions for loading immediates and managing register spilling are

not required in SEED. We discuss these in three categories:

Perf.&Energy Benefit Regions Compared to the OOO4-wide core, SEED can provide high speedups

for certain applications, coming from the ability to exploit higher ILP in compute-intensive regions

and from breaking the instruction window barrier for achieving higher memory parallelism.

In the first category are jpg2000dec, cjpeg and djpeg, which can exploit ILP past the issue

width of the processor, while simultaneously saving energy by using less complex structures. Often,

these regions have indirect memory access which precludes SIMD vectorization. In the second

category are 181.mcf and 429.mcf, which experience very high cache miss rates, and clog the

instruction window of the OOO processor. SEED is only limited by the store buffer size on these

benchmarks.

Energy Benefit-Only Regions These regions have similar performance to the OOO4, but are more

energy efficient by 2-3×. Overall, ILP tends to be lower, but control is mostly off the critical path,

allowing dataflow to compete. This is the case for djpeg-1 and h264dec. Benchmarks like gsmencode

and 164.gzip actually have some potential ILP advantages, but are burdened by communication

overhead between SEED units. Benchmark h263enc actually has a very high potential ILP, but

requires multiple instances of the inner loop (not just iterations) in parallel, which SEED does not

support.

Contrastingly, benchmarks 473.astar and jpg2000enc have significant control, but still perform

close to the OOO core. These benchmarks make up for the lack of speculation by avoiding branch

misses and relying on the control-equivalent spawning that dataflow provides.

Perf. Loss Regions Several SEED regions lose performance versus the OOO4 core, shown in the

last set of rows in Table 4.5. The most common reason is additional communication latency on

the critical path, affecting regions in 403.gcc, mpeg2dec and mpeg2enc. Also, certain benchmarks

have load-dependent control, like 401.bzip2, causing a low potential performance for dataflow.

63

These are fundamental dataflow limitations. In two cases, configuration overhead hurt the benefit

of a short-duration region(464.h264ref and 197.parser). In practice, these regions would not

be executed on SEED. Finally, some of these regions are vectorized on the GPP, and SEED is not

optimized to exploit data-parallelism. This affects 401.bzip2 and 256.bzip2.

Answer: Speedups come from exploiting higher memory parallelism and instruction parallelism, and

avoiding mispeculation on unpredictable branches. Slowdowns come from the extra latency cost on more

serialized computations.

Q5. Which GPP cores can we enhance with SEED?

Here we consider integrating with a little, medium, and big core, as outlined in Table 4.3. To

eliminate compiler/runtime heuristics on when to accelerate, we consider using an oracle scheduler,

which uses perfect information to decide when to use the OOO core, SEED, or SIMD. We report

results for performance and energy reduction of all cores in Figure 6.11. The first bar in each graph

shows the relative metric to the baseline, when always using SEED. The second bar, “adaptive,”

shows the result of the oracle scheduler, optimizing for Energy-Delay product, and not allowing

any regions which degrade performance by more than 10%. We discuss the implications for each

GPP type below.

Little GPP (IO2) For the little core, SEED provides a geometric mean performance and energy

improvement of about 1.65×, and SEED runs for 71% of the execution time. For these benchmarks,

SEED mainly loses performance on vectorized workloads like 256.bzip2.

Medium GPP (OOO2) For the medium core, SEED is the chosen execution substrate for 64% of

the execution time, providing energy reduction of 1.7×, and performance of 1.33×. Even if always

chosen, in only four cases does it hurt performance, and in most cases energy-efficiency gain is

significant.

64

Big GPP (OOO4) For the big core, for reasons described in the previous section, SEED is chosen

less, around 42% of execution time. Overall though, it still provides 1.14× performance and 1.53×

energy efficiency improvement.

Answer: All cores can achieve significant energy benefits; little and medium cores can achieve significant

speedup; and big cores receive modest performance improvement.

Q6. Would this still be useful if GPPs were more efficient?

Figure 4.10(a) shows the performance, energy, and percentage of cycles that SEED is active across

all workloads, while reducing the power of all GPP structures (not including the SEED unit). The

x-axis is the factor by which the GPP is made more power efficient (1 means no change).

Naturally, the energy-reduction of all GPPs decrease as a direct effect of the changing parameters.

More interestingly, the percentage of time SEED is chosen drops only by a few percent (and only for

the little and medium cores), even if the GPP becomes 4×more energy efficient.

Answer: Even future generations of power-efficient GPPs could take advantage of explicit-dataflow spe-

cialization.

Q7. Beside energy/speedup, are there other benefits?

Figure 4.10(b) shows the effects of varying the region choice metric from energy-efficiency (E),

to energy-delay (ED), and up to performance (D). Naturally, the little and medium cores are not

particularly sensitive to the region choice metric, which is intuitive because SEED is a faster, yet still

primarily lower-power design. The big core is quite sensitive; by optimizing for energy-efficiency

(and using SEED more often) it can trade off 20% performance for over 40% energy efficiency on

average.

Answer: Explicit-dataflow specialization provides a microarchitectural mechanism for trading-off per-

formance and energy-efficiency on large cores.

65

Little Medium Big

(b) Sensitivity to metric
for region choice

(a) Sensitivity to GPP
Power Improvements

%
 C

yc
le

s
S
E
E
D

 A
ct

iv
e

E
n
e
rg

y-
R
e
d
u
ct

io
n

Pe
rf

o
rm

a
n
ce

E E^2D ED ED^2 D
Region Choice Metric

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 1.5 2 2.5 3 3.5 4
GPP Power Reduction Factor

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0

1.2

1.4

1.6

1.8

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0

1.2

1.4

1.6

1.8

2.0

Figure 4.10: Sensitivity to GPP Improvements and Region Choice Metric

66

GPP bigLITTLE

InDPlace(Loop(ExecU
GPP(h Beret GPPh CCores

Relat ive(Perform ance

R
e

la
ti

v
e

(E
n

e
rg

y

Little(:IO1S
Medium(:OOO1S
Big(:OOO%S

GPP(Type:Specialization(Technique:

L
eg
en
d

Default(Use((:Always(ApplyS Adaptive(:<<wd(Perf(LossS

SEED

<Uw <U% <U7 1U1
wU%

wU6

wU7

<Uw

<U1

<U%

<U6

<Uw <U% <U7 1U1
Relat ive(Perform ance

<U0x(PerfU
<U3x(Energy

Figure 4.11: Comparison with Other Specialization Techniques

Q8. How does SEED compare with other specialization approaches?

An updated version of the first figure, Figure 4.11, compares SEED to existing techniques. In non-

adaptive mode, SEED provides energy improvements for all cores, and performance enhancements

for the inorder and medium cores. For adaptive mode, SEED improves both metrics across GPP

cores types, significantly more than existing approaches. In terms of the overall design space,

the OOO2+SEED cannot beat an OOO4 on average, but reaches within 15% performance (with

much lower power). Also, though SEED improves OOO4 performance only modestly, the energy

efficiency of OOO4+SEED is that of a simpler OOO2 GPP.

Answer: Explicit-Dataflow specialization has significant potential beyond existing techniques across

core types.

67

4.7 Related Work

The notion of merging the benefits of Von Neumann with dataflow machines is far from new – we

discuss the relationship to some of the original dataflow accelerators, some initial work in dataflow

coprocessors, modern dataflow accelerators, and the relationship to similar techniques applied on

a microarchitecture only level.

Early Dataflow Machines A large body of work in the dataflow paradigm is in executing explicitly

parallel programs, like TTDA does with the Id programming language [71]. In that context, Iannucci

proposes a hybrid architecture which adds a program counter to the TTDA to execute explicitly

parallel programs more efficiently [81]. Along opposite lines, Buehrer and Ekanadham introduce

another hybrid architecture which introduces mechanisms to support both sequential and explicitly

parallel programming languages [82] for ease of transitioning. These works are orthogonal to ours,

as they are attempting to target different programming models.

That said, SEED derives significant inspiration from the previous decades of dataflow research.

One example is the Monsoon architecture [83], which improves the efficiency of matching operands

by using an Explicit Token Store. This essentially eliminates complex matching hardware by

allocating memory frames for instruction tokens and using offsets into the frame for token locations.

Our strategy of using explicit offsets into the operand buffers provides similar benefits.

Dataflow Coprocessors Intellectually, a very similar work is Liu and Furber’s Dataflow Copro-

cessor [84]. They also use an offload-based model of execution with a dataflow-based coprocessor.

However, their microarchitecture only supports very simple code snippets typically found in the

embedded domain, and supports limited ILP (instead focusing on power), while SEED is designed

for high performance on potentially much larger and longer running regions. SEED could be viewed

as an evolution of this work for modern OOO processors and challenging irregular workloads.

A concurrent work is the Memory Access Dataflow (MAD) architecture [85], which augments

the GPP with a dataflow substrate for targeting memory access program phases. These phases occur

68

either because the code is naturally memory intensive, or because an attached in-core accelerator

offloads most of the computation. Conceptually, our work differs in that it explores the benefits

of hybrid dataflow execution in both memory and computation intensive regions. In terms of the

microarchitecture, they are both essentially speculation-free dataflow execution, strictly-specialize

for nested-loops, and use queue-like structures for data storage. For computation, MAD uses a

spatial grid of statically routed FUs, while SEED uses clustered-instruction execution.

Core Enhancements Revolver’s [70] in-place loop execution somewhat resembles the in-place

nested-loop acceleration of SEED, but uses higher-power structures. Another related OOO-enhancement

is the ForwardFlow [86] architecture, which is also a CAM-free execution substrate using explicit

pointer-based communication of values. Though it is more energy-efficient than a typical OOO

design, it still suffers overheads of fetch and decode, centralized register-file access, and still must

dynamically build the dependence graph.

4.8 Summary

This chapter demonstrated that there exists opportunity for fine-grain heterogeneity between an

OOO core and explicit-dataflow processor, and quantified the potential benefits. It described the

design of the Specialization Engine for Explicit-Dataflow (SEED) – a design which exploits strict

specialization of nested loops, and yet is still widely applicable, and combines known dataflow-

architecture techniques for high energy efficiency and performance.

In the design-space exploration, we explored the potential of dataflow heterogeneity by inte-

grating SEED into little (Inorder), medium (OOO2) and big (OOO4) cores. We show all design

points achieve > 1.5× energy benefit by power-gating the OOO core when SEED is active. For

speedup, little, medium and big cores achieve 1.67×, 1.33× and 1.14× over the non-specialized

design. Finally, our analysis connected workload behaviors to dataflow profitability, showing that

code with high memory parallelism, instruction parallelism, and branch unpredictability is highly

69

profitable for dataflow execution.

Overall, in the context of dataflow research, our work has shown how traditional Von Neumann

OOO and explicit-dataflow architectures favor different workload properties, and that fine-grain

interleaving can provide significant and achievable benefits over either execution model alone.

70

5 multi-behavior specialization

This dissertation has discussed how Behavioral Specialized Accelerators (BSAs) can be designed

to efficiently execute code with certain properties – even irregular code – and remain largely

configurable or programmable. A natural question is how far can this paradigm be pushed: can

multiple BSAs be composed synergistically inside an ExoCore architecture? The flexible nature of

BSAs makes this question difficult, as different BSAs have overlapping strengths and weaknesses,

and the differences affect the tradeoffs with the general purpose core type.

This chapter’s goal is to elucidate the potentials of synergistic BSAs. We first discuss the intuition

on why overlapping behaviors are both a problem and opportunity, and construct a synergistic

combination of behaviors with high potential for specialization (Section 5.1). Next, we describe

how to use those behaviors to create a synergistic set of accelerators (Section 5.2), and how to

decide between these BSAs on a per-regions basis (Section 5.3). The following sections describe the

evaluation methodology (Section 5.4), and the results and design space exploration (Section 5.5).

Finally, we cover related work (Section 5.6) and summarize (Section 5.7).

5.1 Behavior Synergy

Recall from Chapter 1 that a behavior is a general characteristic of a program which hardware

specialization can potentially exploit. Because of their generality, multiple behaviors can describe

one particular code, and may even be highly correlated. This poses a problem and opportunity for

any system with multiple general purpose accelerators: any set of targeted behaviors should be

synergistic enough such that the marginal benefits of specializing for each behavior are worth the

marginal costs of adding accelerator hardware.

For example, codes with vectorizable inner loops will tend to have a high degree of instruction-

level parallelism. A behavior-specialized accelerator (BSA) which is targeted towards vectorizability

(many parallel function units with consolidated control) will look quite different from one targeted

71

Low

Control

Memory/

Compute

Seperable

Control

Non-

Critical

Control

Critical,

Varying

Control

Critical,

Consistent

Low

Potential

ILP

High

Potential

ILP

Some

Control

Memory/

Compute

inseparable

High

Control

Simple

Core

Loop-Trace

Speculation

Non-Speculative

Dataflow

Vectorization+

Access-Execute

Vectorization+

Predication

Specialization

Mechanism

Code

Behaviors

Not-

Specialized
Specialized

Code to

Transparently

Specialize

Non-Data

Parallel

Data

Parallel

Figure 5.1: This work’s behavior-space. (Note that non-specializable in this context means that we
do not attempt specialization – not that it is known to be impossible to specialize for)

purely at high potential instruction-level parallelism (highly-parallel instruction dispatch, schedul-

ing, and reorder logic). The correlation in behaviors, depending on the set of targeted workloads,

might mean that it may not be useful to include both accelerators.

One way to help reason about program behaviors and their synergy in the abstract is to visualize

them as a hierarchical behavior space. This is a tree-based classification of program behaviors where

a path from root to leaf specifies the combination of behaviors that could potentially be specialized

with custom hardware1.

This Work’s Behavior Space

Figure 5.1 shows the behavior space for our work. We explain the rational for this space as follows.
1We note that for any given set of specialized behaviors, there could be multiple “arrangements” of the tree. Here we

attempt to make this classification intuitive by placing the behavior-distinctions with the most impact near the root of the
tree.

72

At the top of the hierarchy, we separate codes into data-parallel (ultimately vectorizable) and

non-data-parallel codes, as this will highly influence the specializable behaviors. The first behavior

we specialize for are data-parallel codes with little to no control flow decisions. These represent a

large and important class of workload with many well-known and effective hardware specialization

techniques.

When the degree of control flow decisions becomes high, we look for another common property

of data-parallel codes to exploit: separability of memory and computation instructions. This means

that the addresses for the memory accesses are not dependent on the computations. The principles

of decoupled access-execute can be used to specialize codes with this property.

Turning to non-data parallel codes, the first important distinction is whether there is any

instruction-level parallelism to exploit. If not, we can consider specializing those codes with

any sort of simple processor. If there is ILP, we can exploit other behaviors.

As discussed extensively in Chapter 4, we can exploit the prevalence of non-critical control flow,

using mechanisms of non-speculative dataflow. Alternatively, another behavior we can exploit is

the degree of control-flow bias (how consistent control flow decisions tend to be). If most of the

control-flow decisions are consistent, then particular control-traces become common, and we can

use specialization techniques that rely on executing long repeated traces.

To be clear, the behavior space we target is by no means exhaustive; there are many types of

workloads that we would not specialize for, either because we use strict hardware specialization

mechanisms or because the codes do not exhibit any targeted behaviors. Non targeted behaviors

are indicated on our behavior-space diagram as red circles. The fact that we do not exhaustively

search all known behaviors does not take away from our central goal in this chapter, which is to

show that there is potential value in multi-behavior specialization. Furthermore, the unexplored

behaviors can be the focus of future work in this area.

73

G
P

G
P

U

Exo-
Core

Shared Cache / NoC

Domain-Specific

 Accelerators

Exo-
Core

Exo-
Core

Private $Private $Private $

ExoCore

General

Core

MMU & Private Cache

Fine

BSA

Fine

BSA

Coarse

BSA

Coarse

BSA

Data Interf.

Memory Interf.

Config./Init/Power-Gate Interf.

Behavior Specialized Accelerators (BSAs)

Figure 5.2: ExoCore-Enabled Heterogeneous System

5.2 Designing an ExoCore

As described earlier, Figure 5.2 shows how an ExoCore organization integrates a general purpose

core with several other programmable or configurable BSAs targeted at different kinds of program

behaviors. At run-time, depending on the affinity of the code, the execution migrates to a BSA which

is most efficient, a process which is transparent to the programmer. An effective ExoCore design

must incorporate accelerators which are synergistic, meaning they can effectively work together by

specializing codes with different types of behaviors.

In this section, we first discuss how to use the behavior space we outlined in the previous

section to create a composition of synergistic BSAs for an ExoCore. Then we give background on

the individual BSAs that comprise it, and finally describe how they are modeled using the TDG.

Composing Synergistic Accelerators

The strategy we take in constructing a composition of BSAs is to draw from the existing accelerator

literature, and select designs that specialize for the behaviors in the space we outlined earlier in

Figure 5.1. Table 5.1 summarizes how different behaviors are exploited by the accelerators we

incorporate, and gives insights into their benefits and drawbacks versus a general purpose core.

We describe this composition of BSAs below; their high-level architecture is in Figure 5.3.

74

BSA (Acronym) Exploited App. Be-
havior

Benefits vs General
Core

Drawbacks vs General
Core

Granularity Inspired By

Short-Vector
SIMD

Data-parallel loops
with little control

Fewer instructions and
less port contention

Masking/predicated
inst penalty

Inner Loops

Data Parallel
CGRA (DySER)

Parallel loops w/
separable com-
pute/memory

Vectorization + fewer
insts. on general core

Extra comm. in-
sts, predicated inst
penalty

Inner Loops DySER [32],
Mor-
phosys [87]

Non-speculative
Dataflow
(SEED)

Regions with non-
critical control

Cheap issue width,
larger instruction win-
dow

Lacks control specu-
lation, requires instr.
locality

Nested
Loops

SEED [17],
WaveScalar [73]

Trace-
Speculative
Proc. (Trace-P)

Loops w/ consistent
control (hot traces)

Similar to above, but
larger compound in-
sts.

Trace mispeculation
requires re-execution

Inner Loop
Traces

BERET [25],
CCA [26]

Table 5.1: Tradeoffs of Behavior Specialized Accelerators (BSAs) in this Work

General
Purpose Core SIMD

Data-Parallel CGRA

DySER
Trace-Speculative

Trace-P
Non-Speculative Dataflow

SEED

Config & Init

Vector Data

Coarse-Grain

Reconfig. Arch

(CGRA)

Flex. In/Out

Interface
Dataflow

Op

Storage

Compound

Func. Units

(CFUs)

Private Cache and MMU

Store Buffer

Writeback Bus

Op
Storage

CFUs

Iter. Versioned Store Buf.

Writeback Bus

Inorder or

OOO Pipeline

Figure 5.3: Example ExoCore Architecture Organization

SIMD For data-parallel regions with a limited amount of control and memory irregularity, we

rely on Short vector SIMD extensions to a general purpose core’s pipeline. We choose this because

short vector extensions are very common, and are effective given the behaviors.

Data-Parallel Access-Execute Past a certain degree of control, SIMD is no longer effective, and

instead we target the behavior of separable computation and memory.

The specialization technique is to offload the computation component of a loop to a CGRA which

natively supports control flow, and pipeline the CGRA for executing parallel loops (typified by

DySER [32], Morphosys [87]). The benefit of this is that there would be fewer total core instructions

75

(which are expensive in terms of energy), and a higher degree of ILP can be exploited at lower

power – all while tolerating some control flow inside the computation itself. Also, these accelerators

can be beneficial for code with some memory irregularity, as they provide a shuffle network in their

flexible input/output interfaces.

For this purpose, we use the DySER architecture proposed in work co-written and developed by

this dissertation’s author. Its design point has 64 functional units (FUs), and is configured similar

to previous proposals [32].

Non-speculative Dataflow In code regions that are not data-parallel, but still have high potential

ILP, non-speculative dataflow processors can be highly effective, especially when the control flow

does not lie on the critical path.

For this purpose, we re-use the SEED [17] architecture, using distributed dataflow units com-

municating over a bus, and compound FUs (CFUs) for computation. (See Chapter 4 for a detailed

description). This design targets inlined nested loops with 256 static compound instructions.

Trace-Speculative Core Often, control is on the critical path, meaning speculation is necessary

for good performance, but it is highly biased – creating one hot path through a loop. Architectures

like BERET [25] exploit this by sequencing through a speculative trace of instructions, using CFUs

for energy efficiency. Instructions diverging from the hot loop trace require re-execution on the

general core, making this accelerator strictly specialized for loops with hot traces.

We model a trace-speculative BSA similar to BERET, except that we add dataflow execution. This

enables the design to be more competitive with an OOO core. We add a loop-iteration versioned

store buffer to save speculative iterations. We refer to this design as a Trace-P for trace-processor2.

Compared to SEED, Trace-P requires half as much operand storage, and can have larger CFUs, as

compound instructions in Trace-P can cross control boundaries.
2Not to be confused with the Trace Processor from [88]

76

ExoCore Architecture Organization Putting the above together, Figure 5.3 shows how an ExoCore

combines a general core with the four different BSAs. DySER and SIMD are integrated with

vector datapaths from the general core. All designs besides SIMD are configurable, and require a

configuration datapath. SEED and Trace-P have coarse grain integration, meaning they have their

own interfaces to the cache hierarchy, and can power down parts of the core.

We emphasize that the detailed microarchitecture is not the emphasis or contribution of this

chapter, rather the implications and opportunities of this design organization is the main contribu-

tion.

5.3 BSA Selection

One of the difficulties in using an ExoCore system with multiple accelerators is in the decision

making processes for choosing between them, depending on the actual behaviors of program regions.

While prior heterogeneous systems (mostly single-ISA works) have addressed the scheduling

problem in their domain, the primary differences are 1. BSAs typically have restricted entry points

(loop boundaries), and 2. BSAs targeting nested loops introduce a hierarchical scheduling problem

(e.g. target an entire loop nest, or just the inner loop?).

This problem can be solved easily using the concept of what we call an Amdahl Tree, and a

simple dynamic programming algorithm, as we explain next. As will become clear, the Amdahl

Tree approach requires both information about region execution frequency and estimations for

the expected benefit of an accelerator on a certain code region. Here, we first explain the concept

of the Amdahl tree, then describe how to use it practically with limited profile information and

performance estimates.

Definition An Amdahl Tree is first composed of a representation of the hierarchical region-

structure of a non-recursive portion of the program. Nodes in the Amdahl Tree could represent

arbitrary hierarchical regions, but typically will represent loops, functions, and traces to encode

77

Loop L2: 60%
SIMD: -, SEED: 2.1x

Loop L3: 40%
SIMD: 2.2x, SEED: 1.6x

Loop L1: 100%
SIMD: -, SEED: 1.9x

Loop L4: 30%
SIMD: 3.8x, SEED: 1.5x

SIMD@L3: 2.2x Speedup estimate for
each BSASEED@L3: 1.6x



SIMD@L3: 1.57×

SEED@L2: 2.1×  SIMD@L4: 3.8x
SEED@L4: 1.5x



SEED@L2 + SIMD@L4: 2.15×
SEED@L1: 1.9×

 Choose best arch.
at each levelFinal Choice

Figure 5.4: Amdahl Tree – Example of Triple Nested Loop

their nesting relationship. In addition to this structure, an Amdahl Tree’s nodes are annotated

with 1. That region’s expected contribution to the execution time; and 2. The expected benefits of

offloading each relevant accelerator given the entry point into the accelerated code is the beginning

of that region.

Example Consider the example in Figure 5.4. Each node in the tree represents a candidate loop,

nested loop or function call, and is labeled with the speedup of each BSA and the expected execution

time. To explain the need for the following approach, looking at the innermost loops in the example

(loop 3 and 4), the best option is SEED. However, by performing the bottom up traversal, using

SEED at loop 2 and SIMD at loop 4 yields the best performance gain.

Algorithm The algorithm to solve this problem is straight forward. Perform a bottom-up traversal,

and at each node consider two possibilities: 1. Use the best acceleration approach from each

sub-granularity (each child node), and apply Amdahl’s law to get the benefit for any individual

accelerator. 2. Use the best acceleration approach at the current granularity (the current node). Note

this can be extended to any metric (e.g. performance, energy), and would work as a solution for other

specialization techniques that have different granularities (e.g. basic-blocks, traces, function-calls).

Practical Considerations In practice, employing the Amdahl tree requires profiling data and/or

static analysis to estimate the region execution time and relative performance of each accelerator.

We use a combination of both, along with simple heuristics for this task.

78

Suite Benchmarks

TPT conv, merge, nbody, radar, treesearch, vr
Parboil cutcp, fft, kmeans, lbm, mm, needle, nnw, spmv, stencil, tpacf
SPECfp 433.milc 444.namd 450.soplex 453.povray 482.sphinx3
Mediabench cjpeg, djpeg, gsmdecode, gsmencode cjpeg2, djpeg2, h263enc, h264dec,

jpg2000dec, jpg2000enc, mpeg2dec, mpeg2enc
TPCH Queries 1 and 2
SPECint 164.gzip, 181.mcf, 175.vpr, 197.parser, 256.bzip2 429.mcf, 403.gcc,

458.sjeng, 473.astar, 456.hmmer, 445.gobmk

Table 5.2: Benchmarks

5.4 ExoCore Exploration Methodology

The following methodology is used in the design-space exploration in the next section.

Benchmarks Selection Benchmarks were chosen from a wide range of suites (Table 5.2), and are

meant to represent a wide range of workloads (they are a superset of the irregular workloads used in

the previous chapters). These include highly regular codes from Intel TPT [32], scientific workloads

from Parboil [44], image/video applications from Mediabench [80] and irregular workloads from

SPECint. The diversity highlights ExoCore’s ability to target a large variety of codes. Also, as much

as possible, we picked benchmarks and suites from the respective accelerator publications.

General Core Configurations We considered four different cores of varying complexity, with

parameters as outlined in Table 5.3. The common characteristics are a 2-way 32KB I$ and 64KB

L1D$, both with 4 cycle latencies, and a 8-way 2MB L2$ with a 22 cycle hit latency. We model 256-bit

SIMD.

Area Estimation We use McPAT for estimating area of general cores, and use area estimates from

relevant publications [32, 25, 17].

Runtime Accelerator Selection Because we are exploring the potential of ExoCore systems, most

of our results use an Oracle scheduler, which chooses the best accelerator for each static region, based

79

IO2 OOO2 OOO4 OOO6

Fetch, Dispatch
Issue, WB Width 2 2 4 6

ROB Size - 64 168 192
Instr. Window - 32 48 52
DCache Ports 1 1 2 3
FUs (ALU,Mul/Div,FP) 2,1,1 2,1,1, 3,2,2 4,2,3

Table 5.3: General Core Configurations

on past execution characteristics. The selection metric we use is energy-delay, where no individual

region should reduce the performance by more than 10%. One later set of results compares the

oracle and Amdahl Tree schedulers.

5.5 ExoCore Evaluation

In the evaluation of ExoCore, we seek to address three main questions: How much potential is

there for an ExoCore System? Is having multiple accelerators useful within and across applications?

Does an ExoCore system provide additional levels of flexibility in design choices?

We summarize the main results below. Note that a “full ExoCore” consists of an ExoCore with

all four BSAs.

• High Potential of BSAs Across all workloads, a full OOO2-based ExoCore provides 2.0×

performance and 1.6× energy benefits over an OOO2 core with SIMD (dual-issue, out-of-

order). Compared to an OOO6 core with SIMD, an OOO6 ExoCore can achieve up to 1.4×

performance and 1.7× energy benefits.

• Broad Accelerator Affinity ExoCores make use of multiple accelerators, both inside workload

domains, and inside applications themselves. Across all benchmarks, considering a full

OOO2 ExoCore, an average of only 20% of the original programs’ execution cycles went

un-accelerated.

80

1.0 1.5 2.0 2.5 3.0 3.5
Relative Performance

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
el

at
iv

e
E

ne
rg

y
General Core
(with SIMD)

ExoCore

This way
Better

Figure 5.5: ExoCore Tradeoffs Across All Workloads

• Increased Design Choice Opportunities Our analysis suggests that there are several ways

to break through current energy, area, and performance tradeoffs. For example, there are four

OOO2-based ExoCores and nine OOO4-based ExoCores that achieve higher performance

than an OOO6 with SIMD alone. Of these, the OOO2SIMD+DySER+SEED ExoCore achieves 2.6×

better energy efficiency, while requiring 40% less area.

We discuss each of these results in the following subsections.

Overall Performance and Energy Benefits

Figure 5.5 shows geometric mean performance and energy benefits of the full ExoCore across all

workloads. The solid line represents the general purpose core (with SIMD) only, while the dotted

line represents the full ExoCore design. Each point on the curve represents a different general

purpose core. The baseline is the dual-issue inorder core (IO2).

ExoCore designs improve all baseline cores significantly. A full OOO2-based ExoCore provides

2.0×performance and 1.6× energy benefits over an OOO2 core (dual-issue, out-of-order). Compared

to an OOO6 core, an OOO6 ExoCore can achieve up to 1.4× performance and 1.7× energy benefits.

81

Relat ivehPerform ance

R
e

la
ti

v
e

hE
n

e
rg

y

RegularhWorkloads
6TPTDhParboilG

SemixRegularhWorkloads
6MediabenchDhTPCHDhSPECfpG

IrregularhWorkloads
6SPECintG

Relat ivehPerform ance Relat ivehPerform ance

OOO3

OOO4

OOO6

IO3

General
Core

Config1

GeneralhCore
6withhSIMDG

ExoCore

815 815 315 315

516

518

815

813

814

816

818

315

815 815 315 315 B15 B15

514

516

518

815

813

814

816

815 815 315 315 B15 B15 415

516

518

815

813

814

816

818

Thishway
Better

Figure 5.6: Interaction between Accelerator, General Core, and Workloads

Workload Interaction To observe workload-type specific behavior, Figure 5.6 divides the previous

results into highly regular, semi-regular, and highly irregular workload categories. Categories are

based on benchmark suites, listed in the figure above the graphs.

The major result here is that even on the most challenging irregular SPECint applications,

ExoCores have significant potential. A full OOO2 ExoCore can achieve 1.3× performance and 1.4×

energy benefits over OOO2 with SIMD. For OOO6, ExoCore achieves 1.2× performance and 1.4×

energy efficiency improvement. Our findings also show that an ExoCore has a high potential on

regular workloads, where ExoCore achieves 1.9× performance and 1.6× energy improvement for

OOO2 core. This is surprising because SIMD itself works well on these workloads.

Inter-application BSA Utilization To understand where the benefits are coming from, we can

break down performance and energy results for each application. Figure 5.7 considers an OOO2-

based ExoCore, and shows each benchmark’s energy and execution time, as spent in each accelerator.

The baseline is the OOO2 alone with no SIMD. Most benchmarks, even irregular workloads, have

some potential to effectively use BSAs, ranging from 100% of the program being offloaded, to

around 20%. Secondly, more than half of the workloads benefit from multiple BSAs inside a single

82

co
n

v
m

e
rg

e
n

b
o

d
y

ra
d

a
r

tr
e

e
se

a
rc

h v
r

cu
tc

p ff
t

k
m

e
a

n
s

lb
m

m
m

sa
d

n
e

e
d

le
n

n
w

sp
m

v
st

e
n

ci
l

tp
a

cf
cj

p
e

g
IT

d
jp

e
g

IT
g

sm
d

e
co

d
e

g
sm

e
n

co
d

e
cj

p
e

g
I2

d
jp

e
g

I2
h

2
6

3
e

n
c

jp
g

2
R

R
R

d
e

c
jp

g
2

R
R

R
e

n
c

m
p

e
g

2
d

e
c

m
p

e
g

2
e

n
c

tp
ch

T
tp

ch
3

4
3

3
Mm

ilc
4

4
4

Mn
a

m
d

4
5

R
Ms

o
p

le
x

T
6

4
Mg

zi
p

T
8

T
Mm

cf
T

7
5

Mv
p

r
T

9
7

Mp
a

rs
e

r
2

5
6

Mb
zi

p
2

4
2

9
Mm

cf
4

R
3

Mg
cc

4
7

3
Ma

st
a

r
4

5
6

Mh
m

m
e

r
4

R
T

Mb
zi

p
2

4
6

4
Mh

2
6

4
re

fRMR

RM2

RM4

RM6

RM8

TMR

O
O

O
25

E
xo

C
or

e5
E

ne
rg

y

GPP SIMD DySER SEED TraceIP

co
n

v
m

e
rg

e
n

b
o

d
y

ra
d

a
r

tr
e

e
se

a
rc

h v
r

cu
tc

p ff
t

k
m

e
a

n
s

lb
m

m
m

sa
d

n
e

e
d

le
n

n
w

sp
m

v
st

e
n

ci
l

tp
a

cf
cj

p
e

g
IT

d
jp

e
g

IT
g

sm
d

e
co

d
e

g
sm

e
n

co
d

e
cj

p
e

g
I2

d
jp

e
g

I2
h

2
6

3
e

n
c

jp
g

2
R

R
R

d
e

c
jp

g
2

R
R

R
e

n
c

m
p

e
g

2
d

e
c

m
p

e
g

2
e

n
c

tp
ch

T
tp

ch
3

4
3

3
Mm

ilc
4

4
4

Mn
a

m
d

4
5

R
Ms

o
p

le
x

T
6

4
Mg

zi
p

T
8

T
Mm

cf
T

7
5

Mv
p

r
T

9
7

Mp
a

rs
e

r
2

5
6

Mb
zi

p
2

4
2

9
Mm

cf
4

R
3

Mg
cc

4
7

3
Ma

st
a

r
4

5
6

Mh
m

m
e

r
4

R
T

Mb
zi

p
2

4
6

4
Mh

2
6

4
re

fRMR

RM2

RM4

RM6

RM8

TMR

O
O

O
25

E
xo

C
or

e5
E

xe
cM

5T
im

e
GPP SIMD DySER SEED TraceIP

Baseline=
OOO2 Alone

Figure 5.7: Per-Benchmark Behavior and BSA Execution Time and Energy Utilization

application3. For example, cjpeg-2 makes use of SIMD, SEED and Trace-P during its execution.

Considering energy breakdowns in Figure 5.7, observe that for SIMD and DySER, the percentage of

cycles offloaded is proportional to the energy contribution. For SEED, because it can power-gate

portions of the general core when in use, the energy reduction is higher than the execution time

reduction.
3This considers a 5% threshold in terms of instructions executed for an accelerator to be considered “used” for a

given application.

83

260000 280000 300000 320000 340000
0

2

4

6

8
O

O
O

2
-E

x
o

C
o

re
MS

p
e

e
d

u
p

M/
MO

O
O

2 d jpegGen.MCore

SEED

Trace-P

SIMD

DySER

400000 500000 600000 700000 800000
Cycles into Program Execution

0

1

2

3

4

5

6

O
O

O
2

-E
x
o
C

o
re

 S
p
e
e
d
u
p
 /

 O
O

O
2

464.h264ref

Figure 5.8: ExoCore’s Dynamic Switching Behavior

Affinity Granularity To give insight into the dynamic behavior of an ExoCore, Figure 5.8 shows a

trace of execution for two benchmarks, djpeg and 464.h264ref. These graphs show the relative

performance benefits of a full OOO2 ExoCore over the OOO2 core alone (no SIMD), over time. The

performance is calculated by examining the cycle times of fixed-length (1000 instruction) windows

of the original non-transformed TDG, hence some noise is introduced.

These graphs demonstrate that applications can have fine-grain affinity for different accelerators,

while retaining large speedup benefits. SEED tends to give longer sustained benefits, while Trace-P,

DySER, and SIMD give shorter but larger bursts of performance. These graphs also highlight the

capabilities of the transformable dependence graph for capturing cycle level microarchitectural

84

cj
p

e
g

1

d
jp

e
g

1

g
sm

d
e

co
d

e

g
sm

e
n

co
d

e

jp
g

2
0

0
0

d
e

c

jp
g

2
0

0
0

e
n

c

m
p

e
g

2
d

e
c

m
p

e
g

2
e

n
c0.0

0.2

0.4

0.6

0.8

1.0

O
O

O
2D

E
xo

C
or

eD
E

xe
c.

DT
im

e

cj
p

e
g

1

d
jp

e
g

1

g
sm

d
e

co
d

e

g
sm

e
n

co
d

e

jp
g

2
0

0
0

d
e

c

jp
g

2
0

0
0

e
n

c

m
p

e
g

2
d

e
c

m
p

e
g

2
e

n
c0.0

0.2

0.4

0.6

0.8

1.0

O
O

O
2D

E
xo

C
or

eD
E

ne
rg

y Oracle Sched.
Amdahl Tree Sched.

GPP SIMD DySER SEED Trace-P

Oracle Sched.
Amdahl Tree Sched.

Figure 5.9: Oracle versus Amdahl Tree Scheduler

effects, explained in Chapter 3.

Practicality Though we have shown that ExoCores have significant potential, an important concern

is whether they can practically provide benefits without oracle information. To study this, Figure 5.9

presents a comparison of the performance and energy of the Amdahl scheduler (left-bar) and the

Oracle scheduler (right-bar). Here, the general core is the OOO2, and we are showing challenging

benchmarks from Mediabench which require using multiple different accelerators in the same

application to be effective.

Compared to the oracle scheduler, our scheduler is slightly over-calibrated towards using the

BSAs rather than the general core, meaning it is biased towards energy efficiency – across all

benchmarks (including those not shown) the scheduler provides 1.21× geomean energy efficiency

improvement, while giving 0.89× performance of the Oracle scheduler. These heuristics can be

tuned with more effort to favor different metrics, or to be useful for the OOO4 or OOO6 cores.

Design Space Exploration

An ExoCore organization opens design opportunities which can push traditional energy and

performance tradeoffs forward, and this is true for both complex and simple general purpose cores.

85

D A x w B 6 7 8
Relat ivedPerform ance

OIA

OIw

OI6

OI8

DIO

DIA

DIw

DI6

R
e

la
ti

v
e

dE
n

e
rg

y

RegulardWorkloads
-TPTHdParboilM

SemipRegulardWorkloads
-MediabenchHdTPCHHdSPECfpM

IrregulardWorkloads
-SPECintM

DIO DIB AIO AIB xIO xIB wIO
Relat ivedPerform ance

OIw

OI6

OI8

DIO

DIA

DIw

DI6

DIO DIB AIO AIB xIO
Relat ivedPerform ance

OIB

DIO

DIB

AIO GenIdCoredOnly

SIMD

DySER

SEED

TRACEpP

ExoCore

OOOA

OOOw

OOO6

IOA

General
Core

ConfigI

Thisdway
Better

Figure 5.10: Interaction between Accelerator, General Core, and Workloads

To understand this flexibility, we explore a design space comprising the combinations of four general

purpose cores and 16 choices for the subset of BSAs (from the set of four BSAs we study).

Single-BSA Designs and Workload Interactions We begin by considering Single-BSA designs

and their contribution to different workload domains. Figure 5.10 shows similar results to Figure 5.6,

but the single-BSA design points are included, as well as the general purpose core with no SIMD.

Again, each line in this graph represents the set of designs with the same combination of accelerators

(or no accelerators), and each point on the curve represents a different general purpose core. Note

that the baseline here is the general purpose core alone (no SIMD).

Overall what this shows is that though each BSA alone has significant potential, their combination

has even more potential. On the regular workloads, each BSA gives roughly the same benefits,

with the coarse grain-integrated accelerators giving slightly more energy reduction, while the data-

parallel accelerators give slightly more performance. However, having all of them does improve the

performance and energy by about twice as much.

On the semi-regular workloads, SEED is by far the most effective, taking advantage of the high

ILP that the vector accelerator could not because of memory irregularity. Still, a full ExoCore does

provide 10-20% performance and energy benefits over SEED alone.

86
IO

2
-S

D
N

IO
2
-S

D
N

T
IO

2
-S

N
T

IO
2
-S

N
O

O
O

2
-S

N
T

O
O

O
2
-S

N
IO

2
-D

N
T

O
O

O
2
-S

D
N

T
IO

2
-D

N
O

O
O

2
-S

D
N

O
O

O
2
-D

N
T

IO
2
-N

T
O

O
O

2
-D

N
IO

2
-N

O
O

O
2
-N

T
IO

2
-S

T
IO

2
-S

D
T

O
O

O
4
-S

N
T

O
O

O
2
-N

O
O

O
4
-S

D
N

T
O

O
O

2
-S

T
O

O
O

2
-S

D
T

IO
2
-D

T
O

O
O

4
-S

D
N

O
O

O
4
-S

N
O

O
O

4
-D

N
T

O
O

O
2
-D

T
O

O
O

4
-D

N
IO

2
-T

O
O

O
4
-N

T
O

O
O

2
-T

O
O

O
2
-S

D
O

O
O

2
-S

IO
2
-S

D
O

O
O

4
-S

T
O

O
O

4
-S

D
T

O
O

O
6
-S

D
N

T
O

O
O

6
-S

N
T

IO
2
-S

O
O

O
2
-D

O
O

O
6
-S

D
N

O
O

O
4
-N

O
O

O
6
-D

N
T

O
O

O
6
-S

N
O

O
O

4
-D

T
O

O
O

6
-D

N
IO

2
-D

O
O

O
6
-N

T
O

O
O

4
-T

O
O

O
4
-S

D
O

O
O

6
-S

D
T

O
O

O
6
-S

T
O

O
O

6
-N

O
O

O
4
-S

O
O

O
4
-D

O
O

O
6
-D

T
O

O
O

2
IO

2
O

O
O

6
-T

O
O

O
6
-S

D
O

O
O

6
-D

O
O

O
6
-S

O
O

O
4

O
O

O
60

1

2

3

4

5

M
e
tr

ic
 D

if
fe

re
n
ce

Speedup Energy Eff. Area

Figure 5.11: Design-Space Characterization. S: SIMD, D: Data-Parallel CGRA (DySER), N: Non-spec
Dataflow (SEED), T: Trace-Processor

On the most irregular workloads (SPECint), the gap between single-BSA designs reduces, but

both DySER and SEED lie on the Pareto optimal for a single-BSA. Here, A full ExoCore gives

between 10-30% performance and energy benefits over the best single-BSA design.

The fact that the tradeoffs of the various metrics differ between single-BSAs designs opens the

question of what tradeoffs become possible when different subsets of BSAs are allowed.

Full Design Space and Design Choice Opportunities To explore the potential design flexibility,

we perform a design space exploration across all combinations of general purpose cores and BSAs

across all workloads. The resulting performance, energy efficiency and area metrics are shown

in Figure 5.11, where all points are relative to the dual-issue in-order (IO2) design. On the graph,

higher is better for performance and energy efficiency, and lower is better for area. There are many

valuable quantitative insights.

• [Performance] Compared to the OOO6 core with SIMD4, four OOO2 and nine OOO4 ExoCore

configurations match the performance with lower energy and area, by as much as 2×. This

gives the designer freedom even if performance is a hard constraint.
4We use OOO6-SIMD as the baseline - since this resembles commercial processors with AVX2 etc. Note that if we

had used OOO6 without SIMD as the baseline, the benefits of ExoCores would be even higher.

87

• [Performance] No in-order ExoCore configuration can match the OOO6 performance. The

best achieved is 88% of the OOO6, with almost 1.7× lower area.

• [Energy] The OOO2 core with SIMD is the most energy efficient baseline core. Compared to

this core, twelve in-order and five OOO4 ExoCores have higher energy efficiency - by as much

as 65% and 25% respectively. In addition to being more energy efficient, these configurations

are up to 1.35× (IO2-SDN) and 1.9× (OOO4-SNT) higher performance.

• [Energy] A full OOO6 ExoCore achieves the same energy efficiency (within 1%) of the OOO2-

SIMD core and has 2.2× higher performance, but is nearly twice the area.

• [Full ExoCores] The full IO2 ExoCore is the most energy-efficient among all designs. The full

OOO6 ExoCore has the best performance, the next best is the full OOO4 ExoCore, which has

10% lower performance, 1.25× lower energy and 1.36× lower area.

Overall these results suggest two trends. Behavior specialized cores are extremely effective

at reducing energy regardless of core type. They provide high performance-improvements for

in-order, small and medium-sized OOO cores - but not as much for big OOO cores. Therefore, the

most high impact opportunity for future BSAs is to improve the performance of OOO cores, while

further increasing their energy efficiency.

5.6 Related Work

A variety of heterogeneous cores have been explored in the past. We first discuss single-ISA

heterogeneous systems, then multi-ISA.

Single-ISA Heterogeneity Single-ISA heterogeneous architectures have been extensively ex-

plored, starting with Kumar et al. [89]. Later work extended this by exploring a large design

space of microarchitectural design points [90], and Lee et al. use regression analysis to broaden this

88

design space even further. A related design approach is to use a shared pipeline frontend, but use a

heterogeneous backend inside the microarchitecture, like Composite Cores [30].

Relatedly, many past works have explored processor steering methods on heterogeneous archi-

tectures [91, 92, 93, 94, 95]. The unique aspect of the scheduling problem in this work is that entry

points to different accelerators are restricted by the program’s loop structure.

An interesting single-ISA architecture is XLOOPs [96], which is a recent design targeting inner

loops with specific loop-dependence patterns. It uses a small number of additional instructions to

communicate loop patterns, which can be elided if run on the general purpose processor. Though

its high-level adaptive specialization paradigm is similar to the strategies we present here, along

with some targeted code properties, the microarchitecture is vastly different, and will favor different

codes. One benefit of the architectures we target here is their ability to target coarser grain regions,

enabling more effective power-gating of the OOO core.

Multi-ISA Heterogeneity To a lesser extent, multi-ISA heterogeneity (where all cores are general

purpose) have been previously studied, including Venkat et al. [97], who show that fully general

purpose cores with heterogeneous-ISAs alone can provide benefits. Our work considers the com-

position of accelerator-type architectures, which offer trade-offs beyond those of general purpose

architectures.

A recent body of work by Chien et al., under the moniker 10x10 [98], has explored using multiple

“micro-engines” as offload engines inside general purpose cores. Though the goal of improving

general cores is shared, their approach has generally been in designing algorithm-class specific

offload units, rather than behavior-specific. For example, they have developed micro-engines for

pattern-matching [99], fast Fourier transform [100], bit-manipulation [101], finite automata [102],

and data layout transformation [103]. They have also studied the workload clustering patterns of

instruction data types (floating point, integer, etc) and operation types. This approach could be

useful in a behavior-oriented context to find clusters of behaviors that frequently occur together.

Overall, there could be significant opportunities to combine behavior-specific and algorithm-specific

89

workloads in the future.

5.7 Summary

In this chapter, we proposed the ExoCore design, which incorporates multiple behavior-specialized

accelerators inside a core. It is an appealing design, as it can simplify general purpose core design –

behavior-specific microarchitecture blocks can be designed and integrated into the core in a modular

fashion, without disruptive changes to the core’s microarchitecture. It also provides a promising ap-

proach for exceeding the performance/energy frontier of conventional monolithic general purpose

processors. A design space exploration further revealed that an ExoCore organization provides

new design choice opportunities and flexibility. As an example, a 2-wide OOO processor with three

BSAs matches the performance of a conventional 6-wide OOO core with SIMD, has 40% lower area

and is more than 2× energy efficient.

90

6 general mathematical accelerator scheduling

One of the primary advantages of behavior specialized accelerators is in how they expose elements

of the hardware execution up through the ISA, enabling them to exploit program behaviors with

more efficient hardware mechanisms. Of course, exposing elements of the hardware execution puts

a larger burden on the compiler, which must now map computation on to these complex substrates.

In fact, this is a problem not just for behavior specialized accelerators, but for a larger class of

exposed hardware architectures that are termed spatial architectures. Generally, these problems

(termed spatial scheduling) have been solved with architecture-specific heuristics, an approach

which suffers from poor compiler/architect productivity, lack of insight on optimality, and inhibits

migration of techniques between architectures.

The goal of this chapter is to develop a scheduling framework usable across behavior special-

ized accelerators. To this end, we express spatial scheduling as a constraint satisfaction problem

using Integer Linear Programming (ILP)1. We observe that architecture primitives and scheduler

responsibilities can be related through five abstractions: placement of computation, routing of data,

managing event timing, managing resource utilization, and forming the optimization objectives. We

encode these responsibilities as 20 general ILP constraints, and for each BSA we augment with a few

additional architecture-specific constraints. Since these architectures do not necessarily have exist-

ing heuristic-based schedulers to compare against, we also examine some existing whole-program

spatial architectures, and use our framework to build schedulers for them as well – these are the

architectures which we evaluate in the conclusion. In all, we create schedulers for the BSAs we

target (DySER, SEED, Trace-P), as well as the TRIPS and PLUG architectures. Our results show

that a general declarative approach using ILP is implementable, practical, and typically matches or

outperforms specialized schedulers.

In this chapter, we first present background on two additional spatial architectures outside
1For an introduction to integer linear programming and its applications to computer architecture, a work co-written

by the author gives an overview, as well as some detailed examples [104].

91

the domain of behavior specialization (whole-program spatial architectures). We then present

a brief overview of our approach (Section 6.2), and give our detailed general ILP formulation

(Section 6.3). The subsequent section describes how to extend the general formulation to meet

the architecture-specific constraints for the four spatial architectures we target (Section 6.4). We

then present evaluation of the architectures that had previous spatial schedulers (Section 6.5).

Finally, we describe the limitations of our modeling abstractions and the flexibility and generality

of the approach (Section 6.6), cover the long history of related work in this area (Section 6.7) and

summarize (Section 6.8).

6.1 Spatial Architectures and ILP Primer

Spatial Architectures

We use the term spatial architecture to refer to an architecture in which some subset of the hardware

resources, namely functional units, interconnection network, or storage, are exposed to the compiler,

whose job, as part of the scheduling phase, is to map computation and communication primitives

in the instruction set architecture to these hardware resources. Behavior specialized architectures

are often-times spatial, as it benefits hardware efficiency and gives the compiler opportunities to

better exploit certain program behaviors. The accelerators that we use in this work, SEED, DySER,

and Trace-P all fall into this category, as well as others like CCA, SoftHV, Veal, and many others.

But of course, there are a large variety of whole-program spatial architectures as well, like VLIW

architectures, dataflow machines like TRIPS and WaveScalar, and tiled architectures like RAW and

PLUG.

DySER, SEED, and Trace-P have been described earlier (Chapters 4 and 5). Below, we give

background on the two whole-program spatial architectures that we use in the evaluation, TRIPS

and PLUG. A detailed diagram of the set of targeted architectures, along with their scheduling

abstraction, is in Figure 6.8 (page 106).

The TRIPS architecture is whole-program general purpose dataflow machine. It is organized

92

into 16 tiles, with each tile containing 64 slots, with these slots grouped into sets of eight. The slots

from one group are available for mapping one block of code, with different groups used for concur-

rently executing blocks. The tiles are interconnected using a 2-D mesh network, which implements

dimension-ordered routing and provides support for flow-control and network contention. The

scheduler must perform computation mapping: it takes a block of instructions (which can be no

more than 128 instructions long) and assigns each instruction to one of the 16 tiles and within them,

to one of the 8 slots.

The PLUG architecture is designed to work as an accelerator for data-structure lookups in

network processing. Each PLUG tile consists of a set of SRAM banks, a set of no-buffering routers,

and an array of statically scheduled in-order cores. The only memory access allowed by a core

is to its local SRAM, which makes all delays statically determinable. Applications are expressed

as dataflow graphs with code-snippets (the PLUG literature refers to them as code-blocks) and

memory associated with each node of the graph. Execution of programs is data-flow driven by

messages sent from tile to tile - the ISA provides a send instruction. Using a principle of fixed delays

in the execution model, the architecture is contention-free and completely statically scheduled. The

scheduler must perform computation mapping and network mapping (dataflow edges→ networks).

It must ensure there is no contention for any network link, which it can do by scheduling when send

instructions execute in a code-snippet or adjusting the mapping of graph nodes to tiles. It must also

handle flow-control.

In all three architectures, multiple instances of a block, region, or dataflow graph are executing

concurrently on the same hardware, resulting in additional contention and flow-control.

6.2 Overview

We present below the main insights of our approach in using constraint-solving for specifying the

scheduling problem for spatial architectures. We distill the formulation into five responsibilities,

each corresponding to one architectural primitive of the hardware. For a more general discussion

93

of limitations and concerns related to our approach, see Section 6.6.

The scheduler for a spatial architecture works at the granularity of “blocks” of code, which could

be basic-blocks, hyper-blocks, code-regions, or other more sophisticated partitions of program

code. These blocks, which we represent as directed acyclic graphs (DAGs) consist of computation

instructions, control-flow instructions, and memory access instructions that must be mapped to the

hardware. We formulate the scheduling problem as spatially mapping a typed computation DAG

G to a hardware graph H under certain constraints as shown by Figure 6.1 on page 96. For ease

of explanation, we describe G as comprised of vertices and edges, while H is comprised of nodes,

routers and links (formal definitions and details follow in Section 6.3).

Architecture
feature

Scheduler
Responsibility

DySER SEED TRIPS PLUG

1 Compute
hardware
organization

Placement of
computation

Heterogeneous
compute units

Heterogeneous
compound
compute units

Homogeneous
compute units

Homogeneous
compute units

2 Network
hardware
organization

Routing of
data

2D grid,
unconstrained
routing

Multi-bus
network

2D grid,
dimension order
routing

2D multi-network
grid, dim.-order
routing

3 Timing and
synchroni-
zation

Manage
timing of
events

Data-flow firing
& conflict-free
network, flow
control

Compound FU
& Data-flow
firing

Data-flow firing
& dynamic
network arb.

Hybrid dataflow/
in-order & static
compute/net.
timing

4 Concurrency
within block

Manage
resource
utilization

None –
dedicated
compute units,
switches, links

Parallel FUs
inside CFU

8-slots per
compute unit,
reg-tile, data-tile

32 slots per
compute-unit
and multicast
communication

Concurrency
across
blocks

Pipelined
execution

32 compound
insts per CFU,
Pipelined

Concurrent
execution of
different blocks

Pipelined
execution across
tiles

5 Performance
Goal

MILP
objective
formulation

Latency & Lat.
Mismatch

Latency Throughput and
Latency

Latency

Table 6.1: Relationship between architectural primitives and scheduler responsibilities.

To design and implement a general scheduler applicable to many spatial architectures, we

observe that five fundamental architectural primitives, each with a corresponding scheduler re-

sponsibility, capture the problem as outlined in Table 6.1 (columns 2 and 3). Implementing these

94

responsibilities mathematically is a matter of constraint and objective formulas involving integer

variables, which form an ILP model, covered in depth in Section 6.3. Below we describe the insight

connecting the primitives and responsibilities and highlight the mathematical approach. Table 6.1

summarizes this correspondence (in columns 2 and 3), and describes these primitives for three

different architectures.

Computation HW organization → Placement of computation: The spatial organization of the

computational resources, which could have a homogeneous or heterogeneous mix of computa-

tional units, requires the scheduler to provide an assignment of individual operations to hardware

locations. As part of this responsibility, vertices in G are mapped to nodes in the H graph.

Network HW organization→ Routing of data: The capabilities and organization of the network

dictate how the scheduler must handle the mapping of communication between operations to

the hardware substrate, i.e. the scheduler must create a mapping from edges in G to the links

represented in H . As shown in the 2nd row of Table 6.1, the network organization consists of the

spatial layout of the network, the number of networks, and the network routing algorithm. The flow

of data required by the computation block and the placement of operations defines the required

communication. Depending on the architecture, the scheduler may have to select a network for

each message, or even select the exact path it takes.

Hardware timing/synchronization → Manage timing of events: The scheduler must take into

consideration the timing properties of computation and network together with architectural restric-

tions, as shown in the 3rd row of table 6.1. In some architectures, the scheduler cannot determine

the exact timing of events because it is affected by dynamic factors (e.g. memory latency through

the caching hierarchy). For all architectures, the scheduler must have at least a partial view of

timing of individual operations and individual messages to be able to minimize the latency of the

computation block. In some architectures, the scheduler must exert extensive fine-grained control

over timing to achieve static synchronization of certain events.

95

Concurrent hardware resource usage→Managing Utilization: Central to the difficulties of the

scheduling problem is the concurrent usage of hardware resources by multiple vertices/edges in

G of one node/link in H . We formalize this concurrent usage with a notion of utilization, which

represents the amount of work a single hardware resource performs. Such concurrent usage (and

hence > 1 utilization) can occur within a DAG and across concurrently executing DAGs. Overall, the

scheduler must be aware of resource limits in H and which resources can be shared as shown in

Table 6.1 row 4. For example, in TRIPS, within a single DAG, 8 instruction-slots share a single ALU

(node in H), and across concurrent DAGs, 64 slots share a single ALU in TRIPS. In both cases, this

node-sharing leads to contention on the links as well.

Performance goal→ Formulate ILP objective: The scheduler generally has control over multiple

quantities which can improve the performance. This often means deciding between the conflict-

ing goals of minimizing the latency of individual blocks and managing the utilization among

the available hardware resources to avoid creating bottlenecks, which it manages by prioritizing

optimization quantities.

6.3 General ILP framework

This section presents our general ILP formulation in detail. Our formal notation closely follows

our ILP formulation in GAMS instead of the more conventional notation often used for graphs in

literature. We represent the computation graph as a set of vertices V , and a set of edges E. The

computation DAG, represented by the adjacency matrix G(V ∪E, V ∪E), explicitly represents edges

as the connections between vertices. For example, for some v ∈ V and e ∈ E, G(v, e) = 1 means

that edge e is an output edge from vertex v. Likewise, G(e, v) = 1 signifies that e is an input to

vertex v. For convenience, lowercase letters represents elements of the corresponding uppercase

letters’ set.

We similarly represent the hardware graph as a set of hardware computational resource nodes

N , a set of routers R which serve as intermediate points in the routing network, and a set of L

96

 כ

DAG G for

z=(x+y)2

Graph H for hardware of

spatial architecture
A Mapping of G to H

 כ +

x

y

z

y x

+

z

edges

(E)

vertices

(V)
routers (R)

nodes (N)
links (L)

Figure 6.1: Example of computation G mapped to hardware H .

unidirectional links which connect the routers and resource nodes. The graph which describes the

network organization is given by the adjacency matrix H(N∪R∪L,N∪R∪L). To clarify, for some

l ∈ L and n ∈ N , if the parameter H(l, n) was 0, link l would not be an input of node n. Hardware

graphs are allowed to take any shape, and typically do contain cycles. Terms vertex/edge refer to

members in G, and node/link to members in H .

Some of the vertices and nodes represent not only computation, but also inputs and outputs. To

accommodate this, vertices and nodes are “typed” by the operations they can perform, which also

enables the support of general heterogeneity in the architecture. For the treatment here, we abstract

the details of the “types” into a compatibility matrix C(V,N), indicating whether a particular vertex

is compatible with a particular node. When equations depend on specific types of vertices, we will

refer this set as Vtype.

Figure 6.1 shows an example G graph, representing the computation z = (x+ y)2, and an H

graph corresponding to a simplified version of the DySER architecture. Here, triangles represent

input/output nodes and vertices, and circles represent computation nodes and vertices. Squares

represent elements of R, which are routers composing the communication network. Elements of E

are shown as unidirectional arrows in the computation DAG, and elements of L as bidirectional

arrows in H representing two unidirectional links in either direction.

97

Inputs: Computation DAG Description (G)
V Set of computation vertices.
E Set of Edges representing data flow of vertices
G(V ∪E, V ∪E) The computation DAG
∆(E) Delay between vertex activation and edge activation.
∆(V) Duration of vertex.
C(V, V) (SEED) Describes whether vertices could be grouped in a CFU.
Γ(E) (PLUG) Delay between vertex activation and edge reception.
Be Set of bundles which can be overlapped in network.
Bv (PLUG) Set of mutually exclusive vertex bundles.
B(E∪V,Be∪Bv) Parameter for edge/vertex bundle membership.
P (TRIPS) Set of control flow paths the computation can take
Av(P, V), Ae(P,E) (TRIPS) Defining which vertices and edges get activated by given path

Inputs: Hardware Graph Description (H)
N Set of hardware resource Nodes.
R Routers which form the network
L Set of unidirectional point-to-point hardware Links
H(N∪R∪L, N∪R∪L) Directed graph describing the Hardware
I(L,L) Link pairs incompatible with Dim. Order Routing.

Inputs: Relationship between G/H
C(V,N) Vertex-Node Compatibility Matrix
MAXN ,MAXL Maximum degree of mapping for nodes and links.

Variables: Final Outputs
Mvn(V,N) Mapping of computation vertices to hardware nodes.
Mel(E,L) Mapping of edges to paths of hardware links
Mbl(Be, L) Mapping of edge bundles to links
β(V, V) (SEED) Binary var. indicating CFUs mapped to one instance
Mbn(Bv, N) (PLUG) Mapping of vertex bundles to nodes
δ(E) (PLUG) Padding cycles before message sent.
γ(E) (PLUG) Padding cycles before message received.

Variables: Intermediates
O(L) The order a link is traversed in.
U(L∪N) Utilization of links and nodes.
Up(P) (TRIPS) Max Utilization for each path P .
T (V) Time when a vertex is activated
X(E) Extra cycles message is buffered.
λ(b, e) (PLUG) Cycle when e is activated for bundle b
LAT Total latency for scheduled computation
SV C Service interval for computation.
MIS Largest Latency Mismatch.

Table 6.2: Summary of formal notation used.

98

The scheduler’s job is to use the description of the typed computation DAG and hardware graph

to find a mapping from computation vertices to computation resource nodes and determine the

hardware paths along which individual edges flow. Figure 6.1 also shows a correct mapping of the

computation graph to the hardware graph. This mapping is defined by a series of constraints and

variables described in the remainder of this Section, and these variables and scheduler inputs are

summarized in Table 6.2.

We now describe the ILP constraints which pertain to each scheduler responsibility, then show

a diagram capturing this responsibility pictorially for our running example in Figure 6.1.

Responsibility 1: Placement of computation.

The first responsibility of the scheduler is to map vertices from the computation DAG to nodes from

the hardware graph. Formally, the scheduler must compute a mapping from V to N , which we

represent with the matrix of binary variables Mvn(V,N). If Mvn(v, n) = 1, then vertex v is mapped

to node n, whileMvn(v, n) = 0 means that v is not mapped to n. Each vertex v ∈ V must be mapped

to exactly one compatible hardware node n ∈ N in accordance with C(v, n). The mapping for

incompatible nodes must also be disallowed. This gives us:

∀v Σn|C(v,n)=1Mvn(v, n) = 1 (6.1)

∀v, n|C(v, n) = 0, Mvn(v, n) = 0 (6.2)

An example mapping with corresponding assignments to Mvn is shown in Figure 6.2.

Responsibility 2: Routing of data

The second responsibility of the scheduler is to map the required flow of data to the communication

paths in the hardware. We use a matrix of binary variables Mel(E,L) to encode the mapping of

edges to links. Each edge e must be mapped to a sequence of one or more links l. This sequence

must start from and end at the correct hardware nodes. We constrain the mappings such that if a

99

DAG G for

z=(x+y)2

n4

n5

n6

n7

Graph H for hardware of

spatial architecture

Mapping V to N

 n1

 n2

 n3

 n8

 n9

 n10 z

y x

 כ

v1 v2

v3

v4

v5

Mvn(v1,n1)=1,

Mvn(v3,n4)=1,

Mvn(v2,n1)=0,

Mvn(v3,n5)=0, ͙

 כ +

x

y

z

+

Figure 6.2: Placement of computation

vertex v is mapped to a node n, every edge e leaving from v must be mapped to one link leaving

from n. Similarly, every edge arriving to v must be mapped to a link arriving to n.

∀v, e, n|G(v, e),Σl|H(n,l),Mel(e, l) = Mvn(v, n) (6.3)

∀v, e, n|G(e, v),Σl|H(l,n),Mel(e, l) = Mvn(v, n) (6.4)

In addition, the scheduler must ensure that each edge is mapped to a contiguous path of links.

We achieve this by enforcing that for each router, either we have no incoming or outgoing links

mapped to a given edge, or we have exactly one incoming and exactly one outgoing link mapped to

the edge.

∀e ∈ E, r ∈ R Σl|H(l,r),Mel(e, l) = Σl|H(r,l)Mel(e, l) (6.5)

∀e ∈ E, r ∈ R Σl|H(l,r),Mel(e, l) ≤ 1 (6.6)

Figure 6.3 shows these constraints applied to the example.

Some architectures require dimension order routing: a message propagating along the X direc-

tion may continue on a link along the Y direction, but a message propagating along the Y direction

cannot continue on a link along the X direction. To enforce this restriction, we expand the description

of the hardware with I(L,L), the set of link pairs that cannot be mapped to the same edge (i.e. an

edge cannot be assigned to a path containing any link pair in this set).

100

Graph H for hardware of

spatial architecture

Routing E to L

l1

l2

l3

l4,l5

l49

l48

l47

Mel(e3,l24)=0,

Mel(e3,l25)=1,
͙

l24

l25

 כ +

x

y

z

DAG G for

z=(x+y)2

z

y x

 כ

v1 v2

v3

v4

v5

e1 e2

e4 e3

e5

Mel(e2,l2)=1,

Mel(e1,l7)=1,

l7
+

(links)

(edges)

Figure 6.3: Routing of data.

∀l, l′|I(l, l′), e ∈ E, Mel(e, l) +Mel(e, l′) ≤ 1 (6.7)

Responsibility 3: Manage timing of events

We capture the timing through a set of variables T (V) which represents the time at which a vertex

v ∈ V starts executing. For each edge connecting the vertices vsrc and vdst, we compute the T (vdst)

based on T (vsrc). This time is affected by three components. First, we must take into account the

∆(E), which is the number of clock cycles between the start time of the vertex and when the data is

ready. Next is the total routing delay, which is the sum of the number of mapped links between vsrc

and vdest. Since the data carried by all input edges for a vertex might not all arrive at the same time,

the variable X(E) describes this mismatch.

∀vsrc, e, vdest|G(vsrc, e)&G(e, vdest),

T (vsrc) + ∆(e) + Σl∈LMel(e, l) +X(e) = T (vdest) (6.8)

The equation above cannot fully capture dynamic events like cache misses. Rather than consider

all possibilities, the scheduler simply assumes best-case values for unknown latencies (alternatively,

these could be attained through profiling or similar means). Note that this is an issue for specialized

101

 כ +

x

y

z

3

2

4

1

5

6

Figure 6.4: Example mapping with fictitious cycles.

schedulers as well.

With the constraints thus far, it is possible for the scheduler to overestimate edge latency because

the link mapping allows fictitious cycles. As shown by the cycle in the bottom-left quadrant of

Figure 6.4, the links in this cycle falsely contribute to the time between input “x” and vertex “+”.

This does not violate constraint 6.5 because each router involved contains the correct number of

incoming / outgoing links.

In many architectures, routing constraints (see constraint 6.7) make such loops impossible, but

when this is not the case we eliminate cycles through a new constraint. We add a new set of variables

O(L), indicating the partial order in which links activated. If an edge is mapped to two connected

links, this constraint enforces that the second link must be of later order.

∀l, l′, e ∈ E|H(l, l′), O(l) +Mel(e, l) +Mel(e, l′)− 1 ≤ O(l′) (6.9)

Figure 6.5 shows the intermediate variable assignments that the constraints for timing provide.

Responsibility 4: Managing Utilization

The utilization of a hardware resource is simply the number of cycles for which it can not accept

a new unit of work (computation or communication) because it is handling work corresponding

102

DAG G for

z=(x+y)2

n4

n5

n6

n7

Graph H for hardware of

spatial architecture

Timing Calculation

 n1

 n2

 n3

 n8

 n9

 n10 z

y x

 כ

v1 v2

v3

v4

v5

r1

r2

r3

r4

l1

l2

l3

l4,l5

l49

l48

l47

T(v1)=0,

T(v4)=6, ͙

e1 e2

e4 e3

e5

l6 + כ

x

y

z

1

1

2

4 5

5

6

7

8

9

X(e3)=1,

X(e4)=0, ͙

3

2 l7
+

Figure 6.5: Timing of computation and communication.

to another computation. We first discuss the modeling of link utilization U(L), then discuss node

utilization U(N).

∀l ∈ L, U(l) = Σe∈EMel(e, l) (6.10)

The equation above models a link’s utilization as the sum of its mapped edges and is effective

when each edge takes up a resource. On the other hand, some architectures allow for edges to be

overlapped, as in the case of multicast, or if it is known that sets of messages are mutually exclusive

(will never activate at the same time). This requires us to extend our notion of utilization with the

concept of edge-bundles, which represent edges that can be mapped to the same link at no cost. The

set Be denotes edge-bundles, and B(E,Be) defines its relationship to edges. The following three

constraints ensure the correct correspondence between the mapping of edges to links and bundles

to links, and compute the link’s utilization based on the edge-bundles.

∀e, be|B(e, be), l ∈ L, Mbl(be, l) ≥Mel(e, l) (6.11)

∀be ∈ Be, l ∈ L, Σe∈B(e,be)Mel(e, l) ≥Mbl(be, l) (6.12)

∀l ∈ L, U(l) = Σbe∈BMbl(b, l) (6.13)

103

To compute the vertices’ utilization, we must additionally consider the amount of time that a

vertex fully occupies a node. This time, ∆(V), is always 1 when the architecture is fully pipelined,

but increases when the lack of pipelining limits the use of a node n in subsequent cycles. To compute

utilization, we simply sum ∆(V) over vertices mapped to a node:

∀n ∈ N U(n) = Σv∈V ∆(v)Mvn(v, l) (6.14)

For many spatial architectures we use utilization-limiting constraints such as those below. One

application of these constraints are hardware limitations in the number of registers available,

instruction slots, etc. Also, they ensure lack of contention with operations or messages from within

the same block or other blocks executing concurrently.

∀l ∈ L, U(l) ≤MAXL (6.15)

∀n ∈ N, U(n) ≤MAXN (6.16)

As shown in the running DySER example below in Figure 6.6, we limit the utilization of each link

U(l) to MAXL = 1. This ensures that only a single message per block traverses the link, allowing

the DySER’s arbitration-free routers to operate correctly.

Mbl(b1,l7)=1,

Mbl(b2,l7)=1,

Mbl(b3,l23)=1,

 כ +

x

y

z

σ ࡮א࢈࢒࢈ࡹ (b,l7)>1

Illegal Utilization: Mbl(b1,l7)=1,

Mbl(b2,l7)=0,

Mbl(b3,l23)=1, σ ࡮א࢈࢒࢈ࡹ (b,l7)=1

Legal Utilization:

 כ
e5

z

y x

v3

e1 e2

e4 e3 l23
 כ + +

x

y

z

DAG G for

z=(x+y)2

b3

b1 b2

b4

l23
l7 l7

Figure 6.6: Utilization Management.

104

Responsibility 5: Optimizing performance

The constraints governing the previous sections model the quantities which capture only individual

components for correctness and performance. However, the final responsibility of the scheduler

is to manage the overall correctness while providing performance in the context of the overall

system. In practice, this means that the scheduler must balance notions of latency and throughput.

Having multiple conflicting targets requires strategic resolution, since there is not necessarily a

single solution which optimizes both. The strategy we take is to supply to the scheduler a set of

variables to optimize for with their associated priority.

To calculate the critical path latency, we first initialize the input vertices to zero (or some known

value) then find the maximum latency of an output vertex LAT . This represents the scheduler’s

estimate of how long the block would take to complete.

∀v ∈ Vin, T (v) = 0 (6.17)

∀v ∈ Vout, T (v) ≤ LAT (6.18)

To model the throughput aspects, we utilize the concept of the service interval SV C, which is

defined as the minimum number of cycles between successive invocations when no data depen-

dencies between invocations exists. We compute SV C by finding the maximum utilization on any

resource.

∀n ∈ N, U(n) ≤ SV C (6.19)

∀l ∈ L, U(l) ≤ SV C (6.20)

For fully pipelined architectures, SV C is naturally forced to 1, so it is not an optimization target.

Other notions of throughput are possible, as in the case of DySER, where minimizing the latency

mismatch MIS is the throughput objective (see Section 6.4).

105

For our running example, the final solution is shown in Figure 6.7, where the critical path latency

LAT and the latency mismatch MIS (mentioned above), are both optimized by the scheduler.

Optimal Mapping

 כ +

x

y

z

1

1

2

2
3

7

4

5

5

4

6

DAG G for

z=(x+y)2

z

y x

 כ

v1 v2

v3

v4

v5

e1 e2

e4 e3

e5

Latency

 LAT=8

 כ +

x

y

z

1

1 3 4

4

5

6

7

2

8

l7

X(e3)=1,

X(e4)=0, ͙

X(e1)=1,

X(e2)=0,

Lat Mismatch=

MIS=Max(X(E)) =1

X(e3)=0,

X(e4)=0, ͙

X(e1)=0,

X(e2)=0,

Lat Mismatch=

MIS=Max(X(E)) =0

2

T(v1)=0,

T(v5)=8
T(v1)=0,

T(v5)=7

Latency

 LAT=7

Legal Mapping

+

Figure 6.7: Optimizing performance.

6.4 Architecture-specific modeling

In this section, we describe how the general formulation presented above is used by three diverse

architectures. Figure 6.8 shows schematics and H graphs for the three architectures.

Architecture-specific details for DySER

Figure 6.8 shows the basic hardware diagram and abstract hardware graph H for each architecture

or accelerator.

Computation organization→ Placement of computation: We model DySER with the hardware

graph H shown in Figure 6.8; heterogeneity is captured with the C(V,N) compatibility matrix.

Network organization→ Routing data: We use bundle-link mapping constraints to model mul-

ticast, and constraint 6.9 to prevent fictitious cycles. Since the network has the ability to perform

multicast messages and can route multiple edges on the same link, we use the bundle-link mapping

106

0 1 2 3Reg. Files

Bank 0

Bank 1

Bank 2

Bank 3

TRIPSDySER PLUG

H graphs for each architecture

L1 Cache

OOO
CPU

Conf./Init.

CPU
XFER

Store
Buffer

IMU

ODU

Bus
Arbiter

Seed Unit 1 Seed Unit 8

IMU
(Instruction
Mgmt. Unit)

CFU8…CFU1

ODU

IC
ac

h
e

D
C

ac
h

e

SEED

Figure 6.8: Three candidate architectures and corresponding H graphs, considering 4 execution resources
(nodes) for each architecture.

constraints. Since there is no ordering constraint on the network, we need to prevent fictitious

cycles.

HW timing→Managing timing of events: No additions to the general formulation are required.

Concurrent HW usage→ Utilization: Since DySER can only route one message per link, and max

one vertex to a node, both MAXL and MAXN are set to 1.

Objective Formulation: DySER throughput can be as much as one computation G per cycle, since

the functional units themselves are pipelined. However, throughput degradation can occur because

of the limited buffering available for messages. The utilization defined in the general framework

does not capture this problem because it only measures the usage of functional units and links, not

of buffers. Unlike TRIPS, where all operands are buffered as long as needed in named registers,

DySER buffers messages at routers and at most one message per edge is buffered at each router.

Thus, two paths that diverge and then converge, but have different lengths, will also have different

amounts of buffering. Combined with back-pressure, this can reduce throughput.

Computing the exact throughput achievable by a DySER schedule is difficult, as multiple such

pairs of converging paths may exist - even paths that converge after passing through functional

107

units affect throughput. Instead we note that latency mismatches always manifest themselves as

extra buffering delays X(e) for some edges, so we model latency mismatch as MIS:

∀e ∈ E,X(e) ≤MIS (6.21)

Empirically, we found that external limitations on the throughput of inputs is greater than that

of computation. For this reason, the DySER scheduler first optimizes for latency, adds the latency of

the solution as a constraint, then optimizes for throughput by minimizing latency mismatch MIS,

as below:

min LAT s.t. [6.1–6.11, 6.12–6.18, 6.21]

min MIS s.t. [6.1–6.11, 6.12–6.18, 6.21] and LAT = LAToptimal

Architecture-specific details for SEED and Trace-P

The formulation for SEED (and the Trace-Processor) differs in that it supports compound function

unit execution – and hence must support ways of grouping instructions. Critically, compound

instructions cannot fire until all operands are ready – and therefore it is possible to introduce

extra latency with improper instruction grouping. Figure 6.9 shows the importance of an effective

scheduler with two example schedules of the same region. This example shows that small differences

in the schedule can affect the critical path by many cycles.

We note here that the scheduling formulation for SEED and Trace-P is nearly identical, as their

architectures are very similar as far as the instruction scheduling abstraction is concerned. In

terms of the compiler implementation, the main difference is that Trace-P schedules for an entire

loop-trace, as it group instructions across basic blocks. SEED scheduling is only relevant within the

basic block, as instructions cannot be re-grouped across control regions. Therefore, the scheduling

108

3

1

1

41

+1

Output
Cycle: 566

3

1

1

41

+1

964

Schedule 1 Schedule 2

Figure 6.9: CFU Scheduling Example. Each operation is labeled with its latency, and compound
instruction groups are circled.

extensions we describe here are relevant to both architectures.

In order to support compound instructions, we add a variable β(v1, v2)(V, V). Its job is to

indicate if there is a “boundary” between v1 and v2, which represents whether they are executing

on different CFU instances. This will ultimately enable the modeling of instruction timing, as will

become clear below.

Computation organization→ Placement of computation: To model the mapping of vertices to

different CFU instances, we require a few additional constraints. The one below enforces that

either a vertex’s inputs are either directly routed through a hardware input, or they are executed on

separate instances of a CFU (indicated by β(v1, v2) = 1).

∀
v1,v2∈G

n2∈N

β(v1, v2) ≥M(v2, n2)−
∑

v1,n1∈C
n1,n2∈H

M(v1, n1) (6.22)

Next, we need to model the fact that data cannot both leave and return to the same CFU instance.

We do that by keeping consistent notions of the boundary, specifically that if there are no boundaries

between v1 and v2, and v2 and v3, then there can not be a boundary between v1 and v3. We model

this boundary transitivity property with constraints 6.23 and 6.24. Note that this is only enforced if

all nodes can possibly map together, indicated by C.

109

∀
v1,v2,v3∈C(v1,v3)∩C(v1,v)∩C(v2,v3)

(1− β(v1, v2)) + (1− β(v2, v3))− 1 ≤ (1− β(v1, v3)) (6.23)

∀v1, v2 ∈ G, β(v1, v2) = β(v2, v1) (6.24)

We also need to enforce that for any two nodes that could possibly map to each other, they

are only allowed to map to the same hardware node if they are on the same CFU instance. The

following constraint enforces this.

∀v1, v2, n|C(v1, n) ∩ C(v2, n) ∩ C(v1, v2), M(v1, n) +M(v2, n) ≤ β(v1, v2) + 1 (6.25)

Network organization→ Routing data:

No additions to the general formulation are required.

HW timing→Managing timing of events:

We add an additional constraint to enforce that all components of a CFU may only start after all

inputs arrive. It uses a Big-M constraint formulation to enforce this property.

∀v1, v2 ∈ C ∩ vi, v1 ∈ G, T (v2) ≥ (β(vi, v1)− β(v1, v2)− 1) ∗M + ∆(vi) + T (vi) (6.26)

Concurrent HW usage→ Utilization: SEED allows many instructions to be executing on the same

functional units. Specifically the vertices per node is MAXN = 32.

Objective formulation: Since SEED execution is generally latency constrained, (rather than con-

strained by the throughput of the individual compound functional units) the latency is used to

formulate the objective function.

110

min LAT s.t. [6.1–6.6, 6.8, 6.10–6.18, 6.22–6.26]

Architecture-specific details for TRIPS

The trips formulation is a straightforward application of the general model, with a few additions to

optimize for utilization variations in the presence of control flow.

Computation organization→ Placement of computation: Figure 6.8 depicts the graph H we use

to describe a 4-tile TRIPS architecture. A tile in TRIPS is comprised of nodes n ∈ N denoting a

functional unit in the tile and r ∈ R representing its router - the two are connected with one link in

either direction. The router also connects to the routers in the neighboring tiles. The functional

unit has a self-loop that denotes the bypass of the tile’s router to move results into input slots for

operations scheduled on the same tile.

Network organization→ Routing data: Since messages are dedicated and point-to-point (as op-

posed to multicast), we use constraints modeling each edge as consuming a resource and contribut-

ing to the total utilization. The TRIPS routers implement dimension-order routing, i.e. messages

first travel along the X axis, then along the Y axis. TRIPS uses the I(L,L) parameter, which dis-

allows the mapping of certain link pairs, to invalidate any paths which are not compatible with

dimension-order.

HW timing→Managing timing of events: We can calculate network timing without any additions

to the general formulation.

Concurrent HW usage→Utilization: TRIPS allows significant level of concurrent hardware usage

which affects both the latency and throughput of blocks. Specifically, the maximum number of

vertices per node is MAXN = 8. The utilization on links is used to finally formulate the objective

111

function.

Extensions: For TRIPS, the scheduler must also account for control flow when computing the

utilization and ultimately the service interval for throughput. Simple extensions, as explained

below, can in general handle control flow for any architecture and could belong in the general ILP

formulation as well. Let P be the set of control flow paths that the computation can take through G.

Note that p ∈ P is not actually a path through G, but the subset of its vertices and edges activated

in a given execution. Let Av(P, V) and Ae(P,E) be the activation matrices defining, for each vertex

and edge of the computation, whether they are activated when a given path is taken or not. For

each path we define the maximum utilization on this path Wp(P). These constraints are similar to

the original utilization constraints (6.10, 6.14), but also take control flow activation matrices into

account.

∀l ∈ L, p ∈ P, Σe∈EMel(e, l)Ae(p, e) ≤Wp(p) (6.27)

∀n ∈ N, p ∈ P, Σv∈V Mvn(v, n)∆(v)Av(p, v) ≤Wp(p) (6.28)

And an additional constraint for calculating overall service interval:

SV C = Σp∈PWp(p) (6.29)

Note that this heuristic provides the same importance to all control-flow paths. With profiling

or other analysis, differential weighting can be implemented.

Objective formulation: For the TRIPS architecture, we empirically found that optimizing for

throughput is of higher importance, in most cases, then for latency. Therefore, our strategy is to first

minimize the SV C, add the lowest value as a constraint, and then optimize for LAT . The following

is our solution procedure, where numbers refer to constraints from the formulation:

112

Architecture Description MILP Modeling and scheduler re-
sponsibility

MILP Constraints

Compute HW
Organization

16 tiles, 6 routers per tile Each tile is 7 nodes in H , one in N ,
and six in R

Gen. framework

4 mem-banks per tile Handled with utilization Gen. framework
32 cores per tile Handled with utilization Gen. framework

Network HW
Organization

2D nearest neighbor mesh Node n connected to r; connected to
4 neighbors

Gen. framework

Dimension order routing I(L,L) configure for dimension-
order routing

Gen. framework

Multicast messages deliver to
every node on path

Map mutlicast message from link to
node on path

Constraint 6.30

HW timing Code-scheduling of network
send instructions

Variables for send/receive time ∆(E); Γ(E)

Send instructions scheduled
to avoid network conflicts

Variables for delaying send/receive
timing with no-ops

Constraints
6.27a-c, 6.33

Concurrent
HW usage

4 Mem-banks per time Manage utilization (MAXN = 4) Gen. framework
Dedicated network per mes-
sage

Manage utilization (MAXL = 1) Gen. framework

Mutually exclusive activation
of nodes in G

Concept of vertex bundles and utiliza-
tion refined

Constraints
6.34, 6.35, 6.36

Code-length limitations (max
32) handled for all code on tile

Manage utilization and combine with
vertex bundles

Constraints
6.37, 6.38, 6.39

Table 6.3: Description of MILP model implementation for PLUG

min SV C s.t. [6.1–6.8, 6.10, 6.14–6.18, 6.27–6.29]

min LAT s.t. [6.1–6.8, 6.10, 6.14–6.18, 6.27–6.29] and SV C = SV Coptimal

Architecture-specific details for PLUG

The PLUG architecture is radically different from the previous two architectures since all decisions

are static. Our formulation is general enough that it works for PLUG with only 10 predominantly

simple additional constraints. In the interest of clarity, we summarize the key concepts of the PLUG

architecture, corresponding ILP model, and additional equations in Table 6.3. The grayed rows

summarize the extensions, and this section’s text describes them.

113

Computation organization → Placement of computation: See Table 6.3, row 1. No additional

constraints required.

Network organization→ Routing data: See Table 6.3, row 2.

Additional constraints: Multicast handled with edge-bundles: Let Bmulti ⊂ Be be the subset of edge-

bundles that involve multicast edges. The following constraint, which considers links through a

router to a node, then enforces that the bundle mapped to the router link must also be mapped to

the node’s incoming link.

∀b ∈ Bmulti, l, r, l
′, n|H(l, r)&H(r, l′)&H(l′, n),

Mbl(b, l) ≤Mbl(b, l′) (6.30)

HW timing→Managing timing of events: See Table 6.3, row 3.

Additional constraints: We need to handle the timing of send instructions. We use ∆(E) and the

newly-introduced Γ(E) to respectively indicate the relative cycle number of the corresponding send

instruction and use instruction.

Network contention is avoided by code-scheduling the send instructions with NOP padding to

create appropriate delays and equalize all delay mismatch. δ(E) denotes sending delay added, and

γ(E) denotes receiving delay added. To model the timing for PLUG, we augment equation 6.8 as

follows:

∀vsrc, e, vdst|G(vsrc, e)&G(e, vdst),

T (vsrc)+Σl∈LMel(e, l)+∆(e)+δ(e)=T (vdst)+Γ(e)+γ(e) (6.31)

Because the insertion of no-ops can only change timing in specific ways, we use two constraints

to further link δ(E) and γ(E) to ∆(E) and Γ(E). The first ensures that the scheduler never attempts

114

to pad a negative number of NOPs. The second ensures that sending delay δ(E) is the same for all

multicast edges carrying the same message.

To implement these constraints we use the following 4 sets concerning distinct edges e, e′:

SI(e, e′) has the set of pairs of edges arriving to the same vertex such that Γ(e) < Γ(e′), LIFO(e, e′)

has, for each vertex with both input and output edges, the last input edge e and the first output

edge e′, SO(e, e′) has the pairs of output edges with the same source vertex such that ∆(e) < ∆(e′),

and EQO(e, e′) has the pairs of output edges leaving the same node concurrently.

∀e, e′|SI(e, e′),γ(e) ≤ γ(e′) (6.32a)

∀e, e′|LIFO(e, e′),γ(e) ≤ δ(e′) (6.32b)

∀e, e′|SO(e, e′),δ(e) ≤ δ(e′) (6.32c)

∀e, e′|EQO(e, e′),δ(e) = δ(e′) (6.33)

Concurrent HW usage→ Utilization: See Table 6.3, row 4.

Additional constraints: PLUG groups nodes inG into “super-nodes” (logical-page), and programmat-

ically only a single node executes in every super-node. This mutual exclusion behavior is modeled

by partitioning V into a set of vertex bundles Bv with B(V,Bv) indicating to which bundle a vertex

v ∈ V belongs. We introduce Mbn(b, n) to model the mapping of bundles to nodes, enforced by the

following constraints:

∀v, bv|B(v, bv), n ∈ N, Mbn(bv, n)≥Mvn(v, n) (6.34)

∀bv ∈ Bv, n ∈ N, Σv∈B(v,bv)Mvn(v, n)≥Mbn(bv, n) (6.35)

We then define the utilization based on the number of vertex bundles mapped to a node. We

also instantiate edge bundles be for all the set of edges coming from the same vertex bundle and

115

going to the same destination. Since all the edges in such a bundle are logically a single message

source, the schedule must equalize the receiving times of the message they send. Let Bmutex ⊆ Be

be the set of edge-bundles described above. Then we add the following timing constraint:

∀e, e′, bx ∈ Bmutex|B(e, bx)&B(e′, bx), γ(e) = γ(e′) (6.36)

Additionally, architectural constraints require the total length in instructions of the vertex

bundles mapped to the same node to be≤ 32. This requires defining, for each bundle, the maximum

bundle length λ(bv) as a function of the last send message of the vertex. This length can then be

constrained to be ≤ 32.

To achieve this, we first define the set LAST (Bv, Be), which pairs each vertex bundle with its

last edge bundle, corresponding to the last send message of the vertex. This enables to define the

maximum bundle length λ(bv) as:

∀e, be, bv|LAST (bv, be)&B(e, be), ∆(e) + δ(e) ≤ λ(bv) (6.37)

We finally defineQ(Bv, N) as the required number of instructions on node n from vertex bundle

bv and limit it to 32 (the code-snippet length).

∀bv, n ∈ N, Q(bv, n)−32 ∗Mbn(bv, n)≥λ(bv)−32 (6.38)

∀n, Σbv∈BvQ(bv, n) ≤ 32 (6.39)

Objective Formulation: For PLUG, the smallest service interval is achieved and enforced for any

legal schedule, and we optimize solely for latency LAT .

116

min LAT s.t. [6.1–6.7, 6.11–6.18, 6.30–6.39]

6.5 Implementation and Evaluation

In this section, we describe our implementation of the constraints in an off-the-shelf ILP solver and

evaluate its performance compared to native specialized schedulers for the three architectures.

Implementation

We use the GAMS modeling language to specify our constraints as mixed integer linear programs,

and we use the commercial CPLEX solver to obtain the schedules. Our implementation strategy

for prioritizing multiple variables follows a standard approach: we define an allowable percentage

optimization gap (of between 2% to 10%, depending on the architecture), and optimize for each

variable in prioritized succession, finishing the solver when the percent gap is within the specified

bounds. After finding the optimal value for each variable, we add a constraint which restricts that

variable to be no worse in future iterations.

Figure 6.10 shows our implementation and how we integrated with the compiler/simulator

toolchains [105, 32, 106]. For all three architectures, we use their intermediate output converted

into our standard directed acyclic graph (DAG) for G and fed to our GAMS ILP program. We

specified H for each architecture. To evaluate our approach, we compare the performance of the

final binaries on the architectures varying only the scheduler. Table 6.4 summarizes the methodology

and infrastructure used.

Results

Is this ILP-based approach implementable? Yes, it is possible to express the scheduling problem as

an ILP problem and implement it for real architectures. Considering the ILP constraint formulation

117

TRIPS DySER PLUG

Benchmarks • Same as prior TRIPS scheduler pa-
pers [107]. SPEC microbenchmarks and
EEBMC

• Full SPEC benchmarks can not run to com-
pletion on simulator and do not stress
scheduler (since blocks are small)

• DySER data-parallel workloads
since they produce large blocks
and complete code from com-
piler [32].

• Additional throughput mi-
crobenchmark a

• PLUG benchmarks
from [106]

Native
scheduler

• Optimized SPS scheduler [107] • Specialized greedy algorithm in
toolchain & hand scheduled [32]

• Hand sched-
uled [106]

Metric • Total execution cycles for program • Total execution cycles for pro-
gram

• Total execution cy-
cles for lookups

aDySER “throughput” microbenchmark: This performs the calculation y = x− x2i in the code-region. Paths diverge
at the input node x, into one long path which computes x2i with a series of i multiplies, and along a short path which
routes x to the subtraction. This pattern tends to cause latency mismatch because one of these converging paths naturally
takes less resources

Table 6.4: Tools and methodology for quantitative evaluation

Compiler
“frontend”

GAMS ILP
program

GAMS/
CPLEX

Compiler
“backend”

Simulator
G

Constraints H

“frontend”: passes in the compiler that produce pre-scheduled code;
“backend”: passes that convert scheduled code into binary.

Figure 6.10: Implementation of our ILP scheduler. Dotted boxes indicate the new components added.

for the general framework, our GAMS implementation is around 50 lines of code.

Result-1: A declarative and general approach to expressing and implementing spatial-architecture schedulers

is possible.

Is the execution time of standard ILP-solvers fast enough to be practical? Table 6.5 (page 120)

summarizes the mathematical characteristics of the workloads and corresponding scheduling

behavior. The three right-hand columns respectively show the number of software nodes to schedule,

the amount of single ILP equations created, and the solver time.2 There is a rough correlation

between the workload “size” and scheduling time, but it is still highly variable.
2For TRIPS, the per-benchmark number of DAGs can range from 50 to 5000, and the metrics provided are average per

DAG. For DySER, #DAGs is 1 to 4 per benchmark, and PLUG is always 1.

118

The solver time of the specialized schedulers in comparison is typically on the order of seconds or

less. Although some blocks may take minutes to solve, these times are still tractable, demonstrating

the practicality of ILP as a scheduling technique.

Result-2: Our general ILP scheduler runs in tractable time.

Are the output solutions produced good? How do they compare against the output of special-

ized schedulers? Figure 6.11 (page 119) shows the performance of our ILP scheduler. It shows

the cycle-count reduction for the executed programs as a normalized percentage of the program

produced by the specialized compiler (higher is better, negative numbers mean execution time was

increased). We discuss these results in terms of each architecture.

Compared to the TRIPS SPS specialized scheduler (a cumulated multi-year effort spanning

several publications [72, 108, 107]), our ILP scheduler performs competitively as summarized

below.3

Compared to SPS

(a)Better on 22 of 43 benchmarks up to 21% GM +2.9%

(b)Worse on 18 of 43 benchmarks within 4.9% GM -1.9%

(typically 2%)

(c)5.4%, 6.04%, and 13.2% worse on ONLY 3 benchmarks

Compared to GRST

Consistently better, up to 59% better; GM +30%

Groups (a) and (b) show the ILP scheduler is capturing the architecture/scheduler interactions

well. The small slowdowns/speedups compared to SPS are due to dynamic events which disrupt the

scheduler’s view of event timing, making its node/link assignments sub-optimal, typically by only

2%. After detailed analysis, we discovered the reason for the performance gap of group (c) is the lack
3We did not run on SPEC benchmarks for three reasons: prior TRIPS scheduler work uses this set; TRIPS simulator

does not have sim-point etc. to meaningfully simulate TRIPS benchmarks; TRIPS compiler does not produce good enough
code on SPEC (10-15 inst blocks only) to make scheduler a factor [107, 76]. Using TRIPS hardware was impractical for us.

119

cj
p

eg

ro
ta

te
0

1

b
it

m
n

p
01

b
ez

ie
r0

1

a2
ti

m
e0

1

ca
n

rd
r0

1

[µ
]g

zi
p

_2

[µ
]b

zi
p

2_
1

[µ
]p

ar
se

r_
1

ai
ff

tr
0

1

[µ
]a

m
m

p
_1

d
jp

eg

tb
lo

o
k0

1

co
n

ve
n

00

au
tc

o
r0

0

[µ
]a

m
m

p
_2

ai
if

ft
0

1

o
sp

f

[µ
]g

zi
p

_1

p
kt

fl
o

w

p
n

tr
ch

01

fb
it

al
00

b
as

ef
p

01

rs
p

ee
d

01

p
u

w
m

o
d

0
1

iir
fl

t0
1

ro
u

te
lo

o
ku

p

te
xt

0
1

ff
t0

0

tt
sp

rk
0

1

d
it

h
er

0
1

vi
te

rb
0

0

[µ
]a

rt
_1

[µ
]G

M
TI

ai
fi

rf
0

1
-

m
at

ri
x0

1-

ca
ch

eb
0

1-

[µ
]m

at
ri

x_
1

-

[µ
]a

rt
_3

--

[µ
]e

q
u

ak
e_

1

id
ct

rn
0

1
-

[µ
]v

ad
d

 -

[µ
]a

rt
_2

th
ro

u
gh

tp
u

t

n
ee

d
le ff
t

km
ea

n
s

tp
ac

f

m
m

n
n

w

m
ri

-q

st
en

ci
l

sp
m

v

Se
at

tl
e

Et
h

an
e

IP
v4

Et
h

e
rn

e
t

-10

-5

0

5

10

15

20

49

TRIPS DySER
PLUG

-13%

20

15

10

5

0

-5

-10

cj
p

eg

ro
ta

te
0

1

b
it

m
n

p
01

b
ez

ie
r0

1

a2
ti

m
e0

1

ca
n

rd
r0

1

[µ
]g

zi
p

_2

[µ
]b

zi
p

2
_1

[µ
]p

ar
se

r_
1

ai
ff

tr
0

1

[µ
]a

m
m

p
_1

d
jp

eg

tb
lo

o
k0

1

co
n

ve
n

0
0

au
tc

o
r0

0

[µ
]a

m
m

p
_2

ai
if

ft
0

1

o
sp

f

[µ
]g

zi
p

_1

p
kt

fl
o

w

p
n

tr
ch

01

fb
it

al
0

0

b
as

ef
p

0
1

rs
p

ee
d

0
1

p
u

w
m

o
d

0
1

iir
fl

t0
1

ro
u

te
lo

o
ku

p

te
xt

0
1

ff
t0

0

tt
sp

rk
0

1

d
it

h
er

0
1

vi
te

rb
0

0

[µ
]a

rt
_1

[µ
]G

M
TI

ai
fi

rf
0

1
-

m
at

ri
x0

1
-

ca
ch

eb
01

-

[µ
]m

at
ri

x_
1

-

[µ
]a

rt
_3

--

[µ
]e

q
u

ak
e_

1

id
ct

rn
0

1
-

[µ
]v

ad
d

 -

[µ
]a

rt
_2

th
ro

u
gh

tp
u

t

n
ee

d
le ff
t

km
ea

n
s

tp
ac

f

m
m

n
n

w

m
ri

-q

st
en

ci
l

sp
m

v

Se
at

tl
e

Et
h

an
e

IP
v4

Et
h

e
rn

e
t

-10

-5

0

5

10

15

20

49

TRIPS DySER PLUG

-13%

4.2X

47 30 31 30 38 37 28 27 30 59 22 49 24 53 23 29 23

SPS GRST

cj
p

eg

ro
ta

te
0

1

b
it

m
n

p
01

b
ez

ie
r0

1

a2
ti

m
e0

1

ca
n

rd
r0

1

[µ
]g

zi
p

_2

[µ
]b

zi
p

2_
1

[µ
]p

ar
se

r_
1

ai
ff

tr
0

1

[µ
]a

m
m

p
_1

d
jp

eg

tb
lo

o
k0

1

co
n

ve
n

0
0

au
tc

o
r0

0

[µ
]a

m
m

p
_2

ai
if

ft
0

1

o
sp

f

[µ
]g

zi
p

_1

p
kt

fl
o

w

p
n

tr
ch

01

fb
it

al
0

0

b
as

ef
p

01

rs
p

ee
d

01

p
u

w
m

o
d

0
1

iir
fl

t0
1

ro
u

te
lo

o
ku

p

te
xt

0
1

ff
t0

0

tt
sp

rk
0

1

d
it

h
er

0
1

vi
te

rb
0

0

[µ
]a

rt
_1

[µ
]G

M
TI

ai
fi

rf
0

1
-

m
at

ri
x0

1
-

ca
ch

eb
0

1-

[µ
]m

at
ri

x_
1

-

[µ
]a

rt
_3

--

[µ
]e

q
u

ak
e_

1

id
ct

rn
0

1
-

[µ
]v

ad
d

 -

[µ
]a

rt
_2

th
ro

u
gh

tp
u

t

n
ee

d
le ff
t

km
ea

n
s

tp
ac

f

m
m

n
n

w

m
ri

-q

st
en

ci
l

sp
m

v

Se
at

tl
e

Et
h

an
e

IP
v4

Et
h

er
n

et

-10

-5

0

5

10

15

20

49

TRIPS
DySER

PLUG

-13%

4.2X

47 30 31 30 38 37 28 27 30 59 22 49 24 53 23 29 23

SPS GRST

20

15

10

5

0

-5

-10

20

15

10

5

0

-5

-10

%
 S

p
ee

d
u

p
 o

f
M

IL
P

 S
ch

ed
u

le
r

%
 S

p
ee

d
u

p
 o

f
M

IL
P

 S
ch

ed
u

le
r

%
 S

p
ee

d
u

p
 o

f
M

IL
P

 S
ch

ed
u

le
r

Figure 6.11: Normalized percentage improvement in execution cycles of ILP scheduler compared to special-
ized scheduler.

of information that could be easily integrated in our model. First, the SPS scheduler took advantage

of information regarding the specific cache banks of loads and stores, which is not available in the

modular scheduling interface exposed by the TRIPS compiler. This knowledge would improve the

ILP scheduler’s performance and would only require changes to the compatibility matrix C(V,N).

Second, knowledge of limited resources was available to SPS, allowing it to defer decisions and

interact with code-generation to map movement-related instructions. What these results show

overall is that our first-principles based approach is capturing all the architecture behavior in a

general fashion and arguably aesthetically cleaner fashion than SPS’s indirect heuristics. Our ILP

scheduler consistently exceeds by appreciable amounts a previous generation TRIPS scheduler,

GRST, that did not model contention [108], as shown by the hatched bars in the figure.

On DySER, the ILP scheduler outperforms the specialized scheduler on all benchmarks, as

shown in Figure 6.11, for a 64-unit DySER. Across the benchmarks, the ILP scheduler reduces

individual block latencies by 38% on average. When the latency of DySER execution is the bottleneck,

especially when there are dependencies between instances of the computation (like the needle

benchmark), this leads to significant speedup of up to 15%. We also implemented an extra DySER

120

Trips # of # of Solve
EEBMC nodes eqns (sec)
a2time01 11 1914 5
aifftr01 12 2173 25
aifirf01 11 2025 1
basefp01 10 1863 6
bitmnp01 9 1535 3
cacheb01 27 2745 76
candr01 10 1871 8
idctrn01 11 1947 3
iirflt01 11 2080 2
matrix01 11 1426 2
pntrch01 10 1819 8
puwmod01 10 1779 3
rspeed01 10 1816 7
tblook01 10 1818 4
ttsprk1 11 1993 8
cjpeg 12 2280 3
djpeg 12 2277 1
ospf 10 1778 3
pktflow 10 1774 3
routelookup 10 1747 3
bezier01 10 1788 2
dither01 10 3579 4
rotate01 10 1910 5
text01 10 1781 3
autocor00 10 1746 2
conven0 10 1758 4
fbital00 9 1699 3
viterb00 10 1870 5
TRIPS Avg. 14 2832 31

Trips # of # of Solve
µbench nodes eqns (sec)
ammp_1 17 3744 76
ammp_2 8 1593 11
art_1 22 4547 74
art_2 27 5506 76
art_3 33 7042 20
bzip_1 13 2655 10
equake_1 24 4455 3
gzip_1 23 4480 1
gzip_2 22 4506 111
matrix_1 19 3797 18
parser_1 33 7248 174
transp_GMTI 20 4159 115
vadd 30 7313 315

DySER # of # of Solve
Apps. nodes eqns (sec)
fft 20 120250 365
mm 32 159231 77
mri-q 19 98615 66
spmv 32 155068 72
stencil 30 153428 74
tpacf 40 211584 368
nnw 25 169197 102
kmeans 40 232399 218
needle 32 181686 183
throughput 9 45138 62
DySER Avg. 28 152660 159

PLUG # of # of Solve
Apps. nodes eqns (sec)
Ethernet 18 35603 57
Ethane 11 13905 14
IPv4 12 38741 384
Seattle 16 14531 26
PLUG Avg. 14 23195 120

Table 6.5: Benchmark characteristics and MILP scheduler behavior.

benchmark, which elucidates the importance of latency mismatch and is described in Table 6.4.

The specialized scheduler tries to minimize the extra path length at each step, exacerbating the

latency mismatch of the short and long paths in the program. The ILP scheduler, on the other

hand, pads the length of the shorter path to reduce latency mismatch, increasing the potential

throughput and achieving a 4.2× improvement over the specialized scheduler. Finally, we also

121

compared to manually scheduled code on an 16-unit DySER (since hand-scheduling for 64unit

DySER is exceedingly tedious). The ILP scheduler always matched or out-performed it by a small

(< 2%) percentage.

The ILP scheduler matches or out-performs the PLUG hand-mapped schedules. It is able to both

find schedules that force SV C = 1 and provide latency improvements of a few percent. Of particular

note is solver time, because PLUG’s DFGs are more complex. In fact, each DFG represents an entire

application. The most complex benchmark, IPV4, contains 74 edges (24 more than any others)

split between 30 mutually exclusive or multicast groups. Despite these difficulties, it completes in

tractable time.

Result-3: Our ILP scheduler outperforms or matches the performance of specialized schedulers.

6.6 Discussion

In this section, we discuss some of the modeling limitations of our formulation, as well as implica-

tions for broader uses.

Modeling Limitations

Dynamic Events Modeling dynamic events, where uncertainty exists in certain problem quantities,

is difficult to express in MILP. However, we found that approximating these dynamic events by

common-case values was sufficient. We also note that we could extend our model with “stochastic

programming” techniques, which solve the same problem for multiple input scenarios. We chose

not to explore that for this problem because of the additional model complexity.

Cyclic Computations This chapter describes how to map computation DAGs, which are the typical

unit of scheduling. Program loop structures will still occur, just around the unit of a DAG. Some

spatial architectures require loops inside the unit of scheduling, but our framework’s approach

in the calculation of latency would lead to infeasible schedules when considering loops, because

each node would have to “come after” the previous one. One simple solution to this problem is to

122

ignore any loop backedges when considering timing, but we have not done a full investigation of

an architecture that requires this feature.

Independence of Latency & Utilization One possible modeling of the spatial scheduling problem

is to create binary decision variables both for “where” a computation should go, and “when” it

should be activated, which we refer to as “space-time” scheduling. We have taken a slightly different

approach in this formulation by assuming that the latency and utilization concerns are mostly

independent, and only create decision variables for “where” a computation goes. We *rely* on

the latency being calculable based on the mapping of computation and communication. This is

not necessarily true, because with TRIPS, two computations which could both fire on the same

tile at the same time will need to be arbitrated. For the purpose of the timing responsibility, the

model optimistically assumes that both computations will fire at the same time. In general, our

formulation does not take into account the fine-grained interaction of latency and utilization. That

said, our approach use many fewer decision variables than a “space-time” approach, and we can

more naturally model utilization constraints.

Flexibility and Broader Uses

Here we discuss some broader extensions and implications of our work. Specifically, we discuss the

possibility and how our scheduler delivers on its promises of compiler-developer productivity/ex-

tensibility, cross-architecture applicability, and insights on optimality.

Formulation Extensibility: In our experience, our model formulation was easily adaptable and

extensible for modeling various problem variations or optimizations. For example, we improved

upon our TRIPS scheduler’s performance by identifying blocks with carried-loop cache dependen-

cies (commonly the most frequently executed), and extended our formulation to only optimize for

relevant paths.

Application to Example Architectures: Table 6.6 shows how our framework could be applied to

123

Responsibility RAW WaveScalar NPU

Placement Homogeneous Cores
(Tiles)

Homogeneous Processing
Elements

8 Processing Elements, 1
Shared Bus

Routing 2D grid, unconstrained
routing

Hierarchical Network.
First two levels are fully
connected, last level grid
uses dynamic routing

Responsibility Not Ap-
plicable – Broadcast bus
used for communication.

Timing In-order execution inside
tile, dataflow between
tiles (Secondary list sched-
uler orders inter-stream
events)

Data-flow execution, and
dynamic network arbi-
tration; network latency
varies by hierarchy level

Fully Static execution.
“No-ops” between bus
events maintain synchro-
nization.

Utilization Many instructions per tile.
Shared network links

64-Instructions/PE;
Shared Network Links

Shared Processing Ele-
ments

Objective Latency & Throughput Contention & Latency Latency

Table 6.6: Applicability to other Spatial Architectures

three other systems. For both WaveScalar and RAW, we can attain optimal solutions by refraining

from making early decisions, essentially avoiding the drawbacks of multi-stage solutions. For

WaveScalar, our scheduler would consider all levels of the network hierarchy at once, using different

latencies for links in different networks. For RAW, our scheduler would consider both the partition-

ing of instructions into streams, and the spatial placement of these instructions simultaneously.

As a more recent example, NPU [31] is a statically-scheduled architecture like PLUG, but uses a

broadcast network instead of a point-to-point, tiled network. Instead of using the routing equations

for communication, the NPU bus is more aptly modeled as a computation type. Timing would

be modeled similarly to PLUG, where “no-ops” prevent bus contention, allowing a fully static

schedule.

Insights on Optimality: Since our approach provides insights on optimality, it has potentially

broader uses as well. For instance, in the context of a dynamic compilation framework, even though

the compilation time of seconds is impractical, the ILP scheduler still has significant practical value –

it enables developers to easily formulate and evaluate objectives that can guide the implementation

of specialized heuristic schedulers.

124

Revisiting NPU scheduling, we can observe another potential use of ILP models, specifically in

designing the hardware itself. For the NPU, the fifo depth of each processing element is expensive

in terms of hardware, so we could easily extend the model to calculate the fifo depth as a function

of the schedule. One strategy would be to first optimize for performance, then fix the performance

and optimize for lowest maximum fifo depth. Doing this across a set of benchmarks would give the

best lower-bound fifo depth which does not sacrifice performance.

6.7 Related Work

Many others have used mathematical optimization to address scheduling problems in the past,

and we summarize the most related in Table 6.7. In 1950, Wagner describes an ILP model for

machine scheduling with dependent tasks [109]. Later, scheduling with MILP is brought to the

field of computer architecture, including works like Feautrier’s ILP model for modulo scheduling

VLIW processors [110], and the multiprocessor scheduling work by Satish et. al. [111]. Perhaps

the most related work, in terms of the domain, is that of Amarasinghe et. al, who formulated an

ILP scheduling model for the RAW processor [112]. Though RAW is a spatial architecture, the

model differs from ours in that it does not perform complex routing of communication, and does

not model utilization.

Even though great strides have been made in mathematical models for scheduling, the state-

of-the-art approaches for spatial scheduling are heuristic based. The five scheduling abstractions

we described are not been modeled directly, and the typically NP-hard (depending on the hard-

ware architecture) spatial architecture scheduling problem is side-stepped. Instead, the focus of

architecture-specific schedulers has typically been on developing polynomial-time algorithms that

approximate the optimal solution using knowledge about the architecture. Chronologically, this

body of work includes the BUG scheduler for VLIW proposed in 1985 [117], UAS scheduler for

clustered VLIW [118], synchronous data-flow graph scheduling [119], RAW scheduler [120], CARS

VLIW code-generation and scheduler [121], TRIPS scheduler [107, 108], WaveScalar scheduler [122],

125

Yr Technique Comments or differences to our approach

1950 MILP machine
sched. [109]

M-Job-DAG to N-resource scheduling. No job communication
modeling, or network contention modeling. (missing ii,iv)

1992 MILP for
VLIW [110]

Modulo scheduling. Cannot model an interconnection net-
work, spatial resources, or network contention. (missing
i,ii,iv)

1997 Inst schedul-
ing [113]

Single-Processor Modulo Scheduling. (missing i,ii,iv)

2001 Process schedul-
ing [114]

M-Job-DAG to N-resource scheduling using dynamic pro-
gramming. Has no network routing or contention modeling,
fixed job delays, and no flexible objective. (missing ii,iv,v)

2002 MILP for RAW
[112]

M-Job-DAG to N-resource scheduling. Not generalizable as
it does not model network routing or contention, just fixed
network delays. (missing ii,iv)

2007 Multiproc. Sched.
[111, 115]

M-Job-DAG to N-resource scheduling - No path assignment
or contention modeling, just fixed delays. (missing ii,iv)

2008 SMT for PLA
[116]

Strict communication and computation requirements: no
network contention or path assignment modeling (missing
ii,iv)

Table 6.7: Related work – Legend: i) computation placement ii) data routing iii) event timing
iv) utilization management v) optimization objective

and CCA scheduler proposed in 2008 [123].

While heuristic-based approaches are popular and effective, they have three problems: i) poor

compiler developer/architect productivity since new algorithms, heuristics, and implementations are

required for each architecture, ii) lack of insight on optimality of solution, and iii) sandboxing of

heuristics to specific architectures — understanding and using techniques developed for one spatial

architecture in another very hard. Of course, the tradeoff in using MILP is that the solution time

significantly longer. However, we were able to create a formulation that runs in a tractable amount of

time to be useful for the architectures in question. Furthermore, the declarative approach that MILP

enables takes much less development effort than designing an imperative algorithm to perform the

same task.

126

6.8 Summary

Scheduling is a fundamental problem for spatial architectures, which are increasingly used to

address energy efficiency, especially in the context of behavior specialized acceleration. Compared

to architecture-specific spatial schedulers, which are the current state-of-the-art, this paper pro-

vides a general formulation of spatial scheduling as a constraint-solving problem. We applied this

formulation to the behavior specialized accelerators used in this work, as well as two additional

whole-program spatial architectures, ran these formulations on a standard ILP solver, and demon-

strated such a general scheduler outperforms or matches the respective specialized schedulers,

while providing solutions with guaranteed bounds on optimality.

127

7 conclusion

This dissertation explores a promising alternative direction for continual improvements to general

purpose processors: to create specialized hardware engines for broad program properties or be-

haviors. We have demonstrated that the ExoCore organization, which couples a general purpose

processor with accelerators, enables disruptive new tradeoffs to general purpose cores without

requiring programmer intervention. Specifically, it can provide up to 2× performance and 1.7×

energy benefit, depending on the host core. The changes required are practical, requiring only

simple integration and well known compilation (or dynamic compilation) techniques.

In addition, this work uncovers several key findings. First, that a small number of exploitable

program behaviors can be used to characterize a majority of applications (up to 80% across our

workloads). Second, that dataflow architectures become practical and useful in hybrid execution

with a general purpose core. Third, that it is possible to attain the benefits of generality and

specialization by composing accelerators for synergistic behaviors. Fourth, this paradigm enables

disruptive microprocessor tradeoffs, enabling mobile-class processor energy-efficiency with desktop-

class performance. Also, this dissertation proposed a novel modeling methodology for behavior-

specialized accelerators which enables rapid exploration of the design space. It also developed a

mathematical formulation for instruction scheduling on these architectures, which is declarative

and simple to use while also providing exact (or bounded-error) solutions.

We conclude by discussing the implications of this work and future research directions.

Implications

Beyond the promising performance potential, the broad impact of this work will be along four dimen-

sions: 1. A broad and natural product applicability, 2. A core paradigm shift making more radical

architectures practical, 3. A framework which unifies application, compiler, and microarchitecture

modeling, 4. Simplifying compiler design through mathematically based schedulers.

128

Industry Applicability and Impact A modular core can be used in a variety of settings, besides the

simple static compilation plus profiling approach that we evaluated in this work. A natural setting for

ExoCore would be to compile for BSAs dynamically from a virtual machine (eg. Java). Alternatively,

a purely hardware approach can be taken through hardware-assisted dynamic translation. Products

like NVIDIA’s Denver already have proven this is practical. Either approach would avoid binary

compatibility concerns.

Behavior-specific microarchitecture blocks can be designed and integrated into the core in a

modular fashion, without disruptive changes to the core’s microarchitecture. This enables designers

to easily trade-off performance, area, energy, and design complexity in new ways. In addition,

ExoCore can enable effective designs with simple components: an in-order core with four BSAs

matches the performance of a quad-issue OOO core, with 15% less area and 2× energy efficiency.

The implication of this is that this paradigm provides a rapid path for a design team with a low-

performance general core to easily augment it to outperform a much more well-established and

complex general core – all without the many years of research and development that it would take

to build a monolithic high performance core from scratch.

We note that while this dissertation’s analysis and claims hinge upon the ability to add significant

hardware and a new ISA and associated compiler, an interesting opportunity along another dimen-

sion is whether the same benefits can be achieved without (or with minimal) ISA modifications.

The idea would be to apply modifications to a traditional OOO GPP, either at the microarchitecture

level or through dynamic translation, to enable efficient execution of nested-loop regions through

selectively eschewing instruction-precise recoverability and providing explicit-dataflow execution.

This could be the fastest route to short-term industrial impact.

Paradigm Shift in Core Design When the restriction of creating a monolithic microprocessor

is relaxed, a huge unexplored design space is created in terms of the general core, the set of

accelerators, and their integration. Additionally, it grants architects and researchers the freedom

to explore radically new designs. To explain, mechanisms that have huge promise for certain

129

workloads, but are impractical in a general context because of power or performance overheads in

other workloads, would become the most valuable and sought-after when applied in a behavior

specialized microprocessor. This also implies that many of the already-existing techniques in the

literature that were overlooked, become exciting potential candidates for inclusion as behavior

specialized accelerators.

Methodological Advances Studying programmable accelerators requires cross-layer modifica-

tions (compilers, ISAs, microarchitecture), and the established simulation-based approach requires

time-consuming development for many pieces of infrastructure. In contrast, the TDG provides a

unified space and high-productivity environment for studying the interaction between accelerators,

cores, compilers and applications.

Our work has also proposed methods that greatly simplify the development of compilers for

behavior specialized architectures – particularly those that expose the routing and placement of

their computations. The abstractions we created should easily lend to the automatic exploration of

co-designed hardware and compilers inside this paradigm.

Open Questions and Future Directions

This work on behavior specialization opens far more fundamental and practical questions than it

answers. We describe a few of the most important ones here.

Untapped Specialization Benefits Though ExoCore showed impressive improvements in perfor-

mance and energy efficiency, we are far from achieving the benefits of ideal specialization, either

in terms of application coverage or total speedup and energy gains. The success of programmer-

exposed and domain-specific accelerators should provide an inspiration for where to look for future

general purpose gains. At the same time, we should not forget about more irregular, hard-to-

specialize programs, where we still require the identification of new exploitable behaviors, and to

move away from relying on the strict-specialization of inlined loop nests.

130

Codesign of Accelerators and General Cores Of course, as we change the accelerators, this affects

the choice of the optimal general purpose host core; so just how simple can the general core be?

There are also many unanswered questions on what is the most efficient interface between the

accelerator and core, especially when accelerator count becomes high, or when accelerators have

vastly different memory bandwidth and latency requirements than the core.

Combining Accelerator Mechanisms Beyond including combinations of accelerators, another

question arises of how to combine their mechanisms for both hardware efficiency and to reduce

complexity. For instance, could a set of data-parallel mechanisms be used to augment SEED to

target more regular workloads, completely obviating the need for short-vector SIMD extensions? Or

could Trace-P and SEED be merged together to create a unified dataflow accelerator which adapts

naturally to the branching behavior by partially speculating different traces?

Improving Design-Space Exploration The above discussion demonstrates how truly vast is the

accelerator design space. This means that we require better tools and practices for modeling,

compiling, and automating the design-space exploration for acceleration techniques.

In terms of modeling, the TDG is a good start towards simplifying accelerator exploration, but

still requires manual implementations of graph transformations. Developing declarative primitives

to simplify the TDG-modeling process would be of huge value, but determining a flexible, simple,

and powerful abstraction is challenging.

In terms of compilation, our ILP approach has been shown to be effective across a handful of

architectures. An open question remains on “universality”: what architecture primitives could

render our framework ineffective? We suspect that new scheduling abstractions and modifications to

the formulation will need to be devised as the number and types of accelerator primitives continues

to broaden.

Finally, there is a question of just how automatic can we make this design space exploration. Can

we identify new behaviors automatically in programs? Are there correlations between behaviors

131

that suggest pairing microarchitectural features in opportunistic ways? Can we automatically

derive the right set of accelerators for given workloads? Answering these questions could prove

incredibly useful to mitigate the design cost of future architectures as we require increasing levels

of specialization.

Concluding Thoughts

This work demonstrates that a core organized around behavior specialization provides unprece-

dented improvement, and there is no reason to believe we have reached the limit of what can be

accomplished. The benefits obtained in this work were through accelerator designs that were largely

well-understood – successive generations of accelerator innovation and refinement can provide

factors more improvement. The immediate implication of the modular core design and behavior

specialization principles is that the there is still a promising path forward for advancing general

purpose microprocessors.

132

a steps in tdg model construction

Here we discuss the practical aspects and steps in constructing a TDG model.

Analysis The first step is identifying the required compiler analysis or profiling information, and

implementing a pass to compute it, operating on the IR or trace respectively. Often, the required

information (eg. path profiling) already exists because it is common among BSAs. When this

information cannot be computed, approximation may be appropriate.

Transformations The next step is to write an algorithm (a “transform”) which reads the incoming

µDG trace, and modifies dependences to model the behavior of the BSA in question. Depending

on the granularity of acceleration, a transform may operate on a single instruction at a time, or it

might collect a basic block, loop iteration, or several iterations before it can decide what the final

µDG should be. The modified µDG is transient, and is discarded after any analysis (eg. critical path

analysis), once it is no longer inside the current instruction window. A transformation should also

include a model for how it interacts with the core when it enters and exists a region.

Scheduling Finally, the model must decide when to apply the BSA transform (ie. at what point in

the code). In a single-BSA system, the BSA’s transform can be used at any legal entry point. For

multi-BSA systems, the model should provide per-region performance (or other metric) estimates

relative to the general purpose core for the BSA based on either the IR or profiling information.

This is used with the Amdahl tree to decide which BSA to use in each region.

Validating new BSAs Validating a TDG model of newly-proposed BSAs is similar to validat-

ing a cycle-level simulator. Writing microbenchmarks and sanity checking is recommended (eg.

examining which edges are on the critical path for some code region).

133

b tdg-modeling of seed and trace-p

Here we briefly discuss the TDG-modeling of SEED and Trace-P. For each accelerator model, we

discuss the analysis plan and transforms, and Figure B.1 shows an example code and transform for

both BSAs.

Non-speculative Dataflow (SEED) TDG TDG Analysis: The primary analysis here is to find fully

inlinable loops or nested loops that fit within the hardware budget. Once a loop nest selected, the

control is converted into data-dependences by computing the program dependence graph. This

determines where “switch” instructions should be inserted to handle control. Instructions are then

scheduled onto CFUs using known mathematical optimization [17] techniques.

TDG Transform (TDGGPP,∅ to TDGGPP,SEED): This transform operates at basic-block granularity,

by inserting edges to enforce control dependences and to force each compound instruction to

Original Transformable Dependence GraphProgram
I1:ld (r0), r3
I2:add r0 4 r0
I3:cmp r3 0
I4:bge BB2
I5:sub r2 r3 r2
I6:j I1
I7:add r2 r3 r2
I8:j I1

Example Core+Accelerator TDGs (for two loop iterations)

g

ld + > - ld + > +

CFU1 CFU2 CFU1 CFU3 Tra
ce-P

ro
c.

SE
ED

ld - > +

CFU1 CFU2

ld - >

CFU 1 I1 I2 I3 I4 I7 I8

(replay w/ GPP)Trace-Mispec

jmp jmp

ld

add

bge

cmp

addsub

B
B

1

BB2 BB3

f

e

p

c

I1 I2 I3 I4 I5 I1 I2I6
Iter. 1: Iter. 2...

Program IRCore µDG

F Fetch G GroupE Execute P Complete C Commit Nodes:
Figure B.1: Example SEED and Trace-P TDGs

134

wait for all operands before beginning execution. It also adds edges to enforce writeback network

capacity. Additionally, edges between the general core and SEED regions are inserted to model live

value transfer time.

Trace-Processor (Trace-P) TDG TDG Analysis: The analysis plan is a set of eligible and profitable

inner loops and compound instruction schedules. Eligible loops with hot traces are found using

path profiling techniques [22]. Loops are considered if their loop back probability is higher than

80%, and their configuration size fits in the hardware limit. A similar CFU scheduling technique is

used, but compound instructions are allowed to cross control boundaries.

TDG Transform (TDGGPP-Orig,∅ to TDGOOO,Trace-P): This transform is similar to SEED, except that

the control dependences are not enforced, and if Trace-P mispeculates the path, instructions are

replayed on the host processor by reverting to the TDGGPP-Orig,∅ to TDGGPP-New,∅ transform.

135

bibliography

[1] R. Colwell, “The chip design game at the end of moore’s law,” Hot Chips 2013, 2013.

[2] B. Sutherland, “No moore? a golden rule of microchips appears to be coming to an end,” The

Economist, 2013.

[3] R. Courtland, “The end of the shrink,” Spectrum, IEEE, vol. 50, pp. 26–29, November 2013.

[4] I. Cutress in AnandTech, 2015. http://www.anandtech.com/show/9483/intel-skylake-review-

6700k-6600k-ddr4-ddr3-ipc-6th-generation/4.

[5] J. A. Fisher, P. Faraboschi, and G. Desoli, “Custom-fit processors: Letting applications define

architectures,” in Proc. of the 29th Ann. Int’l Symp. on Microarchitecture, pp. 324–335, December

1996.

[6] D. Jain, A. Kumar, L. Pozzi, and P. Ienne, “Automatically customising vliw architectures with

coarse grained application-specific functional units,” in International Workshop on Software and

Compilers for Embedded Systems, pp. 17–32, Springer, 2004.

[7] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C. Cronquist, and M. Sivaraman, “Pico:

automatically designing custom computers,” Computer, vol. 35, pp. 39–47, Sep 2002.

[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: a small-footprint

high-throughput accelerator for ubiquitous machine-learning,” in ASPLOS, 2014.

[9] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and Y. Chen, “PuDianNao:

a polyvalent machine learning accelerator,” in ASPLOS, 2015.

[10] J. Brown, S. Woodward, B. Bass, and C. Johnson, “IBM Power Edge of Network Processor: A

wire-speed system on a chip,” IEEE Micro, 2011.

[11] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture for high-throughput

regular-expression pattern matching,” in ISCA, 2006.

136

[12] J. V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and K. Atasu, “Designing a

programmable wire-speed regular-expression matching accelerator,” in MICRO, 2012.

[13] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson,

C. Kozyrakis, and M. Horowitz, “Understanding sources of inefficiency in general-purpose

chips,” in ISCA, 2010.

[14] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan, “Meet the walkers:

Accelerating index traversals for in-memory databases,” in MICRO, 2013.

[15] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross, “Navigating big data with high-throughput,

energy-efficient data partitioning,” in Proceedings of the 40th Annual International Symposium

on Computer Architecture, ISCA ’13, (New York, NY, USA), pp. 249–260, ACM, 2013.

[16] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: The architecture and

design of a database processing unit,” in ASPLOS, 2014.

[17] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring the potential of heterogeneous

Von Neumann/Dataflow execution models,” in ISCA, 2015.

[18] T. Nowatzki and K. Sankaralingam, “Analyzing behavior specialized acceleration,” in ASPLOS,

2016.

[19] M. Watkins, T. Nowatzki, and A. Carno, “Software transparent dynamic binary translation

for coarse-grain reconfigurable architectures,” in HPCA, 2016.

[20] T. Nowatzki, V. Govindaraju, and K. Sankaralingam, “A graph-based program representation

for analyzing hardware specialization approaches,” Computer Architecture Letters, 2015.

[21] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan, and B. Robatmili, “A

general constraint-centric scheduling framework for spatial architectures,” in PLDI, 2013.

[22] T. Ball and J. R. Larus, “Efficient path profiling,” in MICRO, 1996.

137

[23] V. Govindaraju, T. Nowatzki, and K. Sankaralingam, “Breaking simd shackles with an exposed

flexible microarchitecture and the access execute pdg,” in PACT, pp. 341–351, 2013.

[24] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. A. Horowitz,

“Convolution engine: Balancing efficiency and flexibility in specialized computing,” in ISCA,

2013.

[25] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled execution of recurring

traces for energy-efficient general purpose processing,” in MICRO, 2011.

[26] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-specific processing on

a general-purpose core via transparent instruction set customization,” in MICRO, 2004.

[27] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson,

and M. B. Taylor, “Conservation Cores: Reducing the Energy of Mature Computations,” in

ASPLOS ’10.

[28] F. Liu, H. Ahn, S. R. Beard, T. Oh, and D. I. August, “Dynaspam: Dynamic spatial architecture

mapping using out of order instruction schedules,” in Proceedings of the 42Nd Annual Inter-

national Symposium on Computer Architecture, ISCA ’15, (New York, NY, USA), pp. 541–553,

ACM, 2015.

[29] E. S. Chung, J. D. Davis, and J. Lee, “Linqits: Big data on little clients,” in Proceedings of the

40th Annual International Symposium on Computer Architecture, ISCA ’13, (New York, NY, USA),

pp. 261–272, ACM, 2013.

[30] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F. Wenisch, and S. Mahlke,

“Composite Cores: Pushing heterogeneity into a core,” in MICRO, 2012.

[31] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for general-

purpose approximate programs,” in MICRO, 2012.

138

[32] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam, and C. Kim,

“Dyser: Unifying functionality and parallelism specialization for energy efficient computing,”

IEEE Micro, 2012.

[33] Y. Park, J. J. K. Park, H. Park, and S. Mahlke, “Libra: Tailoring simd execution using het-

erogeneous hardware and dynamic configurability,” in Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-45, (Washington, DC, USA),

pp. 84–95, IEEE Computer Society, 2012.

[34] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen, “Cambricon: An instruction

set architecture for neural networks,” in 2016 ACM/IEEE 43rd Annual International Symposium

on Computer Architecture (ISCA), 2016.

[35] A. Sharifian, S. Kumar, A. Guha, and A. Shriraman, “Chainsaw: Von-neumann accelerators

to leverage fused instruction chains,” in Proceedings of the 49th International Symposium on

Microarchitecture, 2016.

[36] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing the limits of accel-

erator efficiency while retaining programmability,” in 2016 IEEE International Symposium on

High Performance Computer Architecture (HPCA), 2016.

[37] B. Fields, S. Rubin, and R. Bodik, “Focusing processor policies via critical-path prediction,” in

ISCA, 2001.

[38] J. Lee, H. Jang, and J. Kim, “Rpstacks: Fast and accurate processor design space exploration

using representative stall-event stacks,” in MICRO, 2014.

[39] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower,

T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood,

“The gem5 simulator,” SIGARCH Comput. Archit. News, 2011.

139

[40] T. Moseley, D. Grunwald, D. A. Connors, R. Ramanujam, V. Tovinkere, and R. Peri, “Loopprof:

Dynamic techniques for loop detection and profiling,” in Proceedings of the 2006 Workshop on

Binary Instrumentation and Applications (WBIA), 2006.

[41] B. Fields, R. Bodik, M. Hill, and C. Newburn, “Using interaction costs for microarchitec-

tural bottleneck analysis,” in Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual

IEEE/ACM International Symposium on, pp. 228–239, 2003.

[42] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “McPAT: an integrated

power, area, and timing modeling framework for multicore and manycore architectures,” in

MICRO, 2009.

[43] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A tool to model large

caches,” HP Laboratories, 2009.

[44] Parboil Benchmark Suite. impact.crhc.illinois.edu/parboil/ parboil.aspx.

[45] Vertical Microbenchmarks. http://cs.wisc.edu/vertical/microbench.

[46] R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental error in microprocessor

simulation,” in ISCA, 2001.

[47] P. A. M. Eric S. Chung, J. C. Hoe, and K. Mai, “Single-chip heterogeneous computing: Does

the future include custom logic, FPGAs, and GPUs?,” in MICRO ’10.

[48] T. Zidenberg, I. Keslassy, and U. Weiser, “Optimal resource allocation with multiamdahl,”

Computer, 2013.

[49] M. Hempstead, G.-Y. Wei, and D. Brooks, “Navigo: An early-stage model to study power-

contrained architectures and specialization,” in Proceedings of Workshop on Modeling, Bench-

marking, and Simulations (MoBS), 2009.

140

[50] M. Shoaib Bin Altaf and D. Wood, “LogCA: a performance model for hardware accelerators,”

Computer Architecture Letters, 2015.

[51] S. Borkar and A. A. Chien, “The future of microprocessors,” Commun. ACM, vol. 54, no. 5,

pp. 67–77, 2011.

[52] R. Iyer, “Accelerator-rich architectures: Implications, opportunities and challenges,” in Design

Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, 2012.

[53] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark silicon and

the end of multicore scaling,” SIGARCH Comput. Archit. News, 2011.

[54] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic performance model

for superscalar out-of-order processors,” ACM Trans. Comput. Syst., 2009.

[55] L. Eeckhout, “Computer architecture performance evaluation methods,” Synthesis Lectures on

Computer Architecture, 2010.

[56] C. Nugteren and H. Corporaal, “The boat hull model: adapting the roofline model to enable

performance prediction for parallel computing,” in PPOPP, 2012.

[57] C. Nugteren and H. Corporaal, “A modular and parameterisable classification of algorithms,”

Tech. Rep. ESR-2011-02, Eindhoven University of Technology, 2011.

[58] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual performance

model for multicore architectures,” Commun. ACM, 2009.

[59] S. Hong and H. Kim, “An integrated GPU power and performance model,” in ISCA ’10.

[60] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance analysis framework for identifying

potential benefits in GPGPU applications,” in PPoPP, 2012.

[61] J. Meng, V. Morozov, K. Kumaran, V. Vishwanath, and T. Uram, “GROPHECY: GPU perfor-

mance projection from CPU code skeletons,” in SC’11, ACM, 2011.

141

[62] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor, “Kismet: Parallel Speedup Estimates for Serial

Programs,” in OOPSLA, 2011.

[63] S. Garcia, D. Jeon, C. Louie, and M. B. Taylor, “Kremlin: Rethinking and rebooting gprof for

the multicore age,” in PLDI, 2011.

[64] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl, power-performance

accelerator simulator enabling large design space exploration of customized architectures,”

in ISCA, 2014.

[65] N. Clark, A. Hormati, and S. Mahlke, “Veal: Virtualized execution accelerator for loops,” in

ISCA ’08, pp. 389 –400.

[66] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and K. Asanovic,

“The vector-thread architecture.,” in Proceedings of the 31st International Symposium on Computer

Architecture, pp. 52–63, June 2004.

[67] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanović, “Exploring

the tradeoffs between programmability and efficiency in data-parallel accelerators,” in ACM

SIGARCH Computer Architecture News, 2011.

[68] P. Greenhalgh, “Big. little processing with arm cortex-a15 & cortex-a7,” ARM White Paper,

2011.

[69] G. Venkatesh, J. Sampson, N. Goulding-hotta, S. K. Venkata, M. B. Taylor, and S. Swanson,

“Qscores: Trading dark silicon for scalable energy efficiency with quasi-specific cores,” in

MICRO, 2011.

[70] M. Hayenga, V. Naresh, and M. Lipasti, “Revolver: Processor architecture for power efficient

loop execution,” in High Performance Computer Architecture (HPCA), 2014 IEEE 20th Interna-

tional Symposium on, pp. 591–602, Feb 2014.

142

[71] K. Arvind and R. S. Nikhil, “Executing a program on the mit tagged-token dataflow architec-

ture,” IEEE Trans. Comput., 1990.

[72] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R. Moore, J. Burrill,

R. G. McDonald, W. Yoder, and the TRIPS Team, “Scaling to the end of silicon with EDGE

architectures,” IEEE Computer, vol. 37, no. 7, pp. 44–55, 2004.

[73] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,” in MICRO, pp. 291–,

2003.

[74] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein, and M. Budiu,

“Tartan: evaluating spatial computation for whole program execution,” in ASPLOS, 2006.

[75] M. Budiu, P. V. Artigas, and S. C. Goldstein, “Dataflow: A complement to superscalar,” in

ISPASS, 2005.

[76] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz, M. Marino, N. Ranganathan,

B. Robatmili, A. Smith, J. Burrill, S. W. Keckler, D. Burger, and K. S. McKinley, “An evaluation

of the trips computer system,” in ASPLOS ’09.

[77] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia, M. Govindan, P. Gratz,

D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif, P. Shiv-

akumar, S. W. Keckler, and D. Burger, “Distributed Microarchitectural Protocols in the TRIPS

Prototype Processor,” in MICRO ’06: Proceedings of the 39th Annual International Symposium

on Microarchitecture, December 2006.

[78] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically specialized datapaths for

energy efficient computing,” in High Performance Computer Architecture (HPCA), 2011 IEEE

17th International Symposium on, pp. 503–514, 2011.

[79] S. Padmanabha, A. Lukefahr, R. Das, and S. A. Mahlke, “Trace based phase prediction for

tightly-coupled heterogeneous cores,” in MICRO, 2013.

143

[80] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: a tool for evaluating and

synthesizing multimedia and communications systems,” in MICRO, 1997.

[81] R. A. Iannucci, “Toward a dataflow/von neumann hybrid architecture,” in ISCA, 1988.

[82] R. Buehrer and K. Ekanadham, “Incorporating data flow ideas into von neumann processors

for parallel execution,” Computers, IEEE Transactions on, 1987.

[83] G. M. Papadopoulos, “Monsoon: an explicit token-store architecture,” in ISCA, 1990.

[84] Y. Liu and S. Furber, “A low power embedded dataflow coprocessor,” in IEEE Computer Society

Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI’05), pp. 246–247, May 2005.

[85] C.-H. Ho, S. J. Kim, and K. Sankaralingam, “Efficient execution of memory access phases

using dataflow specialization,” in ISCA, 2015.

[86] D. Gibson and D. A. Wood, “Forwardflow: A scalable core for power-constrained cmps,” in

ISCA, 2010.

[87] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Chaves Filho, “Morphosys: an

integrated reconfigurable system for data-parallel and computation-intensive applications,”

Computers, IEEE Transactions on, 2000.

[88] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace processors,” in MICRO, 1997.

[89] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen, “Single-isa hetero-

geneous multi-core architectures: The potential for processor power reduction,” in MICRO,

2003.

[90] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture optimization for heterogeneous

chip multiprocessors,” in PACT, 2006.

[91] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread scheduling and global

power management for heterogeneous many-core architectures,” in PACT, 2010.

144

[92] T. Sondag and H. Rajan, “Phase-based tuning for better utilization of performance-asymmetric

multicore processors,” in CGO, 2011.

[93] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, “Scheduling heterogeneous

multi-cores through performance impact estimation (pie),” in ISCA, 2012.

[94] S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke, “Trace based phase prediction for

tightly-coupled heterogeneous cores,” in MICRO, 2013.

[95] S. Navada, N. K. Choudhary, S. V. Wadhavkar, and E. Rotenberg, “A unified view of non-

monotonic core selection and application steering in heterogeneous chip multiprocessors,” in

PACT, 2013.

[96] S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, and C. Batten, “Architectural specialization for

inter-iteration loop dependence patterns,” in MICRO, 2014.

[97] A. Venkat and D. M. Tullsen, “Harnessing isa diversity: Design of a heterogeneous-isa chip

multiprocessor,” in ISCA, 2014.

[98] A. A. Chien, A. Snavely, and M. Gahagan, “10x10: A general-purpose architectural approach

to heterogeneity and energy efficiency,” Procedia Computer Science, vol. 4, pp. 1987 – 1996,

2011.

[99] Y. Fang, R. Rasool, D. Vasudevan, and A. A. Chien, “Generalized pattern matching micro-

engine,” in Fourth Workshop on Architectures and Systems for Big Data, Held in conjunction with

The 41st International Symposium on Computer Architecture (ISCA 2014), IEEE & ACM, 2014.

[100] T. Thanh-Hoang, A. Shambayati, C. Deutschbein, H. Hoffmann, and A. A. Chien, “Perfor-

mance and energy limits of a processor-integrated fft accelerator,” in High Performance Extreme

Computing Conference (HPEC), 2014 IEEE, pp. 1–6, Sept 2014.

145

[101] D. Vasudevan and A. A. Chien, “The bit-nibble-byte microengine (bnb) for efficient computing

on short data,” in Proceedings of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI

’15, (New York, NY, USA), pp. 103–106, ACM, 2015.

[102] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien, “Fast support for unstructured data pro-

cessing: The unified automata processor,” in Proceedings of the 48th International Symposium

on Microarchitecture, MICRO-48, (New York, NY, USA), pp. 533–545, ACM, 2015.

[103] T. Thanh-Hoang, A. Shambayati, and A. A. Chien, “A data layout transformation (dlt) ac-

celerator: Architectural support for data movement optimization in accelerated-centric het-

erogeneous systems,” in 2016 Design, Automation Test in Europe Conference Exhibition (DATE),

pp. 1489–1492, March 2016.

[104] T. Nowatzki, M. Ferris, K. Sankaralingam, C. Estan, N. Vaish, and D. Wood, “Optimization and

mathematical modeling in computer architecture,” Synthesis Lectures on Computer Architecture,

vol. 8, no. 4, pp. 1–144, 2013.

[105] “Trips toolchain, http://www.cs.utexas.edu/ trips/dist/,” 2009.

[106] L. De Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam, “Plug: flexible lookup modules

for rapid deployment of new protocols in high-speed routers,” in Proceedings of the ACM

SIGCOMM 2009 conference on Data communication, SIGCOMM ’09, pp. 207–218, 2009.

[107] K. E. Coons, X. Chen, D. Burger, K. S. McKinley, and S. K. Kushwaha, “A spatial path schedul-

ing algorithm for edge architectures,” SIGARCH Comput. Archit. News, vol. 34, pp. 129–140,

Oct. 2006.

[108] R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. McKinley, C. Lin, and S. W. Keckler, “Static

placement, dynamic issue (spdi) scheduling for edge architectures,” in Proceedings of the 13th

International Conference on Parallel Architectures and Compilation Techniques, PACT ’04, pp. 74–84,

2004.

146

[109] H. M. Wagner, “An integer linear-programming model for machine scheduling,” Naval Re-

search Logistics Quarterly, vol. 6, no. 2, pp. 131–140, 1959.

[110] P. Feautrier, “Some efficient solutions to the affine scheduling problem.,” International Journal

of Parallel Programming, vol. 21, pp. 313–347, 1992.

[111] N. Satish, K. Ravindran, and K. Keutzer, “A decomposition-based constraint optimization

approach for statically scheduling task graphs with communication delays to multiprocessors,”

in DATE ’07, 2007.

[112] S. Amarasinghe, D. R. Karger, W. Lee, and V. S. Mirrokni, “A theoretical and practical approach

to instruction scheduling on spatial architectures,” tech. rep., MIT, 2002.

[113] A. E. Eichenberger and E. S. Davidson, “Efficient formulation for optimal modulo sched-

ulers,” in Proceedings of the ACM SIGPLAN 1997 conference on Programming language design and

implementation, PLDI ’97, pp. 194–205, 1997.

[114] D. W. Engels, J. Feldman, D. R. Karger, and M. Ruhl, “Parallel processor scheduling with delay

constraints,” in Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,

SODA ’01, pp. 577–585, 2001.

[115] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream programs on multicore

platforms,” in Proceedings of the 2008 ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’08, pp. 114–124, 2008.

[116] K. Fan, H. h. Park, M. Kudlur, and S. o. Mahlke, “Modulo scheduling for highly customized

datapaths to increase hardware reusability,” in Proceedings of the 6th annual IEEE/ACM in-

ternational symposium on Code generation and optimization, CGO ’08, (New York, NY, USA),

pp. 124–133, ACM, 2008.

[117] J. R. Ellis, Bulldog: a compiler for vliw architectures. PhD thesis, 1985.

147

[118] E. Özer, S. Banerjia, and T. M. Conte, “Unified assign and schedule: a new approach to

scheduling for clustered register file microarchitectures,” in Proceedings of the 31st annual

ACM/IEEE international symposium on Microarchitecture, MICRO 31, pp. 308–315, 1998.

[119] S. S. Battacharyya, E. A. Lee, and P. K. Murthy, Software Synthesis from Dataflow Graphs. Kluwer

Academic Publishers, 1996.

[120] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amarasinghe, “Space-time

scheduling of instruction-level parallelism on a raw machine,” in Proceedings of the eighth

international conference on Architectural support for programming languages and operating systems,

ASPLOS VIII, pp. 46–57, 1998.

[121] K. Kailas, A. Agrawala, and K. Ebcioglu, “Cars: A new code generation framework for

clustered ilp processors,” in Proceedings of the 7th International Symposium on High-Performance

Computer Architecture, HPCA ’01, pp. 133–, 2001.

[122] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin, M. Oskin, and S. J. Eggers,

“Instruction scheduling for a tiled dataflow architecture,” in Proceedings of the 12th international

conference on Architectural support for programming languages and operating systems, ASPLOS XII,

pp. 141–150, 2006.

[123] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-centric modulo schedul-

ing for coarse-grained reconfigurable architectures,” in Proceedings of the 17th international

conference on Parallel architectures and compilation techniques, PACT ’08, pp. 166–176, 2008.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Hardware Specialization
	Behavior Specialization
	Contributions
	Organization

	The Case for an ExoCore Processor
	ExoCore Organization Overview
	Compilation Overview
	Why Programmer-Transparent Accelerators?
	Why Region Based?
	Why In-Core?
	Evaluated System and Modeling

	Modeling Behavior Specialization
	Limitations of Existing Evaluation Approaches
	Transformable Dependence Graphs
	TDG Transform Implementations
	Implementation: Prism
	Core and Accelerator Validation
	Limitations of TDG Modeling
	Related Work
	Summary

	Dataflow Specialization
	Potential of Dataflow Specialization
	SEED: An Architecture for Fine-Grain Dataflow Specialization
	SEED Architecture
	SEED Compiler Considerations
	Evaluation Methodology
	Evaluating Dataflow-Specialization Potential
	Related Work
	Summary

	Multi-behavior Specialization
	Behavior Synergy
	Designing an ExoCore
	BSA Selection
	ExoCore Exploration Methodology
	ExoCore Evaluation
	Related Work
	Summary

	General Mathematical Accelerator Scheduling
	Spatial Architectures and ILP Primer
	Overview
	General ILP framework
	Architecture-specific modeling
	Implementation and Evaluation
	Discussion
	Related Work
	Summary

	Conclusion
	Steps in TDG Model Construction
	TDG-Modeling of SEED and Trace-P
	Bibliography

