
High-Level Synthesis for Efficient Accelerator Design

by

Sung Jin Kim

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2015

Date of final oral examination: 05/06/2015

The dissertation is approved by the following members of the Final Oral Committee:
Karthikeyan Sankaralingam, Associate Professor, Computer Sciences
Mikko Lipasti, Professor, Electrical and Computer Engineering
Kewal Saluja, Professor, Electrical and Computer Engineering
Azadeh Davoodi, Associate Professor, Electrical and Computer Engineering
Cristian Estan, Software Engineer, Google

© Copyright by Sung Jin Kim 2015

All Rights Reserved

i

acknowledgments

I would like to thank everyone who helped to complete my dissertation. Without the guidance

of my committee members, help from friends, and support from my wife and family, I would

never have finished my dissertation.

First, I would like to thank my advisor, Dr. Karu Sankaralingam, who had continuously

encouraged me to study and research. Without your excellent guidance, caring, and patience, I

would have never completed my research.

I would like to thank all committee members: Dr. Mikko Lipasti, Dr. Kewal Saluja, Dr.

Azadeh Davoodi, and Dr. Cristian Estan. Dr. Lipasti pushed me to rethink the evaluation

methodology when I was in trouble to analyze the result. Dr. Saluja and Dr. Davoodi were great

listener and gave me many inspiring comments for my research. I especially thank to Dr. Estan

for giving me numerous advices at the beginning of my research.

I also thank to the Vertical group. In particular, Dr. Chen-Han Ho, who was my collaborator

for the research, gave me significant insights and thoughts to achieve my research. I have

learned many skills to proceed my research. Thanks to Lorenzo De Carli for the great help and

discussions when I have had much trouble for my research. Amit, Vijay, Tony, Newsha, Vinay,

and Clint: thank you for your feedback and support.

Thanks to the faculty of Chung-Ang University. Dr. Joonki Paik, who was my advisor

for master degree, have encouraged me to study abroad. Without your advice, I could never

decided and be prepared to be attend to a PhD program. Also, I appreciate my friends in my

country. Shichang gave me valuable comments and taught me the skill to utilize tools that I

need. Tae-keun continuously provided new technonlgies and information, and it was useful for

pursuit of my research. Aram, Jihong, Kyungwon, and Hyungsoo always stood by me though

the good time and bad time.

Finally, I would like to thank my parents and sisters. They were always supporting me and

encouraging me with their best wishes. Especially, I would like to appreciate my wife, Hyun A.

She was always there cheering me up and my strongest support.

ii

contents

Contents ii

List of Tables iv

List of Figures v

Abstract viii

1 Introduction 1

1.1 High-Level Synthesis 4

1.2 Building Accelerators from Software 5

1.3 Contributions 7

1.4 Thesis Organization 9

2 Motivation 10

2.1 Generating accelerators from the specialized program 10

2.2 Generating Accelerators for Loops in Generic Program 17

2.3 Chapter Summary 25

3 SWSL 26

3.1 Overview of SWSL 26

3.2 Back-end Compiler for SWSL 30

3.3 Chapter Summary 43

4 Cache-Coherent High-Level Synthesis for Fixed-Function Accelerators 44

4.1 Overview of the CcHLS 45

4.2 Extended-Access/Execute Program Dependence Graph (E-AEPDG) 46

4.3 Transformation E-AEPDG to Fixed-Function Accelerators 60

4.4 Execution 69

4.5 Complex Scenarios 73

iii

4.6 ccHLS Support 82

4.7 Implementation 83

4.8 Chapter Summary 83

5 Evaluation of SWSL 85

5.1 Evaluation Overview 85

5.2 Benchmarks 87

5.3 Evaluation for Network Lookup with SWSL 90

5.4 Chapter Summary 95

6 Evaluation of ccHLS 96

6.1 Modeling for the Fixed-Function Accelerator from ccHLS 97

6.2 Benchmarks 98

6.3 Fixed-Function Accelerators with the General Purpose Processor 99

6.4 Fixed-Function Accelerators with the C-Cores 110

6.5 Chapter Summary 112

7 Related Work 113

7.1 SWSL and Other Specialization Hardware 113

7.2 Other Specialization Approaches related to ccHLS 115

7.3 Chapter Summary 117

8 Conclusion 118

8.1 Contributions 118

8.2 Closing Remarks 120

A Pipeline LookUp Grid (PLUG) 121

Bibliography 129

iv

list of tables

1.1 Comparison: Reconfigurable architecture vs. Fixed-function accelerators 3

2.1 Taxonomy: Classification of accelerators . 18

4.1 Classification by instruction type and position . 52

4.2 Symbolic Representation in Extended AEPDG . 55

4.3 Supported and unsupported coding style . 82

5.1 Details of Network Lookpu Application . 89

5.2 SWSL Application Latency (ns) . 91

5.3 Latency Comparison (ns) . 92

5.4 Power Estimation (W) . 92

5.5 Area Estimation (mm2) . 94

6.1 General purpose host processor models . 97

6.2 Parboil Benchmark Description . 98

6.3 Area Size of the Fixed-Function Accelerators . 105

v

list of figures

2.1 Design Space of Lookup Engine . 13

2.2 Overview of Lookup Engine Design using SWSL . 16

2.3 Hardware Design Flow . 20

2.4 Execution Model: From DAE model, E processor and A processor are replaced with

a fixed-function compute accelerator and a fixed-function memory access accelerator,

respectively. 22

3.1 Lookup Engine Generation using SWSL . 26

3.2 Compilation Process of SWSL . 29

3.3 MBB Structure . 31

3.4 An Example Code and its Control Flow Graph . 33

3.5 An Example Code and its Control Flow Graph . 34

3.6 Variables Used in a Code Block and its Expression 35

3.7 Cascading Variable Line Index Counter . 38

3.8 Enable Signal Set . 40

3.9 An Example to Construct Data Flow Graph without Data Dependency 42

4.1 ccHLS Overview . 45

4.2 Conceptual Model from IR to Extended-AEPDG . 48

4.3 Target Source code and Intermediate Representation by Control Flow Graph 50

4.4 Control Flow Graph and Access/Execute PDG . 51

4.5 Access/Execute PDG with Memory Computation Nodes 57

4.6 Access/Execute PDG with Inner-loop Condition . 58

4.7 Extened Access/Execute PDG . 59

4.8 Event Queues and Functional Unit . 62

4.9 Constructing Datapath using EQs and FUs . 63

4.10 Transformation of Loop Control . 67

4.11 Transformation for Indirection Memory Access . 68

vi

4.12 Transformation for Output Edges . 69

4.13 Transformation for Store Nodes . 70

4.14 Execution . 71

4.15 Inner Loop Dependency by Outer Loop Value . 74

4.16 Transformation of Loop Dependency . 75

4.17 Loop Dependency by Outer Loop Induction Value 76

4.18 Transformation of Loop Dependency by Outer Loop Induction Value 77

4.19 Source Code with Memory Disambiguation . 78

4.20 E-AEPDG with Memory Disambiguation . 79

4.21 Transformation with Memory Disambiguation . 80

5.1 SWSL Target Model: Network Line Card . 86

5.2 Data Flow Graph for Applications . 88

6.1 ccHLS Target Model: D-Cache utilization during acceleration 96

6.2 Ratio Insts/FU Execution . 100

6.3 Functional unit usages . 101

6.4 Speedup over 2-OOO and 4-OOO . 102

6.5 Energy reduction over 2-OOO and 4-OOO . 104

6.6 Parallelism in fixed-function accelerators . 107

6.7 Power Breakwodn . 107

6.8 Speedup over 2-OOO/SSE and 4-OOO/SSE . 109

6.9 Energy reduction over 2-OOO/SSE and 4-OOO/SSE 110

6.10 Speedup vs C-Cores . 111

6.11 Energy Reduction Comapred to C-Cores . 112

A.1 Architectural Overview of PLUG . 121

A.2 Logical Page Class . 122

A.3 Data Flow Graph of Ethernet . 124

A.4 Lookup code block in LP0 . 125

vii

A.5 Code block for updating MAC address in LP0 . 126

A.6 Data Flow Graph of IPv4 . 127

viii

abstract

For several decades, the research of general-purpose microprocessors has been central to the

organization of efficient computing systems. However, computer architects face the limitations

of innovation and research alternative techniques to keep improving computing systems. Today,

a custom hardware implementation and specialized accelerators are becoming a widely-used

approach to overcome these limitations. While hardware accelerators are useful for efficient

computing, its entry barrier due to design complexity is higher than software implementation

for a general-purpose microprocessor. High-Level Synthesis (HLS) is a well-known custom

hardware design base on the software approach to relaxed design complexity.

In this work, we propose new HLS approaches to generate hardware accelerators, depending

on the characteristics of the implemented software: SoftWare Synthesis for network Loop

(SWSL) and cache-coherent High-Level Synthesis (ccHLS). Depending on the properties of

the target software, the implementation method should be different and it requires different

HLS techniques to meet the requirement of these goals. Data structure lookups are among the

most expensive operations on a router and its function is to achieve high throughput with low

latency and power to support massive input packet processing. Hence, accelerators from HLS

for network lookup should consider ways to minimize latency and maximize throughput. SWSL

accepts a specialized programming model for a specialized architecture called PLUG and retains

its simple programming model. SWSL generates entire lookup chains performing aggressive

pipelining to achieve high throughput.

On the other hand, conventional programs normally focus on loops as accelerating regions

which requires more computation performance than non-accelerating regions. However, this

approach requires the host processor to execute non-accelerating code region and the accel-

erator’s memory as cache because the host processor and accelerators are running separately.

Thus, the execution model of most accelerators is 1) read data from the accelerator’s memory to

inject into the accelerator hardware and 2) write data to the accelerator’s memory to update the

computation result. Its mechanism leads to some cache coherency between the cache in a host

processor and the accelerator’s memory. In addition, it is not cost-effective because it requires

ix

additional memory for accelerators. ccHLS generates fixed-function accelerators sharing data

cache with the host processor starting with C/C++ source code. It is basically organized as two

accelerators following a decoupled access/execute model, which are the fixed-function compute

accelerator and the fixed-function memory access accelerator. The former has a task to speed

up computation of a target source code and the latter has the role of data movement including

cache accesses in the host processor directly. The fixed-function memory access accelerator is

organized by an address generation unit for address computation and FSM to control memory

access. The host processor, except the data cache, is turned off during acceleration.

In this dissertation, we observed following: First, SWSL gives 2 ~4× lower latency and 3 ~4×

reduced chip area with reasonable power consumption compared with a previously proposed

solution. Second, ccHLS provides reasonable factors by using fixed-function accelerators from

software implementation of applications. We expect cost-effective and performance/energy

improvement design for acceleration. Based on our simulation result, compared to 2-wide and

4-wide out-of-order processors, we observe 2.55× and 1.57× speedup and 3.96× and 7.20×

energy reduction.

1

1 introduction

By increasing the number of transistors on a chip, as predicted by Moore’s Law [59], comput-

ing systems have flourished in the 20th century. In terms of performance with Moore’s Law,

computer architects have consequently reached the stage to achieve the best performance by tech-

nical innovation. Pipelining in the microarchitecture allows the system to achieve a high clock

frequency. Branch predictors and out-of-order execution lead the microprocessor to speculative

execution and dynamic scheduling for performance improvement. However, the breakdown of

Dennard scaling [26], and increasing the power per unit area in CMOS technology, prohibits a

single processor core from being advanced. Due to the key effect of Dennard scaling, the power

density is constant if transistors get smaller and supply voltage scaling has made it possible to

use abundant transistors for the circuit design because threshold voltage is able to be scaled

proportionally. However, the ability to scale the threshold voltage for reliable circuit operation

has been limited by increasing current leakage to unacceptable levels, and reducing capacitance

is the only way to maximize clock frequency. Without scaling capacitance, higher power/energy

is consumed for higher performance computing. Thus, the trend of microarchitecture research

has shifted from a single core processor to accelerators to save power and energy while achieving

high performance.

The most promising option to achieve efficiency by high performance and low power con-

sumption is to utilize customization which leads to reducing power waste when a general-

purposed processor runs and accomplishes the same task with less work. In addition, the cus-

tomized hardware for a specific application is able to improve performance with low power con-

sumption, which allows the system to achieve greater energy efficiency. As a result, application-

specific integrated circuits (ASICs) and using reconfigurable architecture for specific tasks are an

effective way to maximize efficiency. This approach is called hardware accelerators to specialize

specific workloads of tasks. Two types of accelerators are often used: reconfigurable accelerators

that trade hardware complexity for generality; or fixed-function accelerators that minimize the

energy envelope. First of all, reconfigurable architectures such as FPGAs have the following

advantages:

2

• Faster time-to-market: Reconfigurable architecture does not require other manufacturing

steps for design. Commercial FPGAs provide the ability to burn user-implemented HDL

code. So, it makes target applications respond quickly in fast changing markets.

• No Non-Recurring Expenses (NRE): Reconfigurable architectures are typically cheaper

than ASICs design because vendors of reconfigurable architecture provide tools, and no

additional cost to design is expected.

• Reusability: Reusability of reconfigurable architecture is the main advantage. Prototype

of the design is implemented on reconfigurable architectures and has verified the accuracy

of tasks. In the case that the design has faults, the user can reimplement the HDL code

and generate bitstream. This generated bitstream is programmed into reconfigurable

architectures and can be used to test again.

On the other hand, fixed-function accelerators have the following advantages:

• Cost: Compared to reconfigurable architecture, fixed-function accelerators promise lower

cost than reconfigurable architecture.

• Performance: Fixed-function accelerators give design flexibility. This gives enormous

opportunity for speed optimization.

• Low power: Fixed-function accelerators can be optimized for required low power. There

are several low power techniques such as power gating, clock gating, multi vt cell libraries,

and pipelining are available to achieve the power target. This is where reconfigurable

architecture fails.

Table 1.1 describes the comparison between reconfigurable architectures and fixed-function

accelerators. In energy critical platforms such as mobile devices, fixed-function accelerators

are widely adopted because of better overall benefit in energy. However, they still have a

disadvantage in terms of design time compared to the software approach running on general-

purpose processor. According to Rowan et al. [63], there is a major dilemma between hardware

logic design and using a general-purpose processor. With the former, it is possible to create

3

Reconfigurable architecture Fixed-function accelerators
Faster time-to-market Good Worse

Design cost High Low
NRE Low High

Reusability High Poor
Performance Low High

Power High Low
Design time Worse Worse

Table 1.1: Comparison: Reconfigurable architecture vs. Fixed-function accelerators

smaller and faster than the software approach because of parallel execution in hardware, and

the latter guarantees more flexible and easier implementation than hardware design.

Despite the huge potential of fixed-function accelerators, programming with hardware

description languages (HDLs) to design accelerators is significantly harder than programming of

software using high-level languages for the general-purpose processor. First, the characteristics

of programming are totally different. While the software approach is based on sequential

execution in a simple processor core, programming for accelerators using HDLs tries to exploit

parallel execution. This difference makes users confused. Second, the semantic gap between

software and HDLs is enormous and makes error-prone results, so users have to master two

program languages. Finally, users must understand the low-level details of hardware design

and deal with those details to map into hardware. Therefore, numerous reasons prevent fixed-

function accelerators from being widely used and have an influence on increasing design time.

Automatic compilation from the software written in high-level program languages such as C or

C++ to HDLs, which is called High-Level Synthesis (HLS), is widely believed to be an alternative

approach to create efficient fixed-function accelerators with a short amount of design time. In

this thesis, I describe my efforts to understand and create HLS compilers. From the specific

to general applications, I show how accelerators are generated and achieve efficiency. First, I

describe the HLS compiler that supports specific application for network lookup. Then, HLS for

generalized applications is described. I then briefly outline my contributions in this work and

summarize this chapter with an overview of this thesis.

4

1.1 High-Level Synthesis

Implementing functionality in software differs significantly from deploying the same function-

ality as a hardware accelerator. In the former approach, algorithms are expressed in a high-level

programming language which is compiled for the target platform. In the latter approach, the

developer specifies an implementation of the functionality using a hardware description lan-

guage (HDL) such as Verilog or VHDL. Such description is then synthesized to hardware. The

two approaches present different trade-offs in several important aspects.

• Performance: An HDL implementation can achieve higher parallelism compared to a

high-level programming language. Without multi-thread programming, a microprocessor

can only execute sequentially. However, the logic in the HDL contains only the data path

and simple control logic elements and these elements can be easily arranged to run in

parallel for high throughput. Moreover, in hardware much functionality can be assembled

to run in a limited number of clock cycles. For these reasons, an HDL design can be more

than one hundred times faster than software running on a microprocessor [63].

• Efficiency: There are several reasons why the HDL approach can achieve superior ef-

ficiency in system design. Because hardware can perform the same computations in

fewer cycles, FPGAs and ASICs can often run at a lower frequency than a microproces-

sor. Therefore, they tend to consume in tens of watts, while microprocessors consumes

more. Moreover, an HDL design provides less architectural overhead, since – contrary to

microprocessors – it does not include potentially unnecessary components [1]. According

to [63], hardwired logic can be more than one hundred times smaller than an equivalent

software implementation.

• Design Time: Directly designing using an HDL is notoriously complicated and painful.

The designer must take into account both the high-level algorithm and low-level hardware

considerations, resulting in a complex, error-prone implementation. According to Kathail,

design and verification effort varies depending on the implementation approach [43].

Implementations must go through several steps, with the first being a reference software-

5

only implementation and the final being the HDL logic. The HDL implementation alone

consumes on average several engineering years. Conversely, software-based approaches

allow rapid prototyping and optimization.

• Debugging and Verification: High-level programming languages enable rapid proto-

typing and debugging. Hardwired design with HDL does not provide easy debugging

methods, so engineers rely on the output signal from simulators like Modelsim. This is

one of the primary reasons why software is chosen over hardwired logic, even though the

latter gives superior performance and efficiency.

High-level Synthesis (HLS) is a set of techniques for generating HDL from algorithms ex-

pressed in a high-level programming language (typically C or C++). The goal is to achieve the

performance and efficiency of the hardware approach and the ease of design/verification of

software.

1.2 Building Accelerators from Software

In this thesis, two major approaches to generate accelerators from the software are proposed.

One is to seek to figure out how to automatically create hardware accelerators from network

lookup programs for the specialized architecture, which is called Pipeline LookUp Grid (PLUG).

It has the specialized programming model with provided APIs and its programming model is

well-matched to be used for compilation input of the first proposed HLS. The other is to build

the HLS tool for the normal application programs which is guaranteed generalization. Previous

approaches are only adapted for network lookup application, hence generalized HLS techniques

is required for conventional programs.

1.2.1 Building Accelerators for a Specific Application - Network Lookup

In this thesis, for the network lookup specialization, the HLS for the network lookup called

SoftWare Synthesis for network Lookup (SWSL) is proposed to reduce time and effort for design.

The programming model which is used for source code for SWSL follows that of PLUG. Basically,

6

PLUG is the tile-based architecture and each tile has 32 simple in-order cores (µCore), 6 routers

for communication with adjacent tiles, and SRAM for lookup data structure. The architecture of

PLUG is based on Von-Neumann structure with programming of simple code block. Thus, it

is closer to a general-purpose processor approach. However, it is not a fully general-purpose

processor because it is an application-specific processor specialized for data lookup. Due to this

reason, PLUG has multiple special instructions for lookup engine operations and its compiler

has unique properties to support specialized applications with high performance and efficiency.

Network algorithms or applications running on PLUG are based on data flow graph (DFG),

which consists of logical pages with connecting edges between them. The logical page has

partitioned workloads depending on lookup data structure and these partitioned workloads are

called code block and APIs are provided for special purpose operations. Logical pages in DFG

are assigned into PLUG tiles and the code block in the logical page is executed in the free µCore.

The main role of SWSL is to generate an accelerator hardware description by directly using

PLUG code blocks as source code while retaining DFG properties of each network lookup

application. From SWSL, each code block is represented as the hardware module and those

modules organize top level module of the logical page in DFG. The module for the code block

has the shape of pipelines. Thus, it allows lookup requests to be pipelined and achieve higher

throughput without stall by the lack of free µCores in PLUG.

1.2.2 Building Accelerators from Generalized Applications

In SWSL, it only focuses on generating a specialized accelerator - network lookup. SWSL com-

piler framework is designed for PLUG code blocks as compilation source code and induces the

lack of generality. In most cases, a host processor executes non-accelerating region and HLSs

parallels accelerated region with multiple hardware devices that do not have data dependencies.

Conventionally, HLS is proven to be capable of targeting dataflow with fixed latency scratchpad

memory, but struggles managing control-flow and varied latency memory operations. The issues

in interface are even more complicated; programmers have long been developing applications

assuming a unified memory. Specialized memory hence requires a different management mech-

anism, which introduces complexity and inefficiency. I believe future fixed-function accelerators

7

will need to be cache coherent with the host processor, which existing HLS approaches cannot

handle. This thesis proposes such a cache-coherent High-Level Synthesis framework that offers

performance improvement and power reduction. The Execution model is based on Decoupled

Access/Execute (DAE) model, which partitions workload as computation and memory access

and runs them in parallel, and generates two accelerator components: compute accelerator and

memory access accelerator. Generated accelerators utilize data cache in the host processor and

turn off the host processor’s pipeline while accelerated regions are executed. In order to organize

the DAE model, this thesis proposes the Extended Access/Execute Program Dependence Graph

(E-AEPDG) for a novel HLS implementation. The E-AEPDG provides memory access with

control dependencies as well as computation core insights of the accelerated region. Provided

memory access and computation are transformed as accelerators and interaction between two

accelerators is feasible by simple finite state machine (FSM). By falling into deep sleep of the

host processor and accelerating regions from accelerators, the proposed HLS guarantees good

performance improvement and power reduction.

1.3 Contributions

This thesis investigates and designs compilation techniques of new HLSs for hardware accelerator

generation. Mainly, two approaches will be proposed, thus this thesis classifies contributions in

terms of specialized and generalized target applications.

HLS for specialized applications SWSL consists of a lookup programming API and a spe-

cialized compiler middle layer that generates efficient lookup hardware logic from software.

This approach improves the hardware/software development cycle in various ways. First,

SWSL is architecture-neutral: lookup implementations are valid C++ that can be compiled for a

conventional CPU, or fed to the SWSL compiler and deployed as FPGA or ASIC. The former ap-

proach retains flexibility, while the latter prioritizes performance. Thus SWSL eases code reuse.

Moreover, software and hardware designs are consolidated: design and verification can be done

efficiently in a high-level programming language, reducing the need for a separate hardware

8

verification cycles. Power and area usage are limited, as the specialized logic implements exactly

the functionality needed by the application.

The SWSL programming model (§ 2.1.3) is dataflow-based and naturally exploits pipelining

opportunities present in lookup algorithms [24]. While most high-level synthesis compilers

focus on latency improvement through loop acceleration, SWSL leverages the simple, acyclic na-

ture of lookup programs to generate hardware logic for the entire lookup algorithm, performing

aggressive pipelining to achieve high throughput. One of the main challenges in synthesizing

hardware from software is that the latter is inherently sequential, offering limited opportunities

for concurrent execution. SWSL employs optimizations to uncover concurrency at basic-block

level (§ 3.1.2), and increases parallelism through the use of variable lines. Each line maintains

an independent copy of the execution state of the program, allowing multiple executions to

proceed independently in parallel.

HLS for generalized applications We believe future fixed-function accelerators will need to

be cache coherent with the host processor, which existing HLS approaches cannot handle. This

thesis develops such a cache-coherent High Level Synthesis (ccHLS) framework that offers

performance improvement and power reduction.

• Proposing ccHLS, a cache-choerent High Level Synthesis flow for energy efficient fixed

function accelerators.

• Designing a fixed-function memory access accelerator architecture based on Finite State

Machines and compound address generator.

• Implementing a compiler producible fixed-function computation accelerator micro archi-

tecture based on various dataflow computing literature.

• Developing a ccHLS compiler that generates fixed-function memory and computation

accelerators based on Decouple Access Execute model.

9

1.4 Thesis Organization

Chapter 2 discusses the motivation and background of building a specialized HLS for the

network lookup and HLS for generic programs. In chapter 2, it addresses the compilation of

PLUG, which is mainly used to create Software Synthesis for Network Lookup (SWSL) HLS and

surveys other state-of-the-art HLS. Then, it describes the proposed HLS techniques for generic

programs. In chapter 3, the major efforts to construct SWSL are presented. Chapter 4 describes

compilation techniques to support generalized applications. In chapter 5 and 6, experiment

setup and methodology are described. In addition, they show the evaluation of PLUG that is

the baseline of SWSL compilation first; then, it evaluates network lookup accelerators generated

from SWSL. Finally, accelerators from ccHLS to support generalized applications are evaluated.

In the last chapter, I conclude and summarize this thesis.

10

2 motivation

This chapter discusses the background of proposed High-Level Synthesis (HLS). Two phases to

support specialized and generic applications are described. In the first phase, the motivation

for generating hardware logic from the program for a specialized architecture, pipeline lookup

grid, called PLUG [47, 24]. It intends to lookup the data structure for a network lookup and its

program and programming model are formed as the hardware accelerator from the proposed

HLS. In section 2.1, the concept of lookup for network, the PLUG architecture and compilation,

and its programming model are presented. In addition, the overview of a novel HLS for the

specialized program, SoftWare Synthesis for Network Lookup (SWSL), is described. In the

second phase, we discuss another proposed HLS for the generic program. It is designed to

accelerate loops in the conventional source code. In section 2.2, the motivation for generating

accelerators for the conventional loop and its execution model is shown.

2.1 Generating accelerators from the specialized program

In this section, I discuss the motivation of a novel HLS for the specialized program of network

lookup. In computing, a lookup means to search a data structure for a certain piece of data. The

lookup schemes vary depending on the purpose of applications and algorithms; the data for

the lookup request can be structured by in many ways. Most commonly used in software area is

hash. Using the hash key from the hash function, a program may find the data structure for its

own objective. Due to its popular utilization, the hardware area is also delving into achieving

high performance lookup engines. Lookups for network algorithms, which are the main topic

of this document, require a high performance lookup engine attaining low latency and high

throughput. It is because network algorithms such as Ethernet, IPv4, and IPv6, frequently lookup

the data structure to find the next hop or destination. Each network algorithm of protocols

has its own packet structure and a computing system constructed by a microprocessor or a

specialized hardware design lookups a data structure to decide the next hop of a packet. To

attain high packet rates, a network device such as a router requires a high performance lookup

engine for low latency and high throughput. In addition to high performance, a lookup engine

11

should ideally be flexible. Even if the lookup engine has high throughput, it may be inefficient

to develop different hardware for various network algorithms. Therefore, architects designing

efficient lookup engines have to consider not only the architectural flexibility, but also design

efficiency to meet the requirements. Section 2.1.1 disscusses more details of network lookup.

2.1.1 Network Lookup

The fundamental task of switches and routers is to determine next-hop information (e.g. an

outgoing port number) given some packet data, such as a layer 2 or 3 address, or the connection

5-tuple. Making a forwarding decision usually requires searching large data structures of various

kinds, depending on the specific algorithm. For example, layer-3 routers use the IP destination

address to search IP routing tables; OpenFlow [57] and its predecessor Ethane [19] look up

per-flow rules in a tables index by layer-3/4 headers. The operation must be performed at line

speed and for each incoming packet. As lookups are among the most expensive operations on

packets’ critical path in terms of latency and power, there is a large body of research, both in

academia and industry, on implementing them efficiently.

Software approaches are problematic because network lookups are known to suffer from

poor locality: multi-Gigabit routers process packets from tens of thousands of unrelated flows,

limiting the effectiveness of caching. Algorithmic lookups approaches rely on specialized data

structures, with the aim of minimizing the number of memory references per lookups and

the forwarding table size. Examples include [14, 25] for IP lookups and [69, 77] for packet

classification. However, because general-purpose CPUs are not optimized for lookup tasks, they

cannot sustain throughput requirements of large routers.

Ternary content-addressable memory (TCAMs) is a popular hardware-based approach.

TCAMs can concurrently compare a search key (including wildcards) with all the entries of

a table, implementing hardware bit-level parallelism. Their high throughput comes at a cost:

TCAMs are expensive, have low storage density and high power consumption. A different

approach consists of implementing algorithmic approaches as fixed-function hardware (e.g.

[35, 42, 48, 73]). Such hardware is based on inexpensive RAM and can achieve performance

comparable to TCAMs with better power and area usage. However, deploying such designs as

12

ASICs require a long and expensive design and verification cycle, and is hardly flexible.

Significant research effort has focused on flexible lookup engines, with the goal of achieving

throughput comparable to ASICs while retaining some programmability. Several proposals use

GPUs as packet processing engines [37, 60]. Neither GPUs nor their programming models are

optimized for the task; therefore, these approaches have seen little adoption outside academia.

Other lookup engines leverage the observation that –despite their heterogeneity – hardware

lookup implementations do have common aspects [24] [23]. Proposals such as [12, 38, 47, 49]

provide hardware implementation of functions typically used by lookup algorithms, arranged in

a configurable architecture. Similar to GPUs, these engines use specialized programming models;

lookup implementations are hardware-specific and cannot be used on different platforms.

We argue that the specialized engine approach does not avoid two significant pitfalls of

ASICs: hardware verification costs and excessive software specialization. According to [4, 67],

the main cost factors in hardware development are design/verification (∼40%) followed by

developing the companion software (∼30%). Designing lookup engines still requires complex

and costly hardware/software codesign; lookup algorithms developed for a platform are highly

specialized and cannot be ported to different architectures.

2.1.2 Lookup Engine Designe Space

Before detailing the methodology of a system design for lookup engines, a design configuration

is briefly described in this subsection. For many decades, the earlier lookup approaches have

aimed either at flexibility or at efficiency for the specific algorithms. In general, these approaches

are based on either software for general-purpose processors or hardwired designs. Figure 2.1

shows the design space in the perspective of the architectural flexibility and efficiency.

Software implementation with general-purpose processors gives high flexibility when func-

tionality or algorithms are changed. It is easier and cheaper to modify software than hardwired

logic design. Modification only requires to modify programs because the compiler regenerates

the executable binary for general-purpose processors. While software on general-purpose pro-

cessors retains high architectural flexibility, it does not guarantee hardware efficiency because

this approach intends to execute a software algorithm under general-purposed processors,

13

Application
Specific

Processor

Flexibility

Efficiency

General
Purposed
Processor

ASIC
Design

.PLUG SW Synthesis

Figure 2.1: Design Space of Lookup Engine

which have unnecessary logic design without relation to pure software algorithm execution.

On the other hand, hardwired designs such as ASICs give more hardware efficiency. Because

ASICs are hardwired and fabricate on silicon, parallelism, energy/power consumption, and

performance will be taken into account from the initial design step. Thus, hardwired designs

do not consider software implementation, but RTL-level design for its design efficiency achieves

high performance and efficient design. However, hardwired designs limit the programming

flexibility because its fixed design to operate given tasks does not allow engineers to modify the

functionality.

A hybrid design that can overcome limitations of software-centric and hardwired designs

is a specialized approach for application-specific execution. In terms of software engineers,

application-specific processors are able to run software by modifying software to utilize specific

designs to achieve more efficiency. Because general-purpose processors are not optimized for a

specific application to support generic software, application-specific processors give optimized

output result due to their specialized structure. This is made possible by specific compiler

14

techniques such as extracting hot-spot in programs or partitioning the workload of applications

to utilize specialized design. Hardware engineers, on the other hand, shift from hardwired

design to application-specific hardware blocks. It is similar to application-specific processors, but

specialized module designs are based on configurable blocks in hardware. Simple programming

for its configuration is allowed to increase the flexibility.

Therefore, the trend of a system design is to integrate software and hardware approaches.

So, we can consider lookup design in terms of these approaches. PLUG is closer to the software

approach with general-purpose processors. It is a tiled structure which has Von-Neumann

such as processors, so it is easy to achieve flexibility by implementing software. Moreover, the

workload of applications is easily partitioned and assigned to architecture, so it also achieves

hardware efficiency. Details of PLUG architectural properties and the compiler are described in

appendix A as completed work.

2.1.3 SoftWare Synthesis for Network Lookup (SWSL)

PLUG is well-supported architecture for the network lookup and its programming model which

includes the concept of data flow graph and code block. However, the conventional HLSs are

not well-matched with PLUG applications for generating lookup accelerators. There are several

reasons that they are improper. First, no profiler requires the generation of verilog code. As

shown in compilers for fine-grained reconfigurable architecture, most HLSs need the profiler

to find the kernel region in the program. PLUG applications have separate code blocks to

be compiled and they can be directly compiled without profiling data. Second, applications

which handle massive input streams are unsuitable for those compilers. Target applications

in PLUG require the capability to run all input messages from a host processor. Because each

input message runs on a µCore in PLUG, PLUG has 32 µCores per tile. These µCores lead

to high throughput by assigning each task requested by each input message. However, most

HLSs compilers only focus on the kernel region in program because they intend to improve

performance in that region. Thus, they do not consider handling massive input streams. Third,

the use of FSM to control hardware logic is not allowed. As aforementioned, PLUG applications

must have the capability to handle massive input streams for network lookup. This property

15

prohibits the HLSs from generating FSM because no input message can be proceed until control

state changes to idle. SoftWare Synthesis for Network Lookup (SWSL) is a high-level synthesis

compiler to compile code blocks in PLUG applications. Hence, SWSL should include following

requirements:

• Requirement 1. Generated hardware logic must handle a lookup input message at every

clock cycle to achieve equal throughput to system clock cycle.

• Requirement 2. Maximum parallelism must be exploited for high speed lookup.

• Requirement 3. Target source code for the SWSL is code blocks of PLUG network algorithm

applications.

Requirement 1 is obvious because crucial role of network routing is to obtain high throughput

and high throughput allows a router or switch to achieve data lookup of a number of packets.

For this purpose, SWSL generates hardware logic output as pipelined structure to support

coming input messages at every clock cycle. This allows PLUG applications to avoid a number

of µCores. Requirement 2 is straightforward because the objective of using hardware design

is to evade sequential execution of a microprocessor. Therefore, SWSL tries to eliminate data

dependency by using many operators. In Requirement 3, PLUG code block with its framework

is well-matched with compiler implementation for SWSL. Firstly, implementation of code block

for lookup algorithm is based on a high-level programming language C++. Secondly, we have

already implemented front-end compiler, it can be reused without any modification for back-end

compiler of SWSL. Finally, network algorithms using lookup processing are partitioned as many

code blocks in the data flow graph of applications, thus it is easy to modularize partitioned

workloads as verilog code.

SWSL can reuse the front-end of a PLUG compiler because the code block source code itself is

not modified. So, the major implementation part of software synthesis is the back-end compiler

for generating hardware logic design.

16

LP1 LP2

LP1 LP2

Top_level_lookup

Top_level_LP1 Top_level_LP2

SRAM

CB0

CB1

CB3

CB4

SRAM

a) Data Flow Graph of a Lookup
Application

CB0

CB1

CB2

CB3

b) PLUG c) Lookup Engine from Software
Synthesis

Figure 2.2: Overview of Lookup Engine Design using SWSL

2.1.4 Execution Model of Network Lookup Accelerator from SWSL

The target source code for SWSL is a PLUG application; generated logic design must follow

the data flow graph and code block properties of PLUG application. Hence, the main role

of SWSL is to generate verilog files for logic design executing the same property as that of

PLUG applications. Figure 3.1 shows the overview of a lookup engine using SWSL from PLUG

applications. Figure 3.1 a) represents the data flow graph of a simple lookup application. It

is organized into two logical pages and each of which has 2 different code blocks. Figure 3.1

b) shows the assignment of logical pages in PLUG tiles. Each code block in the logical pages

embeds in instruction memory and a free µCore runs code. In figure 3.1 c), the lookup engine

design of the target application from SWSL is shown. From the compiler, modules of each code

block are generated and they construct the top level of the logical page with a SRAM module.

At the lookup engine top level, top level designs of logical pages are combined.

The structure of SWSL is quite similar to that of a PLUG logical page combined with multiple

tiles. In PLUG architecture, compiled code blocks are loaded in instruction memory and each

input message is assigned to a free µCore as a task. The input message runs the sequence of

instruction code in an assigned µCore to execute its target code block. The lack of free µCores

limits increased throughput, thus a number of µCores in the tile guarantee high throughput

17

because they can handle input messages without any message stall. However, the structure of

PLUG is an inefficient design due to the number of µCores in each tile and it degrades hardware

efficiency while it gives flexibility and high throughput. Instead of using µCores on the tile,

the proposed lookup engine intends to integrate the code block modules generated from SWSL

and input messages are routed to the target code block module. From the requirements in

section 2.1.3, each code block module from SWSL has a data path with pipeline structure for

massive input streams. It means that it does not require a number of µCores and code block

modules to handle all input messages because a code block module is able to operate current

input messages, even if previous input messages are operating in the same code block module.

From the design and operation of SWSL, two advantages of SWSL are predicted. One is that SWSL

gives high hardware efficiency and performance because it eliminates µCores and integrated

code block module design, which target applications needs. So, it massively increases the

efficiency and performance compared to a Von-Neumann style application processor. Another

is that the data flow graph and code block source code in PLUG applications are able to be

directly used without any modification because application design decides the data path that it

requires. It has a positive influence on pursuing high flexibility of lookup engine design.

2.2 Generating Accelerators for Loops in Generic Program

This section describes the way to generate accelerators in generic programs for loop acceleration.

SWSL is a specialized HLS that generate the lookup accelerator from the specialized program-

ming model. While it is useful for a special purpose for lookup with programming constraints,

generic programs following conventional processor architecture are not feasible. In this section,

thus, we discuss a new HLS to support conventional programs.

2.2.1 Motivation for HLS and Fixed-Function Accelerators

Table 2.1 shows the classification of accelerators. Custom-RTL, which is static specialization for

acceleration, is efficient in terms of power and performance. However, its design cost is extremely

high, it usually focuses on computation only, and since design time is also high, it is rarely used

18

Accelerator Specialization
strategy

memory
strategy

Benefits Drawbacks

Custom-RTL Static Specialized All Power,
Perf

Generality,
Design Cost

DSP cores in SoC Dynamic Specialized Power, Perf Memory Gen-
erality

DySER Dynamic Coherent Perf Power

HLS
Soft-Core C2H, Warp,

LegUp, CGR
Static Specialized All Power,

Perf
Memory Gen-
erality

Non-soft-
core

Trident, GARP Static Specialized Power, Perf Complexity

C-Core Static Coherent Power Perf
ccHLS Static Coherent All Power,

Perf, Mem-
ory general-
ity

Table 2.1: Taxonomy: Classification of accelerators

as an accelerator. DSP cores achieve well-known acceleration with their VLIW architecture. They

are dynamically programmed by compilation and efficient in streaming data for multimedia.

However, a DSP core requires separate memory, like scratchpad for the execution (and cannot

share the host processor’s case), thus it reduces memory generality. DySER [34, 32] is a recently

proposed accelerator for dynamic specialization. Due to sharing a data cache with the host

processor, they maintain memory generality which shares the data cache with the host processor.

In addition, they provide reasonable performance improvement and can be used for computing

intensive acceleration. However, DySER requires support from the host processor to provide

memory access, therefore it is always power hungry for acceleration. We elaborate on HLS

techniques next.

According to [63], the design choice between hardware logic design and using a general-

purpose processor is important to efficiently achieve the goal. Hardware design is good to

meet the goal in terms of design objective while software approach using the general purpose

processor gives more flexibility and easier implementation than hardware design. An alternative

approach is HLS to utilize advantages of hardware and software. HLS approaches can target

performance, power, or both, depending on that various sub-regions of code [18]. In general, a

host processor is interfaced with an accelerator to execute non-accelerated code and explicit calls

move memory from host address space to the accelerator’s memory space. The main purpose of

HLS is to increase instruction-level parallelism, thus, HLS schedules instructions that do not

19

have any dependency to execute at the same cycle state as dataflow fashion and replicate it for

running in parallel [21].

Recently, many HLS techniques are proposed, which are classified whether the integration

with soft-core is provided by industries or not. It is whichever a configurable processor core by

end-users is for their purposes. For a soft-core approach, Altera and Xilinx introduce Nios-II

and Microblaze soft-cores that are customized by the end-users [7, 5]. To configure and execute

synthesizable accelerator hardware logic, HLSs using soft-core eliminate instruction and data

cache from the soft-core stack to avoid cache coherence operation. While it is easy to maintain

memory generality between the accelerator and the host process from soft-core, it degrades the

performance when shared memory between the accelerator and the host processor is accessed

because reading or writing memory is based on on-chip memory shared by the host processor

and accelerators. LegUp, CGPA, and Warp adapt this approach for acceleration [17, 53, 76, 54]. In

case of cache configuration with soft-core, it definitely requires cache coherence mechanism and

on-chip memory enables accelerator to make less efficient. C2H from Altera can alternatively

configure with or without cache in the soft-core for the role of the host processor [6]. For

a non-soft-core approach, it means that synthesizable accelerator is directly attached in the

host processor and access to the same memory system. C-Core is tightly integrated with

a host processor, however it shows poor performance because it allows each basic block to

access memory only once for memory generality between the C-core accelerator and the host

processor [79, 31, 64]. Trident HLS assigns all memory allocation during compilation and the

deterministic memory address is referenced with spreading data to multi-bank memory and

fixed latency when its output hardware accelerator accesses memory [75]. Garp is another

HLS technique which shares a data cache with the host processor, but its design complexity is

high when its configurable hardware accelerator is connected with the data cache because it

requires memory queues and crossbar to communicate with the cache [39, 16]. In addition, both

approaches duplicate hardware logic and have a negative influence on power/energy efficiency

because they consume additional logic elements while they improve performance by achieving

high ILP. In terms of HLS compiler implementation, organizing FSM is an issue because flow

control, which is the rule of injecting data to dataflow, must be maintained. Furthermore, it is

20

Algorithmic Design by
a High-Level Language

Partitioning

Compilation Generating
Fixed-Function

Accelerators

Synthesis

Host Processor
Fixed-Function

Accelerators

Executable
Binary

RTL

Non-accelerating
Region

Accelerating
Region

Figure 2.3: Hardware Design Flow

hard to schedule dataflow operation in case multiple clock cycle consumed operations exist in

the dataflow, such as floating point instruction. For this reason, many HLS compilers have the

constraint that they cannot support floating-point instructions [17, 6]. Somewhat tangential is

the approach of King et al. [44] in which they use the specialized Bluespec language - they also

sidestep the coherence issue and instead assume a bus to communicate with the processor.

To summarize, we need a new HLS to avoid the constraints described above. In this thesis, we improve

the HLS by 1) decoupling the memory access and computation as in DAE for efficient cache utilization of

the host processor and 2) designing a fixed function parallel access engine.

2.2.2 The Architecture of Fixed-Function Accelerators

Figure 2.3 shows the proposed hardware design flow. First, the target applications are character-

ized and analyzed for frequent code regions. Second, we use the cache-coherent High Level

Synthesis (ccHLS) to compile the application, replace the codes in the frequent regions with

interface instructions, and generate fixed-function accelerators hardware for the removed codes.

These Fixed-function accelerators are integrated into the host processor with a unified interface

Fixed-Function Accelerators Architecture Fixed-function accelerators are organized by the

mixing of two components, a fixed-function compute accelerator and a fixed-function memory

21

access accelerator. First, a fixed-function compute accelerator is the group of functional units

(FU) to organize dataflow of computing intensive code region. Purely, it is concentrated on the

computing acceleration because memory access operations, such as load and store, are invisible.

To schedule operations by instructions, it does not require state transition of FMS to schedule a

datapath because each FU has a control block to manage execution.

A fixed-function memory access accelerator has a role to generate a memory address to access

and manage data movement among memory and accelerators. Unlike a fixed-function compute

accelerator, it is organized by FSM with an address generation, unit which is the dataflow

for address computation. Including load and store operations, FSM provides the following

data movement capabilities between: 1) the fixed-function memory access accelerator and

itself, 2) the fixed-function memory access accelerator and fixed-function compute accelerator,

3) memory and the fixed-function memory access accelerator, and 4) memory and the fixed-

function compute accelerator. The first two cases are data movement to pass the computing

result for address calculation or injecting local variables to fixed-function compute accelerator.

The last two data movements are for load or store operation to move the computation result or

variables. State transition of FSM is done by Boolean logic combination of extended header bits

that show the status of result. Details of fixed-fuction accelerators are described in chapter 4.

Unlike other HLSs [17, 6], the fixed-function accelerators support all operations including

floating point operations. This is feasible because FU’s control logic dynamically schedules the

operations in datapath. Moreover, memory access issues in the conventional HLSs are relaxed.

Mostly, HLSs take a fixed latency for scheduling, but it is not a good approach in case the source

code has massive memory accesses [80, 78, 58]. Fixed-function accelerators are tightly integrated

data caches in the host processor and executed with a dynamic memory latency even though

cache miss occurs. It is because FSM controls data movement by requesting from the address

generation unit.

Cache-Coherent High Level Synthesis (ccHLS) ccHLS, which is proposed in this dissertation,

is a new HLS to generate hardware logic from applications. The target code region is generated

as a fixed-function compute accelerator and fixed-function memory access accelerator by parti-

22

Decode &
Issue

I-Cache

Decode &
Issue

I-Cache

Functional
Units

Address
Gen.
Unit

D
ata

 C
a ch

e

AddrQ

E
A

Q

A
E

Q

E Processor

A Processor

 Decoupled Access Execution (DAE)

…

for (i=0; i<n; ++i)
{
 if(a[i] > 0)
 c[i] =
1/b[2i];
 else
 c[i] = b[2i]
* 2;
}

...

ccHLS

Fixed-Function
Compute Accelerator

>0

1/

EQ0

EQ6: a[i]

EQ7: b[2i]
x2

ϕ
Predicate +

+

x

+

n

1
Base addr 'a'

Base addr 'b'

Base addr 'c'

EQ8: i

EQ1: ++i

EQ2: Addr a[i]

EQ3: Addr b[2i]

EQ4: Addr c[i]
<

EQ5: i<n

Fixed-Function
Memory Access Accelerator

2

+

State0: Init
 Mov '0' to EQ8
State1: EQ2==RDY
 Ld Addr EQ2 to EQ6
State2: EQ3==RDY
 Ld Addr EQ3 to EQ7
State3: EQ4==RDY & EQ0==RDY
 St EQ0 to Addr EQ4

State4: EQ1==RDY & EQ5 == Valid
 Mov EQ1 to EQ8
State5: EQ5==Invalid
 Go to Idle State

Address Generation Unit

FSM

Host Processor

Address Bus

D-Cache
Ld/Str

Data Bus

Executable
Binary

1) Run executable
binary from

the host processor

2) Send init
to FSM

3) Data sent to AGU

4) FSM
requests Ld/Str
with generated

Address
from AGU

Addr From EQ
LD ResultAccelerator

RTL code

5) D$ responds &
move data

Target Source code

6) Produce
result

V|R|32-bit data
V: Valid bit

R: Ready bit

Figure 2.4: Execution Model: From DAE model, E processor and A processor are replaced with a
fixed-function compute accelerator and a fixed-function memory access accelerator, respectively.

tioning region as a pure computation part and an access/movement part. It is motivated from

the Program Dependence Graph (PDG), which describes the data and control dependencies

between instructions [28]. It can be used for creating dataflow of fixed-function accelerators.

More specifically, [34] proposes AEPDG which partitions PDG into an execution-PDG (EDPG)

and access-PDG (APDG) for pure computation and interfacing with EPDG, respectively. EPDG

is only a computation datapath, thus it can be easily transformed into a fixed-function compute

accelerator. In addition, APDG is transformed to the fixed-function memory access accelerator

because it provides memory operations to inject data into EDPG. Therefore, AEPDG concept

drives the fundamental of ccHLS.

2.2.3 Execution Model

We now discuss the execution model during runtime, the underlying architecture and interface,

and compilation. The architecture of fixed-function accelerators from the ccHLS follows the

Decoupled Access-Execution (DAE) model to relax on-chip memory issues. The DAE model

23

was first proposed in [70] and figure 2.4 presents the structure of it. DAE was initially designed

to run computation (Execution) and memory access (Access) separately for hiding the delay

of memory communication due to address calculation. By decoupling, execution and access

of workload are assigned in E-processor and A-processor, respectively. Normal instruction is

executed in E-processor and its operands are passed to A-processor. With the computation

result from E-processor, A-processor generates accessing memory address to resolve instructions

such as load and store. The DAE model is able to expand to HLS to generate fixed-function

accelerators and allows an accelerator to maintain memory consistency with the host processor.

In the perspective of output accelerators of HLS, its hardware logic is mixed with a fixed-function

compute accelerator and memory accelerators, which have the same role of E-processor and

A-processor.

Figure 2.4 shows the generating and execution flow at runtime. Source code is compiled and

generated as executable binary with instruction extension and accelerators. Accelerators are

composed of fixed-function compute accelerator and memory accelerator to follow DAE model.

First, for the execution process, the host processor executes the compiled application, which

has interface by instruction extension. Second, the host processor sends initial operation to the

fixed-function memory accelerator to enter the initial state. Third, the data sent to the event

queue interface drives the FSMs in the fixed-function memory accelerators to move the initial

values to address generation units. Fourth, after address generation units produce the address,

the FSMs access cache to acquire data from memory. Fifth, the cache responds to the FSMs

and it moves the retrieved data to the fixed-function compute accelerator. Finally, the compute

accelerator performs computation, based on the dataflow, and produces results at the output.

From the execution model, we expect 1) power and energy efficient computation because the

host processor enters sleep mode except the data cache, 2) cache coherence caused by inconsistent

data sharing between the host processor and accelerators when acceleration is finished is ignored

because data cache in the host processor is directly accessed for data movement operations, and

3) parallel execution from the datapath allows computation to be faster and guarantees high

performance.

24

2.2.4 Contribution

The contribution of ccHLS can be thought in terms of performance and power. The benefits of

ccHLS come from 1) the separate operations for computations and memory access and 2) the

execution model including dataflow and FSM of fixed-function accelerators. In particular:

• Performance: The performance improvement is induced by the decoupled access/exe-

cute (DAE) model. DAE model is expected abundant instruction-level parallelism (ILP)

and memory-level parallelism (MLP). Basically, ILP is exploited by two accelerator com-

ponents, which is a fixed-function compute accelerator and a fixed-function memory

accelerator. They are executed in parallel and generate output including memory access

address and values for variables in advance. Consequently, its result influence on ILP

improvement. Moreover, MLP, which is the ability to issue far away memory accesses, is

achieved by precedently generated memory addresses from the fixed-function memory

access accelerator and required memory operations proceed beforehand.

• Power: the main contribution of fixed-function accelerators in power reduction is that

the pipeline of a host processor is turned off during acceleration, and it possibly gains

the power benefit. Mainly, power reduction is classified by pipeline stages, register files,

and controls. First, the code segments running on the host processor are assigned as

the dataflow execution for computation and memory access and the need for pipeline

operation such as fetch, decode, and issue is eliminated. Second, the event queues which

are the path of temporary generated address or value of variables explicitly retain them

instead of using register-renaming and a big register file in the out-of-order processor.

Finally, no control signals and dependence/control stall are required because FSM manages

those operations triggered by boolean combination of the event queues, hence all controls

depend on the condition in the event queues.

25

2.3 Chapter Summary

This chapter presented the motivation for why high-level synthesis is the design goal of accel-

erators for specialized and general applications. SWSL is focused on specialized applications

for network lookup and its design concept is borrowed from a specialized architecture PLUG.

Due to the lack of generality, however, it is not well-supported by the general applications.

Thus, we discussed another HLS approach with the decoupled access-execution model (DAE) to

generate separate accelerators for memory access and computation. More details are described

in chapter 3 and 4.

26

3 swsl

This chapter discusses the compilation techniques to generate the accelerator using the program

for the specialized architecture of network lookup. SoftWare Synthesis for network Lookup

(SWSL) is designed to generate loop accelerators from the high-level program language for PLUG

architecture and its code block source code is directly fed into SWSL. The programming model of

PLUG code block is concentrated on lookup processing and its data flow graph (DFG) model for

organizing network lookup is useful to create the datapath of lookup acceleration. In section 3.1,

the overview of SWSL is discussed, including the programming model and compilation process.

Then, details of the compilation process for SWSL are described in section 3.2. Finally, the

summary of this chapter is shown in section 3.3.

3.1 Overview of SWSL

SWSL generates hardware logic descriptions from C++ programs using HLS techniques. It con-

sists of two components: a hardware-agnostic dataflow-based programming model specialized

for lookup algorithms, and a compiler middle layer that converts programs to verilog code.

SWSL is based on the observation that lookup algorithms can be decomposed in simple

algorithmic steps, each accessing its own private state. The SWSL programming model enables

the developer to specify the lookup algorithm as a pipeline of steps; the SWSL compiler generates

Step
#1

Step
#2

Step
#3

Priority

Lookup
Request Lookup

Result

void Step3:Exec()
{
 ...
}

void Step2:Exec()
{
 ...
}

void Step1:Exec()
{
 ...
}

SWSL

Step1_
Execute

SRAM

Step2_
Execute

SRAM

Step3_
Execute

SRAM

module Step1_Execute(msg

module Step2_Execute(msg

module Step3_Execute(msg
 ...);
 input msg;
 always @(posedge clk)
 begin
 ...
 end

endmodule

(a) Lookup Data Flow Graph

 (c) Generated Lookup Engine

(b) Software to Verilog translation

Figure 3.1: Lookup Engine Generation using SWSL

27

verilog code for each step, and connects the steps to implement the full algorithm. The goal of the

compiler is to exploit pipelining to handle a request per clock cycle, achieving throughput equal

to system clock. At the same time, to reduce latency, SWSL increases parallelism by executing

operations that are not data-dependent in parallel.

3.1.1 Programming Model

Previous work [24] observed that data structure lookups used by network applications tend

to consist of simple steps, each accessing some private state. The SWSL programming model

reflects this structure, allowing the programmer to express application as a Data Flow Graphs

(DFG). This approach is inspired by the PLUG programming model described in [24]. Each

node in a DFG represents an algorithmic step, and includes some simple computation and the

associated data. This model is a particularly good fit for SWSL as the application workload is

well-partitioned in simple steps.

Figure 3.1 shows an overview of how SWSL generates lookup hardware from applications

expressed in the DFG model. Figure 3.1a depicts the DFG of a simple application. The first stage

computes a hash that is then used to perform lookups in two secondary stages. If both stages

return a result, one takes priority over the other. This simplified graph can, for example, model

a router/firewall, where a high-priority table lists specific flows that must be dropped while

a low-priority table holds more general forwarding rules. SWSL takes the functions executed

at each stage and generate equivalent blocks of lookup hardware logic (Figure 3.1b). Finally,

each generated logic block is associated with a SRAM module to hold the forwarding table, and

all blocks are combined in a single lookup chain (Figure 3.1c). Blocks in the lookup chain are

independent and communicate via on-chip messages.

This approach has two significant advantages. In comparison with a software-only approach,

SWSL replaces Von-Neumann style cores with specialized logic, increasing efficiency and per-

formance. Moreover, DFG-based applications express algorithms in a form that is convenient

for hardware generation, yet architecture-independent. Indeed, we were able to use SWSL on

applications written for the PLUG accelerator, which has a similar model, with no modification

(Section 5). We also note that applications written for SWSL are in standard C++, and can be

28

compiled and run fully in software for prototyping/debugging purposes.

From the point of view of the programmer, SWSL poses a series of constraints with the goal

of keeping the algorithm hardware-friendly. First, to enable pipelining, SWSL requires programs

to be loop-free (this condition could be easily relaxed to require all loops to be bounded, enabling

static unrolling). To minimize the impact of these constraints, the SWSL programming model

provides API primitives to perform common loop-based operations such as bit-counting. Then,

SWSL requires accesses to the main lookup data structure to be performed with dedicated API

calls, thus being clearly separated from accesses to temporary variables. This enables SWSL

to discriminate temporary variables and store them in fast registers, avoiding related memory

references at runtime. To prevent ambiguous memory references to such variables, SWSL does

not allow pointer arithmetic. Finally, dynamic memory allocation is not available as this concept

cannot be mapped to a static hardware implementation.

In general, we found that such constraints do not limit the expressiveness of the programming

model significantly, and lookup algorithms can be naturally implemented with SWSL.

3.1.2 SWSL Compiler

Algorithmic steps (represented as nodes in the DFG of Figure 3.1 3.1a) are individually converted

to hardware logic via the SWSL compiler. This component is implemented as a pass within

the LLVM compiler toolkit [50]. LLVM provides the basic compilation infrastructure to parse

C++ source code, translate it to intermediate representation and build the program control

flow graph (CFG). In the CFG, the program is decomposed in basic blocks - straight lines of

code with a single point of entry and one or more exits (e.g. a branch or a switch construct).

Arcs represent the control flow, i.e. the possible paths the program can follow when executing.

The first transformation performed by SWSL is to restructure the control flow to merge certain

basic blocks that can be executed in parallel (specifically, basic blocks that compute multiple

conditions evaluated by a branch instruction).

In general the structure of the dataflow graph, where each algorithmic step is represented

as an independent node (Figure 3.1a), offers some opportunity for pipelining. However, the

gain in throughput is limited as the graph coarsely subdivides the algorithm into a limited

29

Front-End

Generating Application Module

Synthesis, Place/Routing

Combining Basic Blocks

Generating Variable Lines

Generating Control Logic

Constructing Data Path

Lookup Algorithm Source Code (C++)

Back-End

SRAM
Module

IR

LLVM

Lookup Module

Synthesis Result

DFG of the
Lookup Application

Scheduling

Figure 3.2: Compilation Process of SWSL

number of steps, each of which can take tens of cycles to execute. To improve throughput, SWSL

further internally pipelines each step. In general, the structure of the computation may not

naturally lend itself to pipelining. SWSL circumvents this problem by replicating the temporary

state associated with the computation. SWSL instantiates multiple buffers called variable

lines, each capable of holding inputs, intermediate results, and output used/generated by each

step. By using different variable lines, multiple computations can proceed independently. This

enables SWSL to pipeline the logic at the basic block level.

After generating variable lines, SWSL creates the control logic that determines which ex-

ecution path is followed at runtime (such logic will decide, for example, which step must be

activated after a branch condition). Then, it generates the actual hardware datapath implement-

ing the functionality described by the software. In general, the resulting hardware will have

multiple execution paths; the actual path followed during each execution will depend on the

30

result of branch conditions. As SWSL organizes the logic in a pipeline, it must ensure that the

number of steps is constant, regardless of which path is followed (e.g. the number of steps must

not change depending on which side of a branch is taken). SWSL performs a scheduling step

that inserts additional delay buffers to “pad” all paths to the same length.

Figure 3.2 summarizes the overall SWSL compilation process. After being parsed by LLVM,

each step in the original algorithm (node in the DFG) goes through SWSL, which generates

hardware logic. At the end, a SRAM block is added to the module to store the subset of the

forwarding table associated with the computation. At the synthesis and place/routing step, the

generated top level design is synthesized using a general synthesis tool (our implementation

uses the Synopsys design compiler).

3.1.3 Compilation Process for SWSL

Figure 3.2 shows the compilation process for software synthesis. LLVM provides basic compila-

tion infrastructure to generate logic design from code block source code written in C++. Each

source code of code block passes front-end to generate IR and its output feeds into back-end

to output verilog code. With the provided SRAM module, top level design creates the top

level design of each logical page and lookup engine. One thing missing here is to let SWSL

know the data flow graph of a target application. To do that, a configuration file is needed,

which includes the shape of data flow graph of the application. It provides information about

code blocks embedded in the logical page, required SRAM size, and other configuration data

used in back-end compiler. Local constant value used in the PLUG framework is provided by

this configuration file. At synthesis and place/routing step, the generated top level design is

synthesized by a general synthesis tool. Synopsys design compiler provides synthesis capability

for the generated logic design.

3.2 Back-end Compiler for SWSL

Back-end compiler is the most fundamental part in the compilation process of SWSL because it

provides the capabilities required to achieve functionality of SWSL. A major concern in back-end

31

MBB_PREDECESSOR

MBB_BLOCK – Set of Combined MBB

MBB_SUCCESSOR

List of Predecessor MBBs of Current MBB

List of Successor MBBs of Current MBB

MBB

Figure 3.3: MBB Structure

compiler design is how to structure the pipeline for providing the capability to support massive

input message streams. A common compiler technique for a conventional microprocessor is to

create target machine assembly by following the control flow graph from the source code. In

addition, the target machine assembly follows sequential code execution by program counter.

Therefore, it is impossible to organize pipelined data processing for the network lookup engine.

It follows that back-end compiler of SWSL needs a different compiler structure for pipelining. In

this subsection, control flow and data flow graph of a target code block are separately considered

in terms of generating control signals and exploiting parallelism, respectively. In this subsection,

we will show the compilation techniques to achieve SWSL. First, combining basic blocks which

degrade parallelism technique is shown. Second, a variable handling method will be described

to achieve pipelining scheme for input message stream. Third, control logic from the control

flow graph of MBB is shown. Finally, exploiting parallel design from the data flow graph of

each basic block will be shown.

3.2.1 Combining Conditional Basic Blocks

In the control flow graph, there might be some basic blocks which only represent conditional

expression. This type of basic blocks does not have any data dependency with predecessor

blocks, hence these basic blocks are considered to be combined with their own predecessor

and this combined block executes in parallel for parallel decision. To collect such basic blocks,

the back-end compiler gives the concept called Merged Basic Block (MBB). The MBB is the set

32

of basic 31 blocks maintaining features of the control flow graph given from the target source

code. It includes the set of basic blocks with MBB successors and predecessors. Figure 3.3

shows the MBB structure, which includes MBB_PREDECESSOR, MBB_SUCCESSOR,

and MBB_BLOCKS. The initial two represent the list of MBB which are connected to current

MBB as predecessors and successors, and last one means the set of combined basic blocks

organizing the current MBB. At the beginning of basic block combining, each basic block is

encapsulated as an MBB and the set of MBB_BLOCKS has a target basic block itself. For

an MBB_PREDECESSOR and an MBB_SUCCESSOR, the current MBB points to the list

which has the MBB including predecessor and successor basic blocks.

After the beginning of basic block combining, the next step is to find combined MBB. Com-

bined MBBs have the following properties:

• A target MBB must have two successor MBBs.

• A target MBB must have only one predecessor MBB.

• A set of predecessor’s successors of a target MBB must have a intersected MBB with a set

of successors of a target MBB.

A target MBB can be merged with a group of predecessor’s MBB. This target MBB is eliminated

and its MBB_BLOCKS is included in that of predecessor’s MBB. Algorithm 1 shows the way

to combine conditional basic blocks.

An example code and its control flow graph are shown in figure 3.4. The code block itself is

relatively simple, but its control flow graph has some basic blocks which can be combined as a

group. Gray and Yellow basic blocks represent those having conditional expressions using the

branch instruction. At the beginning of the combination process, each basic block is replaced as

an MBB and its predecessors and successors are also changed to point MBBs.

In the code block example, it has two if/else statements in the code block. For the first

if/else statement, the first condition expression x > 0 is described in BB0 and the branch in-

struction in MBB0 points MBB1 or MBB2. The second expression y > 1 is represented in MBB2,

then it constructs (x > 1 || y > 1) expression with MBB0. The third and fourth conditional

33

Algorithm 1 Combining Conditional Blocks
MBB_SET ← Set of All MBBs in a Target Code Block
OLD_MBB_SET ← NULL
while MBB_SET 6= OLD_MBB_SET do
OLD_MBB_SET ←MBB_SET
while MBB_SET 6= ∅ do
T ← Pick a MBB fromMBB_SET
Eliminate T fromMBB_SET
numOfSucc← Get # of T ′s Successor
numOfPred← Get # of T ′s Predecessor
if numOfPred == 1 && numOfSucc == 2 then
PRED ← T ′s Predecessor
A_SET ← All Successors of PRED
B_SET ← All Successors of T
if (A_SET ∩B_SET) 6= ∅ then
Combine T with PRED
Update successors of PRED with T ′s successor

end if
end if

end while
MBB_SET ← All Combined MBBs

end while

void test_code_block::Execution() {
 plug_header msg_in_hdr, msg_out_hdr;
 plug_vector<MSG_VEC_SIZE> msg_in, msg_out;
 PLUG_UINT x, y, z;
 ReceiveMessage(msg_in_hdr, msg_in, 0);
 x = msg_in[3];
 y = x + 3;
 if((x>0 || y>1) && (msg_in[0] || msg_in[1]) {
 if(msg_in[2]>3 || msg_in[3] == 0) {
 y = x + 0x0002;
 w = 0x0001;
 }
 else {
 y = x;
 w = 0x0002;
 }
 }
 else {
 y = x;
 w = 0x0003;
 }
 msg_out[0] = msg_in[0];
 msg_out[1] = msg_in[1];
 msg_out[2] = y;
 msg_out[3] = w;
 msg_out_hdr = msg_in_hdr;
 SendMessage(msg_out_hdr, msg_out, 0);
}

BB0

BB1 BB2

BB3 BB9BB4

BB5 BB7

BB8

BB6

BB10

a) Code Block Example b) Control Flow Graph

MBB0

MBB1 MBB2

MBB3 MBB9

MBB7

MBB4

MBB5

MBB8

MBB6

MBB10

Figure 3.4: An Example Code and its Control Flow Graph

34

BB0

BB1 BB2

BB3 BB9BB4

BB5 BB7

BB8

BB6

BB10

A) 1st iteration

MBB0

MBB1

MBB9MBB4

MBB5

MBB8

MBB6

MBB10

BB0

BB1 BB2

BB3 BB9BB4

BB5 BB7

BB8

BB6

BB10

b) 2nd iteration & MBBs

MBB0

MBB9MBB4

MBB5

MBB8

MBB6

MBB10

Dummy
MBB0

Dummy
MBB1

Adding Dummy MBBs
for synchronization

Figure 3.5: An Example Code and its Control Flow Graph

expressions msg_in[0] and msg_in[1] are expressed in MBB1 and MBB3, respectively. In these

MBBs, MBB2 and MBB4 are the target to be combined because they follow combining properties.

For the second if/else statement, the combining MBB target is MBB4 and MBB6 because they

have conditional expressions msg_in[2] and msg_in[3], respectively. In these MBBs, MBB6

are combined with MBB4 because it follows combining properties. After combining MBBs, the

control flow graph is shown in Figure 3.5a). However, it is not the end of iteration because MBB1

in Figure 3.5a) follows the combining properties again. Therefore, a modified control flow graph

should iterate again to combine. Figure 3.5b) shows the modified MBB control flow graph with

no MBB following combining properties.

After combining MBBs, dummy MBBs should be embedded in the MBB control flow graph.

A dummy MBB is padded when predecessors of a current MBB does not lie in the same level as

the root MBB. It allows input messages to be synchronized. In figure 3.5b), MBB6 and MBB9

are not in the same level as MBB0 and their level distance is equal to 2. Therefore, two dummy

MBBs are embedded between MBB9 and MBB10. In addition to relaxing level distance, the

dummy MBB helps the back-end compiler to set the counter index for each MBB. Further details

35

// In Code block source code
plug_heade msg_vec_in_hdr,
msg_vec_out_hdr;
plug_vector<MSG_VECTOR_SIZE>
msg_vec_in, msg_vec_out;
PLUG_UNIT x, y, w;

// In IR
%msg_vec_in_hdr = alloca i16, align 2
%msg_vec_out_hdr = alloca i16, align 2
%msg_vec_in = alloca [4 x i16], align 2
%msg_vec_out = alloca [4 x i16], align 2
%x = alloca i16, align 2
%y = alloca i16, align 2
%w = alloca i16, align 2

// In Verilog
Parameter CRITICA_PATH 4
reg[15:0] msg_vec_in_hdr[0:CRITICAL_PATH];
reg[15:0] msg_vec_out_hdr[0:CRITICAL_PATH];
reg[15:0] msg_vec_in0[0:CRITICAL_PATH];
reg[15:0] msg_vec_in1[0:CRITICAL_PATH];
reg[15:0] msg_vec_in2[0:CRITICAL_PATH];
reg[15:0] msg_vec_in3[0:CRITICAL_PATH];
reg[15:0] msg_vec_out0[0:CRITICAL_PATH];
reg[15:0] msg_vec_out1[0:CRITICAL_PATH];
reg[15:0] msg_vec_out2[0:CRITICAL_PATH];
reg[15:0] msg_vec_out3[0:CRITICAL_PATH];
reg[15:0] x[0:CRITICAL_PATH];
reg[15:0] y[0:CRITICAL_PATH];
reg[15:0] w[0:CRITICAL_PATH];

of variable line
= critical path

Index of msg3

Index of msg2

Index of msg0

Index of msg1

Figure 3.6: Variables Used in a Code Block and its Expression

are shown in section 3.2.2.

3.2.2 Pipeline Structure for Massive Input Message Stream

In code block, variables are used for computation. In the perspective of Von-Neumann archi-

tecture, these variables are located in memory and load/store instruction which allows the

program to access memory to load/store data from/to provided registers. It disrupts pipelined

processing because an input message may access a variable while another input message tries

to access the same variable. Each input message is for a different lookup execution, thus, this

case brings up race condition for a variable and it may cause unwanted results. To avoid this

obstacle, a back-end compiler describes variables as variable lines. Each variable line is reserved

for each input message to avoid race condition and index counters to point to an appropriate

variable line for each input message are provided. The length of variable lines is the same as

that of the critical path of hardware logic generated from the back-end compiler. The length

of critical path is described as the definition of ’parameter’ of verilog primitive. Variables and

arrays can be found in IR because used variables are described by LLVM instruction ’alloca’ [3].

Figure 3.6 shows an example of variable lines. In the code block source code, variables and

arrays are represented with their data type. In IR of source code from the front-end compiler,

36

variables and arrays are represented by using LLVM instruction alloca. Finally, it can be

described as verilog code with register assignment, and the variable index counter helps the

input message point out the correct variable line for its execution. In Figure 3.6, red and orange

boxes represent msg_vec_in_hdr and msg_vec_out, respectively. Green and yellow boxes are

used for array msg_vec_in and msg_vec_out. The last box represent variables x, y, and w. When

an input message arrives, the index counter is incremented to avoid conflict in accessing variables.

Thus, an input message only accesses a variable line to compute and other input messages only

access their variable line. It eliminates race condition, and execution for each input message can

be achieved under race condition free. The reason that the number of variable lines is the same as

that of the critical path is that a variable line is free after all processing is done within the critical

path. For indexing a variable line, variables used in each variable line use an index counter

of an input message. The index counter number is cascaded to MBB successor blocks and a

branch instruction in an MBB block passes the current index counter number to successors. To

index a variable line in a current MBB block, the index counter is set by its predecessor’s counter

because handling an input message at a current MBB block is preceded by its MBB predecessor

block. One thing to be careful of is that MBBs which have the same MBB predecessor block

increment the index counter at the same time because they are mutually exclusive.

The cascading index number follows. First, the back-end compiler collects all MBB blocks

in the control flow graph except root and exit MBB blocks. Second, the message input counter

to set input message data to appropriate array in source code is defined. Third, counters for

root and exit MBB blocks are set, and the output counter to send message data to the next

logical page is also defined. Fourth, root and exit MBB blocks fix their current and next counter.

Finally, the back-end compiler sets all counters using iteration by looking at their successors and

predecessors. In algorithm 2, the way to set the index counter for variable lines is described.

Figure 3.7 shows the counter set example from figure 3.4 and 3.5. The current counter of

an MBB block is the same as the next counter of its predecessors. The dotted box describes a

mutually exclusive case when MBBs have the same predecessors or successors and they have

the same current and next index counter. When a message comes from the previous logical

page, it uses MSG_CNT to set input message data to arrays and MSG_CNT is incremented whenever

37

Algorithm 2 Cascading Variable Line Index Counter
1. MBB_SET ← Set of MBBs in CFG except Root and

Exit MBBs
2. MC ← ′MSG_CNT ′ for Input Message Data Counter
3. RC ← ′ROOT_CNT ′ for Root MBB Counter
4. EC ← ′EXIT_CNT ′ for Exit MBB Counter
5. OC ← ′OUTPUT_CNT ′ for Send Message Counter
6. For Root MBB ′R′

R→ CurrCnt = RC
R→ NextCnt = new ′BB_(i)_CNT ′

i+ +
7. For Exit MBB ′E′

E → CurrCnt = EC
E → NextCnt = OC
i+ +

8. B ← Pick asuccessor of Root MBB
// Pred(B) − B′s predecessor MBB
// Succ(B) − B′s successor MBB
repeat
Erase B fromMBB_SET
if Pred(B)→ NextCnt 6= NULL then
B → CurrCnt = Pred(B)→ NextCnt

else
B → CurrCnt = new ′BB_(i)_CNT ′

end if
i+ +
if Succ(B)→ CurrCnt 6= NULL then
B → NextCnt = Succ(B)→ CurrCnt

else
B → NextCnt = new ′BB_(i)_CNT ′

end if
i+ +
B ← Pick asuccessor of Root MBB

until MBB_SET = ∅

input messages come. This counter number of MSG_CNT is cascaded to ROOT_CNT. When the root

MBB block is done, the counter number of ROOT_CNT is cascaded to the next MBB block counter.

This cascading keeps going until it meets EXIT_MBB. OUTPUT_CNT is used when computed output

data is sent to the next logical page when operation of EXIT_MBB is finished. Thus, the MBB uses

the set MBB current counter to point an appropriate variable line, and the next counter of the

current MBB is used for cascading current index counter to successors of the current MBB in the

control logic.

In section 3.2.1, dummy MBBs are described to explain synchronization. Dummy MBBs

also have another role in terms of variable line index counters. By embedding them, they

allow hardware logic to avoid counter crashing which means that the current index counter is

38

BB0 BB1 BB2 BB3

BB9BB4

BB5

BB7

BB8

BB6

BB10

MBB0

MBB9MBB4

MBB5 MBB8

MBB6

MBB10

Dummy
MBB0

Dummy
MBB1

CurrCnt = ROOT_CNT

NextCnt = BB_0_CNT

CurrCnt = EXIT_CNT

NextCnt = OUTPUT_CNT

CurrCnt = BB_0_CNT

NextCnt = BB_1_CNT

CurrCnt = BB_1_CNT

NextCnt = BB_2_CNT

CurrCnt = BB_2_CNT

NextCnt = EXIT_CNT

CurrCnt = BB_0_CNT

NextCnt = BB_3_CNT

CurrCnt = BB_3_CNT

NextCnt = BB_4_CNT

CurrCnt = BB_4_CNT

NextCnt = EXIT_CNT

Figure 3.7: Cascading Variable Line Index Counter

mismatched with the next index counter of predecessors. By adding dummy MBBs, they relax

the crash and the cascading index counter operates smoothly.

3.2.3 Generating Control Logic

The main role of control logic in SWSL is to let the generated verilog code decide which

MBBs are executed. Thus, each MBB must know what MBBs are run by that MBB. It may seem to

be straightforward, but it is not so simple, like what we expect because deciding enable signals

for each MBB depends on the control flow graph of MBB. In the case of an MBB which has

multiple successors, this MBB must enable one of the successors to execute. However, the MBB

does not know what the enable signal is for the next MBB. Another case is an MBB which has

multiple predecessors. It does not have any clue which predecessors are running the MBB. To

overcome this obstacle, each MBB should have the set of current (CurrEn) and next (NextEn)

enable signals. CurrEn and NextEn represent the signals that ignite the current next MBB. Thus,

the data path in current MBB is running when the CurrEn signal is set by its predecessor’s

NextEn because the NextEn of the predecessor enables current enable signal. Likewise, the

39

Algorithm 3 Setting Enable Signal for Each MBB
1 : cnt← 0
2 :
for i = 0 to # of MBBs do

if # of predecessor of MBB[i] < 2 then
MBB[i].CurrEn← mbb_(cnt)_en
cnt+ +

end if
end for
3 :
for i = 0 to # of MBBs do

if # of successors of MBB[i] > 1 then
MBB[i].NextEn
← CurrEn of MBB[i]′s successors

end if
end for
4 :
for i = 0 to # of MBBs do

if MBB[i].CurrEn 6= ∅ &&
MBB[i].NextEn = ∅ then

if CurrEn of successor 6= ∅ then
MBB[i].NextEn← CurrEn ofMBB[i]′s

successors
else
MBB[i].NextEn← mbb_(cnt)_en
cnt+ +

end if
end if

end for
5 :
for i = 0 to # of MBBs do

if # of predecessor of MBB[i] > 2&&
of successor = 1 then

MBB[i].CurrEn← NextEn of MBB[i]′s
predecessors

MBB[i].NextEn← mbb_(cnt)_en
cnt+ +

end if
end for
6 :
for i = 0 to # of MBBs do

if MBB[i].CurrEn = ∅ then
MBB[i].CurrEn← NextEn of MBB[i]′s

predecessors
end if
if MBB[i].NextEn = ∅ then
MBB[i].NextEn← CurrEn of MBB[i]′s

successors
end if

end for

40

BB0 BB1 BB2 BB3

BB9BB4

BB5

BB7

BB8

BB6

BB10

MBB0

MBB9MBB4

MBB5 MBB8

MBB6

MBB10

Dummy
MBB0

Dummy
MBB1

CurrEn = {mbb_0_en}

NextEn = {mbb_1_en, mbb4_en}

CurrEn = {mbb_1_en}

NextEn = {mbb_2_en,
 mbb_3_en}

CurrEn = {mbb_2_en}

NextEn = {mbb_7_en}

CurrEn = {mbb_3_en}

NextEn = {mbb_8_en}

CurrEn = {mbb_7_en.
 mbb_8_en}

NextEn = {mbb_11_en}

CurrEn = {mbb_5_en}

NextEn = {mbb_6_en}

CurrEn = {mbb_4_en}

NextEn = {mbb_5_en}

CurrEn = {mbb_6_en}

NextEn = {mbb_10_en}

CurrEn = {mbb_11_en.
 mbb_10_en}

NextEn = {out_en}

Figure 3.8: Enable Signal Set

NextEn of the current MBB selects one of its successor to be executed. Therefore, the problem

is to solve once CurrEn and NextEn are set for each MBB. To set the CurrEn and NextEn of each

MBB, the MBB having multiple successors or predecessors must be carefully handled. To achieve

assigning the CurrEn and NextEn of each MBB, algorithm 3 is proposed. First, CurrEn of MBBs

which have one or non-predecessor is set. It is straightforward because these MBBs only concern

themselves. Second, MBBs having two or more successors are considered, these MBBs are

shown if/else statement or switch/case because these types of expression have a number of

successors. Their NextEn are the CurrEn of their successors. Hence, they have multiple NextEn

signals to select one of the successors and its decision is made by branch LLVM instruction in

their basic blocks [3]. Third, MBBs, which are set CurrEn and not set NextEn, are considered. If

the CurrEn of their successors is set, their NextEn are the CurrEn of their successors. Otherwise,

they set new enable signals as their NextEn. A fourth case is an MBB which has more than

two predecessors and one successor. This is a case in which one of predecessors was running

and finished its execution. This MBB does not know which predecessor was running. So, the

MBB must collect all NextEn signals of its predecessors and described as OR (||) operators in the

verilog behavioral model. Finally, the last of the MBBs, which are not set their CurrEn or NextEn,

41

set by using their predecessors and successors. Figure 3.8 shows the set of CurrEn and NextEn

of each MBB from the example of figure 3.4 and 3.5. By following algorithm 3, each MBB has

the set CurrEn and NextEn. From figure 3.8, MBBs having multiple successors or predecessors

get multiple enable signals for NextEn or CurrEn.

3.2.4 Generating Data Path from the Data Flow Graph of Each MBB

In this subsection, constructing the data flow graph of each MBB and data path design are

described. As shown in 3.2.1 and 3.2.2, the control flow graph of source code IR is reorganized

as the MBB control flow graph. To generate a verilog behavioral model as an output of the SWSL

compiler, it creates a data path by using the data flow graph of each MBB. The MBB has the

set of basic blocks and each basic block is organized by the LLVM instruction sequence. From

section 3.2.2, each MBB has a current and next index counter, so data dependency between MBBs

is able to be ignored because each MBB references data from the variable line with the current

variable index counter. Therefore, it is simple to organize the data path using that LLVM IR code

sequence because it only considers the data flow graph of basic blocks within the MBB. However,

parallel execution of the data flow graph should be carefully considered. Data dependency must

be evaded if the LLVM instruction sequence has data dependency in it. Otherwise, variables

having data dependency get an expected value after one cycle delay.

The first and second operands in LLVM store instruction represent the data flow graph to

construct the data path and a variable to store computation value from the data path because

the first and second operand describe value to be stored and the target variable, respectively.

This target variable is stored in the variable list and variables in the variable list are described

as wire fan out connection. The variable list points to a vector piled with LLVM instructions

organizing the data flow graph for the target variable of LLVM store instruction. When LLVM

instructions are piled in the variable list, the back-end compiler checks the data dependency and

the first operand of LLVM load instruction treating variables should be evaluated by searching

the variable list. If the operand of LLVM load instruction is found from the variable list, the

data path is organized with the variable in the variable list described as wire connection.

Figure 3.9 shows an example to construct the data flow graph without data dependency.

42

// IR of a Basic Block

%msg_vec_in_hdr = alloca i16, align 2
%msg_vec_out_hdr = alloca i16, align 2
%msg_vec_in = alloca [4 x i16], align 2
%msg_vec_out = alloca [4 x i16], align 2
%x = alloca i16, align 2
%y = alloca i16, align 2
%w = alloca i16, align 2
%1 = getelementptr inbounds [4 x i16]* %msg_vec_in, i16 0, i16 0
call void @llvm.plug.ReceiveMessage(i16* %msg_vec_in_hdr, i16* %1, i16 0)
%2 = getelementptr inbounds [4 x i16]* %msg_vec_in, i16 0, i16 0
%3 = load i16* %2
store i16 %3, i16* %x, align 2
%4 = getelementptr inbounds [4 x i16]* %msg_vec_in, i16 0, i16 1
%5 = load i16* %4
store i16 %5, i16* %y, align 2
%6 = load i16* %x, align 2
%7 = add i16 %6, 10
%8 = load i16* %x, align 2
%9 = load i16* %y, align 2
%10 = add i16 %8, %9
%11 = add i16 %7, %10
store i16 %11, i16* %w, align 2
%12 = load i16* %x, align 2
%13 = icmp ugt i16 %12, 2
br i1 %13, label %14, label %38

// C++ Code Block Expression

plug_heade msg_vec_in_hdr, msg_vec_out_hdr;
plug_vector<MSG_VECTOR_SIZE> msg_vec_in,
msg_vec_out;
PLUG_UNIT x, y, w;

ReceiveMessage(msg_vec_in_hdr, msg_vec_in, 0);

x = msg_vec_in[0];
y = msg_vec_in[1];
w = (x+10) + (x+y);

Variable List

x (%x)

y (%y)

w (%w)

// Piled LLVM instruction for variable x
%msg_vec_in = alloca [4 x i16], align 2
%2 = getelementptr inbounds [4 x i16]* %msg_vec_in, i16 0, i16 0
%3 = load i16* %2

// Piled LLVM instruction for variable y
%msg_vec_in = alloca [4 x i16], align 2
%4 = getelementptr inbounds [4 x i16]* %msg_vec_in, i16 0, i16 1
%5 = load i16* %4

// Piled LLVM instruction for variable w
%x = alloca i16, align 2
%y = alloca i16, align 2
%6 = load i16* %x, align 2
%7 = add i16 %6, 10
%8 = load i16* %x, align 2
%9 = load i16* %y, align 2
%10 = add i16 %8, %9
%11 = add i16 %7, %10

a) C++ Source Code
of Basic Block

b) IR of a Target Basic Block

c) DFG expression of each target variable

// DFG expression of MBB
// Expression in Verilog Behavioral Model
// Assume that the target MBB is Root

assign x_wire = msg_vec_in[ROOT_CNT];
assign y_wire = msg_vec_in1[ROOT_CNT];
assign w_wire = (x_wire + 10) + (x_wire + y_wire);

always(@posedge clk) begin
 x[ROOT_CNT] <= x_wire;
 y[ROOT_CNT] <= y_wire;
 w[ROOT_CNT] <= w_wire;
end

Figure 3.9: An Example to Construct Data Flow Graph without Data Dependency

43

Figure 3.9a) shows a simple basic block written in C++. It does not have any combined basic block,

hence it organizes a MBB. Figure 3.9b) described its IR. In this example, LLVM store instructions

point to variables x, y, and w. They are assigned in the variable list shown in Figure 3.9c), and

each variable points to piled LLVM instruction as a vector form. According to the variable list,

wires for variables x, y, and w are organized and the back-end compiler knows that the wires

for x and y are represented by LLVM load instructions as array msg_vec_in0 and msg_vec_in1,

respectively. In variable w, it references x and y variables following LLVM instructions for the w

variable. Hence, w is constructed by the wires for x and y due to its dependency with variable x

and y. Finally, the always block represents value in variables are synchronized by the system

clock.

By putting code expression on a generated verilog behavioral model, the data path writer

in the back-end compiler uses cascade index counter to collect correct value from the variable

line. Each MBB has already known the current and next cascade index counter. Assuming that

MBB of figuree 3.9a) is the root MBB, its expression in the verilog file is presented as shown in

figuree 3.9c). The expression of this MBB is always performing the same computation in the

different variable line whenever input messages come.

3.3 Chapter Summary

In this chapter, we discussed the network lookup engines with the high-level program language

called SWSL. With the compilation techniques, it automatically generates the network lookup

engines from rhe PLUG programming model. Hence, it follows conventional intermediate

representation to realize hardware design. To achieve higher throughput, in addition, it follows

pipeline structure with the data flow graph of PLUG applications. We propose algorithms that

create the pipeline structures and control logic. However, it is only focused on the network lookup

application with special APIs, so generalization is limited for other conventional applications.

The next chapter will discuss another approach to support HLS for conventional applications.

44

4 cache-coherent high-level synthesis for fixed-function

accelerators

In this chapter, the compilation process to generate fixed-function accelerators is described for

generic source code. As described in the previous chapter, major concerns to compile genic

source code for HLSs are 1) long latency operations, 2) how to manage loop control and 3) how

to handle memory access by the accelerator hardware. In the conventional HLS, first, they do

not provide the long latency operation, such as floating points, due to complex scheduling. In a

simple manner, delayed flip-flops are provided to support those operations. Second, managing

loop control is not considered because they only focus on parallel execution of loop kernels.

Finally, the third concern is leveraged by using scratchpad memory in the generated accelerator.

Thus, the host processor is always turned on to manage both operations by itself. By the third

concern, in addition, it requires a cache coherent mechanism between the host processor and

generated accelerator because they have separate memory space and it degrades the hardware

efficiency in terms of power. For this reason, generating the loop kernel in the source code is

only emphasized in conventional HLSs.

The goal of the cache-coherent High-Level Synthesis (ccHLS) is to generate fixed-function

accelerators with loop control and cache coherence free by following the DAE execution model.

Thus, ccHLS generates two accelerator modules called the fixed-function compute accelerator

and fixed-function memory access accelerator. During execution of accelerated region, the host

processor is going into sleep except the data cache and execution of the loop kernel with all

loop controls. Memory accesses are performed by generated fixed-function accelerators by

directly accessing the data cache in the host processor. In order to organize the loop control and

cache coherent free accelerators, this chapter develops an intermediate representation called

the Extended-Access/Execute Program Dependence Graph (E-AEPDG) to generate separate

fixed-function compute and memory access accelerators.

45

Loop Control

Memory
Access

FSM

Fixed-Function
Compute Accelerator

Fixed-Function
Memory Access

Accelerator

Send Init to Acc
Sleep Host Processor

Wake up
Host
Processor

Transform IR
to datapath

Transform IR
to datapath

I. Control flow graph II. Access/Execute PDG III. Extended-Access/Execute PDG

Execute PDG

Access PDG Access PDG

Execute PDG

Memory Access &
Loop Control

Figure 4.1: ccHLS Overview

4.1 Overview of the CcHLS

This section describes an overview of the ccHLS. The ccHLS targets for a generic program

written in C/C++ and generates a loop accelerating region as fixed-function accelerators without

utilizing any functionality except the data cache in the host processor. The host processor

provides an initial loop induction variable to the fixed-function accelerators and is turned-

off during execution of fixed-function accelerators. In the ccHLS, two major components are

generated, which are the fixed-function compute accelerator and the fixed-function memory

access accelerator. First of all, the fixed-function compute accelerator is the organization of the

datapath of the loop execution kernel and only focuses on the computing kernel itself. The

fixed-function memory access accelerator has a management role of loop control and memory

access that are used in the fixed-function compute accelerator. Especially, the fixed-function

46

memory access accelerator has two hardware modules called address generation units (AGUs)

and finite state machine (FSM) for data movement. Figure 4.1 shows the high level compilation

flow of the ccHLS. In step I, the ccHLS is the frontend to generate the intermediate representation

(IR) from the source code as the control flow graph (CFG). Step II takes the IR as the input and

generates an Access/Execute Program Dependence Graph (AEPDG), which is an intermediate

representation to classify the IR to the computation kernel and memory accesses by slicing the

program dependence graph into Execute-PDG (EPDG) and Access-PDG (APDG). In step III, the

concept of AEPDG is expanded to provide loop control and induction variable injections, which

is called Extended-AEPDG (E-AEPDG). From the E-AEPDG, each node and edge organizing

E-AEPDG is transformed to hardware datapath for the fixed-function compute accelerator and

the fixed-function memory access accelerator with I/O interfaces for data movement between

fixed-function accelerators or among fixed-function accelerators and the data cache in the host

processor.

The rest of this chapter is described as follows: Section 4.2 describe the Extended-Access/Execute

Program Dependence Graph and how to construct the E-AEPDG from the CFG of input source

code. Section 4.3 and 4.4 shows the transformation E-AEPDG to fixed-function accelerators and

how to operate data movement between fixed-function accelerators or between fixed-function

accelerators and the data cache in the host processor. Section 4.5 discussed the complex scenarios

that may be possible in the program source code. In section 4.7, the implementation of the

ccHLS is described. Section 4.8 concludes this chapter.

4.2 Extended-Access/Execute Program Dependence Graph

(E-AEPDG)

The ccHLS requires several mechanisms to be expressed in the intermediate representation to

generate the datapath of the fixed-function accelerators. From the initial idea that obeys the

execution model in chapter 2, the ccHLS follows the decoupled access/execute execution model.

Properties for this execution model should be presented in the intermediate representation.

Therefore, the ccHLS provides i) pipelined datapaths for the fixed-function accelerators, ii)

47

control capability in the datapath, iii) representing memory address calculation, and iv) loop

control expression. The ext paragraphs detail mechanisms that should be represented in the

intermediate representation for compilation.

Pipelined datapath for the fixed-function accelerators The intermediate representation for

the ccHLS should provide a method to organize a specialized datapath. Except memory access

operations, all computation is constructed as the chains of functional units to express depen-

dencies and the intermediate representation needs to easily provide the dependencies among

functional units.

Control capability in the data path The intermediate representation should support control

instructions to perform select operation with a “valid“ status bit. Accompanying the control flow

graph (CFG), fixed-function accelerators are able to select the value using the phi-functional

unit (φ-functional unit). Thus, ccHLS should define the control instruction in the datapath as

predication form.

Memory address calculation The new intermediate representation should present memory

address calculation for data access. In the conventional intermediate representation, it performs

by using memory access instruction such as load/store and dependencies with memory ad-

dress calculation. The ccHLS requires a new mechanism to transform those dependencies into

hardware datapath.

Loop control expression The conventional intermediate representation describes loop control

decision and induction variable as the form of control-flow graph and computation dependencies

with the combination compare and branch instructions. The intermediate representation for

ccHLS should easily represent this combination to create the datapath for loop control hardware

datapath.

In order to express properties that ccHLS requires, we visit the Access/Execute Program

Dependence Graph (AEPDG), which is proposed by Govindaraju thesis [33]. It is based on the

Program Dependence Graph (PDG) and enhanced. This representation provides the capability

48

>0

/ +

Ф

a[i]

>0

/ +

Ф

b[i]

11

>0

/ +

Ф

 11

Result

+base
addr 'b'

+base
addr 'a'

i

>0

/ +

Ф

 11

+base
addr 'b'

+base
addr 'a'

i

+1 ==n

Result Result

DFG
- Graph base IR

- Configure
DataPath

PDG
- Support Control-Flow

Graph
- Provide Specialized

Nodes (Ф)

AEPDG
- Decoupled

Access/Execute

Extended-AEPDG
- Provide access

memory
address computation

Extended-AEPDG
- Provide Loop Control Node for

self loop control decision

From IR to Extended-AEPDG

Figure 4.2: Conceptual Model from IR to Extended-AEPDG

to make explicit the data and control dependencies between instructions and partitioned into

pure computation kernel and memory access/loop control decision. Thus, it can be easily

mapped into the specialized accelerator called DySER for pure computation. Additionally, it

executes memory access and loop control decision on the host processor. This separate operation

enables the compiler to follow the DAE model. In addition, it provides the concept Access-PDG

(APDG) and Execute-PDG (EPDG) to concrete the DAE model by assigning memory access as a

node. By visualizing the memory access, hence, it easily deploys the correspondence between

data movement between EPDG and APDG.

However, AEPDG does not provide memory address calculation and loop control expression.

Since both operations are executed on the host processor, memory access operation is identi-

fied by the link of load/store node and memory address calculation is hidden in the AEPDG.

Moreover, AEPDG does not have any clue when the acceleration is terminated and the host

processor keeps providing data to be executed in the DySER. To relax such drawbacks, I de-

velop the Extended-Access/Execute Program Dependence Graph (E-AEPDG), which visualizes

49

the memory address calculation conjunction with memory operation such as load/store and

expands the loop control decision in the AEPDG. Thus, E-AEPDG defines a new intermediate

representation (IR) that provides a capability to exploit the data and control dependency of

instructions and data movement among the accelerator and memory. Based on the E-AEPDG of

the target source code from ccHLS, fixed-function accelerators are feasible.

Figure 4.2 shows the conceptual model of E-AEPDG from conventional IR of source code.

First, it is possible to organzie the datapath from the dataflow graph (DFG) from IR. Then, the

idea of PDG provide the specialized node to support control flow graph. AEPDG partitions

PDG graph into execute and access subgraph. E-AEPDG is the extension to support memory

address computation and loop control nodes to decide loop condition. The next two subsections

describe how to construct E-AEPDG from the source code.

4.2.1 Access/Execute PDG Construction

From the source code, the target to be organized as fixed-function accelerators is the most

frequently executed regions, especially loops. To identify the most frequently executed region

in the source code, the compiler community has proposed many analysis techniques such as

hyperblock [55], superblock [29] , or inner loop. For a simple way, pragrmas are inserted into

the source manually. In the ccHLS, inserting pragmas into the source code is basically used,

otherwise searching loop analysis techniques are used to collect loop headers. By the loop

analysis of the compilation techniques, in case no pragma is provided in the source code, the

outer-most loop header basic block can be found with the sequence of inner loop chains of the

outer-most loop header. That is the target region to be constructed as fixed-function accelerators.

Once the region is identified, the ccHLS organizes the form of PDG by existing techniques [28]

and AEPDG proposed by Govindaraju [33]. From the control flow graph (CFG), to construct the

AEPDG, the ccHLS classifies instruction nodes in the CFG as memory access nodes, loop control

nodes, and other nodes. Memory access nodes such as loads and stores instruction nodes are

found and their relevantly dependent instruction nodes for memory address computation are

assigned as the APDG. The loop control nodes are reserved to extend AEPDG for describing

loop control dependencies in the E-AEPDG. The remaining instruction nodes, except the above

50

...
for(j=0; j<n; ++j) {
 for(i=0; i<m; ++i) {
 if(a[i]>0) {
 d[i] += 1/b[c[2*i]];
 }
 else {
 d[i] += b[c[2*i]]*2;
 }
 }
}
 ...

Source Code Intermediate Representation by the Control Flow Graph

entry
br label BB0
BB0:
%j = phi i32 [0, entry], [%j.next, BB5]
br label BB1

BB1:
%i = phi i32 [0, BB0], [%i.next, BB4]
%0 = getptr inbounds i32 *%a, %j
%1 = load i32 *%0
%2 = icmp sgt i32, %1, 0
%3 = getptr inbounds i32 *%d, %i
%4 = load i32 *%3
%5 = shl %i, 1
%6 = getptr inbounds i32 *%c, %5
%7 = load i32 *%6
%8 = getptr inbounds i32 *b, %7
%9 = load i32 *%8
br %2, label BB2, label BB3

BB2:
%10 = sdiv 1, %9
br label BB4

BB3:
%11 = shl %9, 1
br label BB4

BB4:
%.pn = phi i32 [%10, BB2], [%11, BB3]
%strmerge = add i32 %.pn, %4
store i32, %strmerge, *%3
%i.next = add i32 %i, 1
%exitcond = icmp eq i32 %i.next, m
br %exitcond, label BB5, label BB1

BB5:
%j.next = add i32 %j, 1
%exitcond1 = icmp eq i32, %j.exit, n
br %exitcond1, label %exit, label BB0

exit:
ret void

Continued to next column

Continued from previous column

Figure 4.3: Target Source code and Intermediate Representation by Control Flow Graph

two classifications, form the EPDG. From the perspective of the host processor, memory access

and loop control operations are performed in the host processor, hence the execution of the

relevant instruction nodes for memory access and loop control is not depicted in the AEPDG.

In this chapter, the source code in figure 4.3 is used as a case study. The source code is

enough to explain the complex cases including the nested loop and the form of indirect memory

access. According to loop analysis, there are two loops in the intermediate representation by the

control flow graph and the inner-most loop is the kernel to be represented as the AEPDG form.

Figure 4.4 shows its control flow graph and the loop kernel to be generated as the fixed-function

accelerators. The AEPDG represented in figure 4.4 consists of the EPDG for the loop kernel

and APDG which is the fingerprint of memory access. The structure of AEPDG follows the

pipelined datapath for data flow execution and has control capability by predication. However,

it is insufficient to calculate a memory address for loads or stores and the loop control decision

is not expanded in the AEPDG. Therefore, the AEPDG is to be extended to have identifiers

51

Entry

BB0

BB1

BB2 BB3

BB4

BB5

Exit

b[c[2i]] a[i]

>0

1/ <<1

Ф

d[i]

Need to be decomposed
as access address

Control-Flow Graph Access/Execution PDG

Computation kernel

Figure 4.4: Control Flow Graph and Access/Execute PDG

describing memory address calculation and the decision path of loop control.

4.2.2 Extended-Access/Execute PDG Construction

The main role of APDG is to handle the access EPDG and data movement from/to memory.

Hence, it only focuses on interfacing EPDG for data movement from memory by the instructions

such as loads or stores. In addition, it has a role for data movement from variable or constant

value to execute. The APDG is shown as the group of instructions to describe memory operations

and data movement. In APDG, however, it is not enough to represent dataflow for memory

access computation or data movement because it only gives hints as to what data moves into

EPDG. Figure 4.4 shows that APDG only provides the traces of memory access or data movement

as nodes. Thus, it requires the form of dataflow to calculate the memory address and its detail

expansion should be mapped to transform source code to static hardware datapath. In addition,

loop control expression of the target acceleration region is not presented in APDG. To relax these

obstacles, the ccHLS extends the APDG with those properties. In APDG, its memory access

nodes are decomposed to illustrate memory address calculation and loop control subgraph,

52

Instruction Role
Arithmetic - Induction variable: Arithmetic node for loop control subgraph

to increment induction value of loop, connected to output EQ
- Elsewhere: Arithmetic node of access or execution subgraph

Lod/Store - Constructing output of address calculation node of access sub-
graph, connected to output EQ

Compare - In loop exit BB: node for loop control subgraph, connected to
output EQ
- Elsewhere: compare node of access or execution subgraph

Branch - In loop exit BB: Link edge of compare node for loop control
subgraph to output EQ
- Elsewhere: Edge for predication, edge to link phi(φ) for execute
subgraph

Phi(φ) - In loop head BB with induction variable: Input EQ to inject
induction variable for loop control subgraph
- Elsewhere: Node for phi(φ) to predicate for execute subgraph

Table 4.1: Classification by instruction type and position

including induction variable increment, and loop decision is conjoined with APDG.

ccHLS constructs the AEPDG into E-AEPDG based on instruction type and location in the

control flow graph. Instructions are identified by the mixing of type and location and the APDG

is transformed to the extended graph form based on identified instructions. Table 4.1 shows

the type of instructions and the role based on the location in the control flow graph. The role of

instructions, depending on the instruction type and location, is as follows:

Arithmetic instruction Arithmetic instructions mainly define the computing node and set

the skeleton of subgraphs. In case that the instruction is an induction variable, it is used to

increment induction value and assigned to loop control subgraph. When it is the induction

variable, it has an edge to pass data outside of E-AEPDG.

Memory access instruction For memory access instructions, such as loads or stores, they

create nodes to compute addresses with a base address and provide a memory access address

to load or store data interacting with memory. The output edge of the load is connected with

the node that has the dependency with that load instruction, while the output edge of the store

just provides address and data to be stored.

Compare instruction Compare instructions have various roles depending on their location. In

the case that the instruction is in the loop exit basic block, which is the basic block that exits loop

53

in the control flow graph, the ccHLS replaces it with the node for the loop control subgraph and

the node makes the decision for the case of loop exit. Otherwise, it is only used for the compare

node for predication to provide control capability in the datapath depending on the condition.

Branch instruction Branch instruction, which is usually accompanied by the compare instruc-

tion, provides the edge to connect for comparison output either outside of the graph or selecting

the valid output of predication result for control capability. The case that a branch instruction is

located in the loop exit basic block means that the iterating loop is determined by the result of

the condition instruction referenced by this branch instruction. The remained case of the branch

instruction is for providing the edge to set predication and influence on value decision such as

if-else statement. For an unconditional branch, it just sets a link edge for the connected basic

block in the control flow graph.

Φ-instruction (φ-instruction) φ-instruction is the node to assemble output from previous

nodes and set its output depending on validation. In case that the φ-instruction with an induction

variable is located in the loop head basic block, which is the basic block that begins the loop, it

has the role to inject either the initial value of loop iteration or the passing induction value to

loop.

Creating E-AEPDG from ccHLS is represented in algorithm 4. From the initial PDG, it

collects elements of APDG including edges and nodes. Loading and storing nodes are related

to constructing APDG and the collection of those nodes is used as the skeleton of APDG

nodes. Except those nodes, the remaining nodes are used for nodes for EPDG. Then, APDG

is proliferated to describe extension including memory address computation and loop control

depending on the instruction type and position in the control flow graph. At the same time,

IO edges are collected to identify the IO connection. Table 4.2 illustrates edges and nodes used

to describe E-AEPDG. For edge, the black edge stands for the normal dependency edge which

represents that data dependency is existed between connected nodes. The remaining edges

are used for identification when E-AEPDGE is transformed to fixed-function accelerators and

provide input/output interface between fixed-function accelerators or between a fixed-function

accelerator and memory. The input and output edges, which are red and blue edges, tell that it

54

Algorithm 4 E-AEPDG
1: worklist← ∅
2: apdg ← ∅
3: extension← ∅
4: LoopExitBB ← {Loop Exit Basic Blocks From Control Flow Graph}
5: LoopHeadBB ← {Loop HEAD Basic Blocks From Control Flow Graph}

{Initialize worklist for slicing: Loads, Stores}
6: for all node ∈ pdg such that node ∈ Loads(pdg) do
7: worklist← worklist ∪ node
8: end for
9: for all node ∈ pdg such that node ∈ Stores(pdg) do

10: apdg ← apdg ∪ node
11: worklist← worklist∪ Get-Address(node)
12: end for

{Add branches that are latches to loops to apdg}
13: for all node ∈ pdg such that node ∈ Is-Latch(pdg) do
14: apdg ← apdg ∪ node
15: end for

{Slice PDG}
16: while Has-Element(worklist) do
17: node← Pop(worklist)
18: apdg ← apdg ∪ node
19: for all op ∈ Get-Operands(node) such that op /∈ apdg do
20: worklist← worklist ∪ op
21: end for
22: end while
23: epdg ← pdg − apdg

{Initalize IO Edges}
24: i_edges← ∅
25: o_edges← ∅

{Extend APDG}
26: for all CMPnode ∈ apdg such that node ∈ LoopExitBB do
27: extension← extension ∪ CMPnode
28: o_edges← o_edges ∪ outputedgeofCMPnode
29: end for
30: for all Branchnode ∈ apdg such that node ∈ LoopExitBB do
31: extension← extension ∪Branchnode
32: o_edges← o_edges ∪ outputedgeofBranchnode
33: end for
34: for all PHInode ∈ apdg such that node ∈ LoopHeadBB do
35: i_edges← i_edges ∪ inputedgeofPHInode
36: end for

{IO Edge of epdg}
37: for all node ∈ epdg do
38: for all op ∈ Get-Operands(node) such that op /∈ epdg do
39: i_edges← i_edges ∪ inputedgeofnode
40: end for
41: for all use ∈ Get-Uses(node) such that use /∈ epdg do
42: o_edges← o_edges ∪ outputedgeofnode
43: end for
44: end for
45: e− aepdg ← (apdg, epdg, extension, i_edges, o_edges)
46: return e− aepdg

55

Edge

Normal De-
pendency
Edge

Input Link
Edge

Output
Link Edge

Node

Load

+ base
address 'x'

+ offset

Store

+ base
address 'x'

+offset
Store data

Branch In Loop Exit BB Elsewhere

Cmp

Op0 Op1 or Imm

Cmp

Op0 Op1 or Imm

Phi(φ) In Loop Head BB Elsewhere

i
i : Induction
 variable

Valid Invalid

ϕ

Table 4.2: Symbolic Representation in Extended AEPDG

56

is used as input and output interfaces for data movement and defines the pathway for entering

or withdrawing data. Related to edges, the ccHLS organizes E-AEPDG with modified nodes for

describing nodes depending on purposes. The property of node is as follows:

Load node Load instruction is deployed by the load node, which is illustrated as an upper-

triangle. In the load node, it consists of the base address to be accessed and the offset to compute

the accurate memory address. The load node has the dependency with the offset for address

computation, hence it is coupled with a type of edges. To pass the computed memory address, its

output is linked with the output edge and the output departs from the generated fixed-function

accelerators based on E-AEPDG.

Store node Similar to the load node, it computes the memory address to store data that has

the data dependency with this store node. Thus, the store node illustrated as a lower-triangle

has the base address and offset to present memory address calculation. Unlike the load node,

it should define the data to be stored in the computed memory address. The output edge for

storing data is connected from the node that has the data dependency with the store instruction.

Thus, computed address and storing data should be outgoing from E-AEPDG.

Compare node The compare node always accompanies the branch instruction. Branch instruc-

tion just links by the edge depending on the location. In the case that a branch instruction is in

the loop exit basic block, it identifies that loop condition decision depending on the compare

node. Thus, a branch instruction is transformed to an output link edge for the loop control

subgraph and used for loop condition decision. In the remaining cases, however, the branch

instruction with a related compare node is used for predication representation.

Φ-node (φ-node) The φ-node is able to be used for two cases. In the loop head basic block,

it is an identifier that injects either initial induction value or incremented induction value. φ-

instruction to organize the node notifies where the induction value comes. In the case that

induction value comes from the outside loop, it provides the initial induction value. Otherwise,

the incremented induction value is provided to the node. In any case that the φ-node is not

57

Entry

BB0

BB1

BB2 BB3

BB4

BB5

Exit

>0

1/ <<1

Ф

+

Control-Flow Graph
Access/Execution PDG with

Memory Address Computation

+base
addr 'b'

+base
addr 'c'

+base
addr 'a'

<<1

+base
addr 'd'

i

+base
addr 'd'

Phi node from BB1 for
the inner-loop induction
variable 'i'

Figure 4.5: Access/Execute PDG with Memory Computation Nodes

located in the loop head basic block, the pure φ-node is organized in the E-AEPDG to decide

predication.

4.2.3 E-AEPDG by Example

Based on edges and nodes from table 4.2, the ccHLS is able to decompose memory access nodes

into the memory address with computation nodes and describe loop conditions. From figure 4.3

and 4.4, details of organizing E-AEPDG is illustrated. First, figure 4.4 only shows the AEPDG

form of the source code in figure 4.3. It has two loads (b[c[2× i]] and a[i]) and one store (d[i])

and they should be decomposed with memory address computation. Indirection memory access

in b[c[2×i]] is given as the load link between b and c, and c[2×i]] is used for the offset of b. In

addition, c[2× i]] requires offset computation for 2× i and this operation is transformed to 2 bit

left shift. All the dependencies in b[c[2× i]] are presented as the appropriate nodes and edges.

58

Entry

BB0

BB1

BB2 BB3

BB4

BB5

Exit

>0

1/ <<1

Ф

+

Control-Flow Graph Access/Execution PDG with
Inner-loop Condition Decision

+base
addr 'b'

+base
addr 'c'

+base
addr 'a'

<<1

+base
addr 'd'

i

+base
addr 'd'

+1 ==m

- Compare node and branch
edge for inner loop condition
- Increment the induction
Variable 'i'

Figure 4.6: Access/Execute PDG with Inner-loop Condition

Another load operation, a[i], is relatively simple and deployed as the load node and offset i.

Operation d[i] should be expanded to the load and store because of d[i] += 1/b[c[2 × i]]

or d[i] += b[c[2 × i]] ×2. Thus, one load node to load data from d[i] and one store for

computation result from the EPDG are orchestrated in the E-AEPDG. In the AEPDG, all loads

and stores require i as the initial offset to compute memory address and it is the incremental

induction variable for inner loop. Basic block 1 has the φ-instruction for this induction variable,

hence this φ-instruction is illustrated as the induction node and all relevant load and store nodes

are linked with this node. Figure 4.5 shows the decomposition of memory address computation

in the AEPDG.

Next, the ccHLS extends AEPDG to represent loop control for the acceleration. In figure 4.4,

it has the form of nested loops and should be organized for creating both loops (outer and

inner loops). Figure 4.6 shows the AEPDG with the inner loop condition. For the inner loop,

59

Entry

BB0

BB1

BB2 BB3

BB4

BB5

Exit

>0

1/ <<1

Ф

+

Control-Flow Graph Access/Execution PDG with
Outer-loop Condition Decision

+base
addr 'b'

+base
addr 'c'

+base
addr 'a'

<<1

+base
addr 'd'

i

+base
addr 'd'

+1 ==m

j

+1 ==n

- Compare node and branch
edge for outer loop condition
- Increment the induction
variable 'j'

Phi node from BB0 for
the outer-loop induction
variable 'j'

Figure 4.7: Extened Access/Execute PDG

the ccHLS analyzes instructions in the control flow graph and targets compare and branch

instructions. In addition, it searches the φ-instruction in the loop head basic block to find the

incremental induction value. In the basic block 4, it has branch and compare instructions to add

the output edge and compare nodes. They are dependent on the incremental induction value.

From the φ-instruction dependency, the ccHLS is aware that the induction value is + + i and it

has the output edge for inject induction value into the induction node since the φ-node from the

φ-instruction and the node for the incremental induction value have the relationship of data

dependency.

Figure 4.6 emphasizes the inner loop condition decision. However, it still has another loop

which encapsulates the inner loop. This follows in a similar manner what is described in

figure 4.6 and organizes the loop control subgraph for the outer loop. From the control flow

graph, it searches the φ-instruction in the loop head basic block of the outer loop and relevant

60

compare and branch instruction in the loop exit basic block of the outer loop. In the basic block

0, which is the loop head basic block of the outer loop, φ-instruction is found and allows it

to be presented as the induction variable node for j. In addition, the basic block 5, which is

the loop exit basic block of the outer loop, provides compare and branch instructions and they

are assigned as the node and edge for the loop control condition. Figure 4.7 finally shows the

E-AEPDG generated from the ccHLS.

4.3 Transformation E-AEPDG to Fixed-Function Accelerators

In this section, generating fixed-function accelerators from E-AEPDG is explained. Two separate

accelerators, the fixed-function compute accelerator and fixed-function memory access accelera-

tors are the group of fixed-function accelerators. In E-AEPDG, the EPDG is transformed into

the fixed-function compute accelerator. The fixed-function memory access accelerator has two

major components including the address generation unit (AGU) and finite state machine (FSM)

for data movement. The remaining nodes and edges in E-AEPDG, except the EPDG, are utilized

for AGU and data movement operations are assigned for FSM. First, hardware components

providing functionality and IO interface to communicate are discussed in section 4.3.1. Then,

transforming from E-AEPDG to the fixed-function accelerators is described in section 4.3.2. In

addition, the role of FSM in the fixed-function memory access accelerator is presented in this

section.

4.3.1 Event Queues (EQs) and Functional Units (FUs)

The fixed-function accelerators are the chains made by several functional nodes to construct

the datapath from E-AEPDG and executes the computing oriented code region. In addition, it

requires the way to provide IO interface in input/output edge for data movement. To realize

both properties, the ccHLS exchanges the functional nodes and input/output edges for function

units (FUs) and Event Queues (EQs).

First of all, its input/output is connected to a buffer called an event queue (EQ) and passes

data to/from the fixed-function compute accelerator. It has the role of temporary storage when

61

data from the memory or other nodes arrives and stays until one consumes the data in the EQs.

The ccHLS replaces input/output edges with EQs for data movement. Replaced EQs of input

and output are called input EQs (iEQs) and output EQs (oEQs). From input EQs, data required

for computation flows into the fixed-function accelerator and executes it in a dataflow fashion.

FUs construct datapaths and operate various operations instead of instructions in the executable

binary of the host processor. To avoid control dependency, predication is allowed and φ-function

is provided as an FU to acquire the result. In the case that the target code region has control

dependency, predication is adapted in the dataflow and decides which output from the FU is

valid. Thus, the edge connected between FUs has two meta-bits, valid (V) and ready (R), with

data bits and EQs also havving those bits for data movement. Figure 4.8 shows the structure of

event queues. In iEQ, this is the form of FIFO with a meta-bit (V) in the input data. As soon

as a Request is set from the connected node to get the data, a decoder examines the valid bit

in the data. Once it is valid, iEQ sends the data to the requesting node. Otherwise, no action

is required in iEQ because valid data has not arrived in iEQ yet. oEQ has a similar role to iEQ.

However, oEQ itself requests data from the previously connected node. Depending on whether

FIFO is full/busy, it schedules the request signal to get the data. If it gets data from the previous

node, meta-data has arrived with the pure data. Meta-data (R and V bits) is used to decide the

state in FSM for data movement.

To obviate congestion of the datapath, FUs have a flow control mechanism with a small

finite state machine, and figure 4.8 expands the sequence of FU. An FU requests operands from

previous connections and it is stalled until two operands are ready for flow control (req_OpA and

req_OpB signal requesting operands to previous connections). Once they are ready (OpA_rdy

and OpB_rdy notify a requested operand is ready), the functional unit passes two operands into

the function pipeline which has various pipeline stages, depending on instruction (mul, div,

and various floating point instructions have a deep pipeline stage, otherwise only one pipeline

stage exists for execution.). When computation is done and the next connection requests output

as one of the operands, output data moves one of operand registers for dataflow execution. In

the case that next connection holds data in the target register and waits for another operand, the

hold signal is set and lets the FU stall until the next functional unit requests data. To support

62

Compute
Pipeline

FSM

OpB_rdy

valid

busy

hold

~hold & {state==ALL_RDY | state[0] == 1'b1} ~hold & {state==ALL_RDY | state[1] == 1'b1}

1'b1

1'b0
req_OpA req_OpB

Dout – {PredBit (1bit), data(32 bits)}

valid (1 bit)

state (3 bits)
= {x,y,z}
x – Request Prediction bit
y – Request Operand B
z – Request Operand A

OpA_rdy

1'b1

1'b0

OpA_rdy

OpA[32]

OpB_rdy

OpB[32]

~hold & {state==ALL_RDY | state[2] == 1'b1}

1'b1

1'b0
req_Pred

Pred_rdy

Input

OpA (33 bit) - Input {Pred, Data}
OpB (33 bit) - Input{Pred, Data}
Pred (1 bIt) – Predication set

OpA_Rdy (1 bit) – OpA ready?
OpB_Rdy (1 bit) – OpB ready?
Pred_Rdy (1 bit) – Predication bit ready?

Output
Dout (33 bit) - Output of {Pred, Data)
Valid – Set output is valid
req_OpA (1 bit) – Request OpA
req_OpB (1 bit) – Request OpB
req_Pred (1 bit) – Request predication bit

OpA[31:0]

OpB[31:0]

Pred

Decoder Request

ReadyValid

Data

FIFO

ScheduleRequest
Busy/Full

V

Data

FIFOR

To FSM

Input Event Queue (iEQ) Output Event Queue (oEQ)

Functional Unit (FU)

Figure 4.8: Event Queues and Functional Unit

63

f(a>0)
 x = b + 1;
else
 x = c - 1;

...

...

>
1

+

...

-

1

1

iEQ for 'b'

iEQ for 'a'

iEQ for 'c'

Demux Φ ...

oEQ for ''

Figure 4.9: Constructing Datapath using EQs and FUs

predication, Pred and Pred_rdy are also provided and notifies that its output is selected for

predication valid. Overall, this resembles a coarse-grained reconfigurable architecture-like

paradigm. Almost, any conventional HLS technique when repurposed to handle control-flow

and variable memory latency will likely resemble the substrate we have proposed.

To show the construction of the datapath using FUs and EQs, figure 4.9 provides a simple

if/else statement. It is consist of 3 iEQs and 1 oEQ. Each iEQ depends on the request signal

from a connected functional unit and data is sent to that functional unit once the data is valid in

iEQ. For control dependency, a compare functional unit and phi(φ) functional unit are provided.

For decision of control, demux is padded and linked with a compare functional unit. So, its

output is only influences one of the functional units for computation (b+1 or c-1), and the

φ-function selects based on the predication decision. In oEQ for y, it keeps requesting data to

the phi(φ) functional unit and data is passed to oEQ when the phi(φ) functional unit finishes

execution. In case that oEQ is full or busy, data requesting is reset and data is not passed to oEQ.

The number of states in the FSM depends on code optimization in IR. If memory access

operations or data movements are reduced in the target source code, the number of states in

the FSM is decreased. Current ccHLS version does not provide a backend pass to optimize for

decreasing load/store operations and data movement. Investigation on the complexity and

optimality of our algorithm in terms of whether it selects the optimal number of states is future

64

work.

4.3.2 Fixed-Function Accelerators from E-AEPDG

E-AEPDG is transformed to organize the datapath of fixed-function accelerators. Each edge

link among nodes provides the wire connectivity among nodes and each node is replaced with

the appropriate FU. For IO connectivity, input and output EQs are installed to interface with

the inside and outside of fixed-function accelerators instead of input and output edges. By the

meta-bits in EQs, valid (V) and ready (R), Boolean logic of two configuration bits of IO edges

from flow data ingenerates and triggers state transition for data movement. E-AEPDG has

memory operations such as load and store and the loop control also has data movement from

an output edge to other input edges and those operations provide data movement action. A V

bit gives a clue that data in the EQ is valid so that a specific operation is available. It is generally

set by a compare instruction node to notify whether the loop condition is true or false. An R bit

stands for ready data delivered from the instruction node connected to this EQ. The combination

of Boolean logic of a bunch of IO EQs provides a set of action functionality and it is used to

construct FSM to control the fixed-function accelerators interfacing with the memory in the host

processor.

First, edges in E-AEPDG are transformed to construct the datapath of the fixed-function

accelerators. Since the normal dependency edges provide the connectivity among the nodes, it

is left without any modification to show dependencies. However, input and output edges are

carefully transformed because they are evidences to communicate outside the fixed-function

accelerators and give IO interface. The following paragraphs tell how to transform those edges.

Input edge Basically, an input edge is transformed to the input EQ (iEQ) for providing the

capability of passing input data into the fixed-function accelerators. In the case that an input

edge is derived from the induction variable node, that node is replaced with iEQ and the input

edge connected with that node simply provides connectivity to the node that is linked with this

input edge.

65

Output edge An output edge is considered in the two perspectives of connectivity, the non-

connecting edge and the connecting edge with the node. In the case of the non-connecting edge,

it is transformed to the normal dependency edge connected to output EQ (oEQ). Hence, the

data passing through this edge arrives to oEQ and waits for data movement action by FSM. The

connecting edge with the node, on the other hand, normally is used to provide the connectivity

from load operations and informs the data dependency describing data load from the memory

access address. Hence, it simultaneously requires iEQ and oEQ. In oEQ, it provides the

memory access address and load data is injected into iEQ. Thus, the originated node of output

edge is connected to oEQ and the node pointed by this edge has iEQ to get the data from the

memory.

Second, the node is easily transformed by replacing it with an appropriate FU. In addition,

the φ-FU is provided to map the native control and allows the ccHLS to support for control

instructions. However, E-AEPDG has special nodes for load and store. The ccHLS replaces

such nodes with the combination of computation for memory access address. These nodes are

connected through output edges for providing memory access address and the combination of

memory address computation is directly connected oEQ to after all.

Finally, the ccHLS needs to create the finite state machine (FSM) for data movement operations

between the fixed-function accelerators and memory or between the fixed-function compute

accelerator and the fixed-function memory access accelerator. The main role of the FSM is

i) to provide the initial induction value, ii) to manage data movement in the fixed-function

accelerators, and iii) loop control.

Initial induction value Initially, FSM provides the initial induction value for loop acceleration

when the fixed-function accelerators are executed. Injecting the initial induction value lets the

fixed-function accelerators know that acceleration begins and performs its properties.

Manage data movement FSM provides the operations for data movement. Basically, the fixed-

function accelerators allow three operations, such as move, load, and store. First, the move

operation is simply to move data in oEQ to iEQ. When the R bit in oEQ is set, data in oEQ is

passed to iEQ for the fixed-function accelerator execution. Second, the load operation requests

66

to load data from the memory address in oEQ to iEQ. As we discussed in the previous section,

an output edge is decomposed into oEQ and iEQ for notifying memory address and input data

injection. Thus, the address in oEQ is passed to the memory and loads the data into iEQ when

the R bit in oEQ is set. Finally, the store operation requests to store data in oEQ0 to the memory

address in oEQ1 because the memory access address and data are located in separate oEQs.

Thus, the store operation is done when both the R bits in oEQ0 and oEQ1 are set.

Loop control The major invocation of loop is to compare conditions and increment the in-

duction value. Thus, the fixed-function accelerators should always check that the comparison

condition is valid and incremental induction value is ready. Thus, the V bit of oEQ0 for con-

dition and the R bit in oEQ1 for the induction value set the state transition in FSM. In case

that the source code has nested loops, the ccHLS should check the loop dependency and this

dependency influences how to define the state. So, it is sensitive to the loop exit condition from

the dependent loop and the loop exit condition of dependent loop organizes the Boolean logic

to execute the loop.

4.3.3 Transformation E-AEPDG to Fixed-Function Accelerators by Example

Using the E-AEPDG from figure 4.7, we discuss the transformation E-AEPDG to the fixed-

function accelerators. First, the induction variable node for j and i are replaced with iEQ0 and

iEQ1. Then, output edges for loop control are also transformed to oEQ0, oEQ1, oEQ2, and

oEQ3. The ccHLS analyzes that the source code has loop dependency, nested loops, and their

relationship is reflected in the FSM. The FSM sets the initial induction value as state0 and the

control for the inner loop (comparing and incrementing induction variable for the inner loop)

is enlisted at state1 and state4. In state2 and state3, they notify the control for the outer loop

(finishing the fixed-function accelerators and incrementing induction variable for the outer loop).

Finishing acceleration depends on the decision by oEQ1 == V alid. Figure 4.10 illustrates the

transformation of loop control in the E-AEPDG.

In the source code, it has indirection memory access b[c[2×i]] and is shown as the chain

of load nodes. Between the load nodes for c and b, they are tightly connected by the output

67

>0

1/ <<1

Ф

+

+base
addr 'b'

+base
addr 'c'

+base
addr 'a'

<<1

+base
addr 'd'

iEQ1

+base
addr 'd'

+1 ==m

iEQ0

+1 ==n

oEQ0 oEQ1 oEQ2 oEQ3

State0: Init
MOV 0 to iEQ0

State1: oEQ1==Invalid
MOV 0 to iEQ1

State2: oEQ1==Valid
Stop

State3: oEQ3==Valid & oEQ0==Ready
MOV oEQ0 to iEQ0

State4: oEQ3==Invalid & oEQ2==Ready
MOV oEQ2 to iEQ1

FSM

Figure 4.10: Transformation of Loop Control

edge to inject the load data of memory address c×i and this edge is transformed to EQs, iEQ2

and oEQ4 to provide the requested data into the datapath of fixed-function accelerators. FSM

applies this operation to FSM, and state5 for oEQ4 == Ready manages the data movement in

case the memory access address for c× i is ready. Requested data is loaded into the iEQ2 and

the fixed-function accelerators are executed in the dataflow fashion. Figure 4.11 presents the

operation for indirection memory access in the fixed-function accelerators.

Next, the ccHLS transforms all the output edges that are linked with nodes for memory access.

Target nodes are loads with base addresses a, b and d. Load node for a has the output edge

connected to the ’compare’ node, so it is transformed to oEQ5 and iEQ3 and this load operation

is applied to state6. For b, it is also the load operation to inject the data from b[c[2×i]] to

68

>0

1/ <<1

Ф

+

+base
addr 'b'

+base
addr 'c'

+base
addr 'a'

<<1

+base
addr 'd'

iEQ1

+base
addr 'd'

+1 ==m

iEQ0

+1 ==n

oEQ0 oEQ1 oEQ2 oEQ3

State0: Init
MOV 0 to iEQ0

State1: oEQ1==Invalid
MOV 0 to iEQ1

State2: oEQ1==Valid
Stop

State3: oEQ3==Valid & oEQ0==Ready
MOV oEQ0 to iEQ0

State4: oEQ3==Invalid & oEQ2==Ready
MOV oEQ2 to iEQ1

State5: oEQ4==Ready
Load Addr oEQ4 to iEQ2

FSM

oEQ4iEQ2

Figure 4.11: Transformation for Indirection Memory Access

EPDG (blue-dotted box). This output edge is decomposed to oEQ6 and iEQ4 and FSM reflects

this load operation in the state7. The last load operation for d has the same characteristic with

the loads for a and b, and it uses oEQ7 and iEQ5 and has state8. Unlike load nodes, the output

edge connected between ’phi(φ)’ node and ’add’ node just represents the data dependency

from the EPDG. Since the EPDG is used to construct the fixed-function compute accelerator, the

output edge connects outside EPDG. Except memory access between these nodes, it is changed

to oEQ8 and iEQ6 and its operation is to move data from oEQ8 to iEQ6 described in state9.

The transformation for the output edges is shown in figure 4.12.

The remaining output edges are to store data to memory. To store data, the memory access

address and the target data to store should be identified in the transformation. They are

69

>0

1/ <<1

Ф

+

+base
addr 'b'

+base
addr 'c'

+base
addr 'a'

<<1

+base
addr 'd'

iEQ1

+base
addr 'd'

+1 ==m

iEQ0

+1 ==n

oEQ0 oEQ1 oEQ2 oEQ3

State0: Init
MOV 0 to iEQ0

State1: oEQ1==Invalid
MOV 0 to iEQ1

State2: oEQ1==Valid
Stop

State3: oEQ3==Valid & oEQ0==Ready
MOV oEQ0 to iEQ0

State4: oEQ3==Invalid & oEQ2==Ready
MOV oEQ2 to iEQ1

State5: oEQ4==Ready
Load Addr oEQ4 to iEQ2

State6: oEQ5==Ready
Load Addr oEQ5 to iEQ3

State7: oEQ6==Ready
Load Addr oEQ6 to iEQ4

State8: oEQ7==Ready
Load Addr oEQ7 to iEQ5

State9: oEQ8==Ready
MOV oEQ8 to iEQ6

FSM

oEQ4iEQ2

oEQ6

oEQ5

iEQ3iEQ4

oEQ7

iEQ5 iEQ6oEQ8

Figure 4.12: Transformation for Output Edges

represented as output edges and also have the dependencies for the store operation. Therefore,

these output edges are replaced with oEQs and FSM should apply this data movement in itself.

Figure 4.13 shows the organization for data store operation. oEQ9 and oEQ10 are used to

provide memory access address and store data, respectively. In addition, state10 has this

property to store data from oEQ10 to memory access address from oEQ9.

4.4 Execution

This section discusses the execution of the fixed-function accelerator. By transforming E-AEPDG

to the fixed-function accelerators, the ccHLS is able to provide the hardware characteristics to

accelerate the target region. The EPDG organizes the fixed-function compute accelerator and

70

>0

1/ <<1

Ф

+

+base
addr 'b'

+base
addr 'c'

+base
addr 'a'

<<1

+base
addr 'd'

iEQ1

+base
addr 'd'

+1 ==m

iEQ0

+1 ==n

oEQ0 oEQ1 oEQ2 oEQ3

State0: Init
MOV 0 to iEQ0

State1: oEQ1==Invalid
MOV 0 to iEQ1

State2: oEQ1==Valid
Stop

State3: oEQ3==Valid & oEQ0==Ready
MOV oEQ0 to iEQ0

State4: oEQ3==Invalid & oEQ2==Ready
MOV oEQ2 to iEQ1

State5: oEQ4==Ready
Load Addr oEQ4 to iEQ2

State6: Oeq5==Ready
Load Addr oEQ5 to iEQ3

State7: oEQ6==Ready
Load Addr oEQ6 to iEQ4

State8: oEQ7==Ready
Load Addr oEQ7 to iEQ5

State9: oEQ8==Ready
MOV oEQ8 to iEQ6

Stat10: oEQ9==Ready & oEQ10=Ready
Store oEQ10 to Addr oEQ9

FSM

oEQ4iEQ2

oEQ6

oEQ5

iEQ3iEQ4

oEQ7

iEQ5 iEQ6oEQ8

oEQ9 oEQ10

Figure 4.13: Transformation for Store Nodes

the remaining components with FSM in the transformation and has a role of the fixed-function

memory access accelerator.

Figure 4.14 shows the fixed-function accelerators from the source code in figure 4.3. This

example has a nested loop (inner-loop) in outer-loop. We consider 4 cases of execution: 1) outer-

loop start, 2) inner-loop execution, 3) inner-loop stop, and 4) outer-loop stop. First, inner-loop

starts following steps below:

• When the host processor faces the accelerating region, it sends initialization signal to FSM.

• FSM (state0) sends the initial induction value 0 to iEQ0 to begin outer-loop execution.

• Data from iEQ0 flows the datapath and results are resided in oEQ0 and oEQ1. oEQ0 has

71

State0: Init
MOV 0 to iEQ0

State1: oEQ1==Invalid
MOV 0 to iEQ1

State2: oEQ1==Valid
Stop

State3: oEQ3==Valid & oEQ0==Ready
MOV oEQ0 to iEQ0

State4: oEQ3==Invalid & oEQ2==Ready
MOV oEQ2 to iEQ1

State5: oEQ4==Ready
Load Addr oEQ4 to iEQ2

FSM

>

/

<<

Ф

iEQ3

iEQ4 oEQ8

1

1

0
+

==

+

==

1

n

iEQ0
oEQ0

oEQ1

oEQ4

+

==

oEQ2

oEQ3

1
iEQ1

m

<<
1

+

Base
addr 'a'

oEQ5

+Base
addr 'c'

+
oEQ7

+
oEQ9

Base
addr 'd'

Base
addr 'd'

+

Base
addr 'b'

oEQ6iEQ2

+
oEQ10

iEQ5

iEQ6

Fixed-Function
Compute Accelerator

State6: Oeq5==Ready
Load Addr oEQ5 to iEQ3

State7: oEQ6==Ready
Load Addr oEQ6 to iEQ4

State8: oEQ7==Ready
Load Addr oEQ7 to iEQ5

State9: oEQ8==Ready
MOV Addr oEQ8 to iEQ6

Stat10: oEQ9==Ready & oEQ10=Ready
Store oEQ10 to Addr oEQ9

Address Generation Unit

Fixed-Function
Memory Access Accelerator

D$

D Bus

A Bus

LD/STR INIT

Demux

Figure 4.14: Execution

72

incremented induction value for outer-loop iteration and oEQ1 has a role to keep iterating

of outer loop or not. In case that the V bit in oEQ1 is invalid, FSM (state1) sends the

initial induction value 0 for the inner-loop to iEQ1.

• Outer-loop is hold until the execution of inner-loop is done (FSM state3).

Second, inner-loop execution is accelerated depending on the condition of outer-loop in oEQ1.

When V bit in oEQ1 is invalid, initial induction value for the inner-loop is provided. Inner-loop

is executed in the fixed-function accelerators by following:

• By FSM (state1), initial induction value for the inner-loop is passed to iEQ1.

• Induction value flows to dataflow and each output result resides in oEQ2, oEQ3, oEQ4,

oEQ5, oEQ7 and oEQ9.

• oEQ2 and oEQ3 are related to inner-loop control for incremented induction value and

inner-loop execution condition, respectively.

• Induction value for the inner-loop is provided from oEQ2 to iEQ1 until the execution of

inner-loop is finished (FSM state4).

• When R bit in oEQ4 is ready, it loads data from memory for c[i× 2] to iEQ2 for indirect

memory access (FSM state5).

• When R bit in oEQ5 is ready, it loads data from memory for a[i] to iEQ3 which is input

for fixed-function compute accelerator (FSM state6).

• When R bit in oEQ6 is ready, it loads data from memory for b[c[2× i]] to iEQ4 which is

input for fixed-function compute accelerator (FSM state7).

• When R bit in oEQ7 is ready, it loads data from memory for d[i]] to iEQ4 which is input

for fixed-function compute accelerator (FSM state8).

• When fixed-function compute accelerator generates computation result in oEQ8, R bit in

oEQ8 is ready. This result move into the iEQ6 by following FSM state9.

73

• To store computation result to memory, oEQ9 and oEQ10 are used. When R bits of both

of oEQs are ready (FSM state10), computation result is stored in d[i].

Third, fixed-function accelerators operate following steps when inner-loop execution steps:

• When R bit in oEQ3 is valid, inner-loop iteration is finished.

• Outer-loop needs to provide outer-loop induction value into the fixed-function memory

access accelerator. So, induction value for outer-loop in oEQ0 is passed to iEQ0 (FSM

state3).

Finally, execution of fixed-function accelerators stop when the iteration condition of outer-loop

occurs by following steps:

• When V bit in oEQ1 is valid, outer-loop iteration is finished.

• Acceleration stops (FSM state2).

4.5 Complex Scenarios

In this section, we discuss complex scenarios that may be shown in the source code. First, we

consider the source exhausted cases due to dataflow execution. It may happen when the value

is not provided to the input event queues for some reasons. Then, we think about memory

disambiguation which is frequently met in conventional source code.

The execution of fixed-function accelerators from ccHLS is based on dataflow operation.

Hence, required values to generate address and computation in fixed-function accelerators are

flowed through IO event eques and do computation when values in the input event queues are

valid. Due to the nature of the dataflow machine, however, it prevents fixed-function accelerators

from executing when required data is not ready or exhausted by other operations. Generally,

nested-loops have such a case when an inner loop consumes data which has dependency on

an outer loop. Induction values face this condition because they flow into the fixed-function

accelerators and input event queues for them are empty when they flow. In that case, ccHLS

places a special register called Induction-related Value Register (IVR) to hold required when

74

i

+1 ==M

j

+1 ==N

In edge1, induction
value 'j' is empty
once first iteration
of inner loop is done.

+base
addr 'b'

+base
addr 'r'

+base
addr 'r'

+

+base
addr 'a'

+

edge1

for(int j=0; j<N; ++j) {
 x = b[j];
 for(int i=0; i<M; ++i) {
 r[i] += a[x+i];
 }
}

Entry:
 br label BB0

BB0:
 %j = phi i32 [0, Entry], [%j.next, BB2]
 %tmp1 = getelementptr inbounds i32* %b, i32 %j
 %tmp2 = load i32* %tmp1, align 4, !tbaa !1
 br label BB1

BB1:
 %i = phi i32 [0, BB0], [%i.next, BB1]
 %tmp3 = getelementptr inbounds i8* %r, i32 %i
 %tmp4 = load i32* %tmp3, align 4, !tbaa !1
 %tmp5 = add nsw i32 %i, %tmp2
 %tmp6 = getelementptr inbounds i32* %a, i32 %tmp5
 %tmp7 = load i32* %tmp6, align 4, !tbaa !1
 %tmp8 = add nsw i32 %tmp7, %tmp4
 store i32 %tmp8, i32* %tmp3, align 4, !tbaa !1
 %i.next = add i32 %i, 1
 %exitcond2 = icmp eq i32 %i.next, M
 br i1 %exitcond2, label BB2, label BB1

BB2:
 %j.next = add i32 %j, 1
 %exitcond = icmp eq i32 %j.next, N
 br i1 %exitcond, label Exit, label BB0

Exit:
 ret void

a) Source code

b) Intermediate Representationc) E-AEPDG

Figure 4.15: Inner Loop Dependency by Outer Loop Value

E-AEPDG is transformed. This special register is to be valid when data arrives and invalid when

FSM in the fixed-function decides that is not required any more in the execution.

In an out-of-order processor, the issue of memory disambiguation arises when the source

code has memory dependencies such as true-, anti-, and output-dependency. Hence, the load-

store unit (LSU) is provided in the out-of-order processor to solve memory access ordering

when it accesses memory and new LSU designs are proposed [71, 66] . However, fixed-function

accelerators do not use LSU in the design and require a memory access ordering mechanism.

ccHLS provide a new queue called the disambiguation queue (DQ) to relax the memory access

ordering issue. FSM in the fixed-function memory access accelerator sees this queue and decides

the state to access memory.

75

iEQ1

+1 ==M

iEQ0

+1 ==N +base
addr 'b'

+base
addr 'r'

+base
addr 'r'

+

+base
addr 'a'

+

oEQ0 oEQ1 oEQ2

iEQ2

IVR

oEQ7

oEQ3 oEQ4

oEQ5

oEQ6

iEQ3 iEQ4

oEQ8

State0: Init
MOV 0 to iEQ0

State1: oEQ1==Invalid
MOV 0 to iEQ1

State2: oEQ1==Valid
Stop

State3: oEQ4==Valid & oEQ0==Ready
MOV oEQ0 to iEQ0
Invalidate IVR

State4: oEQ4==Invalid & oEQ3==Ready
MOV oEQ3 to iEQ1

State5: oEQ2==Ready
Load Addr oEQ2 to iEQ2

State6: oEQ5==Ready
Load Addr oEQ5 to iEQ4

State7: oEQ7==Ready
Load Addr oEQ7 to iEQ3

State8: oEQ6==Ready & oEQ8=Ready
Store oEQ8 to Addr oEQ6

FSM

Figure 4.16: Transformation of Loop Dependency

Dependency by Load Figure 4.15 shows an example that data is empty when it executes. In

figure 4.15a), nested loops are shown and the inner loop has data dependency by x=b[j] which

is related to induction value j. It is consumed in the inner loop to compute the memory access

address and finally used for address a[x+i]. The inner loop keeps accelerating the code region

and requires value x when it iterates. j is empty until the inner loop is done and fixed-function

accelerators arise deadlock because value x is not delivered in the fixed-function accelerators.

From the intermediate representation, in figure 4.15b), the induction value j has the dependency

to load the data (%tmp2) and loaded data has dependency on the inner loop. Figure 4.15c)

presents the E-AEPDG and the edge that is dependent on the inner loop.

To avoid deadlock, IVR is inserted when E-AEPDG is transformed to generate fixed-function

accelerators. The place where IVR is added is the node that has dependency on the inner loop.

%tmp2 is the target to add IVR because the load %tmp2 node is used with dependency within

76

i

+1 ==M

j

+1 ==N

In edge1, 'Mxj' is empty
once first iteration
of inner loop is done.

+base
addr 'r'

+base
addr 'r'

+

+base
addr 'a'

+

edge1

for(int j=0; j<N; ++j) {
 for(int i=0; i<M; ++i) {
 r[M*j+i] += a[M*j+i];
 }
}

Entry:
 br label BB2

BB0:
 %i = phi i32 [0, BB2], [%i.next, BB0]
 %tmp1 = add nsw i32 %i, %tmp7
 %tmp2 = getelementptr inbounds i8* %r, i32 %tmp1
 %tmp3 = load i32* %tmp2, align 4, !tbaa !1
 %tmp4 = getelementptr inbounds i32* %a, i32 %tmp1
 %tmp5 = load i32* %tmp4, align 4, !tbaa !1
 %tmp6 = add nsw i32 %tmp5, %tmp3
 store i32 %tmp6, i32* %tmp2, align 4, !tbaa !1
 %i.next = add i32 %i, 1
 %exitcond2 = icmp eq i32 %i.next, M
 br i1 %exitcond2, label BB1, label BB0

BB1:
 %j.next = add i32 %j, 1
 %exitcond = icmp eq i32 %j.next, N
 br i1 %exitcond, label Exit, label BB2

BB2:
 %j = phi i32 [0, Entry], [%j.next, BB1]
 %tmp7 = mul nsw i32 %j, M
 br label BB0

Exit:
 ret void

a) Source code

b) Intermediate Representationc) E-AEPDG

xM

Figure 4.17: Loop Dependency by Outer Loop Induction Value

the inner loop. Figure 4.16 shows the transformation with IVR. From FSM, State5 loads data

for b[j] to iEQ2. When iEQ2 gets data, it flows to IVR and keeps providing b[j]. When the

inner loop is done, State3 increments induction variable j and invalidates IVR simultaneously.

Based on transformation, ccHLS replaces each node and edge as the formal form to generate

fixed-function accelerators.

Dependency by induction value Figure 4.17 shows the different phases of the load depen-

dency. In figure 4.17a), the inner loop uses the induction value of j for computation. In the

general purpose processor, this value is in the register and gets the register number in the decode

stage. However, the dataflow in the fixed-function accelerators consume j and it is empty after

the first iteration of the inner loop. It also causes the deadlock and data does not flow into the

fixed-function accelerators. In figure 4.17b), induction value j has a data dependency on %tmp7

77

iEQ1

+1 ==M

iEQ0

+1 ==N

+base
addr 'r'

+base
addr 'r'

+

+base
addr 'a'

+

xM

IVR
oEQ0 oEQ1

oEQ2 oEQ3

oEQ4 oEQ5 oEQ6

iEQ3iEQ2

oEQ7

State0: Init
MOV 0 to iEQ0

State1: oEQ1==Invalid
MOV 0 to iEQ1

State2: oEQ1==Valid
Stop

State3: oEQ3==Valid & oEQ0==Ready
MOV oEQ0 to iEQ0
Invalidate IVR

State4: oEQ3==Invalid & oEQ2==Ready
MOV oEQ2 to iEQ1

State5: oEQ4==Ready
Load Addr oEQ4 to iEQ2

State6: oEQ5==Ready
Load Addr oEQ5 to iEQ3

State7: oEQ6==Ready & oEQ7=Ready
Store oEQ7 to Addr oEQ6

FSM

Figure 4.18: Transformation of Loop Dependency by Outer Loop Induction Value

(in basic block BB2) and %tmp7 is used in the inner loop (in basic block BB0) with dependency.

In figure 4.17c), the edge that has dependency within the inner loop is a potential reason for

deadlock.

In this case, IVR is also added into the node that has dependency on the inner loop and

%tmp7 is the target to place IVR to avoid deadlock. Figure 4.18 presents the transformation and

IVR is linked by the node %tmp7. The induction value j arrives at IVR when the operation of

node %tmp7 and its value is valid until the inner loop is done in State3.

Memory Disambiguation Figure 4.19 shows code snippets that have memory dependencies.

In figure 4.19a), it has all three memory dependency problems, which are true-dependency

(RAW), anti-dependency (WAR), and output-dependency (WAW). In figure 4.19b) and c), de-

pendencies in IR and the observation from IR are presented. First, S3 has true-dependency with

78

for(int i=0; i<N; ++i) {
S1: a[i] = a[i] + C*c[i];
S2: c[i] = b[i] + d[i];
S3: a[i] = a[i] + c[i];
}

Entry:
 br label BB0

BB0:
 %i = phi i32 [0, Entry], [%i.next, BB0]
 %tmp = getelementptr inbounds i32* %a, i64 %i
 %tmp1 = load i32* %tmp, align 4, !tbaa !1
 %tmp2 = getelementptr inbounds i32* %c, i64 %i
 %tmp3 = load i32* %tmp2, align 4, !tbaa !1
 %tmp4 = mul nsw i32 %tmp3, C
 %tmp5 = add nsw i32 %tmp4, %tmp1
 store i32 %tmp5, i32* %tmp, align 4, !tbaa !1
 %tmp6 = getelementptr inbounds i32* %b, i64 %i
 %tmp7 = load i32* %tmp6, align 4, !tbaa !1
 %tmp8 = getelementptr inbounds i32* %d, i64 %i
 %tmp9 = load i32* %tmp8, align 4, !tbaa !1
 %tmp10 = add nsw i32 %tmp9, %tmp7
 store i32 %tmp10, i32* %tmp2, align 4, !tbaa !1
 %tmp11 = add nsw i32 %tmp5, %tmp10
 store i32 %tmp11, i32* %tmp, align 4, !tbaa !1
 %i.next = add i32 %i, 1
 %exitcond2 = icmp eq i32 %i.next, N
 br i1 %exitcond2, label Exit, label BB0

Exit:
 Ret void

c) Observations b) Intermediate Representation

- S3 has true dependency with a[i]
and c[i] in S1 and S2

- c[i] in S1 has anti-dependency
(WAR) in S2 to store data
(Red line in Intermediate
Representation)

- a[i] in S1 and S2 output
dependency (WAW)
(Blue line in Intermediate
Representation)

a) Source code

Figure 4.19: Source Code with Memory Disambiguation

a[i] and b[i] and its memory access is held until the dependency is resolved. Second, c[i]

in S2 has anti-dependency with that in S1 and memory access c[i] in S2 should not violate

memory access order with that in S1. Finally, a[i] in S1 and S3 has output dependency. While

LSU manages the order of memory access operations in the normal out-of-order processor,

fixed-function accelerators do not use LSU for memory access and that should be solved within

the E-AEPDG.

Figure 4.20 shows the organization of E-AEPDG with memory dependency. It is expanded

from IR and deployed with edges and nodes. The evidence of memory dependency are in

IR and reflected in the edges of E-AEPDG. edge1 is dependent on edge4 (output-dependent)

and memory access by edge1 is older than edge4. In addition, edge2 is anti-dependency on

edge3 and it is older than edge3. To provide memory access order to FSM in the fixed-function

accelerator, DQs for those edges are attached to provide the capability of order decision. DQ is

a single bit queues and used in the FSM to decide the state. For true-dependency, it does not

79

i

+1 ==N

+base
addr 'a'

x

edge4

+base
addr 'a'

+base
addr 'c'

+base
addr 'b'

+base
addr 'd'

+base
addr 'c'

+base
addr 'a'

C

+

+

+

edge1

edge3
edge2

edge5 edge6

- 'edge4' has output-dependency
with 'edge1'
- 'edge3' has anti-dependency
with 'edge2'
- 'edge5' and 'edge6' are
storing value for address in
'edge1' and 'edge3'

Figure 4.20: E-AEPDG with Memory Disambiguation

require DQ because its value has already been ready and the output edge has data. In addition,

edge5 and edge6 present output edges to export storing data for output- and anti-dependencies

and they should be stored in the memory by using edge1 and edge6 as storing addresses In that

case, attaching an additional output EQ can solve the issue and they are used for store value

and data movement ports for a dependent node.

Figure 4.21 presents the transformation of A-EPDG with memory disambiguation and its

FSM. For anti- and output-dependencies, DQs (DQ0 and DQ1) are attached on the edges (edge1

and edge2) and State8 and State9 are executed when DQs are ready. For true-dependency,

edges are directly linked to the add node and storing data for source code line S1 and S2 are

exported through oEQ5 and oEQ6, respectively.

Algorithm 5 describes the mechanism that avoids the complex scenario. For the case that

dependecy shown by load, it collects target link edges which are the output of load nodes to

insert IVR from all load nodes (LoadNode. When the target link edge has the dependency on

80

iEQ0

+1 ==N

+base
addr 'a'

x

+base
addr 'a'

+base
addr 'c'

+base
addr 'b'

+base
addr 'd'

+base
addr 'c'

+base
addr 'a'

C

+

oEQ0 oEQ1

oEQ2 oEQ3

oEQ4

iEQ1 iEQ2

oEQ5 oEQ6

oEQ7 oEQ8

+

iEQ3 iEQ4

oEQ9 oEQ10

+

oEQ11

Fixed-Function
Compute

Accelerator

State0: Init
MOV O to iEQ0

State1:
oEQ1==Invalid & oEQ0 ==Ready
MOV oEQ to iEQ0
State2:
oEQ1==Valid
Stop

State3:
oEQ2==Valid
Load Addr oEQ2 to iEQ1

State4:
oEQ3==Valid
Load Addr oEQ3 to iEQ2

State5:
oEQ4==Valid & oEQ5==Ready
Store oEQ5 to Addr oEQ4

State6:
oEQ7==Valid
Load Addr oEQ7 to iEQ3

State7:
oEQ8==Valid
Load Addr oEQ7 to iEQ4

State8:
oEQ9==Valid & oEQ6==Ready &
DQ1==Ready
Store oEQ6 to Addr oEQ9

State9:
oEQ10==Valid & oEQ11==Ready &
DQ0==Ready
Store oEQ11 to Addr oEQ10

FSM

DQ0DQ0

DQ1

Figure 4.21: Transformation with Memory Disambiguation

inner-loop node, this target link edge requires IVR and the collection of input and output edges

should be updated. For the dependency by induction variable, it is similar to the dependecy

by load except choosing target link edges. In this case, target link edges get from the node

having dependecy with input edges. For memory disambiguation, it checks all load and store

node with base addresses provided by CFG. If one of store or load nodes with base address has

younger node that access that address, this node is the target to requires DQ.

81

Algorithm 5 Resolving Complex Scenario
1: LoadNode← {Load Node in CFG with Order}
2: StoreNode← {Store Node in CFG with Order}
3: i_edges← {From e-aepdg}
4: o_edges← {From e-aepdg}
5: BaseAddr ← {Base Address in e-aepdg}
6: IV R← ∅
7: DQ← ∅

{Dependency by Load}
8: for all LNode ∈ LoadNode do
9: target_link_edge← Output_Link_Edge(LNode)

10: for all node ∈ InnerLoop do
11: for all target_link_edge ∈ Get-Operands(node) do
12: IV R← IV R ∪ target_link_edge
13: i_edges← i_edges ∪ target_link_edge
14: o_edges← o_edges ∪ target_link_edge
15: end for
16: end for
17: end for

{Dependency by Induction Value}
18: ANode← {All Node having Dependency with i_edge}
19: target_link_edge← Output_Link_Edge(ANode)
20: for all node ∈ InnerLoop do
21: for all target_link_edge ∈ Get-Operands(node) do
22: IV R← IV R ∪ target_link_edge
23: i_edges← i_edges ∪ target_link_edge
24: o_edges← o_edges ∪ target_link_edge
25: end for
26: end for

{Memory Disambiguation}
27: for all Addr ∈ BaseAddr do
28: for all SNode ∈ StoreNode do
29: for all SNode(Addr) such that {having younger SNode(Addr)} do
30: DQ← DQ∪ Output_Link_Edge(SNode(Addr))
31: end for
32: end for
33: for all LNode ∈ LoadNode do
34: for all LNode(Addr) such that {having younger SNode(Addr)} do
35: DQ← DQ∪ Output_Link_Edge(LNode(Addr))
36: end for
37: end for
38: end for

82

Supported Unsupported
All arithmetic computations function call
Array Dynamic memory allocation
Pointer Vectorization (SIMD, MMX, etc.)
Struct

Table 4.3: Supported and unsupported coding style

4.6 ccHLS Support

ccHLS is designed to generate fixed-function accelerators from target source code written in

high-level program languages. Specifically, it is aimed to support all program languages that

are transformed to intermediate representation (IR) because ccHLS is a back-end compiler based

on IR. In this subsection, ANSI C is chosen to explain support and unsupport coding in the

source code for synthesis to fixed-function accelerators. However, not all subsets of ANSI C are

supported in ccHLS because it focuses on algorithmic loop acceleration. Hence, code segments

that prohibit from constructing E-AEPDG is not supported by ccHLS.

Basically, all arithmetic operations including integer and floating point are supported by

ccHLS because they construct the skeleton of E-AEPDG. Those operations are transformed to

functional units for fixed-function compute and memory access accelerators. In addition, arrays

and pointers that are frequently used in the code segment are supported, which are transformed

as data movement and memory access by load and store operations through iEQs and oEQs.

However, some subsets of ANSI C are unsupported by ccHLS. Generally, they prevent the

source code from organizing E-AEPDG, and function calls, dynamic memory allocation, and vec-

torization are examples of subsets that are not supported. First, function calls in the source code

are not allowed by ccHLS because it cannot be built as a form of the E-AEPDG. The target source

code that has function calls should be modified in the callee function. Second, dynamic memory

allocation is not supported because its virtual memory address is not fixed in compile time,

hence it is not possible to let E-AEPDG know the base address of dynamic memory allocation

for load or store operations. Finally, vectorization such as SIMD instructions is not supported

because it requires pairs of functional units for SIMD instructions and is wasteful when ccHLS

transforms them as functional units. Thus, ccHLS transforms vectorized operations as sequential

operations by providing data into a functional unit assigned for vectorized instructions. Table 4.3

83

shows the classification of supported and unsupported coding style in the code segment.

4.7 Implementation

To construct extended AEPDG, LLVM compiler framework is used [50]. From the front-end

compiler of LLVM, it represents the source code written in high-level program language as an

intermediate representation code for the control flow graph, which is machine-independent

code described as a static single assignment form (SSA). After passing various code analysis

and optimization passes, LLVM finally translates machine-dependent assembly code by the

back-end compiler. ccHLS utilizes IR and analysis passes to generate E-AEPDG then provides

fixed-function accelerators from the back-end.

ccHLS first optimizes IR and collects information used for creating E-AEPDG. Especially,

unnecessary memory access, which accesses the same memory address to load or store temporal

data, from load and store instructions is wasteful for creating the fixed-function accelerator

because it consumes resources to organize it. Therefore, ccHLS removes all redundant instruc-

tions by reusing replaceable instructions in IR and makes compact fixed-function accelerators

when it is generated as output. After optimizing IR, ccHLS collects information to organize

extended AEPDG. To figure out what Instructions are the elements for execute, access, or loop

control subgraph, ccHLS scrutinizes the target loop region and finds subloops in the target

loop, loop head and exit basic block (BB) of each subloop. It is important because the location

of instructions is a clue to classify instructions to construct subgraph of E-AEPDG. Then, I

developed the LLVM passes to create E-AEPDG and transform E-AEPDG into the fixed-function

accelerators.

4.8 Chapter Summary

In this chapter, we discussed the ccHLS design using a compiler intermediate representation

called Extended Access/Execute Program Dependence Graph (E-AEPDG) to easily generate

the fixed-function accelerators. Based on LLVM infrastructure, we showed how to convert the

conventional intermediate representation to E-AEPDG and transform E-AEPDG to the fixed-

84

function accelerators. Following the DAE model, the generated accelerator is classified to the

fixed-function compute accelerator and the fixed-function memory access accelerator. In the

fixed-function memory access accelerator, it parallelized loop invocations with the dataflow

fashion and fed data generated from memory address computation into the fixed-function

compute accelerator as the dataflow.

85

5 evaluation of swsl

This chapter discusses the evaluation methodology and results of generated accelerators from

the SoftWare Synthesis (SWSL). SWSL utilizes the PLUG programming model and its code block

source code are fed into SWSL for generating accelerators of specialized network loop algorithms.

The data flow graph (DFG) model of the applications are customized as accelerators. It is the

stand-alone accelerator and the host processor only that feeds the lookup request by injecting

lookup request messages into the accelerator. Hence, the evaluation of the accelerator from SWSL

only focuses on the generated accelerator itself. For the evaluation metrics, SWSL evaluates

the latency, power and area size compared with PLUG and LEAP when SWSL generates the

network lookup accelerator.

In section 5.1, we describe the overview of the evaluation methodology for SWSL. Section 5.2

discusses the benchmarks to evaluate and details of evaluation metrics are presented. Finally,

the evaluation result is shown in section 5.3.

5.1 Evaluation Overview

In this section, the overviews of evaluation of SWSL are detailed. SWSL generates the lookup

accelerator and the host processor feeds the lookup request message into the lookup accelerator.

Due to the difficulty for comparison with other network lookup accelerators, the network lookup

accelerator from SWSL is only concentrated on the generated accelerator and it compares with

other network lookup accelerators that follow the same execution model feeding lookup requests

by the host processor. The comparison accelerators have the same execution in the host processor

and we are able to pay attention to the network lookup accelerators.

The accelerator from SWSL assumes a line card that interacts a host processor with the

accelerators. Figure 5.1 shows the architectural target model of SWSL. To evaluate line card style

execution as terms of comparison, we use PLUG and another specialized lookup accelerator,

LEAP [38]. The choice of comparing with PLUG and LEAP is motivated by the fact that they rep-

resent opposite points within the software/hardware design tradeoff. PLUG adopts a software

approach, with its computation engines being conventional Von-Neumann cores. LEAP instead

86

In
te

rfa
c

e

Host
Processor

DRAM

Accelerators

Line Card

Possible Accelerators
1. PLUG
2. LEAP
3. SWSL

Operation From the
Host Processor
1. Lookup Request
2. Update Lookup Data
 Structure
3. Get Lookup Results

Figure 5.1: SWSL Target Model: Network Line Card

uses arrays of fixed-function hardware blocks. PLUG offers software-like programmability;

LEAP has a constrained programming model but achieves near-ASIC performance. However,

they are well-matched with the design of line card and the operation of the host processor is

exactly the same in terms of lookup, update, and getting the result. Hence, we are able to ignore

the operation in the host processor and only focus on the comparison of the accelerators.

As the target source code of SWSL, we used a PLUG programming model that includes the

APIs [47], and a specialized lookup accelerator. Its API exports a DFG-based programming

model, and provides infrastructure for simulating and verifying lookup algorithms in software.

We then modified the PLUG toolchain to use the SWSL compiler as a backend. The SWSL

compiler itself was implemented as a series of passes mentioned in chapter 3 for the LLVM

compiler toolkit.

SWSL generates a datapath as RTL modules for code blocks in the DFG for network lookup

applications and top model design to combine code block datapath modules. This thesis focuses

on the analysis of pure network lookup accelerators and architectural trade-off. Hence, generated

RTL modules and top model design are not integrated into the host processor, but serves as

a stand-alone lookup request model. For this reason, we implement the testbench to request

lookup operations and mimic such requests provided by the conventional host processor. Its

performance is simulated using Synopsys VCS simulator with the testbenches.

87

To evaluate the performance of SWSL designs, we used the Synopsys design compiler with

a 55nm design library and 1 GHz clock frequency. To evaluate the SRAM memory installed

to each logical page, we leveraged the CACTI modeling simulator [74] with SRAM organized

by four 64 KB memory banks for proper comparison to PLUG and LEAP (which use the same

memory design).

5.2 Benchmarks

To evaluate, the SWSL uses different sets of benchmarks because SWSL does not have a matched

benchmark set since it follows the specialized programming model of PLUG architecture. Conse-

quently, PLUG applications are targeted for the comparison instead of conventional benchmarks.

The main reasons for using PLUG applications are i) they are modeled for the comparison archi-

tectures (PLUG and LEAP) and ii) it is effective to show the differences among software (PLUG),

software-hardware codesign (LEAP), and hardware intensive design (SWSL). As target lookup

applications, we choose a suite of three standard lookup algorithms (Ethernet forwarding, IPv4,

and IPv6), and one research protocol - Ethane, which is an academic precursor of OpenFlow. To

evaluate the flexibility of SWSL we also included DFA-based regexp matching (a widespread

primitive used in intrusion detection systems). We note here that the DFA application imple-

ments only a lookup in a compressed transition table, not the complete DFA. As SWSL shares

PLUG programming API, we use a version of these applications previously implemented for

PLUG. To generate SWSL designs, the applications were fed to the SWSL compiler, implementing

the passes listed in Figure 3.2. For further details of each application the reader is referred to

[47, 24]. We reuse these applications from the PLUG source code and code blocks with DFG

configuration of applications are directly injected into the SWSL compilation process shown in

Figure 3.2. Details of DFGs for each application can be found in figure 5.2 and table 5.1.

SWSL, which only concentrates on generating the network lookup accelerator, intends to

build an accelerator which can feasibly execute a lookup per clock. Hence, we measure latency

when a lookup operation is executed instead of performance improvement by reducing execution

time. For power and area analysis, we estimate a generated accelerator RTL using a Synopsys

88

LP0

Relay

LP1

LP2

LP3

MutexIn Out

a) Ethernet forwarding

LP0In LP2LP1 LP4LP3 LP6LP5 OutLP7

b) IPv4

LP0In LP2LP1 LP4LP3 LP6LP5 LP8LP7 LP9 LP11LP10 LP13LP12 OutPriority

LP14In Mutex LP17LP16 LP19LP18 LP21LP20 Mutex

LP15 LP22

c) IPv6

LP0

Relay

LP1

LP2

LP3

MutexIn Out

LP0

LP1

MutexIn Priority

LP2

LP3

MutexIn

LP5

LP6

MutexIn

LP4

LP7

Out

d) Ethane

LP0In OutLP0In Out

LP0LP1

LP0LP2

Priority

e) DFA Matching

Figure 5.2: Data Flow Graph for Applications

89

LP Number Number of code-
blocks

Input Network Output Network

Ethernet Forwarding
0 3 0, 1 0, 1, 2
1, 2, 3 3 0, 1 1

IPv4
0 5 0, 1, 2 0, 1, 2
1 5 0, 1, 2 0, 1, 2
2 8 0, 1, 2 0, 1, 2
3 5 0, 1, 2 0, 1, 2
4 5 0, 1, 2 0, 1, 2
5 5 0, 1, 2 0, 1, 2
6 6 0, 1, 2 0, 1
7 5 0, 1, 2 0, 1

IPv6
0 5 0, 1, 2 0, 1, 2
1 5 0, 1, 2 0, 1, 2
2 8 0, 1, 2 0, 1, 2
3, 6, 9, 16 5 0, 1, 2 0, 1, 2
4, 7, 10, 17 5 0, 1, 2 0, 1, 2
5, 8, 11, 18 5 0, 1, 2 0, 1, 2
12, 19 6 0, 1, 2 0, 1
13, 20 5 0, 1, 2 0, 1
14 3 0, 1, 2 0, 1, 2, 3, 4
15 3 0, 1, 2 0, 1, 2
21 4 0, 1, 2 0, 1, 2, 3
22 4 0, 1, 2 0, 1

Ethane
0 4 0, 1, 2 0, 2, 3, 4
1 4 0, 1, 2 0
2, 5 5 0, 1, 2 0, 2, 3
3, 6 5 0, 1 0, 1
4, 7 3 0, 1 0, 1

DFA Matching
0 2 0, 1, 2 0, 1, 2, 3
1 2 0, 1, 2 0
2 2 0 0

Table 5.1: Details of Network Lookpu Application

90

design compiler.

5.3 Evaluation for Network Lookup with SWSL

In this section, we evaluate network lookup modules from SWSL. It includes the effectiveness,

throughput, latency, power, and area analysis. Details of designs are shown in the paragraphs

below:

Effectiveness/Ease of programming: To evaluate the SWSL compiler, we selected a set of 5

applications originally written for the PLUG lookup accelerator. We emphasize that basing

the SWSL programming model on the PLUG API is purely a matter of convenience; the SWSL

compiler could be adapted to a different API with minimal tweaks (as long as the programming

model enforces the constraints listed in section 3.1.1).

SWSL was able to generate functionally correct lookup hardware for all the applications in

our set; none of the applications required changes. According to [47], developing/verifying the

PLUG hardware took 6 person-months and developing the applications took 18 person-months.

Developing the PLUG-specific compiler took another 6 person-months. In this context, the SWSL

approach would have made the hardware development cycle largely unnecessary, potentially

reducing design time by up to 20%.

Throughput Analysis: Both PLUG and LEAP can achieve a throughput of 1 lookup per cy-

cle with a 1 GHz clock frequency. We verified that SWSL is capable of achieving the same

throughput.

Latency Analysis: Table 5.2 presents the latency of each SWSL-generated application (in ns)

in the “Total Latency” column. The latency is further decomposed into the component due

to the length of the (hardware or software) critical path, and the latency introduced by the

scheduler for synchronization purposes (in section 3.1.2). The synchronization overhead is

relatively high, contributing up to 1/3 of the overall latency. However synchronization is crucial,

as it guarantees conflict-free execution, enabling pipelining.

91

Application Computation Synchronization Total
Critical Path Latency

Ethernet forwarding 8 3 11
IPv4 93 35 128
IPv6 175 63 238

Ethane 29 2 31
DFA 22 7 29

Table 5.2: SWSL Application Latency (ns)

Table 5.3 further compares the latency of SWSL-generated applications with the same applica-

tions deployed on PLUG and LEAP. SWSL achieves a significant latency reduction in comparison

with PLUG, for three reasons.

First, SWSL exploits more parallelism than PLUG. SWSL generates merged basic block,

computing multiple branch conditions in a single 1-cycle pass. As branch conditions tend to be

on the computation critical path, parallelizing their computation directly decreases the overall

application latency. Conversely, PLUG is based on the conventional Von-Neumann architecture,

and executes algorithms in software. In this context, branch conditions have to be evaluated

sequentially.

Second, the PLUG API offers specialized high-level operation, each of which is translated to

several atomic instructions. For example, the PLUG SendMsg call is used to forward intermediate

results between algorithmic steps. At compile-time, a single SendMsg is converted to multiple

instructions that copy values to special-purpose network registers, construct the message header

and send the message on the on-chip network – requiring 5 cycles. Instead, SWSL can implement

the operation directly as efficient hardware and execute all data movements in a single cycle.

Finally, there is no communication overhead in SWSL. PLUG cores are organized in a matrix;

the on-chip network allows arbitrary communication patterns between cores. This requires all

communication to be mediated by on-chip routers. PLUG employs point-point links and XY

routing, making communication latency dependent on the distance between cores. As SWSL

specializes the hardware for a single algorithm, communication does not need to be flexible.

Stages are connected directly via wires (Figure 3.1c), making communication latency negligible.

SWSL has still higher latency than LEAP. LEAP can achieve minimal latency because of its

optimized programming model. A LEAP computation engine is an array of specialized hardware

92

Application SWSL PLUG LEAP
Ethernet forwarding 11 55 6

IPv4 128 264 24
IPv6 238 524 42

Ethane 31 100 6
DFA 29 59 6

Table 5.3: Latency Comparison (ns)

Application SWSL PLUG LEAP
Ethernet forwarding 0.582 0.504 0.392

IPv4 1.753 0.504 0.392
IPv6 5.473 2.331 1.813

Ethane 1.200 0.504 0.392
DFA 0.373 0.756 0.588

Table 5.4: Power Estimation (W)

units connected via a crossbar, resulting in near-ASIC performance. However, such performance

comes at a price in terms of ease of development and generality. Programming LEAP involves

routing bits and configuration values between units to implement the desired algorithm. LEAP

exports a specialized Python API that alleviates the complexity of this programming model,

however applications developed for LEAP are highly specific and cannot be easily supported on

other architectures. For example, a LEAP programmer must explicitly ensure that the format

and bit width of inputs and intermediate results match the specifications of each functional unit.

Conversely, SWSL uses a conventional programming model which allows developers to leverage

their programming expertise and express applications in a more intuitive form. Moreover, SWSL

code is generic and platform-independent form, facilitating code reuse.

Power: For PLUG and LEAP, we estimate power by multiplying the power of a single tile

with the number of active tiles configured for a target lookup application. While IPv6 is only

configured as 8×8, other lookup applications are configured as 4×4 [47]. From tile configuration,

Ethernet forwarding, IPv4, IPv6, Ethane and DFA have 8, 8, 37, 8, and 12 active tiles, respectively.

The power consumption of a single tile of PLUG and LEAP is 63mW and 49mW [38]. We adopt

this methodology to be consistent with results used in the LEAP work, since we compare to

93

both LEAP and PLUG1.

For SWSL, we collect the power number from the Synopsys power compiler with RTL code

from SWSL with a default activity factor. Table 5.4 shows total power for each lookup engine

approach. Results are mixed, with SWSL consuming slightly more than PLUG and LEAP in most

cases, with the exception of the DFA application. This is motivated by the different complexities

of each application. DFA consists of a simple algorithm that leads SWSL to instantiate a small

amount of logic, leading to low power consumption. IPv4, IPv6 and Ethane are more complex

and more deeply pipelined. In this case, the generality of PLUG and LEAP lead to smaller

power consumption, as the same functionality can be re-used multiple times. Instead, SWSL

instantiates dedicated logic for each pipeline stage, resulting in greater power consumption

for complex applications. However, it is still a surprising and counter-intuitive result that an

application-specific implementation consumes more power than a general-purpose engine. The

reason is that our Verilog code generator backend is not as mature as the code-generation for

engines like PLUG and LEAP which can re-use decades of research in instruction-level code

generation. Also, there is one known source of significant inefficiency in our compiler. We are

currently not using known hyperblock and predication [55] technology to handle control-flow.

As a result, we have excessively long control-flow paths, which introduce unnecessarily large

numbers of variable lines - each of which consumes significant power. We believe the underlying

ideas in SWSL will provide power efficiency after these further engineering challenges are

solved.

Area: We collect area for each network application from the synthesis result. Table 5.5 presents

the area of each network application. From table 5.5, PLUG and LEAP have relatively larger

areas than SWSL.

As PLUG and LEAP have a tiled configuration, with tiles arranged in 4× 4 or 8× 8 squares,

they require significant area. However, the area taken by the computational engines is small;

most of each tile’s area is used by on-chip memory (PLUG - 64%, LEAP -95%). The computation
1In the PLUG papers, per-application power was reported, by considering only the tiles that are active based

on individual lookup patterns and code-block activated. In contrast, here we are reporting PLUG power as power
consumed by a tile multiplied by number of activated tiles.

94

Application SWSL PLUG LEAP
Ethernet forwarding 16.897 51.2 33.6

Compute 0.937 18.432 1.68
Memory 15.96 32.768 32.92

IPv4 19.419 51.2 33.6
Compute 3.459 18.432 1.68
Memory 15.96 32.768 32.92

IPv6 56.062 204.8 134.4
Compute 10.177 73.728 6.72
Memory 45.885 131.072 127.68
Ethane 18.384 51.2 33.6

Compute 2.424 18.432 1.68
Memory 15.96 32.768 31.92

DFA 16.354 51.2 33.6
Compute 0.394 18.432 1.68
Memory 15.96 32.768 31.92

Table 5.5: Area Estimation (mm2)

to memory ratio is also small for SWSL; we found that IPv6 computation area for SWSL is

approximately the same as 3 PLUG tiles. An important difference is that SWSL constructs the

chip design depending on the structure and computation of the input applications. Instead,

PLUG and LEAP designs have a fixed structure, as the same design must support multiple

applications (the only degree of freedom is the size – in terms of number of tiles – of the design).

SWSL has a high power-area ratio, which means that power consumption of an SWSL-

generated design can be high even though its area is small. This can be explained as follows.

The central idea of SWSL is to translate software functionality into hardware logic. Each block

generated by SWSL implements exactly the action performed by the corresponding software; at

run-time, all blocks will be busy performing their respective functions. Instead, PLUG and LEAP

provide an array of cores (or, in the case of LEAP, specialized computational engines) to which

functionality is assigned; the number of cores is overprovisioned to support computing-intensive

applications. Therefore, in general, not all cores will be active at the same time, leading to less

power consumption per unit of area.

95

5.4 Chapter Summary

This chapter investigates SWSL to generate hardware accelerators for network lookup. SWSL

is the compilation techniques to generate hardware for a specific purpose, network lookup.

Our evaluation shows that its operation latency is better than the specialized network lookup

architecture (PLUG) and it gives reasonable power efficiency. The fixed function design from

the code written in high-level program language provides reasonable result numbers.

96

6 evaluation of cchls

In this chapter, we quantitatively evaluate the cache-coherent High-Level Synthesis (ccHLS).

Generic program source code is the target of the ccHLS to generate the loop accelerator in the

source code. Accelerators share the data cache in the host processor. Mixed architectural models,

including the host processor and accelerators, are evaluated.

We evaluate the overall performance, power and energy efficiency of fixed-function accelera-

tors by comparing with 2-issue and 4-issue out-of-order processors. In addition, comparison

between the fixed-function accelerators from ccHLS and another research HLS compiler called

C-Core are evaluated in this section. ccHLS accelerates the loop intensive region in the con-

ventional source code and its output accelerator is a part of execution. Thus, we delve into its

performance and efficiency compared to generic processor architectures and one HLS accelerator

for comparison.

This chapter is organized as follows: Section 6.1 presents the overview of evaluation method-

ology for ccHLS. Section 6.2 introduces the benchmarks to evaluate and evaluation metrics.

Section 6.3 presents the evaluation of the fixed-function accelerators generating from ccHLS with

generic benchmark programs comparing with general purpose processor. Finally, Section 6.4

examines the comparison with C-Cores.

DRAM

Generated
Accelerator

Host
Processor

Program

ccHLS

D$

Executable
Binary

Figure 6.1: ccHLS Target Model: D-Cache utilization during acceleration

97

Parameters Dual-issue OoO 4-issue OoO
Fetch, Decode, 2 4Issue, and Writeback Width
ROB Size 40 168
Scheduler (issue queue) 32 54
Register File (int/fp) 56/56 160/144
LSQ (ld/st) 10/16 64/36
DCache Ports 1(r/w) 2(r/w)
L1 Caches I-Cache: 32 KB, 2 way, 64B lines D-Cache: 64 KB, 2 way, 64B lines
L2 Caches 2 MB, 8-way unified, 64B lines

Table 6.1: General purpose host processor models

6.1 Modeling for the Fixed-Function Accelerator from ccHLS

The fixed-function accelerators from the ccHLS share the data cache in the host processor. Thus,

the execution model of the fixed-function accelerators assumes a general purpose processor

exists. Figure 6.1 depicts the target model of the ccHLS. The host processor, except the data cache,

sleeps during execution and awakes when the acceleration is finished. Hence, it is reasonable

to compare the efficiency of the accelerator from the ccHLS with that of the general purpose

processor.

To evaluate the fixed-function accelerators, x86 out-of-order architectures are modeled as the

baseline in this evaluation and the host processor of the fixed-function accelerators in gem5 [13],

which is a cycle-accurate simulator. For a more detailed evaluation, 2-issue out-of-order and

4-issue out-of-order processors are modeled in this evaluation for the comparison of low power

cases and high performance cases, respectively. Basically, the pipeline of x86 out-of-order

processor model in gem5 has fetch, decode, rename, issue, execute, writeback and commit

stages. In addition, a branch predictor, a reorder buffer, and issue queue, a load-store queue for

memory dependence predictor using store set in the queue are modeled in the gem5 simulator.

Table 6.1 details the configuration of microarchitecture model.

Along with the baseline out-of-order processors, modeling of the fixed-function accelerators

is based on RTL simulation, not integrated with the host processor. gem5 is configured for

performance modeling and incorporated with RTL of the generated fixed-function accelerators

for VCS simulation. To evaluate power, Synopsys Design Compiler and McPAT power model

98

Benchmarks Application Description
cutcp 3D Grid and Point Calc. Small kernel with control flow
fft Fast Fourier Transform Regular memory access
kmeans K-Means clustering Regular memory access
lbm FLuid Dynamics Large computation kernel with control

flow
mm Dense Matrix Mult. Small kernel
mri-q Margnetic Resonence Imaging Regular memory access
needle Dynamic Programming Loop carried dependency
nnw Neural Networks Indirect memory access
stencil 3D Matrix Jacobi Small computation/memory ratio
spmv Spare Matrix Vector Mult. Indirect memory access
sad Sum of Absolute Difference High Computation/memory ration
tpacf Angular Correlation Irregular memory access

Table 6.2: Parboil Benchmark Description

are used to collect power simulation result with the fixed-function accelerators [52]. To power

modeling simulation, TSMC 55nm design library and 1 GHz clock frequency are used in the

evaluation.

6.2 Benchmarks

For the evaluation of fixed-function accelerators from the ccHLS, this dissertation chooses the

Paboil benchmark [8]. An ideal application to evaluate the fixed-function accelerators is to

have sufficient computation executed in the fixed-function compute accelerator and abundant

memory access, such as arrays or pointer operation, managed by the fixed-function memory

access accelerator. In addition, it has complex loop execution and indirect memory access. Thus,

the Parboil benchmark suite that is generic source code written in a high-level program language

(C and C++) is enough to 1) shows kernel operations in complex loops by the fixed-function

compute accelerator and 2) discusses various memory address computations to directly access

the data cache by the fixed-function memory access accelerator. Table 6.2 lists and describes the

details of the Parboil benchmark.

For the fixed-function accelerators from the ccHLS, we evaluate the overall performance

by comparing execution time by the fixed-function accelerator with the 2-issue and 4-issue

99

out-of-order baseline architectural models from gem5. The execution time of the fixed-function

accelerators is measured by the configuration integrating the fixed-function accelerators with

the 2-issue out-of-order processor as a host processor. Thus, performance improvement is

represented as:
Baseline Execution T ime

Fixed− FunctionAccelerators Execution T ime

The power consumption of the fixed-function accelerators with the host processor is measured

by combining the McPAT modeling and the power report from the Synopsys design compiler.

The power consumption of the host processor is estimated by using McPAT, taking microarchi-

tectural parameters and events from gem5 simulation. For RTL simulation for the fixed-function

accelerators, the design compiler provides its power modeling report. Using both results, it is

reasonable to model power consumption. To evaluate energy efficiency, the power delay-product

(Power × Execution time) is used in this thesis. Thus, the overall energy efficiency is described

as:
Baseline Execution Energy

F ixed− FunctionAccelerators Execution Energy

Both metrics are used in evaluation to analyze modeled accelerator execution.

6.3 Fixed-Function Accelerators with the General Purpose Processor

In this section, we analyze performance and energy improvement of the fixed-function ac-

celerators by comparing with a 2-issue out-of-order processor (2-OOO) and a 4-issue out-of-

order processor (4-OOO) to verify the efficiency of fixed-function accelerators when they are

adapted instead of a general purpose processor. First, we need to understand the ability of

fixed-function accelerators, what characteristics impact performance and energy efficiency. In

the fixed-function accelerators, the workload is transformed into functional unit execution while

the general purpose processor uses instructions as the workload. Thus, analyzing both total

number of instructions and functional unit execution in the general purpose processor and

fixed-function accelerators provides meaningful information to predict the overall performance

improvement. In addition, we measure the number of functional units used to organize dataflow

100

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

2

4

6

8

10

12

In
st

ru
ct

io
ns

 p
er

 F
U

 E
xe

cu
tio

n

2.14

Figure 6.2: Ratio Insts/FU Execution

for fixed-function accelerators and it roughly provides the energy efficiency trend by removing

the load on the pipeline in the general purpose processor.

To predict performance and energy efficiency, we analyze workload characterization with i)

the ratio of instructions per a functional unit execution and ii) the number of functional units

used for creating dataflow of fixed-function accelerators.

The ratio of instructions per a functional unit execution Fixed-function accelerators from

ccHLS run with the combination of functional units that creates dataflow. On the contrary,

however, the execution in the general purpose processor is based on pipeline with instructions.

While the execution times of a general purpose processor is proportional to the number of

instructions, that of fixed-function accelerators is correspondent to the number of functional

units that execute for acceleration. Compared to the number of functional units executing for

acceleration in fixed-function accelerators and instructions in the general purpose processor, we

predict the overall performance improvement of fixed-function accelerators because it roughly

represents reducing the amount of workload that the general purpose processor must run to

execute a whole program. It tells us that fixed-function accelerators save execution time by

executing fewer functional units instead of instructions in the processor pipeline. Figure 6.2

shows the ratio of instructions per a functional unit execution when it runs benchmarks and

101

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

50

100

150

200

250

300

350

400

450

of

 fu
nc

tio
na

l u
ni

ts

21.9 108.8

Fixed-Function Compute Accelerator Fixed-Function Memory Access Accelerator

Figure 6.3: Functional unit usages

they are represented as:

Instructions executed in the general purpose processor

Executions in the fixed− function accelerators

Geometric mean of the ratio is 2.14 and it reports that one functional unit execution has the same

amount of 2.14 instructions. Especially, mri-q shows higher a ratio than any other benchmarks

because it is possible to execute a whole accelerating region with few functional unit executions in

the fixed-function accelerators while the general purpose processor should consume numerous

instructions in its pipeline. We refer to thesis ratios when the overall speedup is explained in

section 6.3.1.

Functional units for dataflow Figure 6.3 summarizes the number of functional units that are

required for dataflow construction for both the fixed-function compute accelerator and the

fixed-function memory access accelerator. Instead of executing instruction on the pipeline of

the general purpose processor, fixed-function accelerators can exploit from 52 to 432 functional

units. Shown in the figure, most of the functional units are required to construct the dataflow

of fixed-function memory access accelerators because memory address calculation and loop

condition decision are common compared to computation kernel in benchmarks. Also, those

102

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

1

2

3

4

5

6

7

Sp
ee

du
p

2.55 1.57

2-issue-OoO/Fixed-Function-Accelerators
4-issue-OoO/Fixed-Function-Accelerators

Figure 6.4: Speedup over 2-OOO and 4-OOO

behaviors, including memory address calculation and loop condition decision, are expected to

give a negative influence on performance improvement because they may not quickly load data

from memory to the fixed-function compute accelerator or store data from the output of the

fixed-function compute accelerator to memory. Furthermore, it may have many functional units

for loop condition decision in the fixed-function memory access accelerators. To put it another

way, it may limit the performance improvement due to nested loops in the accelerating region.

In terms of energy efficiency, the above results suggest that fixed-function accelerators

improve energy efficiency by removing instructions loaded on the general purpose processor.

Instructions that run on the general purpose processor are eliminated and constructed as fixed-

function accelerators with those number of functional units. All operations to execute the

functional units supersede the pipeline execution on the general purpose processor and it

reduces power consumption in the pipeline.

6.3.1 Performance and Energy Evaluation

This subsection presents the quantitative results of performance improvement and energy

reduction achieved with fixed-function accelerators. For performance, we use relative speedup

when we use fixed-function accelerators compared to the 2-OOO and 4-OOO general purpose

processor. For energy, we use relative energy efficiency by multiplying the speedup factor and

103

the power reduction number when comparing fixed-function accelerators with the general

processors that are used for performance evaluation.

Figure 6.4 shows the speedup from fixed-function accelerators when compared to 2-OOO and

4-OOO. It roughly speedups from 1.45× to 6.65× and from 1.20× to 3.38× compared to 2-OOO

and 4-OOO, respectively. ccHLS does not support vectorization which operates multiple data in

a single instruction and leads to limitation of performance improvement. The fixed-function

accelerators handle such vector data as a sequential input of a functional unit. Section 6.3.4

discusses the comparison of the fixed-function accelerators with OOO. The outline of the graph

in figure 6.4 follows the trend of the ratio of instruction per a functional unit execution in

figure 6.2. Consequently, the benchmarks that use fewer functional unit executions have higher

speedup. In other words, fixed-function accelerators achieve speedup by reducing the number

of instructions executed in the processor pipeline and executing functional units in parallel

in the dataflow of the fixed-function compute and memory access accelerator. For example,

mri-q only performs 41584 functional unit executions in the fixed-function accelerators while

2-OOO executes 467340 instructions in the pipeline. We can explain each benchmark based on

the observation from figure 6.4 and 6.3. In particular:

• mri-q requires fewer functional units to organize fixed-function accelerators and it rela-

tively performs fewer functional unit executions compared to instructions loaded on the

pipeline of 2-OOO and 4-OOO.

• lbm has heavy nested loops with very large computation kernel in the accelerating region.

Thus, it requires a number of functional units for the construction of fixed-function accel-

erators. The nature of lbm is that it has heavy nested loops in the source code. Due to the

property of fixed-function accelerators, inner-most loop is well accelerated while loops

that encapsulate the inner-most loop are held until the execution of accelerating inner-loop

is done. The impact of fixed-function memory access accelerator is rare because injecting

induction values for loops, except the inner-most loop, are waiting until their nested loops

are done.

104

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

5

10

15

20

25

30

35

En
er

gy
 R

ed
uc

tio
n

3.96 7.20

2-issue-OoO/Fixed-Function-Accelerators
4-issue-OoO/Fixed-Function-Accelerators

Figure 6.5: Energy reduction over 2-OOO and 4-OOO

• tpacf also has a heavy nested loop, but it has a relatively small computation kernel region.

Thus, its speedup is limited by the loops embracing computation kernel loop.

• nnw has many indirect memory access and the true data dependency between functional

units to compute memory access address limits overall performance.

• spmv has heavy loops with fewer computation in the computation kernel. Thus, the

number of functional unit executions in the fixed-function compute accelerators is few,

whereas many indirect memory accesses are shown in this benchmark and the true data

dependency between functional units limits the performance improvement.

• sad and needle have sequential loops that have loop-carry dependency. It limits perfor-

mance because the outer-most loop is held until the last loop in loop sequences is finished

accelerating.

Performance improvement mainly contributes to energy reduction. Figure 6.5 shows the

energy reduction of fixed-function accelerators compared to 2-OOO and 4-OOO. On geometric

mean, fixed-function accelerators reduce the overall energy by 3.96× and 7.20× for 2-OOO and

4-OOO, respectively. Based on observation, unlike speedup, fixed-function accelerators are

more efficient than 4-OOO, although its speedup is less than 4-OOO. In figure 6.4, fixed-function

105

Benchmark Area(mm2) Code lines # of regions
cutcp 4.541 98 2

fft 2.284 143 1
lbm 7.018 253 4
mm 1.965 48 1

mri-q 2.521 91 1
sad 2.572 85 3

spmv 4.847 110 1
stencil 2.535 74 1
tpacf 3.275 235 1
nnw 3.345 142 3

needle 1.127 63 1
kmeans 3.121 100 1

Table 6.3: Area Size of the Fixed-Function Accelerators

accelerators give better speedup when compared to 2-OOO than that when compared to 4-OOO.

However, energy reduction of fixed-function accelerators compared to 2-OOO is worse than that

of 4-OOO. It gives a clue that the power consumption of fixed-function accelerators is relatively

low in comparison to 4-OOO. It is true because all units in the host processor fall sleep, except the

data cache, and it has a positive influence on dynamic power saving. More details are elaborated

in the next subsection.

6.3.2 Area Analysis

In this subsection, the area size of fixed-function accelerators is discussed. For area measurement,

we use the area report of Synopsys design compiler. Basically, the size of area is the sum of

fixed-function compute accelerator, AGU, and FSM. In case that ccHLS generates multiple fixed-

function accelerators for multiple regions, the sum of area of fixed-function accelerators for each

region is presented.

Table 6.3 shows the area, code lines, and the number of regions to be accelerated. Generally,

the size of area is proportional to code lines targeted to generated as the fixed-function accel-

erators. For example, lbm has the longest code lines to be fixed-function accelerators and its

area is larger than any other benchmarks. mm and needle have relatively short code lines and

their area is small. The number of code regions, which is generated as separate fixed-function

accelerators, also are related to the size of area. cutcp, lbm, sad, and nnw have multiple regions

to be transformed to fixed-function accelerators and their areas are relatively large. In particular,

106

• lbm has longer code lines and four regions. Hence, it has the largest area size (7.018mm2).

• cutcp has two regions to be generated as fixed-function accelerators while the total code

lines for two accelerated regions are relatively short (98 lines for two regions).

• tpacf has small area size though it has long code lines (235 lines). The reason is that it

has small computation region and most of code lines reuse the fixed-function compute

accelerator for loop unrolling.

• While sad has three regions that are the target of ccHLS, the size of area is not so large

because code lines are distributed to those regions.

• mm and needle have smaller area size with short code lines and a region.

6.3.3 Architectural Analysis

The fixed-function accelerators from ccHLS achieve their execution in dataflow fashion to

improve performance and energy efficiency. To perform parallel execution, access and execute

components following the DAE model are decoupled and their sequential code phases are

broken into dataflow graphs to be represented as fixed-function compute and memory access

accelerators. Finally, they extract parallelism from concurrent execution of those accelerators

managed by the finite-state machine. From the architectural model, we expected benefits in

terms of i) performance by exploiting parallelism and less execution than the general purpose

processor and ii) power efficiency by using few functional units and eliminating pipeline front-

end, issue, execute and write back stages. This subsection discusses the capability of fixed-

function accelerators to acquire expected benefits. We firstly examine dataflow parallelism

in the fixed-function accelerators, then we observe the power efficiency of the fixed-function

accelerators with power breakdown.

Dataflow Parallelism in the fixed-function accelerators Figure 6.6 plots the instruction/op-

eration level parallelism for 2-OOO, 4-OOO, and fixed-function accelerators. For the general-

purpose processor, including 2-OOO and 4-OOO, we evaluate instructions per cycle (IPC) for

parallelism. However, fixed-function accelerators are not able to use IPC to indicate parallelism

107

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

1

2

3

4

5

6

7

8

9

IP
C

2-OoO
4-OoO

Fixed-Function-Memory Access Accelerator
Fixed-Function Compute Accelerator

Figure 6.6: Parallelism in fixed-function accelerators

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

2

4

6

8

10

12

14

Po
w

er
 (W

)

2-OoO

4-OoO

Fixed
Function
Acc.

fetch
decode

issue
register files

FU
LSU

Fixed-Function-Accelerators
D$

Figure 6.7: Power Breakwodn

and we analyze it with the calculation of the operations per cycle. Its computation is shown

below:

OPC = # of active operations of the functional unit execution

cycles

We observe that fixed-function accelerators from ccHLS are aggressively executed in parallel

to compute memory address and condition decision in the fixed-function memory access accel-

erator. At the same time, the fixed-function compute accelerator is performing the computation

108

for the computation kernel. OPC is the number of operations to execute the functional unit, so

this number does not guarantee that it is the same as the number of executions of functional

unit. For example, the functional unit mul requires 6 cycles to output the result and the OPC is

6.0 when the six mul functional units are executed to generate output in parallel.

Power Breakdown Figure 6.7 shows the power breakdown in terms of pipeline stages including

1) fetch, 2) decode and dispatch, 3) issue, 4) register file, 5) functional units in the execute stage,

and 6) load store unit including data cache. For the fixed-function accelerators, dynamic power

of the data cache is presented because the fixed-function accelerators do not require load and

store queues to buffer and retire such instructions. The finite-state machine in the fixed-function

accelerators manages for accessing data. Overall, fixed-function accelerators reduce the power

because the pipeline stages in the general purpose processor are replaced with the role of fixed-

function accelerators. We summarize the power reduction compared to the pipeline stages.

Based on the results, we observe:

• For the same amount of workloads, 2-OOO and 4-OOO consume more power than the

fixed-function accelerator. In figure 6.7, the sum of fetch, decode, issue, register file,

functional units, and LSU exceeds the sum of fixed-function accelerators and data cache.

• In the general purpose processor (2-OOO and 4-OOO), the register file and pipeline front-

end including fetch, decode, and issue are major components that consume more power

than fixed-function accelerators. Fixed-function accelerators eliminate such pipeline stages

by providing fixed-function logic and the register file and provide power efficiency.

• Fixed-function accelerators consume more power in the data cache than LSU, including

data cache in 2-OOO because fixed-function accelerators frequently access the data cache

instead of using LSQ to forward data. However, the power gap of data cache between

2-OOO and fixed-function accelerators is not so huge.

• Cache coherence by using a unified data cache in fixed-function accelerators is efficiently

accelerating with small power consumption because it does not require additional memory

for the accelerator and protocols.

109

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

1

2

3

4

5

Sp
ee

du
p

2.10 1.18

2-issue-OoO with SSE/Fixed-Function-Accelerators
4-issue-OoO with SSE/Fixed-Function-Accelerators

Figure 6.8: Speedup over 2-OOO/SSE and 4-OOO/SSE

6.3.4 Fixed-Function Accelerator with SSE

We also compare the fixed-function accelerators to general purpose processors including SSE [2].

Figure 6.8 outlines the speedup of fixed-function accelerators from ccHLS compared to 2-

OOO/SSE and 4-OOO/SSE. It shows that fixed-function accelerators outperform 2-OOO though

it includes SSE units. It tells us that parallel execution of functional units in the fixed-function

accelerators surpasses that of 2-OO/SSE.

By comparing figure 6.4 and 6.8, we observed that OOO/SSE is efficient when vectorization is

effective in the source code. Particularly, in figure 6.8, kmean and cutcp running on 2-OOO/SSE

shows similar speedup numbers compared to fixed-function accelerators while those of 2-OOO

give an outperformed number. For 4-OOO/SSE, it gives an outperformed speedup number

compared to fixed-function accelerators. It means that non-vectorized processing in ccHLS

limits performance improvement.

Figure 6.9 outlines the energy reduction of fixed-function accelerators compared to 2-

OOO/SSE and 4-OOO/SSE. By mixing power reduction and performance improvement, it

shows that ccHLS creates fixed-function accelerators with lower energy consumption than

OOO/SSE.

110

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

5

10

15

20

25

En
er

gy
 R

ed
uc

tio
n

3.55 5.89

2-issue-OoO with SSE/Fixed-Function-Accelerators
4-issue-OoO with SSE/Fixed-Function-Accelerators

Figure 6.9: Energy reduction over 2-OOO/SSE and 4-OOO/SSE

6.4 Fixed-Function Accelerators with the C-Cores

In this section, we compare fixed-function accelerators to other HLSs. We evaluate the fixed-

function accelerators compared to conservation cores (C-Cores), which are proposed by Venkatesh

et al. [79]. It is a configurable block where the target accelerating region is embedded and they

provide the compiler to generate the accelerators of hot region, and accelerating region, from

the source code. The specific design point of C-Cores is integrated with the in-order core to save

power because they intend to use it for mobile devices that need to maximize energy efficiency.

Particularly, C-Cores limit the memory access only once in the basic block and sequentially

access by the order of memory access pattern. For the experimental method, we use the same

configuration, except ROB, and other out-of-order specific structures.

6.4.1 Speedup compared to the C-Cores

Figure 6.10 plots the speedup of the fixed-function accelerators and C-Cores. They are nor-

malized with 2-OOO as baseline and shows a geometric mean of speedup 2.55× and 0.88×,

respectively. In the results, most benchmarks in the C-Cores show worse performance while

fixed-function accelerators outperform 2-OOO. We summarize the following result:

• The performance of C-Cores is limited due to its in-order core design. It means that all

111

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

1

2

3

4

5

6

7

Sp
ee

du
p

2.55 0.88

2-OOO/Fixed-function Accelerator
C-Cores

Figure 6.10: Speedup vs C-Cores

generated accelerating region is sequentially executed and always show less performance

improvement than fixed-function accelerators.

• Fixed-function accelerators have the components executed in parallel (fixed-function

compute accelerator and fixed-function memory accelerator) while C-Cores are always

access memory sequentially by the memory access order.

Compared to other HLSs, in terms of performance improvement, ccHLS shows better perfor-

mance. It is because fixed-function accelerators exploit parallelism by executing memory access

and computation separately.

6.4.2 Energy compared to C-Cores

Figure 6.11 plots the energy reduction of the fixed-function accelerators and C-Cores compared

to 2-OOO. Both accelerators show better energy reduction phases than 2-OOO. Due to the goal

of C-Cores that intends to improve energy efficiency for mobile devices, C-Cores give their

energy reduction 2.54×. However, fixed-function accelerators result in higher energy reduction

than C-Core (3.96×). Basically, energy reduction of fixed-function accelerators follows the trend

of speedup. As shown in figure 6.10, fixed-function accelerators perform better than C-Cores

because of its parallelism. In particular:

112

cu
tc

p fft lb
m

m
m

m
ri-

q

sa
d

sp
m

v

st
en

ci
l

tp
ac

f

nn
w

ne
ed

le

km
ns gm

0

5

10

15

20

En
er

gy
 R

ed
uc

tio
n

3.96 2.54

Fixed-Function Accelerators
C-Cores

Figure 6.11: Energy Reduction Comapred to C-Cores

• We observe that the power reduction of C-Cores is good enough to save energy for mobile

devices because it is integrated with simple in-order core.

• However, fixed-function accelerators have better energy reduction by eliminating power

consumption in the pipeline front-end, register file and etc. In addition, the performance

improvement of fixed-function accelerators exceed that of C-Core.

Both factors give the result that fixed-function accelerators from ccHLS win against the

C-Cores in terms of energy efficiency.

6.5 Chapter Summary

The ccHLS generates fixed-function accelerators for the accelerating region. The generated fixed-

function accelerators give better performance and energy reduction compared to 2-OOO and

4-OOO. Our analysis reports that reducing operations instead of executing heavy instructions

and parallel execution in terms of fixed-function compute and memory access accelerators

allows ccHLS to show better performance and energy reduction. We also compare the fixed-

function accelerators to a different HLS (C-Cores). The performance and energy reduction of

fixed-function accelerators from ccHLS win against those of C-Cores.

113

7 related work

Various hardware specialization approaches have been proposed to improve performance and

power efficiency, which potentially achieve energy efficiency. The architectural models and HLSs

are highly focused on achieving efficient hardware specialization and SWSL and ccHLS are also

categorized in that field. In this section, comparison of SWSL and ccHLS with other hardware

specialization, including architectures and HLSs, are discussed. Section 7.1 talks about SWSL

and other hardware design for network lookup and section 7.2 discusses the fixed-function

accelerators from ccHLS related to other approaches.

7.1 SWSL and Other Specialization Hardware

Generating lookup hardware datapath from SWSL is inspired by the Pipeline LookUp Grid

(PLUG) [47]. PLUG partitions the lookup workloads depending on hierarchy of tries and

constructs the data flow graph based on logical pages with memory for lookup data. Those

logical pages are mapped into PLUG tiles. In each logical page, there are code functionalities

used to look up and they are transformed into the sequence of execution. Tightly connected

tiles communicate with their neighbors and are used for network lookup. Similar to PLUG,

SWSL organizes the data flow graph for pipeline operation for network lookup following the

PLUG programming model and the generated network lookup datapath performs pipeline

to achieve higher throughput. Major two differences of SWSL arise compared to PLUG. First,

SWSL generates the datapath for a specific network lookup from a single algorithm while the

PLUG compiler intends to generate executable binaries that run on cores in the tile; Due to

the difference, the PLUG compiler requires additional operation for scheduling to synchronize

operation between tiles. However, SWSL evades such synchronization issues and resolves its

compiler internally by synchronized delays. Second, no additional hardware blocks are required

in SWSL because it directly generates the datapath using wire for appropriate operations.

However, PLUG requires additional substrates in the tile to communicate with neighbor tiles.

Latency-Energy-Area-optimized Lookup Pipeline (LEAP) is another approach enhancing

network lookup [38]. It basically resembles PLUG in terms of a tile-based architecture and

114

providing semi- programmability for flexibility. However, it is a native dataflow design con-

figuring operation engines as computation. Thus, it is placed intermediately between PLUG

(programmable cores) and SWSL (ASIC-like hardware design). In addition to PLUG and LEAP,

we briefly discuss other specialization architectures in relation to fixed-function lookup engines

from SWSL.

HLSs HLSs SWSL concentrates on improving throughput rather than performance improve-

ment. The main reason that SWSL differentiates the interest from other HLSs is that the main

characteristic of workloads for SWSL is not the same as that for other HLSs. In the network,

flooding of lookup requests enable the lookup engine to demand the capability for managing

all requests that execute the same workload continually. It allows SWSL to be fit for the network

lookup while other HLSs cannot provide such capability because they are originally designed

to reduce execution time for a certain amount of workloads.

Memory Generated lookup modules from SWSL are based on using SRAMs in the connection

of logical pages. Normally, network lookups use Ternary content addressable memories (TCAMs)

to achieve hardware parallelism to match the search key against all entries [68, 56]. Due to

exploiting parallelism by activating all entries in parallel, it consumes a large amount of power;

this is widely known as the problem. Although selective activation of TCAM blocks improves

power efficiency [81], using SRAM-based algorithmic lookup is a better solution than TCAMs

for supporting large tables. SWSL is categorized in this approach.

Functionality The SWSL programming model is motivated by the SDF model [51] and the

Click dataflow model [45]. Unlike SDF and Click that focus on the entire functionality, SWSL

only focuses on automatically generating lookup hardware designs. Moreover, the goal of SWSL

is to generate the lookup hardware, not to run on the general-purpose processor.

115

7.2 Other Specialization Approaches related to ccHLS

Unlike SWSL, ccHLS targets specific tasks, regions, or phases in the generic programs running on

the general-purpose processor to generate fixed-function accelerators. Generated fixed-function

accelerators are classified as fixed-function compute accelerators for accelerating the loop kernel

and fixed-function memory access accelerators for computing access memory address and loop

condition decisions. In detail, the fixed-function memory accelerator consists of the combination

of the address generation unit (AGU) and the finite-state machine (FSM). Those separate models

follow the DAE model and simultaneously executes for computation and memory access man-

agement. This section discusses the fixed-function accelerators compared to other accelerators

and HLSs in terms of execution model, memory utilization, scheduling, and programmability.

Execution model Fixed-function accelerators from ccHLS combines the DAE and dataflow

model. The DAE model was proposed in the 1980’s [70, 30] and adapted in recent designs [46,

40, 9]. They consider separate computation and access accelerating units and give the mo-

tivation that individual computation and access accelerators are integrated. The dataflow

execution of fixed-function accelerators from ccHLS is borrowed from the classic dataflow ma-

chines [27, 36, 41, 11, 61] and more recent designs [65, 72, 15]. It also aims to target specific

regions as dataflow computation. Recently, dataflow machines combined action/events were

proposed and Trigger Instructions (TI) [62] and Memory Access Dataflow (MAD) [20] follow

this model. MAD is amore evolved design in terms of using low-level dataflow for memory

access. Fixed-function accelerators from ccHLS resemble MAD which also follows the DAE

model and implements it using events and relevant actions. It is tightly integrated with various

accelerators for execution and enhances accelerating. For data movement, MAD hardware

engine is organized as computation, event, and action blocks and triggers action on the table in

the action block by the event based on computation results motivated by TI. In terms of fixed-

function accelerators, MAD has similarities with the fixed-function memory access accelerator

because a series of works by MAD is exactly matched with that of the fixed-function memory

access accelerator - Computation for memory address is done by AGU and triggering events and

related actions are managed by FSM. The fixed-function compute accelerator is derived from

116

DySER, which is an in-core accelerator based on dataflow of the target region [32]. Instead of

configuration, ccHLS directly generates the datapath of the fixed-function compute accelerator.

Like the form of the DAE and dataflow models, ccHLS is an HLS to generate a static hardware

for acceleration while the execution is similar to MAD.

Memory utilization For memory utilization, fixed-function accelerators directly access the

data cache in the host processor. Major HLSs remove the data cache in the host processor or

adapt scratch-pad memory for data sharing with the host processor [6, 17, 54]. Basically, they

assume that no cache coherency mechanism is required to interact because the host processor

and accelerators see the same memory space that is shared. In the case that the host processor

has a data cache, the data cache is flushed when it starts acceleration to avoid operations for

cache coherency [7]. However, fixed-function accelerators access memory from the data cache

in the host processor; they do not have any cache conflict issues and the host processor does not

need to flush the data cache when acceleration starts because the computation result is reflected

in the data cache. Thus, ccHLS follows the concept of unified memory space.

Scheduling Scheduling is a less important issue for fixed-function accelerators. Many HLSs

define fixed latency for memory access [80, 58] for execution scheduling and that is one of the

reasons to limit generated hardware performance. While they assume fixed latency for memory

access, ccHLS does not have such a constraint and generated fixed-function accelerators are

free from the constraint because FSM in the fixed-function memory accelerator manages cache

access and sets up the data when the accessed address is valid. Including the structure of the

functional unit for relaxed scheduling, it allows fixed-function accelerators to schedule free.

Programmability Bluespec [10] has been proposed to relax the complexity of hardware design.

Also, few designs with Bluespec have been presented [44, 23, 22]. Basically, it is a high-level

functional hardware description programming language which was essentially Haskell-extended

to handle chip design to support hardware design automation and write the program that is

similar to high level program languages to ease the painful hardware design. Although it uses a

novel program language, it is required to learn how to perform using Bluespec language because

117

it is different from the conventional program languages like C or C++. ccHLS easily reuses the

code without any heavy modification or rewriting it.

7.3 Chapter Summary

In this chapter, we discuss the related work to the proposed high-level synthesis approaches,

SWSL and ccHLS. SWSL was initially invented to provide high throughput for network lookups

with hardware design. Due to its specialized properties for network lookup, fixed-function ac-

celerators from ccHLS are proposed and provide efficient memory access and parallel execution

- computation and memory access, separately.

118

8 conclusion

The interest of the computer architecture community has slightly shifted from microarchitectural

strategies to accelerators to gain performance and energy efficiency. This dissertation has

described novel compilation approaches to generate accelerators depending on the properties

of target applications from high-level synthesis (HLS) that uses high-level program languages

such as C/C++, which significantly reduce design complexity when accelerators are designed.

In this chapter, we discuss the contributions.

8.1 Contributions

The HLSs are promising in that they create the accelerator for a specific application implemented

with the use of high-level programming languages. We have proposed two approaches - SWSL

for network loops and a ccHLS for accelerating of generic code region. In this section, we

summarize the contributions of the proposed compilation techniques.

8.1.1 SWSL

SWSL is similar to PLUG which is the specialized architecture for network lookup. Thus, SWSL

is a dataflow graph (DFG)-based application programming model that is mapped onto the

PLUG tile to execute. However, the code blocks in the DFG are transformed into a lookup

hardware module by SWSL compilation and its execution model is different from PLUG and

other network loop architectures. In particular:

The Execution Model The lookup module from SWSL does not obey von-Neumann architec-

tures that get instructions from memory to follow pipeline structures. The lookup hardware

from SWSL completely seeks the nature of dataflow machine and each code block functionality

is organized as the hardware datapath. The output from one logical page of DFGs is passed

to next logical page and chooses the hardware module for it. The code block functionalities in

DFG consist of the chain of datapaths. In that manner, SWSL achieves high throughput in that

every lookup request is processed in the datapath of the lookup hardware.

119

Compilation The compilation SWSL compiler directly uses conventional intermediate rep-

resentation (IR) without any modification in the front-end compiler. The back-end, however,

modifies the control flow graph (CFG) by combining basic blocks and provides control logic for

dataflow operation when it generates the lookup hardware. Each lookup request is independent

and scheduled to avoid the confliction.

8.1.2 ccHLS

ccHLS has three different keys compared to other HLSs. In particular:

E-AEPDG in Compiler Unlike other HLSs that are originated from CFG IR, ccHLS proposes

a novel IR called E-AEPDG, which partitions the computation kernel and data movement

computing memory access address. It leads the program written in high-level program language

to the hardware datapath for acceleration. Hence, E-AEPDG transforms the conventional CFG

from to the datapath of accelerator execution and provides the performance improvement by

exploiting parallelism and energy reduction by eliminating the energy consumed in the pipeline

front-end.

The Execution Model Unlike other HLSs, the fixed-function accelerators from ccHLS bor-

row their execution from the decoupled access/execute model (DAE). Many HLSs combine

generation memory access and computation kernel and follow a sequential order for calcu-

lating memory access and computing kernel. Based on the DAE model in the fixed-function

accelerators, however, it calculates memory address and computation in parallel and improves

performance. To manage execution, FSM is provided by the ccHLS, states are set based on the

condition of the output event queue. It shares data cache in the Host Processor. The fixed-

function accelerators from the ccHLS directly access the data cache in the host processor when

it loads or stores data. While other conventional HLSs provide the memory space for the ac-

celerator, the fixed-function accelerators share the data cache in the host processor. Therefore,

it does not require any cache coherence mechanism to maintain coherency between the host

processor and fixed-function accelerators.

120

8.2 Closing Remarks

We have shown how accelerators are automatically generated from high-level languages using

proposed compilation techniques for the HLS. Recently, the specialized accelerators are impor-

tant for achieving both performance and energy to proliferate high performance computing

and mobile devices. In addition, saving design time is a major factor in time-to market when

the architects and engineers in the industries consider designing the hardware. During the

design of SWSL and the ccHLS, we considered how we provide easy and effective ways to build

the accelerators and concluded that HLS is the best way to do this. From the specific (network

lookup) to generic applications, we have developed compilation techniques and tried to grow

throughput and performance with energy efficiency. We hope that this work improves the

development process of the future accelerators and strongly support the efficient hardware

accelerator design.

121

a pipeline lookup grid (plug)

Figure A.1 shows the architectural overview of PLUG [47]. PLUG is a tile-based architecture,

and each tile has 32 µCores, 6 routers, and 4 64KB SRAMs. Network algorithms executing

in the PLUG are drawn as a form of data-flow graph with an amount of logical pages. Each

logical page has programmed code called code block, which is compiled to be executed on the

µCore. Hence, PLUG executes small pieces of workloads which construct the whole workload

for the network algorithms. Because PLUG is only a high speed lookup engine, it requires a host

processor to feed packet information in the form of input messages to the PLUG tile to lookup.

Routers in each tile can be used to communicate with its neighbor tiles and output from a tile

goes into its neighbor tile as an input message depending on the edge of data-flow graph by

network algorithms. Up to 80-bits data can be transmitted in a message. A µCore in the tile is a

single-issue in-order core with shared instruction memory. Partitioned workload of a network

algorithm is compiled and loaded in the shared instruction memory. Hence, the input message

at every single cycle is assigned to an idle µCore to lookup data structure and it allows PLUG to

have high throughput by achieving thread-level parallelism because each input message is a

different task. Each µCore has 32 registers to compute, so it must be carefully used. SRAMs in

each tile provide total 256KB memory space, which uses as local data structure storage for data

lookup. PLUG is scalable, so it is possible to modify parameters of PLUG tiles.

Figure A.1 shows the architectural overview of PLUG [47]. PLUG is a tile-based architecture,

Figure A.1: Architectural Overview of PLUG

122

Input output Relay

...

Priority

...

a) Input Page b) Output Page c) Relay Page

e) Priority Page

output

f) Logical Page

Mutex

...

d) Mutex Page

Figure A.2: Logical Page Class

and each tile has 32 µCores, 6 routers, and 4 64KB SRAMs. Network algorithms executing in the

PLUG are drawn as a form of data-flow graph with amount of logical pages. Each logical page

has programmed code called code block, which is compiled to be executed on the µCore. Hence,

PLUG executes small pieces of workloads which construct whole workload for the network

algorithms. Because PLUG is only a high speed lookup engine, it requires a host processor to feed

packet information in the form of input message to the PLUG tile to lookup. Routers in each tile

can be used to communicate with its neighbor tiles and output from a tile goes into its neighbor

tile as an input message depending on the edge of data-flow graph by network algorithms. Up

to 80-bits data can be transmitted in a message. A µCore in the tile is a single-issue in-order

core with shared instruction memory. Partitioned workload of a network algorithm is compiled

and loaded in the shared instruction memory. Hence, input message at every single cycle is

assigned to idle µCore to lookup data structure and it allows PLUG to have high throughput by

achieving thread-level parallelism because each input message is a different task. Each µCore

has 32 registers to compute, so it must be carefully used. SRAMs in each tile provide total 256KB

memory space, which uses as local data structure storage for data lookup. PLUG is scalable, so

it is possible to modify parameters of PLUG tiles.

Lookup applications of the PLUG organize the logical structure of the data with associated

computation for data lookup or update. For the utilization of the PLUG, lookup algorithms must

be drawn as a data-flow graph (DFG). DFG describes the group of partitioned data structures

of the algorithm, and each data structure in the group can be utilized for computation by

123

its purposes such as lookup, update, and output for connected data structure. A series of

data structures is called logical pages, which consist of a whole DFG. A logical page must be

connected with other logical pages through edges depending on the matching data structure.

Except a special purpose logical page, all the logical pages can be designed by general purposes.

Figure A.2 a), b), c), d), and e) show the class of logical pages. As a rule of designing code

block, directions of designing DFG are defined. First, an input page must be connected at the

beginning of DFG to represent that DFG starts by receiving messages from the host processor.

On the contrary, an output page notifies that whole lookup processing is finished and its output

messages return to the host processor. Second, a relay page broadcasts input message to logical

pages connected to the relay page. Thus, a DFG requiring broadcast messages from a logical

page to other multiple logical pages can be designed with the relay page. Third, DFG requires a

mutex page when multiple logical pages are connected to the same destination logical page.

One output from them is used for the input messages of the destination logical page through

bypassing the mutex page. Fourth, a priority page represents the output of one of the logical

pages connected to the destination logical page which has priority. In a normal case, the priority

page just bypasses its input messages to the connected logical pages, but input messages through

high priority edges have a high priority to be passed to the destination logical page. Finally, a

normal logical page is shown in Figure A.2 f) and is the main computation block for lookup.

It is programmed by a programmer to lookup. The programmed code for lookup is called

code block. Code block is implemented by C++ with the PLUG software framework. The

PLUG framework provides special-purposed programming APIs such as send/receive message,

memory utilization, and bit manipulation to utilize PLUG.

This programming structure increases flexibility to support newly developed network algo-

rithms and only software upgrade or porting allows PLUG to execute other algorithms. Each

logical page is able to have multiple code blocks which use the same data structure and code

block decision can be done by the input message header. The message header has reserved 4

bits for code block decision of a logical page. Up to 16 code blocks are loaded in the logical page.

To describe the programming on the PLUG, Ethernet and IPv4 are shown as examples [24].

Figure A.3 shows the data structure for Ethernet and its DFG model. The main role of Ethernet

124

Entry0 Entry0 Entry0

Entry1 Entry1 Entry1

Entry2 Entry2 Entry2

Entry3 Entry3 Entry3

...

...

...

...
Bucket0 Bucket1 BucketN...

Mem0

Mem1

Mem2

Mem3

Input Mutex output

Relay

LP1

LP2

LP3

LP0

a) Data structure in Ethernet b) Data flow graph of Ethernet

Figure A.3: Data Flow Graph of Ethernet

is to look up the port number of the packet that should arrive. Ethernet consists of 48-bits

MAC address space, so the lookup engine compares the destination MAC address in the packet

with that in the memory to find the destination port of the input packet. The data structure is

organized as a 48-bit MAC address and the destination port number is stored in the logical page

with a hash function. Figure A.3 a) shows simple 4 entries with an N bucket hash table, and

the input packet broadcasts to 4 entries. Only one entry is enabled when the entry is matched

with the hash key. If the MAC address in the data structure of the target entry is identical with

that from the input packet, the destination port number in the data structure is sent outside the

PLUG. Figure A.3 b) shows the data flow graph for Ethernet lookup. Each entry is assigned

from logical page0 to logical page3, respectively. There are three code blocks, such as lookup,

update and read for each logical page. Code block lookup tries to lookup the data structure, so

it will send the destination port number as output if it has it. If the output is NULL, the host

processor requests an update to store the non-matched MAC address. PLUG executes these 4

logical pages in parallel, so PLUG guarantees low latency and high throughput for searching the

destination port number of an input packet. For full operation, each logical page has two code

blocks - writing the MAC address and destination port number to the target entry and lookup

the destination port number. Figure A.4 shows the code block for lookup in LP0 of figure A.3.

In line 8, code block receives message from the input page and passes this message to the relay

page for executing lookup in other logical pages. From line 10 to 21, it broadcasts the input

message to other logical pages. In line 23 and 24, lookup code block reads data in memory using

125

1 void ethfwtable_head_lookup_code_block : : Execute () {
2
3 PLUG_UINT code_addr ;
4 plug_vector <MSG_VECTOR_SIZE> msg_vec_in , msg_vec_out , msg_vec_relay ;
5 plug_header msg_vec_in_hdr , msg_vec_out_hdr , msg_vec_relay_hdr ;
6 plug_vector <4> mem_vec ;
7
8 ReceiveMessage (msg_vec_in_hdr , msg_vec_in , (PLUG_UINT) 0) ;
9

10 msg_vec_relay [0] = msg_vec_in [0] ;
11 msg_vec_relay [1] = msg_vec_in [1] ;
12 msg_vec_relay [2] = msg_vec_in [2] ;
13 msg_vec_relay [3] = msg_vec_in [3] ;
14
15 / / S e t c o d e b l o c k o f message
16 SetMessageCodeblock (msg_vec_relay_hdr , GetMessageCodeblock (

msg_vec_in_hdr)) ;
17
18 / / S e t D e s t i n a t i o n o f message
19 SetMessageDest inat ion (msg_vec_relay_hdr , PLUG_DESTINATION_IMPLICIT) ;
20 / / Send message t o r e l a y page through edge 1
21 SendMessage (msg_vec_relay_hdr , msg_vec_relay , 1) ;
22
23 code_addr = msg_vec_in [0] ; / / Get Hash key
24 LoadWord<4>(mem_vec , code_addr) ; / / Get d a t a in memory
25
26 /∗ ∗ I f 48 b i t a d d r e s s in message and memory i s t h e same ,
27 d a t a s h o u l d be s e n t t o ou tp ut . ∗ ∗ /
28 i f ((msg_vec_in [1] == mem_vec [0]) &&
29 (msg_vec_in [2] == mem_vec [1]) &&
30 (msg_vec_in [3] == mem_vec [2]))
31 {
32 msg_vec_out [0] = GetLocalConstant (0) ;
33 msg_vec_out [1] = mem_vec [3] ;
34
35 SetMessageCodeblock (msg_vec_out_hdr , 0) ;
36 SetMessageDest inat ion (msg_vec_out_hdr , PLUG_DESTINATION_IMPLICIT) ;
37 SendMessage (msg_vec_out_hdr , msg_vec_out , 0) ;
38 }
39 }

Figure A.4: Lookup code block in LP0

126

1 void ethfwtable_head_write_code_block : : Execute () {
2 PLUG_UINT bucket_index , dst ;
3 plug_vector <MSG_VECTOR_SIZE> msg_vec_in , msg_vec_relay ;
4 plug_header msg_vec_in_hdr , msg_vec_relay_hdr ;
5 plug_vector <4> mem_vec , msg_vec_store ;
6
7 ReceiveMessage (msg_vec_in_hdr , msg_vec_in , (PLUG_UINT) 0) ;
8 dst = GetMessageDestination (msg_vec_in_hdr) ;
9 i f (dst == GetLocalConstant (0)) {

10 bucket_index = msg_vec_in [0] ;
11 / / Edge 1 : Address (48 b i t s) |Por t (12 b i t s) | Timestamp (4 b i t s)
12 ReceiveMessage (msg_vec_in_hdr , msg_vec_in , (PLUG_UINT) 1) ;
13
14 / / S t o r e v e c t o r in memory
15 msg_vec_store [0] = msg_vec_in [0] ;
16 msg_vec_store [1] = msg_vec_in [1] ;
17 msg_vec_store [2] = msg_vec_in [2] ;
18 msg_vec_store [3] = msg_vec_in [3] ;
19
20 StoreWord <4>(msg_vec_store , bucket_index) ;
21 }
22 e lse {
23 msg_vec_relay [0] = msg_vec_in [0] ;
24 msg_vec_relay [1] = msg_vec_in [1] ;
25 msg_vec_relay [2] = msg_vec_in [2] ;
26 msg_vec_relay [3] = msg_vec_in [3] ;
27
28 SetMessageCodeblock (msg_vec_relay_hdr , GetMessageCodeblock (

msg_vec_in_hdr)) ;
29 SetMessageDest inat ion (msg_vec_relay_hdr , dst) ;
30 SendMessage (msg_vec_relay_hdr , msg_vec_relay , 1) ;
31
32 ReceiveMessage (msg_vec_in_hdr , msg_vec_in , (PLUG_UINT) 1) ;
33 msg_vec_relay [0] = msg_vec_in [0] ;
34 msg_vec_relay [1] = msg_vec_in [1] ;
35 msg_vec_relay [2] = msg_vec_in [2] ;
36 msg_vec_relay [3] = msg_vec_in [3] ;
37
38 SetMessageCodeblock (msg_vec_relay_hdr , GetMessageCodeblock (

msg_vec_in_hdr)) ;
39 SetMessageDest inat ion (msg_vec_relay_hdr , dst) ;
40 SendMessage (msg_vec_relay_hdr , msg_vec_relay , 2) ;
41 }
42 }

Figure A.5: Code block for updating MAC address in LP0

127

P0

P2P7 P2 P5P3 P2 P6

P4P5 P1 P4 P6P7 P3 P4 P7P1 P1 06 P6P6 P2 P4 P6P2 P7 P3

00 01 10 11

00 01 10 11 00 01 10 11 00 01 10 11

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Input LP0 LP1 LP2 output

Mem0

Mem1

Mem2

A) Data structure in IPv4 b) Data flow graph of IPv4

Figure A.6: Data Flow Graph of IPv4

the hash key. The MAC address is compared with the 48 bit address and results are passed to

the mutex page if it finds a matching MAC address. In the case that a matching MAC address is

not found in each logical page, the requested lookup MAC address and its destination port are

updated. Figure A.5 presents the code block updating the MAC address and destination port

number in the target entry. Two message edges are used to provide 16-bit bucket index, 48-bit

MAC address, and 12-bit destination port number. Because each message edge passes up to

64-bits data to the next logical page, except the 16-bit message header, two edges are used to

provide those data into the next logical page. From edge 0, in line 7, code block for updating

receives the bucket index used for storing word location in memory and edge 1, shown in line

12 or 32, provides the MAC address and destination port number. If the destination logical

page number is identical with the target destination number from the message header, the MAC

address and destination port number are stored in the memory by the bucket index. Otherwise,

data in two input edges are broadcasted to next logical pages connected by the relay page.

Figure A.6 shows the data structure and data flow graph of a simplified version of IPv4.

IPv4 uses the longest prefix matching the IP address. To operate the longest prefix matching,

the data structure is constructed as multibit tries shown in Figure A.6 a). Each data structure in

each node has the port number of the next hop or an index pointer of the next node, so output

will be generated if the pointed index has the next port number. Otherwise, it will point to the

next node. At the beginning of operation, IPv4 algorithm traverses from root to leaves with two

bits of IP address. These two bits of IP address are the index key of the current node. Figure A.6

b) shows the data flow graph of the simplified IPv4 algorithm. According to the data structure

shown in Figure A.6 a), logical page 0 has the first memory structure (Mem0) in Figure A.6 a),

128

and the data structure of Mem 1 and 2 are assigned to logical page 1 and 2, respectively. If the

next port number is found at the logical page1, it will be sent outside PLUG through the logical

page link as the destination port number. In that case, the connected logical pages bypass the

port number without any operation Otherwise, the message will be sent to the next logical page

with the point index in the current data structure to find the longest prefixed matched result.

129

bibliography

[1] “Comparing and contrasting fpga and microprocessor system design and development

https://www.xilinx.com/support/documentation/white

_papers/wp213.pdf.”

[2] “Intel Streaming SIMD Extensions 4 (SSE4),” http://http://www.intel.com/technology/

architecture-silicon/sse4-instructions/index.html, accessed: 2014-08-14.

[3] “Llvm language reference manual

http://llvm.org/docs/langref.html.”

[4] “Marc Horowitz. Why design must change (slides),

http://www.synopsys.com/Community/UniversityProgram/

CapsuleModule/Why-Design-Must-Change.ppt.”

[5] MicroBlaze Processor Reference Guide. Xilinx Corp.

[6] Nios II C2H Compiler User Guide. Altera Corp.

[7] Nios II Processor Reference Handbook. Altera Corp.

[8] Parboil Benchmark Suite. http://impact.crhc.illinois.edu/parboil.php.

[9] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Boosting mobile gpu performance

with a decoupled access/execute fragment processor,” in Proceedings of the 39th

Annual International Symposium on Computer Architecture, ser. ISCA ’12. Washington,

DC, USA: IEEE Computer Society, 2012, pp. 84–93. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2337159.2337169

[10] Arvind, “Bluespec: A language for hardware design, simulation, synthesis and

verification invited talk,” in Proceedings of the First ACM and IEEE International Conference

on Formal Methods and Models for Co-Design, ser. MEMOCODE ’03. Washington,

DC, USA: IEEE Computer Society, 2003, pp. 249–. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=823453.823860

http://http://www.intel.com/technology/architecture-silicon/sse4-instructions/index.html
http://http://www.intel.com/technology/architecture-silicon/sse4-instructions/index.html
http://dl.acm.org/citation.cfm?id=2337159.2337169
http://dl.acm.org/citation.cfm?id=2337159.2337169
http://dl.acm.org/citation.cfm?id=823453.823860
http://dl.acm.org/citation.cfm?id=823453.823860

130

[11] K. Arvind and R. S. Nikhil, “Executing a program on the mit tagged-token dataflow

architecture,” IEEE Trans. Comput., vol. 39, no. 3, pp. 300–318, Mar. 1990. [Online]. Available:

http://dx.doi.org/10.1109/12.48862

[12] F. Baboescu, D. Tullsen, G. Rosu, and S. Singh, “A tree based router search engine architec-

ture with single port memories,” in ISCA ’05.

[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.

Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.

Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug.

2011. [Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[14] A. Broder and M. Mitzenmacher, “Using multiple hash functions to improve ip lookups„”

in INFOCOM ’03.

[15] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein, “Spatial computation,” in

Proceedings of the 11th International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS XI. New York, NY, USA: ACM, 2004, pp.

14–26. [Online]. Available: http://doi.acm.org/10.1145/1024393.1024396

[16] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The garp architecture and c

compiler,” Computer, vol. 33, no. 4, pp. 62–69, Apr. 2000. [Online]. Available:

http://dx.doi.org/10.1109/2.839323

[17] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D. Brown,

and J. H. Anderson, “Legup: An open-source high-level synthesis tool for fpga-based

processor/accelerator systems,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 2, pp.

24:1–24:27, Sep. 2013. [Online]. Available: http://doi.acm.org/10.1145/2514740

[18] J. M. P. Cardoso and P. C. Diniz, Compilation Techniques for Reconfigurable Architectures,

1st ed. Springer Publishing Company, Incorporated, 2008. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1458033

http://dx.doi.org/10.1109/12.48862
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/1024393.1024396
http://dx.doi.org/10.1109/2.839323
http://doi.acm.org/10.1145/2514740
http://portal.acm.org/citation.cfm?id=1458033

131

[19] M. Casado, M. J. Freedman, J. Pettit, J. anying Luo, N. McKeown, and S. Shenker, “Ethane:

taking control of the enterprise,” in SIGCOMM ’07.

[20] K. S. Chen-Han Ho, Sung Jin Kim, “Memory access dataflow,” University of Wisconsin

Computer Sciences Technical Report CS-TR-2014-1802, Mar 2007.

[21] P. Coussy, M. Meredith, D. D. Gajaski, , and A. Takach, “An introduction to high-level

synthesis,” IEEE Trans. Design & Test of Computers, vol. 26, pp. 8–17, 2009.

[22] N. Dave, “Designing a reorder buffer in bluespec,” in Formal Methods and Models for Co-

Design, 2004. MEMOCODE ’04. Proceedings. Second ACM and IEEE International Conference

on, June 2004, pp. 93–102.

[23] N. Dave, K. Fleming, M. King, M. Pellauer, and M. Vijayaraghavan, “Hardware

acceleration of matrix multiplication on a xilinx fpga,” in Proceedings of the 5th IEEE/ACM

International Conference on Formal Methods and Models for Codesign, ser. MEMOCODE ’07.

Washington, DC, USA: IEEE Computer Society, 2007, pp. 97–100. [Online]. Available:

http://dx.doi.org/10.1109/MEMCOD.2007.371239

[24] L. De Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam, “Plug: flexible lookup

modules for rapid deployment of new protocols in high-speed routers,” in Proceedings of

the ACM SIGCOMM 2009 conference on Data communication, ser. SIGCOMM ’09, 2009, pp.

207–218. [Online]. Available: http://doi.acm.org/10.1145/1592568.1592593

[25] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding tables for

fast routing lookups,” in SIGCOMM ’97. [Online]. Available: citeseer.ist.psu.edu/

degermark97small.html

[26] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of

ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of Solid-State

Circuits, vol. 9, pp. 256–268, October 1974.

[27] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic data-flow

processor,” in Proceedings of the 2Nd Annual Symposium on Computer Architecture,

http://dx.doi.org/10.1109/MEMCOD.2007.371239
http://doi.acm.org/10.1145/1592568.1592593
citeseer.ist.psu.edu/degermark97small.html
citeseer.ist.psu.edu/degermark97small.html

132

ser. ISCA ’75. New York, NY, USA: ACM, 1975, pp. 126–132. [Online]. Available:

http://doi.acm.org/10.1145/642089.642111

[28] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its

use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, Jul. 1987.

[Online]. Available: http://doi.acm.org/10.1145/24039.24041

[29] J. A. Fisher, “Trace scheduling: A technique for global microcode compaction,”

IEEE Trans. Comput., vol. 30, no. 7, pp. 478–490, Jul. 1981. [Online]. Available:

http://dx.doi.org/10.1109/TC.1981.1675827

[30] J. R. Goodman, J.-t. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, and H. C. Young, “Pipe:

A vlsi decoupled architecture,” in Proceedings of the 12th Annual International Symposium on

Computer Architecture, ser. ISCA ’85. Los Alamitos, CA, USA: IEEE Computer Society Press,

1985, pp. 20–27. [Online]. Available: http://dl.acm.org/citation.cfm?id=327010.327117

[31] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P.-C. Huang,

M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Taylor, “The greendroid mobile

application processor: An architecture for silicon’s dark future,” IEEE Micro, vol. 31, no. 2,

pp. 86–95, Mar. 2011. [Online]. Available: http://dx.doi.org/10.1109/MM.2011.18

[32] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically specialized datapaths for

energy efficient computing,” in High Performance Computer Architecture (HPCA), 2011 IEEE

17th International Symposium on, 2011, pp. 503–514.

[33] V. Govindaraju, “Energy Efficient Computing Through Compiler Assisted Dynamic Spe-

cialization,” PhD Dissertation, Unversity of Wisconsin-Madison, 2014.

[34] V. Govindaraju, T. Nowatzki, and K. Sankaralingam, “Breaking simd shackles: Liberating

accelerators by exposing flexible microarchitectural mechanisms,” in Proceedings of the 22nd

International Conference on Parallel Architectures and Compilation Techniques ”’(PACT)”’, 2013.

[35] P. Gupta, S. Lin, and N. Mckeown, “Routing lookups in hardware at memory access speeds,”

in INFOCOM ’98.

http://doi.acm.org/10.1145/642089.642111
http://doi.acm.org/10.1145/24039.24041
http://dx.doi.org/10.1109/TC.1981.1675827
http://dl.acm.org/citation.cfm?id=327010.327117
http://dx.doi.org/10.1109/MM.2011.18

133

[36] J. R. Gurd, C. C. Kirkham, and I. Watson, “The manchester prototype dataflow

computer,” Commun. ACM, vol. 28, no. 1, pp. 34–52, Jan. 1985. [Online]. Available:

http://doi.acm.org/10.1145/2465.2468

[37] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a GPU-accelerated software router,”

in SIGCOMM ’10.

[38] E. N. Harris, S. L. Wasmundt, L. De Carli, K. Sankaralingam, and C. Estan, “Leap:

Latency- energy- and area-optimized lookup pipeline,” in Proceedings of the Eighth

ACM/IEEE Symposium on Architectures for Networking and Communications Systems, ser.

ANCS ’12. New York, NY, USA: ACM, 2012, pp. 175–186. [Online]. Available:

http://doi.acm.org/10.1145/2396556.2396595

[39] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable Coproces-

sor,” in Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines,

April 1997, pp. 16–18.

[40] L. W. Howes, A. Lokhmotov, A. F. Donaldson, and P. H. Kelly, “Deriving efficient

data movement from decoupled access/execute specifications,” in Proceedings of the 4th

International Conference on High Performance Embedded Architectures and Compilers, ser.

HiPEAC ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 168–182. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-92990-1_14

[41] R. A. Iannucci, “Toward a dataflow/von neumann hybrid architecture,” in Proceedings

of the 15th Annual International Symposium on Computer Architecture, ser. ISCA ’88. Los

Alamitos, CA, USA: IEEE Computer Society Press, 1988, pp. 131–140. [Online]. Available:

http://dl.acm.org/citation.cfm?id=52400.52416

[42] W. Jiang, Q. Wang, and V. Prasanna, “Beyond TCAMs: an SRAM-Based parallel multi-

pipeline architecture for terabit IP lookup,” in INFOCOM ’08.

[43] V. Kathail, “Creating power-efficient application engines for soc design,” Synfira Inc. Soc

Central, 2005.

http://doi.acm.org/10.1145/2465.2468
http://doi.acm.org/10.1145/2396556.2396595
http://dx.doi.org/10.1007/978-3-540-92990-1_14
http://dl.acm.org/citation.cfm?id=52400.52416

134

[44] M. King, N. Dave, and Arvind, “Automatic generation of hardware/software interfaces,”

in ASPLOS, 2012, pp. 325–336.

[45] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click modular router,”

ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297, Aug. 2000. [Online]. Available:

http://doi.acm.org/10.1145/354871.354874

[46] K. Koukos, D. Black-Schaffer, V. Spiliopoulos, and S. Kaxiras, “Towards more

efficient execution: A decoupled access-execute approach,” in Proceedings of the

27th International ACM Conference on International Conference on Supercomputing, ser.

ICS ’13. New York, NY, USA: ACM, 2013, pp. 253–262. [Online]. Available:

http://doi.acm.org/10.1145/2464996.2465012

[47] A. Kumar, L. De Carli, S. J. Kim, M. de Kruijf, K. Sankaralingam, C. Estan, and

S. Jha, “Design and implementation of the plug architecture for programmable and

efficient network lookups,” in Proceedings of the 19th international conference on Parallel

architectures and compilation techniques, ser. PACT ’10, 2010, pp. 331–342. [Online]. Available:

http://doi.acm.org/10.1145/1854273.1854316

[48] S. Kumar, M. Becchi, P. Crowley, and J. Turner, “CAMP: fast and efficient IP lookup archi-

tecture,” in ANCS ’06.

[49] S. Kumar and B. Lynch, “Smart memory for high performance network packet forwarding,”

in HotChips, Aug. 2010.

[50] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program analysis &

transformation,” in CGO ’04, pp. 75–88.

[51] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE, vol. 7,

no. 9, pp. 1235–1245, September 1987.

[52] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “Mcpat: An integrated

power, area, and timing modeling framework for multicore and manycore architectures,”

http://doi.acm.org/10.1145/354871.354874
http://doi.acm.org/10.1145/2464996.2465012
http://doi.acm.org/10.1145/1854273.1854316

135

in Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on,

2009, pp. 469–480.

[53] F. Liu, S. Ghosh, N. P. Johnson, and D. I. August, “Cgpa: Coarse-grained pipelined

accelerators,” in Proceedings of the The 51st Annual Design Automation Conference on Design

Automation Conference, ser. DAC ’14. New York, NY, USA: ACM, 2014, pp. 78:1–78:6.

[Online]. Available: http://doi.acm.org/10.1145/2593069.2593105

[54] R. Lysecky and F. Vahid, “Design and implementation of a microblaze-based warp

processor,” ACM Trans. Embed. Comput. Syst., vol. 8, no. 3, pp. 22:1–22:22, Apr. 2009.

[Online]. Available: http://doi.acm.org/10.1145/1509288.1509294

[55] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective

compiler support for predicated execution using the hyperblock,” in Proceedings of

the 25th Annual International Symposium on Microarchitecture, ser. MICRO 25. Los

Alamitos, CA, USA: IEEE Computer Society Press, 1992, pp. 45–54. [Online]. Available:

http://dl.acm.org/citation.cfm?id=144953.144998

[56] A. J. Mcauley and P. Francis, “Fast routing table lookup using cams,” in IEEE INFOCOM,

1993, pp. 1382–1391.

[57] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,”

SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:

http://doi.acm.org/10.1145/1355734.1355746

[58] G. Mittal, D. C. Zaretsky, X. Tang, and P. Banerjee, “Automatic translation of software

binaries onto fpgas,” in Proceedings of the 41st Annual Design Automation Conference,

ser. DAC ’04. New York, NY, USA: ACM, 2004, pp. 389–394. [Online]. Available:

http://doi.acm.org/10.1145/996566.996678

[59] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38,

no. 8, pp. 114–117, April 1965.

http://doi.acm.org/10.1145/2593069.2593105
http://doi.acm.org/10.1145/1509288.1509294
http://dl.acm.org/citation.cfm?id=144953.144998
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/996566.996678

136

[60] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. Deng, and S. Zhang, “IP routing processing with

graphic processors,” in DATE ’10.

[61] G. M. Papadopoulos and D. E. Culler, “Monsoon: An explicit token-store architecture,”

in Proceedings of the 17th Annual International Symposium on Computer Architecture,

ser. ISCA ’90. New York, NY, USA: ACM, 1990, pp. 82–91. [Online]. Available:

http://doi.acm.org/10.1145/325164.325117

[62] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig, V. Pavlov, A. Zhai,

M. Gambhir, A. Jaleel, R. Allmon, R. Rayess, S. Maresh, and J. Emer, “Triggered instructions:

A control paradigm for spatially-programmed architectures,” in Proceedings of the 40th

Annual International Symposium on Computer Architecture, ser. ISCA ’13. New York, NY, USA:

ACM, 2013, pp. 142–153. [Online]. Available: http://doi.acm.org/10.1145/2485922.2485935

[63] C. Rowen and S. Leibson, “Flexible architectures for engineering successful SOCs,” in DAC

’04.

[64] J. Sampson, G. Venkatesh, N. Goulding-Hotta, S. Garcia, S. Swanson, and M. Taylor, “Ef-

ficient complex operators for irregular codes,” in High Performance Computer Architecture

(HPCA), 2011 IEEE 17th International Symposium on, Feb 2011, pp. 491–502.

[65] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, S. W. Keckler, D. Burger, and C. R.

Moore, “Exploiting ILP, TLP and DLP with the Polymorphous TRIPS Architecture,” in

ISCA ’03: Proceedings of the 30th Annual International Symposium on Computer Architecture,

June 2003, pp. 422–433.

[66] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W. Keckler, “Scalable

hardware memory disambiguation for high ilp processors,” in Proceedings of the

36th Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 36.

Washington, DC, USA: IEEE Computer Society, 2003, pp. 399–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=956417.956553

http://doi.acm.org/10.1145/325164.325117
http://doi.acm.org/10.1145/2485922.2485935
http://dl.acm.org/citation.cfm?id=956417.956553

137

[67] O. Shacham, O. Azizi, M. Wachs, W. Qadeer, Z. Asgar, K. Kelley, J. Stevenson, S. Richardson,

M. Horowitz, B. Lee, A. Solomatnikov, and A. Firoozshahian, “Rethinking digital design:

Why design must change,” IEEE Micro, vol. 30, no. 6, pp. 9–24, 2010.

[68] D. Shah and P. Gupta, “Fast updating algorithms for tcams,” IEEE Micro, vol. 21, no. 1, pp.

36–47, Jan. 2001. [Online]. Available: http://dx.doi.org/10.1109/40.903060

[69] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification using multidimen-

sional cutting,” in SIGCOMM ’03.

[70] J. E. Smith, “Decoupled access/execute computer architectures,” in Proceedings of

the 9th Annual Symposium on Computer Architecture, ser. ISCA ’82. Los Alamitos,

CA, USA: IEEE Computer Society Press, 1982, pp. 112–119. [Online]. Available:

http://dl.acm.org/citation.cfm?id=800048.801719

[71] S. Subramaniam and G. H. Loh, “Fire-and-forget: Load/store scheduling with no store

queue at all,” in Proceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO 39. Washington, DC, USA: IEEE Computer Society, 2006,

pp. 273–284. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2006.26

[72] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,” in Proceedings of the

36th annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 36, 2003,

pp. 291–. [Online]. Available: http://dl.acm.org/citation.cfm?id=956417.956546

[73] D. Taylor, J. Turner, J. Lockwood, T. Sproull, and D. Parlour, “Scalable ip lookup for internet

routers,” Selected Areas in Communications, IEEE Journal on, vol. 21, no. 4, pp. 522 – 534, may

2003.

[74] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti 5.1,” HP Labs, Tech.

Rep. HPL-2008-20.

[75] J. L. Tripp, M. B. Gokhale, and K. D. Peterson, “Trident: From high-level language to

hardware circuitry,” Computer, vol. 40, no. 3, pp. 28–37, 2007.

http://dx.doi.org/10.1109/40.903060
http://dl.acm.org/citation.cfm?id=800048.801719
http://dx.doi.org/10.1109/MICRO.2006.26
http://dl.acm.org/citation.cfm?id=956417.956546

138

[76] F. Vahid, G. Stitt, and R. Lysecky, “Warp processing: Dynamic translation of binaries to

fpga circuits,” Computer, vol. 41, no. 7, pp. 40–46, July 2008.

[77] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, “Efficuts: optimizing packet classification

for memory and throughput,” in SIGCOMM ’10.

[78] G. Venkataramani, T. Chelcea, and S. C. Goldstein, “HLS support for unconstrained

memory accesses,” in IEEE 14th International Workshop on Logic Synthesis (IWLS), Lake

Arrowhead, CA, June 2005. [Online]. Available: http://www.cs.cmu.edu/∼seth/papers/

venkataramani-iwls05.pdf

[79] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson,

and M. B. Taylor, “Conservation cores: Reducing the energy of mature computations,”

in Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS XV. New York, NY, USA: ACM, 2010, pp.

205–218. [Online]. Available: http://doi.acm.org/10.1145/1736020.1736044

[80] W. Wang, T. K. Tan, J. Luo, Y. Fei, L. Shang, K. S. Vallerio, L. Zhong, A. Raghunathan,

and N. K. Jha, “A comprehensive high-level synthesis system for control-flow intensive

behaviors,” in Proceedings of the 13th ACM Great Lakes Symposium on VLSI, ser.

GLSVLSI ’03. New York, NY, USA: ACM, 2003, pp. 11–14. [Online]. Available:

http://doi.acm.org/10.1145/764808.764812

[81] F. Zane, G. Narlikar, and A. Basu, “Coolcams: power-efficient tcams for forwarding en-

gines,” in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and

Communications. IEEE Societies, vol. 1, March 2003, pp. 42–52 vol.1.

http://www.cs.cmu.edu/~seth/papers/venkataramani-iwls05.pdf
http://www.cs.cmu.edu/~seth/papers/venkataramani-iwls05.pdf
http://doi.acm.org/10.1145/1736020.1736044
http://doi.acm.org/10.1145/764808.764812

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	High-Level Synthesis
	Building Accelerators from Software
	Contributions
	Thesis Organization

	Motivation
	Generating accelerators from the specialized program
	Generating Accelerators for Loops in Generic Program
	Chapter Summary

	SWSL
	Overview of SWSL
	Back-end Compiler for SWSL
	Chapter Summary

	Cache-Coherent High-Level Synthesis for Fixed-Function Accelerators
	Overview of the CcHLS
	Extended-Access/Execute Program Dependence Graph (E-AEPDG)
	Transformation E-AEPDG to Fixed-Function Accelerators
	Execution
	Complex Scenarios
	ccHLS Support
	Implementation
	Chapter Summary

	Evaluation of SWSL
	Evaluation Overview
	Benchmarks
	Evaluation for Network Lookup with SWSL
	Chapter Summary

	Evaluation of ccHLS
	Modeling for the Fixed-Function Accelerator from ccHLS
	Benchmarks
	Fixed-Function Accelerators with the General Purpose Processor
	Fixed-Function Accelerators with the C-Cores
	Chapter Summary

	Related Work
	SWSL and Other Specialization Hardware
	Other Specialization Approaches related to ccHLS
	Chapter Summary

	Conclusion
	Contributions
	Closing Remarks

	Pipeline LookUp Grid (PLUG)
	Bibliography

