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ABSTRACT

As graphics processing unit (GPU) architects have made their pipelines more programmable
in recent years, GPUs have become increasingly general-purpose. As a result, more and more
general-purpose, non-graphics applications are being ported to GPUs. Past work has focused
on applications that map well to the data parallel GPU programming model. These applica-
tions are usually embarrassingly parallel and/or heavily utilize GPU architectural features such
as shared memory and transcendental hardware units. However other GPU architecture com-
ponents such as texture memory and its internal interpolation feature have been underutilized.
Additionally, past work has not explored porting CMP benchmarks to GPUs; if GPUs are truly
becoming a general-purpose architecture, they need to be able to execute general-purpose pro-
grams like CMP benchmarks, especially programs that do not map well to the data parallel
paradigm, with high performance. This thesis focuses on enabling these new uses for GPUs by
implementing new use applications on GPUs and then examining their performance. For those
benchmarks that do not perform well, we explore what bottlenecks still remain that prevent

them from obtaining high performance.



Chapter 1

Introduction

As graphics processing unit (GPU) architects have made their pipelines more programmable
in recent years, GPUs have become increasingly general-purpose. As a result, a wider range
of programmers have been able to utilize GPUs to gain significant performance increases over
CPU implementations [38]]. Programmers are attracted to implement their applications on
GPUs because GPUs offer tremendous potential speedups over CPU implementations. GPUs
offer large speedups because they are massively parallel and allow many computations to be
performed simultaneously. However, programs usually need to map well to the GPU program-
ming model to effectively achieve these speedups.

There are many examples of porting non-graphics applications to GPUs and obtaining im-
pressive speedups over CPU implementations. For example, Yang et. al. report speedups
of 80x for image histograms and more than 200x for edge detection [58]]. Genovese reports
speedups of 10x to 60x for 1D convolutions [20]. Govindaraju et. al. report speedups of 8x to
40x over optimized CPU implementations for discrete Fourier Transforms [23]. Silberstein et.
al. report speedups of 2700x for random data and 270x for real-life data for sum-products [48].
Tolke and Krafcyzk see two orders of magnitude speedup for a 3D Lattice Boltzmann (LBM)
CFD application [S3]]. Smith et. al. and Han et. al. port networking applications to the GPU
and see speedups of 9x over serial (2.3x over parallel) CPU implementations [49] and 4x over
optimized CPU implementations [27]], respectively. Townsend also reports speedups of 205x
over serial CPU implementations and 25x over parallel CPU implementations for CU-LSP, a

Lomb-Scargle periodogram (LSP) for spectral analysis code for scientific applications [S1]].



Finally, Xu and Mueller see very large speedups for a bilinear filtering algorithm for iterative
CT scanning on GPUs [57].

In general, programmers have been able to obtain high performance on GPUs by porting
applications that map well to the GPU’s data parallel, single instruction multiple data (SIMD)
programming model. These applications are often embarrassingly parallel and do not have
control flow issues. Additionally, programmers have regularly utilized GPU architectural fea-
tures such as shared memory and transcendental hardware units for specialized mathematical
operations to increase performance. The example applications from the previous paragraph
have these features: Han, Genovese, and Smith’s applications exploits the massive parallelism
available on the GPU. Govindaraju, Silberstein, Tolke, and Yang’s applications are highly par-
allel and use shared memory. Townsend’s CU-LSP application uses transcendental hardware
units for sine and cosine calculations, and Xu’s bilat also benefits from the fast transcendental
units, such as exponents, available on the GPU [35]]. Clearly, these applications map well to
the GPU and use its computational resources to obtain high performance. These applications
also represent uses of the GPU that became easier to implement after GPU pipelines became
more general-purpose.

The goal of this thesis is to identify further new uses for GPUs, especially new uses that can
use underutilized components of the GPU architecture and applications that were previously
unsuited for GPU execution; based on these results we identify some new uses for GPUs.

Finally, we explore what applications remain as challenging benchmarks for GPUs.

Thesis Organization

One feature of the GPU that has not been explored for non-graphics use is texture memory
interpolation. A few of the previous examples [48] 149, I57] explore using texture memory, but
none of these applications exploit the full computational power of textures, which can perform
interpolations internally for “free” in hardware. GPUTeraSort [22] and PSBN [24] are fur-
ther examples of applications that uses texture memory for caching, but don’t use the internal

interpolation feature of texture memory. In Chapter 2} we explore the theoretical maximum



obtainable performance when using texture memory by analyzing the texture unit and find that
algorithms which heavily utilize the internal interpolation of the texture memory can obtain
large speedups. Our key insight is that the texture memory can be used as an interpolation
engine for non-graphics applications, freeing the GPU cores from computation work. Based
on these results, we implement GRASSY, an asteroseismology application that heavily utilizes
textures to perform nearest neighbor interpolation in tables of pre-calculated intensity data. By
mapping GRASSY’s pre-calculated intensity data to the GPU texture memory, we are able to
obtain impressive speedups over optimized CPU implementations. GRASSY is representative
of algorithms that can benefit significantly from this new use of GPUs. Chapter [3|describes our
implementation of GRASSY and our study of the upper and lower bounds of texture memory
interpolation performance. We show that an application needs to be dominated by interpo-
lation to prevent the texture memory from rapidly becoming a bottleneck, a problem that is
exacerbated by trends in newer GPUs.

While many scientific workloads, such as CU-LSP and bilat, have been ported to GPUs
and found to achieve impressive speedups, these applications fit the GPU paradigm extremely
well. However, it isn’t obvious if other workloads that do not map well to the SIMD paradigm
can also obtain high performance on GPUs. In the second direction of this thesis, we look at
how well conventional CMP benchmarks can execute on a GPU. For the GPU to become a truly
general-purpose architecture, it must be able to execute general-purpose CMP applications with
high performance. In Chapter @ we describe a study on porting four CMP benchmarks from
the PARSEC benchmark suite to GPUs to explore how their general-purpose programming
constructs perform on GPUs. With the exception of blackscholes, these benchmarks do not fit
the SIMD paradigm that GPUs historically require. This is reflected in the poor performance
we see for these benchmarks. In general, we found that the PARSEC CMP benchmarks do not
port very well to GPUs. However, understanding why these benchmarks perform poorly allows
us to understand if there are fundamental bottlenecks in the GPU architecture that prevent

benchmarks like these from obtaining high performance.



In Chapter [5] we further examine the bottlenecks in our CMP benchmarks and extend
our findings from Chapter ] across many benchmark suites. We create a suite of challenging
benchmarks for GPUs. We also explore what the bottlenecks to obtaining high performance
for these benchmarks on GPUs are and classify all the benchmarks under the broad categories
of insufficient available parallelism, poor control flow, and memory access contention. By
identifying a suite of challenging benchmarks, we enable architects to explore architectural
changes to future generations of GPUs.

All our results are based on measurements taken on real GPUs; we describe the systems
used in Subsection [2.3.2] Additionally, throughout this thesis, all of our implementations use
CUDA, Nvidia’s proprietary GPU programming language [1, 2]. We use CUDA because it
is a common GPU programming language. Limitations of the studies in this thesis include
potentially unoptimized algorithms in our benchmarks and features that have changed in newer
releases of GPU programming environments that which we did not retest for. Throughout
the thesis, we note places in our implementations that could potentially be improved by using

newer generations of the programming environments.

Thesis Contributions
The contributions of this thesis are:

e We explore the theoretical maximum obtainable performance when using the internal

interpolation capability of texture memory by analyzing the texture unit.

e We explore the use of texture memory interpolation in non-graphics GPU programs by
implementing GRASSY, an asteroseismology program that heavily utilizes texture mem-

ory interpolation to achieve large speedups.

e We implement a series of general-purpose CMP benchmarks on the GPU to examine the
performance of non-data parallel programs on the increasingly programmable pipelines

of GPUs.



e We identify and analyze a set of challenging benchmarks that perform poorly on current

GPUs.

Overall, we find that several new uses for the GPU, especially for applications that uti-
lize the internal interpolation of texture memory. These uses are enabled by the increasingly
general-purpose nature of the GPU. For the applications that do not perform well, we identify
the sources of their bottlenecks, as well as what changes to the GPU architecture can be made

to enable these programs to execute efficiently.



Chapter 2

Understanding GPU Texture Memory Capabilities

Texture memory is an important component of the GPU architecture that is commonly used
in graphics. However, it has been used sparingly in non-graphics GPU applications. When the
texture unit has been used in non-graphics applications, it has often been used as a cache
to offset the lack of a direct cache in pre-Fermi Nvidia GPUs, although a few applications,
predominantly in the financial industry, have used its internal interpolation. Texture memory
has the ability to perform nearest neighbor interpolation internally, which provides an efficient
and untapped source of computational power.

If we can find a way to properly harness the texture memory’s internal interpolation, then
non-graphics applications can benefit from its use and obtain improved performance. In this
chapter, we seek to examine how we can more effectively utilize texture memory and its inter-
nal interpolation feature in non-graphics and general-purpose GPU applications. To do this, we
examine the tradeoffs to using texture memory interpolation by microbenchmarking the perfor-
mance of the texture unit. We find that applications that heavily utilize the internal interpolation
feature of texture memory are ideal candidates for using texture memory interpolation.

In the rest of this chapter, we first provide background information on the texture unit in
Section then we address the non-graphics, general-purpose applications that have already
used texture memory in Section 2.2 Next, in Section [2.3] we analyze the texture memory

through microbenchmarking. Finally, we conclude in Section [2.4]
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Figure 2.1: GPU (Tesla) Architecture, reproduced from [37]].

2.1 Texture Memory Background

In this thesis, we focus on Nvidia GPUs. Figure [2.1]is high-level schematic of the Nvidia
Tesla GPU architecture. We refer the reader elsewhere for more details on how specific compo-
nents in the figure operate [37]. Most importantly, the figure shows that the GPU is a massively
parallel architecture that is designed to have many threads operating on data simultaneously.
The architecture is broken into Texture Processing Clusters (TPCs), an example of which is
shown in Figure [2.2] TPCs contain several Streaming Multiprocessors (SMs), as well as two
Special Functional Units (SFUs) which are responsible for performing transcendental calcula-
tions like sine and cosine in hardware, a local texture cache and local shared memory. Each

SM contains eight Streaming Processors (SPs), which are ALU-like units. In the example in
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Figure 2.2: Texture Processing Cluster (TPC), reproduced from [37]].

Figure the TPC contains two SMs!, which share the local texture cache. All of the TPCs
are linked together via an interconnect, which also connects the TPCs to global memory.

The global memory contains the texture memory reference when it is being used. The tex-
ture memory layout, including the caches on the TPCs, is optimized for 2D locality. Also, it
does not reduce DRAM fetch latency in the GPU [2]. Instead, texture memory is designed for
streaming fetches with a constant latency. Thus, hitting in the texture cache will artificially
increase the number of texture requests (and thus the bandwidth) the texture memory can si-
multaneously service, because those requests won’t need to be serviced by the global texture

memory (and therefore other requests can be). Another unique feature of texture memory is

IDifferent generations of Nvidia hardware have different numbers of SMs per TPC.



that it performs interpolation internally in hardware. If the user requests a data point that is in
between the data points in the texture memory, it will perform nearest neighbor interpolation®
between the data points in texture memory that are closest to the inputted data point and re-
turn the interpolated value. Because this interpolation is done internally in hardware, we can
consider it to be done for “free” as compared to performing these calculations using the GPUs
SPs or SFUs. Finally, texture memory is read-only during a GPU kernel’s execution. Further
information on textures can be found elsewhere [25} 40, (31, [16]].

To make texture memory visible to the programmer, we first need to declare a texture
reference. The texture reference declares a region of the GPU’s global memory to be texture
memory. After loading data into it on the host, we can access it in our GPU code by using the
texture reference we initially declared, along with the coordinates we want to read from the
texture unit. To access a texture, CUDA uses a standard, opaque routine that returns a float
(called a texel) with the value from the desired coordinates, interpolated if necessary.

However, there are also some challenges to using textures in CUDA. For example, while
textures return a float, the interpolated results are only guaranteed to be 9 bit precise values due
to the precision of the internal interpolation. In [52] we show that this is not a concern for our
GRASSY platform, but it could be an issue for other applications that require more than 9 bits
of precision. Additionally, while CUDA supports 3D textures, their size is severely limited, as
is specified in Appendix G.1 of the CUDA programming guide [2]]. Finally, CUDA does not

support textures with more than three dimensions.

2.2 Related Work

There has been some past work on using texture memory for non-graphics applications,
which we discuss here. This work generally falls into one of two categories: applications
that use texture memory for caching (i.e. as a lookup table) and applications that use texture

memory interpolation.

?Linear, bilinear, or trilinear interpolation depending on if 1D, 2D, or 3D textures are being used, respectively.
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Many applications have used texture memory as a cache/lookup table to obtain speedups.
Because pre-Fermi Nvidia GPUs did not have a true caching scheme, using textures to cache
data allowed data to be placed much closer to the cores and increase performance, includ-
ing some of the examples mentioned in Chapter (1] [22, 24, 48, 149, 57]. While all of these
applications use texture memory for caching, none of these applications use the internal in-
terpolation feature of texture memory. GPUTeraSort and PSBN were created before GPU
pipelines became more programmable when all data elements were treated as texture texels.
Thus, textures were not used in the same ways that we use them. Additionally, Sobel Filter
from the CUDA SDK [2] and Li’s Lattice Boltzmann computation implementation [36] utilize
textures for lookup table purposes: SobelFilter uses OpenGL texture memory for thresholding
and lookups and Li’s implementation stores packets for its LBM as textures to perform fast
lookups.

There have also been several applications, mostly in the financial industry, that utilize the
free internal interpolations that texture memory can provide. This work is most similar to
the work we explore in this chapter and Chapter 3] Bennemann et. al. implement pricing
algorithms on the GPU and speed up their local volatility models by using bilinear interpolation
in the texture unit [4]. This technique has also been used by others [5,16]. Nord uses textures to
speedup calculations for capped basket options [42]. GJK, is a rigid body detection algorithm
that is commonly used for collision detection and resolution of convex objects [35]. In [47],
they map the GJK support maps to texture units and use it both as a lookup table and use it
to interpolate the distances of a vertex from a center. In general, while some previous work
has used texture memory interpolation, our study provides application-independent insight into

when using texture memory interpolation is useful.
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2.3 Texture Memory Performance Analysis

In this section, we explore the behavior and performance capabilities of texture memory. To
do this, we use microbenchmarking, which draws inspiration from GPU texture microbench-
marks from other domains [13, 155]. Our goal in these experiments is to characterize the be-
havior of the texture unit of the GPU. To do this, we ran our experiments on a Nvidia Quadro
FX 580 GPU and a Nvidia Tesla C1060 which, as stated in Table [2.1] are capable of sustain-
ing a maximum of 16 texture lookups/cycle and 80 texture lookups/cycle. The results from
these experiments will allow us to better understand how to optimally use texture memory in
order to obtain higher performance. The metric used in all the experiments is throughput

(lookups/cycle) of the texture unit.

2.3.1 Microbenchmark Construction

We constructed a parametrized microbenchmark and varied different access parameters in
order to understand the behavior of the texture unit and characterize its performance. By vary-
ing these parameters, we expect to see how different inputs affect the texture unit’s throughput.

The input parameters we varied are:

e stride between texture unit accesses
e number of threads per thread block

e number of threads blocks used

Varying the stride between texture cache accesses shows how the texture unit performs for
accesses with different distances between them. These three parameters are important because
they affect texture memory performance by causing increased competition for resources, af-
fecting locality of accesses, and allowing for better hiding of misses. For example, a stride that
causes all accesses to be in the same bank of the texture cache will perform poorly because it

will cause thrashing. Varying the number of threads per block affects the performance of the
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texture <float, ...> texRef; // Preloaded with randomized values

_-global__ void accessTextCache(float * outArr, int stride)

{

// local variables

int i = 0;

float retVal = 0.0f;

// perform lookups 500K times
for (i = 0; i < 500,000; ++i)
{

// Note: thread_-index differs for each thread

retVal += texID(texRef, thread_index * stride);

}

// write retVal to an output array to prevent the compiler from optimizing
// out the texture lookups (could also use a volatile variable)

outArr[thread_index ] = retVal;

Listing 2.1: Sample Code for 1D Texture Microbenchmarking

texture unit. When there are more threads per block, there are more opportunities to hide tex-
ture cache misses, but there may also be more capacity misses because of the increased number
of threads. Finally, having more blocks of threads should better utilize all the SMs on the GPU,
which should allow better hiding of texture cache misses. However, having too many blocks
may cause congestion. Varying these parameters should help us find an ideal number of thread
blocks and threads per thread block to obtain high performance.

All the experiments were designed to be texture unit limited, so that the performance would
not be significantly affected by other parts of the GPU architecture. Listing shows an
example of how a 1D texture microbenchmark might look (with some bookkeeping omitted).
The kernel accesses the texture unit repeatedly in an unrolled loop® and the total execution time

of the kernel is used to calculate the throughput.

3Loop unrolling ends up not contributing to our results, because the compiler doesn’t unroll the loop due to

excessive code expansion. Thus, we exclude the loop unroll pragma from our sample code to avoid confusion.
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Table 2.1: Systems Used Specifications (Systems are used throughout the paper).

GPUs
Tesla Quadro NVS GeForce

GPU Parameter C1060 FX 580 | Quadro 295 | 8400 GS
CUDA Capability 1.3 1.1 1.1 1.1
Streaming Multiprocessors (SMs) 30 4 1 1
Streaming Processors per SM (SPs/SM) 8 8 8 8
Max Texture Lookups per cycle 80 16 4.4 3.6
Max # of Registers per thread block 16K 8K 8K 8K
Clock Frequency 1.3GHz | 1.12GHz 1.3 GHz 1.4 GHz
Memory Bandwidth 102 GB/s | 25.6 GB/s | 11.2 GB/s 6.4 GB/s
Global Memory 4 GB 512 MB 256 MB 512 MB
Shared Memory per thread block 16 KB 16 KB 16 KB 16 KB

CPUs

2 Xeon Nehalem Xeon 2 Xeon

Attached CPU Parameter E5345’s i5 E5520 E5345’s
# Cores 8 4 4 8
Clock Frequency 233GHz | 1.2GHz 226 GHz | 2.33GHz

2.3.2 [Experimental Setup

Throughout this thesis, we ran our experiments on the systems in Table In each chapter
and section, where applicable, we will specify which of these systems were used for those
specific experiments. In general, a subset of these systems were used for specific experiments
because they were not all available or purchased at the time the experiments were run.

For our microbenchmarking experiments, we used the Quadro FX 580 and Tesla C1060
platforms. We chose these GPUs because they support the most texture lookups per cycle of
all four GPUs. Additionally, these GPUs have a wide enough disparity in maximum texture
lookups per cycle that we should be able to see any discrepancies in performance. We perform

a series of three experiments to help characterize the behavior of the texture unit. In these tests,
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we vary the parameters we introduced at the start of this section to demonstrate how texture

unit performance varies. We performed the following experiments:

1. We use a 1D texture, vary the stride sequentially, and use constant number of thread

blocks and threads per thread block.

2. We use a 1D texture and vary the stride, number of thread blocks, and number of threads

per thread block by powers of 2.

3. We use a 2D texture, and vary the stride, number of thread blocks, and number of threads

per thread block by powers of 2.

The texture data structure we used in this experiment is 4 MB in size for all experiments.
We chose this size so the working set would be larger than the cache size; thus making it likely
that the data will be evicted from the texture cache between accesses to it, which prevents
performance from being artificially inflated by the texture caches containing the entire working
set. No threads attempt to access a memory location outside the bounds of the texture data
structure.

In order to provide a baseline performance level to calibrate the performance of our various
access patterns against, we created a “‘constant” lookup texture access pattern. In this baseline
experiment all threads perform lookups to the same texture location by accessing a constant
index. Therefore, only one cache miss per TPC will occur (when the first thread from a TPC
tries to access that index). After this miss, the rest of the accesses will be hits in the cache and
data will be shared amongst all the TPCs. The constant test provides a ceiling on attainable
performance approximately equal to the maximum throughput of the GPU.

In comparison, all three experiments perform a single lookup in the texture unit for each
thread, similar to the code shown in Listing [2.1] Each thread accesses a different index in the
texture cache, which allows us to determine what the performance of the texture unit is when
there is no sharing of texture-cached data between threads, a much more realistic approach.

Each thread repeats its lookup S00K times to prevent compulsory misses from dominating the
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latency measurements and to provide a good steady-state performance measurement. Because
1D and 2D textures are mapped differently to the texture unit, we expect that they will ob-
tain different performance results. Thus we perform both 1D and 2D texture experiments to
examine the difference in performance between 1D and 2D textures.*

The sequentially varying stride experiment (Experiment #1) was designed to test a 1D
texture along a spectrum of strides (€ [1,128]) to show which distance between accesses would
provide maximal performance for a given number of blocks and threads per block. The stride
represents the distance between consecutive accesses in the texture unit. For example, for a
stride of two, the first thread’s index in the texture unit will be location O (texel 0), and the
second thread’s index in the texture unit will be location 2 (texel 2) and so on. The goal of
this experiment to see if varying stride between accesses affects performance. We performed
this test for two configurations: A) 128 thread blocks with 128 threads per thread block and
B) 512 thread blocks with threads per thread block (both configurations have varying strides).
We chose these configurations because they represent commonly used configurations in GPU
programming. Additionally, both data points have enough thread blocks and threads per block
to hide the latency delays caused by misses in the texture cache.

Experiment #2 expands on experiment #1. However, instead of varying only the stride for
a 1D texture, we also varied the number of thread blocks and threads per block. The goal
of this experiment is to find the optimally performing combination of thread blocks, threads
per thread block, and stride between texture unit accesses for a 1D texture. We vary these
parameters by powers of two instead of sequentially as we did in experiment #1, because we
are more interested in the overall trends in this experiment.

Experiment #3 tests the performance of a 2D texture. Similar to experiment #2, the stride
between accesses, number of thread blocks, and number of threads per thread block vary by

powers of two. We use multiple access patterns in this experiment. Since we’re using a 2D

4There are two experiments for the 1D textures and one for 2D textures because the two 1D experiments are

a subset of the 2D texture experiment tests.
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texture unit now, we gather the results by accessing the texture unit in both the X and Y dimen-

sions. The four access patterns we tested are:

Striding sequentially in X dimension (a stride of 1), constant value in Y dimension

Striding sequentially in Y dimension (a stride of 1), constant value in X dimension

Strides of greater than 1 in both dimensions,

Strides of greater than 1 in the X dimension while using a constant value in the Y dimen-

sion.

Our goal experiment #3 was to find the optimally performing combination of threads per
thread block, number of thread blocks, and stride between texture unit accesses for 2D textures.
We also wanted to find which of our access patterns provided the best performance for a 2D

texture.

2.3.3 Results

The results for the baseline experiment, for both GPUs, always obtain approximately max-

imum throughput, as expected, and thus are not reported on further.

Quadro FX 580 Results

Experiment 1 (1D Texture, Sequentially varying stride): The results are relatively constant
regardless of stride — the maximum variation in throughput for all tested strides is 0.005 tex-
ture lookups/cycle, which is so small (0.04%) that it can be ignored. All data points achieved
between 14 and 15 texture lookups/cycle, which is very close to the peak of 16 texture lookup-
s/cycle. This shows that stride doesn’t significantly affect performance when many thread
blocks are used. However, when fewer thread blocks are being used, stride between accesses
affects performance more significantly because there are fewer blocks to hide the latency of the

misses when data is accessed non-sequentially, a result we confirmed in the other experiments.
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Experiment 2 (1D Texture, Varying stride, number of thread blocks, and number of threads
per block): In this experiment we observed that we can sustain more than 15 lookups/cycle
when we have 32 or more blocks of threads. With 128 thread blocks or more, we can sustain
approximately 16 lookups/cycle. This shows that having many thread blocks to hide the latency
of texture cache misses is important to attaining high performance. The stride between accesses
again had an insignificant effect on the throughput because we have enough threads to hide
the latency of misses. When there are fewer thread blocks, stride affects performance more
significantly, which confirmed our results from Experiment #1. Overall, we found that there
was not a single ideal combination of stride, threads per block, and thread blocks, but rather a
range where we could obtain approximately maximal performance.

Experiment 3 (2D Texture, Varying stride, number of thread blocks, and number of threads
per block): For a 2D texture, we observed that we can sustain approximately 16 lookups/cycle
when 256 thread blocks or more are used. The maximum performance of the 2D texture is
slightly worse than that of the 1D texture in the second experiment. In general, the results for
sequential accesses, striding in one direction, and striding in both directions are approximately
the same. The best results for the 2D texture experiment were also slightly skewed to fewer
threads per block than the 1D texture results. It is possible that this occurs because more thrash-
ing happens in the texture cache when we’re trying to access elements in multiple dimensions,

which means more elements are being accessed.

Tesla C1060 Results

Experiment 1 (1D Texture, Sequentially varying stride): Similar to the results on the Quadro
FX 580, in the results obtained for this experiment on the Tesla C1060 we observe that the
throughput is relatively constant when varying the stride sequentially and that it does not sig-
nificantly affect performance when there are numerous thread blocks and threads per block
being used. Both data points achieve between 74 and 75 lookups/cycle, which is the same per-

cent of peak that this experiment obtained on the FX 580 (94%). As seen in the Quadro results,
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these results also show that the stride affected performance more significantly when few thread
blocks and/or threads per block were used.

Experiment 2 (1D Texture, Varying stride, number of thread blocks, and number of threads
per block): In these results, we observe that we can sustain approximately 79 lookups/cycle
for 256 blocks of threads or more. This again demonstrates the importance of using lots of
blocks to hide the latency of misses in the texture cache in order to attain high performance.
Additionally, the Tesla is a larger GPU than the Quadro, so it makes sense that it requires more
thread blocks than the FX 580 needed to approach its maximum throughput, because more
work needs to be done to fill all of the Tesla’s hardware resources.

Experiment 3 (2D Texture, Varying stride, number of thread blocks, and number of threads
per block): For the 2D texture experiment on the Tesla C1060, we observe that we can sus-
tain more than 78 lookups/cycle when we use 256 blocks or more. Similar to the Quadro
performance results, the performance for a 1D texture on the Tesla is slightly higher than the
performance for a 2D texture. In general, the results for all access patterns were approximately
the same. The results of this experiment confirm that having lots of thread blocks, each with
many, but not always the most, threads per block, is key to obtaining near-maximum throughput
from the texture unit.

Overall, the results from the Tesla C1060 experiments are extremely similar to the results
obtained for the Quadro FX 580. While the GPU’s maximum throughputs differ, both GPU’s
texture units exhibit asymptotic behavior approaching their maximum possible throughputs.
Thus, the results for the Tesla confirm the results found for the Quadro FX 580. Additionally,
our sustained memory bandwidth is well below the peak memory bandwidth of both GPUs.
This shows that we’re able to saturate the texture memory and achieve peak throughput without

saturating the GPU memory.

Observations

These results of our experiments provide several key takeaways:



19

e The stride between accesses doesn’t significantly affect performance when there are
enough thread blocks to hide the latency of texture cache misses. If the accesses were
not strided, performance could potentially be even worse, because there could be less

locality.

e Stride between accesses does affect performance when there are fewer thread blocks,

because the latency of texture cache misses cannot be hidden effectively.

e Having many threads blocks and many threads per thread block improves performance
by allowing the latency of misses to be better hidden. Having more threads per thread

block also potentially occupies more SMs on the GPU and leads to better utilization.

e In some cases, such as with 2D textures, using slightly fewer threads per block than the
maximum provides better performance, likely by reducing thrashing and contention for

texture cache resources.

2.4 Conclusions

In this chapter, we have demonstrated that tremendous speedups can be obtained in non-
graphics applications through the use of texture memory and its internal interpolation. Internal
interpolation performs nearest neighbor interpolation in hardware on the GPU, which means
these calculations do not need to be explicitly done by the GPU processing cores and instead
are provided for free by the texture hardware. Previous work largely ignores the ability to use
texture memory interpolation. Thus, the use of texture memory in non-graphics applications
represents a new use for GPUs that has been enabled by the increasing generalization of GPU
pipelines and the emergence of easier to program GPU programming languages like CUDA.

Our analysis in Section [2.3]showed that programs that use internal interpolation heavily are
good candidates for using texture memory to obtain speedups. In the next chapter, we utilize
this information and demonstrate how impressive speedups can be obtained for GRASSY, a

non-graphics application that utilizes texture memory interpolation.
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Chapter 3

Utilizing Texture Memory: GRASSY

Our analysis from the microbenchmarking in Section [2.3] showed that GPU programs that
make heavy use of interpolation are ideal candidates for using texture memory. In this chapter,
as one application case study, we implement an asteroseismology application called GRASSY.
GRASSY heavily utilizes interpolation in texture memory to obtain speedups near 100x on
GPUs over serial CPU implementations and 33x over parallelized CPU implementations. Thus,
GRASSY represents a non-graphics application that benefits significantly from texture inter-
polations.

In order to understand our results, we mathematically analyze the limits of texture perfor-
mance. We find that texture memory can offer tremendous potential speedups, but that the
majority of the work being done in the application must be interpolation for the texture unit to
provide speedups. If the majority of the work being done in the program is not done by the
interpolations, then most problems will rapidly become bandwidth limited.

In the remainder of this chapter, we first provide background on asteroseismology, explain
the spectral synthesis problem, and provide a more formal basis for the interpolation problem
in Section [3.1] Next we describe the details of our GPU implementation called GRASSY in
Section After this, we show that GRASSY obtains large speedups over CPU implemen-
tations in Section [3.3] In Section [3.4] we discuss related work, then in Section [3.5] we create
a mathematical framework based on our results in order to understand the ultimate upper and
lower bounds on performance for texture memory interpolation. Finally in Section con-
clude and discuss how our results affect future directions for this avenue of GPU computing

research.
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Figure 3.1: Pictorial representation of analyzing stars with direct modeling. Further details are

available in [46].

3.1 GRASSY Background and Problem Statement

Asteroseismology

Asteroseismology is a powerful technique for probing the internal structure of distant stars
by studying time-varying disturbances on their surfaces. A direct analogy can be drawn to the
way that the study of earthquakes (seismology) allows us to infer the internal structure of the
Earth. We associate each fragment with a set of values that we perform calculations on. Due
to the recent launch of space satellites devoted to discovering and monitoring these surface
disturbances in hundreds of thousands of stars, paired with ground-based telescopes capable of
high-resolution, high cadence follow-up spectroscopy, asteroseismology is currently enjoying
a golden age. However, there remains a significant computation challenge: how do we analyze
and interpret the veritable torrent of new asteroseismic data?

To date, the most straightforward and accurate analysis approach is direct modeling via
spectral synthesis (discussed in greater detail later in this section), an example of which is
shown in Figure [3.1] Given a set of observations of the time varying radiant flux received
from a star, we attempt to construct a sequence of synthetic spectra to reproduce these ob-

servations. Any given model depends on the assumed parameters describing the star and its
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Figure 3.2: Discretizing a pulsating star.

surface disturbances. Using an optimization strategy we find the combination of parameters
that best reproduces the observations, ultimately allowing us to establish constraints on the

stellar structure.

Spectral Synthesis

Stellar spectral synthesis is the process of summing up the Earth-directed radiant flux from
each region on the visible hemisphere of a star. A typical procedure, such as is seen in Fig-

ure [3.2] comprises the following steps:

1. Mesh building. Decompose the stellar surface (Figure [3.2)) into a triangle mesh (Fig-
ure [3.3p). A quad [T, g, v, u] (see Table [3.1)) is associated with each mesh vertex (Fig-

ure[3.3p).

2. Mesh rendering. Rasterize the view-plane projection of every triangle to produce a set
of Ny.qq equal area fragments (Figure [3.3f). Bilinear interpolation between triangle

vertices is used to calculate a quad [7', g, v, p] for each fragment.

3. Flux calculation. Evaluate the radiant flux spectrum F'(\;) on a uniformly spaced grid

of N, discrete wavelengths with \; = X\g + A % j (j =0, ..., Ny — 1) for each fragment

(Figure [3.3d).
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Figure 3.3: Steps in spectral synthesis process.

4. Flux aggregation. Sum the Ny,,, flux spectra to produce a single synthetic spectrum

representing the radiant flux for the whole star (Figure [3.3).

Steps (1) and (2) are performed once for a star and/or set of stellar and disturbance pa-
rameters. The main computational cost comes in step (3), which we now discuss in greater
detail.

Over the wavelength grid ); the radiant flux is calculated as:

F(X\;) = (A?/D?) % I(T, g, N\, ) (3.1)

Here, A is the area of the fragment, D the distance to the star, and I(...) the specific in-
tensity of the radiation emerging at rest wavelength )\96“ and direction cosine y from a stellar
atmosphere with effective temperature 7" and surface gravity g (see Table [3.1). The rest wave-

length is obtained from the Doppler shift formula:

At = (L—wv/e) (3.2)

where v is the line-of-sight velocity of the fragment and c is the speed of light.
Calculating the specific intensity /(...) requires detailed modeling of the atomic physics and

energy transport within the stellar atmosphere and is far too costly to do on the fly. Instead, we
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Table 3.1: Definitions of quad variables.

Variable | Description
T Local effect. temperature — measures net radiant flux through the atmosphere.
g Local surface gravity — measures the stratification of the atmosphere.
v Projection of local surface velocity onto the line of sight.
1 Projection of local surface normal on the line of sight.

evaluate this intensity by performing four-dimensional linear interpolation in pre-calculated

tables of specific intensity data.

Flux Calculation and Aggregation

Here we establish a more formal basis for the interpolation problem. An example of CPU-
oriented pseudo code for the flux calculation and aggregation steps of the the spectral synthesis
procedure (steps 3 and 4) is given in Listing Input to the code is a stream of quads from the
mesh building and rasterization steps (steps 1 and 2 in the spectral synthesis process); the output
is the aggregated synthetic spectrum. The high arithmetic and memory-access costs of the
4D specific intensity interpolation are evident in the 16-term weighted summation appearing
toward the end of the code — this expression must be evaluated Ny,,, * IV times during the

synthesis of a single spectrum.

Problem Statement

For typical parameters (Ny,q4, Ny =~ 5,000 — 10, 000) a synthetic spectrum typically takes
only a few seconds to generate on a modern CPU. However, with many possible parameter
combinations, the overall optimization can be computationally expensive, taking many weeks
in a typical analysis. The primary bottleneck lies in the 4-D specific intensity interpolations
described in steps 3 and 4 of the spectral synthesis process; although algorithmically simple,
their arithmetic and memory-access costs quickly add up. This issue motivates us to pose the

following question:



float I_tables [][][][]; // Pre—calculated specific intensity tables

calc_and_agg_flux (input stream]|[])

{

float flux[N_lambda]l; // Initialized to zero

foreach quad in input stream do

{
for j = 0..N lambda 1 do
{
// Rest wavelength
float lambda = lambda_0 + delta_lambdaxj;
float lambda_rest = lambdax(l — quad.v/speed_of_light);
// Accumulate flux
flux[j] += (AxA)/(DxD) x*
interpolate_I(quad.T, quad.g, lambda_rest, quad.mu);
}
}

return flux;

float interpolate_I (T, g, 1, mu)

{

// Locate position in tables (assume increments in T, g, | and mu are 1.0)

-
—
Il

floor (T);
i_g = floor(g);
i1 = floor(l);

im = floor (mu);

// Set up weights

wT =T — i.T;

wog =g — i-g;

w.l=1-—1i_1;

w.m = mu — i_mu;

// Do the 4—D intensity interpolation (16—term weighted summation)

I = 1-wT)*(l—-w_g)*(1—w_l)*(1—wm)=*I_tables [i_.T ,i-g ,i-1 ,i_m] +
(1-wT)*(1—w_g)*x(1—w_l)*(wm)*I_tables [i-T ,i_-g ,i-1 ,i_m+1] +

(WT)x(w_g)*x(w_l)*x(l—wm)*I_tables [i-T+1,i_g+1,i_-1+1,i_m] +
(WT)*(w_g)*x(w_l)*(wm)*I_tables [i_T+1,i_g+1,i 1+1,i m+1];

return [;

25

Listing 3.1: CPU-oriented pseudo-code for the flux spectrum computation and aggregation.
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Figure 3.4: Schematic comparison of CPU and GPU spectral synthesis.

How can we use GPUs to accelerate interpolations in the precomputed specific intensity
tables?

In addressing this question, we have developed GRASSY (GRaphics Processing Unit —
Accelerated Spectral SYnthesis) — a hardware/software platform for fast spectral synthesis that
leverages the texture interpolation functionality in CUDA-capable GPUs (see Figure [3.4). By
utilizing textures, we can perform interpolations for “free” internally in hardware and reduce

the overall runtime for this system significantly.

3.2 Porting the Code from the CPU to the GPU

In this section, we introduce the GRASSY spectral synthesis platform. To leverage the
texture interpolation functionality in CUDA-capable GPUs, some modifications to the proce-
dure outlined in Listing[3.T]are necessary. At a high-level, we map the interpolation data that is
located in main memory in the CPU implementation to texture memory on the GPU. In particu-
lar, we decompose the lookups into a series of 2-D interpolations, which are then implemented
as fetches (with bilinear filtering) from 2-D textures. This brings the dual benefits of efficient

memory access due to use of the texture cache and “free” interpolation arithmetic provided by
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the linear filtering mode. One potential pitfall, however, is the limited precision of the linear
filtering. In previous work we have shown that these issues are not a problem for GRASSY,
because the error due to the lose in precision is unimportant when contrasted against uncer-
tainties in the tabulated intensities (due to theoretical approximations) and against the inherent

noise in the observations against which synthetic spectra are compared [52].

3.2.1 Texture Packing

Because CUDA does not support arrays of texture references (which would allow us to
place each table into a separate texture), GRASSY packs the 2-D intensity tables I(A\"**, )
into a single 2-D texture'. For a given interpolation, the floating-point texture coordinates (z,

y) are calculated from A, i, and the table index k via:

z=(A—=N®) /A% NP 105 (3.3)
and
y=p* (N —1)+ kN +05 (3.4)

Here, N ff‘b is the direction cosine dimension of each intensity table, while Agab is the base
wavelength and AN is the wavelength spacing (not to be confused with A\ and A)). The
offsets by 0.5 come from the recommendations of Appendix F.3 the CUDA programming guide
of [1]]. Note that these two equations are not the actual interpolation, but rather the conversion

from physical (wavelength, direction cosine) coordinates to un-normalized texture coordinates.

3.2.2 Interpolation Decomposition

The 4-D to 2-D interpolation decomposition is enabled by a CPU-based pre-processing

step, whereby quads [T, g, v, ] from step (2) of the spectral synthesis procedure are translated

"We considered using a 3-D texture, but the dimension limitations imposed by CUDA are too restrictive.
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into 10-tuples [v, p, ko, k1, ko, k3, wo, w1, wq, ws]. A single 10-tuple codes for four separate
bilinear interpolations, in the 2-D tables I(A\"***| ;1) represents the specific intensity for a given
combination of effective temperature and surface gravity. The indices kq, ..., k3 indicate which
tables to interpolate within, while the weights wy, ..., w3 are used post-interpolation to combine
the results together. We convert the quads to 10-tuples on the CPU as a pre-processing step,

because the overhead to doing so is minimal and we reuse it on the GPU for all wavelengths.

3.2.3 Division of Labor

To take advantage of the massive parallelism offered by the GPU, we map a single wave-
length to each GPU thread. Since the computations for each wavelength are independent of
those for the other wavelengths, this allows our algorithm to maximize the performance it can
obtain on the GPU. Every thread block processes the entire input stream of Ny,,, 10-tuples, to
build up the aggregated flux spectrum for the wavelength range covered by the block. Upon
completion, this spectrum is written to global memory, where it is subsequently be copied back
to the CPU.

Additionally, to maximize texture cache locality, GRASSY groups calculations into /V,
batches of N = N, /N, consecutive wavelengths. These batches map directly into CUDA
thread blocks, with each thread in a block responsible for interpolating the intensity, and accu-
mulating the flux, at a single wavelength. To ensure adequate utilization of GPU resources, V,,

should be an integer multiple of the number of SMs in the device.

3.2.4 Pseudo Code

Listing [3.2] provides pseudo code for our CUDA kernel implementation within GRASSY,
which handles the flux calculation and aggregation. Kernel arguments are the input stream of
10-tuples and a pointer to an array in GPU global memory where the resulting flux spectrum
will be placed. Each thread evaluates its own wavelength on the fly from the index j, which in

turn is obtained from its thread and block indices.
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texture <float, ...> texRef; // Pre—loaded with 2—D intensity tables

__global__ void calc_and_agg_flux (input stream|[], float dev_flux[])

{
// Thread wavelength
int j = blockIdx.x*N + threadldx.x;
float lambda = lambda_0 + delta_lambdaxj;
// Initialize flux
float flux = 0.0f;
foreach tuple in input stream do
{
// Rest wavelength
float lambda_rest = lambdax(l — tuple.v/SPEED_OF_LIGHT);
// Accumulate flux
float I = tuple.w._Oxinterpolate_I(lambda_rest, tuple.mu, tuple.k_-0) +
tuple .w_lxinterpolate_I(lambda_rest, tuple.mu, tuple.k-1) +
tuple .w_2xinterpolate_I(lambda_rest, tuple.mu, tuple.k_.2) +
tuple .w.3xinterpolate_I(lambda_rest, tuple.mu, tuple.k_3);
flux += (AxA)/(D«D)x*I;
}
// Write flux to global memory
dev_flux[j] = flux;
}

float interpolate_I (1, m, k)

{
float x = (1 — LAMBDA_O_.TBL) /DELTALAMBDA_TBL + 0.5f;
float y = mx(N- MUTBL — 1) + k«N.MU.TBL + 0.5f;
return tex2D (texRef, x, y);

}

Listing 3.2: Pseudo code for the unoptimized GRASSY kernel

29
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3.2.5 Optimizations

Though not shown in the pseudo code in Listing we found several optimizations could
be applied to our implementation. First, to maximize the locality on the GPU, because our
wavelengths are batched into groups, we can use shared memory for storing 10-tuple data
and converting the 10-tuples into texture coordinates (i.e. doing the flux summations). This
increases performance because now we usually access local memory instead of global memory.
We also found that using loop unrolling helped with the performance of our shared memory
calculations too, which in turn improved GRASSY’s performance even further, as others have
also shown [45]]. Third, we reordered expressions in our kernels to eliminate overhead.

We found that our original implementation had very low texture cache hit rates (approxi-
mately 1%). We believe this was due to thrashing in the texture cache caused by many threads
attempting to access values there. Even though some of the threads were attempting to access
the same values, the values they were trying to access were getting evicted by other threads
in between accesses. To solve this problem, we added synchronization points to our kernels
between the accesses to the texture cache. Effectively, this forced the threads to be accessing
the texture cache more closely together in time, which helped prevent thrashing, since threads
that accessed the same values in the cache were accessing it around the same time (as a result
our texture cache hit rate improved to above 90%). Finally, we converted our float variables
into float4 variables to improve locality and allow their accesses to be coalesced.

A final optimization we made was to break our kernel into two separate kernels: a calcula-
tion kernel and an aggregation kernel. The calculation kernel is responsible for performing the
interpolations in texture memory and calculating the flux for each wavelength, but writes its
results into a partial array. This allowed us to aggregate the local flux immediately. This kernel
utilizes the aforementioned optimizations such as synchronization between texture accesses
and shared memory. The aggregation kernel then aggregates the local fluxes into the global
flux array. By splitting the kernels apart, we are able to reduce contention writing to the output

flux array by summing the flux locally first. The aggregation kernel uses fewer threads than the
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calculation kernel to allow each thread to aggregate a fixed amount of the calculated fluxes into

the correct locations in the output flux array and so that each thread has enough work to do.
The most important of these optimizations, in terms of performance, were using shared

memory for aggregating the flux locally, splitting the kernel into two separate kernels, and

synchronizing the threads before texture accesses to guarantee better texture cache hit rates.

3.3 Evaluation
3.3.1 Methodology

Our testing and validation platform is a Dell Precision 490 workstation, containing two 2.33
GHz Intel Xeon E5345 quad-core CPUs and a Tesla C1060 GPU (see Table [2.1). The work-
station runs 64-bit Gentoo Linux (kernel 2.6.25) and uses version 3.1 of the CUDA SDK. As
a CPU-based comparison code, we adopt a highly optimized Fortran 95 version of the KYLIE
code [S0], running on the same workstation. We run this serial version of the code and a paral-
lellized version that uses OpenMP. We use specific intensity tables based on the OSTAR2002
and BSTAR2006 grids of model stellar atmospheres [33,34]], with intensities calculated using
the synspec package. The input stream of 10-tuples is generated from a modified version of
the BRUCE code [S0]. Finally, we ran these tests for 42K wavelengths, 8K fragments, and
increments in the specific intensity tables of 0.08 Angstrom. All results use total execution

time in ms as their metric.

3.3.2 Results

The results in Figure [3.5]demonstrate that GRASSY obtains impressive speedups over both
CPU implementations. The original GPU implementation does not include any of the optimiza-
tions discussed in Section [3.2.5] Despite this, it still outperforms both CPU implementations.
Our optimized GPU implementation is approximately 100x faster than the optimized serial
implementation and 33x faster than the parallelized version. If we look at the results per wave-

length (not shown), the same trends hold. Additionally, we observe that the total execution
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Figure 3.5: GRASSY GPU results vs. serial and parallel CPU implementations.

time scales linearly with the number of wavelengths. This is an intuitive result, because our ap-
plication is embarrassingly parallel and we have not yet saturated the bandwidth of the texture
caches.

To look at how GRASSY performs on GPU platforms other than the Tesla C1060, we ran
GRASSY on several other GPUs (all GPUs listed in Table[2.T)). The results in Figure[3.6)show
that all the Nvidia GPU platforms all outperform both the serial and parallel CPU implemen-
tations. The amount by which each platform outperforms the CPU implementations depends
on the GPU. This demonstrates how GPU performance does not always port from GPU to
GPU. It also shows the value in having a higher-powered (and more expensive) GPU: the GPU
performance increases as the GPU adds more SMs (and SPs) because the GPU can perform
more operations in parallel than the smaller GPUs with fewer SMs. The results from these
experiments also demonstrate that we can obtain performance increases over parallelized CPU

implementations even when we’re not using a high-powered GPU like the Tesla C1060.
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Figure 3.6: GRASSY GPU results for several different GPUs vs. CPU implementations.
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A common complaint with GPU programming is that they run their tests on new GPUs
and compare them to older CPUs, which artificially makes the performance of the CPU seem
better [35]]. To address this concern, we ran our results on an Nvidia GeForce 8400 GS GPU
(see Table[2.1), which is approximately the same age as our Xeon E5345 CPU. It is important
to note that the 8400 GS is not a top of the line GPU (it performed the worst of all the GPUs
in Figure 3.6), unlike the Xeon E5345 CPU, which is a fairly high powered CPU for the time.
Despite this, the 8400 GS still outperforms both the serial (4.6x better) and parallel (1.6x better)
CPU implementations. Here we again see that we can outperform a relatively high-end CPU

for a parallelized code with a low-end graphics card.

3.4 Related Work

The most relevant work in terms of asteroseismology is the BRUCE/KYLIE suite of mod-
eling codes [50]. One example of typical analysis using the BRUCE/KYLIE codes is pre-
sented in [39]]. Other works in astronomy that have used GPUs include [26, 59]. In terms
of experimental data that GRASSY will analyze, current asteroseismic satellite missions in-

clude [17, 128, 44]. The sources for the spectral intensity data we use are [33,134].

3.5 Mathematical Analysis

Previously, we looked at some intuitive access patterns, as well the performance our GRASSY
platform obtains when using texture memory interpolation. In order to understand the ultimate
upper and lower bounds on the performance of texture memory interpolation, we developed a

simple mathematical framework based on the results we obtained in Sections [2.3.3|and [3.3.2]

For a given GPU, let us assume that it has 7 texture units and C compute units. Additionally,
if the GPU is given work W, assume that it can complete the work in Wr cycles if the work is
done on the texture unit, and W cycles if the work is done on the compute units instead (which
would require accesses to global memory, performing interpolations manually, etc.). Because

the compute unit-based approach requires more accesses to global memory, it requires more
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bandwidth than the texture-based approach. Additionally, assume that the GPU performs N
lookups to complete a given task, regardless of the memory location(s) the lookups use. Given

these assumptions, we obtain the following equations:

executionTimerepiure = (Wr * N) /T

executionTimecompute = (We % N)/C

Looking at the ratio between these execution times:

executionTimereyture | executionTimecompute = (W N)/T)/(We x N)/C)
= (WrxC) /(T x W¢)
= (Wr/We) = (C/T)

Because one texture lookup internally does four multiply-accumulate operations for the
interpolation of a 2D texture (these operations would need to be explicitly done on the compute
units), we conclude that, for 2D textures, Wr/We = 1/4. Additionally, for the GPUs we’ve
examined, the C/T ratio is 2:1 or 3:1. This presents an issue: one wants to utilize the superior
compute power of the texture unit, but they are then constrained by the small number of texture
units available on the GPU. If the majority of the work being done is not interpolation, then
most problems that use texture units will rapidly become bandwidth limited, because having
fewer texture units puts more of a strain on the global texture memory to satisfy requests to the
texture unit.

Each Texture Processing Cluster (TPC), which is usually made up of two or three SMs
(depending on the generation of GPU), has a local texture cache. A hit in this texture cache
reduces demand on the global texture memory but does not reduce latency; thus, hitting in
the local texture cache allows more texture requests to be satisfied simultaneously. This can
be seen from the experiments performed in Section [2.3.3] which rapidly become bandwidth

limited and approach an asymptote of performance at the maximum throughput. Thus, to
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more effectively utilize the texture unit and its “free” interpolations, we need to have problems
in which a large percentage of the work is interpolation, and in which lots of interpolations
are performed, because the interpolation provides us with a lot of work that we’d have to
do manually otherwise. Otherwise, the texture unit will become a bottleneck and increased

performance over non-texture implementations will be difficult to obtain.

3.6 Summary

GRASSY is an asteroseismological application that is dominated by performing nearest
neighbor interpolation in tables of pre-calculated intensity data. In this chapter, we have shown
that mapping its pre-calculated intensity data to the GPU texture memory allows us to obtain
impressive speedups over optimized CPU implementations. The results also demonstrate that
we can take advantage of the “free” computations that GPU texture memory provides, some-
thing that has mostly been unexplored in past literature. Additionally, even a lower-end GPU
that is approximately the same age as our CPU provides a speedup over parallel CPU imple-
mentations. Overall, these results represent a significant increase in performance that allows
us to reduce the runtime of our system significantly.

GRASSY will likely have a significant impact on the field of asteroseismology, as the anal-
ysis throughput and/or resolution of parameter determinations can now be greatly increased
without huge increases in runtime, in turn allowing stronger constraints to be placed on the
internal structures of stars. We believe that the benefits of accelerated spectral synthesis will
also extend to other fields of astrophysics such as the analysis of rotationally flattened stars,
the generation of combined spectra for clusters or entire galaxies of stars (so-called population
synthesis), and other techniques both inside and outside of astrophysics that rely on interpola-
tion.

Our mathematical analysis in Section shows the characteristics that programs need
in order to benefit significantly from the internal interpolation provided by texture memory.
If programs do not use a significant amount of interpolation, they will likely find that the

texture memory becomes a rapid bottleneck, due to the design of the GPU architecture (the
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TPCs design specifically). As GPUs have become more programmable over the years, GPU
architects have decreased the ratio of texture caches to compute cores (increased the number
of SMs per TPC). This means that texture units will more rapidly become a bottleneck.
However, for programs that benefit significantly from interpolation significant performance
improvements can be obtained. GRASSY is an example of a program that heavily utilizes
interpolation in its calculations; it is dominated by performing nearest neighbor interpolation
in tables of pre-calculated intensity data. By mapping this pre-calculated intensity data to
the GPU texture memory, we are able to obtain impressive speedups over optimized CPU
implementations. Programs with similar characteristics to GRASSY should be able to benefit
significantly from the use of texture memory interpolation for non-graphics applications, which

is a new use for GPUs.
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Chapter 4

Porting CMP Benchmarks to GPUs!

As we mentioned previously, GPUs are massively parallel architectures that are becoming
increasingly general-purpose, use the data parallel programming model and offer tremendous
speedups if an applications’ algorithm maps well to the data parallel programming model.
Many scientific workloads map well to the GPU programming model, as we discussed in
Chapter [I| However, it is neither clear nor obvious if other workloads and applications that
aren’t data parallel also map well to the GPU. If applications that are not data parallel can be
mapped to the GPU programming model, then the GPU could become a truly general-purpose
architecture.

Additionally, the computer architecture community is currently facing a challenge: where
is the next major increase in general-purpose program performance going to come from? As
the number of transistors on a chip continue to increase, there are increased opportunities for
on-chip parallelism, but it is unclear how architects should effectively harness it. Some have
postulated that a GPU-like architecture is the answer to these questions; for this to be true,
GPUs will need to effectively execute general-purpose programs with high performance. The
goal of this chapter is to examine if applications that have traditionally been targeted for CMPs
can be easily mapped to GPUs.

In this chapter, we successfully ported four general-purpose CMP benchmarks from the
PARSEC benchmark suite [[7, 8] to GPUs using CUDA SDK 2.3 [1] and evaluated their perfor-

mance. The benchmarks we implemented were streamcluster, blackscholes, fluidanimate, and

I'This chapter is based on project work done for CS/ECE 757, during the Spring 2010 Semester, under the
supervision of Professor Mark Hill.
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swaptions. More details on these programs and their GPU implementations are presented in
Sections[.Tjand[4.2] By porting these PARSEC benchmarks to GPUs, we were able to examine
GPU features in relation to CMP programs. Specifically, we found what features of general-
purpose programs were well-suited to the GPU architecture. Perhaps more importantly, we
found the features that hindered high performance execution on a GPU and the corresponding
bottlenecks that precluded speedups when these features were present.

The rest of this chapter is as follows. In Section4.1|we provide background on the PARSEC
benchmark suite, the benchmarks we implemented, and related work in the area. In Section 4.2,
we discuss our GPU implementations of the benchmarks. In Section 4.3 we outline our test-
ing methodology and system information. In Section .4 we present and analyze our results.

Finally, in Section 4.5/ we conclude.

4.1 Background and Related Work

We chose to implement benchmarks from the PARSEC suite over other CMP benchmark
suites like SPLASH-2 [56] because recent work has shown that PARSEC scales significantly
better than SPLASH-2 [9, 12]. While PARSEC also has some scalability issues, they are less
severe than those of SPLASH-2. Additionally, SPLASH-2 was developed over fifteen years
ago and is no longer representative of workloads that future architectures will face, especially
in terms of data set size. Compared to SPLASH-2, PARSEC also has a much more diverse
application set and contains more emerging workloads. These features are important because
they allow us to analyze the performance of modern and emerging applications on GPUs. We
chose a CMP benchmark suite because GPU benchmark suites generally contain only programs
that work well on GPUs, whereas we wanted to explore both programs that work well and
those which might pose problems for a GPU implementation. Table @.T] contains an overview
of relevant information about the benchmarks we implemented on GPUs.

We present some brief background information on the ported benchmarks here:

e Streamcluster is a data mining algorithm that solves the on-line clustering problem. It re-

quires a heuristic solution since the exact solution is computationally intractable. Further
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information on the algorithm can be found elsewhere [43]]. Streamcluster was chosen be-
cause it has a moderate amount of parallelism and lots of synchronization. We expect that
streamcluster’s low amount of data sharing between threads will allow it to avoid issues
with synchronizing data between GPU threads, which is important because GPUs lack
an efficient global synchronization mechanism. Finally, we wanted to explore how an
application without significant amounts of parallelism would perform on a GPU, where

abundant parallelism is usually essential for obtaining high performance.

Blackscholes is a financial algorithm that uses the Black-Scholes partial differential
equation (PDE) to calculate prices for European stock options. The key idea is that
the value of the option fluctuates over time with the actual value of the stock. The Black-
Scholes PDE calculates this value over time, but because it has no closed form solution,
it needs to be solved numerically. It has abundant parallelism and uses the SIMD pro-
gramming model. Further information on the Black-Scholes algorithm can be found
elsewhere [[11},130]. We selected blackscholes because it had abundant amounts of paral-
lelism and uses the SIMD programming model, which makes it ideal for implementing
on a GPU. Thus, blackscholes represents a good sanity check — it should obtain high

performance on GPUs.

Fluidanimate simulates interactions of an incompressible fluid by breaking the fluid into
particles and assigning groups of particles to cells. In-depth information on the algorithm
can be found elsewhere [41]. Compared to other PARSEC benchmarks, fluidanimate
has less synchronization. However, fluidanimate still requires synchronization points be-
tween various stages of its calculations and requires the use of atomics to update memory,
which are important features for general-purpose applications that GPUs must be able to

execute well.

Swaptions is a financial analysis program that calculates prices for a portfolio of swap-
tions using a Monte Carlo simulation to compute the prices. Swaptions also has a PDE

that must be solved numerically. Further information on the algorithm can be found
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Table 4.1: Background information on implemented PARSEC CMP benchmarks.

Benchmark Domain Parallelization Granularity | Working Set Size
blackscholes | Financial Analysis coarse small
Sfluidanimate Animation fine large
streamcluster Data Mining medium medium
swaptions | Financial Analysis coarse medium

elsewhere [29]. A unique feature of swaptions is that it has very coarse and limited par-
allelism. We chose swaptions to see how a program with a limited amount of parallelism
but a large amount of floating-point calculations would perform on a GPU. While GPUs
are good at floating-point calculations, they generally needs lots of parallelism in order

to perform well.

Some work on implementing the PARSEC benchmarks on GPUs has been done previously.
Rodinia implemented a small portion of streamcluster in a GPU kernel [14]. This kernel was
heavily optimized, and was shown to provide significant speedups. By implementing only this
small portion on the GPU, they were able to avoid dealing with several issues our implemen-
tation faced. However, their results only analyzed the speedup of their kernel, as opposed to
measuring the total speedup of the entire program. Because of this, it was difficult to gauge the
impact of their optimization on the overall program.

Kolb and Pharr implemented blackscholes on a GPU [32]. However, their implementation
differs significantly in three areas from our implementation. First, their implementation uses a
randomly generated sequence of stock options instead of reading in options from an input file
as the PARSEC implementation does. Second, their implementation converts the arrays that
are used in the PARSEC implementation for risk rate and volatility calculations into constants.
Making these arrays constants significantly reduces the overhead of copying data between the
CPU and GPU and limits their program to only using a single risk rate and volatility. Third,

their program used a fixed number of thread blocks and threads per thread block, whereas we
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have varied these numbers based on the number of options we are using. It is possible that
they are using a fixed number of thread blocks and threads per thread block because they have
a fixed number of options per program run, and thus they found these operating points to be
optimal for their implementation. We incorporated some of their optimizations that reduced
the number of necessary mathematical operations into our implementation, as we found they

provided a significant performance increase.

4.2 GPU Implementations

In this section we present details on our GPU implementations for all four benchmarks.
The results for all of these implementations can be found in Section It is important to
note that, in all of our implementations, we sought to make small modifications to the current

algorithms instead of making wholesale algorithmic changes.

4.2.1 Streamcluster

Because streamcluster has moderate amounts of parallelism and a significant amount of
inter-thread synchronization, its GPU implementation uses a single large kernel. On the CPU,
the stream of data points is broken into subsets of 200K points. If there are more than 200K
points, the subsets are run sequentially through the kernel. The GPU kernel is responsible for
all of the calculations streamcluster performs to find the centers. The significant number of
inter-thread synchronization points was a major issue with implementing streamcluster on a
GPU because CUDA does not provide a mechanism to synchronize across thread blocks (i.e.
no global synchronization mechanism). Thus, our streamcluster implementation was limited
to a single block of threads. Since we have up to 200K points in a single kernel, each thread
works on multiple data points.

Our GPU implementation of streamcluster also required the use of a random number gen-
erator on the GPU. Since CUDA does not provide a standard random number generator to use

we modified a previous solution [54]%. This required a significant amount of time and testing.

’Nvidia has since created the CURand library to deal with this issue.
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A second issue we encountered was CUDA’s lack of kernel support for C++3. To solve this,
we converted all of the C++ code that the kernel needed to execute into C code. One positive
aspect we found was that it was easier to think about how to write broadcast and wait global
synchronization mechanisms when writing GPU code. Streamcluster uses broadcast and waits
to have a single master thread operate on the data points, after which is signals the others
threads that they can now safely continue to operate on the data. Because we were using a
single block of threads, we could check if we were the master thread or not, and operate on the
data if and only if we were the master thread. Meanwhile, the other threads simply waited at
a barrier for the master thread to reach them, at which point they could successfully execute
once again. Of course, this was only possible because we only used one thread block. Overall,

it was much simpler to reason about and write this code than it was with pthreads.

4.2.2 Blackscholes

Of the four CMP benchmarks we implemented on GPUs, blackscholes was best suited to
take advantage of the features of GPUs, because it has abundant parallelism without inter-
thread synchronization. Additionally, it performs a significant number of floating-point com-
putations per thread, which allows it to effectively hide memory latencies. Our GPU imple-
mentation performs the PDE approximation in the kernel. Each GPU thread was assigned to a
single stock option. For the maximum data set size, we had ten million threads, which provides
significant amortization of memory latency.

Initially, our GPU design for blackscholes copied all of the data needed to execute blacksc-
holes into global memory on the GPU. This is inefficient, because accessing global memory
on the GPU is slow. To optimize our design, we instead placed the data into the texture cache
memory on the GPU. While this required more overhead to copy the data from the CPU to the
texture cache, it significantly decreased memory access time of our GPU code because we per-

form caching on the GPU. As mentioned in Section 4.1} we also incorporated Kolb and Pharr’s

3Nvidia has also improved this over time, but it is still an issue.
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optimized mathematical operations to further improve performance by performing more fused

multiply-adds and fewer total mathematical operations [32].

4.2.3 Fluidanimate

The synchronization points between various stages of the particle interaction calculations
was the major design feature that we needed to work around in our fluidanimate GPU imple-
mentation. As mentioned previously, CUDA does not have a mechanism for synchronizing
between thread blocks, so to achieve good performance it was important to avoid perform-
ing these synchronization points on the GPU. To get around these interstage synchronization
points, we created multiple kernels, one for each of the six stages of the particle interaction
calculations. This allows us to implicitly synchronize at the host CPU in between kernel exe-
cutions. Implementing our code in this manner meant that at the end of each kernel, our code
would return from the GPU to the CPU, creating an implicit synchronization point. While
there is a cost to returning to the CPU from the GPU, we were able to avoid synchronizing
repeatedly in the kernel.

Implementing a kernel for each stage allowed us to vary the number of threads for each
kernel based on the amount of parallelism present in that stage. In two of the stages, there were
atomic operations that we could not avoid by returning to the GPU. In these cases, we imple-
mented a custom mutex using an atomic Compare-and-Swap, which was necessary because

CUDA atomic operations didn’t support floating-point atomic operations.*

4.2.4 Swaptions

While swaptions and blackscholes perform similar tasks, swaptions has significantly less
parallelism than blackscholes does. Additionally, we didn’t think that a single large kernel
(similar to our streamcluster implementation) would work well for three reasons. First many
of swaption’s functions do not have very many computations. Second, the functions have

significant amounts of thread divergence. Third, the functions require significant amounts of

4The Nvidia Fermi architecture has added some floating-point atomic support.
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memory transfer from the host. Effectively, these issues mean that swaptions is less algorith-
mically able than blackscholes to hide memory access latency and keep high SIMD efficiency
by avoiding branches. Thus, we chose to instead implement a smaller kernel that performed
the PDE approximation calculations, which we felt was best suited to executing on the GPU.
However, swaptions suffered from a general lack of parallelism — the maximum number of
total threads was 528. One of these kernels required the use of a random number generator on

the GPU, so we used the same random number generator that we used for streamcluster.

4.3 Methodology
4.3.1 Verification and Performance Testing

Our first priority in testing the GPU implementations of the PARSEC benchmarks was
ensuring that the GPU implementations obtained the correct results. Our primary means of
ensuring correctness was via comparison to the results obtained by the PARSEC pthreads and
serial versions for the same input sizes. However, in the cases where a random number gen-
erator was used on the GPU, it was not possible to verify the correctness of our results by
comparing them to the results from PARSEC. To verify that our implementation was correct,
we passed in identical constant numbers (instead of random numbers) to both the PARSEC
implementation and our GPU implementation, then made sure that the results matched.

To compare the performance of our GPU implementations to the CPU implementations,
we implemented a timing metric in our GPU implementations to measure execution time of
the entire program. We also measured the execution time of each individual kernel and the
data transfer times, but do not present those results. To ensure that we were making direct
comparisons with the PARSEC results, we replaced the PARSEC timing metric with the same

metric we used in our GPU implementations.



46

4.3.2 System Specifications

Our implementations were done in Nvidia’s CUDA SDK 2.3. To obtain performance re-
sults, we ran our GPU implementation, the PARSEC pthreads implementation, and the PAR-
SEC serial implementation on two of the systems from Table The first system is the Nvidia
Quadro FX 580 GPU and Intel Nehalem 15 Quad-core CPU. The second system is the Nvidia
Tesla C1060 GPU and 2 Intel Xeon quad-core CPUs. Running the tests on two different sys-
tems enabled us to obtain results on the significantly more powerful Tesla GPU. In addition,
the Tesla GPU has more memory than the FX 580, which allowed us to run some of the larger
experiments that couldn’t be run on the FX 580. We were also interested in seeing if our re-
sults remained constant over different GPUs with significantly different computational power

(which our GRASSY results indicated wasn’t the case).

4.4 Results and Analysis

All reported speedups are normalized to the execution time of the PARSEC serial imple-
mentation on that system. For clarity, the results for the first testing system (FX 580 GPU and
Nehalem Quad-core CPU) are labeled with “On FX 580 GPU and Quad-core CPU” and the
results for the second testing system (Tesla C1060 GPU and Xeon 8-core CPU) are labeled
with “On C1060 GPU and 8-core CPU.” For both systems, the results were averaged over ten
runs. Additionally, the PARSEC pthreads and our GPU implementations were run for a var-
ied numbers of threads for the benchmarks that did not use a number of threads based on the
input size. The results presented here represent the number of threads we found obtained the
best performance for that benchmark. The results are presented over several input sizes (sims-
mall, simmedium, simlarge, and native), except for blackscholes, which uses the same data set
sizes, but lists its results by the number of inputted options for clarity. These data set sizes
vary per program and increase in size from left to right. The data sets are explained in detail

elsewhere [7,[10]. In the next four subsections, we discuss the results for each benchmark.

SWe refer to this as an eight core machine hereafter.
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Figure 4.1: Streamcluster GPU speedups over serial CPU implementation.

4.4.1 Streamcluster
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Figure contains the results for streamcluster when it was run on the FX 580 GPU and

Nehalem Quad-core CPU. As the input size increases, the GPU implementation’s performance

continues to increase through the simlarge input size. The poor performance for smaller input

sizes occurs because there are only a few computations being performed per thread. Since

we have numerous synchronization points, relatively little work gets done per synchronization

point when there is little work to do. However, as the number of data points increase with

the input size, there are more points per thread and more computations can be done between

synchronization points, which minimizes the impact of the synchronization points, and high

performance is obtained for the simlarge input size. For the native test size, the FX 580 does

not have enough GPU memory so results for this data point cannot be obtained.
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Figure contains the results for streamcluster when it was run on the Tesla C1060 GPU
and Xeon 8-core CPU. Because the C1060 has more memory than the FX 580 it is able run the
native test size. The baseline results are also worse than those on the other systems (not shown).
In general, the GPU results differ significantly than those obtained on the other system. For
the simsmall and simmedium test sizes, the GPU implementation does not provide a speedup
over the pthreads version. Additionally, for the simsmall test, the GPU implementation does
not even provide a performance improvement over the serial implementation. These results
are more in-line with the results we were expecting as compared to those obtained on the FX
580, because these small test sizes do not perform enough work per synchronization point
per thread. However, for the simlarge input size, there is enough work per thread such that a
significant amount of work can be done per synchronization point. This trend does not continue
for the native test, which indicates that the simlarge test size provides an optimal computation
to synchronization ratio for the GPU. Overall, for streamcluster we conclude that the amount
of work being done per synchronization point is the key metric.

It is important to note that these results for the FX 580 GPU and Nehalem Quad-core
CPU were obtained when X11, the network graphical user interface, was turned on. When
X11 was turned off, performance decreased for all input sizes. When X11 is turned off, GPU
performance on the FX 580 system decreases by roughly 2x. We believe this issue occurred
due to modifications needed to make CUDA SDK 2.3 atomics run correctly with Fedora 12,

the operating system on that machine.

4.4.2 Blackscholes

Figure [4.2a) contains the results for blackscholes when it was run on the FX 580 GPU
and Nehalem Quad-core CPU. These graphs match the intuition we had for blackscholes: as
the number of threads increase, the performance of the unoptimized GPU implementation in-
creases. As the number of options increases, the number of threads increases proportionately
which allows us to hide the latency of accessing global memory more effectively. Performance

of the unoptimized GPU implementation is poor for the smaller input sizes because there are



49

Blackscholes Speedups vs Serial Blackscholes Speedups vs Serial
30 ‘ ‘ ‘ ‘ 30 ‘ ‘ ‘ ‘
Pthreads 1l Pthreads Il
GPU Base GPU Base ]
B GPU Texture Cache [ ] 1 B GPU Texture Cache [ ]
= = 20}
5 5 o
» »
S £
2 o 15 F
3 S
3 8
o 2
® @' 10t
5 B B2 0 o 55
4K 16K 64K 10M 4K 16K 64K 10M
Input Size Input Size

(a) On FX 580 GPU and Quad-core CPU. The (b) On C1060 GPU and 8-core CPU. The
pthreads results use 4 threads. The number of pthreads results use 8 threads. The number of

GPU threads is proportional to the input size. GPU threads is proportional to the input size.

Figure 4.2: Blackscholes GPU speedups over serial CPU implementation.

not enough threads to hide the latency of accessing main memory. Performance of the unopti-
mized GPU implementation overtakes performance of serial between the 4K and 16K options
tests and exceeds it for all larger input sizes. The performance of the unoptimized GPU im-
plementation passes the performance of pthreads between the 16K and 64K options tests, and
exceeds it for all larger input sizes.

The performance of the optimized texture cache GPU implementation exceeds that of the
serial, pthreads, and unoptimized GPU implementations immediately. This is because we have
decreased our latency to access memory on the GPU significantly by accessing texture memory
instead of global memory; accessing texture memory is much faster than accessing global
memory because the data is cached nearby. Thus, using the texture memory like a lookup table
allows us to cache the data we’re accessing nearby the cores and improve performance. This is
another new use of texture caches, albeit one that has been explored somewhat previously [48),

S7]. However, once the number of options increases to 64K, the texture cache starts to have
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capacity misses, since it can no longer hold the entire working set and must swap data with
the global texture memory. It also starts to exhibit thrashing, because all the threads that are
accessing it are requesting different data, data which cannot all be stored locally at these input
sizes. At this point, the performance of the optimized texture cache implementation decreases
significantly, back to the performance of the serial version. Finally, at the largest input size,
the texture cache is no longer able to allocate the amount of texture cache memory necessary
to run the kernel, so it is unable to produce results. However, for the smaller input sizes, the
optimized GPU implementation performs extremely well, providing a significant speedup over
all other implementations.

Figure [4.2b| contains the results for blackscholes when it was run on the Tesla C1060 GPU
and Xeon 8-core system. The results for the unoptimized version closely mirror those of the
unoptimized version on the other system. As the number of threads increase, the performance
of the unoptimized version also increases, as was seen before. One difference is that the per-
formance of the unoptimized version does not exceed the performance of the pthreads version
until after the 64K test.

Similarly, the optimized version outperforms all other implementations for the smaller sized
inputs, but again is unable to run the largest input size. However, because the texture memory
on the C1060 is larger than that on the FX 580, the performance does not decrease until after
the 64K test size, because we can still store all of the requested data locally at that point.
This demonstrates that having a more powerful GPU can increase performance significantly
in some cases. Another interesting result we observed for both systems is that the pthreads
implementations achieved their optimal performance when they were using one thread per core.
Having a single hardware thread per core usually utilizes the hardware the best while providing
the lowest overhead, so this result matched our expectation. Overall, we find that blackscholes
maps well to the SIMD paradigm and that having many threads helps hide memory latencies
and increases performance. Finally, using textures caches the data and brings it closer to the

SPs, which further improves performance for smaller input sizes.
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4.4.3 Fluidanimate
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The fluidanimate results in Figures #.3a] and [4.3b| only include the results for pthreads and

the GPU implementation with six kernels, because the six kernel implementation was found to

have the best performance of all of the GPU implementations, which used varying numbers of

kernels®. Thus, in general in this section, it is assumed that the GPU implementation uses six

kernels. For reference, the graph comparing the performance of the GPU implementations for

the varying number of kernels can also be found in Figure #.4]

Figure contains the results for fluidanimate when it was run on the FX 580 GPU and

Nehalem Quad-core CPU. The results obtained for the GPU implementation show that it pro-

vides a modest speedup over the serial version and the pthreads version for all input sizes. This

®In later tests we found that 3 kernels provided the best performance. We note this but do not show the

updated results.
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(a) On FX 580 GPU and Quad-core CPU. The (b) On C1060 GPU and 8-core CPU. The

pthreads results use 4 threads. pthreads results use 8 threads.

Figure 4.4: Fluidanimate GPU speedups versus serial CPU implementation for a varying num-

ber of GPU kernels.

shows that, for certain GPUs and certain programs, using multiple kernels can provide a perfor-
mance increase. However, because the performance increase is relatively modest, which may
dissuade programmers from implementing a program like fluidanimate on a GPU. It should
also be noted that the performance of pthreads on this system was very poor, which makes the
speedups obtained for the GPU implementation interesting.

Figure [4.3b] contains the results for fluidanimate when it was run on the C1060 Tesla and
8-core CPU. The results obtained on this system differ significantly from the results obtained
on the other system, but they match our intuition much better. While the performance of the
pthreads version does increase as compared to the performance obtained on the other system,
it is still relatively poor, barely better than the performance of the serial implementation. Addi-

tionally, the speedups seen on the other system for the GPU implementation are not seen in this
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case. In fact, the GPU implementation fails to achieve a performance increase over the serial
version for any of the test sizes.

There are several likely causes for fluidanimate’s poor performance. GPU optimizations are
often specific to a GPU, and may not perform as well on another GPU, this may be a possible
cause here. Additionally, this implementation exhibits thread divergence, which significantly
decreases performance. It also has register pressure for some of the larger kernels, which limits
the maximum number of threads we can execute in that kernel. Finally, the decreased perfor-
mance on this machine also show that atomic operations on the GPU are costly, especially for
floating-point numbers. It is likely that these results are also skewed by the same X11 issue that
plagued the streamcluster results, as fluidanimate exhibited synergistic behavior with stream-
cluster in relation to X11. When X11 is turned off, there are much more moderate performance
increases in performance as size increases and the GPU performance never exceeds that of the

serial CPU implementation.

4.4.4 Swaptions

Figure contains the results for swaptions when it was run on the FX 580 GPU and Ne-
halem Quad-core CPU. The GPU implementation results are extremely poor for all test sizes.
This is likely because swaptions has very limited parallelism due to inherent limitations in the
algorithm itself. Additionally, the GPU implementation suffers from thread divergence, regis-
ter pressure, and dynamic loop bounds. Thread divergence is caused by conditional statements
being executed on the GPU. Dynamic loop bounds prevented us from achieving acceptable
performance when we implemented other kernels on the GPU. Register pressure limits the
number of threads we can execute, which decreases the already limited amount of parallelism
even further. Finally, because we have such limited parallelism, the overhead of copying data
between the CPU and GPU can’t be amortized effectively. The results for the other kernels we
implemented for swaptions only decreased performance further, so they have been omitted.

Figure [4.5b contains the results for swaptions when it was run on the C1060 Tesla and 8-

core CPU. These GPU results mirror the results obtained on the other system nearly exactly.
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pthreads results use 8 threads. The GPU re- pthreads results use 32 threads. The GPU re-
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Figure 4.5: Swaptions GPU speedups versus serial CPU implementation.

The only difference is that pthreads scales slightly better. This is likely due to this system

having more cores, which means the threads do not need to compete for resources on the same

cores.
4.5 Summary

In general, we found that the PARSEC CMP benchmarks do not port very well to GPUs.
The notable exception is blackscholes, due to it is embarrassingly parallel nature. The use of
texture memory in blackscholes provided further increases in performance by allowing data
to be accessed locally instead of being accessed from main memory. The performance of our
streamcluster implementation improved as the number of data points increased (through the

simlarge input size), because the synchronization point to computation ratio improved. The
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performance is maximized on both systems in the simlarge case, a behavior that is also exhib-
ited by the PARSEC pthreads implementation, which signifies that this input size maximizes
the computation to synchronization points ratio. Fluidanimate’s performance was improved
through the use of multiple kernels, which took advantage of the host as an implicit synchro-
nization point, but suffered because GPU floating-point atomics perform very poorly. Addition-
ally, other issues like thread divergence and register pressure also contribute to fluidanimate’s
overall poor performance. The large gap in performance obtained on the two systems also
shows the instability of GPU optimizations when applied to different GPUs. Finally, swaptions
performed poorly across all input sizes. This is likely due to the low amount of parallelism it
has, as well as the its high cost of transferring memory between the CPU and GPU and the high
cost of accessing GPU global memory when there aren’t sufficient threads to hide the latency
of accessing memory. In addition, swaptions suffers from thread divergence, register pressure,
and dynamic loop bound issues.

Some of the bottlenecks we encountered seemed to stem from fundamental limitations
of the algorithms, which cause our GPU implementations to perform poorly. Many of these
algorithms were designed to operate with only a few threads, whereas GPUs operate best when
there are thousands of threads to hide the latency of memory accesses. Thus, our approach
of incrementally modifying the PARSEC benchmarks to execute on GPUs may not have been
the ideal approach. It may be the case that we would be able to achieve better performance
by starting from scratch and designing a heavily multithreaded algorithm that fits the problem
specifications would be a better approach.

Additionally, the poor performance we obtained are partially due to implementation-specific
issues in CUDA, such as the lack of global synchronization and how memory transfers between
the CPU and GPU are structured. Because CUDA does not offer a way to pipeline memory
transfers such that one could be transferring data to one part of a buffer while reading from a
different part of the same buffer, this is a roadblock to increasing performance. However, there
are some cases where writing code for a GPU was simpler than writing the same code on a

CPU, such as using a broadcast-and-wait when a single thread block is used.
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Overall, we found that, in general, CMP benchmarks do not map uniformly well to GPUs.
While getting code to return functionally correct answers was not extremely difficult, signifi-
cant optimizations are often required to achieve high performance GPU programs, especially
for programs that aren’t explicitly data parallel. Unfortunately, we found that this process is
often non-trivial and sometimes non-intuitive. Ryoo, et. al. report similar conclusions from
their study [45]]. CMP benchmarks represent a potential new use for GPUs, but they are unable
to execute efficiently on current GPUs. There are two approaches that can help address this
problem. First, significant algorithmic changes can help execute applications like this on GPUs
with high performance. Second, we can make changes to the GPU architecture to help alleviate
the bottlenecks of these applications. In this thesis we focus on identifying what features of the

GPU need to change in order to enable this new GPU use.
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Chapter 5

Designing a Suite of Challenging Benchmarks for GPUs

In this chapter, we expand on the results from Chapter 4| and find a general set of applica-
tions that do not execute well on current GPUs. Our goal is to identify what the truly difficult
and poor performing GPU workloads are and what makes them challenging. The applications
we identify, which we call challenge benchmarks, enable potential new uses of GPUs. These
applications are often limited by program parallelism, control flow issues, and stalls due to
memory accesses. Without sufficient parallelism (threads), GPU workloads cannot exploit the
massively parallel architecture. Control flow issues can further limit performance if the work-
load does follow the GPU SIMD paradigm. Finally, the performance impact of long memory
latencies and limited memory bandwidth is significant if it is not hidden by concurrent threads.
To identify specific bottlenecks to address in future GPU research, we analyze our set of chal-
lenge benchmarks and identify their performance limiting factors.

The remainder of this chapter is organized as follows. In Section we identify a set of
challenging benchmarks. Next, in Section we analyze the performance limiting factors for

these challenge benchmarks. Finally, we conclude in Section[5.3]

5.1 Benchmarks for Future GPU Architectural Research

We begin our search for challenge benchmarks with a survey of the benchmarks listed in
Table We obtained these benchmarks from the GPGPU-Sim suite [3]], Rodinia suite [[15]],
PARSEC suite [8], and other suites [18, 21]. We limited our search to CUDA benchmarks as
CUDA is supported by both GPU hardware and the GPGPU-Sim simulator [3]] and is one of



Table 5.1: Benchmark effective IPC (challenge benchmarks shaded)

Effective
Benchmark Abbreviation Input Size Used IPC
BlackScholes BLK 400M 202
AES Cryptography AES 256KB 184
StoreGPU STO 192KB 184
Ray Tracing RAY 256x256 image 159
Coulumbic Potential CpP 200 atoms, 256x256 147
E Libor Monte Carlo LIB 15 options, 4K paths 129
g 3D Laplace Solver LPS 100x100x100 104
% Fast Walsh Transform FWT 8M elements —
gpuDG DG N=6, 2 steps —
Weather Prediction WP 10 timesteps 432
Neural Network NNW 28 digits 12.4
N-Queens Solver NQU 10 queens 8.5
Mummer MUM 200 queries/30K entrie: 3.8
Breadth First Search BFSG 64K nodes 3.7
Cellular Automata CELL 1024x32, 8 x 228
Kmeans KM 494K objects 193
Hotspot HOT 512x512x2 191
Leukocyte LKT 10 frames 180
PathFinder DYN 8192x8192x32 169
SRAD 2 SRAD2 402x458, 10X 158
Gaussian GAU dim =512 139
LU Decomposition LUD dim = 256 135
:_g ParticleFilter PFT 10000 particles, 10 frames 116
&  Streamcluster SC 65K points 90.5
SRAD 1 SRAD 402x458, 10 86.9
Backprop BPP 64K elements 82.5
HW Tracking HWT 10 frames 81.2
Heartwall HW 5 frames 81.2
Comp Fluid Dyn CFD 97K data points 74.9
Breadth First Searck BFS 1M nodes 44.5
Nearest Neighbor NNB 42K records, 4 files 7.4
Needleman-Wunsch NwW 4K elements 4.0
Myocyte MYO 100 ms, 100 % 1.6
Q
5 Fluidanimate FLD 100 frames, 4K cells 0.2
é Swaptions SWP 64 swaptions, 20K sim¢ 3.8
g S3D [18] S3D 4K points —
©  Mummer++ 121] MMP 200 queries/33K entriet 0.3

58
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the most widely used GPU programming languages. GPGPU-Sim and Rodinia are commonly
used CUDA benchmark suites. PARSEC is a heavily used multicore benchmark suite that we
discussed in the previous chapter. Rather than making wholesale algorithmic changes, our im-
plementations modify existing algorithms for GPU execution. The remaining two benchmarks
are cited in previous work as challenging workloads [[19]].

In Table @, we list these benchmarks, input sizes used, and our observed effective IPC.
The effective IPC is the IPC using only useful instructions per cycle (e.g., ignoring masked
instructions due to warp divergence) and is found using GPGPU-Sim with a Tesla C1060-like
configuration (see Table 2.T). The peak IPC for this system is 240. We classify any benchmark
with overall or per kernel effective IPC less than 40% of the peak (96) as a challenging bench-
mark; these benchmarks are shaded in the table. A third of the GPGPU-Sim benchmarks and
just over half of the Rodinia benchmarks are classified as challenging. Performance informa-
tion for DG, FW'T and S3D are missing due to GPGPU-Sim runtime or compilation errors;
we include S3D in the challenge benchmark suite based on hardware profiling results. Finally,

our study focuses exclusively on kernels executed on the GPU — CPU work is ignored.

5.2 Analyzing Challenging GPU Benchmarks
5.2.1 Overview

In this section, we perform a detailed characterization of the challenge benchmarks using
the GPGPU-Sim simulator [3]. By analyzing this data, we identify bottlenecks across the
benchmarks due to parallelism, control flow, and memory limitations.

Our analysis includes a detailed characterization and data analysis using the GPGPU-Sim
simulator. Together, this allows us to identify and analyze performance bottlenecks in the
challenging benchmarks. Our study focuses on an Nvidia Tesla C1060-like GPU, although we
expect the conclusions to hold for similar GPU architectures. The C1060 has 30 SMs with eight
SPs each for a peak compute capability of 240 instructions per cycle (IPC). Our simulations use

the GPGPU-Sim simulator (version 2.1.1b), which produces detailed statistics while modeling
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Table 5.2: Detailed challenge benchmark analysis (kernels in numeric-alpha order, except

NNW, which is in layer order).

Available Parallelism Control Flow Memory

Effective Kernel Threads per Total Avg. Threads Accesses DRAM BW Stalled Anticipated
Kernel 1PC Time Blocks  Block Threads per Warp  Serial Coalesced (GB/s)  for Memory Bottlenecks
BFSy 4.87 92% 1954 512 1000448 10 25% 56% 70 76% WP, ST
BF Sy 104.28 8% 1954 512 1000448 27 4% 97% 34 33% LAT
BFSqg 3.69 100% 256 256 65536 10 25% 50% 69 66% WP, ST
BPP; 12.07 66% 4096 256 1048576 11 0% 88% 23 76% WPBW
BPPy 132.94 34% 4096 256 1048576 12 0% 93% 41 11% —
CFD; 72.02 89% 506 192 97152 31 0% 76% 93 64% BW
CFD» 173.56 2% 506 192 97152 32 0% 94% 80 9% BW
CFDs3 100.79 0% 506 192 97152 32 0% 94% 65 5% —
CFDy 82.09 9% 506 192 97152 32 0% 94% 91 62% BW
FLD; 0.81 0% 19 256 4864 14 11% 7% 47 96% LAT, WP, BP, ST
FLD»y 0.16 40% 32 256 8192 3 39% 4% 14 — LAT, BP, WP, ST
FLDg 1.49 0% 32 256 8192 8 3% 13% 67 88% LAT, WP, BP
FLDy 0.12 58% 32 356 8192 3 51% 3% 13 40% LAT, WP, ST, BP
FLDs 1.22 0% 19 256 4864 13 12% 7% 43 94% LAT, WP, BP
FLDg 249 0% 19 256 4864 19 7% 94% 25 79% WP, BP
HW 81.17 100% 51 512 26112 25 1% 91& 86 26% BW, BP
HWT 81.22 100% 51 512 26112 25 1% 91% 86 26% BW, BP
MUM 3.75 100% 196 256 50176 8 37% 7% 52 58% WP, ST
MM P 0.28 100% 1 256 256 8 26% 30% 4 44% BP, WP, ST
MY O 1.60 100% 4 32 128 25 0% 0% 14 91% BP, LAT
NNWy 42.59 3% 168 169 28392 27 0% 90% 64 65% LAT
NNW»y 11.96 19% 1400 25 35000 25 0% 83% 83 91% BW
NNW3 0.12 78% 2800 1 2800 1 100% 0% 80 47% TP, WP, ST, BW
NNWy 0.11 1% 280 1 280 1 100% 0% 68 44% TP, WP, ST
NNB 7.40 100% 938 16 15008 16 0% 22% 98 86% LAT, WP, BW
NQU 8.53 100% 256 96 24576 26 6% 90% 0 43% ST
NWy 4.14 49% 1t0 127 16 16 to 2032 11 5% 83% 6 82% WP, BP, TP
NW» 3.91 51% 110127 16 16 to 2032 11 5% 83% 5 82% WP, BP, TP
SC 90.52 100% 128 512 65536 30 5% 93& 61 46% BW
SRAD; 205.02 0% 450 512 230400 31 0% 94% 41 2% —
SRAD> 207.52 0% 450 512 230400 32 0% 94% 57 4% —
SRADs3 53.01 41% 450 512 2304000 18 17% 93% 7 3% WP, ST
SRADg4 116.52 32% lor450 512 512 or 2304000 32 0% 42% 67 76% BP
SRADs 91.69 21% 450 512 2304000 32 0% 93% 78 57% BW
SRADg 98.47 6% 450 512 2304000 32 0% 94% 89 54% BW
SWP 3.78 100% 1 512 512 21 1% 94% 15 18% BP, WP
wPpP 43.22 100% 72 64 4608 25 3% 83% 55 65% TP

o Available Parallelism = TP: Threads per Block, BP: Blocks per Kernel
?2 Control Flow = ‘WP: Parallelism within Warp, ST: Serial Execution
Memory Accesses = BW: Memory Bandwidth, LAT: Memory Latency

the general-purpose functionality of GPUs, including SMs, SPs, registers, memory, memory

controllers, interconnect, and local, shader, texture, and constant memory.



61

5.2.2 Characterization

In Table we present the detailed workload characterization for each kernel in the chal-
lenging benchmarks using data from the GPGPU-Sim simulator. The first three columns give
general information about the kernel: name, effective IPC, and percent of GPU time spent in
that kernel. Note that some kernels have IPCs greater than 96; we include all kernels from a
challenging benchmark even if the particular kernel performs well. The next eight columns are
divided into three sets: Available Parallelism, Control Flow, and Memory. Section @ dis-
cusses these columns in detail, and is organized similarly. The last column gives our diagnosed

bottlenecks based on intuition from the upcoming data analysis.

5.2.3 Data Analysis

The following likely GPU bottlenecks are included in Table[5.2] with abbreviations listed
in the table key:

5.2.3.1 Available Parallelism

GPUs achieve high performance by running many concurrent threads on their massively
parallel architecture, but the total number of threads can be limited by the number of blocks in
the kernel (BP) or the number of threads per block (TP). Block and thread level parallelism is
limited by the fraction of the algorithm that has been parallelized and the problem size. In our
table, we consider a kernel parallelism limited if there are fewer than ten thousand total threads
(each SM is less than half full), and observe that 12 of the 38 kernels are limited by available

parallelism.

5.2.3.2 Control Flow

The single-instruction, multiple-thread (SIMT) architecture of GPUs makes control flow
divergence a limiting factor for performance. We quantify the impact of thread divergence by
measuring the average number of active threads in a warp over all warp issues. We further

measure the average number of warp issues with only a single thread, which indicates serial
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execution, synchronization, atomic operations, or extreme thread divergence. Nineteen of the
kernels have fewer than 25 active threads per warp (WP) and twelve of them have more than

10% of their issue cycles with only a single active warp (ST).

5.2.3.3 Memory Accesses

Limited caching and heavy cache contention make GPUs dependent on many accesses to
main memory, and the long latencies may not always be hidden by the heavy multi-threading
if parallelism is limited or there are many memory accesses. We observe that ten of the kernels
use more than 70% of the total 102 GB/s of memory bandwidth (BW). It is important to note
that DRAM performance can slow with more than 70% utilization due to queuing effects and
memory access bursts. Further, we suspect that nine benchmarks with few coalesced memory
accesses and many stalls for memory accesses are slowed by the long latency of memory

accesses (LAT).

5.2.3.4 Applying Bottlenecks to the Benchmarks

Given these bottlenecks, we can examine the results from Table [5.2] and look at how these

bottlenecks apply specifically to individual benchmarks. We present a few examples here:

o flurdanimate: In the previous chapter, we discussed some of the bottlenecks that our
implementation of fluidanimate faced: thread divergence, register pressure for larger
kernels, and poor performance of atomics. The results from our study with GPGPU-Sim
confirm these findings and point to several additional bottlenecks. First, the limited num-
ber of threads in all of the kernels but the last one cause memory latency to be an issue;
this is not surprising because the kernels are not embarrassingly parallel. Additionally,
the amount of parallelism available with a warp and within a block is suboptimal. This

is likely due to the atomics serializing execution and the thread divergence.

e WWP: WP only uses 4K threads and 64 threads per block, so it makes sense that this

benchmark is limited by the amount of parallelism within a block. On GPUs, we want
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to have as many threads per block as possible to help hide memory latency and stalling;
we also want to have more than 4K total threads if possible, which points to the need for

more parallelism within the benchmark.

e BFS (Rodinia): The Rodinia version of BFS uses 2 separate kernels and iteratively
moves down a graph in breadth-first fashion. Each iteration of the loop represents one
level of the graph being examined. Thus, it makes sense that we are limited by the
serialization — if we are only examining a few nodes each level of the graph, then the
other threads within a warp will be forced to execute separately. Additionally, because
only a few threads are performing useful work, we can’t easily hide the latency of main

memory access and we don’t have much parallelism within a warp to exploit.

The key takeaway here is that we are able to classify the bottlenecks for these applications
based on simulation studies. This should help guide future GPU architectural research, by

exposing the bottlenecks causing degraded performance.

5.2.4 Limitations

Our technique’s limitations include our use of freely available CUDA benchmark imple-
mentations, potentially unoptimized algorithms, and simulators. For many statistics, computeprof
only has counters on a single SM. Kernels with limited parallelism or non-steady state behav-
ior are not well profiled with counts from a single SM, and so using a simulator allows us to
collect a richer and more representative set of data. From a workload perspective, we acknowl-
edge that the benchmarks could potentially be rewritten to be less challenging in the future,

especially if algorithms are designed specifically to exploit the GPUs architectural features.

5.3 Summary

In this chapter, we have identified a suite of benchmarks, including some of the CMP bench-
marks from the previous chapter, that represent new uses for GPUs, but which perform poorly

on current GPUs. We also characterize these challenge benchmarks and find their performance
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bottlenecks. The performance bottlenecks for these benchmarks are dispersed across memory,
control flow, and parallelism limitations. The need for higher performance exists for at least
half of the benchmarks in common suites, but there is no single architectural feature to focus on
for that improvement. This means that there are multiple avenues GPU architects must explore

to allow these challenge benchmarks to execute well on future GPUs.
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Chapter 6

Conclusion

As GPU architectures become more programmable, new uses for the GPU within non-
graphics applications are becoming possible. Previous work has highlighted how many general-
purpose, non-graphic applications, especially scientific applications, have been ported to GPUs.
These applications are usually embarrassingly parallel and utilize GPU architectural features
such as shared memory and fast hardware transcendentals. In this thesis, we’ve highlighted
how GPUs can be used in several new ways that they have not been previously used for. For
example, previous work largely ignores the texture unit, especially its internal interpolation
feature. Previous work has also not looked at how general-purpose CMP benchmarks might
perform on GPUs. If GPUs are truly going to become a general-purpose architecture, they will
need to be able to execute programs like CMP benchmarks with high performance.

There are some limitations to our studies in this thesis, including potentially unoptimized
algorithms and simulators. For example, in Chapter 4} we prioritized the use of the current
algorithms in the PARSEC benchmarks over wholesale algorithmic changes. We opted to
incrementally change the algorithms to execute on GPUs instead of making complete overhauls
of the algorithms. While this strategy is better from an implementation perspective, we may be
missing the potential of those benchmarks to provide high performance on GPUs with different
algorithms that are better suited to the GPU architecture. Additionally, we did not retest or re-
implement our algorithms when newer versions of CUDA became available; it is possible that
our results would be different if they used these updated versions.

By examining the new applications we have implemented on GPUs, especially the appli-

cations that did not perform well, we were able to identify what bottlenecks are preventing
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these applications from achieving high performance on GPUs. We hope that these findings
will guide future GPU architectural research.

Overall, we demonstrate several new uses for the GPU. These uses are enabled by the in-
creased general-purpose nature of the GPU. By finding new uses for the GPU, we demonstrate
how some underutilized components of the GPU architecture, such as texture memory inter-
polation, can be used to dramatically improve performance for non-graphics applications. By
identifying sources of bottlenecks that prevent programmers from obtaining high performance
for general-purpose, non-graphics applications on GPUs, we help direct future directions for

GPU architectural research and enable more new uses for GPUs.
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