
LEAP: Latency- Energy- and Area-optimized Lookup
Pipeline

Master’s Degree Project Report

Eric N. Harris
University of Wisconsin-Madison

920-216-2560 enharris@uwalumni.com

ABSTRACT
Table lookups and other types of packet processing require
so much memory bandwidth that the networking industry
has long been a major consumer of specialized memories
like TCAMs. Extensive research in algorithms for longest
prefix matching and packet classification has laid the foun-
dation for lookup engines relying on area- and power-efficient
random access memories. Motivated by costs and semicon-
ductor technology trends, designs from industry and academia
implement multi-algorithm lookup pipelines by synthesizing
multiple functions into hardware, or by adding programma-
bility. In existing proposals, programmability comes with
significant overhead.

This report details LEAP, a latency- energy- and area-
optimized lookup pipeline based on an analysis of various
lookup algorithms. This report describes the architecture
and microarchitecture. It compares LEAP to PLUG, which
relies on von-Neumann-style programmable processing. It
shows LEAP has equivalent flexibility as PLUG while re-
ducing chip area by 1.5×, power consumption by 1.3×, and
latency typically by 5×. Furthermore, this report presents
an intuitive Python-based API for programming LEAP. This
report details completed work and suggests a path for future
work on LEAP.

1. INTRODUCTION
Lookups are a central part of the packet processing per-

formed by network switches and routers. Examples include
forwarding table lookups to determine the next hop desti-
nation for the packet, and packet classification lookups to
determine how the given packet is to be treated for service
quality, encryption, tunneling, etc. Methods to achieve these
lookup operations include: software based table lookups [17],
lookup hardware integrated into a packet processing chip [18],
and dedicated lookup chips [3, 4]. The latter two are the pre-
ferred industry approach.

Trends indicate an increasing sophistication in the lookup
processing required and reducing benefit from technology
scaling. Borkar and Chien show that energy efficiency scal-
ing of transistors is likely to slow down, necessitating higher-
level design innovations that provide energy savings [9].

This master’s project is the culmination of a year’s worth
of collaborative work on a new class of flexible lookup en-
gines with reduced latency, energy consumption, and sili-
con area. These savings ultimately translate into cost reduc-
tions or more aggressive scaling for network equipment as
described below.

1. Latency: Lookup engine latency affects other compo-
nents on the router interface. The exact nature of the savings
depends on the line card architecture, but it can result in a
reduction in the size of high-speed buffers, internal queues
in the network processor, and the number of threads required
to achieve line-speed operation. A major reduction in the la-
tency of the lookup engine can indirectly result in important
area and power savings in other chips on the line card.

2. Energy/Power: Reducing the power consumption of
routers and switches is in itself important because the cost
of electricity is a significant fraction of the cost of operat-
ing network infrastructure. Even more important, reducing
power improves scalability because the heat dissipation of
chips, and the resulting cooling challenges, are among the
main factors limiting the port density of network equipment.
Our design, LEAP, demonstrates energy savings for lookups
through architectural innovation.

3. Area: Cutting-edge network processors and stand-alone
lookup engines are chips of hundreds of square millimeters.
Reducing the silicon area of these large chips results in a
super-linear savings in costs.

The first part of the project involved an initial investi-
gation and characterization of lookup processing (see Sec-
tion 2). After this investigation, an architecture called LEAP
was proposed. It is a latency- energy- and area-optimized
lookup pipeline architecture that retains the flexibility and
performance of earlier proposals for lookup pipeline archi-
tectures while significantly reducing the overheads that ear-
lier proposals incur to achieve flexibility. Instead of pro-
grammable microengines, LEAP uses a dynamically config-
urable data path. The initial investigation included analy-
sis of seven algorithms for forwarding lookups and packet
classification to determine a mix of functional units suitable
for performing the required processing steps. LEAP’s high

1

level architecture is described in Section 4. The most time
consuming part of the LEAP project was an actual imple-
mentation of the LEAP design. The microarchitecture of
this implementation is described in Section 5. This specific
design was implemented in RTL, verified and synthesized it
to a 55nm ASIC library. PLUG[13] is an earlier proposal for
a tiled smart memory architecture that can perform pipelined
lookups. At the same technology node, LEAP achieves the
same throughput as PLUG and supports the same lookup al-
gorithms but has 1.5× lower silicon area, and 1.3× lower
energy. Latency savings depend on the lookup algorithms
used: we observe between 1.7× and 6.5×, with typical sav-
ings exceeding 5×.

This project’s contributions are:
• Characterization of lookup processing (Section 3)
• LEAP architecture (Section 4)
• A working LEAP implementation and microarchitecture

(Section 5)
• LEAP Verification Framework (Section 6)
• Discussion of tradeoffs made in LEAP (Section 8)
• Discussion of physical design considerations (Section 7)
• Programming mechanisms and a Python API (Section 9)
• Quantitative evaluation of LEAP (Section 10)
• A pending patent and a framework for future work (Sec-

tion 11)

2. BACKGROUND AND MOTIVATION
To put the LEAP project in context, this section describes

existing works. At the top-level there are run-to-completion
(RTC) architectures and dedicated lookup-based engines. In
the RTC paradigm, lookup data is maintained by the network
processor on a globally shared memory (across the proces-
sor’s cores), and it exploits packet-level parallelism. The
core in charge of each packet performs the lookup based on
the data in the packet by looking up a globally shared data-
structure. Examples include Cisco’s Silicon Packet Proces-
sor [18]. An alternative is dedicated lookup engines inter-
faced with the network processor. These engines are orga-
nized as a pipeline where, at each pipeline step (which is
a hardware block), packet bits are moved close to relevant
lookup data. The goal is to minimize the amount of data
moved around. In principle, both approaches are equally
valid and in this work focuses on systems that belong to the
latter class of dedicated lookup-based engines.

Within this domain, two main approaches exist for imple-
menting lookups: i) relying on massive bit-level hardware
parallelism and ii) using algorithms.

2.1 Bit-level hardware parallelism
In this approach, typically a ternary content-addressable

memory (TCAM) is employed to compare a search key con-
sisting of packet header fields against all entries of the table
in parallel. Due to low density of TCAM storage and power
challenges, much research effort has focused on the second
approach of finding good RAM-based algorithmic solutions.

Efficiency

Fl
ex

ib
ili

ty

lo
w

m

ed
iu

m

h
ig

h

Soft-synthesizable
Multifunction

Hard Multifunction
([5],[26])

Fixed Function
([18],[32])

low medium high

PLUG

Figure 1: Design space of Lookup Engines

2.2 Algorithmic Lookup Engine Architectures
The main challenge for lookup algorithms is minimizing

the amount of memory required to represent the lookup ta-
ble while keeping the number of memory references low and
the processing steps simple as described in a mature body of
work [22, 32, 38, 6]. The common characteristics across
different types of lookups are the following: performance
is dominated by frequent memory accesses with poor lo-
cality, processing is simple and regular, and plentiful par-
allelism exists because many packets can be processed inde-
pendently. Here each lookup is partitioned into individual
tasks organized in a pipeline, and multiple packets can be
concurrently processed by a single lookup engine by pipelin-
ing these tasks across the packets. Figure 1 plots lookup en-
gines classified according to flexibility and efficiency.

Fixed-Function: Specialized approaches where a chip is de-
signed for each type of lookup provide the most efficiency
and least flexibility. In the FIPL architecture [33], an ar-
ray of small automata are connected to a single memory to
provide an efficient specialized architecture for the IP for-
warding lookup problem. By placing the processing close to
memory and using specialized hardware, high efficiency is
achieved. Such specialized algorithmic lookup engines are
widely used both as modules inside network processors, for
example, in QuantumFlow [12] and as stand-alone chips [3,
4] acting as a coprocessors to network processors or other
packet processing ASICs. The fixed-function approach is of-
ten implemented with partitioned memories accompanied by
their own dedicated hardware modules to provide a pipelined
high-bandwidth lookup engine [27].

Hard Multi-Function: Versatility can be increased with-
out compromising efficiency by integrating different types
of fixed-function processing that all use the same data-paths
for memories and communication between pipeline stages.
Baboescu et al.[5] propose a circular pipeline that supports
IPv4 lookup, VPN forwarding and packet classification. Huawei
is building tiled Smart Memories [29] that support 16 func-
tions including IP forwarding lookup, Bloom filters that can
be used in lookups [16, 15], sets and non-lookup functions

2

27.4%
2.7%

55.7% 14.2%

Inst-Fetch
RegFile
Write-Back
ALU

Figure 2: Programmable processor energy breakdown.

such as queues, locks, and heaps. As is common for indus-
try projects, details of the internals of the architecture and
programming model are not disclosed.

Specialized Programmable: Hard multi-function lookup
pipelines lack the flexibility to map lookups whose function-
ality has not been physically realized at manufacture time.
The PLUG [13] lookup pipeline achieves flexibility by em-
ploying principles from programmable von-Neumann style
processors in a tiled architecture. Specifically, it simplifies
and specializes the general purpose processor and process-
ing is achieved through 32 16-bit microcores in each tile that
execute processing steps of lookup algorithms based on in-
structions stored locally. Communication is provided by six
separate 64-bit networks with a router in each tile. These
networks enable non-linear patterns of data flow such as the
parallel processing of multiple independent decision trees
required by recent packet classification algorithms such as
Efficuts [38].

While PLUG attains high flexibility, it lacks high effi-
ciency. It is instructive to understand why it has inefficien-
cies. Figure 2 shows the percentage contribution of energy
consumption of a 32-bit in-order core similar to PLUG as
estimated with the McPAT [31] modeling tool. Events other
than execute are overhead yet they account for more than
80% of the energy. While it may seem surprising, consid-
ering that a single pipeline register consumes 50% of the
energy of an ALU operation and staging uses three pipeline
registers for PLUG’s 3-cycle load, these overheads soon be-
gin to dominate. Others have also made this observation. In
the realm of general purpose processors, Hameed et al.[24]
recently showed how the von-Neumann paradigm of fetch-
ing and executing at instruction granularity introduces over-
heads.

2.3 Obtaining Efficiency and Flexibility
With over 80% of energy devoted to overhead, it appears

the von-Neumann approach has far too much inefficiency
and is a poor starting point. The specific inefficiencies in
von-Neumann lookup engine designs were investigated as
part of this project. This investigation (detailed in Appendix A)
showed that a von-Neumann approach had at least 100x the
computational area of an ASIC performing the same lookup
engine functions. In terms of dynamic power, ASICs use
as low as 40% the power of a von-Neumann lookup engine.
The existing von-Neumann approaches also add latency for

a number of reasons including the wasted time spent stor-
ing values to and from the register file. These inefficiencies
motivated this project’s search for a more efficient flexible
lookup engine.

Due to fundamental energy limits, recent work in general
purpose processors has turned to other paradigms for im-
proving efficiency. This shift is also related to our goal and
can be leveraged to build efficient and flexible soft-synthesizable
multi-function lookup engines. LEAP draws inspiration from
recent work in hardware specialization and hardware accel-
erators for general purpose processors that organizes coarse-
grained functional units in some kind of interconnect and
dynamically synthesizes new functionality at run-time by
configuring this interconnect. Some examples of this ap-
proach include: DySER [21], FlexCore [36], QsCores [39],
and BERET [23]. These approaches by themselves cannot
serve as lookup engines because they have far too high la-
tencies, implicitly or explicitly rely on a main-processor for
accessing memories, or include relatively heavyweight flow-
control mechanisms and predication mechanisms internally.
Instead, LEAP leverages their insight of dynamically syn-
thesizing functionality, combine it with the unique proper-
ties of lookup engine processing and develop a stand-alone
architecture suited for lookup engines.

FPGAs provide an interesting platform and their inherent
structure is suited for flexibility with rapid and easy run-time
modification. However, since they perform reconfiguration
using fine-grained structures like 4- or 8-entry lookup tables,
they suffer from energy and area efficiency and low clock
frequency problems. Also, a typical FPGA chip has limited
amounts of SRAM storage. While they may be well suited
in some cases, they are inadequate for large lookups in high-
speed network infrastructure.

3. TOWARD DYNAMIC MULTI-FUNCTION
LOOKUP ENGINES

This section characterizes the computational requirements
of lookups. Assuming a dataflow approach where process-
ing is broken up in steps and mapped to a tile based pipeline
similar to PLUG, this section focuses on the processing to
understand how to improve on existing flexible lookup ap-
proaches and incorporate the insights of hardware special-
ization. Much of this work was based off a coursework
project (see Appendix A).

3.1 Description of Lookup Algorithms
The LEAP architecture was designed to be generic enough

to support common types of lookup operations. It was devel-
oped by examining seven representative lookup algorithms
in detail. Each algorithm is used within a network proto-
col or a common network operation. Table 1 summarizes
the application where each lookup algorithm originated, and
the key data structures being used. Most analysis was in
understanding the basic steps of the lookup processing and
determining the hardware requirements by developing de-

3

Context Approach/Key data structures
Ethernet forwarding D-left hash table [8, 10, 40]
IPv4 forwarding Compressed multi-bit tries [14]
IPv6 forwarding Compressed multi-bit tries + hash tables [26]
Packet classification Efficuts with parallel decision trees [38, 37]
DFA lookup DFA lookup in compressed transition tables[28]
Ethane Parallel lookup in two distinct hash tables [11]
SEATTLE Hash table for cached destinations, B-tree for

DHT lookup [25]

Table 1: Characterization of lookup algorithms.

sign sketches as shown in Figure 3. This report describes
this analysis in detail for two algorithms, Ethernet forward-
ing and IPv4 and the next section summarizes overall find-
ings. These two serve as running examples through this pa-
per, with their detailed architecture discussed in Section 4.3
and programming implementation discussed in Section 9.

Ethernet forwarding

Application overview: Ethernet forwarding is typically per-
formed by layer-II devices, and requires retrieving the cor-
rect output ports for each incoming Ethernet frame. This im-
plementation uses a lookup in a hash table that stores, for ev-
ery known layer-II address (MAC), the corresponding port.

Ethernet lookup step: This step, depicted in Figure 3a,
checks whether the content of a bucket matches a value (MAC
address) provided externally. If yes, the value (port) associ-
ated with the key is returned. To perform this, a 16-bit bucket
id from the input message is used as a memory address to re-
trieve the bucket content. The bucket key is then compared
with the key being looked up, also carried by the input mes-
sage. The bucket value is copied to the output message; the
message is sent only if the the two keys match.

IPv4 lookup

Application overview:
The IPv4 forwarding approach discussed here is derived

from PLUG, and is originally based on the “Lulea” algo-
rithm [14]. This algorithm uses compressed multibit tries.

In multibit tries, each node represents a fixed number of
prefixes corresponding to each possible combination of a
subset of the address bits. For example, a stage that con-
sumes 8 bits covers 256 prefixes. In principle, each pre-
fix is associated with a pointer to a forwarding rule and a
pointer to the next trie level. In practice, the algorithm uses
various kinds of compressed representations, avoiding repe-
titions when multiple prefixes are associated with the same
pointers. The following describes one of the processing steps
used in IPv4.

IPv4 rule lookup step: This step, represented in Figure ??b,
uses a subset of the IPv4 address bits to construct a pointer
into a forwarding rule table. Specifically, it deals with the
case where the 256 prefixes in a trie node are partitioned in
up to seven ranges, each associated with a different rule. In

the rule table, the seven rules are stored sequentially starting
at a known base offset. The goal of this step is to select a
range based on the IPv4 address being looked up and con-
struct a pointer to the corresponding rule.

Initially, 16 bits from the input message (the node id) are
used as an address to retrieve a trie node from memory. The
node stores both the base offset for the rules, and the seven
ranges in which the node is partitioned. The ranges are rep-
resented as a 3-level binary search tree. Conceptually, the
lookup works by using 8 bits from the IPv4 address as a key,
and searching the range vector for the largest element which
does not exceed the key. The index of the element is then
added to the base offset to obtain an index in the rule table.
Finally, the result is forwarded to the next stage.

3.2 Workload Analysis
Similar to the above two, students working on LEAP an-

alyzed many processing steps of several lookup algorithms.
This analysis revealed common properties which present op-
portunities for dynamic specialization and for eliminating
von-Neumann-style processing overheads.

1. Compound specialized operations: The algorithms per-
form many specific bit-manipulations on data read from the
memory-storage. Examples include bit-selection, counting
the bits set, and binary-space partitioned search on long bit-
vector data. Much of this is efficiently supported with spe-
cialized hardware blocks rather than through primitive in-
structions like add, compare, or, etc. For example, a
single bstsearch instruction that does a binary search
through 16-bit chunks of a 128-bit value, like used in [30],
can replace a sequence of cmp, shift instructions. There
is a great deal of potential for reducing latency and energy
with simple specialization.

2. Significant instruction-level parallelism: The lookups
show opportunity for instruction-level parallelism (ILP), i.e.
several primitive operations could happen in parallel to re-
duce lookup latency. Architectures like PLUG which use
single-issue in-order processors cannot exploit this.

3. Wide datapaths and narrow datapaths: The algorithms
perform operations on wide data including 64-bit and 128-
bit quantities, which become inefficient to support with wide
register files. They also produce results that are sometimes
very narrow: only 1-bit wide (bit-select) or 4-bits wide (bit
count on a 16-bit word) for example. A register file or machine-
word size with a fixed width is over-designed and inefficient.
Instead, a targeted design can provide generality and reduced
area compared to using a register file.

4. Single use of compound specialized operations: Each
type of compound operation is performed only once (or very
few times) per processing step, with the result of one op-
eration being used by a different compound operation. A
register-file to hold temporary data is not required.

4

Range tree

Search key (8-bit
address chunk)

0 1 2 3 4 5 6 7

+
Result
index

32-bit rule offset

Node ID Bits 15:8 of IPv4 addr
Input message

Output message

Read
memory

Base offset

Bucket ID 48-bit MAC address
Input message

Read
memory

==
Stored key

Outgoing port ID

Stored
value

Send
enable

Output message #0

(a) Ethernet lookup step (b) IPv4 L2_V7 step

Computation Memory ops Bit movements

Figure 3: Rule offset computation in IPv4
5. Many bit movements and bit extractions: Much of the
“processing” is simply extracting bits and moving bits from
one location to another. Using a programmable processor
and instructions to do such bit movement among register file
entries is wasteful in many ways. Instead, bit extraction and
movement could be a hardware primitive.

6. Short computations: In general, the number of opera-
tions performed in a tile is quite small - one to four. De Carli
et al[13] also observe this, and specifically design PLUG to
support “code-blocks” no more than 32 instructions long.

These insights led to a design that eliminates many of the
overhead structures and mechanisms like instruction fetch,
decode, register-file, etc. Instead, a lookup architecture can
be realized by assembling a collection of heterogeneous func-
tional units of variable width. These units communicate in
arbitrary dynamically decided ways. Such a design trans-
forms lookup processing in two ways. Compared to the
fixed-function approach, it allows dynamic and lookup-based
changes. Compared to the programmable processor approach,
this design transforms long multi-cycle programs to a single-
cycle processing step. The next section describes the LEAP
architecture, which is an implementable realization of this
abstract design.

4. LEAP ARCHITECTURE
This section describes the high-level architecture and idea

of the LEAP lookup engine. First, its organization and ex-
ecution model are described and its detailed design is dis-
cussed. Next, we walk through an example of how lookup
steps map to LEAP. A discussion of physical implementa-
tion and design tradeoffs concludes this section. The general
LEAP architecture is flexible enough to be used to build sub-
strates interconnected through various topologies like rings,
buses, meshes etc. and integrated with various memory tech-
nologies. This report assumes a mesh-based chip organiza-
tion and integration with SRAM. Section 5 details the mi-
croarchitecture of a working implementation of the high-
level LEAP design presented in this section.

4.1 Hardware Organization
For clarity this section assumes all computation steps are

one cycle. Section 4.4 relaxes this assumption.

Organization: Figure 4 presents the LEAP architecture span-
ning the coarse-grained chip-level organization showing 16
tiles and the detailed design of each tile. LEAP reuses the
same tiled design as PLUG ([26]) in which lookups occur in
steps with each step mapped to a tile.

Each tile consists of a LEAP compute engine, a router-
cluster, and an SRAM. At the chip-level, the router clus-
ter in each tile is used to a form a mesh network across the
tiles. LEAP mirrors the design of PLUG in which tiles com-
municate only to their immediate neighbors and the inter-
tile network is scheduled at compile time to be conflict-free.

5

Op
Cluster0

Op
Cluster1

Bit Collector Unit

SRAM-In
NW-In

SRAM-Out
NW-Out

(a) LEAP Tile (b) Compute Engine

FU

Input
Selector

Config.
Store

NW
SRAM

Crossbar

Config
Selector

(d) Operation Engine

OpEng
(Mux2)

OpEng
(Add)

OpEng
(BitSel)

OpEng
(BitCnt)

OpEng
(Logic2)

OpEng
(Logic4)

OpEng
(Logic4)

OpEng
(BspTr)

Crossbar

SRAM-In
NW-In

OpCLto Bit
Collector

 (128b)
(64b)

(16b)

(16b)

(32b)

(16b)

(1b)

(16b)

(5b)

(4b)

(c) Operation Cluster

 Compute
Engine

SRAM

Router
Cluster

CrossbarNW0-4 (64b)

OpCL

NW0-4 (64b)
SRAM(128b)

(e) Input Selector (one 16-bit operand)

NWSel

NWPos

Src

MEMPos XBar

Const
(64b)

(16b)

Figure 4: LEAP Organization and Detailed Architecture
Functional Unit Description
Add Adds or subtracts two 32-bit values. It can

also decrement the final answer by one.
BitCnt Bitcounts of all or a subset of a 32-bit input
BitSel Can shift logically or arithmetically and se-

lect a subset of bits
BSPTr Performs a binary space tree search compar-

ing an input to input node values.
Logic2 Logic function ”a op b” where op can be

AND,OR,XOR,LT,GT,EQ,etc
Logic4 Operates as ”(a op b) op (c op d)” or chooses

based on an operation: ”(a op b) ? c : d”
Mux2 Chooses between 2 inputs based on a input

Table 2: Functional Units Mix in the operation engines

PLUG used six inter-tile networks, but our analysis showed
only four were needed, each network being 64 bits wide.
Lookup requests arrive at the top-left tile on the west inter-
face, and the result is delivered on the east output interface
of the bottom-right tile. With four networks, LEAP can pro-
cess lookups that are up to 384 bits wide. Each SRAM is
256KB and up to 128 bits can be read or written per access.

Each LEAP compute engine is connected to the router
cluster and the SRAM. It can read and write from any of
the four networks, and it can read and write up to 128 bits
from and to the SRAM per cycle. Each compute engine can
perform computation operations of various types on the data
consumed. Specifically, the following seven types of primi-
tive hardware operations are allowed as decided by workload
analysis: select, add, bitselect, bitcount, 2-input logical-op,
4-input logical-op, bsptree-search (details in Table 2 and
Section 4.2). For physical design reasons, a compute en-
gine is partitioned into two identical operation clusters as
shown in Figure 4c. Each of these communicate with a bit-
collection unit which combines various bits and sends the
final output message. Each operation cluster provides the
aforementioned hardware operations, each encapsulated in-
side an operation engine. The operation engine consists of
the functional unit, an input selector, and a configuration-
store.

Execution model: The arrival of a message from the router-
cluster triggers the processing for a lookup request. Based on
the type of message, different processing must be done. The
processing can consist of an arbitrary number of primitive
hardware operations performed serially or concurrently such
that they finish in a single cycle (checked and enforced by

Bits Description
80 Valid Bit
79:72 Destination Tile ID
71 Config Mode (1 indicates this message should

write to the configuration of the tile)
70:64 Codeblock (The type of message)
63:0 Message Data

Table 3: LEAP Network Message Format

C
O
M
P
U
T
E

NW
&

MEM

W
R
I
T
E

M
E
M

R
E
A
D

From
NW
Router

To
NW

Router

Figure 5: LEAP Pipeline

the compiler). The LEAP computation engine performs the
required computation and produces results. These results
can be written to the memory, or they can result in output
messages.

Each LEAP tile is programmed to handle the types of mes-
sages different, with each type having a corresponding code-
block of processing that is required. The two terms are used
interchangably in this report. The message format between
tiles can be seen in Table 3.

In this design, a single Compute Engine is sufficient. With
this execution model, the architecture sustains a throughput
of one lookup every cycle. The architecture was designed
to run at 1GHz and thus provide a throughput of 1 billion
lookups per second. See Section 10 for how an actual imple-
mentation matches up with this architectural design point.

Pipeline: The high-level pipeline abstraction that the or-
ganization, execution-model, and compilation provides is a
simple pipeline with three stages (cycles): memory-read (R),
compute (C), and memory-write/network-write (Wr). For a
visual representation, see Figure 5.

For almost all of our lookups, a simple 3-stage (3-cycle)
pipeline of R, C, Wr is sufficient in every tile. This pro-
vides massive reductions in latency compared to the PLUG

6

approach. In the case of updates or modifications to the
lookup table, the R stage does not do anything meaningful.
LEAP supports coherent modifications of streaming reads
and writes without requiring any global locks by inserting
“write bubbles” into the lookup requests[7]. The R stage
forms SRAM addresses from the network message or through
simple computation done in the computation engine. Our
analysis showed this sufficient.

Compilation: Lookup processing steps can be specified in
a high-level language to program the LEAP architecture.
Specifically, there is a Python API developed for LEAP (de-
tails in Section 9). As far as the programmer is concerned,
LEAP is abstracted as a sequential machine that executes
one hardware operation at a time. This abstraction is easy for
programmers. The compiler takes this programmer-friendly
abstraction and maps the computation to the hardware to re-
alize the single-cycle compute-steps. The compiler uses its
awareness of the hardware’s massive concurrency to keep
the number of compute steps low. The compiler’s role is
threefold: i) data-dependence analysis between the hardware
operations, ii) hardware mapping to the hardware functional
units, and iii) generation of low-level configuration signals
to orchestrate the required datapath patterns to accomplish
the processing. The end result of compilation is simple: a
set of configuration bits for each operation engine in each
operation cluster and configuration of the bit-collection unit
to determine which bits from which unit are used to form the
output message, address, and data for the SRAM. This com-
pilation is a hybrid between programmable processors that
work on serial ISAs and hardware synthesis.

Note that the compiler for LEAP is not yet finished. Its
current status is described in Section 9.

4.2 Design
This section describes the hierarchy and design of the LEAP

architecture. For details on implementation, see our working
prototype microarchitecture in Section 5. At the top level
LEAP is organized into tiles, these tiles each have a com-
pute engine, each compute engine has two operation clusters
filled with operation engines. The details are described be-
low:

Tile (Figure 4(a)): A single tile consists of one LEAP compute-
engine, interfaced to the router-cluster and SRAM.

Compute engine (Figure 4(b)): The compute engine must
be able to execute a large number of primitive hardware op-
erations concurrently while allowing the results from any
hardware unit to be seen by any other hardware unit. To
avoid introducing excessive delay in the forwarding path, it
must perform these tasks at low latency. The workload char-
acterization revealed that different lookups require different
types of hardware operations, and they have large amounts
of concurrency ranging up to four logical operations in IPv6
for example. Naively placing four copies of each of the eight

hardware operations on a 32-wide crossbar would present
many physical design problems. To overcome these, LEAP
has a clustered design with two identical operation clusters,
allowing one value to be communicated between the clusters
(to limit the wires and delay).

Different lookups combine bits from various operations to
create the final output message or the value for the SRAM.
To provide this functionality in as general a fashion as pos-
sible, the compute engines are interfaced to a bit collector,
which receives the operation engine results being fed to it.
This unit includes a bit-shifter for the input coming from
each operation engine, one level of basic muxing and a 4-
level OR-tree that combines all of the bits to produce 64-bit
messages, 128-bit value, and 32-bit address for outgoing net-
work messages and SRAM value/address respectively.

Operation cluster(Figure 4(c)): The operation cluster com-
bines eight operation engines communicating with each other
through a crossbar. It also receives inputs from and outputs
to all four networks and the SRAM. It receives one input
from the neighbor operation cluster and produces outputs to
the bit collector. Depending on compiler analysis, the cross-
bar is configured into different datapaths as shown by the
two examples in Figure 6. Based on our workload analy-
sis, we found the 4-input logical-op unit was used the most,
hence we provide two of them in each cluster.

Operation engine(Figure 4(d)): The core computation hap-
pens in each operation engine, which includes a configura-
tion store, an input selector, and the actual hardware func-
tional unit like an adder or a comparator. LEAP provides
seven types of hardware functional units as described in Ta-
ble 2. The main insight behind the operation engine is a
throwback to micro-controlled machines which encode the
control signals into a micro-control store and sequence oper-
ations. LEAP effectively has loosely distributed concurrent
micro-controlled execution across all the operation engines.
Each operation engine must first select its inputs from one of
the four networks, values from the SRAM, values from any
other operation engine (i.e. the crossbar), or values from a
neighboring operation cluster. This is shown by the selection
tree in Figure 4(e). Furthermore, the actual inputs delivered
to the functional unit can be a subset of bits, sign- or zero-
extended, or a constant provided by the configuration store.
A final selection step decides this and provides the proper
input to the functional unit. The result of the functional unit
is sent to the crossbar. The configuration store includes the
control signals for all elements in the operation engine. Each
operation engine has a different sized configuration vector,
depending on the number and type of operands.

Section 9 provides a detailed example showing the Python-
API and its compiler-generation configuration information.

Reading the configuration-store to control the operation-
engine proceeds as follows. Every cycle, if a message ar-
rives its bits are used to index into the configuration store and
decide the configuration to load the controls signals for the

7

`

OpEng
(Mux2)

OpEng
(Add)

OpEng
(BitSel)

OpEng
(BitCnt)

OpEng
(Logic2)

OpEng
(Logic4)

OpEng
(Logic4)

OpEng
(BspTr)

 Crossbar

SRAM-In
NW-In

to Bit
Collector

 (128b)
(64b)

(16b)

(16b)

(32b)

(16b)

(1b)

(16b)

(4b)

(4b)
OpCL

(a) Example Datapath for Ethernet Forwarding
mapping a 48 bit equality to 2 Logic4's

OpEng
(Mux2)

OpEng
(Add)

OpEng
(BitSel)

OpEng
(BitCnt)

OpEng
(Logic2)

OpEng
(Logic4)

OpEng
(Logic4)

OpEng
(BspTr)

SRAM-In
NW-In

to Bit
Collector

 (128b)
(64b)

(16b)

(16b)

(32b)

(16b)

(1b)

(16b)

(4b)

(4b)

OpCL

(b) Example Datapath for IPv6

Figure 6: Dynamically created datapaths.

operation engine. An important optimization and insight is
the use of such pre-decoded control information as opposed
to instruction fetch/decode like in von-Neumann process-
ing. By using configuration information, we eliminate all de-
coding overhead. More importantly, if successive messages
require the same compute step, no reconfiguration is per-
formed and no additional dynamic energy is consumed. Fur-
ther application analysis is required to quantify these bene-
fits, and our quantitative estimates do not account for this.

4.3 Mapping lookups to LEAP’s architecture
To demonstrate how lookup steps map to LEAP, we revisit

the examples introduced in Section 3.1. Figure 6 shows how
the steps shown in Figure 3 are configured to run on LEAP.

In the example Ethernet forwarding step, the R-stage reads
a bucket containing a key (MAC) and a value (port). The
C-stage determines if the 48-bit key matches the key con-
tained in the input message. If it matches, the bit collector
sends the value out on the tile network during the memory-
write/network-write (Wr) stage. In order to do a 48-bit com-
parison, two Logic4 blocks are needed. The first Logic4
can take four 16 bit operands and is fed the first 32 bits (2
operands of 16 bits) of the key from SRAM and the first 32
bits of the key from the input message. This Logic4 out-
puts the logical AND of two 16-bit equality comparisons.
The second Logic4 ANDs the output of the first Logic4 with
the equality comparison of the remaining pair of 16 bits to
check. The result is sent to the bit collector, which uses the
result to conditionally send. Since data flows freely between
the functional units, computation completes in one cycle (as

FU

Input
Selector

Config.
Store

NW

SRAM
Crossbar

Config
Selector

(e) Modified Operation Engine

Crossbar
NW0-4 (64b)

OpCL

NW0-4 (64b)
SRAM(128b)

(b) Modified Input Selector (one 16-bit operand)

NWSel

NWPos

Src

MEMPos XBar

Const
(64b)

(16b)
Data
Store

Data Store

Figure 7: Support for multicycle operation. Added hard-
ware is shown in black.

it also does in the shown IPv6 example). If we assume
SRAM latency is 1 cycle and it takes 1 cycle to send the
message, LEAP completes both the Ethernet forwarding step
and IPv6 step in Figure 6 in 3 cycles. The equivalent compu-
tation and message formation on PLUG’s von-Neumann ar-
chitecture would take 10 cycles for the Ethernet forwarding
step and 17 cycles for the IPv4 step. With LEAP, computa-
tion no longer dominates total lookup delay. These examples
are just one step; to complete the lookup the remaining steps
are mapped to other tiles in the same manner.

4.4 Multi-cycle compute step
The LEAP architecture can easily be extended to handle

sophisticated lookup operations. For example, the packet
classification application requires 8 memory reads and more
than 30 compute steps.

Conceptually, the LEAP hardware breaks the processing
into multi-cycle compute steps. The pipeline is extended to
contain multiple C stages. Each compute step executes in
a single cycle. These details are abstracted from the pro-
grammer and are handled by the compiler which generates
low-level information saved into the config-store. The de-
sign presented earlier is augmented in a few simple ways as
outlined in Figure 7. All changes are restricted to the opera-
tion engine.

First, to ensure that reads and updates are still coherent
and correctly serialized, the compiler lengthens all compute
steps in a tile into multi-cycle compute steps and delaying
the W stage to match the longest one.

Second, LEAP needs a mechanism to carry values be-
tween compute steps. Each operation engine is augmented
with a data store as shown in Figure 7. From our empirical
analysis, a 4-operand store was sufficient and has similarities
to a register file in general purpose processors and PLUG
micro-cores. However, it is physically associated with a sin-
gle functional unit and hence avoids energy overheads in
communication. It is also much smaller in size. In spirit, it is
similar to the register file cache that Gebhart et al. recently
proposed for GPUs to reduce register file access energy [20,
19]. To support reads from this data store, the configura-
tion store of each operation engine is expanded to include an
entry for a data store location (2 bits). The input
selector is enhanced to allow the data store as a source.

Third, the configuration-store is augmented to hold a
next-config value for each configuration. This allows

8

processing for a single lookup to go through multiple con-
figurations. When performing multi-cycle lookups, power is
expended reconfiguring the datapath every cycle.

Finally, multi-cycle compute steps impact throughput. To
sustain a throughput of one lookup every cycle, each tile
must contain as many compute engines as C pipeline stages.
If a lookup requires multiple SRAM reads, throughput will
be degraded, or the SRAM must allow multiple read ports.
Formally, the total throughput in terms of cycles-per-lookup

can be defined as: max(# compute-steps
compute-engines , # sram-reads

sram-ports)
As part of the compilation, the compiler does this analysis

and can inform the system software of the cycles-per-lookup
which can then be used in higher level scheduling of lookups
to the lookup engine.

Although this multicycle support is not currently integrated
into the actual LEAP prototype, it is presented here for fu-
ture work.

5. LEAP COMPUTE ENGINE MICROAR-
CHITECTURE

This section details the microarchitectural aspects of LEAP
and is meant to be a reference for implementing in RTL a
working LEAP design. Section 4 details the high level view
of the architecture but this section goes into the detailed im-
plementation of LEAP. For example, Figure 4(e) represents
a generalized input selector for a generic operation engine
but this section details the input selection for the operation
engines chosen in Section 4.3. The SRAM address and data
formation and the output network messages, details left for
the implementers, are also specifically detailed in this sec-
tion.

When a network message arrives (or a set of network mes-
sages, in which case they must all have the same code block),
the codeblock of the message is used to index into each
of the distributed configuration stores (one for each oper-
ation engine, one for the read stage and one for the write
stage). These configuration bits configure the datapath as
programmed to achieve the desired computation. Table 4
shows the number of configuration bits required for each
pipeline stage. Configuration sizes vary between stages and
between operation engines because each has unique func-
tionality. Below we describe the exact function of the con-
figuration bits for each stage and operation engine by de-
scribing the microarchitecture of LEAP. The description is
broken down by pipeline stage and within a stage is broken
down into that stage’s various components.

5.1 Read Stage
The read stage is computationally simple. A 16-bit ad-

dress is generated by first selecting a 16-bit subset of any of
the input messages. This 16-bit address is then fed to an ar-
bitrary right shifter as shown in Figure 8. If 32 bit addresses
are needed, this shifted lower 16-bits are augmented with
an additional mux to select the upper 16-bits. Configuration

MemRdSelector.v

NW3..NW0
80

32

MUX
MUX

config_store

RSHFT
16

16
16

addrsel

shift_amount

higherAddrSel

co
ns
ta
nt

mem_rd_addr

Figure 8: Read Address Formation

bits (shown in green) provide the selection bits for the upper
and lower 16 bits, a constant for a constant address, and the
amount for the right shifter to shift.

In initial prototypes of LEAP, address generation could
borrow operation engines from the compute stage and use
them to calculate an address. However, this required bypass
logic that would feed Read stage values into the compute
stage for processing. Rather than incur such an overhead,
the most recent implementation of LEAP adds any compu-
tational power required to generate addresses into the Read
stage. If future applications require more robust address for-
mation, the Read stage is likely to grow in its area footprint.
However, since LEAP’s compute engine is small in power
and area relative to the memory in each tile, this tradeoff is
justified.

For packet classification, the SRAM could be logically en-
hanced to handle strided access. The config store sequences
the SRAM so one 128-bit value is treated as multiple ad-
dresses. The only enhancement to the SRAM is an added
external buffer to hold the 128 bits and logic to select a sub-
set based on configuration signals. The current version of
LEAP does not yet have this support.

5.2 Compute Stage
The computational operations of LEAP occur in the com-

pute stage in both opClusters. The opClusters are fed the
same inputs but only one data value from each cluster’s op-
eration engines can be fed to the operation engines in the
other cluster. Each cluster has its own configuration store
that can set the output of that cluster’s link to any of its eight
operation engines.

Computation is done by chaining all the operation engines
in one clock cycle. The longest path (through 8 operation en-
gines in one cluster, across the link and through the remain-
ing 8 in the other cluster) is not intended to fit in one cycle
and the compiler either needs to know the longest allowed
path or have a way to slow the frequency of the LEAP chip.
The functions of the operation engines are described below.

Add/Sub Operation Engine The Add/Sub operation engine
is a 32 bit adder/subtractor with an additional optional decre-

9

Pipeline Stage Total Config Bits
Read 33
Compute 890

OpCluster (2 per Engine) 445
Add 46
Mux2 47
Logic2 48
Logic4 (2 per Cluster) 66
BitCount 18
BSPTree 131
Bitsel 19
ClusterLink 4

Write 998
Writeback 82
Message Formation (4 per Engine) 229

LEAP Tile 1921

Table 4: Number of configuration bits by pipeline stage and by operation engine

FuAdd.v

NW
3:0

32

config_store opAsel

out

MUX

co
ns
ta
nt

32
MUX

co
ns
ta
nt

32

opBsel

+/-
-1minusOne

subtract

Func
Units

 SRAM

Figure 9: Add/Sub Operation Engine

FuLogic2.v

NW
3:0

16

config_store opAsel

out

MUX

co
ns
ta
nt

16
MUX

co
ns
ta
nt

16

opBsel

operationLogic

Func
Units

 SRAM

Figure 10: Logic2 Functional Unit

ment. See Figure 9 for a visual representation. The operands
are selected by opASel and opBSel in the configuration bits
stored in the configuration store and either can be set to a
constant from the configuration store or any aligned 32 bits
from the SRAM, network messages or other operation en-
gines.

If subtract is set the unit subtracts B from A otherwise it
adds. MinusOne when set, subtracts one off the previous re-
sult before outputting.

Logic2 Functional Unit
The Logic2 unit performs a logical operation on two operands
as shown by Figure 10. The 16 bit operands are selected
by opASel and opBSel and either can be set to a constant
from the configuration store or any aligned 16 bits from the
SRAM, network messages or other operation engines. The
logical operation can be a logical OR, AND, XOR, left shift,

10

FuLogic4.v

NW
3:0

16

config_store opAsel
MUX

co
ns
ta
nt
0

16
MUX

co
ns
ta
nt
1

16

opBsel

modeABLogic

MUX

co
ns
ta
nt
0

16
MUX

co
ns
ta
nt
1

16

opBsel

modeCDLogic

opCsel

16

out

Logic
16

mode

Func
Units

 SRAM

Figure 11: Logic4 Operation Engine

or right shift. Additionally, the operation can be an unsigned
greater than, greater than or equal, or equal comparison. The
result of this comparison, if true, results in an output of 1.
The comparison output can be flipped (1 if false) by setting
the invert option in the configuration. The operation, either
a bitwise logical operation or a comparison option, is set by
operation.

Logic4 Operation Engines The two Logic4 units in each
cluster act as two Logic2 units being fed into a third Logic2
unit. Figure 11 shows the normal operation. OpASel, opB-
Sel, opCSel, and opDSel select the operands much like in
Logic2. The constant fed into the operand mux is shared be-
tween A and C as well as B and D. ModeAB and modeCD
choose between the same operations as in Logic2. However,
the left shift operation is reversed, with operand A being the
shift amount and operand B being the value to shift. This
was done to allow the Logic4 to both do a left shift and a
right shift and then combine the results.

The output of the operations on the AB and CD pairs are
then fed into a third logical operation block. This third block
does either a logical OR, AND, XOR, right shift, greater
than comparison, greater than or equal to comparison, or an
equal comparison as set by mode in the configuration. Addi-
tionally mode can be set to SEL to select between operandC
and operandD based on the LSB of the output from the A
and B logic unit; if the operation on A and B results in a 1 in
the LSB operandD is output, otherwise operandC is output.

Mux2 Operation Engine Figure 12 shows the Mux2 op-
eration engine. It is used to choose between two 16-bit val-
ues (A and B). The values of A and B are chosen by set-
ting the configuration of opASel and opBSel. A and B can
both be either their own constant (set by constantA and con-
stantB), part of the network messages, a value from SRAM
or a value from another operation engine in the cluster (or
from the other cluster through the cluster link).

The condSel selects a source for the condition. The LSB
of the selected condition chooses operandA if 0 or operandB
if 1. Note that the SEL operation of Logic4 can also achieve
the same functionality as a Mux2.

FuMux2.v

NW
3:0

16

config_store opAsel

out

MUX

co
ns
ta
nt
A

16
MUX

co
ns
ta
nt
B

16

opBsel

MUX

MUX condSel

1

Func
Units

 SRAM

Figure 12: Mux2 Operation Engine

FuBSPTree.v

NW
3:0

config_store
addrsel

MUX

R
oo

t
co

ns
ta

nt

MUX
MUX

BB
 c

hi
ld

co
ns

ta
nt

...rootSel bbchildsel

8 8 8

co
ns

ta
nt

SR
AM

D
at

a

SR
AM

D
at

a

root a b aa ab ba bb

>=
root

>=
a

>=
aa

>=
ab

>=
b

>=
ba

>=
bb

valA valB valC valD valE valGvalF valH

3

out

Func
Units

 SRAM

Figure 13: Binary Search Tree Operation Engine

Binary Search Operation Engine The binary search tree
takes a value and sorts it using a 3-deep tree. Each node of
the tree does a less than operation to see if the search value
is less than the node. If the value is greater or equal than the
node the tree is traversed to the right child, otherwise it goes
to the left child. Since it is unsigned, a zero value at a node
results in the tree always being traversed to the right. At the
leaves, the value output is chosen from 3 bit constants from
the configuration store (valA..valH). A visual representation
of this is shown in Figure 13.

Much like other operation engines, the 8 bit value used
to traverse the tree is selected by opASel and can be from a
constant, the SRAM, network messages or other operation
engines. The 8 bit values at the nodes are chosen by rootSel,
achildSel, bchildSel, aachildSel, abchildSel, bachildSel, and
bbchildSel. These values can each be their own constant or
from SRAM. They cannot be from other operation engines
in this design.

Note that the BSPTree is the most specialized of the op-
eration engines. It may change or expand its functionality in
future versions of LEAP, specifically to act as an 8to1 MUX.

Bit Counter Operation Engine The Bit Counter opera-

11

FuBitCnt.v

NW
3:0

6

config_store opAsel

out

MUX
32

MUX

co
ns

ta
nt

5 (Limit)

opBsel

flip16?

Counter
32

32

MaskGen32

32

Func
Units

 SRAM

Figure 14: Bit Counter Operation Engine

FuBitSel.v

NW
3:0

1

config_store opAsel

out

MUX
32

MUX

co
ns

ta
nt

5 (Sel)

opBsel

flip16?

Sel

32
32

Func
Units

 SRAM

Figure 15: Bit Selector Operation Engine

tion engine is a masked bit counter. The 32-bit value to count
is chosen by opASel as shown in Figure 14. The mask is gen-
erated by a 5-bit limit chosen by opBSel. This limit can be
a constant. The limit can be treated as the number of bits
minus one to count starting with the MSB counting down to
the LSB. A limit of zero counts only the MSB and a limit of
31 counts all 32 bits. Optionally flip16 can be set to flip the
upper and lower 16 bits of the premasked value.

Bit Selector Operation Engine The Bit Selector selects
a single bit from a 32-bit operand chosen by opASel. OpB-
Sel chooses the value with which to index into operandA
and choose a bit. The indexed value can be a constant or
be from SRAM, a network message, or another operation
engine. Likewise the operandA to select from can be from
SRAM, the network or an operation engine. Optionally, the
upper and lower 16 bits of operandA can be flipped by set-
ting flip16. See Figure 15.

MemWrSelector.v

NW
3:0

32

config_store
addrsel

mem_wr_addr

Func
Units

 SRAM

MUX

co
ns
ta
nt

co
ns
ta
nt

MUX
MUX

co
ns
ta
nt

...
MUX

mem_wr_en[7:0]

wr_en[7:0]

condSel

writeAlways sel0 sel7

mem_data_out[127:0]

16 16 16

Figure 16: Write Stage

5.3 Write/Message Formation Stage (Bit Col-
lector)

The final pipeline stage both writes back to the SRAM and
forms up to four output messages. This stage is represented
in the high-level LEAP architecture by the Bit Collector unit.

SRAM Write The SRAM needs to have simultaneous write
and read access so the writeback does not conflict with the
read stage. If a two-port SRAM is not used and write is
not a common task, appropriate bubbles could be inserted
manually or by the scheduler. The initial design assumes a
dual-port SRAM (which is supported on most modern FP-
GAs).

The address can be selected from a read SRAM value, a
network message, a constant or output from either cluster of
operation engines. The address is selected by setting addrSel
in the configuration. Data values can be selected from the
same sources in aligned 16-bit granularities by setting the
corresponding sel0 through sel7 configuration values.

Enabling the writeback is achieved in two steps as shown
by Figure 16. First the appropriate 16-bit chunks to write is
chosen by setting wr en[7:0]. If a write should always oc-
cur for a given codeblock, writeAlways should be set to 1.
Otherwise, condSel can be used to select one of the logical
operation engines’ outputs and if the LSB of the output is 1
a write occurs for all chosen 16-bit chunks. To disable all
writes, wr en[7:0] simply needs to be set to all zeros.

Network Message Formation Also contained in the write
stage is the network message formation. Much like the op-
eration engines and the memory read/write units, the bit col-
lector that forms network messages has its own configura-
tion store. Figure 17 shows one of four network message
units. Values in the network message can be assembled in
8-bit granularities and can be taken from the input network
message, the SRAM and the output of operation engines in
both clusters.

If SendAlways is set, a network message is always pro-
duced. If SendConditional is set, the message is sent when
the LSB of the selected condition is 1. The condition is se-
lected by selCond. Alternatively, if the configuration has
ConditionalReduction set, instead of the LSB, a reduction
AND of the condition is done instead of just taking the LSB

12

MessageSelector.v

NW
3:0

8

config_store
DstSel

DST_Out

Func
Units

 SRAM

MUX

co
ns
ta
nt

MUX
MUX

co
ns
ta
nt

...
MUX

Send

condSel

sendAlways

datasource0[0]

OutputMessage[63:0]

8 8 8

MUXCBSel

MUX
D
ST

0
D
ST

1

8

CB_Out

MUX

C
B0

C
B1 sendCond

configDyn

CBCfgDstCfg

M
U
X

datasource1[0]
datasource0[7]

M
U
X

datasource1[7]

Figure 17: Output Message Formation for one network

(not shown in Figure 17).
The Message Selector, which is the unit that forms the

network message for one network, can store two different
configurations on how to form the network message. This
includes two desintations, two target codeblocks and two
message data sources. If ConfigDyn is set in the configura-
tion vector, the same condition as selected by selCond (and
optionally reduction AND’ed by ConditionalReduction be-
ing set) is used to choose between the two configurations
for forming the message. Thus DST0 and DST1 set the two
target destinations and CB0 and CB1 choose the two target
codeblocks. If ConfigDyn is not set, then the first (DST0,
CB0) configuration is always chosen. Alternative to choos-
ing between two constant destinations and two constant code-
blocks DstConfig and CBConfig can be set. If either of these
is set, then for either the destination or codeblock source,
DstSel or CBSel respectively select a source to use as the
target destination or codeblock.

Like there are two configurations for destination and code-
block selection, there are two configurations for the 64 bit
data payload of the network message. If ConfigDyn is set
then the same conditional selects between the two, other-
wise the first is used. Datasource0[0] and datasource1[0]
select the source for the LSB byte of the payload and data-
source0[7] and datasource1[7] select the highest byte of the
data message. Data sources selected by these can be from
either cluster’s operation engines, SRAM or input network
messages. They also can be from an array of constants,
shown in Figure 17 by the green constant input to each mux.
These constants can be different for each byte selector but
are shared between the first and second configurations.

6. IMPLEMENTATION AND VERIFICATION

6.1 RTL Implementation in Verilog

Config
Vector

File

Test Input
&

Expected
Output

File

Input
Sequencer

Output CheckerDelay Pass?

LEAP
Tile

Array

Figure 18: Simulation Verification Setup

The microarchitecture previously presented was implemented
in 2001 Verilog RTL. The RTL was designed with behav-
ioral logic but only synthesizable syntaxes. The RTL design
was modular and modules mirrored the compute engine, op-
eration cluster, operation engine hierarchy previously pre-
sented.

6.2 Verification Setup
This section describes the steps taken and the framework

used to verify the implementation of the LEAP architecture
described in the previous sections.

Verification is done in simulation with an automated test-
bench. The simulation setup is shown in Figure 18. The
automated testbench has three parameters that are modified
for each test at the top of the testbench file. First, a user must
specify the path to a file with the configuration vectors. The
configuration file must have vectors of the following format:

DST0 CB0 DAT64_48 DAT47_32 DAT31_16 DAT15_0

Each line must have a vector for all four networks, separated
by a space. X’s can be used to indicate the network is not
used.

13

The testbench must also be provided a test file. The test
file follows a similar format but each line has a space-less
string before the first input for the first network, inputs for 4
networks, the string ”EXPECT” and then four output mes-
sages for the expected output.

The final testbench parameter is the expected latency from
when the input is inserted and when the output is expected.
If only a single LEAP tile is being tested this latency would
be three for the three pipeline stages. As part of this step, the
correct size LEAP tile array has to be instantiated.

The testbench is limited in that if the SRAMs of a tile need
to be initialized, it can currently only initialize all tiles to the
same SRAM contents. Additionally, the testbench can only
run one test at a time.

Verification Helper Scripts There are a few helper scripts
written to help format and prepare the test files.The file rtl/leap/
tests/formatter.cpp helps reformat test files written for PLUG
to a format that works for LEAP. The file rtl/leap/
LEAP Array Generator.cgi generates LEAP tile arrays of
arbitrary sizes and makes the proper connections between
them.

7. PHYSICAL DESIGN CONSIDERATIONS
This section details some concerns of physical synthesis

and how they affect LEAP and may change LEAP in the
future.

7.1 Combinational Loop Resolution
LEAP has combinational loops by design. Since each

functional unit can take input from the other function units,
configurations which create loops, while undefined in oper-
ation, are possible. These loops are detected by the synthe-
sis tools and arbitrarily broken. For initial synthesis timing
purposes, latches that run at a much higher frequency than
the core clock were inserted at the output of each functional
unit. These latches are not mean to be realized in the final
taped-out design.

An alternate and more permanent solution is to use syn-
thesis rules to set the configuration bits in the configuration
stores to tell synthesis no combinational loops are present.
The bits are set to the longest expected critical path (or longest
allowed critical path) and synthesis can proceed that way.
This solution is still being investigated. To help create the
synthesis rules setting the configuration bits, a system was
built to set the bits. The system duplicates much of the func-
tionality of the Java programming aid described in Section 9.
In the future, these two systems are expected to be merged.

7.2 Fanout due to Configuration
LEAP was initially designed to reuse the existing inter-tile

networks for functional unit configuration loading. How-
ever, feeding the network inputs to every configuration store
for each functional unit greatly increases the fanout and af-
fects the critical path. In the future, LEAP may use a JTAG

Algorithm Critical Path
Ethernet Forwarding Logic4→Logic4
IPv4 forwarding Logic2→Link→Logic4→Mux2→Add→Logic4

Logic2→BSPTree→Add→Logic4
IPv6 forwarding* Logic4→Logic2→Logic2→Mux2

BitCnt→Add→Mux2
BSPTr→Add→Mux2

Packet Classification* BitSel→Logic4→Mux2→Mux2→Add
Mux2→Logic4→Add→BitSel
Logic4→Logic→Mux2

DFA lookup* BSPTr→BitSel→Add→BitSel
Logic2

Ethane* Logic4→Logic4→Logic→Mux2
SEATTLE* Logic4→Logic2→Mux2

*=unvalidated

Table 5: Examples of processing steps’ critical paths.

or JTAG-like interface for configuration loading.

8. DISCUSSION OF TRADEOFFS

Functional unit mix: Based on the analysis in Section 3.1,
we determined an appropriate functional-unit mix by imple-
menting specialized hardware designs in Verilog (details in
Section 10). This showed that various lookups use a dif-
ferent mix of a core set of operations, justifying a dynami-
cally synthesized lookup engine. Table 5 presents a sample
across different applications showing the use of different op-
eration engines by listing the critical path in terms of func-
tional units serially processed in a single compute step.

Bit selection: From the fixed-function implementation, we
observed that a commonly used primitive was to select a
subset of bits produced by a previous operation. In a pro-
grammable processor like PLUG this is accomplished using
a sequence of shifts and or’s, which uses valuable cycles and
energy. To overcome these overheads, every functional unit
is preceded by a bit-selector which can select a set of bits
from the input, and sign- or zero- extend it. This is similar
to the shift mechanisms in the ARM instruction sets [1].

Crossbar design: Instead of designing a “homogenous” cross-
bar that forwards 16 bits across all operation engines, we de-
signed one that provides only the required number of bits
based on the different functional units. For example bit-
count, bitselect, and bsptree-search produce 5 bits, 1 bit,
and 4 bits of output respectively. This produces savings in
latency and area of the crossbar.

A second piece of the crossbar’s unusual design is that
its critical path dynamically changes based on the configu-
ration. We have verified through static timing analysis that
any four serial operations can be performed in a single cycle.
This would change if our mix of functional units changed.

Scalability: A fundamental question for the principles on
which LEAP is constructed is what ultimately limits the la-
tency, throughput, area, and power. This is a sophisticated
multi-way tradeoff, denoted in a simplified way in Figure 19.
With more area, more operation engines can be integrated
into a compute engine. However, this will increase the la-

14

Figure 19: Design scalability tradeoff
tency of the crossbar, thus reducing frequency and through-
put. If the area is reduced, then specialized units like the
bsptree-search must be eliminated and their work must be
accomplished with primitive operations, increasing latency
(and reducing throughput). A faster clock speed cannot make
up the processing power lost because the cycle time is lower-
bounded by the SRAM. Increasing or reducing power will
cause a similar effect. For the architecture here, we have pro-
posed an optimized and balanced design for a target through-
put of 1 billion lookups-per-second and overall SRAM size
of 256KB (split across four 64KB banks). With a different
target, the type and number of elements would be different.

9. PROGRAMMING LEAP
This section describes the programmer’s abstract machine

model view of LEAP, describes a specific Python API to pro-
gram LEAP, discusses current compilation tools and outlines
an example in detail showing final translation to LEAP con-
figuration bits. The API provides a familiar model to pro-
grammers despite our unique microarchitecture.

9.1 Abstract machine model
The abstract machine model of LEAP hides the underly-

ing concurrency in the hardware. Specifically, the program-
mer assumes a serial machine that can perform one operation
at a time. The only types of operations allowed are those im-
plemented by the operation engines in the hardware. The
source for all operators is either a network message, a value
read from memory, or the result of another operator. The
native data-type for all operators is bit-vector and bit range
selection is a primitive supported in the hardware. For ex-
ample, a[13:16] selects bits 13 through 16 in the variable
a, and comes at no cost in terms of latency.

This machine model, while simple, has limitations and
cannot express some constructs. There is no register file,
program counter, control-flow, stack, subroutines or recur-
sion. While this may seem restrictive, in practice we found
these features unnecessary for expressing lookups.

Lack of control-flow may appear to be a significant limi-
tation, but this is a common choice in specialized architec-
tures. For example, GPU programming did not allow sup-
port for arbitrary control flow until DirectX 8 in 2001. The
LEAP machine model does allow two forms of conditional
execution. Operations that alter machine state – stores and

message sends – can be executed conditionally depending
on the value of one of their inputs. Also, a special select
primitive can dynamically pick a value from a set of possible
ones, and return it as output. Both capabilities are natively
supported by LEAP, and we found that they were flexible
enough to implement every processing step we considered.

9.2 Python API for LEAP
We have developed a simple Python API with the goal of

making programming LEAP practical. In our model, pro-
grammers express their computational steps as Python sub-
routines using this API.

Given the simplicity of LEAP units and the abundance
of functionality (e.g. bitvectors) in Python, a software-only
implementation of LEAP API calls is trivial. Developers
simply run the code on a standard Python interpreter to ver-
ify syntactic and semantic correctness. After this debugging
phase, a compiler converts this Python code into binary code
for the configuration store.

The functionality provided by every functional unit is spec-
ified as a Python subroutine. An entire compute step is spec-
ified as a sequential set of such calls. Recall the compiler
will extract the concurrency and map to hardware. Table 6
describes the most important calls in the API. In most cases a
call is mapped directly to a LEAP functional unit; some calls
can be mapped to multiple units, for example if the operands
are larger than a word. The common case of a comparison
between two long bitvectors is optimized through the use of
the LOGIC4 unit, which can perform two partial compar-
isons, and AND them together.

9.3 Compiler and Java Hardware Model
LEAP is intended to be programmed in the Python API

and then handled to a compiler that will map API calls to
the hardware. If a written program will not fit on an in-
stance of LEAP hardware because it requires more hard-
ware resources, the compiler can either inform the program-
mer or break the program into a subportion that will map to
hardware. For the implementation of the LEAP architecture
(what was described in section 5) there is not yet a compiler.
Java Hardware Model Though there is no compiler for
LEAP, a model of the LEAP was designed in Java. The
model contains objects with properties that correspond to
hardware and their possible configurations. This model’s ob-
jects are meant to be similar to nodes in an directed acyclic
graph (DAG) that a compiler would map the API calls to. For
a given instance of a Tile object, the object model’s proper-
ties exactly corresponds to the configurations for the LEAP
hardware. The Java model has the added advantage of be-
ing able to generate the configuration vectors required for
the LEAP hardware and was used to help develop and verify
applications on the LEAP.

Figure 20 shows the previous Ethernet forwarding exam-
ple in both the Python API and the Java object configuration
corresponding to the Python API calls. The calls in Python

15

API Call Functional unit Description
Access functions

read mem(addr) SRAM Load value from memory
write mem (addr) SRAM Store value to memory
send (value, enable) Network Send value on a on-chip network if enable is not 0.

Operator functions
select (v0, v1, sel, width=16—32—64) Mux2 Selects either v0 or v1 depending on the value of sel
copy bits (val[a:b]) BitSel Extracts bits between position a and position b from val
bitwise and(a, b) Logic2 bitwise AND
bitwise or(a, b) Logic2 bitwise OR
bitwise xor(a, b) Logic2 bitwise XOR
eq(a, b) Logic2 Comparison (returns 1 if a == b, 0 otherwise)
cond select(a, b, c, d, “logic-function”) Logic4 Apply the logic-function to a and b and select c or d based on the result.
add(a, b) Add Sum a to b
add dec(a, b) Add Sum a to b and subtracts 1 to the result
sub(a, b) Add Subtract b from a
bitcount(value, start position) BitCnt Sum bits in value from bit start position to the end
bsptree3 short(value, vector, cfg, res) BSP-Tree Perform a binary-space-tree search on vector. value is an 8-bit value; vector is a 64-

bit vector including 7 elements, each 8 bits; cfg is an 8-bit configuration word (1 enable
bit for each node) res is a 24-bit value consisting of 8 result fields, each 3 bits wide.

bsptree3 long(value, vector, cfg, res) BSP-Tree Perform a binary-space-tree search on 128-bit vector with 16-bit value.

Table 6: Python API for programming LEAP

roughly correspond to configuration settings in the Java. For
example, the comparison in line 4 of the Python is a 48 bit
comparison. To map this to the hardware, two Logic4 units
are set up for an equality comparison in the Java code lines 5
through 22. Line 7 in the Python, which shows a conditional
send, corresponds to setting sendConditional to True in Java
on line 28 and setting the condition to the equality mapped
by the Logic4 units as shown in Java line 29. In the future,
a compiler would do this mapping. The Java model can eas-
ily spit out binary configuration bits corresponding to the
proper configuration. These bits are not shown in the figure
because the object configuration shown exactly corresponds
to the non-human readable configuration vector format.

10. EVALUATION
To quantitatively evaluate LEAP, it is compared to an opti-

mistic model constructed for a fixed-function lookup engine
for each lookup (see Appendix A. LEAP is also compared
to PLUG which is a state-of-art programmable lookup en-
gine. Note that numbers in this section may not be represen-
tative of the very latest RTL but can be treated as an estimate.
These numbers are as submitted to ANCS.

10.1 Methodology
The seven algorithms mentioned in Table 1 were imple-

mented using the Python API including the multiple algo-
rithmic stages and the associated processing. For each lookup,
additional data like a network traffic trace or lookup trace
and other dataset information is used to populate the lookup
data structures. These vary for each lookup and Table 7 de-
scribes the data sets used. To be consistent with the quanti-
tative comparison to PLUG,similar or equivalent traces and
datasets were picked. For performance of the hardware we
consider parameters from our RTL prototype implementa-
tion: clock frequency is 1 GHz and we used the 55nm Syn-
opsys synthesis results to determine how many compute steps

Algorithm Lookup data
Ethernet forwarding Set of 100K random addresses

IPv4 forwarding 280K-prefix routing table
IPv6 forwarding Synthetic routing table [41]

Packet classification Classbench generated classifiers [34]
DFA lookup Signature set from Cisco [2]

Ethane Synthetic data based on specs [11]
SEATTLE Synthetic data based on specs [25]

Table 7: Datasets used
lookup processing took for each processing step at each al-
gorithmic stage.

Modeling of other architectures: To determine how close
LEAP comes to a specialized fixed-function lookup engine
(referred to as FxFu henceforth), we would like to consider
performance of a FxFu hardware RTL implementation. Re-
call that the FxFu is also combined with an SRAM like in
PLUG and LEAP. We implemented them for three lookups
to first determine whether such a detailed implementation
was necessary. After implementing FxFu’s for Ethernet for-
warding, IPv4, and Ethane, we found that the they easily
operated within 1 ns, consumed less than 2% of the tile’s
area, and the contribution of processing to power consump-
tion was always less than 30%. Since such a level of RTL im-
plementation is tedious and ultimately the FxFu’s contribu-
tion compared to the memory is small, we did not pursue de-
tailed fixed-function implementations for other lookups and
adopted a simple optimistic model: we assume that process-
ing area is fixed at 3% of SRAM area, power is fixed at 30%
of total power, and latency is always 2 cycles per-tile (1 for
memory-read, 1 for processing) plus 1 cycle between tiles.

We also compare our results to the PLUG design by con-
sidering their reported results in [26] which includes simulation-
and RTL-based results for area, power, and latency. For all
three designs we consider a tile with four 64KB memory
banks. With 16 total tiles, we can get 4MB of storage thus
providing sufficient storage for all of the lookups.

Metrics: We evaluate latency per lookup, worst-case total

16

1 def cb1(): #Lookup Codeblock
2 data = read_mem(nw0.data[15:0])
3 # Get memory value from input bits 0-15
4 ifCheck = EQ(data[47:0],nw0.data[63:16])
5 # Compare loaded memory val w/ input bits 16-63
6 #
7 nw0_out.send = ifCheck
8 # Set valid bit in outgoing message header conditionally
9 nw0_out.DST = const(0xFF)
10 # Set destination page coordinates
11 nw0_out.CB = const(0x00)
12 #Set CB to zero
13 nw0_out.data[63:32] = const32(0x00000000)
14 # Set upper 32 bits of out message to 0
15 nw0_out.data[31:16] = data[63:48]
16 # Memory bits 48-63 become 16-31 in outgoing msg
17 nw0_out.data[15:0] = const16(0)

(a) Python code

1 //Mem read
2 fwd[1].memrd.active = true;
3 fwd[1].memrd.addrSource = GlobalOperand16.nw0_15_0;
4
5 //48 bit comparison (All done on cluster 0)
6 fwd[1].op0.fulogic4_0.active = true;
7 fwd[1].op0.fulogic4_0.a = Operand16.OP_NW0_31_16;
8 fwd[1].op0.fulogic4_0.b = Operand16.OP_MEM15_0;
9 fwd[1].op0.fulogic4_0.c = Operand16.OP_NW0_47_32;
10 fwd[1].op0.fulogic4_0.d = Operand16.OP_MEM31_16;
11 fwd[1].op0.fulogic4_0.modeAB = Logic2Modes.MD_EQ;
12 fwd[1].op0.fulogic4_0.modeCD = Logic2Modes.MD_EQ;
13 fwd[1].op0.fulogic4_0.mode = Logic4Modes.MD_AND;
14
15 fwd[1].op0.fulogic4_1.active = true;
16 fwd[1].op0.fulogic4_1.a = Operand16.OP_NW0_63_48;
17 fwd[1].op0.fulogic4_1.b = Operand16.OP_MEM47_32;
18 fwd[1].op0.fulogic4_1.c = Operand16.OP_LOGIC4_0;
19 fwd[1].op0.fulogic4_1.d = Operand16.OP_LOGIC4_0;
20 fwd[1].op0.fulogic4_1.modeAB = Logic2Modes.MD_EQ;
21 fwd[1].op0.fulogic4_1.modeCD = Logic2Modes.MD_OR;
22 fwd[1].op0.fulogic4_1.mode = Logic4Modes.MD_AND;
23
24 //OutMessage Formation
25 fwd[1].bc.messageSels[0].dest0 = (byte)0xFF;
26 fwd[1].bc.messageSels[0].cb0 = (byte) 0x01;
27 fwd[1].bc.messageSels[0].sendAlways = false;
28 fwd[1].bc.messageSels[0].sendConditional = true;
29 fwd[1].bc.messageSels[0].conditional =
30 GlobalOperand1.BL_0_LOGIC4_1;
31 fwd[1].bc.messageSels[0].configDyn = false;
32 fwd[1].bc.messageSels[0].DstConfig = false; //(0)
33 fwd[1].bc.messageSels[0].CBConfig = false; //(0)
34 GlobalOperand8[] data = {GlobalOperand8.BC_CONST,
35 GlobalOperand8.BC_CONST,GlobalOperand8.BC_MEM55_48,
36 GlobalOperand8.BC_MEM63_56,GlobalOperand8.BC_CONST,
37 GlobalOperand8.BC_CONST,GlobalOperand8.BC_CONST,
38 GlobalOperand8.BC_CONST};
39 byte[] constants = {0,0,0,0,0,0,0,0};
40 fwd[1].bc.messageSels[0].dataSource0 = data;
41 fwd[1].bc.messageSels[0].constants = constants;

(b) LEAP configuration bits in human readable Java code

Figure 20: Ethernet forwarding example compute step

Algorithm Total Total Avg. Lines
Algorithmic Compute per Compute

Stages Steps Step
Ethernet forwarding 2 6 9.5
IPv4 8 42 10.8
IPv6 26 111 12.1
Packet classification 3 3 98
DFA matching 3 7 9.5
Ethane 5 22 11.5
SEATTLE 4 19 9.3

Table 8: Application Code Statistics

power (dynamic + static), and area of a single tile. Chip area
is tile area multiplied by the number of tiles available on the
chip plus additional wiring overheads, area of IO pads, etc.
The fixed-function engines may be able to exploit another
source of specialization in that the SRAM in tiles can be
sized to exactly match the application. This requires careful
tuning of the physical SRAM sub-banking architecture when
algorithmic stage sizes are large along with a design library
that supports arbitrary memory sizes. We avoid this issue
by assuming FxFu’s also have fixed SRAM size of 256 KBs
in every tile. Finally, when SRAM sizes are smaller than
64KB, modeling tools like CACTI [35] overestimate. Our
estimate of the FxFu area could be conservative since it does
not account for this memory specialization.

10.2 Implementing Lookups
First, we demonstrate that LEAP is able to flexibly sup-

port various different lookups. Table 8 summarizes code
statistics to demonstrate the effectiveness of the Python API
and ease of development for the LEAP architecture. As
shown in the second and third columns, these applications
are relatively sophisticated, require accesses to multiple mem-
ories and perform many different types of processing tasks.
The fourth column shows that all these algorithmic stages
can be succinctly expressed in a few lines of code using
our Python API. This shows our API provides a simple and
high-level abstraction for high-productive programming. All
algorithmic stages in all applications except Packet classifi-
cation are ultimately transformed into single-cycle compute
steps.
Result-1: LEAP and its programming API and abstraction
are capable of effectively implementing various lookups.

10.3 Performance Analysis
Tables 9-11 compare the fixed-function optimistic engine

(FxFu), PLUG and LEAP along the three metrics. All three
designs execute at a 1 GHz clock frequency and hence have
a throughput of 1 billion lookups per second on all applica-
tions except Packet-classification.

Latency: Table 9 shows latency estimates. For FxFu, la-
tency in every tile is the number of SRAM accesses plus
one cycle of compute plus one cycle to send. Total latency
is always equal to the tile latency multiplied by number of
tiles accessed. For LEAP, all lookup steps except Packet
classification map to one 1ns compute stage. The laten-

17

Algorithm FxFu PLUG LEAP
Ethernet forwarding 6 18 6

IPv4 forwarding 24 90 24
IPv6 forwarding 42 219 42

Packet classification 23 130 75
DFA matching 6 37 6

Ethane 6 39 6
SEATTLE 9 57 9

Table 9: Latency Estimates (ns)
FxFu PLUG LEAP

Total 37 mWatts 63 mWatts 49 mWatts
Memory % 70 42 54
Compute % 30 58 46

Table 10: Power Estimates
FxFu PLUG LEAP

Total 2.0 mm2 3.2 mm2 2.1 mm2

Memory % 97 64 95
Compute % 3 36 5

Table 11: Area Estimates

cies for PLUG are from reported results. For FxFu and
LEAP the latencies are identical for all cases except Packet-
classification since compute-steps are single cycle in both
architectures. The large difference in packet classification
is because our FxFu estimate is quite optimistic - we as-
sume all sophisticated processing (over 400 lines of C++
code) can be done in one cycle, with little area or energy.
For PLUG, the latencies are universally much larger, typi-
cally on the order of 5× larger, for two reasons. First, due
to its register-file based von-Neumann design, PLUG spends
many instructions simply assembling bits read-from/written-
to the network. It also uses many instructions to perform op-
erations like bit-selection which are embedded into each op-
eration engine in LEAP. A second and less important factor
is that LEAP includes the bsptree-search unit that is absent
in PLUG.
Result-2: LEAP matches the latency of fixed-function lookups
and outperforms PLUG by typically 5×.

Energy/Power: Since all architectures operate at the same
throughput, energy and power are linearly related; we present
our results in terms of power. For FxFu and LEAP, we esti-
mate power based on the results from RTL synthesis and the
power report from Synopsys Power Compiler, assuming its
default activity factors. For PLUG, we consider previously
reported results also at 55nm technology. Peak power of a
single tile and the contribution from memory and processing
are shown in Table 10.
Result-3: LEAP is 1.3× better than PLUG in overall energy
efficiency. In terms of processing alone, LEAP is 1.6× better.
Result-4: Fixed-function designs are a further 1.3× better
than LEAP, suggesting there is still room for improvements.

Area: We determined tile area for FxFu and LEAP from
our synthesis results and use previously reported results for
PLUG. These are shown in Table 11. The network and router
area is small and is folded into the memory percentage.
Result-5: LEAP is 1.5×more area efficient than PLUG over-
all. In terms of processing area alone, it is 9.4× better.

Result-6: LEAP is within 5% of the area-efficiency of fixed-
function engines, overall.

11. FUTURE WORK
The LEAP architecture and its implementation is an on-

going research topic being pursued by the Vertical Research
Group at UW-Madison. This section describes the antici-
pated future work and the suggested next steps for the next
researcher(s).

The current prototype only has two working applications:
Ethernet forwarding and IPv4. Implementing and verifying
more applications (for which there are already portions of
the Python API implementation) on the LEAP implementa-
tion is a likely next step. There is already a test framework
present for simulation-based verification so this step is ready
to be worked on.

FPGA prototyping is also another likely next step. LEAP
was created with FPGA prototyping in mind. The FPGA test
framework is lacking and this is another likely next step for
development.

The physical design aspects of LEAP are currently being
investigated. It is likely they will lead to changes to LEAP
in the near future. This is a third task for future work.

Additionally as part of this project, the LEAP architecture
was drafted into a patent in cooperation with the Wiscon-
sin Alumni Research Foundation (WARF) and filed. The
result of this application may change or direct future work
on LEAP.

For future researchers, the SVN of the LEAP project has
been tagged with LEAPSummer2012. The SVN contains
copies of this report, the RTL for LEAP and all application
implementations to date for LEAP. The java model is con-
tained in compiler folder of the SVN. It also includes the
fixed function implementations of the applications. Perma-
nent contact information for Eric Harris is listed at this top
of this report.

12. CONCLUSION
Data plane processing in high-speed routers and switches

has come to rely on specialized lookup engines for packet
classification and various forwarding lookups. In the future,
flexibility and high performance are required from the net-
working perspective and improvements in architectural en-
ergy efficiency are required from the technology perspective.

LEAP presents a tractable path to efficient soft-synthesiz-
able multifunction lookup engines. By using a dynamically
configurable data path relying on coarse-grained functional
units, LEAP avoids the inherent overheads of von-Neumann-
style programmable modules. Through our analysis of sev-
eral lookup algorithms, we arrived at a design based on 16
instances of seven different functional units together with
the required interconnection network and ports connecting
to the memory and on-chip network. Comparing to PLUG,
a state-of-art flexible lookup engine, the LEAP architecture
offers the same throughput, supports all the algorithms im-

18

plemented on PLUG, and reduces the overall area of the
lookup engine by 1.5×, power and energy consumption by
1.3×, and latency by typically 5×. A simple programming
API enables the development and deployment of new lookup
algorithms. These results are comprehensive, promising,
and show the approach has merit.

A complete prototype implementation with an ASIC chip
or FPGA that runs protocols on real live-traffic is on-going
and future work to demonstrate LEAP’s quantitative impact
in product and deployment scenarios. By providing a cost-
efficient way of building programmable lookup pipelines,
LEAP may speed up scaling and innovation in high-speed
wireline networks enabling yet-to-be-invented network fea-
tures to move faster from the lab to the real network.

Acknowledgements
I’d like to thank fellow students Samual Wasmundt, Lorenzo

De Carli and Sung Jin Kim for their significant work on
LEAP. Cristian Estan and Ranga Sankaralingam also com-
mitted significant time in advising the development of LEAP.
I’d like to thank Professor Karu Sankaralingam for the op-
portunity to learn and work on the LEAP project. For his
knowledge, wisdom, dedication to research and my educa-
tion, I am in his debt. Much of this report was based off SIG-
COMM and ANCS submissions created with Sam, Lorenzo,
Crstian and Karu so I’d like to thank them for helping create
this report as well. Finally I’d like to thank Claude and Dora
Richardson for funding my studies the last four years.

13. REFERENCES
[1] Arm instruction set reference

https://silver.arm.com/download/download.tm?pv=1199137.
[2] Cisco intrusion prevention system.

http://www.cisco.com/en/US/products/ps5729/
Products Sub Category Home.html.

[3] Cypress delivers industry’s first single-chip algorithmic search
engine. http://www.cypress.com/?rID=179, Feb. 2005.

[4] Neuron and neuronmax search processor families. http://www.
cavium.com/processor NEURON NEURONMAX.html, Aug. 2011.

[5] F. Baboescu, D. Tullsen, G. Rosu, and S. Singh. A tree based router
search engine architecture with single port memories. In ISCA ’05.

[6] F. Baboescu and G. Varghese. Scalable packet classification. In
SIGCOMM ’01.

[7] A. Basu and G. Narlikar. Fast incremental updates for pipelined
forwarding engines. In IEEE INFOCOM ’03.

[8] F. Bonomi, M. Mitzenmacher, R. Panigraphy, S. Singh, and
G. Varghese. Beyond Bloom filters: From approximate membership
checks to approximate state machines. In SIGCOMM ’06.

[9] S. Borkar and A. A. Chien. The future of microprocessors. Commun.
ACM, 54(5):67–77, 2011.

[10] A. Broder and M. Mitzenmacher. Using multiple hash functions to
improve IP lookups. In INFOCOM ’01.

[11] M. Casado, M. J. Freedman, J. Pettit, J. anying Luo, N. McKeown,
and S. Shenker. Ethane: taking control of the enterprise. In
SIGCOMM ’07.

[12] Cisco Public Information. The cisco quantumflow processor: Cisco’s
next generation network processor.
http://www.cisco.com/en/US/prod/collateral/routers/
ps9343/solution overview c22-448936.html, 2008.

[13] L. De Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam.
Plug: Flexible lookup modules for rapid deployment of new
protocols in high-speed routers. In SIGCOMM ’09.

[14] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
forwarding tables for fast routing lookups. In SIGCOMM ’97.

[15] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood.
Deep packet inspection using parallel bloom filters. In IEEE Micro,
pages 44–51, 2003.

[16] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest
prefix matching using bloom filters. In SIGCOMM ’03.

[17] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
Routebricks: exploiting parallelism to scale software routers. In
SOSP ’09.

[18] W. Eatherton. The push of network processing to the top of the
pyramid. Keynote, ANCS ’05.

[19] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron. Energy-efficient mechanisms for
managing thread context in throughput processors. In ISCA ’11.

[20] M. Gebhart, S. W. Keckler, and W. J. Dally. ”a compile-time
managed multi-level register file hierarchy”. In MICRO ’11.

[21] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically
specialized datapaths for energy efficient computing. In HPCA ’11.

[22] P. Gupta, S. Lin, and N. Mckeown. Routing lookups in hardware at
memory access speeds. In INFOCOM ’98.

[23] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled
execution of recurring traces for energy-efficient general purpose
processing. In MICRO ’1.

[24] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In ISCA ’10.

[25] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: A
scalable ethernet architecture for large enterprises. In SIGCOMM ’08.

[26] A. Kumar, L. De Carli, S. J. Kim, M. de Kruijf, K. Sankaralingam,
C. Estan, and S. Jha. Design and implementation of the plug
architecture for programmable and efficient network lookups. In
PACT ’10.

[27] S. Kumar, M. Becchi, P. Crowley, and J. Turner. CAMP: fast and
efficient IP lookup architecture. In ANCS ’06.

[28] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner.
Algorithms to accelerate multiple regular expressions matching for
deep packet inspection. In SIGCOMM ’06.

[29] S. Kumar and B. Lynch. Smart memory for high performance
network packet forwarding. In HotChips, Aug. 2010.

[30] H. Le and V. Prasanna. Scalable tree-based architectures for ipv4/v6
lookup using prefix partitioning. IEEE Trans. Comp., PP(99):1, ’11.

[31] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO 42.

[32] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
classification using multidimensional cutting. In SIGCOMM ’03.

[33] D. Taylor, J. Turner, J. Lockwood, T. Sproull, and D. Parlour.
Scalable ip lookup for internet routers. Selected Areas in
Communications, IEEE Journal on, 21(4):522 – 534, may 2003.

[34] D. E. Taylor and J. S. Turner. Classbench: A packet classification
benchmark. In IEEE INFOCOM ’05.

[35] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. Cacti
5.1. Technical Report HPL-2008-20, HP Labs.

[36] M. Thuresson, M. Sjalander, M. Bjork, L. Svensson,
P. Larsson-Edefors, and P. Stenstrom. Flexcore: Utilizing exposed
datapath control for efficient computing. In IC-SAMOS ’07.

[37] N. Vaish, T. Kooburat, L. De Carli, K. Sankaralingam, and C. Estan.
Experiences in co-designing a packet classification algorithm and a
flexible hardware platform. In ANCS ’11.

[38] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. Efficuts:
optimizing packet classification for memory and throughput. In
SIGCOMM ’10.

[39] G. Venkatesh, J. Sampson, N. Goulding, S. K. V, S. Swanson, and
M. Taylor. Qscores: Configurable co-processors to trade dark silicon
for energy efficiency in a scalable manner. In MICRO ’11.

[40] B. Vöcking. How asymmetry helps load balancing. In IEEE-FOCS
’99.

[41] K. Zheng and B. Liu. V6gene: A scalable IPv6 prefix generator for
route lookup algorithm benchmark. In AINA ’06.

APPENDIX
A. MOTIVATING BACKGROUND WORK

This appendix contains a report prepared for a course project

19

which formed the foundation and background research for
LEAP. The report is presented in its full here:

20

1

Specializing PLUG: Performance Improvements to a
Tiled Network Processing Framework

Eric Harris Samuel Wasmundt
University of Wisconsin-Madison
{enharris,wasmundt}@wisc.edu

ABSTRACT

Tiled network processing frameworks such as PLUG offer programmability and flexibility in network router

hardware. However, such solutions suffer from higher latency, area, and power than single algorithm ASIC circuits.

This paper works to replace inefficient general purpose microcores in the PLUG tiled architecture with the bare

minimum hardware required. Three algorithms, IPv4 Routing, Ethernet Forwarding, and Ethane routing are

implemented as ASIC circuits while retaining the tiled structure and software framework of PLUG. The knowledge

gained in designing these circuits is then abstracted into a domain specific language. This domain specific language

acts as an intermediate step, allowing for future C++ API to ASIC circuit generation, and helps set the stage for a

crossbar based design replacing generalized cores in a tiled network routing architecture. The reconfigurable nature

of the crossbar provides further flexibility that is not available with a traditional ASIC design.

1. INTRODUCTION

High-end, network router line cards are a high/throughput, low-latency challenge for computer architects.

Increasingly, the power consumption of network equipment is a concern. To meet the demands of this environment,

many line cards implement algorithm-specific ASIC designs. ASIC network line cards, however, suffer from high

engineering redesign costs every time a new routing algorithm or packet classification structure is introduced.

Programmable solutions such as PLUG[1] return generality to network routing and provide a software

framework and toolchain to allow flexibility. Increasingly, software development and verification are becoming

the cost-dominant portions of ASIC design [2]. This makes programmable solutions particularly attractive due to

faster time to market and significant decreases in NRE costs. However, such solutions are not as efficient as ASIC

implementations.

This paper works to leverage the software stack and tiled architecture of PLUG with the latency, power and

silicon area gains of ASICs. To do so we replace the micro-cores in the PLUG tiles with the minimum hardware

required to complete a given tile’s tasks. By analyzing three algorithms (IPv4, Ethernet Forwarding and Ethane[3])

2

and implementing their tiles via ASIC-style design, knowledge was gained on what computational functionality tiles

need to have. These ASIC designed tiles are 100x to 570x more efficient in computational area, reduce total power

consumption by 30-40% and reduce latency when compared to the original PLUG implementation. The

computational requirements for these algorithms were then abstracted to the domain specific language this paper

proposes. This abstraction allows for the design of a multipurpose array of computation units connected with a

crossbar proposed in this paper for future research.

2. BACKGROUND

2.1 LINE CARD HARDWARE

Traditionally network line cards are implemented with ASIC designs containing TCAMs. Their algorithm-

specific approach requires a hardware redesign, verification and software development with each new backbone

router generation. Alternatively, pipelined network processing architectures break up network router tasks such

as packet classification and packet routing into a high-throughput pipeline. This allows network routing hardware

such as PLUG[1] and others[4] to be programmable. Figure 1 illustrates PLUG’s role in network hardware. PLUG

overcomes many of the problems with previous programmable network router designs with its tiled architecture

shown in figure 1(d). PLUG also has a rich software framework and toolset with a C++ API that routing applications

can be developed in. However, PLUG still suffers from higher power, higher latency and a larger silicon footprint

than ASIC designs that run a single algorithm.

FIGURE 1: PLUG’s role in network routing. Figure from [1]

2.2 PLUG ARCHITECTURE

PLUG consists of a grid of tiles for network processing. Each tile contains three things: SRAM data

memory, routing logic, and computation circuitry consisting of 32 microcores. The PLUG array can receive up

to one message per cycle and each tile must accept a message every cycle. To achieve this high throughput the

3

computation circuitry is broken up into 32 microcores. A single core gets a new input every 32 cycles and has up to

32 cycles to complete its operation. These 32, 16-bit, cores have a 256 entry instruction memory and 32 registers.

The ISA is simple. This paper assumes a 4x4 tile grid, which was previously proven sufficiently large to map many

network algorithms.

Algorithms are broken into pipelineable steps called codeblocks. These codeblocks are implemented in

the C++ PLUG API. Codeblocks can be thought of as a single function that has at most one memory access. When

a PLUG tile gets an input message, the message header contains the id of the codeblock to run. The codeblock

can then have at most one memory access and a finite number of computational steps. The codeblock then can

output messages to any one of the tile’s 6 output networks. PLUG has a compiler and a scheduler that maps routing

algorithm implementations onto the physical tile array and generates the appropriate PLUG assembly for each tile.

2.3 SOURCES OF INEFFICIENCY IN THE PLUG ARCHITECTURE

The PLUG tile devotes a significant portion of its area and power to the microcore cluster. Figure 2 shows

the approximate area and power breakdown according to estimates from 55nm TSMC Design Compiler synthesis.

FIGURE 2: Unmodified PLUG Tile Area/Power

Power and area are “wasted” on general purpose elements that are not present in a strictly ASIC

implementation of a specific algorithm. For example, an ASIC implementation of IPv4 routing does not have to

4

contain instruction memories, but rather might have a smaller state machine. Power spent storing values to and from

registers in an algorithm running on PLUG is likely not consumed in an ASIC version. Further, power and area

inefficiencies come from the inability to express the exact purpose of the algorithm in software. For example, to

count the number of 1’s in a 32-bit number, the 16-bit PLUG ISA code would need multiple loops with branching

and logical AND operations to mask bits. In a strictly hardware implementation this could be implemented

efficiently as a bit counter. Similarly, a simple MUX’ing operation in the hardware would have to be represented as

a conditional branch in the assembly code running on the general purpose cores.

3. METHODOLOGY

To find the upper bound in performance and efficiency of a given routing algorithm while still retaining the

tiled structure of PLUG, specific algorithms were chosen to be implemented with custom hand-designed hardware.

This point is not as efficient as a full ASIC design but gives a target for the PLUG hardware to map software

algorithms onto. Three programs were chosen for this manual implementation process: Ethernet Forwarding, IPv4

Routing, and Ethane[3]. Ethernet Forwarding simply forwards a packet by looking up in its data structures which

port to transmit the packet on. IPv4 has a more complex routing algorithm that requires multiple lookups in order to

route a single packet. Ethane is packet routing with a security policy regulating the routing.

3.1 VERILOG DEVELOPMENT

Routing programs were implemented in Verilog by keeping the PLUG tile interface and function

constant. The microcores were swapped out of the tile for the ASIC hardware needed. Hardware was pipelined

where necessary to avoid the need to duplicate it in order to accept a new input every cycle. Each routing program

required different codeblocks to be executed on different tiles, thus specific tiles were developed for each step in

the dataflow, not a single general tile that covers the entire algorithm. The tile was assumed to have a customizable,

limitless size SRAM. In an actual hardware implementation it is possible that the SRAM storage needed would be

broken up into multiple tiles.

Initially, hand drawn schematics were created for each algorithm. This allowed for many efficiencies to

surface through this manual implementation process. The process of converting C++ algorithms in Verilog while

simultaneously finding optimizations was a challenging but crucial step in the implementation process . Figure 3

below depicts a code sample that was previously compiled down into a long sequence of sequential instructions on

5

the PLUG ISA. The purpose of the code is to count the number of bits up to the variable count. This can be

implemented in hardware with a mask generator, a logical AND, and a bit counter. Similar instances, where the

custom hardware can efficiently complete the software’s task without a long sequence of instructions, are found

throughout the three programs implemented.

FIGURE 3: Example Obfuscated Code

3.2 VERILOG VERIFICATION AND TESTING

In order to verify the custom hardware implementation a testing framework was developed. For ease and

speed of testing and debugging the hardware implementation, which replicated the functionality of the original

PLUG hardware, the algorithms were verified only on a per-tile basis. Algorithms written in the PLUG API are

already verified on a routing program level[1], thus we use the argument that verification on a per tile basis is

sufficient to verify program correctness because no other modifications were introduced to the existing framework.

The PLUG toolset comes with a tile-level simulator. However, at the time of this paper it was unable

to generate per-tile traces for all of the routing programs implemented. To generate per tile traces, the C++

PLUG API implementation of the program was annotated with code to generate trace files at every tile message

input and output message, see Figure 4 below for an example. The same program input set used to test the C++

6

implementation was used to generate the traces. Test inputs for the implemented algorithms included thousands of

test look-ups. These look-ups are the time critical function as opposed to the read and update operations which are

less time sensitive for backbone router applications.

FIGURE 4: Annotated C++ Program Implementation Example

After the input and output traces were generated they were fed into a self-checking Verilog testbench. With

IPv4 the SRAMs were initialized with a sample routing dataset also used on the C++ implementation verification.

3.3 SYNTHESIS AND ANALYSIS METHODOLOGY

Verilog designs were synthesized in isolation from the tile’s SRAM and routing logic, which were not

touched in this work. They were synthesised by Design Compiler B-2008.09-SP3 using the same TSMC 55nm

standard cell library and wireload model as the original PLUG paper so comparisons were accurate. As with the

original PLUG design, synthesis was done at twice the target clock frequency of 1Ghz to get synthesized results

with positive slack with the target clock frequency. Dynamic power estimates, total area estimates and timing

estimates are all taken directly from the output of Design Compiler and compared to the original PLUG tile. Post

synthesis simulation was completed on some tiles to validate synthesis results.

For latency calculations a 4x4 PLUG grid was assumed. Propagation delays of 1 clock cycle (1 ns) were

added for data to travel between tiles. Additionally, since in PLUG the output comes out of a fixed location at the

lower left corner of the grid, latencies were extended to include the delay to get the output value to that location.

This methodology mirrors that of the PLUG paper[1] to keep comparisons fair.

3.4 CHALLENGES

This project required an understanding of and modification to an existing framework. Finding

optimizations and extracting the optimal implementation of a given task in software required skill, especially since

the software was represented and constrained by the limitation of sequential 16bit PLUG API code.

7

One specific impediment encountered that should be documented is the flawed design of the bit counter

proposed by [5]. Figure 4 in [5] (Figure 5 in this paper) depicts an optimization to an 8 bit bit-counter. However, the

carry and sum bit lines are labeled wrong in multiple places so that the circuit the figure depicts does not properly

count bits. For example, the input 0x80 should produce the answer 0x1 but produces 0x2.

FIGURE 5: Faulty Bit-Counter Implementation with annotated invalid output

4. RESULTS

Three algorithms, IPv4, Ethernet Forwarding, and Ethane were successfully implemented in Verilog and

verified. Though not every modern network processing algorithm was implemented into Verilog by hand, patterns

developed out of the three that were implemented. Patterns within algorithms emerged such as a need for common

functional units across codeblocks within a tile. Additionally, we were able to implement multiple routing protocols

with a similar design that hinted at ease of future automation. Significant gains were observed in area and latency, as

well as improvement in dynamic power.

4.1 AREA

With the original PLUG implementation, every tile contained 32 microcores, whether or not they were fully

utilized by the network application being run. Table 1 summarizes the area of the tiles implemented. Our results

showed a 100x to 570x improvement in area devoted to computation, making it a minor portion of total tile area as

can be seen in Figure 6 (b) compared to the original in Figure 6(a).

8

TABLE 1: Area Improvements to PLUG Tile

FIGURE 6: (a) Left: Original PLUG Tile Proportional in Area (b) Right: L2 Tile Proportional in Area

4.2 POWER

Similarly, the dynamic power was reduced for every tile implemented when compared to the original

PLUG tile. Table 2 and Figure 7 show the power results. Unlike the area, computation still consumes a non-trivial

amount of tile power, but total tile power is reduced by 30% to 41% when comparing to the original PLUG tile.

9

TABLE 2: Dynamic Power Improvements to PLUG Tile

FIGURE 7: Computational Power Improvement

4.3 LATENCY, THROUGHPUT

All our tiles met timing at 1 GHz which matches the cycle time of the original PLUG implementation.

Since we retained the same tile interface and structure and did not modify the algorithms’ dataflow paths

between the tiles, throughput stayed constant at one message per cycle. However, our implementation reduces

the latency because loops and branching that took multiple cycles in the original PLUG design do not surface

10

in our implementations. In Ethernet Forwarding and Ethane, the latency is actually less than reported, but extra

communication delay is used to propagate the response to the output of the 4x4 tile grid. Figure 8 summarizes the

latency improvements for the three implemented network applications.

TABLE 3 & FIGURE 8: Latency Improvement

5. DOMAIN SPECIFIC LANGUAGE

In order to return a little generality to the specific Verilog tile implementations, a domain specific

language was created for PLUG. This domain specific language was designed so that the Verilog implementation of

a program coded in it would be easily derived. This domain specific language has common operations for use in

multiple tiles that were identified from the hand generated hardware implementations. By writing a codeblock in this

implementation, the data flow graph should be fairly easy to extract, programatically or by inspection. This allows

either a tool or a hardware designer to see potential areas to pipeline the hardware. See Figure 9 for an example of

this domain specific language and a corresponding data-flow graph. The domain specific language also helps

identify which elements different codeblocks on the same tile, and different tiles have in common. This could be

used to help generate a generic tile that covered the computational requirements of all the codeblocks in a network

program. Thus, with this process, hardware could be created that covers many routing algorithms with some

programability and generality that a strict ASIC design could not have. Such a design still could be more power,

latency and area efficient than the original PLUG design. The domain specific language was also designed to be

easy to automatically generate, Section 7 discusses future plans for the process of converting to and from the domain

specific language and how it will be automated in the future.

11

FIGURE 9: Domain Specific Language Sample with Dataflow Diagram

5.1 MINIMUM COMPUTATIONAL REQUIREMENTS

From the domain specific language, the required computational units for a given protocol for a given tile can

be extracted. Table 4 summarizes the requirements for the implemented tiles. This table is a result of taking the

arbitrary width operations of the algorithms in the domain specific language and attempting to map them to 6 types

of compute elements: 16-bit adders, 32bit bit counters, 16 bit logical operations, 16 to 1 Mux (8 bits wide), 2 to 1

Mux (16 bits wide) and a binary search tree with a comparison at each node of 8 bits. Logic shared across all tiles

such as hardware to extract the codeblock number from the message header is not included in the table. (Note: These

numbers may not be the optimal mapping but serve as a good indicator of the computational requirements).

12

TABLE 4: Tile Requirements Estimate

From this table, a generalized tile hardware that could cover multiple tiles’ computational requirements could be

created. This would restore the generality of the PLUG Tile and allow many (but not all) routing algorithms to be

mapped to this general tile. One thing to note is that no tile needed the 32 adders that were originally in the PLUG

tile, one in each core. It is a similar story for the other elements, where the routing algorithms did not fully utilize the

32 cores’ capabilities, especially when they were looping to do a simple operation like bit counting.

6. CROSSBAR

Work was also started to implement the PLUG version of Efficuts[6] in the domain specific language.

Efficuts differs from other network programs in that it is a packet classification application and requires a relaxing

some of the constraints of the original PLUG including single memory accesses per codeblock, maximum codeblock

lengths and throughput requirements. With some of Efficuts and the three standard routing algorithms in the domain

specific language, a natural abstraction of the computation hardware arose.

The computation required in each tile can be thought of as a series of steps in a dataflow diagram. Each

step requires the use of one or more available computational blocks and each computational block receives data

from either the inputs to the tile, the SRAM or another computational block. Similarly each compute unit outputs its

result to other computational units or the output. If the computational units required for an algorithm are linked with

a crossbar, then the data operations can be sequenced. Figure 10 demonstrates this concept.

13

FIGURE 10: Crossbar Abstraction

7. FUTURE WORK

This work was the first portion of a larger project to optimize the PLUG Framework. Future work will

automate the domain specific language generation from routing programs written in the PLUG C++ API by

using the LLVM back end to compile down to the domain specific language. Future work will also be able to

generate Verilog automatically from the domain specific language. This, in isolation, creates a chip generator that

works to “codify designer knowledge” as suggested by [7]. In addition to the 3 algorithms that we already have

implemented and our work on Efficuts, we plan on implementing IPv6 and all other algorithms that have been

implemented on the general purpose microcores of the PLUG architecture to show that our implementation process

can handle everything that was previously supported.

Future work will also create hardware for the crossbar abstraction discussed in section 6. With a working

crossbar implementation, PLUG can retain most of its generality and programmability while taking advantage of

some of the benefits of ASIC designs.

8. CONCLUSION

We have shown that removing the microcores in the PLUG tile can achieve the low area, latency and power

gains of an ASIC style design while retaining some of the flexibility and tools offered by the PLUG framework. Our

optimizations showed 100x to 570x computational area improvement, 30%-40% decrease in total dynamic power

consumption, and a significant reduction in latency. Through our design process we were able to gain valuable

insight into similarities among code blocks and across algorithms. To represent some of these insights and

optimizations, a domain specific language was developed. This domain specific language allows easy extraction of

14

the dataflow graphs for a given algorithm and is designed to be easy for use with automated hardware generators. By

developing algorithms in this language, the groundwork has been laid for further research into a crossbar style

implementation for PLUG that can cover most algorithms written in the PLUG API.

7.ACKNOWLEDGEMENTS

This project was completed under the supervision, insight and feedback from UW-Madison Professor

Karthikeyan (Karu) Sankaralingam We would like to thank UW-Madison graduate students Lorenzo De Carli and

Jin Kim for helping us understand and use the existing PLUG framework. UW-Madison graduate student Chenhan

Ho also assisted with standard cell synthesis. We would also like to thank the Vertical Research Group at UW-

Madison for their early input on the project. A special thanks to Mark Hill for teaching his CS 752 architecture

course.

8. REFERENCES

[1] A. Kumar et al., “Design and implementation of the PLUG architecture for programmable and efficient network

lookups,” in Proceedings of the 19th international conference on Parallel architectures and compilation techniques

(PACT), New York, NY, USA, 2010, pp. 331–342.

[2] R. Avinun, “Validate hardware/software for nextgen mobile/consumer apps using software-on-

chip system development tools,” TechOnline India, 05-May-2011. <http://www.techonlineindia.com/

article/11-05-05/Validate_hardware_software_for_nextgen_mobile_consumer_apps_using_software-on-

chip_system_development_tools.aspx>

[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane: taking control of the

enterprise,” in Proceedings of the 2007 conference on Applications, technologies, architectures, and protocols for

computer communications, New York, NY, USA, 2007, pp. 1–12.

[4] T. Sherwood, G. Varghese, and B. Calder, “A pipelined memory architecture for high throughput network

processors,” in 30th Annual International Symposium on Computer Architecture (ISCA), 2003. Proceedings, 2003,

pp. 288- 299.

[5] Dalalah, Ahmed & Sami Baba. "New Hardware Architecture for Bit-Counting." 5th WSEAS International

Conference on Applied Computer Science. Hangzhou, China. April, 2006. pp.118-128

15

[6] Vaish, N.;,Kooburat, T.;,De Carli, L.;,Sankaralingam, K.;,Estan, C.; , "Experiences in Co-designing a Packet

Classification Algorithm and a Flexible Hardware Platform," Architectures for Networking and Communications

Systems (ANCS), 2011 Seventh ACM/IEEE Symposium on , vol., no., pp.189-199, 3-4 Oct. 2011

[7] O. Shacham, O. Azizi, M. Wachs, S. Richardson, and M. Horowitz, “Rethinking Digital Design: Why Design

Must Change,” IEEE Micro, vol. 30, no. 6, pp. 9-24, Nov. 2010.

