
ENERGY EFFICIENT COMPUTING THROUGH COMPILER ASSISTED DYNAMIC

SPECIALIZATION

By

Venkatraman Govindaraju

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2014

Date of final oral examination: 07/29/14

The dissertation is approved by the following members of the Final Oral Committee:
Karthikeyan Sankaralingam, Associate Professor, Computer Sciences
David Wood, Professor, Computer Sciences
Jignesh Patel, Professor, Computer Sciences
Somesh Jha, Professor, Computer Sciences
Mikko Lipasti, Professor, Electrical and Computer Engineering

© Copyright by Venkatraman Govindaraju 2014

All Rights Reserved

i

To my family

ii

ENERGY EFFICIENT COMPUTING THROUGH COMPILER ASSISTED DYNAMIC

SPECIALIZATION

Venkatraman Govindaraju

Under the supervision of Associate Professor Karthikeyan Sankaralingam

At the University of Wisconsin-Madison

Due to the failure of threshold voltage scaling, per-transistor switching power is not scaling down

at the pace of Moore’s Law, causing the power density to rise for each successive generation. Conse-

quently, computer architects need to improve the energy efficiency of microarchitecture designs

to sustain the traditional performance growth. Hardware specialization or using accelerators is a

promising direction to improve the energy efficiency without sacrificing performance. However, it

requires disruptive changes in hardware and software including the programming model, appli-

cations, and operating systems. Moreover, specialized accelerators cannot help with the general

purpose computing. Going forward, we need a solution that avoids such disruptive changes and

can accelerate or specialize even general purpose workloads.

This thesis develops a hardware/software co-designed solution called Dynamically Specialized

Execution, which uses compiler assisted dynamic specialization to improve the energy efficiency

without radical changes to microarchitecture, the ISA or the programming model. This dissertation

first develops a decoupled access/execute coarse-grain reconfigurable architecture called DySER:

Dynamically Specialized Execution Resources, which achieves energy efficiency by creating spe-

cialized hardware at runtime for hot code regions. DySER exposes a well defined interface and

execution model, which makes it easier to integrate DySER with an existing core microarchitecture.

To address the challenges of compiling for a specialized accelerator, this thesis develops a novel com-

piler intermediate representation called the Access/Execute Program Dependence Graph (AEPDG),

which accurately models DySER and captures the spatio-temporal aspects of its execution. This

thesis shows that using this representation, we can implement a compiler that generates highly

optimized code for a coarse-grain reconfigurable architecture without manual intervention for

programs written in the traditional programming model.

iii

Detailed evaluation shows that automatic specialization of data parallel workloads with DySER

provides a mean speedup of 3.8×with 60% energy reduction when compared to a 4-wide out-of-

order processor. On irregular workloads, exemplified by SPECCPU, DySER provides on average

speedup of 11% with 10% reduction in energy consumption. On a highly relevant application,

database query processing, which has a mix of data parallel kernels and irregular kernels, DySER

provides an 2.7× speedup over the 4-wide out-of-order processor.

iv

Acknowledgments

I would like to thank everyone who helped to complete this dissertation.

I would like to thank my advisor, Prof. Karthikeyan Sankaralingam for his support and guidance

throughout my graduate school. He gave me the opportunity to research as a member of the

Vertical research group to develop both the Copernicus architecture and DySER. He provided an

environment in which I could be productive without much of the usual graduate school stress.

He taught me how to read, write, present research ideas and how to do research in computer

architecture.

I would also like to thank my committee members, Prof. David Wood, Prof. Mikko Lipasti, Prof.

Somesh Jha, and Prof. Jignesh Patel for all of their comments and feedback to make this dissertation

better. I would also like to thank Prof. Guri Sohi, and Prof. Mark Hill, for their encouragement,

support and feedback on my papers and talks.

I would also extend a special thanks to Lena Olson and Tony Nowatzki for their help in proof-

reading this dissertation.

I would like to thank the members of Vertical research group throughout the years for their

patience and feedback on my various research ideas. In particular, I thank Marc de Kruijf, Tony

Nowatzki, Matt Sinclair, and Vijay Thiruvengadem for being my office mates and enduring both my

discussions and digressions. I would also like to thank Emily Blem, Jai Menon, Raghu Balakrishnan

and Newsha Ardalani for productive discussions on computer architecture research. Also, I thank

the DySER project members, Chen-han Ho, Ryan Coffell, Chris Frericks, Jesse Benson, Zachary

Marzec, Preeti Agarwal, Ranjini Nagaraju, and Harsha Sutaone for their contributions to DySER

research.

I would like to thank students who attended the architecture reading group and the architecture

v

lunch for the productive discussions and their feedback on my research: Luke Yen, Jayaram Bobba,

Dan Gibson, Yasuko Watanabe, Polina Dudnik, Dana Vantrease, Matthew Allen, James Wang,

Derek Hower, Arkaprava Basu, Srinath Sridharan, Somayeh Sardashti, Hamid Ghasemi, Rathijit

Sen, Gagan Gupta, Lena Olson, Jayneel Gandhi, Nilay Vaish, Jason Power, Joel Hestness, Muhammad

Shoaib, and Hongil Yoon.

I am grateful for the internship opportunities that I had with Intel and Oracle. I thank Kevin

Moore, ChangKyu Kim and Sai Santhosh for providing me these wonderful opportunities and

letting me explore my ideas in an industrial setting.The research at industry provided me more

insights into the computer architecture that are otherwise impossible to get. I would also thank the

UW industrial affiliates for their insights and interest in my work.

I would like to thank Stefan Westman, Manuel de la Pena, Jill Sheridan, and Jackie Westphal for

their friendship in my early years in Wisconsin. I also like to thank my college friends Kumaran

Rajaram, Sivakumar Ramu, Navaneethan Sundaramoorthy and Lavanya for their friendship and

encouragement in all my endeavors.

I thank my parents, Prof. S. Govindaraju and S. Sakunthala, for always supporting me even

when my decisions caused them hardships. They supported me throughout my undergraduate

college in Chennai, and sent me to the US even though it was not financially prudent at that time.

I thank them for their sacrifice, support and trust in me. I would also like to thank my sister

Dr. G. Amutha and my brother Dr. G. Sundararajan for their patience and support throughout my

life.

This thesis would not have been possible without the support, both financially and emotionally,

of my loving wife, Pritha. She shielded me from various distractions and took full charge of caring

for our newborn twins, which allowed me to pursue graduate studies in the fullest sense possible.

She prioritized my education and career advancement over her career more than once. Without

her sacrifice and fullest support, I surely would not have succeeded. I thank her for her sacrifice,

love and her unwavering support. I would like to thank my kids Vanathi and Surya for their

unconditional love. I thank both of you for reminding me that life is full of little wonders and

mysteries and it is not just work.

vi

Contents

Contents . vi

Abstract . x

1 Introduction . 1

1.1 Dynamically Specialized Execution . 2

1.2 Thesis Contributions . 6

1.3 Thesis Organization . 9

2 A Case for Dynamically Specialized Execution . 10

2.1 Motivation . 11

2.2 Dynamically Specialized Execution Model . 14

2.3 Benefits of Dynamically Specialized Execution Model 16

2.4 Challenges . 17

2.4.1 Microarchitecture Challenges . 17

2.4.2 Compilation Challenges . 18

2.4.3 Application Challenges . 19

2.5 Chapter Summary . 21

3 DySER Architecture . 22

3.1 ISA Extensions for DySER . 23

3.2 DySER Microarchitecture . 25

3.2.1 Functional Unit . 27

vii

3.2.2 Switch Network . 28

3.2.3 Pipelined Execution and Flow Control . 29

3.2.4 Configuration . 30

3.3 Processor Interface . 30

3.3.1 Input Interface . 32

3.3.2 Output Interface . 32

3.3.3 Integration with pipeline . 33

3.3.4 Page Faults, Context-switches etc., . 34

3.4 Integration Feasibility Study . 34

3.5 Hardware Mechanisms for Efficiency . 35

3.5.1 Control Flow: Predication and φ-functions . 35

3.5.2 Vectorization: Flexible Vector Interface . 36

3.5.3 Virtualization: Fast Configuration Switching 39

3.6 Chapter Summary . 41

4 Compiling for DySER . 42

4.1 Overview of the DySER Compiler . 43

4.2 Access Execute PDG . 45

4.2.1 A Case for a New Program Representation . 45

4.2.2 Definition and Description . 47

4.2.3 An Example . 48

4.2.4 Characteristics of good AEPDGs . 49

4.3 Initial AEPDG Formation . 50

4.3.1 Region Selection for Acceleration . 50

4.3.2 AEPDG Construction . 51

4.4 Compilation Strategies to Form Ideal Execute-PDG . 52

4.4.1 Types of Execute-PDG . 53

4.4.2 Transformation Flow . 54

4.5 Algorithms for AEPDG Transformations . 58

viii

4.5.1 Region Growing . 58

4.5.2 Region Virtualization . 59

4.5.3 Vectorized DySER Communication . 61

4.6 Scheduler and Code Generation . 62

4.6.1 Scheduling Execute PDGs . 63

4.6.2 Code Generation . 64

4.7 Implementation . 65

4.8 Case Study . 66

4.8.1 Reduction/Induction . 66

4.8.2 Control Dependence . 67

4.8.3 Strided Data Accesses . 68

4.8.4 Carried Dependencies . 69

4.8.5 Partially Vectorizable . 70

4.9 Chapter Summary . 71

5 Experimental Evaluation and Analysis . 72

5.1 Overview . 72

5.2 Evaluation Methodology . 74

5.2.1 Simulation Environment . 74

5.2.2 Compiler Implementation . 75

5.2.3 Baseline Machine . 76

5.2.4 Benchmarks . 76

5.2.5 DySER Microarchitecture Details . 77

5.3 Workload Characterization . 78

5.3.1 Execute-PDG Region Size . 79

5.3.2 Phase Behavior . 81

5.4 Compiler Evaluation . 82

5.4.1 Evaluation methodology . 83

5.4.2 Automatic vs Manual DySER Optimization . 84

ix

5.4.3 Automatic DySER vs SSE Acceleration . 87

5.5 Performance and Energy Evaluation . 88

5.5.1 Data Parallel Workloads . 88

5.5.2 General Purpose Workloads . 91

5.5.3 Source of Improvements and Bottlenecks . 94

5.6 Sensitivity Study . 101

5.7 Evaluation on Database Kernels . 102

5.7.1 Database Primitives . 102

5.7.2 Full Query Evaluation . 108

5.7.3 Database Evaluation Summary . 111

5.8 Chapter Summary . 111

6 Related Work . 113

6.1 Specialized Architectures . 113

6.2 Compilation Techniques . 124

7 Conclusion . 129

7.1 Summary of Contributions . 129

7.2 Closing Remarks . 130

Bibliography . 132

x

Abstract

Due to the failure of threshold voltage scaling, per-transistor switching power is not scaling down

at the pace of Moore’s Law, causing the power density to rise for each successive generation. Conse-

quently, computer architects need to improve the energy efficiency of microarchitecture designs

to sustain the traditional performance growth. Hardware specialization or using accelerators is a

promising direction to improve the energy efficiency without sacrificing performance. However, it

requires disruptive changes in hardware and software including the programming model, appli-

cations, and operating systems. Moreover, specialized accelerators cannot help with the general

purpose computing. Going forward, we need a solution that avoids such disruptive changes and

can accelerate or specialize even general purpose workloads.

Power distribution on typical general purpose processors shows that the execute pipeline stage,

which is the actual workhorse of the processor, consumes only about 20% of overall energy. The

instruction supply and operand delivery consume most of the overall core power. We observe first

that by eliminating the energy consumed on these pipeline stages, we can substantially improve the

energy efficiency of the whole processor. Second, we observe that programs execute in phases, and

by creating specialized hardware for the computations in the code regions of the most frequently

executing phases, we can reduce the energy consumption of these overhead pipeline stages. Third,

we observe that we can construct specialized hardware dynamically at run-time by interconnecting

a set of heterogeneous functional units with a circuit switched network. Using these observations,

in this thesis, we propose a hardware/software co-designed solution called Dynamically Specialized

Execution, which dynamically creates specialized hardware datapaths for the most frequently

executing code regions of the program, to improve the energy efficiency of the processor.

Dynamically specialized execution poses several challenges. First, creating specialized hard-

xi

ware at runtime requires extra microarchitectural mechanisms, which leads to additional design

complexity and introduces runtime overheads. Second, compiling and creating optimized code for

dynamically specialized architectures is a difficult process because they expose more degrees of

freedom for the compiler to optimize for. Finally, it is unknown whether programs written in the

traditional sequential programming model can be compiled and optimized for these architectures.

This dissertation tackles these challenges and develops a decoupled access/execute coarse-

grain reconfigurable architecture called DySER: Dynamically Specialized Execution Resources,

to mitigate the design complexity. DySER exposes a well defined interface and execution model,

which makes it easier to integrate DySER with an existing core microarchitecture. To address

the challenges of compiling for a specialized accelerator, this thesis develops a novel compiler

intermediate representation called the Access/Execute Program Dependence Graph (AEPDG),

which accurately models DySER and captures the spatio-temporal aspects of its execution. This

thesis shows that using this representation, we can implement a compiler that generates highly optimized

code for a coarse-grain reconfigurable architecture without manual intervention for programs written in the

traditional programming model.

Detailed evaluation shows that automatic specialization of data parallel workloads with DySER

provides a mean speedup of 3.8×with 60% energy reduction when compared to a 4-wide out-of-

order processor. On irregular workloads, exemplified by SPECCPU, DySER provides on average

speedup of 11% with 10% reduction in energy consumption. On a highly relevant application,

database query processing, which has a mix of data parallel kernels and irregular kernels, DySER

provides an 2.7× speedup over the 4-wide out-of-order processor.

1

1 Introduction

As predicted by Moore’s Law [89], the number of transistors available on a chip is continuing

to double every two years, and transistors are getting smaller with each successive generation.

Historically, computer architects took these bountiful, smaller, faster and more power efficient

transistors and discovered innovative techniques like pipelining, branch prediction, super-scalar

processors, out-of-order execution, multilevel cache hierarchy, and memory disambiguation to

improve the processor’s performance. Since these innovations are mainly invisible to the higher

levels of the software stack, even to the compilers and operating systems, they have transparently

improved the performance of unmodified applications and software developers reaped the benefits

of these innovations without any need of expert knowledge.

Traditionally, even as the frequency and density of transistors increased, the power per unit

area in CMOS technology process stayed near constant because of the supply voltage scaling, also

known as Dennard Scaling [28]. Unfortunately, voltage scaling is effectively stalled as the leakage

current, process variations, and noise impose limits on the threshold voltage and thus preventing

the switching voltage to scale down [13]. This failure of Dennard scaling leads to per-transistor

switching power not scaling down at the pace of Moore’s Law, causing the power density to rise

with successive generations. In addition, this implies that in current and future processors, higher

performance comes with the cost of higher energy use. Consequently, power and energy have

become the first class architectural design constraints for achieving high performance [90, 1, 40, 2,

6, 106, 15, 34, 54, 124, 105].

Given these technological constraints, architects need to improve the energy efficiency of the

microarchitecture to sustain the traditional performance growth historically enjoyed by program-

mers. Thus far, the architectural response to the need for improving energy efficiency is to use

2

multicores [74, 19, 29, 126, 18], heterogeneous cores [75, 82, 65], and accelerators or specializa-

tion [113, 124, 53, 64, 44].

Using accelerators or specialized hardware can improve the energy efficiency of the microarchi-

tecture because it eliminates the need for power hungry structures. With the failure of Dennard

scaling, energy efficiency is needed across all computing domains, from warehouse scale computers

in data centers to hand-held smart phones. However, the applicability of specialization is limited.

For example, SIMD accelerators are ill-suited for programs with irregular control-flow and data

accesses. Also, programming for specialized accelerators is a difficult task for the non-expert pro-

grammers, as they usually require programmers to have hardware specific knowledge to optimize

the code for the specialized architecture. They also require programmers to either use raw assembly

or lower level compiler specific constructs to manually optimize the code for them. Finally, these

current solutions require disruptive manual changes to software and cannot be easily targetable

with a compiler.

Going forward, architects need a simple solution that is applicable to general purpose workloads,

but avoids disruptive changes to existing microarchitecture, architecture, programming models and

applications and simultaneously improves the overall energy efficiency of the microarchitecture.

This dissertation strives to improve the energy efficiency on a variety of workloads by finding and

reducing the energy wasted in general purpose processors.

The rest of this chapter is organized as follows. Section 1.1 describes the overview of the hard-

ware/software codesigned solution proposed in this dissertation to improve the energy efficiency

of the microarchitecture. Section 1.2 lists the contributions of this thesis and Section 1.3 presents

the organization of this dissertation.

1.1 Dynamically Specialized Execution

The goal of this dissertation is to demonstrate that we can improve energy efficiency of general

purpose processors on diverse sets of workloads without radical changes to the existing hard-

ware/software stack through compiler assisted automatic dynamic specialization. To achieve that

goal, this dissertation proposes a hardware-software codesigned solution, called Compiler Assisted

3

Dynamic Hardware Specialization, which improves the energy efficiency of the microarchitecture by

eliminating per-instruction overheads such as Fetch, Decode and Writeback. The main idea is to dy-

namically specialize the hardware such that it can efficiently execute the application’s computation

without using the power hungry structures in general purpose processors. In this execution model,

which we call Dynamically Specialized Execution (DySE), at compile-time, the compiler partitions

the application into code regions and creates configuration bits that the hardware substrate uses

at run-time to create specialized hardware. Specialization improves energy efficiency because it

eliminates per-instruction overheads. In addition, this architecture is applicable to a wide range

of application because it can dynamically create specialized datapath at runtime. Since the DySE

execution model uses a compiler to specialize applications written in the traditional programming

model, it is transparent to the average programmer and does not require any radical software

changes.

However, the dynamically specialized execution model presents several challenges to microar-

chitects, architects, and compiler writers. The challenges are:

• Architectural Challenges: Specializing datapaths dynamically at runtime requires extra

mechanisms in the existing microarchitecture, which can lead to additional complexity in

hardware and can introduce unnecessary runtime overheads. Recognizing which datapaths to

specialize at runtime by hardware efficiently is difficult without assistance from the compiler

and/or the ISA.

• Compiler Challenges: The compiler for this execution model needs to manage the flexible

hardware substrate that dynamically creates arbitrary hardware datapath. These flexible

substrates enable additional compiler optimizations. However, the complexity of the compiler

increases substantially, since these flexible substrates have more degrees of freedom than that

of other compiler managed resources such as registers. Like compilers for VLIW, compilers

for the dynamically specialized execution model suffer from a lack of dynamic information

about the runtime.

• Application Challenges: It is difficult to actually use dynamically specialized datapaths and

4

Software: Compiler

Hardware: µArchitecture

for (i = 0; i < N; ++i) {

 dotp += a[i] * b[i];

}

+

ld ld ld ld

× × × ×

+ +

AEPDG

· Application written with

traditional programming

model.

· Statically partitions the

application into code regions

· Manage DySER resources with

AEPDG

· Schedules computation to

DySER

· Schedule memory access to

main core

S SS

S SS

S SS

FU

FU FU

FU

· Decoupled acccess/execute

coarse-grain reconfigurable

architecture

· Heterogeneous array of

functional units

· Interconnected with a circuit

switched mesh network of

switches

· Exposes well defined interface

to rest of the core

DySER

Software: Application

Processor Pipeline
Fetch Decode Execute Memory WB

Figure 1.1: Overview of the Compiler Assisted Dynamically Specialized Execution

be more energy efficient or competitive with existing solutions because there are overheads in

identifying and creating specialized datapaths at runtime.

This dissertation addresses these challenges of dynamically specialized execution model by

proposing a microarchitecture, called Dynamically Specialized Execution Resources (DySER), based

on decoupled access/execute (DAE) architectures [116]. It subsequently addresses the compiler

challenges by designing and implementing a compiler for DySER using a suitable abstration and

demonstrates that a variety of workloads can benefit from specialization with DySER.

• Architectural Solution: DySER dynamically specializes the execute pipeline of decoupled

access execute architecture for arbitrary computations by creating specialized hardware

datapaths. DySER is integrated to a general purpose processor as a long latency functional

5

unit. It is a heterogeneous array of functional units interconnected with a circuit-switched

mesh network, without any additional state or other overhead resources. It communicates

with the rest of the processor pipeline through a well-defined interface. DySER requires only

small changes to existing microarchitectures, and thus it is easy to manage the additional

hardware design complexity introduced. DySER relies on its compiler to identify and create

the hardware datapath at compile time so that it can specialize the hardware at runtime

and avoid adding any extra overheads. DySER offers a coarse-grain reconfigurable substrate

to build efficient specialized hardware datapaths to offload work from the energy-hungry

processor pipeline. The microarchitecture of DySER presented here is published in HPCA

2011 [47] and it is a joint work with my collobarator, Chen-Han Ho.

• Compiler Solution: Since DySER is a decoupled access/execute architecture, the memory

address calculation, loads and stores execute in the main processor pipeline and the remaining

computations execute inside DySER. In order to model this decoupled nature, this thesis

first develops a novel compiler intermediate representation called the Access/Execute Program

Dependence Graph (AEPDG), a graph based representation that is a suitable abstraction for

DySER’s spatial computation. The AEPDG captures the spatio-temporal aspects of memory

accesses and computation and accurately models the dynamically specialized execution.

Using this graph based intermediate representation, a compiler can easily manage the spatial

resources that DySER provides and the relationship between the spatial computation of

DySER to the memory accesses and can generate highly optimized code for DySER.

Second, this thesis designs and implements a compiler that uses the AEPDG to compile

programs written in C/C++ using the traditional programming model for DySER with minor

changes to the source code. This compiler is codesigned with the microarchitecture. Although

the compiler lacks dynamic information about the run-time, which may prevent the compiler

from generating optimized code, the design of the DySER hardware allows it to dynamically

adapt and efficiently compute even with compiler scheduled code. The DySER compiler

not only infers useful information about the execution using the AEPDG, but also performs

transformations and optimizations on the AEPDG. Figure 1.1 shows an overview of the DySER

6

architecture, which uses the dynamically specialized execution model to efficiently specialize

general purpose workloads.

• Addressing Application Challenges: To address the application challenges and to demon-

strate that the solution presented here is efficient, this thesis evaluates the proposed full

system stack with DySER integrated with an out-of-order processor and show that it improves

the efficiency of the microarchitecture on diverse sets of workloads ranging from highly data

parallel to heavy control-dependent applications. This evaluation uses the DySER compiler

that is developed in this thesis to compile data parallel benchmarks from Intel Throughput

kernels [111] and Parboil [99] and general purpose benchmarks from SPECCPU 2006 [60] and

PARSEC [10]. We also evaluate DySER on database query processing to demonstrate that

DySER’s effectiveness. This demonstrates that full-fledged legacy applications can actually

use DySER and be energy efficient without changing their source code.

1.2 Thesis Contributions

This thesis designs and studies a full solution, spanning microarchitecture, compiler and applica-

tion, that avoids disruptive changes to the existing hardware/software stack and achieves energy

efficiency irrespective of the sequential or parallel nature of the application. It presents a practical

way to use a coarse grain reconfigurable accelerator automatically for diverse sets of workloads

written in the traditional programming model.

Specifically this thesis makes the following contributions:

Hardware/Software design: It presents a hardware/software codesign approach to achieve en-

ergy efficient computing with dynamically specialized execution. In particular,

• It observes that the applications execute in phases, and dynamically creating specialized

hardware datapaths to match the phases improves the overall efficiency of a general purpose

processor.

7

• It develops a decoupled access/execute reconfigurable architecture that does not lead to

additional hardware design complexity to the existing microarchitecture design.

• It describes the microarchitecture of DySER: Dynamically Specialized execution resources,

which can dynamically create specialized datapaths for arbitrary sequences of computation.

Compiler Design: It presents a complete source-to-binary compiler toolchain for automatic spe-

cialization of programs written in the traditional programming model. Specifically,

• It develops a novel intermediate representation called the Access Execute Program Depen-

dence Graph (AEPDG), a variant of Program Dependence Graph, to capture the temporal

and spatial nature of computation.

• It describes the overall design and implementation of a compiler that constructs the AEPDG

and applies optimizations on AEPDG to generate high quality code for DySER.

• It performs a detailed analysis on two data parallel benchmark suites to show how close

the performance of automatically compiled DySER code comes to its manual counterpart’s

performance, and how our automated compiler generated code outperforms ICC compiled

code for SSE by 80% and consumes 50% less energy.

Application Analysis:

• It demonstrates the ease and utility of codesigned architecture-compiler approach by doing

detailed studies on scientific/throughput workloads (Intel Throughput kernels and PARBOIL),

and database kernels.

• It evaluates and analyzes the full system stack (architecture + compiler) and presents a

detailed characterization of specialization on general purpose workloads (SPECCPU 2006)

and emerging workloads (PARSEC).

• It presents quantitative results on a highly relevent application, database query processing,

which shows that DySER can provide efficiency when the application has mix of data parallel

and irregular code patterns.

8

Performance and Energy

Comparison

· Data parallel: PARBOIL,TPT

· Control Intensive: SPECINT,

PARBOIL

Database Evaluation

· Database Primitives

· Full Query Evaluation

Chapter 2: A Case for DySE
Per-instruction overheads consume

ŵost of core’s eŶergy

Hardware Goals

· No invasive changes to ISA

· Integrate easily with existing µArch.

· Energy efficient

Software Goals

· No programming model changes

· Generate optimized code

automatically

Chapter 3: DySER Architecture

· Decoupled Access/Execute Arch.

· Array of Functional Units with circuit

swithed network of MUXes

· Uses compiler generated

configuration bits to create

specialized hardware datapath

· Data-flow execution, native control

flow support, vectorization support

Chapter 4: Compiling for DySER

· Access/Execute PDG to accurately

model DySER

· DySER aware analysis and

optimizations

· Generates optimized code from C/C++

· Uses Execute PDG, scheduler to

generate configuration for DySER

Chapter 1: Introduction

· End of Dennard Scaling

· Energy efficiency trends

Eliminate per-instruction overheads and improve energy efficient through dynamically specialized hardware.

Chapter 5: Experimental Evaluation and Analysis

Hardware Software

Static Analysis:

· Execute-PDG size

· Phase behavior

Demonstrates that compiler-assisted automatic dynamic specialization achieves significant energy efficiency

on diverse set of workloads without radical changes to existing hardware/software stack.

Compiler Evaluation

· Manual vs. Auto

· SSE/AVX vs. Auto

Figure 1.2: Organization of the Thesis

9

1.3 Thesis Organization

The organization of this thesis is shown in Figure 1.2. Section 2 presents a case for the dynamically

specialized execution model as well as the challenges in realizing the benefits of dynamically

specialized architecture in more detail. The main contributions of this dissertation are organized

into three parts: architecture design, compiler design and experimental evaluation and analysis.

Chapters 3 – 5 cover these contributions.

DySER Architecture: Chapter 3 presents the DySER architecture, a decoupled access execute

coarse-grain reconfigurable architecture, that dynamically creates specialized hardware for arbi-

trary sequences of computation. It also describes how to integrate DySER with an existing core’s

microarchitecture. In addition, it elaborates on additional mechanisms required to attain high

performance and efficiency with DySER specialization.

Compiling for DySER: Chapter 4 develops the novel compiler intermediate representation, the

Access Execute Program Dependence Graph (AEPDG), which accurately models DySER and cap-

tures the spatio-temporal aspects of memory access and the computation. Chapter 4 also describes

the compilation tasks that are required to compile programs written using the traditional program-

ming model in a high level language to generate optimized code for DySER. It also presents case

studies to illustrate how the DySER compiler generates code for five challenging cases.

Experimental Evaluation and Analysis: Chapter 5 describes the evaluation methodology, bench-

marks that this thesis uses to evaluate DySER and its compiler. It evaluates the DySER compiler by

comparing compiled code’s performance with manually optimized code’s performance. It presents

quantitative results to show how efficient DySER specialization is with data parallel workloads

and general purpose workloads. It also describes the evaluation of the DySER on a more relevent

application, database on data analytic query processing. It first presents the evaluation of database

kernels and then presents the results for a query from TPC-H benchmark suite.

Chapter 6 describes the related work in detail, and Chapter 7 concludes this dissertation.

10

2 A Case for Dynamically Specialized Execution

In order to understand the opportunities for specialization to improve the energy efficiency of

microarchitectures, it is necessary to study quantitatively the energy consumed by the stages in

a typical processor. In this chapter, we first present quantitative data to show that only a small

portion of energy consumed by a processor is for the execute stage, which is the one that does useful

work. Second, we present an overview of a compiler assisted dynamically specialized execution

model. Third, we describe the key benefits of this approach over other specialized architectures or

accelerators. Finally, we discuss the key challenges in realizing the potential of the dynamically

specialized execution model, specifically with DySER and its compiler.

Figure 2.1: Percentage of energy consumed by various pipeline stages of a typical out-of-order
processor. This data is from McPAT [80]. Fetch = Fetch + Decode + Branch Predictor, LSQ = Load
Store Queue, RegFile = register file access, Execute = ALU, RAT = Renaming + Issue + Retire.

11

Fetch

27.4%

Thread Select

16.2%

Decode
9.3%

Execute

21.1%

Memory

14.6%

Writeback

11.4%

Figure 2.2: Percentage of power consumed by the pipeline stages of OpenSPARC

2.1 Motivation

Figure 2.1 shows the percentage of energy consumed by the pipeline stages in a typical out-of-

order processor while executing a subset of SPECCPU 2006 benchmarks [60]. We use the gem5

simulator [12] to collect the microarchitecture statistics for 200 million instructions after skipping

the program initialization by fast forwarding 1 billion instructions. Then, we use McPAT [80] to

gather the energy breakdown by various pipeline states of a typical out-of-order processor.

The execute pipeline stage, which is the actual workhorse of the processor, consumes only about

20% of overall energy consumed by the processor core. While other pipeline stages support the

execute stage by supplying instructions and allowing it to speculatively execute instructions, the

energy consumed by these supporting pipeline stages dwarfs the energy consumed by the execute

stage.

Figure 2.2 shows the power consumed by various pipeline stages for the OpenSPARC processor.

Similar to the out-of-order core, the execution stage in OpenSPARC, an inorder processor, consumes

about 27% of overall power. Similar study on other benchmark suites and different configurations

of the general purpose processors show a similar core power breakdown that to running SPECINT

on an out-of-order processor [110, 118].

Reducing the energy consumed by these supporting pipeline stages will dramatically increase

the overall energy efficiency of the processor. Specializing the hardware datapath in the general

purpose microarchitecture to match the computation sequence can eliminate most of the energy

consumed in the supporting pipeline stages. For example, once a specialized datapath is created,

12

DySER

Instruction Application

µOp Queue

Decoder

. . .

. . .

CMP %rax, %rbx

JE .L

CMPJE %rax,%rbx,.L

Micro-op

Fusion

Instructions

ADDPS %xmm0, %xmm1

MULPS %xmm3, %xmm0

CMPPS %xmm3, %xmm2

MOVMSKPS %eax, %xmm3

SIMD Execution Units

ISA

Specialization
DySE

FU

FU FU

FU

Ultra-wide Instructions Application

ASIC

ASIC

Figure 2.3: Specialization Spectrum

there is no need to fetch instructions continuously. This eliminates most of the energy for the

instruction supply, represented in the Figure 2.1 as Fetch. Similarly, since execution using the

specialized datapath does not require reading or writing the register files, the energy for operands

delivery, represented in the Figure 2.1 as RegFile and WriteBack, can be reduced substantially.

Also, since specialized datapaths do not require traditional speculation support based on out-of-

order issue or checkpoints for misspeculation recovery, they can also eliminate most of the energy

consumed by speculation support, represented in the Figure 2.1 as RAT.

Figure 2.3 shows a spectrum of hardware specialization increasing in granularity. On the

left is the implicit microarchitecture specialization. An example is macro-op fusion, where the

microarchitecture fuses the sequence of instructions to amortize the per-instruction overheads

like register reads, writebacks and renaming etc., For example, in Intel Core i7, macro-op fusion

takes instruction combinations such as compare, followed by branch, and fuses them into a single

operation [59]. Although this specialization does not eliminate the fetch stage, it eliminates decode,

register renaming and other overheads without any visible changes to the ISA or to the compiler.

On the other end of the spectrum is the application specific integrated circuit(ASIC). ASICs

13

eliminate most of the overheads associated with the general purpose processor and realize the

full potential of computational energy and performance efficiency of hardware [53]. However, it is

impractical and expensive to design and implement a custom chip for every application.

The second column from the left is the instruction set specialization which is visible to the

compiler. Examples include encryption accelerators in Niagara processor [113] and the multimedia

ISA extensions such as SSE [119] and GPU instruction sets. However, they do not easily generalize

outside their specific domain and require extensive changes to the hardware/software toolchain

including the applications and operating systems. Also, they require new programming models; for

example, GPUs require CUDA or OpenCL and are usually harder to program than in the traditional

programming model.

Using accelerators that are specific to a particular domain, such as SSE/AVX for data parallel

workloads, along with a general purpose core improves energy efficiency and performance because

they eliminate per instruction overheads and unnecessary temporary states in computation. How-

ever, these accelerators are not flexible and cannot accelerate arbitrary code. First, they expose a

rigid interface and compiling for them is hard, as evident by the compilers’ inability to generate

optimized code for short-vector extensions such as SSE/AVX. Second, designing and implementing

multiple specialized accelerators integrated to a processor is area inefficient and uneconomical.

As shown in Figure 2.3, the dynamically specialized execution model specializes the application

phases with “ultra wide instructions” described in the next section and provides efficiency close

to an ASIC, but flexible enough to specialize diverse sets of applications. It uses insight from

domain-driven accelerators to dynamically specialize hardware datapaths to create specialized

accelerator to match the characteristics of the computation. Creating efficient specialized hardware

suited for the computation and using it provides efficiency and eliminates most of the energy

consumed by the supporting pipeline stages such as Fetch, Decode, and Renaming. The ability

to do specialization dynamically provides the necessary flexibility and generality and makes this

approach applicable to a wide variety of workloads.

14

× × × ×

+

+

+

St

CPU

DySER

CPU: Configure DySER

Dynamically

Specialized Execution

Model

Comp.

Subregion

U
lt

ra
-W

id
e

 I
n

st
ru

ct
io

n

Original

Application

-

St

ld ld ld ld

× × × ×

+ +

CPU: Whole Region

ld ld ld ld

Figure 2.4: Dynamically specialized execution model

2.2 Dynamically Specialized Execution Model

In the DySE execution model, the application is abstracted as a sequence of “ultra-wide instructions”.

Each of these ultra-wide instructions represents a large sequence of computation that the application

needs to perform to accomplish its tasks. In this thesis, we develop and use Dynamically Specialized

Execution Resources (DySER) to execute these ultra wide instructions. DySER is a decoupled

access/execute reconfigurable accelerator that is tightly integrated to a main processor. The main

processor injects data values to DySER and DySER acts a compound functional unit that performs

the sequence of operations in the ultra wide instruction, and delivers the results to the main

processor. DySER consists of a heterogeneous array of functional units such as adder, logical

units, shifters, comparators etc., interconnected with a mesh network of simple switches. These

ultra-wide instructions encode the physical routes on the substrate and connect the functional units

to form a specialized hardware datapath that matches the sequence of computation that ultra-wide

instructions represent.

15

0%

5%

10%

15%

20%

25%

Figure 2.5: Percent of code regions that contribute to 90% of dynamic instruction code

Figure 2.4 shows the Dynamically Specialized Execution (DySE) model. Before an application

uses DySER to specialize, it needs to set up the physical routes corresponding to the ultra wide

instruction. Once DySER is configured, the operands to the computation are fed to DySER from

the main processor. Since DySER is a decoupled access/execute architecture, the inputs from

memory are directly fed to DySER using special load instructions that execute in the main processor

pipeline. DySER performs the computation within its heterogeneous array of functional units and

switches and generates the output. The output is then stored to memory directly using special store

instructions executing in the main processor pipeline. The rationale for using the main processor

pipeline to load and store data from memory is presented in subsection 2.4.3.

This execution model hinges on the assumption that only a few such ultra wide instructions

are active during a phase of an application. Figure 2.5 shows the percentage of code regions from

PARSEC and SPECCPU that contribute to 90% of the dynamic instruction count. From the graph,

we observe that on average only 8% of code regions contribute to 90% of the dynamic instruction

code. Hence, DySER does not need to specialize each and every code region with a ultra-wide

instruction. As long as it specializes the most frequently executing code regions, DySER can execute

the computation with efficiency closer to the ASIC because it can reuse the physical routes set up in

the circuit switched network. The execution of these ultra wide instructions over many invocations

of the DySER can amortize the cost of setting up the static routes.

16

2.3 Benefits of Dynamically Specialized Execution Model

Below, we highlight the reasons why the dynamically specialized execution model, especially

DySER, is not only energy efficient but also comparable to other domain specific architectural

solutions. The potential benefits of this execution model are:

Energy Efficiency With hardware datapath specialization, DySE removes the per-instruction

overheads and improves energy efficiency of the microarchitecture. Since power and thermal effects

will allow only a small portion of the transistors to be active at any given time [34, 124], using

specialized accelerators, which require only a subset of transistors to be active, to improve the

energy efficiency of microarchitecture is prudent.

Compilability Because it allows specialization at a coarse grained level, i.e., functional unit level,

instead of fine grained like FPGA with LUT, DySER is a good compiler target. This is because the

existing compiler technology and hardware/software toolchain are accustomed to operating at

functional unit level rather than at bit level. In addition, their analysis and transformation passes can

be reused without much modification to compile and optimize code for coarse grain reconfigurable

accelarators.

Design Complexity: The execution model of ultra-wide instructions, which communicate through

the memory, calls for a stateless compound functional unit. The implemenation of DySER as a

decoupled access/execute coarse grain reconfigurable accelerator lends itself to easy integration

with the processor pipeline.

Flexible Execution Model The execution model of ultra-wide instructions, that makes use of

dynamically specialized hardware implementation, unifies different specialization techniques like

SIMD-execution, instruction specialization, and loop-accelerators with potentially little efficiency

loss.

Area Efficiency and Programmability Dynamically creating specialized hardware for application

phases, instead of designing accelerators for each phase, provides area efficiency. Even when

17

multiple accelerators are integrated, they expose an inflexible interface to compilers and accelerate

applications only from their chosen domains.

2.4 Challenges

In this section, we discuss the key challenges in realizing the potential benefits of dynamically

specialized execution model. Moreover, this section also describes how DySER and its codesigned

compiler tackle these challenges.

2.4.1 Microarchitecture Challenges

Design Complexity: Augmenting an existing processor pipeline with additional mechanisms to

dynamically specialize datapath for computation increases the complexity of the design and makes

the verification of the microarchitecture hard. Also, if the accelerator is not carefully integrated

to the pipeline, it may also introduce extra runtime overheads. However, DySER integrates to a

processor pipeline through a well defined interface in the execute pipeline stage of the processor.

Since DySER interacts with the main processor pipeline as a stateless, long latency functional unit,

it can be integrated to the existing general purpose processor easily and any additional complexity

introduced because of DySER is manageable. Chapter 3 describes the DySER architecture in detail.

Also, to demonstrate the simplicity of the DySER architecture, we developed a FPGA prototype

that integrates an implementation of DySER to OpenSPARC and more details are in the following

publications [8, 7].

Energy Efficient Dynamically Specializing Substrate: There are several challenges in designing

and implementing an energy efficient dynamically specializing substrate.

First, the substrate should allow us to specialize most sequences of computations. To achieve

that, it should have a set of functional units to perform most operations and a way to route data

between any two functional units. Although the functional unit mix is highly application dependent,

it is possible to build a common-case array of heterogeneous units [47]. Using a crossbar, or packet

switching interconnect network to route data between functional units consumes energy and

18

introduces extra overheads. DySER uses a circuit switching interconnect instead. Circuit switching

is energy efficient because the switches route data to its destination without any unnecessary work.

Second, this substrate should allow us to utilize the functional units as much as possible. To

increase the utilization, DySER pipelines the computation. DySER uses a simple credit based flow

control to stall the pipeline of computation if the destination of a data cannot accept new inputs.

Finally, when a computation sequence requires more functional units than the number of

functional units available, we can only map a portion of the sequence. This leads to suboptimal

performance and energy inefficiency. Through modulo scheduling and hardware mechanisms

to switch configurations fast, DySER emulates a large DySER and maps the entire computation

sequence [45], and mitigates the effect of the lack of computational resources needed.

Data-independent Data flow and Routing: If the values flowing between the functional units

are data dependent, then a router or a switch needs to examine the data before routing it to its

destination. Data flow becomes data-dependent only if there are buffers being used to share a

functional unit among multiple operations. Instead of sharing functional units among multiple

operations, DySER takes the radical approach of providing a single computational unit for each

primitive operation in the “ultra wide instruction”. This makes the routing values no longer data-

dependent. This also provides the opportunity to use energy efficiency circuit-switched static

routing instead of power-hungry packet switching, where it needs to examine the data constantly.

Since the DySE execution model reuses the “ultra wide instruction” many times, the circuit-switched

network, which does not need to change its static routing between the invocations of these wide

instruction, is more efficient.

2.4.2 Compilation Challenges

Compilers traditionally manage architectural registers and schedule instructions while considering

a small region of code and ignoring the pipelining and other temporal aspects of the execution. In

order to use a dynamically specialized architecture effectively, a compiler also must manage the

internal operations of the dynamically specialized architectures.

19

First, it should be aware of the capability of the substrate. Second, it should identify computation

sequences that the substrate can map successfully. Third, it should map any identified computation

sequences to the substrate and create the datapath at compile-time. Fourth, while optimizing, it

should be aware of the pipeline execution and dataflow execution of the dynamically specialized

architectures. Otherwise, it will generate suboptimal code. Finally, it should generate code such

that communication between the processor pipeline and the specializing substrate is small and

they amortize the cost of creating the datapath in run-time by reusing the specialized datapath.

To be an effective compiler, the DySER compiler should be aware of DySER’s ability to pipeline

multiple invocations of DySER. To manage the flexibility exposed by DySER, this thesis develops a

new program representation called the Access/Execute Program Dependence Graph (AEPDG),

which models the decoupled access/execute nature of DySER architecture. Using the AEPDG, the

DySER compiler generates optimized code for DySER.

2.4.3 Application Challenges

Irregular Loads and Stores Related work on specialized architectures has found irregular memory

accesses to be a problem. Previous works sidestep the problem by restricting their domains to where

memory accesses are regular [23], or restricting the program scope [66, 23, 130], or by enforcing

specialized languages [52, 51]. The resulting architectures are unscalable and highly domain-specific

and cannot be used to specialize and accelerate general purpose workloads.

Instead, DySER exploits a simple insight, which some may feel is counter-intuitive: Use a

general purpose processor to perform memory operations. Driven by sophisticated advances in

memory disambiguation [120], prefetching [70], and streaming [21, 79], general-purpose processors

with short physical paths to hardware managed caches provide effective low-latency access to

memory. Quantitatively, the PARSEC benchmarks typically have L1 data-cache miss-rates less

than 2% [9] and the SPECCPU benchmarks typically have 30 data-cache misses per thousand

instructions [68]. Hence, our solution is to utilize general-purpose processors as a load/store engine

to feed a specialized datapath. This provides sufficient support to provide practical computation

specialization without disrupting the hardware/software stack.

20

In the DySE execution model, the compiler partitions the control-flow graph (CFG) of a program

into multiple code-regions that have no loops or back-edges. The code region is further sliced into

memory subregion and compute subregion. The memory subregion includes all computations of

memory address and the compute subregion includes all other computation. The instructions in the

memory subregion compute the load address and load the values to the DySER. The instructions in

the compute sub-region consume the values loaded from memory, perform computations and send

store values back to the main processor. This observation that the application can be partitioned into

the memory slice and computatation slice provides the generality and freedom to investigate the

large code-region for specialization and a hardware block simple enough to integrate with processors

like a functional unit. Since loads and stores are performed in the processor pipeline, it naturally

maintains the load-store ordering and allows the processor’s memory disambiguation optimizations

to proceed unhindered. Recently, building upon these insights, Ho et al. have developed the

Memory Access Dataflow (MAD) architecture that plays the role of the host processor [63].

Control-flow: As dynamically specialized execution is a spatial computation, control-dependence

is usually difficult to manage. DySER provides three hardware/software codesign solutions to

handle control-flow in the programs. First, DySER has a select functional unit which selects one of

its output based on a third input. It is similar to conditional move after using the if-conversion. The

compiler can transform the control-flow into data-flow and easily map to the hardware substrate that

the DySER provides. Second, the functional units in DySER can be predicated, i.e, depending upon

a control signal, the functional units can generate “invalid output”. Third, it has a functional unit

called the φ-function that operates similar to the select function unit with the exception that it selects

its valid input as its output and discards the invalid output. The behavior of this φ-function unit is

similar to the φ-function of the Single Static Assignment (SSA) form of the program representation.

With these mechanisms, DySER handles control-flow natively.

Data Parallel Workloads: Although data parallel workloads are not highly challenging for spatial

computation, when compared to data parallel specific accelerators such as SIMD accelerator, spatial

computation is not efficient. However, DySER, with its ability to dynamically specialize for the

21

application phase, can emulate a SIMD accelerator by creating independent lanes of computation

and achieve similar if not better efficiency than SIMD accelerator. But, in order to achieve, it also

needs wide memory interface to caches or memory and vector instructions to perform the loads

and stores.

2.5 Chapter Summary

This chapter provided the motivation for Dynamically Specialized Execution and described the

benefits of doing dynamically specialized architecture. It also presents the challenges of achieving

energy efficiency with the dynamically specialized architecture and how DySER and its compiler

developed in this dissertation tackle the challenges.

22

3 DySER Architecture

Dynamically Specialized Execution Resources (DySER) is meant to be integrated as a long latency

compound functional unit into a processor pipeline, as shown in Figure 3.1. The compiler and

processor view DySER as a block of computational units that consume inputs from memory or

from registers and produce outputs, which can be stored directly to memory or to registers.

This chapter presents the architecture of DySER, which creates a specialized hardware datapath

dynamically at run-time. It is organized as follows. Section 3.1 presents the instructions required

to communicate with DySER. Section 3.2 describes the microarchitecture of DySER in detail and

Section 3.3 explains the processor interface of DySER and how DySER integrates with existing

processor pipelines. Section 3.5 describes the mechanisms and optimizations that make DySER an

efficient accelerator for data parallel workloads and also for control intensive workloads.

 D
y
S
E
R
 O

U
T
P
U

T
 IN

T
E
R
F
A
C
E

D
y
S
E
R
 IN

P
U

T
 IN

T
E
R
F
A
C
E

Switches

Functional Unit

Register

 File

ICache

DCache

Fetch Decode Execute Memory Writeback

Decode
Execution

 pipeline

FU FU

FUFU

FU

S S S

S

SSS

S

S

S

Dynamic Specialized Execution Resources

Figure 3.1: DySER Integration on a processor pipeline

23

3.1 ISA Extensions for DySER

Since DySER is a decoupled access/execute architecture and integrates to the processor pipeline as

a compound functional unit, it requires the processor to explicitly send operands to and receive

values from DySER. Figure 3.1 shows the integration of DySER with a processor pipeline. DySER

is connected to the processor pipeline through a simple logical First-In-First-Out (FIFO) based

interface. The processor communicates to DySER through a set of named input and output ports,

which correspond to FIFOs in the input and output interface respectively. Execution with DySER

follows the dynamically specialized execution model described in Section 2.2 and proceeds as

follows: When the program reaches a code-region that can be executed efficiently on DySER, the

processor configures DySER by sending configuration bits from memory to DySER. After DySER is

fully configured, the main processor starts injecting register values and memory values into DySER.

DySER gets the values from its input interface and execution proceeds in data-flow fashion with

values routed between functional units through a circuit-switched network. Outputs are delivered

to the output interface and written back to registers or stored to memory.

Table 3.1 lists the ISA extensions for DySER and describes the operation of each instruction.

DySER requires five instructions to manage the operations of DySER. It needs an instruction to

send configuration bits, an instruction to send register values, an instruction to receive register

values, an instruction to load values directly to DySER, and an instruction to store values directly

from DySER.

The instruction dyserinit initializes DySER with configuration bits. It reads the configura-

tion bits from the instruction cache and sends the bits to the input interface of DySER. Multiple

dyserinit instructions may be required to fully configure DySER. It stalls any other following

DySER instructions such as dysersend and dyserload. Also, this instruction needs to be exe-

cuted as a non-speculative instruction in an out-of-order processor, because in order to rollback

this instruction, DySER needs to reconfigure itself back to the previous configuration, which is very

expensive.

The instruction dysersend reads a register and sends the register value to the specified DySER

port. If the DySER port, a FIFO, is full, this instruction will stall the pipeline. Similarly, the

24

Instruction Operation Comments

dyserinit Sends configuration bits to
DySER

Stalls other DySER instructions until it retires

dysend Sends data from a register to
DySER

may stall if the DySER port is full

dyserload Loads data from memory di-
rectly to a DySER

Stalls if the DySER port is full

dyserrecv Receives data from DySER and
writes it to a register

Stalls if the DySER port is empty

dyserstore Receives data from DySER
port and stores the value to the
memory

Stalls if the DySER port is empty

Table 3.1: Basic DySER Instructions

dyserload instruction loads a value from memory and sends the value to the specified DySER

port. The dyserrecv instruction reads a value from DySER’s output port and writes the value to

a register and the dyserstore instruction stores the value from DySER’s output port to memory.

Both of these instructions will stall the pipeline if the specified output port is empty.

Figure 3.2 shows a code snippet and the corresponding DySER code. Before the code uses

DySER, it configures DySER using multiple dyserinit instructions to provide configuration bits,

as shown in Figure 3.2c. Then, it sends data to DySER using dyserload instructions, which load

the data from memory. Once data has arrived to DySER’s input FIFO, it follows the configured path

through the switches. When the data reaches the functional units, the functional units perform

the computation in data-flow fashion. Finally, the results of the computation are delivered to

output FIFOs, from which the processor fetches the outputs and sends them to memory using a

dyserstore instruction.

Although these instructions are sufficient to communicate with DySER, additional instructions

to send and receive floating point values and other data types are required. For example, we may

need different DySER instructions to send and receive floating point values, as they are usually

stored in a separate register file. If the core’s microarchitecture has a wide memory interface that

has the capability to load and store vector values, it may be necessary to have vector instructions

25

for(i=0; i<n; ++i) {

if(a[i]>0)

c[i] = 1/b[2i];

else

c[i] = b[2i]*2;

}

dyserinit <Config >

...

for(i=0; i<n; ++i) {

dyserload a[i]->P0;

dyserload b[2i]->P1;

dyserstore P2->c[i];

}

...

(a) Original Loop (b) DySER Code

>0

1/ φ

P0(a):

×

0123

Input

Fifos

P1(b): 0x2x

P2(c): 0123

Output Fifo:

Configuration Bits:

Tile FU

1,1 >

1,2 / …
Switch

1,1 W->SE

2,1 S->SE

1,2 W->SE, W->E ...

1,1 2,1 3,1

1,1 2,1

(c) DySER Configuration

Figure 3.2: ISA extensions for DySER

for DySER that load and store multiple data values from DySER with a single instruction. Table 3.2

describes additional instructions that are necessary to support sending and receiving floating point

values, vectors, to perform conditional branches on values computed inside DySER, and to send

constants to DySER. All of these instructions reduce the number of instructions required to execute

in the processor pipeline to support execution with DySER. In addition, vector instructions, which

send multiple data elements to DySER with a single instruction, help to feed the functional units

faster and hence achieve high energy efficiency.

3.2 DySER Microarchitecture

This section describes the microarchitecture design of DySER that makes it an energy efficient

hardware substrate that can create a specialized hardware datapath for a sequence of computations.

The main source of DySER’s energy efficiency is the design of the functional units and switches,

26

Instruction Operation Equivalent Sequence of opera-

tions

dysersendf Sends data from floating point
register to DySER

movfloat2int, dysersend

dyserrecvf Receives data from floating point
register to DySER

dyserrecv, movint2float

dysersend_vec Sends data from a vector register
file to DySER

A sequence of dysersends

dyserrecv_vec Receives data from DySER and
writes it to a vector register file

A sequence of dyserrecvs

dyserload_vec Loads vector from memory and
send directly to a DySER

A sequence of dyserloads

dyserstore_vec Receives data from DySER port
and stores the value to the mem-
ory

A sequence of dyserstores

dyserbranch Conditional branch based on
a boolean value received from
DySER

dyserrecv, cmp, jmp

dysersend_const Sends a constant to DySER, which
does not change for multiple invo-
cations

A sequence of dysersends

with same value to same port

Table 3.2: Additional DySER Instructions for Efficiency

which execute in data flow fashion and consume little dynamic power when they are not operational.

DySER’s pipelining capability and its ability to amortize the configuration cost also help to achieve

high energy efficiency.

Figure 3.3 shows the high level schematic of DySER. DySER consists of an input interface, a

compute fabric, and an output interface. The input interface consists of a set of First-In-First-Out

(FIFOs) queues that take inputs from outside and deliver the values into the compute fabric. The

compute fabric consists of a heterogenerous array of functional units and switches. With these

functional units and switches, one can create a specialized hardware data path to perform a sequence

of computations. Similar to the input interface, the output interface consists of another set of FIFOs

that take the values computed in the compute fabric and deliver them as output. The processor

27

COMPUTE FABRIC
D

y
S
E
R
 O

U
T
P
U

T
 IN

T
E
R
F
A
C
E

D
y
S
E
R
 IN

P
U

T
 IN

T
E
R
F
A
C
E

FU FU

FUFU

S S S

S

SSS

S S

Figure 3.3: Highlevel Schematic of DySER

pipeline communicates to DySER through a set of named input and output ports, which correspond

to FIFOs in the input interface and FIFOs in the output interface respectively.

The remainder of this section describes DySER’s compute fabric in detail. Subsection 3.2.1

describes the functional units and subsection 3.2.2 describes the switch network. Section 3.2.3

explains the flow control in the switch network that allows pipeline execution and finally section 3.2.4

describes the mechanisms that DySER uses to reconfigure the functional units and switches to

create different hardware datapaths.

3.2.1 Functional Unit

Each functional unit is connected to its four neighboring switches in the mesh network as shown

in Figure 3.3. It gets its input values from these neighboring switches and delivers its output to a

neighboring switch. Figure 3.4 shows the details of a functional unit in DySER.

Each functional unit includes a configuration register that specifies which function to perform

and which input values to use as operands. For example, an integer-ALU functional unit in DySER

can perform addition, subtraction, and a few logical operations and can use values from any of its

neighboring switches as its operands. Using bits in the configuration register as control signals, the

functional unit selects its inputs and performs the configured operation.

Each functional unit also has a data and a status register for each of its four input switches. The

data registers match the word-size of the machine, and the status register stores two status bits.

28

C
o

n
fig

. R
e

g

MuxMux Mux

Inputs

Output

Status

Logic

Status Bits

Output

Status Bits

Credit

Logic

Credit

 Output

Credit

Input

Figure 3.4: Functional Unit in DySER

One bit indicates whether the data is predicated and another indicates whether the data is ready to

be consumed. These status bits help to support pipelining and control-flow as described below

in subsection 3.2.3 and in subsection 3.5.1 respectively. A functional unit is not enabled until all

of its operands are ready. Once all its operands are ready, it performs the configured operation

and produces its output. In addition to producing the output, it also generates the status bits for

the output. If any of its inputs is invalid but ready, it produces an invalid output, i.e. the ready bit

in the output status bit is set but not the valid bit. This logic, represented as the Status Logic in

Figure 3.4, is purely computational logic and consumes little dynamic power. For the flow-control,

as explained in subsection 3.2.3, it also generates a credit signal for the input switches that indicates

the functional unit can accept new inputs.

3.2.2 Switch Network

Switches in DySER allow datapaths to be dynamically specialized, represented by black squares in

the Figure 3.3. Switches form a circuit-switched mesh network that creates explicit hardware paths

from input FIFOs to the functional units, between functional units, and from functional units to

output FIFOs. Figure 3.5a shows the basic switch with the dotted lines representing the possible

29

C
o

n
fig

. R
e

g

C
o

n
fig

. R
e

g

Credit Logic

(a) Datapath for one output (b) Datapath for credit signal

Figure 3.5: Switches in DySER

connections from all possible inputs to one output. This forms the crux of DySER’s capability

to dynamically specialize computations. Similar to the functional units, each switch includes a

configuration register, which specifies the input to output port mappings, data registers and status

registers. Switches in DySER have eight outputs for eight directions, four inputs from neighboring

switches and one input from one of its neighboring functional unit. In addition, switches forward

the status bits of the inputs as the status bits of outputs without any changes. However, they

generate a credit signal for an input only when all credits for its corresponding outputs are set.

Figure 3.5b shows the credit signal path through a switch.

3.2.3 Pipelined Execution and Flow Control

The basic execution inside DySER is data-flow driven by values arriving at a functional unit. When

the ready bits for both left and right operands are set, the functional unit consumes its operands,

and a fixed number of cycles later produces output, which is written directly into the output switch’s

corresponding input register. Similar to the functional units in DySER, a switch in DySER only

consumes the input when it is ready. If so, it forwards the input to a neighboring functional unit or

to a neighboring switch. This data-flow execution continues until the values reach DySER’s output

interface.

Similar to pipelining long-latency functional units, specialized datapaths inside DySER can be

30

pipelined with multiple invocations executing simultaneously. Since DySER receives the inputs at

arbitrary times from the input interface, some form of flow-control is required to prevent values

from a new invocation clobbering values from a previous invocations. DySER implements a simple

credit based flow control optimized for the statically switched network by a signal called “credit”.

Figure 3.4 and Figure 3.5b shows the details of the credit signal datapath in a functional unit and

a switch respectively. Physically, the credit signal is routed in the opposite direction of the data

signal and the status bits. A stage in the pipeline, either a functional unit or switch, needs a credit

signal from the next stage to send data. After sending the output to the next stage, it sends a credit

signal to its predecessor in the pipeline. If a stage is processing or waiting for data, the ready bit is

cleared, and the credit is not passed to the previous stage.

3.2.4 Configuration

DySER is configured to create specialized datapaths for computation by writing into configura-

tion registers at each functional unit and switch. DySER uses the data network itself to transmit

configuration bits as shown in Figure 3.6. Every switch also includes a decoder and a path from

the switch’s inputs to its configuration register. The data routed to the switch is interpreted as a

3-bit target and 29-bit payload data when the switch is in configuration mode. The switch uses the

decoder to check if the message is meant for the current node by examining the target field, and

if so, the value is written into the configuration registers. In addition, all configuration messages

are forwarded to the next switch. When switches are in the configuration mode, they forward the

input from the east port to the west port and the input from the north port to south port. With

this design, DySER is configured using datapath wires without any dedicated configuration wires.

DySER is configured once and re-used many times and thus it amortizes the configuration cost.

3.3 Processor Interface

This section describes how DySER integrates with an existing processor microarchitecture. Since

DySER is internally stateless and exposes a well-defined interface, it can be integrated with an

existing microarchitecture as a long latency functional unit. In addition, the changes to the microar-

31

FU FU

FUFUConfigure
Data

Input
Interface

Config
 Reg

Control
Signals

3

29

North
East

Decoder

Config
 Reg

Control
Signals

3

29

North
East

Decoder

Figure 3.6: Configuration path: switch and functional unit’s configuration registers combined

FIFO

Input interface
Output interface

tag

tag

data

data

Decoder

Scheduler

NW input NE output

 E output

SE outputSW input

W input

Credit/Ack

Busy/
Full

to FIFO controller

switch
Valid

Pre-configured Tags

Figure 3.7: DySER interface to Processor pipeline

chitecture are small and manageable, because the co-designed compiler specializes the program

and creates DySER configuration bits that encode the custom datapath at compile-time.

Figure 3.7 shows a logical FIFO-based processor interface to DySER. The processor pipeline

communicates to DySER through a set of named input and output ports, which correspond to

FIFOs. These FIFOs deliver or receive data from the switches at the edge of the network. All of the

inputs to DySER are fed through a logical FIFO, which delivers register inputs and memory values.

Each entry specifies a port, which effectively decides where the value will be delivered in the array,

because DySER uses circuit-switched routing. Outputs follow a similar procedure. Each port of the

output switches corresponds to one possible DySER output. From the output port, the processor

can fetch the data and send it to either the register file or store the data to memory.

The rest of this section is organized as follows: Subsection 3.3.1 presents the input interface and

the subsection 3.3.2 describes the output interface in detail. Subsection 3.3.3 presents the integration

of DySER with a processor pipeline. Finally, subsection 3.3.4 explains how DySER handles page

32

faults and other exceptions that may occur during a program execution.

3.3.1 Input Interface

Figure 3.8a shows the details of the input interface and how it is connected to the switches in the

compute fabric of DySER. The logical FIFO that receives values from the processor is physically

partitioned into multiple banks that correspond to a row and a column of the array. Each bank

is implemented as a circular buffer to support multiple invocations. Each buffer also includes a

port number and a decoder which is used to obtain values from the data bus. Since each switch in

the two sides of the array has two inputs, a total of 4n inputs can be injected into an n× n array of

functional units.

Each buffer entry consists of two state bits and data. The four possible states of a buffer entry

are: i) ready indicates input data is ready for DySER to consume, ii) invalid-but-ready indicates the

data is invalid, but ready to be consumed. This data will be discarded either by DySER itself or at

the output interface if the data or the results that are computed with the invaid data reached the

output interface, iii) busy indicates the input is issued in the processor, but delayed by a cache miss

and hence cannot be consumed by DySER yet, and iv) empty indicates no data. Switches check

these status bits and consume data if available and propagate the status signals “ready” and “valid”

accordingly.

3.3.2 Output Interface

Logically, output values from DySER are held at output ports until a dyserrecv or dyserstore

instruction is issued for that invocation. The network flow control guarantees that they will not

be overwritten by values from successive invocations. Figure 3.8b shows the implementation of

the output interface. The output interface consists of a commit counter, which counts the values

committed for the current invocation, and control logic for each port. Each output control logic

consists of a queue that maintains the status of the output port for each invocation. There are

three possible values for the status: i) commit denotes that the output is consumed by a instruction

that is already committed, ii) abort denotes that the output values are ready but must be removed

33

Data

Port#
from
OPcode

Data
Bus 0x01

0x02

0x03

0x04

0x00 Control
logic

& Invocation
counter

0x05

0x04

==

== ==

==

==

==

==

S

S

S

FU

FUData State bits

Local
Control

Port#

Credit

DySER

Commit
Counter

Credit

Commit info
From I$
during
configuration

Processor
Bus

Data

S

S

S

FU

FU

 0x01

 0x00

 0x02

 0x03

 0x04

 0x05

 0x06

 0x07

 0x08

TO
MOB

O1, r3

C
o
n
t
r
o
l Port# Tag

C C A Commit Queue

(a) Input Interface (b) Output Interface

Figure 3.8: DySER’s Processor Interface

from the port and ignored and iii) done indicates that the output is consumed by an instruction.

When a dyserrecv or a dyserstore instruction read the value from the output port, the status

is changed to done. When the instruction that received the value is committed, the output port is

marked as commit and the commit counter for the current invocation is advanced. If the instruction

that received the output is squashed and reexecuted, the output interface guarantees that it will

still get the correct value using the status bits. If the status of an output port is abort, the internal

control in output interface automatically removes the output. When the commit counter reaches

the number of outputs for current invocation, the input circular buffer is advanced, because values

in the head of the buffer are no longer needed.

3.3.3 Integration with pipeline

DySER can be easily integrated into a conventional in-order or out-of-order pipeline as a compound

functional unit. With an in-order pipeline, the integration is relatively simple. DySER simply needs

to interface with the instruction fetch stage for obtaining the configuration bits, the register file

stage and the memory stage of the pipeline.

DySER integration with an out-of-order pipeline requires a more careful design. The processor

views DySER as a functional unit, but the input ports must be exposed to the issue logic to ensure

34

two dysersends to a port are not executed out-of-order. Since loads can cause cache misses, when

a dyserload executes in the processor, the corresponding input port is marked busy in the input

buffers. When the data arrives from the cache, the input port is marked ready, which prevents a

subsequent dyserload’s value from entering DySER earlier.

When a branch is mispredicted and misspeculated values are sent to DySER, the values com-

puted in DySER must be squashed. Since DySER modifies the architecture state only through its

output, we can simply ignore the outputs of DySER for the misspeculated inputs. However, DySER

may need additional inputs to compute all of its outputs. This is implemented by sending invalid

data as inputs to complete the invocation of DySER. This ensures that all inputs are available for

DySER to compute and produce outputs. In order to restart the computation with correct values,

the non-speculated inputs for an invocation are stored in an input buffer until the invocation is

completed. DySER restarts the computations using the values in the input buffer and injecting new,

correct values.

3.3.4 Page Faults, Context-switches etc.,

Since all memory accesses execute in the main processor, page faults can only be raised by instruc-

tions executing in the processor and almost no changes are required to the processor’s existing

mechanisms. The processor services the page-fault and resumes execution from the memory in-

struction that caused the fault. The OS routine to handle the page-faults is assumed not to use

DySER. To handle context-switches, the processor waits until all DySER invocations are complete

before allowing the operating system to swap in a new process. Operating systems consider the

configuration in DySER and the data in the input and output ports of DySER as architectural state

and store them as part of process context. Since DySER itself is stateless, restarting DySER after a

context switch is the same as restarting DySER after a pipeline squash.

3.4 Integration Feasibility Study

To demonstrate the feasibility of DySER integration to an existing conventional microarchitecture,

I jointly worked with six fellow graduate students to integrate a prototype of DySER into the

35

Configuration Operation Comments

Default out = in1 <op> in2 Binary operation
out = <op> in1 Unary operation

Predication out = in1 <op> in2, if in3
out = <invalid>, otherwise

Inverted Predication out = in1 <op> in2, if !in3
out = <invalid>, otherwise

φ-function out = (in1.valid) ? in1 : in2

Select out = (in3) ? in1 : in2 Conditional Move

Table 3.3: Functional Unit operations for control-flow

OpenSPARC processor. It supports SPARC ISA extensions for DySER to send and receive values

from DySER. We verified the implementation on an off-the-shelf Virtex-5 FPGA board booting

unmodified Linux and running applications. The leasons learned and other implementation details

were presented in the following publications [8, 7, 62]

3.5 Hardware Mechanisms for Efficiency

The major source of efficiency in DySER is its flexible hardware substrate that can create a specialized

hardware datapath and execute computation in data flow fashion. In addition, DySER has several

mechanisms that make it an efficient accelerator for both control intensive workloads and data

parallel workloads. This section elaborates on these mechanisms. We describe how the circuit switch

network and a special functional units work together to natively support control-flow inside DySER.

We then elaborate on vectorization support of DySER, which uses the wide memory interface and

flexible I/O to make DySER a suitable substrate for specializing data parallel workloads. Finally, we

present the additional mechanisms and changes to DySER’s baseline microarchitecture to virtualize

the resources in DySER to map large code regions to DySER and improve the utilization of DySER.

3.5.1 Control Flow: Predication and φ-functions

Many accelerators do not allow internal control-flow in the specialized code. DySER allows control-

flow and simplifies the mapping of a large region of code to DySER. DySER natively supports

control flow using two mechanisms. First, functional units accept an extra input that predicates the

36

if (a>b)

e=c+5

else

e=d-5

>

+ φ

A

B

C

Code Dep. Graph DySER Config.

E

+

A B

C
>

-

D

φ

E

-

D

Figure 3.9: Control flow support in DySER

operation of the functional unit. If the predicate input is not asserted, the functional unit generates

an invalid output, which means the ready bit is set but not the valid bit. The DySER compiler

uses if-conversion to convert control-flow into data-flow and map the predicated instructions

also to DySER. Second, DySER provides the ability to perform select operations depending upon

the validity of the input data. This select operation is implemented in a separate functional unit

and is similar to the φ-functions in the Single Static Assignment (SSA) [26] form of the code. (A

φ-function in SSA controls which value to use when the value has multiple producers.) Using

predication and φ-functions, DySER can specialize code with internal control flow. Finally, it also

has a functional unit that perform a selection operation, which corresponds to a conditional move.

Table 3.3 summarizes the control-flow operations of a functional unit in DySER.

Figure 3.9 shows a simple code snippet that has control-flow and how DySER uses predication

and a φ-function to specialize the code. The compare functional unit in DySER generates a boolean

output. Using the result of the compare, the functional units that perform addition and subtraction

generate their output. This guarantees that at most one operand to the φ-function is valid. Then,

the φ-function selects its valid operand as its output, which is the desired result.

3.5.2 Vectorization: Flexible Vector Interface

In order to specialize data parallel workloads efficiently, we add DySER vector instructions to send

and receive vectors. With the aid of vector instructions, the main processor can send multiple data

elements to DySER with just one instruction and increase the utilization of DySER resources.

37

4321

1 2 3 4

4321

1

2

3

4

4321 8765 9

1

4

7

2

5

8

3

6

9

(a) Wide (b) Deep (c) Hybrid
In

p
u

t
Fi

fo
V

e
ct

o
r

M
ap

4xx1 x7xx x

1 4 7

(d) Irregular

Figure 3.10: Flexible Vector I/O Mechanisms in DySER

SIMD instructions or vector instructions, without the support of scatter/gather units, as is the

case for most modern SIMD implementations like SSE/AVX, can only load and store contiguous

sections of memory. This simplifies hardware for fetching vectors from the memory system by only

requiring one cache line fetch, or perhaps two if unaligned access is supported. DySER retains

this simplicity by requiring contiguous memory on vector loads, but provides a flexible vector I/O

mechanism, which maps locations in a vector to arbitrary ports in DySER. To support this, DySER’s

configuration includes vector port definitions, which map sequences of DySER’s ports to virtual

vector ports [45, 46].

This mapping mechanism allows DySER to utilize vector instructions for communication in

different paradigms, as shown in Figure 3.10. First, when the elements of a vector correspond to

different elements of the computation, this is a “wide” communication pattern (Fig. 3.10a). This

is most similar to SIMD’s vector interface. When the elements of a vector correspond to the same

element of the computation, this is a “deep” communication pattern (Fig. 3.10b). This corresponds

to explicitly pipelining a computation. The combination of the wide communication pattern and

deep communication pattern results in a “hybrid” pattern (Fig. 3.10c). Finally, when certain vector

elements are masked-off or ignored, this is an “irregular” pattern (Fig. 3.10d). The flexibility of

DySER’s I/O interface, in part, gives rise to the need for a sophisticated compiler intermediate

representation, described in the next chapter.

38

FU

FU FU

FU

P1

P2

P3

FSM

M
e

m
o

ry
/R

e
g

F
ile

3 X 1 1VP1:

2 2 2 2VP2:

Vector Ports DySER Ports

Figure 3.11: Implementation of vector ports in DySER

Implementation: To implement vectorized communication in hardware, we first require a wide

memory interface similar to that of SSE, and a number of named vector ports in DySER. Addition-

ally, DySER needs a mechanism to map vector input/output values to or from DySER’s internal

input/output ports. We call the information that conveys this correspondence the “vector map”.

The configuration is augmented with additional bits, which specify a vector map for each vector

port. When a vectorized DySER instruction accesses these ports, a finite state machine (FSM) in

DySER’s I/O interface coordinates the transfer of data between the incoming values from the

register file or memory and DySER’s internal ports. Figure 3.11 shows the implementation of

vectorized communication. The FSM in DySER’s I/O interface uses the vector map bits to generate

control signals which select the appropriate DySER port. In each subsequent cycle, the next value

in the vector map is utilized. In the example shown, vector port 1 routes the first and second

memory values to DySER port 1, the third memory value is ignored because it is masked off, and

finally the fourth memory value is sent to DySER port 3. A similar vector mapping FSM is required

on the output interface as well. In this implementation, it takes N cycles to map an N element

vector. Though faster implementations are possible, and can have an impact on performance, their

description and evaluation is beyond the scope of this thesis.

39

Example Large Region Splitting Region
Fast Configuration

Switching

Config

Switch

Figure 3.12: Large region with Subgraph Matching and Fast Configuration Switching in DySER

3.5.3 Virtualization: Fast Configuration Switching

To achieve high utilization of DySER and amortize the cost of reconfiguration, DySER should

map computation regions with appropriate size. When a overly large region of computation is

mapped to DySER, only a portion of the computation can be mapped to DySER because of resource

limitation and remaining computation executed in the main processor pipeline. To avoid using

the main processor for computation, overly large regions must be "split" into multiple regions to

fit inside DySER to achieve high utilization. Compared to instruction-level acceleration, DySER’s

dynamic customization introduces resource limitation challenges, which DySER overcomes by

using the technique described below.

Fast Configuration Switching: When the code region is huge, the region is split into multiple

small regions. Figure 3.12 shows how a large computation subregion can be cut into components of

appropriate size and mapped to DySER by using multiple configurations. To reduce the configu-

ration penalty when switching between the configuration, DySER uses a hardware technique to

reduce the configuration penalty, but with additional hardware cost.

DySER enables fast configuration switching through two hardware mechanisms. First, it aug-

ments every DySER tile (a functional unit or a switch) with the ability to store multiple configurations.

40

+

-

R R R

-

R

S S

R

-

R

S

S

Cycle 1 Cycle 2

Cycle 3

+

-

R

S

Cycle 4

-

+

Switched from

(a+b)-c to

(a-b)+c

R

S

Reset Signal

Set Signal

+

-

Figure 3.13: Fast Configuration Switching Example and Implementation

Second, DySER employs a configuration switch protocol that relies on each functional unit and

switch being either in an active or off state. It adds a 1-bit “free” signal to the network, which is set

from the eight neighbors of a DySER tile. In addition, it adds a DySER instruction that switches the

configurations that are already stored inside DySER. This instruction sends reset signals through

the old configuration and set signals through the new configuration’s input ports. The reset signal

forces every tile that has finished computation into the off state, triggering them into sending “free”

signals to neighbors. The set signals that follow the reset signals then change any off-state tile into

the new configuation. Each set signal propagates to all neighbors in the new configuation after

receiving their free signals.

This protocol explicitly reuses the dataflow in the two regions to synchronize the set and reset

signals without any additional networks or compiler requirements. If a DySER tile is used in the

previous configuration, it will not send a free signal until it is explicitly resetted by reset signal.

Since set signal will not propagate until the neighboring tile sends the free signal, the reset and set

signal will automatically synchorize themselves, and set follows the reset signal. This and the fact

41

that the protocol do not allow multiple sets and resets make this protocol deadlock free. As soon as

all data for an invocation has been sent, reset and set signals can also be sent. Figure 3.13(a) shows

an example of the set and reset signals performing the configuration switching.

3.6 Chapter Summary

This chapter presented the architecture of DySER, microarchitecture and the processor interface of

DySER. With DySER, it is possible to a create specialized hardware datapath dynamically at run

time by sending configuration bits to switches and functional units. The functionality of DySER is

exposed through a well defined interface to the existing processor microarchitecture. This chapter

also elaborated on the hardware mechanisms in DySER that makes it an efficient accelerator for both

data parallel and control intensive workloads. The mechanisms from this chapter have appeared in

HPCA-2011 [47], HPCA-2012 [8], IEEE Micro Sep/Oct-2012 [45], Hot Chips 2012 [7] and will also

appear in Ho’s dissertation [61].

42

4 Compiling for DySER

As described in the previous chapter, the Dynamically Specialized Execution Resources (DySER)

architecture provides a flexible, reconfigurable substrate of functional units and switches, which

offers the possibility of high performance with energy efficiency. In the dynamically specialized

execution model, the compiler identifies code regions that can be specialized and partitions them

into two subregions: the memory subregion, which consists of the address calculations, loads, and

stores; and the compute subregion, which consists of other computations. The memory subregion

executes in the main processor pipeline, and the compute subregion executes inside DySER. The

instructions that are executing inside DySER communicate directly through the circuit switched

network, unlike the instructions that are executing in the processor pipeline, which communicate

through shared registers.

DySER imposes several restrictions on the execute subregion to simplify its interface to the

processor and its microarchitecture. The execute subregion cannot be more than the size of DySER.

For example, if the DySER has 64 functional units, then it cannot have more than 32 inputs and 32

outputs. Also, the execute subregion should map to the circuit switched mesh network of DySER.

The memory subregions should not only load and store data to memory, but also manage the

DySER properly. They should amortize the configuration cost by reusing the specialized datapath

multiple times and feed DySER with operands as quickly as possible to utilize the resources in

DySER better.

The goal of the DySER compiler is to generate the execute subregion with useful instructions

while optimizing the memory subregion to continue feeding inputs quickly to the instructions in

the execute subregion. This chapter presents the DySER compiler, which meets these goals by using

a set of code transformations, including an algorithm that maps the execute subregion effectively to

43

the DySER substrate. In order to do optimizations on both the memory subregion and the compute

subregion, this chapter develops an intermediate representation called the Access/Execute Program

Dependence Graph (AEPDG). The DySER compiler models DySER’s pipelined execution and the

memory access through the instructions executing in the main processor pipeline using the AEPDG.

It performs optimizations on AEPDG to make the execute subregion optimized for DySER and

finally schedules the execute region to DySER.

4.1 Overview of the DySER Compiler

This section presents an overview of the DySER compiler. The DySER compiler takes a program

written in a high level language like C/C++ and generates optimized code for DySER that uses

DySER instructions to communicate to DySER. Figure 4.1 shows the high level compilation flow of

the DySER compiler, which has four main phases. The figure also shows the intermediate represen-

tation the compiler uses at each phase to model the program or the function under compilation.

Phase I of the DySER compiler is the C/C++ frontend, which takes C/C++ source code as

input and generates the control-flow graph (CFG). In addition to generating the control-flow

graph, it also performs standard scalar optimizations such as Dead Code Elimination, Constant

Propagation, and Loop Invariant Code Motion. Phase II takes the CFG as the input and generates the

Access/Execute Program Dependence Graph (AEPDG), an intermediate representation that is more

suited for generating optimized code for DySER, by slicing the program dependence graph into two

subregions called access-PDG and execute-PDG. Phase III performs optimizations on the AEPDG,

including loop unrolling, region cloning, vectorization, and applying peephole optimizations that

are aware of DySER’s resource’s capability and availability. Finally, phase IV schedules the portion

of the AEPDG (execute-PDG) that executes inside DySER to the functional units and switches in

DySER. It also inserts DySER instructions to communicate to DySER and compiles the portion of

AEPDG that executes in the processor pipeline to assembly code.

The rest of this chapter is organized as follows: Section 4.2 describes the Access/Execute

Program Dependence Graph and explains why the DySER compiler needs a new intermediate

representation. Section 4.3 describes the phase II and presents an algorithm to construct on AEPDG

44

DySER

>

- φ

+

++

loop2:

 ...

loop1:

 dysersend %r0, p0

 dysersend %r1, p1

 dyserrecv p2, %r3

 ..

 je loop1

 ..

 je loop2

C/C++ Fronend

Highlevel

Transformations

Scalar Optimizations

 Dead code elimination

 Control Propagation

 Loop invariant motion

Control flow

graph

Access/Execute

PDG

Access/Execute

PDG after

optmization

Configuration

Assembly code

Access

PDG

Execute

PDG

DySER compiler

Region Identification

 Hyperblocks,

 inner loops

 Path Profiling

Initial AEPDG

 PDG & Slicing

AEPDG Transformation

Region Growing

 Loop Unrolling, Region

Cloning

 Scalar Expansion

Region Virtualization

 Subgraph Matching

 Execute PDG Spliting

Vectorization

 Stripmining,

 Load/Store Coalescing

Scheduling and Code

Generation

Scheduler

 Maps execute PDG to DySER

 Greedy Scheduling Algorithm

Code Generator

 Insert DySER instruction

 Register Allocation

 Post-RA scheduling

 Generates Assembly

Access

PDG

Execute PDG

Figure 4.1: DySER Compiler Overview

from the program dependence graph of the code region. Section 4.4 presents the transformations

required to transform an arbitrary AEPDG so that it will have an ideal execute-PDG that can

be specialized with DySER efficiently. Section 4.5 describes algorithms required to transform

the AEPDG, and Section 4.6 presents the scheduler and code generator of the DySER compiler

and Section 4.7 describes the implementation of the DySER. Section 4.8 presents a case study on

challenging code-regions and shows how the transformations on the AEPDG naturally tackles

them. Section 4.9 concludes the chapter.

45

4.2 Access Execute PDG

Optimizing compilers should capture the aspects of the underlying architecture accurately to

generate efficient code for the architecture. With an appropriate model of the architecture, the

compiler can make legal transformations to an unoptimized program and generate optimized code

for the architecture. The motivation to develop a new compiler intermediate representation for

DySER is that the intermediate representation must model the internal operation of DySER through

both spatial (via contiguous memory access using vector instructions in main processor pipeline)

and temporal (via pipelined execution inside DySER) dimensions.

This section first presents the Access/Execute Program Dependence Graph (AEPDG), which

extends traditional PDGs with special nodes and edges to capture spatial and temporal aspects of

the program. Then, we enumerate the characteristics of AEPDGs which facilitate efficient mapping

to DySER. Section 4.3 describes an algorithm that takes a program dependence graph as input and

constructs the Access/Execute Program Dependence Graph. Section 4.4 presents the strategies to

generate the optimized AEPDG from the initial AEPDG.

4.2.1 A Case for a New Program Representation

The DySER compiler’s intermediate representation should be rich enough to express DySER’s

capabilities, especially the flexible mechanisms that are available in DySER to achieve high effi-

ciency. Specifically, the compiler should model the decoupled access/execute execution model of

DySER and the following three flexible mechanisms that DySER provides: i) configurable pipelined

datapaths; ii) native control capability; and iii) a flexible vector I/O interface. Below, we elaborate on

these mechanisms and how they define the role of the compiler and its intermediate representation.

Configurable Datapath DySER provides a way to create a specialized datapath to perform multi-

ple operations in parallel. Complex dependencies can be expressed inside the DySER hardware

substrate, which is an array of heterogeneous functional units and switches. Depending upon the

characteristics of the computation, the compiler should create independent lanes to exploit fine grain data

parallelism or to exploit instruction level parallelism.

46

Native Control Mapping As described in subsection 3.5.1, DySER provides the support for control

instructions by augmenting the internal datapath with a status bit called “valid”, and provides the

ability to perform select operations depending upon the value of this bit using the φ-functional

unit. The DySER compiler should map the control instructions to the predicate based control-flow.

Flexible Vector I/O In order to feed the functional units quickly with useful data and achieve high

utilization of resources in DySER, it is necessary to use vector instructions to load and store vectors

directly from DySER’s ports. Subsection 3.5.2 describes the flexible I/O mechanism in DySER,

which can map locations in an I/O vector to arbitrary ports in DySER using vector port definitions.

Using the flexible I/O, DySER can consume the vector for different communication patterns: wide,

deep, hybrid, and irregular. The DySER compiler and its intermediate representation should model this

flexible vector I/O and the communication patterns to generate optimized code for data parallel workloads.

In order to be an effective compiler, the DySER compiler should model the three flexible mecha-

nisms described above. The first two, the configurable datapath and the control capability, can be

sufficiently represented by the well known Program Dependence Graph (PDG) [38]. This represen-

tation makes explicit the data and control dependencies between instructions, which incidentally

closely match DySER’s internal execution model. This graph can be partitioned into a subgraph

which is executed on the main processor, and another subgraph which executes purely on the

DySER hardware. When targeting applications which can only utilize scalar access to the memory

and register files, the PDG aptly captures program behavior. However, since DySER supports the

flexible I/O interface, the PDG fails to capture the decoupled nature of DySER execution.

The PDG does not explicitly capture the notion of spatial access, meaning that it is unaware of

the potentially contiguous access for a computation. Also, it does not have a notion of temporal

execution, which corresponds to pipelining computations through the accelerator. More funda-

mentally, the PDG lacks a representation for the relationship between spatial access to the memory

and temporal execution in the accelerator, i.e. the PDG is unaware of the correspondence between

the contiguity of inputs and outputs of a particular computation through subsequent iterations. To

address this shortcoming, we develop the AEPDG, which captures exactly this relationship with

special edges in the PDG. Figure 4.2 shows the mechanisms in DySER architecture and how the

47

DySER Architecture

Configurable

DataPath

Native Control-flow

Support

Decoupled Access/

Execute
Flexible Vector I/O

Access Execute Program Dependence Graph

+

>

-

φ

× × ×

×

+

+

+

Access

Execute

×

<0,0>

× ×

<0,0>

×

+

+

+

Execute

<0, 1> <0, 1>

- Graph based IR

- Data flow edges

- Control flow edges

- Special node for

 φ-functions

- Partitioned into

 Access Subgraph

 Execute Subgraph

Labels in edges to

track instance and

offset

Figure 4.2: A Case for Access Execute Program Dependence Graph

AEPDG models the mechanisms.

4.2.2 Definition and Description

In this subsection, we define the Access/Execute Program Dependence Graph and describe how it

differs from the traditional program dependence graph.

The AEPDG is simply a traditional PDG, partitioned into an access-PDG and an execute-PDG.

The execute-PDG is defined as a subgraph of the AEPDG which is executed purely on the DySER

hardware substrate. The access-PDG is simply the remaining portion of the AEPDG. Additionally,

the AEPDG is augmented with one or many (instance, offset) pairs at each interface edge between the

access and execute PDGs. The “instance” identifies the ordering of the value into the computation,

and the “offset” describes the distance from the base of the memory address. This decoupling

and added information allows the compiler to efficiently coordinate pipelined instances of DySER

invocations through the DySER’s flexible vectorized interface. Using these pairs, the compiler creates

a vector map, which associates a virtual vector port to a sequence of DySER’s ports automatically.

More formally, an access/execute program dependence graph G is defined as an 8-tuple G =

48

1/

>0

× 2

φ

b[2i]

c[i]

a[i]Loads:

Stores:

Access

Subgraph

Access

Subgraph

Execute

Subgraph

1/

>0

× 2

φ

b[2i+2]

c[i+1]

a[i+1]

Program Dependence

Graph (PDG) Unrolled PDG

1/

>0

× 2

φ

b[2i]

c[i]

a[i]

AEPDG

1/

1,0
>0

× 2

1,0

φ

0,0

b[2i+2]

c[i]

a[i]

0,0

Coalesced AEPDG

1/

0,0

1,2
>0

× 2

0,0

1,2

φ
0,0

1,1

b[2i]

c[i]

a[i]

0,0

1,1

AEPDG

Legend:

X,Y

X: Instance

Y: Offset

b[2i]

0,0

0,0

a[i+1]

1,0

c[i+1]

1,0

0x2x

0
2

0123

In
p

u
t

F
if

o
s

Vector Ports

P0(b) P1(a)

1/

>0

× 2

φ

3210 P3(c)

0
2

1
2
3

0

0
1
2
3 DySER

Mapping

O
u

tp
u

t

Fi
fo

Figure 4.3: AEPDG Example

(V, Edf , Ecf , C, A, X, I, L) where

• V is a finite, non-empty set of operations or instructions that represent the vertices of the

graph.

• Edf ⊆ V × V is a set of edges that represent the data flow edges.

• Ecf ⊆ V × V is a set of edges that represent the control-flow edges.

• C : E → {true, false} is a function that maps the control flow edges to a boolean label.

• A ⊆ V is the set of instructions in the access program dependence graph.

• X ⊆ V is the set of instructions in the execute program dependence graph.

• I ⊆ Edf ∪ Ecf is the set of edges in the interface between the access and execute PDG. i.e,

(v1, v2) ∈ I if and only if (v1 ∈ A ∧ v2 ∈ X) ∨ (v1 ∈ X ∧ v2 ∈ A)

• L : I × {1, 2, ..., n} → {(instance, offset)|instance ∈ N ∧ offset ∈ N} is a function that

maps the interface edges to n labels that specifies the instance and the offset.

4.2.3 An Example

Figure 4.3 shows a situation where the PDG fails to capture the program behavior we need to model

and illustrates the usefulness of the AEPDG. It shows the traditional PDG on the left pane, which

corresponds to the original loop in Figure 3.2. In order to exploit the data parallelism in the loop, we

49

can perform unrolling, which results in the “Unrolled PDG” in the second pane of figure 4.3. Note

how this traditional PDG representation lacks awareness of the relationship between contiguous

inputs and pipelineable computations. We construct the AEPDG by determining the relationship

between memory accesses through iterations of the loop. Here each edge between the access and

execute PDGs has an instance number and offset number. In the “AEPDG” pane of Figure 4.3,

all offset numbers are 0, because the loads and stores have not been coalesced. The next pane

shows how the AEPDG keeps track of multiple instances of the computation through subsequent

iterations. Some edges have multiple pairs, indicating multiple loads from the same address, and

some computations are for two separate instances, indicating pipelined execution. The final pane,

“DySER Mapping”, shows how it is now simple to configure DySER’s flexible I/O interface using

the AEPDG. Each access pattern is simply given a vector port, which, when utilized by an I/O

instruction, initiates a hardware mapping between the vector port and the corresponding DySER

port(s).

4.2.4 Characteristics of good AEPDGs

The partitioning of the AEPDG into access-PDG and execute-PDG is not necessarily fixed. The

Execute-PDG can be selected differently by simply choosing different instructions, or it can be

influenced by transformations performed on the access PDG. Since the execute-PDG is the candidate

for the specialization with DySER, it must carefully transform the AEPDG in a way that creates

execute-PDGs which are amenable to achieving efficiency when scheduled to DySER. Because of

the DySER architecture’s spatial computation and its decoupled access/execute model, in order to

achieve high efficiency, the compiler should be aware of the following properties of execute-PDGs:

1. Size: The number/type of operations in the execute-PDG should be proportional to the

accelerator’s resources. Too large means many reconfigurations are necessary, while too small

prevents a high utilization.

2. Schedulability: The compiler should schedule the execute-PDG to the hardware substrate

efficiently, meaning that the extra latency introduced by the scheduling of dependencies in

the routing network should be as small as possible.

50

3. Interface: The execute-PDG should connect to the access-PDG with the least possible edges,

in order to minimize the cost of excess communication instructions. Also, if possible, the

compiler should create memory inputs and outputs with spatial locality so that vectorized

I/O can amortize the overheads of communication.

Section 4.4 presents strategies and optimizations to transform an arbitrary AEPDG to an op-

timized AEPDG so that that the execute-PDG will have the above properties. The next section

describes how the DySER compiler identifies the region to accelerate and an algorithm that forms

the initial AEPDG from the control-flow graph.

4.3 Initial AEPDG Formation

This section describes the Phase II of the DySER compiler, which takes an optimized control-flow

graph of a function and constructs the access/execute program dependence graph. First, the DySER

compiler needs to select the candidate code region for specialization. Then, it builds the AEPDG

for that code region by slicing the code region into the memory subregion and compute subregion.

4.3.1 Region Selection for Acceleration

Applications have many candidate code regions that can be specialized such as functions, loops,

basic blocks, a set of basic blocks etc., However, since DySER specializes the code region dynamically

using configuration bits at run-time, it is beneficial to identify the most frequently executed regions

and map them to DySER. If DySER specializes the most frequently executed regions, then the

cost of reconfiguration can be amortized over many invocations of the same configuration. Many

conventional techniques can be repurposed for identifying the regions, including programmer

inserted pragmas, or using static analysis techniques like hyperblocks [84], superblocks [39] or

inner loops. We can also use dynamic approaches using profiling, especially path profiling [5], or

pathtrees [47], or loops with high trip counts to identify the candidates to specialize with DySER as

they help to select large code regions to specialize. The DySER compiler uses a combination of these

approaches to select a region. It first identifies the regions with programmer inserted pragmas

to select the code region to specialize. If no pragmas are provided, it tries to use the profiling

51

information to select the region. If no profiling information is available, the DySER compiler selects

inner loop bodies as a candidate for specialization.

4.3.2 AEPDG Construction

Once the region for specialization is identified, the DySER compiler constructs the corresponding

PDG using existing techniques [38]. Forming the AEPDG means partitioning the PDG into the

access-PDG and execute-PDG. This task is important because it influences the effectiveness of

the acceleration. DySER’s configurable datapath and control capability give the compiler great

flexibility in determining the execute-PDG. Overall, we want to chose regions which are as large as

possible, so that they can use DySER’s efficient datapath. However, we also want to choose graphs

which are tightly connected, because communication with DySER requires instruction overhead.

Also, since memory operations still must be executed by the main processor, the potential subgraphs

for selection are constrained.

The compiler employs two heuristics to perform the partitioning. In the first approach, it finds

the backward slices of all address calculations from loads and stores inside the candidate region,

and places them in the access-PDG. The remaining instructions form the execute-PDG. This works

well for many data parallel applications, where each loop loads many data elements, performs a

computation, and stores the result. Algorithm 1 shows the algorithm that constructs the AEPDG

given the program dependence graph for the code region, which uses the backward slice of the

address calculations to get access-PDG and execute-PDG.

For applications where the primary computation is to compute the address of a load or a store,

the method described above places almost all instructions in the access-PDG. Instead, we employ a

method which first identifies loads/stores that are dependent on prior loads/stores. Then, we find

the backward slices for the non-dependent loads/stores as we did in our first approach. For the

dependent loads/stores, we identify the forward slices and make them also part of the access-PDG,

leaving the address calculation of the dependent loads/stores as the execute subregion.

To select between these techniques, we simply choose the one which provides the largest execute-

PDG. It is possible to develop more advanced techniques or selection heuristics, but in practice,

52

Algorithm 1 Form-Initial-AEPDG(pdg)

1: worklist← ∅
2: apdg ← ∅ {Initialize worklist for slicing: Loads, Stores}
3: for all node ∈ pdg such that node ∈ Loads(pdg) do

4: worklist← worklist ∪ node
5: end for

6: for all node ∈ pdg such that node ∈ Stores(pdg) do

7: apdg ← apdg ∪ node
8: worklist← worklist∪ Get-Address(node)
9: end for{Add branches that are latches to loops to apdg}

10: for all node ∈ pdg such that node ∈ Is-Latch(pdg) do

11: apdg ← apdg ∪ node
12: end for

{Slice PDG}
13: while Has-Element(worklist) do

14: node← Pop(worklist)
15: apdg ← apdg ∪ node
16: for all op ∈ Get-Operands(node) such that op /∈ apdg do

17: worklist← worklist ∪ op
18: end for

19: end while

20: epdg ← pdg − apdg
{Populate IO edges}

21: dyio_edges← ∅
22: for all node ∈ epdg do

23: for all op ∈ Get-Operands(node) such that op /∈ epdg do

24: dyio_edges← dyio_edges ∪ (op, node, < 0, 0 >)
25: end for

26: for all use ∈ Get-Uses(node) such that use /∈ epdg do

27: dyio_edges← dyio_edges ∪ (node, use, < 0, 0 >)
28: end for

29: end for

30: aepdg ← (apdg, epdg, dyio_edges)
31: return aepdg

these two approaches are sufficient.

4.4 Compilation Strategies to Form Ideal Execute-PDG

To accelerate effectively, the compiler should create execute-PDGs whose number of operations

is proportional to the accelerator’s resources, and whose interface with the access-PDG has few

connections, minimizing the I/O cost. Also, the compiler should schedule the execute-PDG to the

53

(b) Proportional(a) Insufficient (c) Superfluous (d) Ideal

spmv

conv

mm

mm, spmv

(post unroll)kmeans
…

lbm

Multilane Pattern Reduction Pattern

Figure 4.4: Types of computation subregions.

accelerator with high throughput and low latency as the primary concerns. The initial AEPDG will

need transformations to achieve the above goals.

The goal of this section is to describe the AEPDG transformations and optimizations that

take the inital AEPDG and generate an optimized version, which is more suited for DySER and

achieve high efficiency. It first describes the types of code-regions that are in the general purpose

workloads and what strategy to use to attain the ideal region to specialize. The next section

describes the transformations and optimizations in detail and provides algorithms to accomplish

the transformations.

4.4.1 Types of Execute-PDG

The execute-PDG of the programs considered, while providing opportunity for specialization, are

mostly ill-suited for DySER due to their size and shape. Figure 4.4 shows four types of computation

subregions that the DySER compiler faces during the compilation of general purpose workloads.

Section 5.2 describes the benchmarks that we used in the figures in more detail.

Insufficient Regions: Figure 4.4(a) shows example execute-PDGs that are small in relation to

DySER’s resources. Here, DySER speedup and utilization will be fundamentally limited by the

number of operations that can be performed in a single invocation. These small regions limit

DySER’s potential speedup and specialization, because they do not fully utilize the available

resources.

54

Proportional Regions: Figure 4.4(b) shows execute-PDGs that are appropriately sized for DySER.

These generally come in the form of the multilane and reduction patterns. Even though the potential

for these regions is high, these patterns have a high communication/computation ratio, which limits

speedups, since the instructions in execute-PDG wait for operands to arrive. Another way to view

the problem is that the memory subregion simply cannot feed the execute-PDG fast enough to attain

high utilization of DySER’s resources. In the absence of other mechanisms, DySER performance

will be similar to that of an out-of-order processor.

Superfluous Regions: Figure 4.4(c) shows an execute-PDG which is very large. When the execute-

PDG is large, only a portion of the execute-PDG can be mapped to DySER and instructions in the

remaining portions will be scheduled to execute in the main processor pipeline. This limits the

potential benefits from DySER because most of the instructions from the execute-PDG will use

power-hungry structures in the processor.

Ideal Regions: Figure 4.4(d) depicts some best-case scenarios of execute-PDG, distinguished by

small numbers of inputs and outputs with numerous computations. Assuming pipelinable invoca-

tions, these patterns are ideal because they have very little communication overhead. However,

these are rare in most workloads. In order to get this type of region, we develop techniques to

transform other regions into this type.

4.4.2 Transformation Flow

The transformation flow in the Figure 4.5 shows the DySER compiler’s overall strategy for transform-

ing an arbitrary execute-PDG to act like an ideal execute-PDG. In addition to the transformation flow,

the figure also includes the hardware mechanisms in DySER that the compiler exploits to achieve

high efficiency. The rest of this subsection describes the transformation flow in more detail and the

next section presents algorithms for these transformation and details how these transformations

can be implemented.

55

Region Growing

Loop Unrolling

Scalar Expansion

Region Virtualization

Subgraph Mapping

Execute-PDG Splitting

Fast-Config-Switching (FCS)

Vectorized DySER

Communication

StripMining

Vector DySER

Communication

Vector Port Mapping

(Intra, Inter, Hybrid)

Insufficient

Superfluous

Proportional

Ideal

Software Transformation

Hardware Mechanism

Legend

Figure 4.5: Transformation flow and hardware support

4.4.2.1 Region Growing

Execute-PDGs that are too small to attain high utilization must be expanded, which can be achieved

by transforming the loops. Specifically, we apply loop unrolling until an appropriately sized

computation subregion is formed, as shown in Figure 4.6(a). If the loops are independent, we

create a multilane pattern. With a single loop carried dependence, we create a reduction pattern, if

possible. When profitable, we alternatively employ scalar expansion 4.6(b), which enables loop

parallelization by providing temporary storage for dependent variables. Scalar expansion allows us

to break some reduction patterns into multilane patterns, which can be beneficial depending on

the use of the region’s outputs. Note that we cannot rely on standard compiler passes, as they are

unaware of DySER, and could create inappropriate regions.

4.4.2.2 Vectorizing DySER

Vectorized DySER instructions can load and store only contiguous words. In order to vectorize send

and load instructions efficiently, we must provide mechanisms to handle arbitrary relationships

56

(g) Subgraph Matching

4321

1 2 3 4

4321

1

2

3

4

4321 8765 9

1

4

7

2

5

8

3

6

9

(d) Intra-Invocation (e) Inter-Invocation (f) Hybrid

In
p

u
t

F
if

o
V

e
ct

o
r

M
a

p

Bench: CONV Bench: STNCL Bench: TPACF

ld

×

+
+

ld ldld ld

× × × ×

+ +

Example

Insufficient Region
(a) Loop Unrolling (b) Scalar Expansion

+

Fast-Config-Switching

Config

Switch

Region Growing

Vectorized Communication

Region Virtualization

×

+

ld

×

+

ld

×

+

ld

×

+

ld

×

+

+

+ + + +

+ +

Vec

ld

×

+

ld

×

+

ld

Example

Proportional

Region

(c) Strip Mining

Vec

ld

×

+

¼

It
e

r
a

t
io

n
s

¼

It
e

r
a

t
io

n
s

½

It
e

r
a

t
io

n
s

(h) Execute PDG Splitting

Figure 4.6: AEPDG Transformations

57

between contiguous memory and the interface to the regions. We explain several communication

patterns with examples, and describe the mechanisms which make vectorization possible.

Intra-invocation Communication (“Wide”): Figure 4.6(d) shows the computation subregion,

where each contiguous memory word is mapped to a different input port of DySER and used by a

single invocation. This type of wide communication pattern converts DySER into a vector unit.

Inter-invocation Communication (“Deep”): Figure 4.6(e) shows the computation subregion,

where each contiguous memory word is mapped to the same port since subsequent invocations use

contiguous memory addresses, thus allowing multiple invocations to be explicitly pipelined.

Hybrid Communication: Figure 4.6(f) shows a computation subregion from the TPACF bench-

mark. Neither inter-invocation nor intra-invocation is sufficient to perform a vector load more than

3 words wide. Our strategy is to use a hybrid, where each word triplet is sent to the same invocation,

and subsequent triplets are pipelined to subsequent invocations. This example is 3 “wide” and 3

“deep”.

Stripmining: Employing these communication patterns requires a transformation called stripmin-

ing, as shown in Figure 4.6(c). Both stripmining and loop unrolling reduce the loop trip count, but

doing both is usually possible for data parallel workloads, because the loops in these benchmarks

have high bounds.

4.4.2.3 Region Virtualization

Similarly to insufficient regions, overly large regions must be "resized" to fit inside DySER to

achieve high utilization. Compared to instruction-level acceleration, DySER’s dynamic customiza-

tion introduces resource limitation challenges, which we overcome by employing two primary

techniques.

Subgraph Matching: First, we attempt to reduce the computational region by identifying similar

computational structures, which we call Subgraph Matching as shown in Figure 4.6(g). The trans-

58

formation is essentially to cut dataflow edges from a common subgraph, and combine all common

subgraphs together. These cut edges will be reconnected through the memory subregion.

Execute-PDG Spliting: If Subgraph Matching cannot reduce the computation subregion suffi-

ciently, we employ a further technique that splits the execute-PDG into multiple execute-PDGs that

can fit inside the DySER substrate. Figure 4.6(h) shows how a superfluous computation subregion

can be cut into components of appropriate size and mapped to DySER by using multiple configura-

tions. However, since the DySER needs to switch between these configurations, the configuration

penalty cannot be amortized over multiple invocations. As described in subsection 3.5.3, DySER

uses fast configuration switching to mitigate the efficiency lost of reconfiguration.

4.5 Algorithms for AEPDG Transformations

As described in the previous section, to accelerate effectively, the DySER compiler should create

execute-PDGs whose number of operations is proportional to the DySER’s resources, and whose

interface with the access-PDG has few connections, minimizing the I/O cost. We also presented

several transformations to get an ideal execute-PDG. In this section, we present algorithms for the

transformations described in the previous section.

4.5.1 Region Growing

Loop Unrolling for PDG Cloning: If the execute-PDG underutilizes DySER, the potential perfor-

mance gains will be suboptimal. To achieve high utilization for a loop which has no loop-carried

dependencies, we need to grow the execute-PDG until a sufficiently large execute-PDG is created.

This corresponds to unrolling the computations in the access-PDG, and reduces the trip count of

the loop.

Algorithm 2 shows the PDG cloning and strip mining algorithm, which creates edges to track

the links between the access and execute subgraphs. First, it uses the size and types of instructions

in the execute-PDG and the DySER model, which includes the quantity of and capabilities of the

functional units in DySER, to determine the number of execute-PDG clones and number of times

59

the access-PDG should be unrolled. After cloning the execute-PDG and unrolling the access-PDG,

it creates edges between appropriate nodes in each. These interface edges are labeled to track the

spatio-temporal information.

This transformation exploits the spatial aspect of the AEPDG to track the links among the access

subgraph nodes and cloned execute subgraph nodes. In the load/store coalescing transformation,

described later, the compiler uses these links to combine consecutive accesses.

Strip Mining for Vector Deepening In addition to parallelizing the loop to achieve the correct

execute-PDG size, the compiler can further parallelize the loop by pipelining computations. This

transformation, called strip mining, means that additional loop iterations are performed in parallel

by pipelining data through the execute-PDG. The effective “depth” of the vectors, if the memory

access is vectorizable, is increased as an effect of this transformation.

4.5.2 Region Virtualization

Subgraph Matching: If the size of an execute-PDG is “larger” than the size of DySER, many

configurations will be required, resulting in excess overhead per computation performed. If com-

putations in the execute-PDG share a common structure, or formally an isomorphic subgraph,

this can be exploited to pipeline the computations through this subgraph. This transformation,

called subgraph matching, merges the isomorphic subgraphs, and modifies the access nodes to use

temporal information encoded in the AEPDG to pipeline data.

Since computing the largest matching subgraph is an NP-complete problem, we use a greedy

algorithm that grows the subgraph by incrementally adding instructions to a seed instruction.

Algorithm 3 lists the algorithm that uses the function Compute-Epdg-Covering to find the subgraphs

or the covers. This algorithm then uses the provided covers to insert edges in the AEPDG to

accomplish the subgraph matching.

We can also adapt the previously proposed approach by Clark et al. [24] called unate covering

selection which does full enumeration of the bounded search space to find the covering. However,

most program regions we considered do not have common subgraphs, as they most commonly

arise when the code is unrolled or functions are inlined before AEPDG formation.

60

Algorithm 2 Clone-EPDG-Stripmine-APDG(aepdg, dyser_model, vec_len)

1: epdg ←Get-EPDG(aepdg)
2: apdg ←Get-APDG(aepdg)
3: MaxEPDGs← Get-Num-EPDG-In-DySER(epdg, dyser_model)
4: NumClones← x, where x ≤MaxEPDGs ∧ x|vec_len
5: NumUnroll← vec_len

{Copy execute-PDG NumClones times}
6: for i := 1 to NumClones do

7: clonedEPDG[i]← Clone(edpg)
8: end for

{Unroll access-PDG NumUnroll times}
9: for i := 1 to NumClones do

10: unrolledAPDG[i]← Unroll(adpg)
11: end for

{Insert I/O edges for execute-PDG inputs}
12: for all node ∈ Get-Inputs(epdg) do

13: for i := 1 to NumUnroll do

14: idx← i mod NumClones
15: clonedNode← Get-Cloned-Node(ClonedEDPG[idx], node)
16: for all pred ∈ Get-Operands(clonedNode) do

17: unrolledNode←Get-UnrolledNode(UnrolledAPDG[i], pred)
18: dyio_edges← dyio_edges ∪ (unrolledNode, clonedNode, < i, 0 >)
19: end for

20: end for

21: end for

{Insert I/O edges for execute-PDG outputs}
22: for all node ∈ Get-Outputs(epdg) do

23: for i := 1 to NumUnroll do

24: idx← i mod NumClones
25: clonedNode← Get-Cloned-Node(ClonedEDPG[idx], node)
26: for all use ∈ Get-Uses(clonedNode) do

27: unrolledNode←Get-UnrolledNode(UnrolledAPDG[i], use)
28: dyio_edges← dyio_edges ∪ (clonedNode, unrolledNode, < i, 0 >)
29: end for

30: end for

31: end for

32: out_apdg ←
⋃NumUnroll

i=1
UnrolledAPDG[i]

33: out_epdg ←
⋃NumClones

i=1
ClonedEPDG[i]

34: out_aepdg ← (out_apdg, out_epdg, dyio_edges)
35: return out_aepdg

61

Algorithm 3 Subgraph-Matching-And-Splitting(aepdg, dyser_model)

1: epdg ← Get-Epdg(aepdg)
2: apdg ← Get-Apdg(aepdg)
3: dyio_edges← Get-Dyio-Edges(aepdg)
4: covering ← Compute-Epdg-Covering(epdg, dyser_model)
5: for all g ∈ covering do

6: for all node ∈ g do

7: for all op ∈ Get-Operands(node) such that op /∈ g do

8: send← Split-Edge-And-Create-Send(op, node)
9: apdg ← apdg ∪ send

10: dyio_edges← dyioedges ∪ (send, node, < 1, 0 >)
11: end for

12: for all use ∈ Get-Uses(node) such that use /∈ g do

13: recv ← Split-Edge-And-Create-Recv(node, use)
14: apdg ← apdg ∪ recv
15: dyio_edges← dyio_edges ∪ (node, recv, < 1, 0 >)
16: end for

17: end for

18: Insert-Dyser-Config(g)
19: end for

20: return (epdg, epdg, dyio_edges)

Execute PDG Splitting: When subgraph matching is insufficient to reduce the size of the execute-

PDG, or when there is not an isomorphic subgraph, it becomes necessary to split the execute-PDG

and insert nodes in the access-PDG to orchestrate the dependencies among the newly created

execute-PDGs. Although this introduces extra configuration switches and cannot amortize the cost

of reconfiguration, DySER can use the Fast Configuration Switching mechanism, which is described

in subsection 3.5.3, to mitigate the efficiency loss.

4.5.3 Vectorized DySER Communication

Unrolling for Loop Dependence: When the AEPDG represents loops without data dependence,

we can use it to trivially unroll and vectorize the nodes in the access-PDG just like traditional SIMD

compilers. When loops have memory dependencies across iterations, SIMD compilers usually fail

or use complex techniques, such as the polyhedral model [49, 37], to transform the loop such that

they can be vectorized. In contrast, we simply unroll the loop multiple times and combine the

dependent computation with the execute-PDG. This can accelerate the loop considerably since the

62

execute-PDG is pipelined using DySER. Again, the AEPDG tracks the links between the unrolled

nodes in the access-PDG, which can be used to combine the nodes in the load/store coalescing

transform.

Traditional Vectorization: The DySER compiler leverages several techniques developed for SIMD

compilers to vectorize loops when the iterations are independent [96]. These include loop peeling,

scalar expansion, and loop interchange. Loop peeling is used to maintain correctness in the presence

of non-divisible loop termination bounds. Scalar expansion, where the reduction variables are

split into multiple copies to eliminate unnecessary dependence, improves the amount of available

parallelism. Loop interchange, which switches the order of nested loops, can improve memory

locality. The DySER compiler implements these traditional vectorization techniques on the AEPDG,

and these techniques are designed not to interfere with its temporal and spatial properties.

Load/Store Coalescing: DySER’s flexible I/O interface enables the compiler to combine multiple

DySER communication instructions which have the same base address, but different offsets. We use

the order encoded in the interface edges between access and execute PDGs and leverage existing

alias analysis to find whether multiple access nodes can be coalesced into a single node.

Algorithm 4 and algorithm 5 show the load/store coalescing algorithm, which tracks the offset

information between the coalesced loads and the computation in the execute-PDG. It iterates

through the memory instructions in program order and attempts coalescing with nodes of the

same type (i.e both loads or stores) which also access addresses with a constant offset (relative to

the loop induction variable). Then, if any of the coalesced nodes are dependent on other memory

nodes in the AEPDG, it discards the memory dependent loads from coalescing. Coalesced nodes

are split into vector-sized groups, and for each group a new node is created with updated instance

and offset information.

4.6 Scheduler and Code Generation

After the DySER compiler optimizes the AEPDG with the transformations described in the last

section, it generates the DySER configuration for the execute-PDG and assembly code for the

63

Algorithm 4 Coalesce-Loads-Stores(aepdg)

1: apdg ← Get-APDG(aepdg)
2: dyio_edges← Get-Dyio-Edges(aepdg)
3: S ← Get-Loads-Stores-In-Program-Order(apdg)
4: while Has-Element(S) do

5: candidate← Get-First-Node(S)
6: coalescedNodes← candidate
7: for all node ∈ S in order do

8: if Is-Load(candidate) == Is-Load(node) and Has-Const-Offset(Candidate, node) then

9: coalescedNodes← coalescedNodes ∪ node
10: end if

11: end for

{Check dependences}
12: AliasedNodes← Get-Aliased-Nodes(S, coalescedNodes)

{Cannot coalesce nodes}
13: if AliasedNodes 6= ∅ then

14: S ← S − (AliasedNodes ∪ coalescedNodes)
15: continue

16: end if

17: apdg, dyio_edges← Coalesce-Nodes-In-APDG(apdg, dyio_edges, coalescedNodes)
18: S ← S − coalescedNodes
19: end while

20: return (apdg, Get-Epdg(aepdg), dyio_edges)

access-PDG. To generate the DySER configuration, it uses a greedy algorithm to schedule the

execute-PDG spatially to the DySER hardware substrate. Before it generates the assembly code for

the access-PDG, it inserts DySER instructions to communicate between the main processor and

DySER through the DySER’s ports.

4.6.1 Scheduling Execute PDGs

Once the final execute PDG has been determined, we need to create a mapping between the execute-

PDG and the DySER hardware itself. We use a greedy algorithm that places instructions in DySER

with the lowest additional routing cost. This greedy algorithm is similar to other spatial architecture

scheduling algorithms, completes quickly, and is suitable for use in production compilers. This

algorithm usually succeeds in scheduling all nodes in the execute-PDG to the DySER hardware.

When it fails, we “spill” problematic nodes to the access-PDG and schedule the execute-PDG again.

Algorithm 6 lists the algorithm for scheduling execute-PDG to DySER.

64

Algorithm 5 Coalesce-Nodes(apdg, dyio_edges, coalescedNodes)

1: cn← Sort-By-Offset(coalescedNodes)
2: vecNodes← Get-Splitted-List(cn, maxVecSize)
3: if Is-Load(vecNodes) then

4: for all vecLoad ∈ vecNodes do

5: apdg ← apdg ∪ vecLoad
6: for all load ∈ vecLoad do

7: offset← Get-Offset-From(vecLoad)
8: for all edge ∈ Get-Dyio-Edges(aepdg, load) do

9: dyio_edges← dyio_edges ∪ (vecLoad, edge.dest, < edge.instance, offset >)
10: end for

11: end for

12: end for

13: else

14: for all vecStore ∈ vecNodes do

15: if Is-Contiguous(vecStore) then

16: apdg ← apdg ∪ vecStore
17: for all store ∈ vecStore do

18: offset← Get-Offset-From(vecStore)
19: for all edge ∈ Get-Dyio-Edges(aepdg, store) do

20: dyio_edges← dyio_edges ∪ (edge.dest, vecStore, < edge.instance, offset >)
21: end for

22: end for

23: end if

24: end for

25: end if

26: return apdg, dyioedges

Another potential approach is to use the recently proposed general constraint centric scheduler

to map the execute-PDG to the DySER hardware [93, 109].

4.6.2 Code Generation

In this final phase of compilation, the compiler generates the accelerator configurations correspond-

ing to the scheduled execute-PDG. It also inserts instructions in the access-PDG to transfer data to

and from the accelerator. The compiler uses the information in the interface edges of the AEPDG to

generate vectorized DySER instructions. Also, it eliminates any dead code introduced by mapping

the execute-PDG to DySER.

65

Algorithm 6 Schedule-Execute-PDG(epdg, dyser)

1: Config ← ∅
2: Spilled← ∅
3: SortedList← Topological-Sort(epdg)
4: for all node ∈ SortedList do

5: BestCost←∞
6: BestRoute← ∅
7: Slots← Get-Available-Slots(dyser, node)
8: for all slot ∈ Slots do

9: Route, Cost← Create-Routes-Node-From-Ops(node, slot, config)
10: if Cost < BestCost then

11: BestCost← Cost
12: BestRoute← Route
13: Make-Slot-As-Occupied(dyser, slot)
14: end if

15: end for

16: if BESTCOST 6=∞ then

17: Config ← Add-Route-To-Config(Config, Route)
18: else

19: Spilled← node
20: end if

21: end for

22: return (config, spilled)

4.7 Implementation

To implement our compiler, we leverage the LLVM compiler framework and its intermediate repre-

sentation (LLVM IR). First, we implement an architecture independent compiler pass that processes

LLVM IR and constructs the AEPDG. Second, we develop a series of optimization passes that trans-

form the AEPDG to attain high quality code for DySER. Third, we implement a transformation pass

that creates LLVM IR with DySER instructions from the access-PDG. Finally, we extend the LLVM

X86 code-generator to generate DySER configuration bits from the execute-PDG. With this compiler,

we can generate executables that target DySER from C/C++ source code. Our implementation is

publicly released and more documentation is available here [30].

66

for (i=0; i<n; ++i) {

c += a[i] * i;

}

I={0,1,2,3}, C={0,0,0,0};

for(i=0; i<n-n%4; i+=4){

dyserload_vec a[i:i+3] => P0;

dysersend_vec I => P1;

dysersend_vec C => P2;

dyserrecv_vec P3 => C;

dyserrecv_vec P4 => I;

}

...

c = C[0]+C[1]+C[2]+C[3];

...

(a) Original Loop (b) DySER Code

× +4

+

P2 C

P0 a(i) P1 I

P3 C P4 I

...

(c) Execute-PDG

Figure 4.7: Loop with Reduction/Induction (Peeled Loop not shown)

4.8 Case Study

In this section, we illustrate how the DySER compiler with the AEPDG representation and previously

described compiler transformations enables the automatic specialization of DySER. We demonstrate

the ability of the compiler by doing a case study on a set of challenging loops with characteristics

that are usually hard to specialize with a coarse grain reconfigurable architecture.

4.8.1 Reduction/Induction

Loops which have contiguous memory accesses across iterations and lack control-flow or loop

dependencies are easily specializable with vector instructions. Figure 4.7a shows an example

reduction loop with an induction variable use. This creates artificial dependencies that may prevent

the DySER compiler from specializing the region with DySER vector instructions. However, the

DySER compiler vectorizes the variable c by using scalar expansion to vectorize the induction

67

for (i=0; i<n; ++i) {

if (a[i] > 0) {

c[i] = b[i] + 5;

} else {

c[i] = b[i] - 5;

}

}

for(i=0; i<n-n%4; i+=4){

dyserload_vec a[i:i+3]->P1;

dyserload_vec b[i:i+3]->P2;

dyserstore_vec P3->c[i:i+3];

}

...

(a) Original Loop (b) DySER Code

+5

P1 A

>

-5

φ

P3 C

P2 B

(c) Execute-PDG

Figure 4.8: Loop with control dependence (Peeled Loop not shown)

variable by hoisting initialization out of the loop, and performing loop peeling to do vector-size

loop iterations. Figure 4.7b shows the transformed code after DySER acceleration, and Figure 4.7c

shows the uncloned version of the execute-PDG.

4.8.2 Control Dependence

The DySER compiler leverages the AEPDG structure to represent control flow inside the execute-

PDG. The example in Figure 4.8(a) shows how the DySER compiler can trivially observe that the

control is entirely in the execute-PDG, enabling this control decision to be offloaded from the main

processor. This eliminates the need for any masking instructions or conditional moves in the main

processor, reducing overhead significantly. Since the control dependence is moved to the execute

PDG, the analysis for the access PDG easily finds out the feasibility of doing vectorization on the

memory access and vectorizes the code. This is an additional benefit of the AEPDG. Formerly diffcult

cases for vectorization became easier to perform because of the decoupled nature of AEPDG [48].

68

for (i=0; i<n; ++i) {

c[2i] = a[2i]*b[2i]

- a[2i+1]*b[2i+1];

c[2i+1]=a[2i]*b[2i+1]

+ a[2i+1]*b[2i];

}

for(i=0; i<n-n%4; i+=4){

DyLd_Vec a[2i:2i+3] => P0;

DyLd_Vec a[2i+4:2i+7] => P0;

DyLd_Vec b[2i:2i+3] => P1;

DyLd_Vec b[2i+4:2i+7] => P1;

DySt_Vec P2 => c[2i:2i+3];

DySt_Vec P2 => c[2i+4:2i+7];

}

...

(a) Original Loop (b) DySER Code

× ×

-

× ×

+

3210

0

2

1

3
4

6

5

7

7654

In
p

u
t

F
if

o

Vector Ports

P0(a) P1(b)

0

2

1

3

3210P2(c)

O
u

tp
u

t
F

if
o

(c) Execute-PDG

Figure 4.9: Loop with strided data access (Peeled Loop not shown)

4.8.3 Strided Data Accesses

Strided data accesses can occur for a variety of reasons, commonly for accessing arrays of structs

(AOS). Vectorizing compilers can sometimes eliminate the strided accesses by transforming the data

structure into a struct of arrays (SOA). However, this transformation requires global information

about the data structure usage, and is not always possible. Figure 4.9 shows an example loop that

does complex multiplication, which cannot benefit from AOS to SOA transformation because of

the way the data is consumed. When non-contiguous memory prevents straight-forward loop

vectorization, the DySER compiler can leverage the spatio-temporal information in the AEPDG to

configure DySER’s flexible I/O hardware to perform this mapping. For the code in Figure 4.9(b),

the compiler creates interleaved wide ports to coordinate the strided data movement across loop

iterations, as shown in Figure 4.9(c). Since the DySER port configuration is used throughout the

69

for(i=1; i<n; ++i) {

c[i] = a[i-1]+b[i];

a[i] = c[i]*k;

}

for(i=1; i<=n-n%4; i+=4){

dyserload_vec a[i-1] => P0;

dyserload_vec b[i:i+3] => P1;

dyserstore_vec P2 => a[i:i+3];

dyserstore_vec P3 => c[i:i+3];

}

...

(a) Original Loop (b) DySER Code

3210
P1(b)P0(a)

+

×
+

×
+

×
+

×

32103210
P2(a) P3(c)

(c) Execute-PDG

Figure 4.10: Loop with loop-carried dependence (Peeled Loop not shown)

loop’s lifetime, this is more efficient than issuing shuffle instructions on each loop iteration.

4.8.4 Carried Dependencies

Usually, optimizing compilers attempt to break loop-carried memory dependencies by reordering

loops after loop fission, or reordering memory operations inside a loop, or traversing the loop in a

different order. However, these compilers use heavy weight analysis framework like polyhedral

analysis to find out whether the transformations are legal or not. Figure 4.10 shows a loop with a

carried dependence which cannot be broken with traditional techniques. The statements cannot be

re-ordered or separated because of the forward flow dependence through c[i], and the backwards

loop anti-dependence on a[i]. However, the DySER compiler naturally handles the loop carried

dependencies and map them to the DySER configurable datapath. The DySER compiler unrolls the

loop until the execute-PDG uses a proportional number of resources to the hardware. This exposes

the contiguous memory accesses, which the load/store coalescing algorithm take advantage of

70

for(i=0; i<n; i++){

d1 = a[i];

index = ind[i];

d2 = b[index];

c[i] = d1*d2;

}

for(int i=0; i<n-n%4; i+=4) {

DyLd_Vec a[i:i+3] => P0;

DyLd b[ind[i+0]] => P1;

DyLd b[ind[i+1]] => P2;

DyLd b[ind[i+2]] => P3;

DyLd b[ind[i+3]] => P4;

DySt_Vec P5 => c[i:i+3];

}

...

(a) Original Loop (b) DySER Code

× × × ×

3210
P0(b)

P1 P2 P3 P4

3210
P5(c)

Scalar

Ports
Vector Port

(c) Execute-PDG

Figure 4.11: Loop with Partial Vectorization (Peeled Loop not shown)

and makes use of DySER vector instructions for efficiency. The loop dependencies, which are now

explicit in the execute-PDG, become part of DySER’s internal datapath, enabling efficient execution

of the loop body.

The drawback to this approach is that the dependencies can create long latency "chains" in

the execute-PDG. However, in many cases the computation is not on the critical path, or can be

amortized by pipelining multiple invocations through DySER.

4.8.5 Partially Vectorizable

When contiguous memory patterns occur only on some streams in a loop, an optimizing compiler

must carefully weigh the benefits of using vector instructions against the drawbacks of excessive

shuffling. One example is in Figure 4.11, where the loop has two streaming access patterns coming

from the arrays “a” and “b”. The accesses from “a” are contiguous, but “b” is accessed indirectly

through the “index” array. Here, the compiler can chose to perform scalar loads for non-contiguous

71

accesses and combine these values using additional instructions. This transformation’s profitability

relies on the number of instructions required to construct a vector with “d2” values.

Though partially vectorizable loops pose complex tradeoffs for vectorizing compilers, the DySER

compiler represents these naturally with the AEPDG, which is made possible by the flexible I/O

interface that the DySER hardware provides. For the loop in Figure 4.11(a), accesses to the “a” array

are vectorized, and scalar loads are used for “b”. Compared to a vectorized version, the DySER

compiler eliminates the overhead of additional shuffle instructions without any need for complex

analysis or tradeoffs.

4.9 Chapter Summary

In this chapter, we described the DySER compiler design that uses a novel compiler intermediate

representation called the Access/Execute Program Dependence Graph (AEPDG) to generate op-

timized code for DySER. We have designed and implemented the transformations described in

this chapter on a LLVM based compiler. We publicly released the source code of this compiler and

more details are here [30]. Although AEPDG enables the compiler to generate optimized code for

DySER or DySER like architectures, it can also help generate code for SIMD architectures since it

decouples the data access from the computation itself. However, it is an open question whether it

also makes code generation for SIMD architecture easier and better than existing approaches.

72

5 Experimental Evaluation and Analysis

An important goal of this thesis is to demonstrate that DySER and its compiler can automatically

specialize a set of diverse workloads that are written in the traditional programming model with

high level languages like C/C++. To that end, the previously described compiler design has been

implemented using the LLVM compilation framework to compile C/C++ programs and generate

executables optimized for DySER. To evaluate the DySER architecture, we have implemented a

simulator for DySER integration with an out-of-order processor. With this implementation of

the DySER compiler and the simulator, we performed experiments on a variety of benchmarks

to evaluate the effectiveness of DySER and its codesigned compiler by performing simulations

representing the integration of DySER with a general purpose core.

5.1 Overview

In this section, we describe the motivations for the experiments conducted in this chapter. The

quantitative evaluation presented in this chapter centers around five studies.

1. Workload Characterization: DySER’s efficiency depends upon the DySER compiler’s ability

to identify code-regions that can be specialized with DySER. With this study, we strive to

answer the following questions:

• Do the applications have specializable regions that are identifiable by the compiler?

• Can DySER amortize the configuration cost?

To answer the first question, we use the DySER compiler to identify code regions and then we

measure the average number of instructions in the execute-PDG using a static analysis pass.

73

To answer the second question, we must consider the overhead of the compiler generated

configuration bits that DySER uses to specialize the region. If the configuration is not reused

multiple times, the cost of reconfiguring will lower overall efficiency. To illustrate that DySER

can amortize configuration cost, we quantitatively measure the number of times a configura-

tion is reused during the execution. Section 5.3 describes these characterization studies in

more detail.

2. Compiler Evaluation: This study evaluates the AEPDG-based compiler implementation

for DySER. We compare the performance of the compiler generated code to the manually

optimized code. We also compare the DySER compiler’s ability to do vectorization to the auto

vectorizer in ICC. Section 5.4 elaborates on the evaluation of the compiler and presents the

results.

3. Performance and Energy Evaluation: This study quantitatively evaluates the speedup at-

tained and energy reduction with DySER over a 4 wide issue out-of-order general purpose

processor. The efficiency of DySER comes from its ability to dynamically create a specialized

datapath for a sequence of computations and its tight integration to the processor pipeline.

DySER’s main source of improvements is its ability to execute concurrently with the processor

pipeline. To understand the source of improvements, we measured the average number of

functional units that are activated per cycle inside DySER and instructions per cycle com-

mitted in the main processor, which shows that DySER integration effectively emulates a

wider issue window. There are potential bottlenecks for achieving high performance with

DySER. If the latency of computation inside DySER is large, it may not perform better. Simi-

larly, if it requires too many DySER instructions to communicate, the energy efficiency from

DySER is reduced substantially because the main processor pipeline executes these overhead

instructions. Section 5.5 presents this evaluation and the analysis.

4. Sensitivity Study: The efficiency attained with DySER varies with the main processor that

it integrates with, because wider processors can send operands to DySER faster and utilize

DySER better; however they consume more power. To understand the performance sensitivity

74

of DySER to the main processor, we vary the issue width of the main processor and compare

the performance gain with DySER. Section 5.6 describes this sensitivity study.

5. Database Kernel Evaluation: For the previous studies, we use benchmarks that can be

broadly classified as data parallel and control intensive. To understand the opportunities

available in a real world scenario where both data parallel and control intensive code regions

exist in the same program, we evaluate DySER on a database query processing engine pro-

cessing a decision support query. We evaluate DySER on database primitives or operators

and on a full query. Section 5.7 describes the database kernel and presents the result of the

study.

5.2 Evaluation Methodology

In this section, we describe the experimental framework, the parameters used to configure the

hardware simulator and the benchmarks used in the evaluation of DySER and its compiler.

5.2.1 Simulation Environment

The data presented in this chapter for DySER was collected with an X86 architecture simulator

derived from gem5 [12]. gem5 is a cycle level architecture simulator, which we configured to

simulate the microarchitecture of an out-of-order processor. This simulator can execute the X86

instruction set including SSE, SSE2 and SSE3 instructions. For energy analysis, we collect various

activity count and statistics about the execution. The activity counts are then inputted to McPAT [80],

which estimates the energy consumption of the processor during the execution.

This simulator is able to simulate out-of-order execution in timing mode, in which it tracks

the cycles of the instruction execution along with the memory system. Each X86 instruction is

cracked into a sequence of microops, which are instructions from gem5’s internal RISC ISA. The

simulator then simulates these microops through the processor pipeline. It simulates the fetch,

decode, rename, dispatch, issue, execute, writeback and commit pipeline stages. A rename table is

used to map the architected registers to the physical registers, which removes output dependencies

and anti-dependencies. When branches are mispredicted, the younger instructions in the pipeline

75

are squashed and restarted. The simulator also simulates the load/store queue and the memory

dependency predictor. When the memory ordering is mispredicted, it uses a pipeline flush as the

recovery mechanism.

We have implemented a simulator for DySER and integrated it with the detailed out-of-order

model in gem5. As expected, the integration of DySER with the pipeline required only modest

changes to the simulator. It mainly required changes in the decoder and issue logic. The X86

decoder in gem5 is modified to decode the DySER instructions described in section 3.1. If the

specified input port of DySER is full, the processor cannot issue dysersend. Similarly, if the output

port of DySER is empty, the processor cannot issue dyserrecv. The issue logic is modified to

check the status of DySER’s ports before issuing the DySER instructions. A major engineering

effort was needed to perform squashing and restarting DySER invocations when dysersend and

dyserrecv instructions are squashed in the main processor pipeline due to the misprediction of

branches or load/store ordering.

This simulator executes all instructions of the benchmarks except for system calls, which are

emulated using the host machine’s system calls.

5.2.2 Compiler Implementation

We have implemented a C/C++ compiler for DySER using the LLVM compilation framework [76].

This compiler takes the benchmark source files that are written in C/C++ as inputs and produces

ELF executables.

It first compiles C/C++ source code into an LLVM bitcode file (.bc file) using a LLVM frontend

called dragonegg. This frontend is actually a plugin to the GCC’s 4.7 C/C++ frontend and uses

GCC to compile and optimize the C/C++ source code. dragonegg hijacks the usual machinery

in GCC, which lowers its internal intermediate representation called gimple into assembly code.

Instead dragonegg enables GCC to generate LLVM-IR. Using the LLVM’s middle-end optimizer

tool opt, which operates on LLVM-IR, programs are further optimized. We implemented a static

analysis to characterize the benchmarks using this optimized LLVM-IR. This static analysis also

identifies the regions to specialize and slices the programs statically into the memory subregion

76

and compute subregion.

In the second stage of the compilation, the DySER compiler takes the output of the static analysis

and generates the Access/Execute Program Dependence Graph for the regions identified. The

transformation passes, as described in the previous chapter, optimize the AEPDG to attain a good

candidate execute-PDG to specialize. The DySER code generator then takes the optimized AEPDG

and schedules the execute-PDG to DySER and the access-PDG and other instructions to the main

processor pipeline. An existing LLVM tool called llc then lowers the LLVM-IR and DySER’s

configuration bits into machine assembly code.

Finally, we modified the GNU assembler gas so that it can assemble DySER instructions and

DySER configuration bits into object code along with other processor instructions. After the

assembly code is assembled into object code, the system linker links the object file and generates

the final executable.

5.2.3 Baseline Machine

We considered an out-of-order processor as our baseline to compare against the DySER architecture.

Table 5.1 presents the machine configuration of the baseline processor. The baseline processor is

configured to match currently available out-of-order processors.

5.2.4 Benchmarks

Because DySER specializes computation, the most meaningful workloads for this study should

have sufficient computation and be representative of emerging areas. To avoid selection bias, we

pick two existing benchmark suites: Intel throughput kernels [111] and Parboil [99]. Both of these

suites have benchmarks with large data parallelism available to exploit. We choose these benchmark

suites because while they are complex and challenging, they are small enough to perform detailed

simulation studies to extract out bottlenecks and get insights. Table 5.2 list the description and

qualitative characterization of the main kernel in these benchmarks.

However, in order to demonstrate the effectiveness of DySER on general purpose workloads,

we choose SPECINT 2006 [60], a suite targeted at conventional single threaded workloads. The

77

Attribute Values

Decode/Issue/Commit Width 4/4/4

Branch Predictor Tournament predictor with 4K BTB

Instruction Queue 64 entries with speculative scheduling. Uses squashing to
recover

Reorder Buffer 192

Physical Register File 256 Integer, 256 FP

Load/Store Queue 32/32

Functional Units (Latency) 6 INT ALU(1)

1 INT MULT(3)

1 INT DIV(20)

2 L1D load(2)

1 L1D store(1)

4 FP ADD/CMP(2)

1 FP MULT(4)

1 FP DIV(12)

1 FP SQRT(24)

L1 Caches I-Cache: 32 KB, 2 way, 64B lines

D-Cache: 64 KB, 2 way, 64B lines

L2 Caches 2 MB, 8-way unified, 64B lines

Memory 512MB

Table 5.1: Baseline Machine Configuration

SPEC CPU 2006 integer benchmarks suite provides a collection of standardized programs and

inputs intended to represent commonly used applications and programming constructs. We also

evaluate a subset of benchmarks from the PARSEC benchmark suite, which represents emerging

multi-threaded workloads. Table 5.3 shows the description of these benchmarks.

5.2.5 DySER Microarchitecture Details

The data parallel workloads we considered are mainly floating point workloads and the general

purpose workloads we considered are mainly integer workloads. In order to effectively specialize

these workloads, we consider two variants of DySER. For floating point workloads, we consider a

64-tile heterogeneous (16 INT-ADD, 16 FP-ADD, 12 INT-MUL, 12-FP-MUL, 4 FP-DIV, 4 FP-SQRT)

functional-unit DySER array. It takes 64 cycles to reconfigure DySER with 64 functional units,

assuming that the L1I cache contains the configuration bits for DySER and can sustain a bandwidth

of 128 bits/cycle. Area analysis comparing to SSE and AVX shows this configuration has similar

78

Benchmark Application Characterization of main kernel

Throughput Kernels

conv 2D Image convolution Regular computation and data access

merge Merge phase of bitonic sorting Small kernel with unpredictable data dependent
control-flow

nbody Nbody Simulation Large kernel with regular access pattern

radar Complex 1D convolution Small kernel with regular access pattern

treesearch Tree Search Irregular data accesses prevents vectorization

vr Volume rendering Nested loop with lots of control-flow

PARBOIL Benchmarks

cutcp 3D Grid & Point Calc. Small kernel with control flow

fft Fast Fourier Transform Regular Memory Access with varying vector width

kmeans K-Means clustering Regular memory access

lbm Fluid Dynamics Extremely large computation region with control-
flow

mm Dense Matrix Mult. Small kernel - multiple blocking opportunity

mri-q Mag. Res. Imaging Regular memory access, but uses of Sin/Cos func-
tion calls

needle Dynamic Programming loop carried dependence

nnw Neural Networks Indirect and Strided memory access

stencil 3D Matrix Jacobi Small comp/mem ratio

spmv Spare Matrix Vector Mult. Indirect memory access

sad Sum-of-abs. diff. Extremely High Comp/Mem Ratio. Good Mem-
ory Locality

tpacf Angular Correlation Irregular memory access due to histograming

Table 5.2: Data Parallel Benchmark Characterization

area to an AVX unit and twice the area of a SSE unit. For integer workloads, we consider a 64-tile

heterogeneous integer functional unit DySER array with 40 INT-ADD, 8 INT-CMP, 8 SHIFT, and 8

INT-MUL.

5.3 Workload Characterization

As described in the previous chapters, the DySER compiler needs to find the regions where DySER

can achieve efficiency with specialization. Also, the regions identified should exhibit phase reuse

behavior. Otherwise, DySER cannot amortize the cost of reconfiguration and will not be efficient

compared to a general purpose processor. To understand the compiler’s ability to choose these

regions, we evaluate the compiler’s ability to identify code-regions that are suitable for DySER with

79

Benchmark Appliction Area Description

SPECINT 2006

astar Path-finding Algorithms Path finding library for 2D maps, including the
well known A* algorithm

bzip2 Compression bzip2 version 1.0.3, modified to do most work in
memory

gcc C compiler based on gcc version 3.2

gobmk Artificial Intelligence: go Plays a game of go

h264ref Video compression encodes a video stream

hmmer Search gene sequence Protein sequence analysis using profile hidden
Markov models

libquantum Physics/Quantum Computing Simulates a quantum computer, running Shor’s
polynomial-time factorization algorithm.

mcf Combinatorial Optimization Vehicle scheduling

omnetpp Discrete event simulation Uses the OMNet++ discrete event simulator to
model a large Ethernet campus network.

perlbench Programming Language Derived from Perl V5.8.7

sjeng Artificial Intelligence: chess A highly-ranked chess program

xalancbmk XML Processing A modified version of Xalan-C++

PARSEC

blackscholes Scientific Option pricing with Black-Scholes Partial Differen-
tial Equation

fluidanimate Fluid dynamics Fluid Dynamics for animation purposes

freqmine Data mining Frequent itemset mining

swaptions Financial Pricing of a portfolio of swaptions

streamcluser Kernel Online clustering of an input stream

Table 5.3: Descriptions of general purpose workloads

the following two questions.

1. How large are the code regions that the compiler is able to select for specialization?

2. Can DySER amortize the cost of reconfiguration?

5.3.1 Execute-PDG Region Size

To create specialized code for DySER, the DySER compiler is heavily dependent on certain applica-

tion characteristics and must be able to identify specializable regions. In particular, the size of the

execute-PDG directly affects the efficiency we can get from DySER. Generally, proportional code

80

co
nv

m
erg

e

nbody
ra

dar

tre
ese

arc
h vr

gm
ean

5

10

15

20

53
Kernels

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q

needle
nnw

sa
d

st
encil

sp
m

v
tp

acf

gm
ean

Parboil
79 33

perlb
ench

bzip
2

gcc m
cf

gobm
k

hm
m

er

sje
ng

lib
quantu

m

h264re
f

om
netp

p
ast

ar

xa
la

ncb
m

k

gm
ean

5

10

15

20

SPECINT

bla
ck

sc
hole

s

ca
nneal

flu
id

anim
ate

fre
qm

in
e

sw
aptio

ns

gm
ean

PARSEC
65

Figure 5.1: Mean number of instructions in execute-PDG

81

regions that can match DySER’s resources are desirable. Smaller code regions tend to underutilize

DySER, and larger code regions require extra reconfiguration and may lead to efficiency loss.

In order to measure the code regions, we implemented a static analysis pass in the LLVM

compilation framework that measures the number of instructions in acyclic code regions which

may be targeted for specialization with DySER. Figure 5.1 shows the mean number of instructions

in the acyclic code regions from the respective benchmarks. If the execute-PDG is smaller than 4

instructions and the compiler cannot unroll the loop or clone the execute-PDG, it does not specialize

the code region as it is not beneficial. Thus, we omit them from this static analysis as well. First, we

observe that the average size of code-regions is about 20 instructions for data parallel workloads and

about 10 for SPECINT. For PARSEC benchmarks, the average size of the region is 23 instructions,

as they are mostly compute intensive benchmarks. For some data parallel workloads (eg. merge,

radar, kmeans, mm, stencil), the compiler identifies code regions with less than 10 instructions.

However, using loop unrolling for the region cloning transformation, the region is cloned to make

it larger, and we then use DySER vector instructions to reduce the number of instructions in the

processor pipeline.

Observation 5.1. Programs have code-regions with enough instructions to specialize with DySER. The

DySER compiler can identify these specializable regions and target these regions for specialization with

DySER.

5.3.2 Phase Behavior

In order to effectively specialize general purpose workloads, DySER dynamically creates hardware

datapaths to match the executing code regions. However, this leads to extra overheads during

runtime as the configuration bits need to be fetched from memory and then used to configure DySER

by selecting physical routes through the circuit switched network and selecting which function

to perform for functional units. In order to amortize the configuration cost, DySER exploits the

phase behavior in programs. i.e. the programs reuse a DySER configuration multiple times before

reconfiguring DySER for another region. To evaluate the phase behavior and the DySER compiler’s

ability to amortize the cost of reconfiguration by identifying code regions that are suitable for

82

DySER, we measure the number of times the program configures DySER and the number of times

the program reuses the configuration. Table 5.4 lists the average number of times a configuration is

reused for the benchmarks considered.

Since throughput kernels and the PARBOIL benchmarks are mainly designed to study and

evaluate a kernel, most benchmarks configure DySER once for the kernel and reuse it until they

finish executing. However, nbody and radar in the throughput kernels have the reduction pattern

and the compiler uses an extra configuration to reduce the temporary variables that the scalar

replacement optimizations uses to accumulate the values. This makes the number of times a config-

uration is reused lower in those benchmarks. Similarly, in the PARBOIL benchmark suite, kmeans

and sad use the reduction pattern, thus lowering the average number of times the configuration is

reused in these kernels.

For SPEC, the number of times a configuration is used is lower than that of the other benchmark

suites. On average, it reuses the configuration about 60 times before switching to a different

configuration. For benchmarks like SPEC, it is important to profile the application and specialize

only the regions that are the most frequently executing regions to DySER, so less repetitive regions

do not introduce extra overheads. Similar to data parallel workloads, the benchmarks from the

PARSEC benchmark suite have large configuration reuse except for freqmine.

Observation 5.2. Most benchmarks reuse each DySER configuration multiple times before switching to

another configuration. For data parallel workloads, DySER can amortize the cost of reconfiguration. For

SPECINT type benchmarks, it is important to choose the most frequently executing code regions as a candi-

date for specialization with DySER so that it can avoid reconfiguration.

5.4 Compiler Evaluation

This section quantitatively evaluates the AEPDG-based compiler implementation for DySER and is

organized around two main questions:

1. How close to the performance of manually-optimized code does our automatically-compiled

code reach?

83

Benchmarks #Config. Reuse Benchmarks #Config. Reuse

Througput Kernels SPECINT 2006

conv 634,884 perlbench 12
merge 131,071 bzip2 28
nbody 1,049 gcc 8
radar 8,170 mcf 44
treesearch 61,439 gobmk 8
vr 158,855 hmmer 2,230

sjeng 3
Parboil libquantum 3,329

cutcp 11,726,169 h264ref 29
fft 786,559 omnetpp 1
kmeans 99 astar 423
lbm 6,756 xalancbmk 31
mm 179,644,850
mri-q 4,259,871 PARSEC

needle 1,349,265 blackscholes 66,178
nnw 642,195 fluidanimate 343
sad 3,808 freqmine 4
stencil 86,315 swaptions 509
spmv 8,194,295 streamcluster 357,595
tpacf 429,108

Table 5.4: Average number of times configuration is reused

2. How does the DySER compiler auto-vectorization and specialization compare to the acceler-

ation provided by the auto vectorizer in Intel’s ICC compiler generated code for SSE/AVX

extensions?

5.4.1 Evaluation methodology

Compilers: As described above, we have implemented the DySER compiler in LLVM v3.2 and

use it generate an executable optimized for DySER. We compare against SSE/AVX code generated

with Intel’s compiler ICC 12.1, which has a state of art auto-vectorizer. We use ICC compiler flags

-fast -xSSE4.2 to enable auto-vectorization for SSE and -fast -xavx for AVX. All benchmarks

include the __restrict__ keyword on array pointers, where appropriate, to eliminate the need

for interprocedural analysis of array aliasing.

84

Loop Clasification Affected Benchmarks

Regular Data and Control CONV, RADAR, NBODY,
MM, STENCIL, KMEANS

Loop Body Control Flow TSRCH, VR, CutCP, LBM

Strided Data Access FFT, MRI-Q, NNW, TPACF, LBM

Loop-Carried Dependence NEEDLE, MERGE

Partially Vectorizable SPMV, NEEDLE

Impossible Vectorization None

Table 5.5: Classification of Loops Evaluated

Metric: The performance metric of interest is speedup, which we always report with respect to the

baseline scalar code generated with the respective compiler, with -O3 level optimizations turned

on.

Benchmarks: We evaluate our compiler on the two sets of data parallel workloads described

in subsection 5.2.4. First, we use the suite of throughput kernels written to provide high data

parallelism, which are easier to analyze. Second, we consider the PARBOIL benchmark suite,

because the code is complex enough to be challenging for the compiler’s automatic analysis, but

small enough to be manually optimized for DySER. We chose these benchmarks because they have

good data level parallelism and hence are good candidates for acceleration. For both cases, we also

implemented hand-optimized DySER code. Table 5.5 classifies the benchmarks according to the

five challenges from the case studies presented in Section 4.8.

5.4.2 Automatic vs Manual DySER Optimization

Figure 5.2 shows the speedup of manually-optimized and compiler-generated DySER code relative

to the baseline.

Kernels For throughput kernels, manually-optimized DySER code achieves a harmonic mean

speedup of 3.5×, while automatic DySER compilation yields 2.8×. As expected, manually-optimized

code is faster than the auto generated code, since programmers can apply application specific knowl-

85

co
nv

m
erg

e

nbody
ra

dar

tre
ese

arc
h vr HM

2

4

6

8

10

12

S
p

e
e

d
u

p

23 19
Kernels

Manual

Auto

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q
sp

m
v

st
encil

tp
acf

nnw

needle
HM

Parboil

Manual

Auto

Figure 5.2: Manual vs. Automatic DySER Performance

edge when utilizing the accelerator. What is notable in these results is the number of cases where the

DySER compiler generates code that achieves comparable performance to the manually optimized

code. For five out of six kernels, our flexible mechanisms give the compiler enough leverage to

create a datapath for the loop bodies, and also provide an efficient interface to memory. The only

exception from this suite is Volume Rendering (VR), which is difficult to automatically parallelize

with DySER because it requires indirect data access and cannot use DySER’s flexible vector I/O.

The manual version, however, computes multiple rays in parallel using the loop flattening [123]

transformation on the outer loop to expose parallelism. This could be an additional optimization

for our DySER compiler. However, with a little help from the programmer, the DySER compiler can

automatically perform the unroll and use load/store coalescing to achieve the same effect of the

loop flattening. Since it requires programmer intervention, we do not report the speedup number

here.

PARBOIL Benchmarks. For PARBOIL benchmarks, Automatic DySER compilation provides

2.3×, which comes close to the manually-optimized speedup of 3.4×.

86

Compiler Behavior Benchmarks

Compiler effective
All kernels (except VR)

MRI-Q, STENCIL, TPACF,
KMEANS

Heuristic Tuning Reqd. MM

Missing optimization VR, FFT, NEEDLE, CutCP

Architecture ineffective LBM, SPMV

Table 5.6: Summary of DySER compiler effectiveness

These provide a spread of behavior and we analyze the results for the four categories in Table 5.6.

Compiler effective (4 of 11): MRI-Q, STENCIL, KMEANS and TPACF perform equally as well in both

manual and automatic compilation. This is because the flexible-IO enables the strided pattern in

MRI-Q, the “deep” access pattern in STENCIL, and load coalescing in TPACF. KMEANS also attains

high performance, but does not reach that of the manual version because it uses an outer-loop

unrolling technique to expose extra parallelism.

More heuristic tuning required (1 of 11): For MM, our compiler implementation fails to recognize

when mapping reduction to DySER is better than mapping scalar expansion, and it sub optimally

chooses scalar expansion.

Missing optimizations (4 of 11): FFT, NEEDLE, NNW, and CutCP achieve less than 70% of manually-

optimized code due to missing optimizations. In FFT, the vector length needs to be dynamically

chosen. NEEDLE has a long dependence chain caused by unrolling, and CutCP uses long latency

functional units, causing long latency execute-PDGs for both. These benchmarks would benefit

from software pipelining invocations using a outer loop. Also, the NNW benchmark uses a constant

memory lookup table, which makes it hard for the compiler to reason about contiguous accesses.

The manual version exploits the patterns in this lookup table, while the DySER compiler falls back

on only partial vectorization.

Architecture ineffective (2 of 11): LBM has a large code region, which requires multiple configuration

and SPMV has indirect memory accesses. These characteristics mean the DySER architecture is

ill-suited for LBM and SPMV, since even manually-optimized code provides speedup of less than

80%.

87

co
nv

m
erg

e

nbody
ra

dar

tre
ese

arc
h vr

hm
ean

2

4

6

8

10

12

S
p
e
e
d
u
p

18
Kernels

SSE

AVX

DySER

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q
sp

m
v

st
encil

tp
acf

nnw

needle

hm
ean

Parboil

SSE

AVX

DySER

Figure 5.3: Performance of DySER compiled code vs. SSE/AVX and GPU

Observation 5.3. The DySER compiler generates optimized code that can perform close to manually opti-

mized code, with 30% average performance difference for some benchmarks. Analysis show that much of this

difference is because of simply heuristic tuning or algorithmic changes.

5.4.3 Automatic DySER vs SSE Acceleration

We now compare the compiler+architecture performance of DySER to SSE/AVX. Figure 5.3 shows

the speedup of auto-vectorized SSE and AVX and the speedup of compiler generated code for

DySER, both measured against the same baseline.

Auto-vectorization provides only about 1.3×mean speedup with SSE and 1.4×mean speedup

with AVX, whereas compiler generated code for DySER provides about 2.5×mean speedup. In 3

of 6 kernels, and in 4 of 11 parboil benchmarks, DySER is 2× faster than AVX.

Auto-vectorization is generally effective in the presence of regular memory accesses and no

control flow. For example, the automatic compilation of CONV and NBODY performs well for

either SIMD or DySER. With complex access patterns or complex control flow, SIMD compilers

provide no speedup (6 of 11 Parboil, and 2 of 6 kernels). DySER compilation, on the other hand,

shows speedup in all but two cases. These results indicate DySER’s AEPDG based compilation for

88

flexible architectures is more effective than SIMD compilers.

Although both techniques reduce per-instruction overheads, energy reduction from DySER is

significantly better than SSE, because DySER is able to handle more types of code and produce

more speedups. At times, SSE increases energy consumption because of meager speedups and

extra power consumption by the SIMD register file and functional units.

Observation 5.4. If data level parallelism is available, the DySER compiler exploits it even in the presence

of control-flow and irregular memory access. Auto-vectorization with SIMD accelerators is only effective

when there are regular accesses and no control-flow.

5.5 Performance and Energy Evaluation

This section presents quantitative results on the performance gained and energy efficiency achieved

with DySER on the benchmarks considered. For performance, we use speedup relative to the

baseline processor as the metric. For energy efficiency, we use the percentage of energy reduction

with respect to the baseline processor’s energy as the metric. The baseline code is optimized with the

highest level optimizations (-O3) available in the compiler. The code for DySER is fully optimized

with the DySER compiler as described in the previous chapter. Subsection 5.5.1 presents the results

for data parallel workloads and subsection 5.5.2 presents the results for control intensive general

purpose benchmarks. Section 5.5.3 describes the source of improvements with DySER and potential

bottlenecks preventing the DySER architecture from achieving efficiency.

5.5.1 Data Parallel Workloads

Figure 5.4a shows the speedup from DySER integration when compared to 4-wide issue out-of-order

core for data parallel workloads. The speedup achieved with DySER is determined by how well its

resources are utilized and how many DySER instructions are required for communication.

For the throughput kernels, DySER performs significantly better on average when compared to

the baseline processor. The benchmarks conv and radar have highly regular data accesses and

control flow. For such workloads, DySER effectively emulates a SIMD unit and accelerates using

vectorized DySER loads and stores. The benchmarks vr and treesearch have irregular control

89

co
nv

m
erg

e

nbody
ra

dar

tre
esr

ch vr

gm
ean

2

4

6

8

10

12

S
p
e
e
d
u
p

19
Kernels

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q
sp

m
v

st
encil

tp
acf

nnw

needle

gm
ean

Parboil

Scalar

DySER

(a) Speedup relative to the baseline

co
nv

m
erg

e

nbody
ra

dar

tre
esr

ch vr

gm
ean

20

40

60

80

E
n
e
rg

y
 R

e
d
u
c
ti
o
n
(%

)

Kernels

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q
sp

m
v

st
encil

tp
acf

nnw

needle

gm
ean

Parboil

(b) Energy reduction with DySER over baseline

Figure 5.4: Speedup and energy comparison for data parallel workloads

90

flow. Here, we identify and extract independent computations in them and use DySER to specialize

the computations. However, we cannot use vectorized DySER instructions beneficially because of

data dependent control flow and irregular memory accesses. The benchmark nbody has a large

code region with reduction. Using the scalar replacement transformation, we exploit the data level

parallelism available in this benchmark. However, this requires an additional DySER configuration

to DySER to reduce the temporary values outside the inner loop. We use the fast configuration

switching mechanism to attain performance improvement. DySER provides a mean speedup of 2.8×

over the baseline, with a range of 1.5× to 15× on highly data parallel workloads.

Similarly, DySER provides speedup with Parboil benchmarks. On most benchmarks, the bench-

marks are 2× faster with DySER than the scalar version on the baseline processor. For fft, the

input source code is manually unrolled so that the auto-vectorizer can easily vectorize for a SIMD

accelerator. Although we can use the unrolled code for vectorized DySER instructions, manually

unrolled loops lead to multiple reconfigurations and we cannot amortize the configuration cost,

which prevents DySER from providing further speedup. LBM has a large region with control

flow. We break the large region into three subregions that it can effectively specialize with DySER.

However, configuration switching introduces unnecessary latency through DySER. The benchmarks

spmv and nnw have an indirect memory access pattern and do not have a large computation to

memory ratio. For these benchmarks, we specialize the address calculation of the code, which

makes the memory subregion dependent on the computation subregion curtailing speedup gain

from DySER. DySER provides a geometric mean speedup of 2.2× over our baseline with a range of

1.2× to 13.1×.

Observation 5.5. On data parallel workloads, DySER provides significant performance improvement over

the scalar version, because DySER’s resources are utilized well with vectorized DySER instructions.

Figure 5.4b shows the energy reduction when using DySER integrated with an out-of-order

processor. On average, DySER consumes 61% less energy for the throughput kernels and 50% less

energy for PARBOIL benchmarks. Most of the energy savings for the data parallel workloads comes

from the speedup and vector DySER instructions. Since the vector DySER instructions reduce the

number of instructions in the processor pipeline to support DySER, they eliminate the energy spent

91

on various power hungry structures in the processor front end such as th register file, renaming

tables, and instruction queue. Even though DySER does not provide huge speedups for TreeSearch

and VR, it provides energy saving because it eliminates per-instruction overheads such as fetch,

decode, rename, and register reads and writes for instructions that are specialized with DySER.

Observation 5.6. On data parallel workloads, DySER reduces energy consumption significantly over the

baseline processor, because it accelerates the computation, uses DySER vector instructions effectively and

eliminates per-instruction overheads.

5.5.2 General Purpose Workloads

Figure 5.5a shows the speedup attained for SPECINT and PARSEC. We use the DySER compiler to

compile these benchmarks. DySER speeds up the SPECINT benchmarks by only 3% on average.

To analyze the performance, we classify the SPECINT benchmarks into three categories. The first

category contains benchmarks, where the DySER compiler deemed it not worthwhile to use DySER.

The second category are the benchmarks that the DySER compiler chooses to specialize with

DySER, but when it does not provide any performance benefits. The third category is comprised of

benchmarks where we see performance improvements with DySER.

The benchmarks gcc, omnetpp, perlbench and xalancbmk belong to the first category. For

gcc, the heuristics in the DySER compiler chooses not to use DySER to specialize as the most

frequently executing regions are either in the libraries or very small. For omnetpp, the compiler

does not find large enough regions to specialize with DySER, as the benchmark uses small methods

in a class heirarchy to perform its computation. This prevents the compiler from identifying the

regions that can be specialized with DySER. Similar to gcc, the DySER compiler skips perlbench

and xalancbmk due to lack of good regions.

The second category has the benchmarks gobmk, sjeng and hmmer. For gobmk and sjeng,

the most frequently executing regions are functions with multi-loops. i.e., they have nested loops

with multiple inner loop and switch/case statements to select different inner loops. The DySER

compiler identifies the inner loops as candidate regions for specialization. However, during run-

time, configuration switching and small region sizes hurt performance, as they add extra overheads

92

ast
ar

bzip
2

gcc

gobm
k

h264re
f

hm
m

er

lib
quantu

m
m

cf

om
netp

p

perlb
ench

sje
ng

xa
la

ncb
m

k

gm
ean

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

e
e

d
u

p

SPECINT

Scalar

DySER

bla
ck

sc
hole

s

flu
id

anim
ate

fre
qm

in
e

sw
aptio

ns

st
re

am
clu

st
er

gm
ean

PARSEC 1.8

(a) Speedup relative to the baseline

ast
ar

bzip
2

gcc

gobm
k

h264re
f

hm
m

er

lib
quantu

m
m

cf

om
netp

p

perlb
ench

sje
ng

xa
la

ncb
m

k

gm
ean

0

5

10

15

20

E
n

e
rg

y
 R

e
d

u
c
ti
o

n
 (

%
)

SPECINT

bla
ck

sc
hole

s

flu
id

anim
ate

fre
qm

in
e

sw
aptio

ns

st
re

am
clu

st
er

gm
ean

PARSEC 28

(b) Energy reduction with DySER over baseline

Figure 5.5: Speedup and energy comparison for data parallel workloads

93

over the out-of-order execution. For hmmer, the most frequently executing code region requires 12

inputs from memory, which causes DySER to mostly wait for the operands from memory to arrive.

The benchmarks astar, bzip2, h264ref, libquantum and mcf are in the third category,

where DySER provides speedup. Although they have control intensive code, the DySER compiler

is able to identify computation that can be specialized with DySER. For example, in h264ref, the

most frequently executing function SetupFastFullPelSearch has a large code region, which

computes the sum of absolute difference over four blocks concurrently to exploit instruction level

parallelism. The DySER compiler identifies the code region as a candidate for specialization and

uses subgraph matching to split the large region into appropriatly sized regions for DySER. In mcf,

the most frequently executing function primal_bea_mpp computes a cost from a data structure

and performs multiple checks on the value of cost. Depending upon the output of the checks, it

updates the data structure that it uses to compute the cost. These branches are not easily predictable

as they are data dependent, and therefore cause frequent pipeline flushes. In the DySER case, the

compiler offloads the computation of the cost and decision to update the data structure to DySER.

In effect, it replaces multiple branches with a single DySER branch instruction, which prevents

most of the pipeline flushes. This allows the main processor pipeline to run ahead and perform

better than the baseline processor without DySER.

Figure 5.5 also shows the speedup provided by DySER on PARSEC benchmarks. On all bench-

marks considered, DySER provided speedup, with a mean speedup of 20%. The DySER compiler

correctly identified the most frequently executing code regions as a candidate for DySER. However,

the code regions in these benchmarks require more resources than DySER provides which causes

them to either use processor resources or be split into multiple code regions, limiting overall gain.

For example, in the blackscholes benchmark, the kernel that is responsible for more than 80% of

the dynamic instruction is the function that computes the cumulative normal distribution (CNDF).

However, it has a call to the exp() library function, which prevent the DySER compiler from using

vector instructions. This curtails the performance gain from DySER.

Observation 5.7. For highly irregular programs, which have data dependent control flow and irregular

data accesses, DySER does not improve the performance as it does with data parallel workloads. This type of

94

benchmark may not be suitable for DySER if speedup is the primary goal.

Figure 5.5b shows the energy reduction provided by DySER. For SPECINT, the geometric mean

energy reduction is 10% when we do not count the benchmarks that do not have any energy

reduction. For PARSEC, the geometric mean energy reduction is 11%. For some benchmarks like

hmmer, DySER does not speed up their computation, but improves energy efficiency. The reason is

that the number of register reads and writes are reduced because computation is offloaded to DySER

and its efficient circuit switched network. For other benchmarks like sjeng and gobmk, DySER

not only slows down the program, but also consumes more energy than the original processor.

This is because of heavy configuration switching inside DySER, which causes subsequent DySER

instructions to stay in the instruction queue for longer than necessary.

Observation 5.8. For general purpose workloads, DySER reduces energy consumption by a modest amount

compared to an out-of-order processor. The energy benefits for general purpose workloads are mainly from

removing per-instruction overhead rather than from speedup.

5.5.3 Source of Improvements and Bottlenecks

In this subsection, we identify the source of DySER’s efficiency and potential bottlenecks that

prevent it from providing more performance gain. The efficiency provided by DySER comes from

its ability to concurrently execute many operations with its array of heterogeneous functional units

in data flow fashion. The potential bottlenecks are the DySER instructions that need to communicate

with DySER from the processor pipeline, and the latency through the DySER substrate. We use the

throughput kernels and Parboil to study the sources of efficiency and bottlenecks.

5.5.3.1 Source of Improvements

DySER’s major source of performance improvements over an out-of-order processor is its ability to

concurrently execute many operations in its heterogeneous array of functional units and emulate

a wider processor than the baseline processor. Figure 5.6 shows the instruction per cycle (IPC)

for the baseline processor and for the DySER integration with the same baseline processor. The

gray colored Baseline Core IPC bar shows the IPC for the baseline processor and the blue

95

co
nv

m
erg

e

nbody
ra

dar

tre
ese

arc
h vr

gm
ean

0

2

4

6

8

10

#
 I
n
s
tr

u
c
ti
o
n
s

Kernels

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q

needle
nnw

sp
m

v

st
encil

tp
acf

gm
ean

Parboil
Baseline Core IPC

Core IPC

DySER IPC

Figure 5.6: Effective IPC comparison

colored Core IPC bar shows the IPC of the main processor of the DySER integration, and the

yellow colored DySER IPC shows the average number of operations executed per cycle.

For throughput kernels, the baseline processor has a mean IPC of 1.26, whereas DySER integra-

tion’s effective IPC is 2.4. The effective IPC is the sum of DySER’s average operation per cycle and

the baseline processor’s IPC. Similar to the throughput kernels, for PARBOIL, the baseline processor

has a mean IPC of 1.38, and DySER has an effective IPC of 2.56. This shows that, when integrated to

a core, DySER integration effectively emulates a wider issue processor. For all benchmarks, DySER’s

effective IPC is higher than the baseline processor. However, the mean IPC of the main processor in-

tegrated with DySER is lower than that of the baseline processor. For benchmarks treesearch, vr,

lbm, tpacf, the IPC for main processor integrated with DySER is higher than that of the baseline

processor. For treesearch and vr, and tpacf, data dependent branch instructions are mapped

to DySER, which eliminates branch mispredictions. This causes the number of useful instructions

committed per cycle to decrease in the baseline processor. For most of the benchmarks, the main

processor, when integrated to DySER, executes fewer instructions than the baseline because the

96

co
nv

m
erg

e

nbody
ra

dar

tre
ese

arc
h vr

gm
ean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
e
d
u
p

Kernels

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q

needle
nnw

sp
m

v

st
encil

tp
acf

gm
ean

Parboil

Same freq

FU Only

1/2 freq

1/4 freq

Figure 5.7: Speedup due to DySER latency

computation slice is offloaded to DySER. Further, as shown in Figure 5.6, because it executes fewer

instructions per cycle, the power consumed by the main processor is lower than that of the baseline

processor. Since DySER executes the instructions from the computation region with its energy

efficient substrate, the overall energy consumption of the processor is reduced.

Note that since the number of instructions executed on the baseline processor is different from

the number of instructions executed on the DySER integration, the performance gained with DySER

is not directly proportional to the effective IPC presented in the Figure 5.6.

5.5.3.2 Potential Bottlenecks

Although the DySER architecture is efficient and provides performance gain along with energy

efficiency, it introduces two main overheads over an out-of-order implementation. First, it introduces

extra latency between the operations in DySER as they need to communicate through the circuit

switched network. Second, DySER requires extra instructions in the processor pipeline to send and

receive register values.

97

Potential Bottleneck: Latency We identify the latency through the DySER substrate as one of

its bottlenecks. In a general purpose processor’s pipeline, the results can be consumed within a

cycle or two because of forwarding to a dependent instruction in the pipeline. However, for DySER,

if dependent operations are mapped spatially further away from the source functional units, the

latency of the computation increases. To understand this bottleneck, we simulate DySER without

any latency from switches. Also, to understand the impact of slowness due to the latency of DySER,

we simulate DySER with half the frequency of the processor and a quarter the frequency of the

processor. This effectively increases the latency of the computation in the DySER by two or four

times. Figure 5.7 shows the relative speedup of the overall performance due to latency of DySER. As

known in the second bar in the Figure 5.7, the functional unit latency actually dominates the overall

latency of DySER as not counting latency from switches improves speedup only by 8%. Except

nbody, all benchmarks do not slow down beyond 80%. With nbody, as we slow down DySER, the

overall performance also drops. This benchmark has two long latency functional units (FP-DIV and

FP-SQRT) in series, which makes this kernel sensitive to latency. Apart from this outlier benchmark,

other benchmarks are not sensitive to the latency of DySER. They continue to provide speedup over

the scalar version with DySER. This shows that pipelining with multiple invocations effectively

hides the functional units and network latency inside DySER.

Potential Bottleneck: DySER Instructions Overheads As described before, DySER requires the

main processor pipeline to feed operands for the computation in DySER. This is done so that

the interface between DySER and rest of the microarchitecture is simple and easier to integrate.

However, having extra instructions to communicate the values between the processor pipeline and

DySER introduces extra run-time overheads. In this study, we quantify the overhead by measuring

the number of DySER instructions executed and other memory access instructions like address

calculation, loads and stores executed in the processor pipeline and compare that to the original

instructions.

Figure 5.8 shows the percentage of dynamic instructions executed relative to the number of

dynamic instructions executed when original program executed in the baseline processor. The first

bar shows the dynamic instruction count for the original program while executing in the baseline

98

co
nv

m
erg

e

nbody
ra

dar

tre
ese

arc
h vr

gm
ean

0.0

0.2

0.4

0.6

0.8

1.0

Kernels

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q

needle
nnw

sa
d

st
encil

sp
m

v
tp

acf

gm
ean

Parboil

perlb
ench

bzip
2

gcc m
cf

gobm
k

hm
m

er

sje
ng

lib
quantu

m

h264re
f

om
netp

p
ast

ar

xa
la

ncb
m

k

gm
ean

0.0

0.2

0.4

0.6

0.8

1.0

SPECINT

bla
ck

sc
hole

s

flu
id

anim
ate

fre
qm

in
e

sw
aptio

ns

st
re

am
clu

st
er

gm
ean

PARSEC

N/A Region Mem Send Recv

Figure 5.8: Relative Dynamic Instructions Count

99

processor. The second bar shows the dynamic instruction count for the program compiled with

the DySER compiler. The gray shaded N/A bar represents the regions that the compiler chose not

to specialize with DySER. This includes outer loops, recursion calls, and functions without any

loop. The blue shaded Region bar represents the number of dynamic instructions from the code

region that the compiler chose to specialize. The yellow shaded Mem bar represents the number

of dynamic instructions that are in the memory access subregion. The send bar and recv bar

represent the number of dynamic instructions executed to send and receive values to DySER.

Even though the DySER instructions introduce overheads for communicating with DySER, the

overall dynamic instruction count is reduced in the processor pipeline for data parallel workloads

because the compute region is offloaded to DySER. For data parallel workloads, the number

of dynamic instructions is reduced by 57%, and only a few DySER instructions are required to

communicate with DySER. The reason is that for data parallel workloads, the DySER compiler

enables vectorized communication.

For the general purpose workloads, the DySER compiler does not reduce the dynamic instruction

significantly, and in fact for some benchmarks, it exceeds the original dynamic instruction count. For

SPEC, about 98% of the original dynamic instructions are required with DySER, and for PARSEC,

80% of original instructions are needed. The reasons for this behavior are two fold. First, the DySER

compiler does not find specializable regions that are amenable to DySER. For example, in omnetpp,

it only finds that 22% of dynamic regions are specializable because it is implemented with C++ and

it performs its computations by using a class hierarchy. The DySER compiler does not identify this

type of code region as specializable. Second, SPEC INT code is irregular and cannot use vector

instructions to reduce the overhead of DySER instructions.

Observation 5.9. The overhead of DySER instructions is not high for data parallel workloads as they can

exploit data level parallelism with DySER vector instructions. For control intensive general purpose work-

loads, the overhead of DySER instructions may hurt the performance gain and energy efficiency. Further

mechanisms may be required to reduce their effects on performance and energy.

100

co
nv

m
erg

e

nbody
ra

dar

tre
ese

arc
h vr

gm
ean

0

5

10

15

20

25

30

S
p
e
e
d
u
p
 o

v
e
r

b
a
s
e
lin

e

Kernels

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q

needle
nnw

st
encil

sp
m

v
tp

acf

gm
ean

Parboil
Inorder

OOO-1

OOO-2

OOO-4

(a) Speedup relative to the baseline

co
nv

m
erg

e

nbody
ra

dar

tre
ese

arc
h vr

gm
ean

0

20

40

60

80

100

E
n
e
rg

y
 R

e
d
u
c
ti
o
n
 (

%
)

Kernels

cu
tc

p fft

km
eans

lb
m

m
m

m
ri-

q

needle
nnw

st
encil

sp
m

v
tp

acf

gm
ean

Parboil

Inorder

OOO-1

OOO-2

OOO-4

(b) Energy reduction with DySER over baseline

Figure 5.9: Senstivitiy Study

101

5.6 Sensitivity Study

In this section, we present a sensitivity study on DySER by varying the width of the baseline

processor. We integrate DySER with an inorder processor, a dual issue, 4-wide and 8-wide out-of-

order processor and evaluate the data parallel workload to understand the performance sensitivity

to the width of the processor.

Figure 5.9a shows the relative speedup of the data parallel workloads. The speedups shown

are relative to their respective baseline. We perform this study using the manually optimized

code instead of compiler generated code in order to study the raw effectiveness of DySER and the

processor without any compiler inefficiencies.

For these benchmarks, the performance benefit of having DySER decreases as the main processor

can issue more instructions. The reason is that the wider processor can execute more instructions

speculatively and exploit instruction level parallelism better. This matches DySER’s benefits, as it

exploits the instruction level parallelism to provide performance improvements. However, for some

benchmarks, like treesearch, vr, and tpacf, the DySER actually provides more performance

gain for the wider issue processor. These benchmarks have data dependent branches in their kernel,

which make the baseline processor mispredict more often. These mispredictions cause the processor

pipeline to squash and restart. However, with DySER, these data dependent branches are mapped

to DySER and the memory access slice without these branches executes in the processor pipeline.

Since a wider processor executes faster, it injects the data values faster to DySER. As the width

of the processor increases, the processor sends the operands faster and DySER can perform the

operations faster and deliver the outputs.

Figure 5.9b shows the energy reduction from DySER to their respective baseline. Although

the performance gain from DySER diminishes as the width of the processor increases, the energy

reduction due to DySER increases. For throughput kernels, DySER integrated with an inorder

processor provides about 40% energy reduction due to the speedup. But with an 8-wide out-of-

order processor, it reduces energy by as much as 80%, as the DySER does not require power hungry

structures to achieve speedup. Parboil also shows a similar benefit in energy reduction.

Observation 5.10. As width of the processor increases, speedup from DySER diminishes because the base-

102

line processor itself can perform better. However, the energy reduction due to DySER increases as it elimi-

nates power hungry structures that a wider processor may require.

5.7 Evaluation on Database Kernels

The goal of this study is to evaluate DySER on a highly relevant application, where both data

parallel and irregular code patterns coexist. In this section, we first present the evaluation study on

main memory database primitives or operators that are generally used in decision support queries.

Then, we describe how DySER helps to achieve speedup on a full query from TPC-H benchmarks.

For each database primitive, we describe the high level implementation of the primitive and how

DySER can accelerate it. Then, we evaluate the primitives with DySER and present results on the

speedup obtained compared to scalar code. With the advent of SIMD units in commodity processors,

main memory databases exploit the fine grain parallelism available through vectorization [14]. To

understand whether DySER can compete with SIMD acceleration, we also present the speedup of

these primitives when the code is vectorized with SSE, as it is a widely adopted SIMD architecture,

and compare that to DySER.

5.7.1 Database Primitives

In this subsection, we describe the database kernels that we intended for DySER to specialize. For

each database primitive, we describe its operations and how SSE units can exploit the fine grain

parallelism available. We then describe how we can specialize these primitives with DySER. In order

to evaluate the database query engines, we identify the following relational database primitives:

scan, sort, strcmp, aggregation.

Scan: An important database primitive is the scan of the full table, since this is typical of ad hoc

queries for business intelligence. Figure 5.10 shows the pseudo code for scan for a column oriented

database. The inputs to the scan are a column of data, a key to scan the column data, and an input

bitvector that filters the input column. The output is a bitvector that represents the scan result. In

this study, we consider an equality scan over a large number of columns. This primitive has high

103

inputs: in_mask:bitvector , col , key

output: out_mask:bitvector

for (i = 0; i < LEN; i += SZ) {

for (j = 0; j < SZ; ++j) {

data = col[i*SZ + j];

out |= (data == key) << j;

}

out_mask[i] = in_mask[i] & out;

}

Figure 5.10: Scan

data-level parallelism because the processing for subsequent rows is independent of the previous

row.

For SSE, the inner loop can be easily vectorized, and using the SSE instruction movmskps, four

bits can easily be packed together to create the output mask. Similarly, for DySER, we vectorize the

inner loop with the DySER’s vector instruction. Since DySER has far more functional units than

SSE that we can control, it emulates a wider SIMD unit that compares and packs 8 bits instead.

A variant of scan is the scan on compressed data with run-length encoding (RLE). The run

length encoded data is a very simple form of data compression in which the sequence of same data

is stored as a single data and count rather than the full sequence of data. In order to exploit fine

grain data level parallelism, the RLE data is blocked such that the run length of the data are aligned.

DySER uses its vectorized DySER instructions to specialize the scan primitive which scans the

blocked run length encoded data. However, SSE and its compiler fails to vectoize this primitive.

In order to vectorize this primitive, a vector instruction which shifts the elements in a vector with

variable shift amount is needed. Since SSE does not have such a instruction, it does not vectorize it.

However, DySER creates a specialized datapath in its hardware substrate to perform that operation

and uses DySER vector instructions to fetch multiple data elements at once, and then send them

directly to DySER.

Sort To exploit the fine grain parallelism with SSE better, sort is implemented with the bitonic

sort algorithm. Figure 5.11 shows the bitonic sort merge network that merges two sorted sequences

of length 4 and creates a sorted sequence of length 8. Bitonic merge requires that one sequence be

sorted in ascending order and the other be sorted in descending order. The order of the inputs A

104

L H L H L H L H

L H L H L H L H

L H L H L H L H

Level 1

Level 2

Level 3

B[3] A[0] B[2] A[1] B[1] A[2] B[0] A[3]

C[6] C[7]C[4] C[5] C[2] C[3] C[0] C[1]

Figure 5.11: The bitonic merge network for merging sequence of data of length 4. A, B are the input
sequences and C is the output sequence of length 8.

and B in the figure are shown after the sorted order of B has been reversed. Each level examines the

elements in parallel using min and max operations as denoted as L and H in the figure respectively.

Using this merge operation as a primitive, a full array of columns can be sorted using the algorithm

presented in Chhugani et al [20].

For DySER acceleration, we schedule the bitonic merge network shown in the figure 5.11 to

DySER. The inherent shuffling in the merge network is mapped to the physical routes inside the

DySER and does not require extra shuffle instructions before using min/max operations at every

level. In the case of SSE, it needs to use extra shuffle instructions to align the values between the

level.

Strcmp In this kernel, we evaluate variable length string compare on DySER. In this kernel, DLP is

readily available. Without special instructions such as PCMPISTR, which is a SSE4 instruction that

105

Inputs: K, keys

V, values

Outputs: A, aggregated values

for (i = 0; i < LEN; i ++):

A[K[i]] += V[i]

Figure 5.12: Aggregation

performs string comparison, SSE cannot speed up this kernel. Even with this special instruction,

SSE requires the string to be aligned which makes the special SSE instructions harder to use.

Similarly, with naive mapping of the string compare kernel to DySER, it actually slows down the

computation slightly (about 5% slowdown with DySER). There are two reasons for this behavior.

• The String compare kernel has a high memory to computation ratio. It loads two values and

does only one compare. The overheads in terms of DySER sends and receives dominate and

eliminate any potential benefit from DySER.

• It has data dependent loop control which renders most vectorization techniques ineffective.

Instead, first we stripmine the STRCMP loop and map the stripmined loop to DySER. This

improves the performance by 10%. In this workload, about 1/3 of the keys are identical. Second,

we map this primitive to DySER such that it aggregates the compare functional units’ output into

a 16 bit bitmask and receives the whole 16 bit bitmask as one integer value using dyserrecv

instruction. With this change, the processor receives the compare results in batches, which reduces

the overheads in dyserrecv instructions. This provides another 20% performance improvement.

With both of these strategies, the string compare kernel with DySER is 27% faster than the baseline

for X86.

Aggregation: Figure 5.12 shows the code for the aggregation primitives. It performs aggregation

of the values from the V array to the A array using the keys in the K array. Since the keys in K can

have aliases, this code cannot be vectorized easily and we cannot use SSE instructions to accelerate

this code beneficially. This operator represents the worst case for DySER because it has only one

computation and others are just address calculations.

106

Inputs: K, keys

V, values

Outputs: A, aggregated values

for (i = 0; i < LEN; i +=2): {

Can vectorize this with DySER instructions

K_i0 = K[i], K_i1 = K[i+1];

A_K_i0 = A[K_i0];

A_K_i1 = A[K_i1];

Can vectorize this with DySER instructions

V_i0 = V[i], V_i1 = V[i+1]

// Inside DySER

int O0 = A_K_i0 + V_i0;

int O1 = ((K_i0 == K_i1) ? O0: A_K_i1 + V_i1

// Outside DySER

A[K[i]] = O0;

A[K[i+1]] = O1

}

Figure 5.13: Aggregation

However, we can unroll the loop, and vectorize the loading of the V array using the partial

vectorization technique similar to the case study performed in section 4.8. However, to map the

addition inside DySER, we need to perform the aliasing check on K. Figure 5.13 shows the unrolled

loop before mapping the compute subregion to DySER. Although it increases the number of

operations to be performed by DySER, it decreases the number of instructions required to load and

store instructions because of vectorizable loads.

With aliasing check performed with in DySER, we achieve speedup of 56% over baseline when

integrated with an out-of-order processor, because DySER can exploit the consecutive accesses to

memory and uses the out-of-order processor’s ability to do memory disambiguation effectively for

non-consecutive access to memory.

As a variant of aggregation, we also implemented and evaluated Jenkin’s Hash with aggre-

gation. This primitive computes the keys in the aggregation kernel with Jenkin’s Hash function

and then aggregates the values. Since the aggregation does not have a computation subregion

for DySER, computing Jenkin’s hash in the kernel provides DySER with more operations to be

mapped.

107

Sca
n

Sca
n+RLE

Sort

Hash

Strc
m

p
Aggr

gm
ean

0

1

2

3

4

5

6

S
p
e
e
d
u
p

Scalar

SSE

Manual DySER

DySER

Figure 5.14: Database kernels speedup comparison

Quantitative Evaluation Figure 5.14 shows the speedup of the database primitives on DySER

and SSE compared to the baseline processor. The second bar shows the speedup of the SSE over

the scalar processor. The third bar shows the speedup provided by DySER when the primitives

are manually optimized with compiler intrisics just like the SSE. The fourth bar shows the relative

speedup of DySER when the primitives are compiled with the DySER compiler. SSE provides a

geometric mean speedup of 40% over the scalar version, whereas DySER provides a gemeotric mean

speedup of 70% over the scalar version. However, if we optimize the kernels manually, DySER can

provide a mean speedup of 2.5×.

For scan, both DySER and SIMD exploit fine grain data level parallelism and provide similar

speedup for the same memory bandwidth (16 bytes per cycle). The reason DySER performs slightly

better than SSE is that it emulates a larger SIMD unit and exploits the pipeline parallelism in DySER

better. For SCAN+RLE, SSE fails to vectorize and does not provide any benefit. However, DySER

uses it flexible hardware substrate to create the special operation described above to exploit the

data level parallelism.

Similarly for sort, DySER and SSE use the bitonic sort merge network to exploit data level

108

SELECT l_returnflag , l_linestatus ,

sum(l_quantity) as sum_qty ,

sum(l_extendedprice) as sum_base_price ,

sum(l_extendedprice * (1 - l_discount))

as sum_disc_price ,

sum(l_extendedprice * (1 - l_discount) *

(1 + l_tax)) as sum_charge ,

avg(l_quantity) as avg_qty ,

avg(l_extendedprice) as avg_price ,

avg(l_discount) as avg_disc ,

count (*) as count_order

FROM lineitem

WHERE l_shipdate < date ’1998 -09 -01’

GROUP BY l_returnflag , l_linestatus

Figure 5.15: Query 1 of TPC-H

parallelism. However, DySER performs better than SSE because the shuffle operations that are

needed to perform bitonic merge are mapped to the DySER network itself, thereby eliminating

extra instructions from the processor pipeline.

Since there is no beneficial way to use SSE to accelerate hash, strcmp and aggregation

primitives, SSE fails to provide speedup. However, DySER maps the computations from the

primitives described earlier and uses the flexible substrate and native mapping of control flow to

accelerate the kernels.

Observation 5.11. When data level parallelism is available in the database primitives, both DySER and

SSE improve the performance significantly. When DLP is limited or not available, DySER provides an

average of 50% speedup over the baseline, whereas SSE fails to improve.

5.7.2 Full Query Evaluation

As described in the previous section, DySER provides significant speedup over the baseline when

DLP is available and provides modest improvement when DLP is not available. In the query

processing, both types of primitives will be used to achieve the task. In this section, we evaluate

a full query on DySER to understand the trade offs and the effect of DySER when both types of

primitives are needed to achieve the task.

Figure 5.15 shows query 1 of the TPC-H benchmark [103]. We chose query 1, because it is

CPU-bound and hence a good candidate for specializing with DySER. Also, this query’s plan

109

SELECT

sum(l_extendedprice * (1 - l_discount))

sum(l_extendedprice * (1 - l_discount) *

(1 + l_tax))

FROM lineitem

WHERE l_shipdate < date ’1998 -09 -01’

GROUP BY l_returnflag , l_linestatus

Figure 5.16: Simplified query 1 of TPC-H

is simple and easy to understand and does not require any complex optimizations or joins. It is

basically a scan on the lineitem table of 6 million tuples, that selects most tuples. It then computes

a number of fixed point decimal expressions and performs eight aggregates. Since the aggregate

grouping is on two single character columns, and only has four unique combinations, the hashing

computation can be performed easily, requiring no additional computation resources.

As explained before, main memory databases exploit the fine grain parallelism through SIMD

units in commodity processors [14]. They create vectorized query plans, in which the query

is partitioned into a sequence of primitives and each primitive operates on data with simple

computations so that the compiler can easily auto vectorize these primitives.

However, if we use the vectorized query plan, this does not fully exploit DySER’s pipeline

parallelism and has a high memory to compute ratio. We evaluate the performance of TPC-H

query 1 with three looping strategies to understand the tradeoffs involved with DySER. They are

1. Single Loop or JIT: In this strategy, we process the whole query with a single loop. The

advantage of this approach is that the loop consumes the data fully and there are no extra

loads and stores. The disadvantage is that the loop is not vectorizable since it contains multiple

aggregation kernels.

2. Multiple Loops or Vectorized: In this strategy, we partition the query processing into multiple

loops in which we perform only one operation and materialize the intermediate values. The

advantage is that some of the loops are vectorizable, but requires additional loads and stores.

However, if the temporary storage is small enough to be in the caches, the extra loads and

stores will not affect the overall performance.

110

for (i = 0; i < N; i += BLOCK_SIZE) {

compute projections

for (j = 0; j < BLOCK_SIZE; ++j) {

base_price = table[’price’][i]

disc = table[’discount ’][i]

tax = table[’tax’][i]

disc_price[j] = base_price * (1-disc)

charge[j] = disc_price[j] * (1+ disc)

}

compute hash

for (j = 0; j < BLOCK_SIZE; ++j) {

hash[j] = compute_hash(table[’returnflag ’][i+j],

table[’linestatus ’][i+j])

}

#aggregation

for (j = 0; j < BLOCK_SIZE; ++j) {

result.sum_disc_price[hash[j]] += disc_price[j]

result.sum_charge[hash[j]] += charge[j]

}

}

Figure 5.17: Hybrid loop or Partitioned looping strategy for the simplified query

3. Partitioned Loop or Hybrid: In this strategy, we partition the loops such that we can exploit

the data level parallelism and the data locality simultaneously. Figure 5.17 shows the pseu-

docode for this strategy for a simplified variant of query 1. The simplified query is shown in

Figure 5.16

Figure 5.18 shows the performance results for query with DySER and SSE. It shows the speedup

relative to scalar version of the JIT compiled loop. i.e. using one loop to perform the full query. In

all cases, the vectorized version is slower than its JIT or Hybrid counterparts because of the extra

instructions required to load from and store to the memory. SSE does not provide any performance

improvement on the vectorized loops because of the aggregation primitive which does not lend

itself to vectorization. However, DySER with the JIT version is 2.7× faster than the scalar version

because it exploits its pipeline parallelism to accelerate the computation in the full query.

From the performance results for DySER, we observe that DySERization of the single loop

implementation performs better than other approaches. The reason is that all operations from the

single loop can be mapped to DySER without overflowing, which creates a customized hardware

accelerator in the DySER. By exploiting the pipeline parallelism, DySER performs better than the

111

Sca
la

r
SSE

DyS
ER

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p

JIT

Vectorized

Hybrid

Figure 5.18: Performance results for TPC-H query with SSE and DySER on three looping strategy

other approaches. If the computation does not fully map to the DySER, the hybrid version may be

the better option. To fully utilize DySER’s potential, a careful tradeoff between looping strategy,

appropriately computation size, and exposing the DLP available are required.

5.7.3 Database Evaluation Summary

DySER exploits both pipeline parallelism and data level parallelism to improve performance. With

database kernels that have DLP, such as SCAN, SORT, and PROJECT, DySER provides more than

2× speedup, which is similar to SIMD. When the database kernels have limited DLP or no DLP,

DySER speeds up by 50%, whereas SIMD fails. Combining multiple database kernels to exploit

pipeline parallelism also improves performance, but requires careful looping strategies to utilize

the DySER efficiently.

5.8 Chapter Summary

In this chapter, we first presented a detailed workload characterization to demonstrate that the

DySER compiler can specialize programs written with traditional programming languages. We then

described the performance and energy evaluation of the DySER implementation and showed that the

112

DySER provides significant improvements for data parallel workloads and modest improvements

for control intensive workloads. We show that the compiler generated code performs as well as the

manually optimized code. We also demonstrate that vectorization using the AEPDG and the DySER

execution model perform better than the state of art auto vectorization in ICC. Sensitivity studies

show that as the width of the processor increases, the performance gain from DySER decreases,

but energy reduction due to DySER increases. Finally, we evaluated DySER on database primitives

and demonstrated that DySER can specialize a real world application where both data parallel and

control intensive kernels work together.

113

6 Related Work

Using specialized architectural designs to improve performance and energy has been an active

area of research for decades. Section 6.1 describes the related work in architecture designs that

use specialization to accelerate or to achieve energy efficiency. It also discusses compilers for these

architectures, if any. The DySER architecture requires advanced support from its compiler in

order to exploit the resources available. Section 6.2 discusses the related work on the compilation

techniques used in the DySER compiler.

6.1 Specialized Architectures

One of the closest works to DySER from the classical era of supercomputing is the Burroughs

Scientific Processor (BSP) [73]. BSP uses highly specialized arithmetic elements that are fully

pipelined to accelerate vectorized FORTRAN code. The evolution of three important insights from

BSP leads to the DySER architecture. First, to achieve generality, both BSP and DySER utilize

compiler support to generate configurations that map computations to an execution substrate.

DySER further expands the flexibility and efficiency by introducing a circuit-switched network in

the execution substrate. This improvement needs several additional supporting mechanisms in

the architecture such as flow control and reconfigurability. Second, both BSP and DySER identify

the critical role of intermediate value storage for performance and efficiency. The arithmetic

elements in the BSP have dedicated register files which are not part of the architectural state.

Unlike this “centralized” design, which is not energy efficient, DySER provides distributed storage

in its network using pipeline registers. Third, to generate useful code, the BSP compiler maps

vectorized FORTRAN code to a set of prebuilt templates called vector forms, which in turn have

114

efficient mapping to the pipelined arithmetic elements. In contrast, DySER uses a co-designed

compiler that can identify arbitrary code-regions and map them to DySER’s hardware substrate.

A final difference is in the implementation. While the BSP spends much effort on building a fast

storage system (register, I/O, special memory), DySER uses a conventional core for efficient data

management to achieve the same goal.

We broadly classify the related work from the recent literature into four categories: application

specific accelerators, coarse grain reconfigurable accelerators, tiled architectures, and data parallel

architectures. Table 6.1 lists the related works and their characteristics compared to DySER. Column

6 of Table 6.1 lists the characteristics of DySER. The design of DySER achieves three goals simulta-

neously: generality in software, low design complexity in hardware, and efficiency. Basically, it

strives to provide efficiency on diverse sets of workloads written in the traditional programming

model without increasing design complexity.

Application Specific Accelerators: Application specific accelerators are custom hardware units

that speed up or improve energy efficiency for a specific application. They are usually implemented

as an Application Specific Integrated Circuit (ASIC) and integrated to a core as an intellectual

property (IP). Column 2 of Table 6.1 lists the characteristics of these accelerators.

Architects have long used application specific accelerators for energy efficiency in the embedded

space. Examples include accelerated signal processing [81], cryptography [129], video encoding [53],

and lossless image compression [97]. Since ASICs implement the algorithm in hardware directly,

they provide more than an order of magnitude in energy efficiency. However, they are application

specific and are not flexible. i.e., these accelerators usually cannot be used to speed up another

application. In addition to not being flexible, their integration with a processor core increases

design complexity because they usually need dedicated resources and glue logic. In embedded

processing, to achieve flexibility and efficiency close to an ASIC, we use application specific in-

struction set processors (ASIP). The instruction set of these processors can be customized to benefit

a specific application. For example, with the Xtensa processor [42] from Tensilica/Cadence and

OpenCores [95], we can extend a baseline RISC processor by adding new instructions, registers,

and datapath before synthesizing the processor. This provides flexibility during synthesis, but the

115

Application
Specific
accelerators

CGRAs Tiled DLP DySER

[81, 129, 53,
97, 42, 95]

[31, 57, 41,
115, 130, 22,
25, 23, 85, 21,
87, 88, 27].

[122, 121, 16] [117, 43, 91,
72, 78, 108,
112, 101]

[47, 48, 45, 46,
8, 7]

Software

Generality Application
specific

Loop specific General
Purpose

Loop specific General
Purpose

Scope Application Inner Loop Full Kernels/
Loops

Code Regions

Flexibility None Limited Yes Limited Yes

Hardware

Overall Com-
plexity

High Medium High Low Low

Integration Dedicated coprocessor/
incore

Dedicated coprocessor/
incore

incore

Area Large Large/ Small Large Large/
Medium

Medium

Performance High Low Medium High/
Medium

Medium

Mechanisms

ISA New Co-designed New New/ Exten-
sion

Extension

Compute Ele-
ments

Custom Logic Functional
Units

Cores, RF,
buffers

SIMD Units FU/Switches

Network Custom Custom Packet Switch Custom Circuit Switch

Table 6.1: Related Work on Specialized Architecture

116

flexibility is lost after synthesis.

In contrast, DySER provides flexibility by dynamically creating the hardware datapath at

runtime. With DySER, we can create custom instructions to adapt the datapath for applications

that are running on the processor. Hence, DySER provides more flexibility than ASIPs and their

custom instruction set. In addition, it can target general purpose workloads, whereas ASIPs cannot.

In addition, DySER can be more easily integrated with existing general purpose cores than these

custom ASIPs.

Recently, Conservation cores (C-Cores) [124] have been proposed to mitigate the effect of dark

silicon by creating application specific hardware circuits for the most frequently executing functions

to reduce the energy consumption. The functionality of stable applications, which do not change

drastically, is extracted at the compiler IR level, and then a synthesis and mapping process statically

specializes this functionality into multiple C-Cores, which are essentially application specific

circuits, at system design time. To accommodate modifications through the lifetime of the chip, a

patching mechanism is provided, which allows limited modification to the circuits to evolve the

hardware with the software. Conservation cores use an exception handling mechanism to transfer

control between the main processor and the conservation cores. By doing static domain-specific

specialization, the energy efficiency is maximized. The energy efficiency benefit from conservation

cores is close to the ASIC acceleration, but the performance gain over baseline inorder processors

is very low, if any, because of the overhead of exception handling and lack of pipelining through

the substrate. Also, this approach requires an independent co-processor for each application and

cannot target diverse sets of workloads without being overly area inefficient. In contrast, DySER

can target a diverse set of workloads automatically and create custom hardware dynamically to

provide energy efficiency along with performance. Even though they are tightly integrated to the

processor, C-Cores cannot execute computation speculatively and do not exploit fine grain data

level parallelism. Since DySER is internally stateless, it can execute computation speculatively and

exploit fine grain DLP by effectively emulating a SIMD unit with its vectorized instructions and

many functional units.

117

Coarse Grain Reconfigurable Accelerators To achieve both full flexibility and efficiency close to

ASICs, coarse grain reconfigurable accelerators have been proposed [56]. Coarse grain reconfig-

urable accelerators (CGRAs) consist of a sea of processing elements (PE), usually interconnected

with a mesh network. They provide the ability to create specialized units. Unlike FPGAs, which

allow reconfigurability at gate level, these accelerators allow reconfigurability at word level and are

more area efficient than FPGAs. Column 3 of Table 6.1 lists the characteristics of these accelerators.

Coarse grain reconfigurable architectures are integrated to the core either as coprocessors or func-

tional units. Coarse grain reconfigurable coprocessors from the past include RaPID [31], Garp [57],

PipeRench [41], MorphoSys [115], Chimaera [130] and Tartan [87]. Coarse grain reconfigurable

compound functional units include CCA [22, 25], SoftHV [27], and VEAL [23].

RaPID uses a linear array of functional units that can communicate with their nearest neighbors

over a bus. It can be configured to form a linear computational pipeline that can perform repetitive

computation efficiently. Programming for RaPID is done with an architecture specific language

called Rapid B programming language which makes it easier to map applications to the RaPID

substrate [32]. Since its substrate is a linear array, it cannot map computations with multiple flows.

Unlike DySER, it uses a specialized language and hence cannot target legacy applications easily.

Garp uses an FPGA-like substrate to accelerate tight inner loops. However, it suffers when loop

iterations are small because the cost of configuration for Garp is high. The Garp C compiler [17] takes

unmodified C code and generates configurations for its substrate. However, the Garp architecture

does not map control flow and its scope is limited to basic blocks. In contrast, the DySER compiler

targets larger regions than basic blocks using the AEPDG to generate configurations for DySER. In

addition, DySER’s ability to quickly switch configurations allows it to provide efficiency even when

the loop iterations are small.

PipeRench [41] is a domain specific reconfigurable coprocessor for stream based media applica-

tions. It uses a compiler for a domain specific language and maps the application to its substrate.

With DySER, a variety of applications including media applications can be targeted for acceleration.

The DySER compiler compiles directly from programs written in traditional languages like C/C++

to DySER.

Morphosys [115] is a coarse grain reconfigurable coprocessor with a Mips-like “TinyRISC”

118

processor with an extended instruction set for communicating to the coprocessor. It uses direct

memory access (DMA) instructions in the host processor to communicate with the CGRA substrate.

Programming for Morphosys is done through manual assembly programming.

The Tartan architecture [87, 88] and its compiler memory analysis explore spatial computing at

a fine granularity with entire applications laid out on reconfigurable substrates on a co-processor.

Procedure calls, library calls, and system calls require switching to the main processor and need

extensive context saving. Also, the Tartan substrate supports multi level configurations which

makes configuration switching a costly operation. DySER’s specialized execution model is far

less disruptive and achieves efficiency by dynamically reconfiguring the DySER datapaths as the

application changes phases with fast configuration switching.

In summary, previously proposed coarse grain reconfigurable coprocessors provide specialized

datapaths for efficiency, but it is difficult to program them, and they suffer from inefficiency due to

the granularity of their specialization. In contrast, DySER integrates with the processor pipeline

and exposes a set of flexible mechanisms that make it a good compiler target.

It has also been proposed to integrate coarse grain reconfigurable architectures with a processor

as a compound functional unit, similar to DySER. Examples include CCA [22, 25], SoftHV [27]

and VEAL [23]. Like DySER, these CGRAs integrate tightly with the processor pipeline. However,

they do not support diverse application domains, and have memory limitations. For example,

CCA [22, 25] uses a feed forward cross bar network connecting consecutive rows, which limits

scalability and generality. With its circuit-switched interconnection network and decoupled access

execute execution model, DySER can specialize a variety of code patterns with arbitrary memory

access patterns. Unlike DySER, CCA lacks support for control flow.

SoftHV [27] has a co-designed virtual machine which reorders and fuses micro ops and executes

the fused microops on accelerators to achieve energy efficiency over an inorder processor. It uses

two accelerator units called ICALU and VLDU to accelerate simple arithmetic operations and

consecutive memory operations respectively. Instead of fusing operations at run-time, which incurs

additional overheads and design complexity, DySER exposes the flexible microarchitecture to the

compiler and specializes over a larger region than SoftHV without additional overheads during

runtime.

119

VEAL [23] tries to accelerate inner loops by designing loop accelerators with a compound

functional unit (ex. CCA) to exploit data level parallelism. However, these loop accelerators do not

support control flow. In contrast, DySER uses predication and φ-functions to support control flow

inside the substrate and can map loops with internal control flow to DySER. VEAL is limited to inner-

most loops that must be modulo-schedulable, and does not allow the specialization region to extend

across load/stores. Also, these accelerator implementations have limited size, supporting only a

small number of functional units. For example, VEAL exploits the loop’s modulo-schedulability

with a novel design to generalize to multiple applications, but is limited to a small number of

functional units: 2 INT, 2 FP and one compound unit. While VEAL focused on loop accelerators

that can be used for multiple applications, Yehia et al. [131] and Fan et al. [36] seek to design

loop accelerators with compound functional units to accelerate inner loops for an application.

Unlike these approaches, DySER is more general and can used to accelerate code regions with

unpredictable control flow and memory accesses.

With their configurable computation fabric, CGRAs can be used to create specialized datapaths

for efficient computation, just like DySER. However, DySER’s execution model, control flow support,

fast reconfigurability and ability to exploit fine grain data level parallelism with vector instructions

make it a light weight solution for achieving efficiency when integrated with a general purpose

core.

Tiled Architectures The regular pattern of the mesh network and the array of functional units

of the DySER hardware substrate resemble tiled architectures like RAW [122], Wavescalar [121],

and TRIPS [16]. Column 4 of Table 6.1 lists the characteristics of these architectures. These architec-

tures have been proposed to extend the von Neumann paradigm and try to replace non-scalable

centralized structures in the traditional superscalar processors with regular scalable distributed

structures.

Although DySER’s hardware substrate resembles these architectures’ tile based microarchitec-

ture, DySER is a pure computation fabric and thus has no extra buffering, instruction storage, or

data-memory storage in the tiles. In addition, DySER implements circuit-switched static routing of

values, thus making the network far more energy efficient than dynamically arbitrated networks.

120

While these architectures distribute design complexity to different tiles, DySER does not add design

complexity. The slicing of applications and the decoupled/access execution model require DySER

only to perform computations, which simplifies the interface to the existing microarchitecture. Com-

pared to these architectures, DySER achieves similar performance without massive ISA changes

and at significantly smaller area and design complexity when compared to these full-chip solu-

tions. However, it lacks their intellectual purity, since we relegate loads and stores to the processor

pipeline.

Data Parallel Architectures In addition to being an efficient specialized architecture, DySER uses

vector instructions to access multiple data elements from memory with a single instruction. Data

parallel architectures use single instruction multiple data (SIMD) to exploit data level parallelism.

Using its flexible hardware mechanism, DySER can emulate a SIMD unit and exploit available data

level parallelism [45]. DLP architectures can be broadly classified into three broad categories: SIMD

extensions, GPUs, and Other DLP architectures.

SIMD Extensions: Most modern processors include ISA extensions for vector operations like

SSE/AVX, Altivec or Neon, which are designed to accelerate computations by exploiting data-

level parallelism. The presence of control-flow prevent these architectures from exploiting fine

grain data level parallelism because they lack masking registers and predicate registers. Also,

strided data accesses forces these architectures to use scalar loads and stores which hurts efficiency.

Several extensions have been proposed to mitigate these problems [117, 43]. In contrast, DySER

natively maps the control flow instructions to the DySER hardware substrate using predication and

φ-function operations, and handles the strided memory access through its flexible vector interface.

GPUs: Another approach is to use alternative architectures focused on data-level parallelism.

GPUs [91] are the mainstream example. They use SIMT execution model to address some of the

challenges of SIMD, providing significant performance through optimized data-parallel hardware

and memory coalescing. The disadvantages are that programs in the traditional programming

model have to be rewritten and optimized for a specific GPU architecture. From a hardware and

system integration standpoint, the design integration of a GPU with a general purpose core is highly

121

disruptive, introduces design complexity, requires a new ISA, and adds the challenges associated

with a new system software stack. However, the DySER compiler, described in this thesis, compiles

programs written with the traditional programming model to automatically target DySER and

achieve efficiency.

Other DLP Architectures: The Vector-Thread architecture is a research example that is even

more flexible than the GPU approach, but it is difficult to program [72, 78]. Sankaralingam et al.

develop a set of microarchitectural mechanisms designed for data-level parallelism, which are not

inherently tied to any underlying architecture [108]. One of the recent DLP architectures is Intel’s

Xeon Phi, which accelerates data parallel workloads through wide SIMD and hardware support

for scatter/gather [112]. In general, these DLP architectures do not perform well outside the data

parallel domain and there are additional issues when integrating them with a processor core. In

contrast, DySER can accelerate data parallel workloads and irregular workloads with control flow

and unpredictable memory accesses. In addition, when the application has a mix of both data

parallel and control intensive code regions, as in the case of databases, it is harder for these data

parallel architectures to provide acceleration. However, as demonstrated in this thesis, DySER can

dynamically create specialized hardware datapaths to achieve efficiency.

Similar to the DySER approach, which uses the flexible hardware substrate to exploit both

data level parallelism and instruction level parallelism, the recently proposed LIBRA architecture

also uses the principles of heterogeneity and dynamic reconfigurability to build a flexible accelera-

tor [101]. It augments a SIMD architecture with a flexible network to improve the scope of SIMD

acceleration. Though this approach shows promise, effective compilation techniques have not been

fully explored.

Recent Proposals In the last few years, several works have been published on using specialized

hardware to achieve energy efficiency or performance with an execution model similar to DySER.

Examples include HARP [127], NPU [35], BERET [50], Convolution engine [104], Index Traversal

Acceleration [71], Q100 [128], LEAP [55] and SGMF [125]. We describe the connections and influence

of DySER in their principles.

122

HARP [127] seeks to improve the throughput and energy efficiency of large scale data partition-

ing, especially range partitioning, with a domain specific accelerator and stream buffers. Similar to

DySER decoupled access/execute architecture, the HARP accelerator is decoupled from the rest of

the microarchitecture with an input and an output stream buffer. Like DySER, ISA extensions are

used to manage data transfers from memory to the stream buffers. The accelerator pulls its data

from the input stream buffer and delivers its output to the output stream buffer. We can configure

DySER to partition the data and use its flexible vector interface to achieve efficiency similar to

HARP. However, HARP’s dedicated data path to memory, dedicated stream buffers and dedicated

hardware is more energy efficient than DySER’s general purpose circuit switched interconnect.

NPU [35] proposes an accelerator, called the Neural Processing Unit, which accelerates appli-

cations with inexact computation. Many modern applications such as image rendering, signal

processing, augmented reality, and data mining have approximatable computation, i.e., they can

tolerate a certain degree of error in their outputs. The NPU approach exploits these characteristics

by replacing a large code region with an invocation of neural network in the NPU. Similar to DySER

invocation, the main processor communicates with the NPU through input and output FIFOs.

Unlike DySER, which creates specialized data paths for the exact computation, NPU accelerates

the learned model of the neural network with a specialized sigmoid functional unit and dedicated

constant broadcast network. DySER can be adapted to accelerate the neural network model instead

of the computation to mimic NPU. However, NPU’s dedicated sigmoid functional unit and constant

broadcast network provide more efficient support for computing the neural network than the

resources available in DySER.

BERET [50] specializes only code-regions without any internal control-flow using its subgraph

execution blocks (SEB), which are customizable cluster of functional units. Lack of divergent control-

flow support limits the number of potential code-regions that can mapped to SEBs. DySER’s ability

to map control-flow natively helps more code regions to be accelerated with DySER. BERET is

integrated with an inorder processor as a coprocessor and does not lend itself to integrate with

an out-of-order processor, as it does not have mechanisms to rollback misspeculated computation.

Also, implementing SEBs and integrating them to an existing microarchitecture pipeline is hard,

since the BERET architecture allows memory operations to be performed from SEBs themselves. In

123

contrast, DySER decoupled access execute model makes it easier to integrate with an out-of-order

processor.

The convolution engine [104] targets image processing kernels and stencil computations by

exploiting the key data flow patterns in the kernels. It uses custom load/store units, custom

shift registers, map and reduce logic, a complex graph fusion unit, and custom SIMD registers to

accelerate convolution and other filter kernels. The programming for the convolution engine is

done through compiler specific intrinsics unlike DySER. Since convolution type kernels have more

fine grain data level parallelism, we can specialize these kernels with DySER and use its vectorized

instruction to achieve high throughput and efficiency.

The work in Meet the Walkers [71] presents an on-chip accelerator called Widx, for indexing

operations in big data analytics. Widx uses a set of programmable hardware units to achieve high

performance by accessing multiple hash buckets concurrently and hashing input keys in advance

and hence removing hashing from the critical path. Widx itself is implemented with a custom

RISC processor that supports fused instructions to accelerate hash functions. The accelerator is

programmed with a limited subset of C, without any dynamic memory allocation, no stack and

with one output. DySER can specialize the indexing operations using its substrate. However, the

“Walkers” architecture achieves high throughout by decoupling hashing and hash table walking

with a dedicated buffer. Without this dedicated buffer, the DySER architecture stores and loads

from memory and consumes memory bandwidth, which may lead to loss of efficiency. As with

other domain specific accelerators, the applicability of Walkers outside its chosen domain is limited.

In contrast, DySER accelerates a variety of workloads.

The Q100 [128] architecture accelerates database processing tasks with a collection of heteroge-

neous ASIC tiles that can efficiently perform database primitives like sort, scan etc., As we described

in Section 5.7, DySER can specialize database primitives and achieve significant energy efficiency.

Compared to Q100, which needs separate ASIC tiles for each primitive, DySER can dynamically

specialize for each primitive and hence be more area efficient. However, for each specific primitive,

Q100 is more energy efficient than DySER because DySER uses its general purpose circuit-switched

network to route data.

Recently, to eliminate the artificial inefficiencies due to program counter sequencing of ALU

124

operations, Triggered Instructions [98] has been proposed. It presents a novel execution model which

performs computation and transitions to different states without explicit branching instructions, but

with rules or conditions. However, programming the triggered instruction architecture is difficult.

It requires significant compiler support, and a new programming model and new algorithms.

However, using the DySER compiler, we can target programs written in the traditional programming

model.

6.2 Compilation Techniques

In order to achieve high efficiency with coarse grain reconfigurable architectures, a good compiler

is essential to manage and exploit the available heterogeneous computing resources available. In

addition to being a CGRA compiler, the DySER compiler also borrows vectorization techniques to

generate DySER vector instructions to exploit fine grain data level parallelism. The DySER compiler

represents the candidate code regions with the Access/Execute Program Dependence graph for

optimization. Below, we present related work on the techniques that are used to construct the

AEPDG and optimizations that are performed on the AEPDG.

Identifying Code-Regions: In order to compile for DySER, the DySER compiler first identifies

code regions without loops or back edges as a candidate region and construct the AEPDG for

that region. There are many alternative methods to identify acyclic code regions: Basicblocks [3],

Traces [33], Superblocks [67], Hyperblocks [84] , Treegions [58] and Pathtrees [47]. Basic blocks are

straight line block of code without any control flow. Traces are linear paths through the code, but

they can have multiple entrances and exits. Superblocks are traces with single entrances, i.e. they are

single entry multiple exit regions. However, they cannot have any form of control flow. Hyperblocks

are single-entry, multiple exit code regions that can have internal control flow. Treegions are the

tree of basic block within the control flow graph(CFG). Pathtrees are set of basic blocks identified

with Path Profiling to represent an application phase. The DySER compiler uses Hyperblocks to

identify the acyclic code regions to specialize when there is no dynamic profiling is available. When

dynamic profiling is available, it identifies acyclic code regions that are similar to Pathtrees. It then

125

uses the AEPDG to represent the programs to generate optimized code for DySER.

Region Optimizations: Depending upon the methods to identify code regions, compilers use

several techniques to alter the region size that can be fit into DySER. The oldest and simplest region

enlargement technique is loop unrolling. Other techniques such as Tail duplication, loop peeling are

also used. Subregion identification is a common technique to improve accelerator efficiency [24, 100].

These approaches either require modulo-schedulable loops or proportional sized loops. In addition

to subregion identification with subgraph matching, the DySER compiler uses subregion splitting

on the AEPDG and utilizes hardware support, especially fast configuration switching, to achieve

efficiency.

Scheduling: The DySER compiler statically schedules the instructions in the execute-PDG to the

DySER substrate. Previously, static scheduling has been explored in VLIW processors [33] and

RAW [77]. However, it works on the fine granularity of a few instructions within a basic block or

trace. The DySER compiler schedules tens of instructions in the execute-PDG to DySER and also

does the explicit routing of data between the instructions.

Traditional instruction schedulers are not suitable for scheduling operations to coarse grain

accelerators because they do not take into account the explicit routing of operands between the

operations. Mei et al. use simulated annealing techniques to schedule a loop body to a reconfigurable

substrate [86]. They start with a random placement of operations to the substrate and then operations

are randomly moved between functional units until a valid schedule is achieved. Although this

may succeed, in practice, the simulated annealing algorithm takes a long time to converge for loops

with a large number of operations. The DySER compiler takes a simple approach to scheduling

operations to DySER. It uses the list based scheduling algorithm, which either succeeds or fails.

When it fails, it spills the operations to the access-PDG and continues. Although this may result

in a suboptimal schedule, in practice, it maps large regions to DySER quickly and generates good

quality schedules. Another approach is to use modulo graph embedding [100]. However, this

requires the region to be a modulo schedulable loop.

Recently, Nowatzki et al. [93, 92] described a general scheduling framework for spatial archi-

126

tectures using integer linear programming which can target a variety of specialized architectures

including DySER. Also, they discussed the vast literature from this area.

The mapping of the execute-PDG to DySER is related to VLSI place-and-route problems [83].

However, the DySER scheduler is significantly smaller scale than VLSI problems and the placement

in the case of DySER is fixed.

Intermediate Representation for CGRAs: There have been several works on compilers for coarse

grain reconfigurable architectures that are related to the work presented in this thesis. Past studies

and efforts at compilation tools for coarse grain reconfigurable architectures have focused mainly on

exploiting instruction level parallelism (ILP) [17, 77] and modulo schedulable loops [86, 100]. These

works uses data flow graph (DFG) as their intermediate representation to capture the execution

through their reconfigurable substrate. Since they usually do not support control flow inside their

substrate, this is sufficient. Also, the specializable regions are usually selected separately and the

scheduler maps the computation to the substrate. In contrast, the DySER compiler captures the

spatio-temporal properties of the computation with the AEPDG and uses the AEPDG itself to select

code regions for specialization.

CGRA Compiler Implementations: There have been compilers implemented for coarse grain

reconfigurable accelerators. One example CGRA compiler is the Garp C compiler. The Garp C com-

piler [17] takes unmodified C code and generates the configuration for its substrate. However, the

Garp architecture does not map control flow and its scope is limited to basic blocks. PipeRench [41],

a domain specific reconfigurable architecture for stream based media applications, uses a compiler

for a domain specific language to achieve efficiency. In contrast, the DySER compiler identifies

code-regions across basic blocks and compiles programs written with the traditional programming

model.

Vectorizing Compilation Techniques: Autovectorizing compilers have been around for decades,

beginning with perhaps the High Performance Fortran (HPF) compilers of the 1980s. Many of

the standard loop-vectorization techniques that we utilize were already well known in the mid

1980s [96]. To get high performance from data parallel code with control flow and unpredictable

127

memory access patterns, compiler writers have been working around the limitations imposed by

SIMD’s rigid model of homogeneous execution in various ways [96, 11]. We discuss how vectorizing

compilers deal with control flow, strided memory access and loop carried dependences.

To cope with control-flow, vectorizing compilers usually first convert control dependence to data

dependence through if conversion [4] and then use standard vectorizing techniques. However, when

nested conditions are present, these technique usually do not work as the number of predication

required grow exponentially. Instead the DySER compiler exploits the predication and φ-function

support in DySER to map the if-converted control dependences easily to DySER. Recently, Shin et

al. [114] describes how to generate efficient vector codes in the presence of control with branch-on-

superword-condition-code instructions in the ISA. It uses a novel reverse-implies graph and uses

a heavy weight analysis to generate the code. In contrast, the DySER compiler uses a simplified

analysis and maps control flow natively to DySER.

To overcome interleaved or strided data access, Nuzman et al. describe techniques, using

common vector primitives, to perform these access patterns at fixed stride lengths [94]. Gang et al.

provided a more universal methodology for optimizing data permutations [107]. These techniques

will necessarily incur overheads that the DySER compiler and DySER hardware mechanisms that

provide a flexible vector interface seek to avoid.

For handling loop-carried dependence and partially vectorizable loops, one solution has been

to use loop-fission [69] to break the vectorizable portion and non-vectorizable portion of the loops.

However, loop-fission may not be possible for all cases and it may be less cache friendly. A general

solution to handle loop carried dependence is to use polyhedral models [49, 37]. A polyhedral

model is a mathematical framework to perform loop nest transformations to eliminate loop car-

ried dependences, if possible. It maps the iterations of the loops to lattice and performs affinity

transformations to eliminate loop carried dependences.

Other Vectorizing Compiler Approaches: The ispc compiler tries to solve the challenges with

SIMD by adopting a new language semantics and trying to overcome compiler problems [102],

whereas the DySER approach operates on C/C++ source code and makes the architecture more

flexible. Intel Xeon Phi [112], a recent SIMD architecture, and its compiler help programmers

128

tackle the challenges of SIMD through algorithmic changes such as struct-of-arrays to array-of-

structs, blocking, and SIMD friendly algorithms, compiler transformations such as parallelization,

vectorization, and with scatter/gather hardware support [111]. However, to successfully use them,

these changes require heavy programmer intervention and application specific knowledge.

129

7 Conclusion

Computer architects are increasingly using coarse grain reconfigurable architectures for specializing

general purpose workloads to gain performance and energy efficiency in the post Dennard scaling

era. This thesis has presented a novel design with a hardware/software solution, spanning the

microarchitecture, compiler and application, that avoids disruptive changes to the existing hard-

ware/software stack while achieving energy efficiency. It presented a practical way to use coarse

grain reconfigurable accelerators automatically for diverse sets of workloads written in traditional

programming languages such as C/C++.

7.1 Summary of Contributions

The key contributions of this thesis are:

DySER Microarchitecture: It presented a hardware codesigned approach to achieve energy ef-

ficient computing with a dynamically specialized architecture. Specifically, it described the mi-

croarchitecture of DySER: Dynamically Specialized Executed Resources. DySER can dynamically

create specialized datapaths for arbitrary sequences of computation with its heterogeneous array of

functional units and circuit switched network. It described hardware mechanisms to map control

flow to the DySER hardware substrate. It also described the flexible vector interface that DySER

uses to exploit fine grain parallelism.

DySER Compiler: It presents a source to binary compiler toolchain for automatic specialization

of programs written with the traditional programming model in C/C++. It developed a novel inter-

mediate representation called the Access Execute Program Dependence Graph (AEPDG), a variant

130

of the Program Dependence Graph, to capture the temporal and spatial nature of computation. It

also presented compiler optimizations and transformations using the AEPDG, to produce high

quality code for dynamically specialized architectures.

Application: It demonstrated the ease and utility of a codesigned architecture-compiler approach

to accelerate a variety of workloads automatically by doing evaluation studies on data parallel work-

loads, on general purpose workloads and on emerging workloads. It also presented quantitative

results on a highly relevant application, database query processing, which shows that DySER can

provide efficiency even when the application has a mix of data parallel and irregular code patterns.

7.2 Closing Remarks

We have shown how the DySER architecture and its compiler achieve high performance and energy

efficiency with diverse sets of workloads. It unifies disparate attempts on specialized architectures

for functionality like encryption accelerators in the Niagara processor [113], and SIMD accelerators

to exploit fine grain data level parallelism like SSE/AVX. Our quantitative results show DySER is

competitive with or outperforms SIMD accelerators, and provides energy efficiency with irregular

code. Also, it is a feasible design, easily integrable with a processor. The evaluation results of

DySER, a coarse grain reconfigurable accelerator, on data parallel workloads have implications for

future accelerators, especially SIMD. Below, we elaborate on these implications.

Programming tradeoffs: SIMD accelerators or short-vector extensions can provide speedup, but

compilers have difficulty targeting SIMD well. Programmers typically must use compiler intrinsics,

which creates severe portability and maintainability problems. Although there have been successful

GPGPU programming languages like CUDA, GPUs pose their own set of programming challenges.

Not only must the user learn a new language, they must learn the massively multi-threaded

thinking paradigm, give up on familiar sequential program debugging, and apply GPU specific

optimizations. DySER programming is relatively simple, uses sequential C++ code, and uses

established debugging methodologies.

131

SIMD Evolution: Even though the SSE family is SIMD, many extensions to SSE (SSE3 and later)

have instructions that are not purely word parallel. For example, the instruction HADDPD and its

variants operate on elements from the same vector. Also, there are instructions with specialized

functionality like MPSADBW, which computes the sum of absolute differences. This exemplifies a

trend towards providing functionality specialization in data parallel accelerators. SIMD evolution,

by increasing width, does not provide scalable performance benefits across workloads, whereas

DySER scalably adapts. Hence, we feel DySER is the natural evolution of these instructions sets.

GPU Evolution: Conversely, GPUs are leaning toward the CPU side by providing caches and

eliminating redundant work with their scalarization approach which effectively creates a “control”

core and a set of compute-cores, much like DySER’s organization. Again, we feel DySER-like

integration is the direction GPUs are headed. Inspired by DySER, researchers are already proposing

alternative designs for GPGPUs that uses DySER like specialization hardware to be more energy

efficient [125].

Replacing SIMD or GPU: In summary, we feel DySER is a viable candidate for replacing SIMD

short vector instruction sets. With some simple extensions, DySER can be augmented to emulate

existing instruction sets like SSE, thus providing backward compatibility. Clearly, DySER is not

a GPU replacement, since it cannot perform graphics tasks well. It is a promising alternative for

“design-constrained” environments like Tilera, and ARM in servers to target high-performance

computing. In these cases, a completely new processor design like a GPU, or integration of a GPU

with a core, and adoption of a new software ecosystem may be prohibitively complex. In contrast,

DySER’s hardware and software ecosystem are non-disruptive.

Broadly, DySER’s unifying data parallel mechanisms with a flexible substrate that can natively

map control flow provides a platform for energy efficient computing.

132

Bibliography

[1] The International Technology Roadmap for Semiconductors (ITRS), System Drivers, 2011,
http://www.itrs.net/. 2011.

[2] 21st century computer architecture: A community white paper,
http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[4] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control dependence to
data dependence. In POPL ’83, 1983.

[5] T. Ball and J. R. Larus. Efficient Path Profiling. In Proceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture, MICRO 29, pages 46–57, Washington, DC, USA,
1996. IEEE Computer Society.

[6] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. Computer, 40(12):33–
37, Dec. 2007.

[7] J. Benson, R. Cofell, C. Frericks, V. Govindaraju, C.-H. Ho, Z. Marzec, T. Nowatzki, and
K. Sankaralingam. Prototyping the DySER Specialization Architecture with OpenSPARC. In
Hot Chips 24, August 2012.

[8] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T. Nowatzki, and K. Sankar-
alingam. Design Integration and Implementation of the DySER Hardware Accelerator into
OpenSPARC. In Proceedings of 18th International Conference on High Performance Computer Ar-
chitecture (HPCA), 2012.

[9] M. Bhadauria, V. M. Weaver, and S. A. McKee. Understanding PARSEC performance on
contemporary CMPs. In IISWC, 2009, pages 98–107, Austin, TX.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: characterization
and architectural implications. In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, PACT ’08, pages 72–81, New York, NY, USA, 2008.
ACM.

[11] A. J. C. Bik. Software Vectorization Handbook, The: Applying Intel Multimedia Extensions for
Maximum Performance. Intel Press, 2004.

BIBLIOGRAPHY 133

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood.
The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[13] M. Bohr. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. Solid-State Circuits
Newsletter, IEEE, 12(1):36 –37, winter 2007.

[14] P. Boncz, M. Zukowski, and N. Nes. MonedDB/X100: Hyper-Pipelining Query Execution. In
Proceedings of the 2005 CIDR Conference, 2005.

[15] S. Borkar and A. A. Chien. The future of microprocessors. Commun. ACM, 54(5):67–77, May
2011.

[16] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R. Moore, J. Bur-
rill, R. G. McDonald, W. Yoder, and t. T. Team. Scaling to the End of Silicon with EDGE
Architectures. Computer, 37(7):44–55, July 2004.

[17] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp architecture and C compiler. Computer,
33(4):62–69, Apr 2000.

[18] K. Chakraborty. Over-provisioned Multicore Systems. PhD thesis, Department of Computer
Sciences, Madison, WI, USA, 2008.

[19] K. Chakraborty, P. M. Wells, G. S. Sohi, and K. Chakraborty. A case for an over-provisioned
multicore system: Energy efficient processing of multithreaded programs. Technical report,
Department of Computer Sciences, University of Wisconsin-Madison, 2007.

[20] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar,
and P. Dubey. Efficient implementation of sorting on multi-core SIMD CPU architecture.
Proc. VLDB Endow., 1(2):1313–1324, Aug. 2008.

[21] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, and A. Saidi. The
Reconfigurable Streaming Vector Processor (RSVPTM). In MICRO 36, page 141, 2003.

[22] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An Architecture Framework
for Transparent Instruction Set Customization in Embedded Processors. In Proceedings of
the 32nd annual international symposium on Computer Architecture, ISCA ’05, pages 272–283,
Washington, DC, USA, 2005. IEEE Computer Society.

[23] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized Execution Accelerator for Loops.
In Proceedings of the 35th Annual International Symposium on Computer Architecture, ISCA ’08,
pages 389–400, Washington, DC, USA, 2008. IEEE Computer Society.

[24] N. Clark, A. Hormati, S. Mahlke, and S. Yehia. Scalable subgraph mapping for acyclic
computation accelerators. In CASES ’06, 2006.

[25] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application-Specific Processing on
a General-Purpose Core via Transparent Instruction Set Customization. In MICRO 37, pages
30–40, 2004.

BIBLIOGRAPHY 134

[26] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Program. Lang.
Syst., 13(4):451–490, Oct. 1991.

[27] A. Deb, J. M. Codina, and A. González. SoftHV: A HW/SW Co-designed Processor with
Horizontal and Vertical Fusion. In Proceedings of the 8th ACM International Conference on
Computing Frontiers, CF ’11, pages 1:1–1:10, New York, NY, USA, 2011. ACM.

[28] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. LeBlanc. Ion
implanted MOSFET’s with very short channel lengths. Solid-State Circuits Newsletter, IEEE,
12(1):36 –37, winter 2007.

[29] D. Donofrio, L. Oliker, J. Shalf, M. F. Wehner, C. Rowen, J. Krueger, S. Kamil, and M. Mo-
hiyuddin. Energy-efficient computing for extreme-scale science. Computer, 42(11):62–71, Nov.
2009.

[30] Slicer - Compiler for DySER. http://research.cs.wisc.edu/veritcal/dyser-compiler.

[31] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD - Reconfigurable Pipelined Datapath.
In Proceedings of the 6th International Workshop on Field-Programmable Logic, Smart Applications,
New Paradigms and Compilers, FPL ’96, pages 126–135, London, UK, UK, 1996. Springer-Verlag.

[32] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and S. G. Berg. Mapping Applications
to the RaPiD Configurable Architecture. In Proceedings of the 5th IEEE Symposium on FPGA-
Based Custom Computing Machines, FCCM ’97, pages 106–, Washington, DC, USA, 1997. IEEE
Computer Society.

[33] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures (Parallel Computing, Reduced-instruction-
set, Trace Scheduling, Scientific). PhD thesis, New Haven, CT, USA, 1985. AAI8600982.

[34] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark silicon
and the end of multicore scaling. In Proceedings of the 38th annual international symposium on
Computer architecture, ISCA ’11, pages 365–376, New York, NY, USA, 2011. ACM.

[35] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural Acceleration for General-
Purpose Approximate Programs. In Proceedings of the 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-45, pages 449–460, Washington, DC, USA, 2012.
IEEE Computer Society.

[36] K. Fan, M. Kudlur, H. Park, and S. Mahlke. Increasing Hardware Efficiency with Multifunc-
tion Loop Accelerators. In Proceedings of the 4th International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS ’06, pages 276–281, New York, NY, USA, 2006.
ACM.

[37] P. Feautrier. Automatic Parallelization in the Polytope Model. In The Data Parallel Programming
Model: Foundations, HPF Realization, and Scientific Applications, pages 79–103, London, UK,
UK, 1996. Springer-Verlag.

[38] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, July 1987.

BIBLIOGRAPHY 135

[39] J. A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE Trans.
Comput., 30(7):478–490, July 1981.

[40] S. H. Fuller and E. C. o. S. G. i. C. P. N. R. C. Lynette I. Millett. The Future of Computing
Performance: Game Over or Next Level? The National Academies Press, 2011.

[41] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor. PipeRench: A
Reconfigurable Architecture and Compiler. Computer, 33(4):70–77, Apr. 2000.

[42] R. E. Gonzalez. Xtensa: A Configurable and Extensible Processor. IEEE Micro, 20(2):60–70,
Mar. 2000.

[43] C. Gou, G. Kuzmanov, and G. N. Gaydadjiev. SAMS Multi-layout Memory: Providing Multi-
ple Views of Data to Boost SIMD Performance. In Proceedings of the 24th ACM International
Conference on Supercomputing, ICS ’10, pages 179–188, New York, NY, USA, 2010. ACM.

[44] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P.-C. Huang, M. Arora,
S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Taylor. The GreenDroid Mobile Application
Processor: An Architecture for Silicon’s Dark Future. IEEE Micro, 31(2):86–95, Mar. 2011.

[45] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam, and C. Kim.
DySER: Unifying Functionality and Parallelism Specialization for Energy-Efficient Computing.
IEEE Micro, 32(5):38–51, Sept. 2012.

[46] V. Govindaraju, C.-H. Ho, T. Nowatzki, and K. Sankaralingam. Mechanisms for Parallelism
Specialization for the DySER Architecture. Technical Report TR-1773, UW-Madison, June
2012.

[47] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically Specialized Datapaths for
Energy Efficient Computing. In Proceedings of the 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, HPCA ’11, pages 503–514, Washington, DC, USA,
2011. IEEE Computer Society.

[48] V. Govindaraju, T. Nowatzki, and K. Sankaralingam. Breaking SIMD Shackles with an
Exposed Flexible Microarchitecture and the Access Execute PDG. In Proceedings of the 22Nd
International Conference on Parallel Architectures and Compilation Techniques, PACT ’13, pages
341–352, Piscataway, NJ, USA, 2013. IEEE Press.

[49] M. Griebl, C. Lengauer, and S. Wetzel. Code Generation in the Polytope Model. In Proceedings
of the 1998 International Conference on Parallel Architectures and Compilation Techniques, PACT
’98, pages 106–, Washington, DC, USA, 1998. IEEE Computer Society.

[50] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled execution of recurring traces
for energy-efficient general purpose processing. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44 ’11, pages 12–23, New York, NY, USA,
2011. ACM.

[51] T. R. Halfhill. Ambric’S New Parallel Processor - Globally Asynchronous Architecture Eases
Parallel Programming. Microprocessor Report, October 2006.

[52] T. R. Halfill. MathStar Challenges FPGAs. Microprocessor Report, 20(7):29–35, July 2006.

BIBLIOGRAPHY 136

[53] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding sources of inefficiency in general-purpose
chips. In Proceedings of the 37th annual international symposium on Computer architecture, ISCA
’10, pages 37–47, New York, NY, USA, 2010. ACM.

[54] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward Dark Silicon in Servers.
IEEE Micro, 31(4):6 – 15, 2011.

[55] E. Harris, S. Wasmundt, L. D. Carli, K. Sankaralingam, and C. Estan. LEAP: Latency- Energy-
and Area-optimized Lookup Pipeline. In Proceedings of the ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems, October 2012.

[56] R. Hartenstein. Coarse grain reconfigurable architecture (embedded tutorial). In Proceedings
of the 2001 Asia and South Pacific Design Automation Conference, ASP-DAC ’01, pages 564–570,
New York, NY, USA, 2001. ACM.

[57] J. R. Hauser and J. Wawrzynek. Garp: a MIPS processor with a reconfigurable coprocessor.
In Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines, FCCM
’97, pages 12–, Washington, DC, USA, 1997. IEEE Computer Society.

[58] W. Havanki, S. Banerjia, and T. Conte. Treegion scheduling for wide issue processors. In High-
Performance Computer Architecture, 1998. Proceedings., 1998 Fourth International Symposium on,
pages 266–276, Feb 1998.

[59] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2011.

[60] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit. News,
34(4):1–17, Sept. 2006.

[61] C.-H. Ho. Mechanisms towards energy-efficient dynamic hardware specialization. PhD thesis.

[62] C.-H. Ho, V. Govindaraju, T. Nowatzki, Z. Marzec, R. Nagaraju, P. Agarwal, C. Frericks,
R. Cofell, and K. Sankaralingam. Performance Evaluation of a DySER FPGA Prototype System
Spanning the Compiler, Microarchitecture, and Hardware Implementation. In Submission.

[63] C.-H. Ho, S. J. Kim, and K. Sankaralingam. Memory access dataflow. In Submission.

[64] H. P. Hofstee. Power Efficient Processor Architecture and The Cell Processor. In Proceedings of
the 11th International Symposium on High-Performance Computer Architecture, HPCA ’05, pages
258–262, Washington, DC, USA, 2005. IEEE Computer Society.

[65] S. Huang, S. Xiao, and W. Feng. On the energy efficiency of graphics processing units for scien-
tific computing. In Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed
Processing, IPDPS ’09, pages 1–8, Washington, DC, USA, 2009. IEEE Computer Society.

[66] I. Hur and C. Lin. Memory prefetching using adaptive stream detection. In MICRO 39, pages
397–408.

BIBLIOGRAPHY 137

[67] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G.
Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The superblock:
an effective technique for VLIW and superscalar compilation. J. Supercomput., 7(1-2):229–248,
May 1993.

[68] A. Kejariwal, A. V. Veidenbaum, A. Nicolau, X. Tian, M. Girkar, H. Saito, and U. Banerjee.
Comparative architectural characterization of SPEC CPU2000 and CPU2006 benchmarks
on the intel core2 duo processor. In International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, pages 132–141.

[69] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Architectures: A Dependence-based
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[70] D. Kim and D. Yeung. Design and evaluation of compiler algorithms for pre-execution.
SIGPLAN Not., 37(10):159–170, 2002.

[71] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan. Meet the Walkers:
Accelerating Index Traversals for In-memory Databases. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-46, pages 468–479, New York,
NY, USA, 2013. ACM.

[72] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and K. Asanovic.
The Vector-Thread Architecture. In Proceedings of the 31st Annual International Symposium
on Computer Architecture, ISCA ’04, pages 52–, Washington, DC, USA, 2004. IEEE Computer
Society.

[73] D. J. Kuck and R. A. Stokes. The Burroughs Scientific Processor (BSP). IEEE Trans. Comput.,
31(5):363–376, May 1982.

[74] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. Single-ISA Heteroge-
neous Multi-Core Architectures: The Potential for Processor Power Reduction. In Proceedings
of the 36th annual IEEE/ACM International Symposium on Microarchitecture, MICRO 36, pages
81–, Washington, DC, USA, 2003. IEEE Computer Society.

[75] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization for heterogeneous
chip multiprocessors. In Proceedings of the 15th international conference on Parallel architectures
and compilation techniques, PACT ’06, pages 23–32, New York, NY, USA, 2006. ACM.

[76] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the international symposium on Code generation and optimiza-
tion: feedback-directed and runtime optimization, CGO ’04, pages 75–, Washington, DC, USA,
2004. IEEE Computer Society.

[77] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amarasinghe. Space-time
Scheduling of Instruction-level Parallelism on a RAW Machine. SIGPLAN Not., 33(11):46–57,
Oct. 1998.

[78] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanović. Exploring the
Tradeoffs Between Programmability and Efficiency in Data-parallel Accelerators. SIGARCH
Comput. Archit. News, 39(3):129–140, June 2011.

BIBLIOGRAPHY 138

[79] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M. Horowitz, and C. Kozyrakis.
Comparing memory systems for chip multiprocessors. In ISCA ’07, pages 358–368.

[80] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. McPAT:
an integrated power, area, and timing modeling framework for multicore and manycore
architectures. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 42, pages 469–480, New York, NY, USA, 2009. ACM.

[81] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner. SODA:
A Low-power Architecture For Software Radio. In Proceedings of the 33rd Annual International
Symposium on Computer Architecture, ISCA ’06, pages 89–101, Washington, DC, USA, 2006.
IEEE Computer Society.

[82] Q. Liu and W. Luk. Heterogeneous systems for energy efficient scientific computing. In
Proceedings of the 8th international conference on Reconfigurable Computing: architectures, tools
and applications, ARC’12, pages 64–75, Berlin, Heidelberg, 2012. Springer-Verlag.

[83] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and J. Rose. VPR 5.0: FPGA Cad
and Architecture Exploration Tools with Single-driver Routing, Heterogeneity and Process
Scaling. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’09, pages 133–142, New York, NY, USA, 2009. ACM.

[84] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective compiler
support for predicated execution using the hyperblock. In Proceedings of the 25th annual
international symposium on Microarchitecture, MICRO 25, pages 45–54, Los Alamitos, CA, USA,
1992. IEEE Computer Society Press.

[85] B. Mathew and A. Davis. A loop accelerator for low power embedded VLIW processors. In
CODES+ISSS ’04, pages 6–11.

[86] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. Exploiting loop-level paral-
lelism on coarse-grained reconfigurable architectures using modulo scheduling. Computers
and Digital Techniques, IEE Proceedings -, 150(5):255–61–, Sept 2003.

[87] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein, and M. Budiu.
Tartan: evaluating spatial computation for whole program execution. In Proceedings of the
12th international conference on Architectural support for programming languages and operating
systems, ASPLOS-XII, pages 163–174, New York, NY, USA, 2006. ACM.

[88] M. Mishra and S. Goldstein. Virtualization on the Tartan Reconfigurable Architecture. In
Field Programmable Logic and Applications, 2007. FPL 2007. International Conference on, pages
323–330, Aug 2007.

[89] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8), April
1965.

[90] T. Mudge. Power: a first-class architectural design constraint. Computer, 34(4):52 –58, Apr
2001.

[91] J. Nickolls and W. Dally. The GPU Computing Era. Micro, IEEE, 30(2):56–69, March 2010.

BIBLIOGRAPHY 139

[92] T. Nowatzki, M. Ferris, K. Sankaralingam, C. Estan, N. Vaish, and D. A. Wood. Optimization
and Mathematical Modeling in Computer Architecture. Synthesis Lectures on Computer
Architecture, September 2013.

[93] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan, and B. Robatmili. A
General Constraint-centric Scheduling Framework for Spatial Architectures. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’13, pages 495–506, New York, NY, USA, 2013. ACM.

[94] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of Interleaved Data for SIMD. In
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’06, pages 132–143, New York, NY, USA, 2006. ACM.

[95] Opencores project home. http://opencores.org/.

[96] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers. Commun.
ACM, 1986.

[97] M. Papadonikolakis, V. Pantazis, and A. P. Kakarountas. Efficient High-performance ASIC
Implementation of JPEG-LS Encoder. In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’07, pages 159–164, San Jose, CA, USA, 2007. EDA Consortium.

[98] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig, V. Pavlov, A. Zhai, M. Gamb-
hir, A. Jaleel, R. Allmon, R. Rayess, S. Maresh, and J. Emer. Triggered Instructions: A Control
Paradigm for Spatially-programmed Architectures. SIGARCH Comput. Archit. News, 41(3):142–
153, June 2013.

[99] Parboil Benchmark suite, http://impact.crhc.illinois.edu/parboil.php.

[100] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo Graph Embedding: Mapping Applications
Onto Coarse-grained Reconfigurable Architectures. In Proceedings of the 2006 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems, CASES ’06, pages
136–146, New York, NY, USA, 2006. ACM.

[101] Y. Park, J. J. K. Park, H. Park, and S. Mahlke. Libra: Tailoring SIMD Execution using Hetero-
geneous Hardware and Dynamic Configurability. In MICRO ’12, 2012.

[102] M. Pharr and W. R. Mark. ispc: A SPMD Compiler for High-Performance CPU Programming.
In InPar 2012, 2012.

[103] M. Poess and C. Floyd. New TPC Benchmarks for Decision Support and Web Commerce.
SIGMOD Rec., 29(4):64–71, Dec. 2000.

[104] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. A. Horowitz. Con-
volution Engine: Balancing Efficiency & Flexibility in Specialized Computing. SIGARCH
Comput. Archit. News, 41(3):24–35, June 2013.

[105] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch, and
M. M. K. Martin. Computational sprinting. High-Performance Computer Architecture, Interna-
tional Symposium on, 0:1–12, 2012.

BIBLIOGRAPHY 140

[106] P. Ranganathan. Recipe for efficiency: principles of power-aware computing. Commun. ACM,
53(4):60–67, Apr. 2010.

[107] G. Ren, P. Wu, and D. Padua. Optimizing data permutations for SIMD devices. In PLDI ’06,
2006.

[108] K. Sankaralingam, S. W. Keckler, W. R. Mark, and D. Burger. Universal mechanisms for data-
parallel architectures. In Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 36, pages 303–, Washington, DC, USA, 2003. IEEE Computer
Society.

[109] M. Sartin-Tarm, T. Nowatzki, L. De Carli, K. Sankaralingam, and C. Estan. Constraint centric
scheduling guide. SIGARCH Comput. Archit. News, 41(2):17–21, May 2013.

[110] J. Sartori, B. Ahrens, and R. Kumar. Power balanced pipelines. High-Performance Computer
Architecture, International Symposium on, 0:1–12, 2012.

[111] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar, and
P. Dubey. Can Traditional Programming Bridge the Ninja Performance Gap for Parallel Com-
puting Applications? In Proceedings of the 39th Annual International Symposium on Computer
Architecture, ISCA ’12, pages 440–451, Washington, DC, USA, 2012. IEEE Computer Society.

[112] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake,
J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee: A Many-
core x86 Architecture for Visual Computing. In ACM SIGGRAPH 2008 Papers, SIGGRAPH
’08, pages 18:1–18:15, New York, NY, USA, 2008. ACM.

[113] M. Shah, R. Golla, G. Grohoski, P. Jordan, J. Barreh, J. Brooks, M. Greenberg, G. Levinsky,
M. Luttrell, C. Olson, Z. Samoail, M. Smittle, and T. Ziaja. Sparc T4: A Dynamically Threaded
Server-on-a-Chip. IEEE Micro, 32:8–19, 2012.

[114] J. Shin. Introducing control flow into vectorized code. In PACT ’07, 2007.

[115] H. Singh, M.-H. Lee, G. Lu, N. Bagherzadeh, F. J. Kurdahi, and E. M. C. Filho. MorphoSys: An
Integrated Reconfigurable System for Data-Parallel and Computation-Intensive Applications.
IEEE Trans. Comput., 49(5):465–481, May 2000.

[116] J. E. Smith. Decoupled access/execute computer architectures. In Proceedings of the 9th annual
symposium on Computer Architecture, ISCA ’82, pages 112–119, Los Alamitos, CA, USA, 1982.
IEEE Computer Society Press.

[117] J. E. Smith, G. Faanes, and R. Sugumar. Vector instruction set support for conditional opera-
tions. In ISCA ’00, 2000.

[118] A. Sodani. Race to exascale: Opportunities and challenges, keynote. In Micro-44, 2011.

[119] Intel streaming simd extensions 4 (sse4), http://www.intel.com/technology/architecture-
silicon/sse4-instructions/index.html.

[120] S. Subramaniam and G. H. Loh. Fire-and-Forget: Load/Store Scheduling with No Store
Queue at All. In MICRO 39, pages 273–284, 2006.

BIBLIOGRAPHY 141

[121] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In Proceedings of the
36th annual IEEE/ACM International Symposium on Microarchitecture, MICRO 36, pages 291–,
Washington, DC, USA, 2003. IEEE Computer Society.

[122] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson,
J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Ama-
rasinghe, and A. Agarwal. The Raw Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs. IEEE Micro, 22(2):25–35, Mar. 2002.

[123] R. v. Hanxleden and K. Kennedy. Relaxing SIMD control flow constraints using loop transfor-
mations. In Proceedings of the ACM SIGPLAN 1992 conference on Programming language design
and implementation, PLDI ’92, pages 188–199, New York, NY, USA, 1992. ACM.

[124] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson,
and M. B. Taylor. Conservation cores: reducing the energy of mature computations. In J. C.
Hoe and V. S. Adve, editors, ASPLOS, pages 205–218. ACM, 2010.

[125] D. Voitsechov and Y. Etsion. Single-Graph Multiple Flows: Energy Efficient Design Alternative
for GPGPUs. In Proceedings of the 41st annual international symposium on Computer architecture,
ISCA ’14, June 2014.

[126] P. M. Wells, K. Chakraborty, and G. S. Sohi. Dynamic heterogeneity and the need for multicore
virtualization. SIGOPS Oper. Syst. Rev., 43(2):5–14, Apr. 2009.

[127] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross. Navigating big data with high-throughput,
energy-efficient data partitioning. SIGARCH Comput. Archit. News, 41(3):249–260, June 2013.

[128] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross. Q100: The Architecture and
Design of a Database Processing Unit. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14, pages
255–268, New York, NY, USA, 2014. ACM.

[129] L. Wu, C. Weaver, and T. Austin. CryptoManiac: A Fast Flexible Architecture for Secure
Communication. SIGARCH Comput. Archit. News, 29(2):110–119, May 2001.

[130] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: a high-performance architec-
ture with a tightly-coupled reconfigurable functional unit. In Proceedings of the 27th annual
international symposium on Computer architecture, ISCA ’00, pages 225–235, New York, NY, USA,
2000. ACM.

[131] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling specialization and flexibility through
compound circuits. In High Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, pages 277–288, Feb 2009.

	Contents
	Abstract
	Introduction
	Dynamically Specialized Execution
	Thesis Contributions
	Thesis Organization

	A Case for Dynamically Specialized Execution
	Motivation
	Dynamically Specialized Execution Model
	Benefits of Dynamically Specialized Execution Model
	Challenges
	Microarchitecture Challenges
	Compilation Challenges
	Application Challenges

	Chapter Summary

	DySER Architecture
	ISA Extensions for DySER
	DySER Microarchitecture
	Functional Unit
	Switch Network
	Pipelined Execution and Flow Control
	Configuration

	Processor Interface
	Input Interface
	Output Interface
	Integration with pipeline
	Page Faults, Context-switches etc.,

	Integration Feasibility Study
	Hardware Mechanisms for Efficiency
	Control Flow: Predication and -functions
	Vectorization: Flexible Vector Interface
	Virtualization: Fast Configuration Switching

	Chapter Summary

	Compiling for DySER
	Overview of the DySER Compiler
	Access Execute PDG
	A Case for a New Program Representation
	Definition and Description
	An Example
	Characteristics of good AEPDGs

	Initial AEPDG Formation
	Region Selection for Acceleration
	AEPDG Construction

	Compilation Strategies to Form Ideal Execute-PDG
	Types of Execute-PDG
	Transformation Flow

	Algorithms for AEPDG Transformations
	Region Growing
	Region Virtualization
	Vectorized DySER Communication

	Scheduler and Code Generation
	Scheduling Execute PDGs
	Code Generation

	Implementation
	Case Study
	Reduction/Induction
	Control Dependence
	Strided Data Accesses
	Carried Dependencies
	Partially Vectorizable

	Chapter Summary

	Experimental Evaluation and Analysis
	Overview
	Evaluation Methodology
	Simulation Environment
	Compiler Implementation
	Baseline Machine
	Benchmarks
	DySER Microarchitecture Details

	Workload Characterization
	Execute-PDG Region Size
	Phase Behavior

	Compiler Evaluation
	Evaluation methodology
	Automatic vs Manual DySER Optimization
	Automatic DySER vs SSE Acceleration

	Performance and Energy Evaluation
	Data Parallel Workloads
	General Purpose Workloads
	Source of Improvements and Bottlenecks

	Sensitivity Study
	Evaluation on Database Kernels
	Database Primitives
	Full Query Evaluation
	Database Evaluation Summary

	Chapter Summary

	Related Work
	Specialized Architectures
	Compilation Techniques

	Conclusion
	Summary of Contributions
	Closing Remarks

	Bibliography

