
COMPILER CONSTRUCTION OF IDEMPOTENT REGIONS AND APPLICATIONS IN
ARCHITECTURE DESIGN

By

Marc A. de Kruijf

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2012

Date of final oral examination: 07/20/12

The dissertation is approved by the following members of the Final Oral Committee:
Karthikeyan Sankaralingam, Assistant Professor, Computer Sciences
Mark Hill, Professor, Computer Sciences
Gurindar Sohi, Professor, Computer Sciences
Somesh Jha, Professor, Computer Sciences
Mikko Lipasti, Professor, Electrical and Computer Engineering

i

Acknowledgments

This research product owes many things to many people.

First is my advisor, Karu, who was instrumental in many ways. More than simply mentoring

me in research, he has helped me to frame my own life—to strive to live happily, peacefully, and

positively. His tireless work ethic in combination with his profound respect for life-balance is

something that I admire greatly. Thanks almost entirely to him, my graduate career was rarely

frustrating, full of interesting and exciting work, and very rewarding. I do not know what the future

awaits, but thanks to you, Karu, I feel more prepared than ever before.

The other committee member who deserves special thanks is Mark, my other professional role

model. When I arrived at UW-Madison, Mark was my initial mentor, my CS 552 instructor, and he

was the one to invite me to my first Computer Architecture Affiliates meeting only a month after

my arrival. Mark never wavered in his support or his willingness to offer guidance. He may not

know it, but Mark made me a computer architect. Thank you, Mark.

Among the other members of committee, Guri forced me to think critically about my own ideas

while remaining always supportive, Somesh was a crucial resource in developing key pieces of

my research—he taught me to think in very precise terms, and his jovial and spirited nature was

always an inspiration to me—and Mikko was an excellent resource for technical discussions in

addition to being just an all-around great person. Thank you, Guri, Somesh, and Mikko.

There is no shortage of fellow students to thank. First, the Vertical group. From the days when I

was the only student of the group (with an office all to myself), the group is now over ten students

strong. Thanks to everyone, with special thanks to my officemates, Venkat and Tony, who always

provided great fuel for discussion and distraction. Among the other members, Emily, Chen-han,

Jai, Raghu, Zach, Ryan, and Chris also deserve special mention for their support and camaraderie.

ii

Architecture lunch: I will miss you. Thanks to all those who attended in the past and those who

will continue to attend. Thanks to past alumni for their sage advice: Mike, Philip, Andy, Natalie,

Dan, Yasuko, Polina, Dana, Matthew, Jayaram, Luke, Kevin, James, and Derek (barely!). Rathijit,

Arka, Somayeh, Hamid, Srinath, Gagan, Jayneel: good luck to you! You will do fine.

Thanks to Google for two awesome internships and now a full-time job! I am very much looking

forward to joining the group again.

Thanks to my family in Holland for their support. Although I’m not sure they ever knew exactly

what I was doing, the fact that I was traveling to conferences seemed to imply that everything was

fine. Thanks, mom, for your emails and your conversation. I’m looking forward to seeing you again

soon. Thanks, dad, for always believing in me and trusting me in everything. You may be gone, but

I feel your influence carrying on in me in all the positive ways that I know you would have wanted.

Special thanks to the other half of my family, too. Graduate school with kids is never easy.

Thank you, Barbara and Alan, for your continual support, both financially and otherwise, your

faith, and your love. For all that, Laura and I are extremely grateful; without your support all this

would have been much, much harder.

Laura, thank you for doing this with me. This is not the life we had planned. Life has been full

of surprises. At times, it has been extremely difficult. Yet we have made it work, and our future

together looks bright and full of opportunity. We are very lucky in so many ways, and although it

may sound cliché, it is absolutely true that I love you more today than I ever have before... and I

know it will only get better. (Forgive the perfectionist in me.)

Finally, Brynne and Reece, you’re too young now, but maybe someday you’ll be old enough

that you might want to read this. Maybe it was some conversation we had that made you curious.

Maybe you’re in graduate school yourself and trying to figure it all out. Or maybe it’s at a point

where I’m no longer around. Regardless, thank you in your youth for being sweet, loving, and

passionate in your own little ways, and giving me a good excuse to step back from my work. It is

easy to burn your time on meaningless things; you are both far from meaningless. They say you

can’t predict the future, but I know that you both will be amazing adults and will grow to lead

happy and successful lives. I sense it from you both, even now. Love you.

iii

Contents

Contents . iii

Abstract . vi

1 Introduction . 1

1.1 Contributions . 3

1.2 Summary of Findings . 4

1.3 Organization . 5

1.4 A Note on Experimental Methodology . 6

1.5 Relation to Author’s Prior Work . 7

2 Idempotence in Computer Architecture . 9

2.1 Idempotence by Example . 10

2.2 Terms, Definitions, and Axioms . 17

2.3 A Taxonomy of Idempotence . 22

2.3.1 The Control Axis . 23

2.3.2 The Sequencing Axis . 26

2.3.3 The Isolation Axis . 28

2.4 Measurement, Analysis, and Synthesis . 29

2.4.1 Measurement and Analysis: Model Characterization 30

2.4.2 Synthesis: Model Selection . 35

2.5 Summary and Conclusions . 38

iv

3 Static Analysis of Idempotent Regions . 39

3.1 Static Analysis Overview . 39

3.1.1 Idempotence Analysis Using Data Dependence Information 39

3.1.2 The Partitioning Algorithm . 43

3.2 Program Transformation . 46

3.3 Static Analysis . 47

3.3.1 Cutting Non-Local Memory Antidependences 47

3.3.2 Cutting Self-Dependent Pseudoregister Dependences 51

3.4 Optimizing for Dynamic Behavior . 52

3.5 Summary and Conclusions . 53

4 Code Generation of Idempotent Regions . 54

4.1 Tailoring Idempotent Region Sizes . 54

4.1.1 Code Generation Strategies . 58

4.2 Idempotence State Preservation . 60

4.2.1 State Preservation for Contextual Idempotence 61

4.2.2 State Preservation for Architectural Idempotence 63

4.3 Code Generation Examples . 65

4.4 Summary and Conclusions . 70

5 Compiler Evaluation . 71

5.1 Experimental Method . 71

5.2 Static Analysis Results . 74

5.3 Code Generation Results . 80

5.4 ISA Sensitivity Results . 86

5.5 Summary and Conclusions . 90

6 Architecture Design and Evaluation . 92

6.1 General Exception Support in GPU Architectures . 92

6.1.1 GPU Background . 96

v

6.1.2 GPU Design . 98

6.1.3 GPU Evaluation . 103

6.2 Out-of-Order Execution in CPU Architectures . 106

6.2.1 CPU Background . 110

6.2.2 CPU Design . 113

6.2.3 CPU Evaluation . 115

6.3 Hardware Fault Recovery in Emerging Architectures 117

6.3.1 Fault-Tolerant Design . 119

6.3.2 Fault-Tolerance Evaluation . 122

6.4 Summary and Conclusions . 125

7 Related Work . 128

7.1 Idempotence-Based Recovery . 128

7.2 Classical Recovery . 132

7.3 Summary and Conclusions . 135

8 Conclusions and Future Work . 137

8.1 Summary of Contributions . 137

8.2 Future Work . 138

8.2.1 Enlarging Regions to Reduce Pressure and Stall Latencies 138

8.2.2 Hybrid Checkpointing-Idempotence Techniques 140

8.3 Reflections . 142

8.4 Closing Remarks . 145

A Code Generator Specifics . 146

A.1 Out-of-SSA Translation and Back-Edge Clobbers . 146

A.2 Scalar Replacement of Aggregates . 147

A.3 Support for Calling Conventions and Condition Codes 148

A.4 Static Output Verification . 148

Bibliography . 149

vi

Abstract

In the field of computer architecture today, out-of-order execution is important to maximize archi-

tectural efficiency, the shadow of unreliable hardware is ever-looming, and, with the emergence

of mainstream parallel hardware, programmability is once again an important and fundamental

challenge. Traditionally, hardware checkpointing and buffering techniques are used to assist with

each of these problems. However, these techniques introduce overheads, add complexity to the

hardware, and often save more state than necessary. With today’s renewed focus on energy effi-

ciency, and with the commercial importance of reduced hardware complexity in today’s processor

market, the efficacy of these techniques is no longer absolute.

This thesis develops a novel compiler-based technique to efficiently support a range of hardware

features without the need for checkpoints or buffers. The technique breaks programs into idempotent

regions—regions that can be freely re-executed—to enable recovery by simple re-execution. The

thesis observes that programs can be executed entirely as sequences of idempotent regions, and

builds a classification framework to concretely reason about different interpretations of idempotence

that apply in the context of computer architecture. It develops static analysis and compiler code gen-

eration algorithms and techniques to construct idempotent regions and subsequently demonstrates

low overheads and potentially large region sizes for an LLVM-based compiler implementation.

Finally, it demonstrates applicability across a range of modern architecture designs in addressing a

variety of problems.

The thesis presents several findings. First, it finds that inherently large idempotent regions,

in the range of tens to hundreds of instructions, exist across entire programs. It also finds that

a compiler algorithm for constructing the largest possible regions, through careful allocation of

function-local state, is capable of constructing regions close to these sizes. Various algorithms are

vii

demonstrated that are able to sub-divide these regions into smaller regions to optimize for specific

constraints. In the end, however, code generation of small idempotent regions forces relatively high

compiler-induced run-time overheads in the range of 10-20% (often increasing register pressure by

over 50%), while, for larger regions, this overhead quickly approaches zero as region size grows

beyond a few tens of instructions. Thus, the compiler-induced costs of constructing small regions

are often out-weighed by any benefits, and optimization trade-offs thus generally favor constructing

regions that are a few tens of instructions or more. This optimization goal tailors the suitability

of idempotence-based recovery to specific architecture domains; this thesis considers specifically

architecture design and evaluation for general exception support in GPUs, out-of-order retirement

in general-purpose processors, and hardware fault tolerance in emerging processor designs.

1

1 Introduction

Recovery capability is a fundamental component of modern computer systems. Among other things,

it is used to recover from hardware exceptions and interrupts [93, 95], branch mispredictions [92,

109], hardware faults [91, 96], speculative memory-reordering [37, 55], optimistic dynamic binary

translation and code optimization [30, 40], and memory conflicts in transactional memory [48, 84].

Today, recovery capabiliity commonly involves the use of special-purpose hardware structures to

buffer or checkpoint speculative state until it is safe to proceed. However, creating and maintaining

these structures introduces processor design complexity and can have high resource overheads.

This is at odds with recent studies that show that hardware complexity and processor overheads

must reduce to meet future energy and reliability constraints [11, 19, 45].

Nevertheless, recovery support remains crucial to performance, usability, and correctness in

modern microprocessors:

Performance: For acceptable single-thread performance, processors speculate on the direction

of branches and also on the absence of exceptions. This is true even among highly power-

constrained processors such as ARM mobile processors [14, 103] and throughput-oriented

multimedia accelerator processors such as IBM’s Cell SPEs [41].

Usability: Debugging and virtual memory are standard features of modern microprocessors. How-

ever, the sequential ordering semantics that they traditionally require complicate processor

design [35, 61, 93, 95]. Additionally, to efficiently service long-latency exception conditions

such as virtual memory page faults requires a mechanism to efficiently save and restore

(“recover”) program state to maximize utilization of computational resources and minimize

user response time.

2

Correctness: As transistor technology continues to scale to lower feature sizes, hardware is be-

coming increasingly unreliabile [19]. To allow programs to continue to operate correctly

even in the face of hardware transient or permanent faults, some form of recovery support is

increasingly needed.

To reconcile the need to reduce processor overheads with the desire to support program recovery,

this thesis develops idempotence to support efficient recovery by re-execution. Idempotence is the

property that re-execution has no side-effects; that is, an operation can be executed multiple times

with the same effect as executing it only once. At the coarsest granularity any application whose

inputs do not change during execution is idempotent. At the finest granularity every instruction that

does not modify its source operands is also idempotent. In both cases, re-executing the operation

does not change the effect of the initial execution.

Why Idempotence?

An operation is idempotent if its inputs do not change over the course of its execution. Hence,

idempotence can be thought of as implicitly forming a checkpoint with respect to the inputs of

the operation. In this manner, idempotence over a region of code can render traditional hardware

checkpointing techniques unnecessary; in the event of failure, idempotence can be used to correct

the state of the system by simple re-execution.

Moving from explicit hardware checkpointing to an implicit checkpointing model built upon

idempotence can benefit computer systems at multiple levels. First, at the microarchitecture level,

the absence of hardware buffering and/or checkpointing reduces interdependencies between

processor structures, reduces power and area, and allows existing hardware resources to be used

more efficiently in the absence of contention. Second, at the circuit level, lower threshold voltages

and tighter noise margins on transistors make hardware design and verification increasingly difficult;

hence, less functionality in hardware implies substantially lower hardware design and verification

effort. Finally, at the program level, checkpoints can be inflexible. This inflexibility is not only

inconvenient, but it can also hurt overall efficiency if the checkpoints are overly conservative.

3

1.1 Contributions

This thesis observes that applications can fully decompose into idempotent regions of code, and that

these regions can be used to recover from a range of failure scenarios. The size and arrangement of

idempotent regions is configurable during compilation, and a compiler can construct idempotent

regions that are usefully large at the expense of only a small amount of run-time overhead. This

thesis makes the following specific contributions:

Idempotence in computer architecture: It presents the first comprehensive analysis of idempo-

tence and its implications for architecture and compiler design. In particular:

1. it is the first work to observe that programs can decompose entirely into idempotent

regions;

2. it observes that idempotence can can be used to recover from a variety of failure conditions

by simple re-execution;

3. it identifies a variety of idempotence “models” that apply in the context of computer

architecture and presents a taxonomy to concretely reason about them;

4. it analyzes the potential sizes of idempotent regions that arise from the space of idempo-

tence models and finds that the regions can be large; and

5. it converges on two idempotence models that have the desirable properties of allowing (1)

the decomposition of programs entirely into idempotent regions and (2) the construction

of idempotent regions of maximal size with respect to the common case of data-race-free

multi-threaded execution.

Compiler design: It develops a complete end-to-end compiler design and implementation for

the automated formation and code generation of idempotent regions considering a range of

design trade-offs. In particular:

1. it describes a static analysis algorithm to uncover the minimal set of idempotent regions

in a function given semantic constraints;

4

2. it analyzes and proposes techniques to balance the size versus performance trade-off in

compiling idempotent regions given application and environmental constraints; and

3. it details the operation of a fully working source-to-machine LLVM-based compiler

implementation made publicly available [2] and the design considerations associated

with its construction.

Architecture design: It explores the opportunity to apply idempotence to GPU, CPU, and emerging

fault-tolerant architecture design. In particular:

1. for GPUs, it demonstrates how idempotence can provide general exception support and

improve context switching efficiency;

2. for CPUs, it demonstrates how idempotence can alleviate the power and complexity

burden of in-order retirement in aggressively-pipelined processors; and

3. for fault-tolerant architectures, it demonstrates how idempotence enables recovery from

hardware faults in a manner that performs measurably better than other known fine-

grained software recovery alternatives.

1.2 Summary of Findings

In terms of concrete evaluation, this thesis presents the following findings:

Idempotence in computer architecture: Given perfect run-time information, achievable idempo-

tent region sizes range from 10s of instructions to 100s of instructions as an average across

entire applications, depending on the idempotence model and application characteristics.

Compiler design – static analysis and transformations: Idempotent region sizes identified by a

compiler static analysis algorithm range from 10 to 100 instructions as an average across

entire applications. For loop-intensive applications, transformations that expose the inherent

idempotence in applications allow for very large region sizes.

5

Compiler design – code generation: Code generation of small (semantically-constrained) idempo-

tent regions commonly forces performance overheads of over 10%. For larger regions, this

overhead approaches zero in the limit as region size grows beyond a few tens of instructions.

Compiler design – ISA sensitivity: Among three ways in which the ISA could affect the run-

time overheads of idempotence-based compilation, none appear significant. Independent of

the ISA, small (semantically-constrained) idempotent regions increase register pressure by

approximately 60%. For larger regions, register pressure effects approach zero in the limit as

region size grows beyond a few tens of instructions.

Architecture design: GPUs can support general exceptions cleanly using idempotence with run-

time overheads of less than 2% (for traditional GPU workloads). CPUs can be simplified

to support exceptions with out-of-order retirement with typical run-time overheads of 10%.

Adding support for efficient branch-misprediction recovery using idempotence on CPUs

increases the typical run-time overheads to 20%. Finally, architectures can use idempotence

to support hardware fault recovery with run-time overheads of roughly 10%, assuming

low-latency fault detection capability.

1.3 Organization

The core of the dissertation is organized into three parts: idempotence models in computer architecture,

compiler design & evaluation, and architecture design & evaluation. These three parts span Chapters 2-6,

with the closing Chapters 7-8 presenting related work and conclusions.

Idempotence Models in Computer Architecture

Chapter 2 explores and analyzes the concept of idempotence as it applies to computer architecture.

As background, it presents examples of idempotence applied in computer science and subsequently

develops a taxonomy to reason about idempotence specifically as it applies to computer architecture.

Leveraging this taxonomy, it performs an empirical study of the sizes of idempotent regions that

could be attained for different idempotence models arising from the taxonomy given semantic

6

program constraints. Finally, it identifies the two idempotence models—architectural and contextual

idempotence—that are developed in the remainder of the dissertation.

Compiler Design & Evaluation

Chapters 3-5 present the static analysis, code generation, and evaluation of a compiler design that

constructs idempotent regions in programs, optimizing for architectural and contextual idempo-

tence, across a range of application and environmental constraints. Chapter 3 develops a static

analysis for identifying the largest idempotent regions given semantic program constraints. Chap-

ter 4 develops support for sub-dividing regions and preserving the idempotence property of

these regions as they are compiled down to machine instructions. Finally, Chapter 5 presents a

comprehensive evaluation of a full, end-to-end compiler implementation.

Architecture Design & Evaluation

Chapter 6 motivates and develops the architecture support to utilize idempotence for recovery

across a range of architecture designs. The overall architectural vision is one where the analysis of

idempotence occurs in software (e.g. in a compiler), and the hardware consumes the output of this

analysis to enable hardware design simplification and flexibility. Specifically, the applications to

GPU, CPU, and emerging fault-tolerant architecture designs are explored and evaluated. In constrast

to the rigorous compiler implementation evaluation of Chapter 5, the individual architecture

evaluations are more abstract, using simulation-based evaluation. Detailed microarchitecture

design and implementation is left as a topic for follow-on work.

1.4 A Note on Experimental Methodology

All three parts of the dissertation are empirically grounded with a largely common experimental

methodology used throughout. However, there are differences as the experimental purpose varies.

Table 1.1 highlights the primary differences.

Regarding benchmarks, the benchmark suites we study throughout are SPEC 2006 [99], a suite

targeted at conventional single-threaded workloads, PARSEC [16], a suite targeted at emerging

7

Topic Chapter/Section Benchmark Suites Simulation

Idempotence Analysis Section 2.4 SPEC 2006, PARSEC, Parboil Pin
Compiler Evaluation Chapter 5 SPEC 2006, PARSEC, Parboil Pin, gem5
GPU Evaluation Section 6.1.3 Parboil gem5
CPU Evaluation Section 6.2.3 SPEC 2006, PARSEC gem5
Fault Evaluation Section 6.3.2 SPEC 2006, PARSEC, Parboil gem5

Table 1.1: Differences in experimental methodology for different parts of the dissertation.

multi-threaded workloads1, and Parboil [100], a suite targeted at massively parallel GPU-style

workloads written for CPUs. For the GPU-specific evaluation of Section 6.1.3 we use only the

GPU-target benchmark suite, Parboil, while for the CPU-specific evaluation of Section 6.2.3 we

evaluate only the other two benchmark suites.

Regarding simulation, the empirical analysis of idempotence models in Section 2.4 uses Pin [65]

to study x86 programs, the compiler evaluation of Chapter 5 uses both Pin and gem5 [17] to study

both x86 and ARM2 programs, while the evaluation sections 6.1.3, 6.2.3, and 6.3.2 all use gem5 to

simulate different microarchitectural features using ARM.

1.5 Relation to Author’s Prior Work

Table 1.2 highlights the influence of selected publications by the author on the chapters of this

dissertation. A publication appearing in PLDI 2012 [29] has influences across Chapters 3, 5, and

6 primarily influencing the static analysis presented in Chapter 3. Another recent publication

on the application of idempotence for GPUs, appearing in ISCA 2012 [70], influences the GPU

architecture design presented in Chapter 6. A publication on the application of idempotence for

CPUs, appearing in MICRO 2011 [28], similarly influences the CPU architecture design presented

in Chapter 6, although it also has some ties to the compiler evaluation of Chapter 5.

Compared to all previous work, this thesis explores in greater detail the motivation behind

building architectures that leverage idempotence and evaluates against a more mature and robust
1Only five PARSEC benchmarks were chosen. These were the five benchmarks that (a) could be easily compiled for

both x86-64 and ARMv7 (b) spend more than 90% of their execution time not in external library code, and (c) do not
have an excessively long setup phase.

2For ARM, data for SPEC INT’s gcc and SPEC FP’s sphinx3 and povray are omitted since these benchmarks either
would not cross-compile or would not run for the version of gem5 used.

8

Prior Work Topic Chapters

PLDI 2012 [29] Static analysis and compiler design 3, 5, 6
ISCA 2012 [70] Application to GPU architecture 6
MICRO 2011 [28] Application to CPU architecture 5, 6

Table 1.2: The relation of the author’s prior work to the dissertation material.

compiler implementation that balances the execution overheads associated with smaller idempotent

regions against those potentially associated with larger regions. Namely, Chapter 2, Chapter 4, and

parts of Chapter 5 are largely unique to this thesis and are not part of previously published work.

9

2 Idempotence in Computer Architecture

This chapter analyzes idempotence and idempotence-based recovery specifically in the context

of application programs executed as sequences of instructions. It develops a framework for the

analysis of idempotence in this context and develops a taxonomy to reason about a spectrum of

idempotence models. It subsequently offers empirical and qualitative analysis to identify two specific

models—architectural and contextual idempotence—that are deemed meaningful for exploration in

subsequent chapters.

Parts of this chapter are heavy on formalism; with an understanding of certain specific char-

acteristics of architectural and contextual idempotence, the impatient reader is free to skip this

chapter and continue on to the remaining chapters of this dissertation. The relevant characteristics

are as follows. Both models allow the construction of idempotent regions of maximal size with

respect to the common case of data-race-free multi-threaded execution. Importantly, both models

specifically assume invariable control flow semantics upon re-execution with respect to non-local

memory state. Where the two models differ is in what they assume with respect to other (local) state:

while architectural idempotence again assumes invariable control flow, contextual idempotence

allows for variable control flow semantics.

The chapter is organized as follows. Section 2.1 presents the intuition behind taxonomy it

develops, presenting example idempotence models over sequences of instructions. Section 2.2

then formally defines key terms and Section 2.3 presents the taxonomy, identifying three axes of

variation within the taxonomy. A permutation of the points along these axes forms an idempotence

model. Section 2.4 analyzes the space of idempotence models and then distills the space to two

models, architectural and contextual idempotence, that are deemed most meaningful. Section 2.5

presents a summary and conclusions.

10

2.1 Idempotence by Example

An operation is considered idempotent if the effect of executing it multiple times is identical to

executing it only a single time. The concept of idempotence has many existing uses in the field of

computer science:

• In the design of database systems, SQL SELECT queries do not modify any visible state and

hence are idempotent [22]. Many UPDATE queries are also idempotent if they do not first read

the state that they are modifying. Such queries can be safely retried in the event of failure.

• In the design of distributed file systems, the NFS protocol is stateless by design [88]; the

server does not maintain protocol information and the client keeps track of all information

required to send requests to the server. As a result, most NFS requests can be idempotent,

allowing an NFS client to send the same request one or more times without any harmful side

effects.

• In the design of instruction set architectures, RISC-style load and store instructions are

idempotent. This allows a memory instruction causing a memory exception to be simply

re-executed after the exception is serviced. Several processors take advantage of this property

to simplify support for virtual memory [9, 33]. Other types of processors that cannot do so

face significant challenges in implementing full virtual memory support [72].

• In the design of network protocols, application-layer HTTP GET, PUT, and DELETE requests

are all idempotent according to the HTTP protocol standard [104]. This allows these requests

to be safely retried in the event of a network outage, greatly simplifying the infrastructure

support of the internet.

In these examples, idempotence applies specifically to the externally-visible state of the system.

Importantly, idempotence over internally-visible state need not be preserved. For instance, re-

executing a SQL SELECT query may update some internal state of the database, such as a transaction

log or statistics maintained by a query optimizer, in a way that is not preserved by re-execution.

Similarly, re-executing an NFS file read or HTTP GET request may affect the routing and network

11

processing state of switches used to deliver the request over the network. Finally, a load or store

instruction causing an exception may invoke an operating system service routine that updates some

system-internal state (e.g. page table entries).

From this discussion, it is evident that the power of idempotence applied over a system lies in

part with how that system is defined. Considering the architecture underlying the execution of an

application program as the system, there are multiple definitions, or models, of idempotence that

are meaningful. This chapter develops a formal taxonomy to concretely reason about these different

models as they emerge from assumptions about the architecture environment. The discussion

below presents intuition by presenting example models.

Example Idempotence Models

As stated earlier, an operation is idempotent if the effect of executing it multiple times is the same as

the effect of executing it only once. This property is achieved if the operation’s inputs are preserved

throughout its execution; with the same inputs, the operation will produce the same outputs

each time it executes. However, what it means to “preserve an input” is subject to interpretation,

and many different interpretations make sense depending on the context. This section presents

four different example interpretations (models) that are all meaningful in the context of programs

executed as sequences of instructions. A region is considered the unit of operation, and the following

definitions are assumed:

Region: A region is defined as a collection of instructions uniquely identified by the single instruc-

tion that forms its entry point. A region contains the set of instructions reachable by control

flow from its entry point up to its exit points.

Live-in: A variable is live-in to a region if the variable may hold a value that is (a) defined (written)

before entry to the region and (b) potentially used (read) after entry to the region.

The code of the function shown in Figure 2.1, written in the C programming language, is used

as an example of inherently non-idempotent code that can be divided into idempotent regions.

The function, list_push, checks a list for overflow and then pushes an integer element onto the

12

Figure 2.1: Example source code.

end of the list. The left side of Figure 2.2 shows the function compiled to a stylized assembly code

organized into basic blocks, with arrows connecting the control flow between basic blocks. The

code assumes four registers are available, R0-R3, with function arguments held in registers R0 and

R1, and R0 also the return register.

In the discussion that follows, the effect of a given idempotence model is measured by forming

the set of maximally-sized idempotent regions found by greedily scanning and incrementally

adding instructions to a region until doing so would render the region non-idempotent, at which

point a new idempotent region is formed starting at the next instruction that is itself idempotent. In

practice, identifying idempotent regions—in particular, semantically idempotent regions—requires

a more sophisticated analysis (see Chapter 3); this algorithm is assumed for illustration purposes

only.

13

Figure 2.2: The function of Figure 2.1 partitioned into idempotent regions.

For the example function, the effects of four different idempotence models are graphically

illustrated using the labels A, B, C, and D on the right of Figure 2.2. In the figure, the black

horizontal bars represent instructions and the vertical bars represent idempotent regions (labeled

using the abbrevation “IR” in the legend). A region (vertical bar) overlaps an instruction (horizontal

bar) if the region includes that instruction. In the case where two vertical bars overlap an instruction,

the instruction is contained inside both regions, i.e. both regions contain the instruction but they

have different entry instructions. The meaning of the four different idempotence models A, B, C,

14

and D are presented below.

Model A

Definition 2.1 (Model A): An input of a region is a variable that is live-in to the region. A region preserves

an input if the input is not overwritten inside the region.

The above model states simply that, for a region to be idempotent, a live-in variable may not be

overwritten inside the region. This model produces the set of idempotent regions illustrated in

Figure 2.2 under the label A. There are three regions fully contained inside the function.

The first region (IR1) spans instructions 2-7 and 10-13. Its control flow diverges at instruction

6 and it has two exit points. Its first exit point occurs immediately before instruction 8, which

overwrites the memory location of the memory variable overflow_active. This variable is

conservatively assumed live-in because it may be read after returning from the function (in which

case the value read will be the value defined before entry to the function if basic block B2 is not

executed). Its second exit point occurs immediately before instruction 14, which overwrites the live-

in memory location R1 + 4 indexing into list->buf. The second region (IR2) spans instructions

8-13, also stopping before instruction 14 after re-convergence. Finally, the third region (IR3) spans

instructions 14-15, stopping before instruction 16, which overwrites the live-in stack pointer register

SP. A fourth region (IR4), only partially shown, begins at the return point of the function.

Model B

Model A makes some simplifying assumptions, both optimistic and pessimistic. One pessimistic

assumption is that it assumes it is unsafe to overwrite the live-in memory location of the variable

overflow_active at instruction 8. However, this memory location is dynamically dead at the point

where it is written; if B2 is entered, and assuming control flow does not vary upon re-execution,

then the value in that memory location at the beginning of the function will never be read after

entry to the function. If we can safely assume control flow will not vary when we re-execute, then

the following definition more accurately captures idempotence constraints (differences in bold):

15

Definition 2.2 (Model B): An input of a region is a variable that is live-in to the region. A region preserves

an input if the input is not overwritten after it is read inside the region.

If an input is written before it is read, then the input must be dynamically dead and thus

overwriting is safe. Only in the case where an input has been read is it dynamically live. Hence,

overwriting a live-in after it is read is the case that must be dis-allowed. Figure 2.2 shows the changes

resulting from this model under the label B. The region that previously spanned instructions 2-7

and 10-13 now is allowed to span instruction 8 (IR1). However, it must stop before instruction 9,

which overwrites the live-in register R1 that is overwritten after it is read (in basic block B1). All

other regions are unchanged.

Model C

A second pessimistic assumption made in Model A is that the stack pointer adjustments of instruc-

tions 1 and 15 cannot be included inside any idempotent region because they overwrite the live-in

register SP which they themselves also read. However, allowing such overwriting instructions

to be included at the end of an idempotent region still renders any partial execution of the region

idempotent, while affording certain conceptual and practical benefits. First, conceptually it allows

instructions such as the SP-update instruction to both figuratively and logically “terminate” an

idempotent region, and in the process it allows a function to be fully decomposed into idempotent

regions. Second, for recovery, containing only the state written by the final instruction of a region

often entails certain implementation conveniences. At most, it requires buffering (or otherwise

duplicating) only one state element at the ordering point between regions. Hence, Model C is

developed to allow for this specific exception:

Definition 2.3 (Model C): An input of a region is a variable that is live-in to the region. A region preserves

an input if the input is not overwritten after it is read inside the region by an instruction that is not a

final instruction of the region.

Figure 2.2 shows the regions constructed using this new definition under the label C. Instruction

1 is absorbed into the region that calls into the function (IR5), instruction 9 is absorbed into IR1,

instruction 14 is absorbed into both IR1 and IR2, and instruction 16 is absorbed into IR3. All

16

instructions are accounted for by some idempotent region.

Model D

Models A, B, and C optimistically ignore the impact of shared memory interactions between threads.

Such interactions can affect whether or not a region is idempotent. For instance, a region may

write to a memory location and a concurrently running region may read the memory location

and subsequently modify it. Upon re-execution of the first region, the memory location will be

written again to a now incorrect value, producing a side-effect that renders the region’s execution

non-idempotent. Model D captures this and similar effects relating to shared memory interactions:

Definition 2.4 (Model D): An input of a region is a variable that (1) is live-in to the region or (2) while

the region is executing, may be read in any concurrently executing region. A region preserves an

input if the input is not overwritten after it is read inside the region by an instruction that is not a final

instruction of the region.

This model effectively disallows stores to any potentially shared memory locations inside an

idempotent region (excepting the last instruction; see Model C). Re-executing such a store may

cause inconsistent program effects as described above.

Figure 2.2 illustrates the impact of this new model on the construction of idempotent regions

under the label D. The three shared memory stores in the example are instructions 8, 12, and 14.

The other store, instruction 5 stores to the program stack, which is considered private to the running

thread. IR1, which previously spanned instructions 2-9 and 10-14, now ends early to span only 2-8

and 10-12. IR2 grows backwards to include instruction 9. Finally, a new region (IR6) forms that

spans instructions 13-14.

Summary and Implications

The remainder of this chapter presents a formal classification system (a taxonomy) to concretely

reason about idempotence models such as Models A-D and others. Section 2.2 defines key terms

and Section 2.3 identifies three different axes: the control axis, the sequencing axis, and the isolation

17

Model Control Sequencing Isolation

A All-variable Free Full
B Invariable Free Full
C Invariable Commit Full
D Invariable Commit Private

Table 2.1: Idempotence configurations for Models A-D.

axis. The axis settings combine to form an idempotence model. As a preview, the axis settings for

Models A-D are shown in Table 2.1.

Different idempotence models are more realistic or more desirable depending on the architecture

environment. Section 2.4 presents an empirical analysis of the model space, presents findings,

and concludes by identifying the two idempotence models that are carried through the rest of the

dissertation.

2.2 Terms, Definitions, and Axioms

This section defines foundational terms and states the axioms that underlie the development of

the taxonomy in Section 2.3. The architecture and compiler implications of this taxonomy on real

systems are discussed and evaluated in Section 2.4.

Region: A region is as defined in Section 2.1.

Path: A path through a region is a sequence of instructions connected by control flow starting at

the entry point of a region and ending at or before one of the region’s exit points.

Live-in: A variable is live-in to a region as defined in Section 2.1. A variable is analogously live-in to

a path if the same is true considering only the control flow executed along that path.

Live-out: A variable is live-out to a region if it may hold a value that is (a) defined (written) before

exiting the region, and (b) potentially used (read) after exiting the region. A variable is

analogously live-out to a path if the above is true considering only the control flow executed

along that path.

18

State element: A state element is an architectural storage element such as a register or memory

location.

Idempotence: Formally, let a program P consist of a set of regions {P1, · · · , Pn} and for each region

Pi ∈ P , let Pi = {Xi1 , · · · , Xim} consist of the set of all unique pairs Xij = (Iij , Oij) that each

represent a set of possible paths through Pi, where Iij is that set of “input” state elements

along those paths, and Oij the set of written “output” state elements along those paths (the

precise contents of sets Iij and Oij depend on the idempotence model, which is the topic of

Section 2.3). A region Pi is idempotent if:

⋃
Xij
∈Pi

Iij ∩Oij = ∅ (2.1)

By keeping the input and output sets distinct across all possible executions of itself, the region

Pi is guaranteed to write the same output values to the same output state elements every

time it executes. Thus, it will achieve the same effect each time it executes; hence, it will be

idempotent.

Importantly, the set of input state elements Iij (for the paths represented by Xij) is used

instead of the set of input state elements for the region Pi. These two sets are not the same,

and the former yields a more precise formulation than the latter, as Lemma 2.2 shows.

Execution failure: An execution failure is an unexpected event in the program’s execution that

interrupts the normal program execution flow and requires some corrective action before

execution can resume (i.e. an exception, hardware fault, mis-speculation, etc.) An execution

failure may have side-effects associated with one or more specific instructions such that

the values written by those instructions are incorrect, but that the target state elements (the

destinations) of those values remain correct. For instructions that write specifically to the

program counter (PC), any resulting change in control flow, while possibly incorrect, must

still follow the static control flow edges of the program.

With this definition, implicitly (1) a register-writing instruction always writes to the correct

destination register, (2) a store commits its values to memory only if the address of that store

19

is known to be correct, and (3) incorrect control flow may result only from the consumption of

incorrect values or from incorrectly made control flow decisions. This definition furthermore

intentionally excludes failures with side-effects that are, from the viewpoint of the program,

spontaneous and uncorrelated with any instruction. Such failures include spontaneous

register or memory corruptions (for example, due to a particle strike), faults in the cache

coherence logic, or faults in the cache writeback logic. Additionally, control logic hardware

faults and datapath faults that result in corrupted memory address lines or corrupted register

destination fields are intentionally not covered.

Idempotence under execution failures: In the presence of potential side-effects due to execution

failures, Equation 2.1 is insufficiently general: a region may generate incorrect values in its

output state elements, and incorrect control flow may cause writes to incorrect output state

elements as well.

Incorporating execution failures into the earlier definition of idempotence, a region Pi is

idempotent if, for any execution with failures, that execution can be succeeded by a complete

and failure-free execution such that the overall effect (with respect to the idempotence model)

is as if only the final complete and failure-free execution occurred.

Given this context, we redefine Xij as a unique triple Xij = (Iij , Oij , Eij), where Iij and Oij

are the set of input and output state elements for some set of failure-free path executions and

Eij ⊇ Oij is the set of all state elements that may be written to executing those paths in the

presence of potential failures. Pi is idempotent in the presence of execution failures if:

⋃
Xij
∈Pi

Iij ∩ Eij = ∅ (2.2)

(Although not used in this equation, Oij has applications in future sections.)

Recovery using idempotence: Using idempotence, recovery from an execution failure is by re-

peated re-execution until a failure-free execution occurs. Detection capability is assumed, and

the detection of an execution failure is assumed to occur inside the same idempotent region

20

as where the execution failure occurred. This is necessary because if failure occurrence and

detection span multiple regions (that do not collectively also form an idempotent region),

recovery by re-execution is not possible in general: a later region will eventually overwrite

some input state element of the first region (otherwise they would form a larger idempotent

region), and if the detection occurs in the later region, it is assumed unknowable whether

the input element has yet been overwritten or not. Hence, having the effects of an execution

failure span multiple idempotent regions is conservatively disallowed.

Examples, Lemmas, and Remarks

Before proceeding, we briefly present same examples, lemmas, and remarks regarding the above

definitions. The reader can freely skip to the taxonomy presented in the next section if desired

without loss of context.

Figure 2.3 shows the control flow graph and some psuedocode for a simple example region.

For idempotence in the presence of execution failures, Example 2.1 uses Equation 2.2 to identify

the idempotence of this region. Additionally, Lemmas 2.1 and 2.2 demonstrate two properties of

Equation 2.2: Lemma 2.1 demonstrates that Equation 2.1 is a special case of Equation 2.2 where

either no execution failures can occur or execution failures have no side-effects; and Lemma 2.2

shows that defining the set Iij as the input state elements of Xij is more precise than simply using

the set of input state elements of region Pi. Finally, Remark 2.1 distills the impact of Lemma 2.2 on

the idempotence potential for the example region of Figure 2.3.

Example 2.1. Let Px = {Xx0 , Xx1} represent the region shown in Figure 2.3, with Xx0 representing

the execution path exiting on the left and Xx1 representing the execution path exiting on the right.

For Xij = (Iij , Oij , Eij), let Ixj be defined as the set of state elements live-in to Xxj and Oxj the set

of state elements that are written in Xxj , and let Exj be the set of state elements potentially written

in Xxj allowing failures. Px is idempotent in the presence of execution failures using Equation 2.2

as follows:

21

Figure 2.3: An example region with two control flow paths.

Ix0 = {a} Ox0 = {c} Ex0 = {c, d}

Ix1 = {a, b} Ox1 = {d} Ex1 = {c, d}

⋃
Xij
∈Px

Ixj ∩ Exj = ∅

(Ix0 ∩ Ex0) ∪ (Ix1 ∩ Ex1) = ∅

({a} ∩ {c, d}) ∪ ({a, b} ∩ {c, d}) = ∅

∅ ∪ ∅ = ∅

Lemma 2.1. Equation 2.1 is a special case of Equation 2.2 where either no execution failures can occur or

execution failures have no side-effects.

Proof. In the case of no execution failures or failures with no side-effects, Eij = Oij . Substituting

Oij for Eij in Equation 2.2 trivially reduces to Equation 2.1.

Lemma 2.2. For the state that must not be overwritten inXij ∈ Pi to preserve the idempotence of Pi, the set

of input elements Iij forXij is is more precise than the set of input elements, Li for the region Pi. That is, the

former and the latter are not equivalent and the former is a subset of the latter, i.e. the following conditions

are both true:

• Condition 1: There exists a Pi and an Xij ∈ Pi such that Iij 6= Li.

• Condition 2: For all Pi and all Xij ∈ Pi, Iij ⊆ Li.

Proof. Let Px = {Xx0 , Xx1} represent the region shown in Figure 2.3 with Xx0 and Xx1 defined as

in Example 2.1. Without loss of generality, let the input sets Iij and Li be defined by the live-in

22

Figure 2.4: Axes in the idempotence taxonomy.

elements corresponding with those sets. Assume Condition 1 is not true and hence Ixj = Lx for all

Xxj ∈ Px. This leads to a contradiction:

Ix0 = {a} Lx = {a, b}

Ix0 = Lx

{a} = {a, b}

Hence, Condition 1 is true. Regarding Condition 2, the live-in set Li of Pi is defined as the union

of all Iij for Xij ∈ Pi. Hence, Iij is necessarily contained in Li and thus Condition 2 is also true.

Remark 2.1. It follows from Lemma 2.2 that the left-hand path of the region shown in Figure 2.3

may overwrite the variable b while maintaining the idempotence of the region. If preservation of

the input state for the entire region were instead used as the basis for idempotence, this would not

be the case.

2.3 A Taxonomy of Idempotence

The definitions of idempotence from the previous section, with and without failures, intentionally

leave some things unspecified. In particular, what does it mean for an state element to be an “input”

or an “output”? This section develops a taxonomy of idempotence that provides a spectrum of

answers to this question. Illustrated in Figure 2.4, it proposes three “axes” of variation:

Control axis: The control axis (X axis) specifies how an execution failure manifests with respect to

the control flow of a region.

23

Figure 2.5: The impact of variable control flow on idempotence.

Sequencing axis: The sequencing axis (Y axis) specifies how an execution failure manifests with

respect to the sequencing of instructions in a region.

Isolation axis: The isolation axis (Z axis) specifies a region’s isolation with respect to other regions

runnning in a multi-threaded environment.

The next three subsections develop the three axes of the taxonomy.

2.3.1 The Control Axis

In the presence of execution failures, a region can experience potentially incorrect control flow.

Figure 2.5 illustrates how incorrect control flow can make an otherwise idempotent region non-

idempotent. In the case of the region shown, incorrect control flow can cause an execution intended

to pass through basic blocks 1 and 3 to instead incorrectly pass through 2, in the process overwriting

the state element d. If the original value held in d is needed for the remainder of the program to

execute correctly, this overwriting will likely manifest as an error in the program. (Examples 2.2

and 2.3 at the end of this section use the notation of Section 2.2 to demonstrate how this region is

idempotent without execution failures and is not idempotent with execution failures.)

Although the region shown in Figure 2.5 is not idempotent in the most general case, it can

be idempotent if the write to element d generated through incorrect control flow is contained. For

the purposes of this section, a write to particular state element is considered contained if it only

becomes visible under correct control flow, with the degree of containment potentially varying

depending on the type of state element.

Table 2.2 lists three different categories of state elements and the symbols used to represent

them: R represents the set of all register elements, L represents the set of all function-local stack

24

State Elements Symbol
All registers R
All local memory (function-local stack memory) L
All non-local memory (heap, global, and non-local stack memory) N

Table 2.2: Spatial containment state element categories and their symbols.

Control Axis Setting Constraints
All-variable None
Local-variable EijN

= OijN

Register-variable EijL
= OijL

and EijN
= OijN

Invariable EijR
= OijR

, EijL
= OijL

, and EijN
= OijN

Table 2.3: Output constraints for the different control axis settings.

memory elements, and N represents the set of all other types of memory elements. The output

state elements of a region are comprised of elements belonging to these three different categories.

For a collection of paths represented by Xij = (Iij , Oij , Eij) we denote this for the sets Oij and Eij

as Oij = OijR
∪OijL

∪OijN
and Eij = EijR

∪ EijL
∪ EijN

.

The control axis setting of Xij constrains the set of all potential output elements Eij as presented

Table 2.3 and as discussed below:

All-variable: Under setting All-variable, control flow is potentially variable with respect to all

state elements. Hence, there is no containment to account for variable control flow; all state

elements can be written to as a result of incorrect control flow. With this control axis setting,

the region from Figure 2.5 is not idempotent.

Local-variable: Under setting Local-variable, control flow is potentially variable with respect to

function-local state elements only. Writes to non-local memory state elements (heap, global

and non-local stack memory) are withheld using a mechanism such as a store buffer or by

simply stalling execution of such a write until control flow is verified. With this control axis

setting, the region from Figure 2.5 is idempotent if d ∈ N and not idempotent otherwise.

Register-variable: Under setting Register-variable, control flow is potentially variable with re-

spect to register state elements only. Writes to memory state elements (both local and non-local)

are contained and hence do not become visible if they are generated through incorrect control

25

flow. Again, these writes can be withheld using a store buffer or by stalling execution. With

memory spatial containment, the region from Figure 2.5 is idempotent if d ∈ (L ∪N) and not

idempotent otherwise.

Invariable: Under setting Invariable, control flow is always effectively invariable. All writes to all

architectural state elements are contained and do not become visible if they are generated

through incorrect control flow. All such writes are withheld using, for example, a re-order

buffer combined with a store buffer or by again simply stalling execution of the program in the

presence of uncertain control flow. With full spatial containment, the region from Figure 2.5

is always idempotent.

Examples

Below we present some examples which the reader may skip as desired.

Example 2.2. Let Px represent the region shown in Figure 2.5. Using Equation 2.2, Px is idempotent

assuming no execution failures as follows:

Let Px consist of its two pairings {Xx0 , Xx1}with Xx0 = (Ix0 , Ox0) representing the path that

includes basic block 2 and Xx1 = (Ix1 , Ox1) the one that does not. Let Ixj be defined as the set of

state elements live-in to Xxj and Oxj the set of state elements that are written in Xxj (both Ixj and

Oxj are expanded in future sections). For Xxj ∈ Px, the sets Ixj and Oxj are:

Ix0 = {b, c} Ox0 = {a, d, e}

Ix1 = {b, c} Ox1 = {a, e}

For these sets, Ix0 ∩Ox0 = ∅ and Ix1 ∩Ox1 = ∅. Hence, ∪(Ixj ,Oxj)∈Px
Ixj ∩Oxj = ∅. Thus, region

Px is idempotent.

Example 2.3. Let Px again represent the region shown in Figure 2.5. Using Equation 2.2, Px is not

idempotent in the presence of execution failures as follows:

With execution failures, let Px again be defined as Px = {Xx0 , Xx1}, withXx0 again representing

the path that includes basic block 2 and Xx1 the one that does not. Given Xxj = (Ixj , Oxj , Exj), the

26

sets Ixj and Oxj are as defined above for the case with no execution failures and Exj is the set of

state elements potentially written in Xxj in the presence of execution failures. For Xxj ∈ Px the sets

Ixj , Oxj , and Exj are thus:

Ix0 = {b, c} Ox0 = {a, d, e} Ex0 = {a, d, e}

Ix1 = {b, c, d} Ox1 = {a, e} Ex1 = {a, d, e}

Equation 2.2 unravels as follows:

Ix0 ∩ Ex0 = ({b, c} ∩ {a, d, e} = ∅

Ix1 ∩ Ex1 = ({b, c, d} ∩ {a, d, e} = {d}

⋃
Xij
∈Px

Ixj ∩ Exj = {d}

Hence, Px is not idempotent in the presence of execution failures.

2.3.2 The Sequencing Axis

Certain types of instructions are inherently non-idempotent. These include certain memory-mapped

I/O instructions, some types of synchronization instructions (e.g. atomic increment), and instruc-

tions associated with the calling convention (e.g. stack pointer increment or decrement). Addition-

ally, under certain thread-isolation assumptions (see next sub-section), any store instruction may

overwrite an input to a concurrently executing region, and hence any region that contains a store

must be considered non-idempotent. While the ability to fully partition programs into a collection

of idempotent regions can be beneficial, with idempotence defined as in Equation 2.2 this is not

generally possible as in the case of the examples mentioned.

Varying the sequencing axis allows this limitation to be overcome. In particular, the Commit

setting allows program to be fully partitioned into idempotent regions by guaranteeing that, if

the final instruction of a region executes successfully to completion, all instructions before it have

also completed successfully and cannot experience an execution failure. Assuming instructions

do not update any state if they experience an execution failure, this allows the final instruction to

overwrite input elements of that region. Following from the definition of recovery from Section 2.2,

27

an idempotent region must already wait for all execution failures to be detected before a subsequent

region can begin execution and hence from an implementation standpoint Commit sequencing

creating a natural ordering point on the final instruction that complements recovery requirements.

Commit sequencing also allows programs to be fully decomposed into a collection of idempotent

regions—at the most basic level each individual instruction is then itself an idempotent region.

The Free setting, in contrast, does not place any constraints on the order of completion for the

instructions of a region.

In the context of Equation 2.2, the effects of Commit sequencing can be accounted for by removing

the set of state elements written by the final instruction of a region from that region’s set of potential

output elements if those elements are not also written by other instructions in the region. That is,

for a collection of paths Xij = (Iij , Oij , Eij) let Zij be the set of state elements potentially written

in Xij (as in the definition of Eij assumed thus far), and let ZijS
⊆ Zij be the set of state elements

contained by the sequencing axis setting in Xi,j . The sequencing axis affects the set of potential

output state elements Eij as follows:

Eij = Zij \ ZijS
(2.3)

Similarly, for Oij (the outputs under a failure-free execution of Xij), let Wij be the set of state

elements written under a failure-free execution of Xij (as in the definition of Oij assumed thus far),

and let WijS
⊆Wij be the set of state elements contained by the sequncing axis setting in Xi,j . The

set Oij is re-defined as follows:

Oij = Wij \WijS
(2.4)

LetZijF
⊆ Zij be the set of output state elements for any final instruction inXij and letZijO

⊆ Zij

be the set of potential output state elements for all other instructions inXij in the presence of failures.

Similarly, let WijF
⊆ ZijF

and WijO
⊆ ZijF

be the subsets that apply for a failure-free execution of

Xij . By definition, Zij = ZijF
∪ ZijO

and Wij = WijF
∪WijO

. Then, the sets ZijS
and WijS

for each

of the two sequencing axis settings are defined as in Table 2.4 and as discussed below:

28

Sequencing Axis Setting Constraints
Free ZijS

= ∅ and WijS
= ∅

Commit ZijS
= ZijF

\ ZijO
and WijS

= WijF
\WijO

Table 2.4: Output constraints for the two sequencing axis settings.

Free: Under setting Free, the set of output state elements is simply the set of state elements written

in the region.

Commit: Under setting Commit, the set of output state elements is the same as under Free excluding

the output state elements of any final instruction that are not also output elements of other

instructions in the region.

2.3.3 The Isolation Axis

The isolation axis affects whether or not the region is idempotent in the presence of data races. It

can affect idempotence in the presence of both execution failures that do and do not have side-

effects. With side-effects, a store from a failed execution can write a corrupted value that propogates

to a concurrently running thread before it can be corrected by re-execution. Even without side-

effects, a concurrently running thread may read a memory value written by a failed execution

and subsequently modify the memory location before re-execution can occur. Then, upon re-

execution, the memory location is written again back to the initially-written, now incorrect value.

Both behaviors result in erroneous program execution.

In the context of Equation 2.2, the effects of thread isolation can be accounted for by considering

a value that is written by a region as also read by the same region if it may be read by a concurrently

executing thread. That is, for an execution Xij = (Iij , Oij , Eij) let Lij be the set of state elements

live-in to Xij (as in the definition of Iij previously), and let Cij be the set of state elements that may

be read by some region execution Xk,l ∈ Pk for Pk ∈ P that may execute concurrently with Xij .

The isolation axis incorporates Cij to refine the definition for the set of input state elements Iij as

follows:

Iij = Lij ∪ Cij (2.5)

29

Isolation Axis Setting Constraint
None Cij = P ∪ Z
Private Cij = P
Full Cij = ∅

Table 2.5: Inter-thread visible state elements under different isolation axis settings.

Let P represent the set of thread-private memory state elements (thread-local storage and

function-local stack) and Z represent all other types of memory state elements. The set Cij for each

of three different levels of isolation is defined as in Table 2.5 and as discussed below:

None: Under setting None, all memory locations, even those considered thread-private, are poten-

tially visible and modifiable by all threads. Even though sharing thread-private state generally

gives undefined behavior, some programming languages provide de facto semantics for it.

To accommodate these semantics, it must be assumed that a potential re-execution scenario

exists such that a write to any memory location can “overwrite an input” of a concurrently

executing region. Hence, any region with a memory write is non-idempotent.

Private: Under setting Private, thread-private memory can be safely considered isolated from

other threads and hence a region may still be idempotent if it writes to thread-private memory.

However, writes to potentially shared heap, global, or other memory may still cause undefined

behavior.

Full: Under setting Full, all memory interactions inside a region are fully isolated. This applies

to all single-threaded programs and properly synchronized programs where all regions can

be serialized with respect to their shared memory interactions (i.e. there are no data races).

It also applies to transactional systems where a region can execute as an atomic memory

transaction [48] in order to prevent the visibility of intermediate state.

2.4 Measurement, Analysis, and Synthesis

The taxonomy developed in the previous section proposes three axes of idempotence with any-

where from two to four points on each axis for a total of twenty-four different combinations, or

30

“idempotence models”. In practice, however, only a few idempotence models are meaningful. In

this section and the next, the model space is analyzed and pruned to those models that are explored

in later chapters.

2.4.1 Measurement and Analysis: Model Characterization

The idempotence model primarily dictates two things: (1) achievable idempotent region sizes, and

(2) the hardware and/or software support required to enable the model. In our analysis, we focus

on the region size characteristic specifically and consider support mechanisms secondarily.

Trivially, idempotent regions can be as small as individual instructions. However, such regions

are typically too small to be useful. In general, larger regions—in particular, longer paths executing

though those region—are better because they allow for the greatest flexibility: when shorter path

lengths are desirable, for instance, to minimize re-execution costs for recovery, paths can often be

sub-divided into smaller paths as needed (more details in Chapter 4). The reverse, however, is

typically not possible. This section presents empirical measurements and analysis on achievable

idempotent path lengths for different idempotence models.

Experimental Method

We consider three benchmark suites: SPEC 2006 [99], a suite targeted at conventional single-threaded

workloads, PARSEC [16], a suite targeted at emerging multi-threaded workloads, and Parboil [100],

a suite targeted at massively parallel GPU-style workloads written for CPUs. All benchmarks are

compiled using the LLVM with all optimizations enabled [62].

For each benchmark, we use the Pin dynamic instrumentation tool for x86-64 [65] to measure the

idempotent path lengths that form at run-time inside individual functions. We monitor benchmark

execution over a 10 billion instruction period starting after the initial 10 billion instructions of

the application. For benchmarks with fewer than 20 billion instructions, the entire execution is

monitored following the setup phase of the benchmark.

For analysis, we consider four representative idempotence models, three of which are fundamen-

tally constrained by a single axis setting, and the fourth of which is unconstrained. For all models

31

Configuration Control Sequencing Isolation Region Formation
Store-Constrained All-variable Free None Ideal
Share-Constrained All-variable Free Private Ideal
Control-Constrained All-variable Free Full Ideal
Unconstrained Invariable Free Full Ideal
Obliviously-Formed Invariable Free Full Oblivious

Table 2.6: Experimental configurations, their idempotence axis settings, and assumptions.

we measure the largest possible path lengths achievable using perfect run-time information (more

details below). For the unconstrained idempotence model we also consider path lengths formed

compiling oblivious to the idempotence property (i.e. as might be generated by a conventional

compiler) for comparison. In total we consider the five different experimental configurations shown

in Table 2.6. From most constrained to least constrained, these configurations, and how idempotent

path length is measured for each configuration, are explained as follows:

Store-Constrained: Independent of the Sequencing axis setting, which affects idempotent path

lengths in a predictable fashion, this configuration is the most constrained configuration

possible with control axis setting All-variable and isolation axis setting None. For this

configuration, we measure idempotent path length simply as the distance between stores to

memory. This measurement is ideal with the assumption that the region formation is able to

avoid overwriting register live-ins by careful resource allocation and allocating temporary

stack storage as necessary using techniques such as those described in Chapters 3 and 4.

Share-Constrained: This configuration raises the isolation axis setting from None to Private. Path

lengths with any isolation setting other than Full are fundamentally limited by the occurrence

of stores, regardless of whether those stores are encountered considering variable or invariable

control flow; hence, the control axis setting is held at All-variable without interference. For

this configuration we measure idempotent path length as the distance between stores to

non-local memory, with local memory locations identified as those memory locations that are

read or written relative to the stack pointer (these are universally register spill locations for

the compiler we use).

32

Control-Constrained: This configuration further raises the isolation axis setting from Private to

Full so that path lengths become constrained by control flow effects. Now, we measure

idempotent path length as the distance between stores to non-local memory locations that

are live-in to the region. The region distinction is important, since stores to non-local memory

that do not overwrite live-ins of the active path may still overwrite live-ins of other paths

that share the same region entry point. To measure the impact of this difference, a write to

non-local memory is assumed to terminate the idempotence of the active path if that write

follows a control decision since the start of the path. The existence of this control decision

is used as a proxy for control divergence. It is slightly pessimistic since it assumes that the

same non-local memory location is not also written along other paths through the containing

region, either due to re-convergence or other behavior (in these cases the value would be

known to be dead). This limitation is acknowledged, but deemed insignificant.

Unconstrained: This configuration assumes the most flexible control, sequencing, and isolation

axis settings. As mentioned, a compiler is capable of avoiding overwritten local memory and

register live-in state by allocating additional temporary stack storage. Hence, for the Local-

variable, Register-variable, and Invariable control axis settings there are no differences in the

ideal achievable path length measurement for any of these settings. (Differences in overhead

are evaluated post-implementation in Chapter 5.) Hence, control axis setting Invariable is a

representative setting for all control axis settings above All-variable. For this configuration,

idempotent path length is measured as the number of instructions between overwriting of

non-local memory locations that are live-in along the active path.

Obliviously-Formed: For this configuration, idempotent path length is measured as the length of

the instruction sequence between overwriting of registers and memory live-in along the active

path. In other words, these are the idempotent path lengths that exist in an actual program

binary that is compiled oblivious to the idempotent path lengths achievable employing

compiler renaming and allocation techniques.

The impact of the sequencing axis, which is not varied along any of the experimental con-

figurations, is evaluated simply by measuring the percentage of instructions that are inherently

33

asta
r
bzip

2 gcc

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
100

101

102

103

SPEC INT

3,500

Store-Constrained
Unconstrained

Share-Constrained
Obliviously-Formed

Control-Constrained

dealII lbm milc
namd

pov
ray

so
plex

sp
hinx3

gmean
100

101

102

103

SPEC FP

108

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

str
eamclu

ste
r

sw
aptio

ns

gmean
100

101

102

103

PARSEC

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
100

101

102

103

Parboil

8,500 15,000-90,000

Figure 2.6: Mean idempotent path lengths.

non-idempotent during execution. These instructions overwrite a source operand that is neither a

general-purpose register nor a local (stack) memory location (i.e. the conflict is unlikely to be under

the control of the compiler). Under Commit sequencing, such instructions terminate the active

idempotent path and a new idempotent path starts at the next instruction (i.e. the idempotent path

length is simply shortened by one instruction).

Results

Figure 2.6 shows the mean idempotent path length for the five different experimental configurations

with geometric mean values presented in Table 2.7.

Observation 2.1. There is significant opportunity for constructing large idempotent regions by compiling

specifically for idempotence.

This first observation follows from comparing the overall geometric mean values on the far

right column of Table 2.7. At a minimum, model Store-Constrained achieves more than 3x longer

34

SPEC INT SPEC FP PARSEC Parboil Overall
Store-Constrained 8.4 10.3 35.5 69.0 17.1
Share-Constrained 13.0 19.6 55.8 99.6 27.4
Control-Constrained 19.7 32.3 60.8 151.2 40.1
Unconstrained 52.0 347.9 140.7 686.8 160.2
Obliviously-Formed 4.8 4.4 6.0 6.7 5.2

Table 2.7: Geometric mean idempotent path lengths.

path lengths than Obliviously-Formed, even with more constrained idempotence axis settings, while

Unconstrained achieves more than 30x longer path lengths.

Observation 2.2. Isolation axis setting Full allows for roughly 1.5x longer path lengths than Private and

more than 2x longer path lengths than None.

This second observation follows from comparing Control-Constrained (with isolation setting

Full), to Share-Constrained (Private) and Store-Constrained (None). While seemingly the differences

varying the isolation setting are small, isolation setting Full is the only setting that enables even

larger region sizes by allowing relaxed control flow assumptions. This effect is articulated by the

following observation:

Observation 2.3. On average, control axis settings Local-variable, Register-variable, and Invariable

allow for roughly 4x longer path lengths than All-variable.

This third observation follows from comparing Unconstrained to Control-Constrained. This con-

trasts All-variable with the three settings that all assume invariable control flow interactions with

respect to non-local memory (Invariable is used as the representative setting). Unconstrained allows

for substantially longer path lengths because only stores to dynamically live-in memory locations

force termination of an idempotent region.

Observation 2.4. For the sequencing axis, Commit is rarely needed, but is helpful in dealing with corner

cases.

Figure 2.7 shows the percentage of inherently non-idempotent instructions dynamically executed

under the Unconstrained configuration. The figure contrasts the Commit versus Free sequencing

35

asta
r
bzip

2 gcc

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
0%
2%
4%
6%
8%

SPEC INT

dealII lbm milc
namd

pov
ray

so
plex

sp
hinx3

gmean
0%
2%
4%
6%
8%

SPEC FP

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

sw
aptio

ns

gmean
0%
2%
4%
6%
8%

PARSEC

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
0%
2%
4%
6%
8%

Parboil

Figure 2.7: The percentage of non-idempotent instructions for model Unconstrained.

axis settings for models with Full isolation guarantees. While the percentage of non-idempotent

instructions is in some cases over 5%, typically these instructions account for less than 1% of the

program’s execution. By far, most of the non-idempotent instructions are those associated with the

calling convention (e.g. stack pointer increment/decrement). For models with weaker isolation

guarantees, non-isolated stores would also be non-idempotent instructions (1-12% of all instructions

depending on the benchmark; not shown in the figure).

2.4.2 Synthesis: Model Selection

The analysis from the previous section helps in identifying the set of most meaningful idempotence

models. In particular, the findings can be summarized as: (1) the control axis settings that allow the

greatest range of idempotent region sizes are Invariable, Register-variable, and Local-variable, (2)

isolation axis settings other than Full severely limit the applicability of idempotence for recovery

when used in combination with any of the above control axis settings. (3) support for Commit se-

quencing is desirable, although unnecessary to support for all cases, and hence should be supported

36

Idempotence Model Control Sequencing Isolation
Architectural Idempotence Invariable Free* Full
Contextual Idempotence Local-variable Free* Full

Table 2.8: The two selected idempotence models. (* The sequencing axis setting for both configura-
tions is nominally Free with non-idempotent instructions specially supported using Commit.)

only on an as-needed basis, if it is supported at all.

In the end, the two idempotence models shown in Table 2.8 are identified as the most meaningful.

These are the two models explored in the remainder of this dissertation, where they are identified

using the labels architectural and contextual idempotence.

Architectural Idempotence

Architectural idempotence is so named because it preserves the architectural state of the program

between idempotent regions. It assumes the Invariable control axis setting, where an execution

failure cannot affect state elements that are not also affected by a failure-free execution of the region

(Eij = Oij).

With Invariable control, Equation 2.1 can be substituted for Equation 2.2 as shown by Lemma 2.1

of Section 2.2. Applying Lemma 2.1 to Equation 2.2 and also substituting in the effects of optional

Commit sequencing (Equation 2.3) and Full isolation (Equation 2.5) produces the following equation

for architectural idempotence with (top) and without (bottom) Commit sequencing:

∅ =

⋃

Xij
∈Pi

Lij ∩ (Wij \ (WijF
\WijO

)) if Pi has Commit sequencing⋃
Xij
∈Pi

Lij ∩Wij otherwise

From an end-user perspective, architectural idempotence is the most intuitive category of

idempotence, and it is the one required to observe an architecturally-precise, sequentially-ordered

snapshot of the program at region boundaries. Such an ordered snapshot guarantees a consistently

optimal view of the program’s state for the purposes of debugging, and supports the execution of

interrupt handlers that require visibility to possibly arbitrary precise state.

In terms of recovery, architectural idempotence can be used to cleanly recover from page faults

in the manner described in the beginning of this chapter. More generally, it can be used to recover

37

from all execution failures that have no side effects (e.g. traditional hardware exceptions) as well as

execution failures where the effects of the failure can be spatially contained to the output elements

of a failure-free execution of the region. In practice, such types of failures tend to be the kind

that occur rarely, and Full isolation in combination with Invariable control allows architecturally

idempotent regions to be very large. Large regions are ideally suited to handling infrequent failures

as explained in more detail in Chapter 4.

Contextual Idempotence

Contextual idempotence provides a looser definition of idempotence than architectural idempo-

tence, relaxing control flow constraints and thus supporting a weaker level of spatial containment.

In particular, contextual idempotence employs control axis setting Local-variable, allowing an

idempotent region to write to function-local storage resources that may not be written to given an

actual failure-free execution of the program.

The adverse consequence is that, whereas architectural idempotence preserves all architectural

state between regions, contextual idempotence preserves only the architectural state that is live

with respect to the running program (the program “context”) between regions. The key tradeoff

is thus that contextual idempotence allows corrupted state to be generated and held in dead state

(rather than in otherwise special-purpose buffering structures as would be required in the case

of architectural idempotence) at the loss of sequential precision in the architectural state of the

program. Contextual idempotence still employs Full isolation to preserve architecturally correct

state with respect to non-local memory. This allows idempotent path lengths to remain large as

noted combining Observations 2.2 and 2.3 (although this may not always be necessary or desirable).

Substituting the effects contextual idempotence into Equation 2.2 produces the following equa-

tion with (top) and without (bottom) Commit sequencing (Local-variable control constraints omit-

ted):

∅ =

⋃

Xij
∈Pi

Lij ∩ (Zij \ (ZijF
\ ZijO

)) if Pi has Commit sequencing⋃
Xij
∈Pi

Lij ∩ Zij otherwise

In terms of recovery, using the program’s dead state elements to hold corrupted state contextual

38

idempotence can be leveraged to more flexibly recover from execution failures such as branch

mispredictions and hardware faults. If an execution is correct, the dead state written by a region

will eventually become live over the course of the region’s execution. Similarly, if the execution is

incorrect and the region must be re-executed, either the dead state is overwritten with a correct

value before becoming live, or it will remain dead throughout the re-execution.

Other Idempotence Models

While only architectural and contextual idempotence are explored in the remainder of this disserta-

tion, it is worth noting that other idempotence models may have applicability in specific domains.

For instance, full isolation may be an unrealistic assumption in some cases, while the data from

Section 2.4 suggests that usefully large idempotent region sizes may still be achievable even with

weaker isolation guarantees. A central aim of this dissertation, however, is to explore what is

achievable in the limit, and both architectural and contextual idempotence allow the construction of

the largest possible idempotent regions subject to semantic program constraints. Thus, henceforth

we only focus on these specific models in order to fully understand what they can achieve.

2.5 Summary and Conclusions

This chapter explored and analyzed the concept of idempotence as it applies specifically in the

context of computer architecture. As background, it presented examples of idempotence applied

in computer science and presented different interpretations of idempotence that were all valid

in the context of computer architecture. It then developed a formal taxonomy to reason about

these different interpretations, and others, in the architecture context. Leveraging this taxonomy, it

presented an empirical study of the sizes of idempotent regions that could be attained for different

idempotence models arising from the taxonomy. Finally, it identified the two idempotence models,

architectural and contextual idempotence, that are to be developed in subsequent chapters.

39

3 Static Analysis of Idempotent Regions

This chapter describes an algorithm for identifying the largest semantically idempotent regions

in a program, for both contextual and architectural idempotence, using intra-procedural static

analysis. Section 3.1 presents fundamental concepts and provides an overview of the algorithm

which operates by “cutting” antidependences. Section 3.2 describes the transformations that allow

the problem of constructing idempotent regions to be cast and solved efficiently in these terms.

Section 3.3 then describes the core static analysis technique for cutting the antidependences and

Section 3.4 describes optimizations for dynamic behavior. Finally, Section 3.5 presents a summary

and conclusions.

3.1 Static Analysis Overview

This section develops a foundation for the analysis of idempotence using data dependence informa-

tion. Section 3.1.1 develops and defines two key terms: clobber dependence and clobber antidependence

(a type of clobber dependence). It also distinguishes between between semantic (required) and

artificial (not required) clobber dependences. Section 3.1.2 then presents an overview of the static

analysis algorithm that attempts to partition program functions into the largest possible semantically

idempotent regions.

3.1.1 Idempotence Analysis Using Data Dependence Information

In the discussion that follows, the term flow dependence is used to refer to a read-after-write (RAW)

dependence, the term antidependence is used to refer to a write-after-read (WAR) dependence, and

the term output dependence is used to refer to a write-after-write (WAW) dependence. Applying

40

Term Storage Resources

Pseudoregisters Registers and local stack memory
Non-local memory Heap, global, non-local stack memory

Table 3.1: Terms used to refer to different types of architectural storage resources.

these terms to the definition of live-in from Chapter 2, a variable is live-in to a region (or path)

simply if it has a flow dependence spanning the entry point of the region (or path).

Table 3.1 additionally distinguishes among two different categories of architectural storage

resource. The term pseudoregister is used to refer to a function-local, private storage elements such

as registers or stack memory locations. The term non-local memory is used to refer to to all other

types of storage elements; namely heap, global, and non-local stack memory.

Clobber Antidependences

Both architectural and contextual idempotence allow overwriting non-local live-in variables if

they are dynamically dead along a given path through a region. A live-in variable is known to be

dynamically dead beyond some point in the region if (a) no read of that variable’s value may have

occurred along any path leading up to that point and (b) no read of that variable’s value can occur

anywhere after that point. The act of overwriting implicitly guarantees (b), hence, with respect to

the point of the write, a live-in is dynamically dead simply if it has not yet been read. Overwriting a

live-in that has been read is thus the case that must be dis-allowed. The write-after-read relationship

is an antidependence, and hence we infer that, to preserve idempotence, a live-in variable may not

be overwritten as part of an antidependence relationship that follows the live-in’s flow dependence

spanning the region entry point. The existence of such an antidependence that follows a flow

dependence spanning the region entry we call a clobber antidependence.

Clobber Dependences

Architectural idempotence can be reasoned about entirely in terms of clobber antidependences.

Under contextual idempotence, however, pseudoregister live-in variables may never be overwritten

inside a region, irrespective of whether the write occurs before or after a read, due to the possibility

41

Figure 3.1: Control flow and compiler intermediate code (not in SSA form).

of variable control flow upon re-execution. With this stricter requirement, the absence of clobber

antidependences is insufficient—a write need not follow a read to break idempotence. For this case,

a live-in variable may not be overwritten to form a write-after-write (output dependence) that spans

the entry point of the region, where the first write is the write of the live-in’s flow dependence

that spans the entry point. The dual occurence of a flow dependence and output dependence both

spanning the entry point of a region we call a clobber dependence. Note that a clobber antidependence

is a special type of clobber dependence.

Semantic and Artificial Clobber Dependences

Some clobber dependences (both clobber antidependences and other types of clobber dependences)

are strictly necessary according to program semantics. These clobber dependences we label semantic

clobber dependences. The other clobber dependences we label artificial clobber dependences. The

following example demonstrates semantic and artificial clobber dependences.

We revisit the function from Figure 2.1 as a running example. Figure 3.1 shows the function

42

Figure 3.2: Control flow and compiler intermediate code in SSA form.

compiled to a load-store intermediate representation. The figure shows the control flow graph of

the function, which contains three basic blocks B1, B2, and B3. Inside each block are shown the

basic operations, Si, and the use of pseudoregisters, ti, to hold operands and read and write values

to and from memory. The clobber dependences on pseudoregisters are artificial, while other clobber

dependences are semantic as explained below.

As an enabling transformation, Figure 3.2 shows the effect of converting all pseudoregister

assignments to static single assignment (SSA) form [25]. Note that, under SSA, all pseudoregister

output dependences and antidependences on pseudoregisters disappear1. Such dependences are

removable and hence unnecessary: all clobber dependences that arise from them are artificial. After

transforming the code into SSA (or similar) form, a compiler can permanently eliminate clobber

dependences by ensuring that, during register and stack slot allocation, pseudoregisters live at an

idempotence boundary are not overwritten by the assignments of other pseudoregisters sharing
1In general all such types of dependences disappear. However, they may remain across loop iterations. For overview

purposes this issue is ignored here and is revisited in Section 3.3.2.

43

Type of Clobber Dependence Storage Resources

Artifial clobber dependence/antidependence Pseudoregisters
Semantic clobber antidependence Non-local memory

Table 3.2: Semantic and artificial clobber dependences and associated resources.

the same storage resource (in the case of architectural idempotence, such an assignment may occur,

but only if it is not preceeded by a read). This resource allocation constraint enables idempotence in

exchange for additional register pressure on the region. Assignments to non-local memory storage

resources, however, cannot be renamed by a compiler. They are bound to fixed locations by the

semantics of the program and hence clobber dependences over these locations are semantic.

Summary and Implications

Table 3.2 summarizes the differences between semantic and artificial clobber dependences. Artificial

clobber antidependences act on pseudoregister locations: registers and local stack memory. These

resources are compiler controlled, and assuming effectively infinite stack memory, can be arbitrarily

re-assigned. While in practice stack memory is limited, compiling for idempotence does not grow

the size of the stack significantly and we have no size-related difficulties compiling any benchmarks.

Semantic clobber dependences, in contrast, act on non-local memory locations: heap, global, and

non-local stack memory. These memory locations are not under the control of the compiler; they

are specified in the program itself and cannot be re-assigned. Furthermore, since both architectural

and contextual idempotence specify that live-in non-local memory may be assigned inside a region

if the assignment occurs before a read, at this point we need no longer concern ourselves with the

general case of clobber dependences over non-local memory; only clobber antidependences apply

over non-local memory.

3.1.2 The Partitioning Algorithm

Assuming it is possible to eliminate all artificial clobber dependences, the idempotent regions

that exist in application programs are potentially large as suggested by the data from Section 2.4.

However, the problem of statically constructing large idempotent regions remains surprisingly

44

non-trivial. In principle, the problem should be as simple as merely identifying and constructing

regions that contain no semantic clobber antidependences. However, this solution is circularly

dependent on itself: identifying semantic clobber dependences requires identification of region

live-in variables, which in turn requires identification of the regions. This circular dependence is

illustrated below:

The static analysis algorithm of this chapter resolves this circular dependence problem. The

first step of the algorithm (Section 3.2) transforms the function so that, with the exception of self-

dependent pseudoregister dependences2, all antidependences are necessarily semantic clobber antide-

pendences. This enables the construction of idempotent regions simply in terms of antidependence

information. Antidependence information does not depend on region live-in information, and

hence the circular dependence chain is broken. During the transformation process, self-dependent

pseudoregister dependences are optimistically assumed not to emerge as clobber dependences;

those that would emerge as clobber dependences after the region construction are patched in a

subsequent refinement step.

Considering only antidependence information, the problem of partitioning the program into

idempotent regions is reduced to the problem of “cutting” the antidependences, such that a cut

before statement S starts a new region at S (Section 3.3). In this manner, no single region contains

both ends of an antidependence and hence the regions are idempotent. To maximize the region sizes,

the problem is cast in terms of the NP-complete vertex multicut problem and an approximation

algorithm is used to find the minimum set of cuts, which finds the minimum set of regions.

Intuitively, this produces large static region sizes averaged across a function. Finally, heuristics are

introduced to maximize the sizes of regions as they occur dynamically at runtime (Section 3.4).
2These are dependences that occur across loop iterations with assignments of the form ti = f(ti)).

45

Figure 3.3: The data dependence graph of Figure 3.2 showing only non-local memory clobber
antidependences using solid lines. Cut placement shown using dashed line.

Example 3.1. Figure 3.3 shows the algorithm applied to our running example. The initial step is

the conversion of all pseudoregister assignments to SSA form as previously illustrated in Figure 3.2.

Figure 3.3 shows the dependence graph of Figure 3.2 with non-local memory may-alias clobber

antidependences shown using solid black lines. Under SSA, the artificial clobber dependences

disappear and the semantic ones remain. A total of nine may-alias clobber antipendences exist in

the function: S1 → S9, S1 → S11, S2 → S9, S2 → S11, S6 → S9, S6 → S11, S7 → S9, S8 → S9, and

S8 → S11 (the final one is must-alias). (The large number of may-alias dependences illustrates the

difficulty in statically analyzing small functions with non-local side-effects such as the one shown).

All semantic clobber antidependences involve a write to either memory location mem[t7 + t8]

or memory location mem[t6 + 4]. In general, the problem of finding the best places to cut the

antidependences is NP-complete. However, for this simple example the solution is straightforward:

it is possible to place a single cut that cuts all antidependences exactly between the statements

S8 and S9 as shown in Figure 3.3. With this cut in place, the function is ultimately divided into

two semantically idempotent regions in total: one region with entry point at the beginning of the

function and the other beginning at the site of the cut.

46

Before: After:

1. mem[x] = a 1. mem[x] = a
2. b = mem[x] 2. b = a
3. mem[x] = c 3. mem[x] = c

Figure 3.4: Eliminating non-clobber memory antidependences.

3.2 Program Transformation

In the static analysis algorithm, two code transformations precede any idempotence analysis.

The two transformations are (1) the conversion of all pseudoregister assignments to static single

assignment (SSA) form, and (2) the elimination of all non-local memory antidependences that are

not clobber antidependences. The details on why and how are given below.

The first transformation converts all pseudoregister assignments to SSA form. After this trans-

formation, each pseudoregister is only assigned once and all artificial clobber dependences are

effectively eliminated. (Self-dependent artificial clobber dependences, which have assignments of

the form xi = f(xi) and manifest in SSA through φ-nodes at the head of loops, still remain, but it is

safe to ignore them for now.) The intent of this transformation is to expose primarily the semantic

antidependences to the compiler. Unfortunately, among these antidependences we still do not

know which are clobber antidependences and which are not, since, as explained in the previous

section, this determination is circularly dependent on the region construction we are trying to

achieve. Without knowing which antidependences will emerge as clobber antidependences, we do

not know which antidependences must be cut to form the regions.

To resolve this ambiguity, after the SSA transformation we employ a simple redundancy-

elimination transformation illustrated by Figure 3.4. The sequence on the left has an antidependence

on non-local memory location x that is not a clobber antidependence because the antidependence

is preceded by a flow dependence. Observe that in all such cases the antidependence is made

redundant by the flow dependence: assuming both the initial store and the load of x “must alias”

(if they only “may alias” we must conservatively assume a clobber antidependence) then there is

no reason to re-load the stored value since there is an existing pseudoregister that already holds

the value. The redundant load is eliminated as shown on the right of the figure: the use of memory

47

location x is replaced by the use of pseudoregister a and the antidependence disappears.

Unfortunately, there is no program transformation that resolves whether any remaining self-

dependent pseudoregister antidependences or output dependences will manifest as clobber de-

pendences. In the following section, we initially assume that these dependences can be register

allocated such that they do not become clobber dependences (i.e. we can precede an antidependence

or output dependence in a region with a flow dependence in the same region). Hence, we construct

regions around them, considering only the known, non-local memory clobber antidependences.

After the construction is complete, we check to see if our assumption holds. If not, we insert

additional region cuts as necessary.

3.3 Static Analysis

After our program transformations, our static analysis constructs idempotent regions by “cutting”

all potential clobber antidependences in a function. The analysis consists of two parts. First, we

construct regions based on semantic antidependence information by cutting non-local memory

antidependences and placing region boundaries at the site of the cuts. Second, we further divide

loop-level regions as needed to accommodate the remaining self-dependent pseudoregister clobber

antidependences.

3.3.1 Cutting Non-Local Memory Antidependences

To ensure that a non-local memory antidependence is not contained inside a region, it must be split

across the boundaries between regions. Our algorithm finds the set of splits, or “cuts”, that creates

the smallest number of these regions. This goal of creating smallest number of regions allows us

to specify our problem constraints in simple terms, while intuitively it is an effective proxy for

enabling the construction of the largest regions in a function. This section derives our algorithm as

follows:

1. We define our problem as a graph decomposition that must satisfy certain conditions.

48

2. We reduce the problem of finding an optimal graph decomposition to the minimum vertex

multicut problem.

3. To generate a solution, we formulate the problem in terms of the hitting set problem.

4. We observe that a near-optimal hitting set can be found efficiently using an approximation

algorithm.

Problem Definition

For a control flow graph G = (V,E) we define a region as a sub-graph Gi = (Vi, Ei, hi) of G, where

hi ∈ Vi and all nodes in Vi are reachable from hi through edges in Ei. We call hi the header node3

of Gi. A region decomposition of the graph G is a set of sub-graphs {G1, · · · , Gk} that satisfies the

following conditions:

• each node v ∈ V is in at least one sub-graph Gi,

• the header nodes for the sub-graph are distinct (for i 6= j, hi 6= hj), and

• no antidependence edge is contained in a sub-graph Gi for 1 ≤ i ≤ k.4

Our problem is to decompose G into the smallest set of sub-graphs {G1, · · · , Gk}. Figure 3.5

gives an example. Figure 3.5(a) shows a control flow graph G and 3.5(b) shows the set of antidepen-

dence edges in G. Figure 3.5(c) shows a possible region decomposition for G. The shown region

decomposition happens to be optimal; that is, it contains the fewest possible number of regions.

Reduction to Vertex Multicut

We now reduce the problem of finding an optimal region decomposition with the problem of

finding a minimum vertex multicut.
3Note that, while we use the term header node, we do not require that a header node hi dominates all nodes in Vi as

defined in other contexts [4].

4This condition is stricter than necessary. In particular, an antidependence edge in Gi with no path connecting the edge
nodes—implying that the the antidependence is formed over a loop revisiting Gi—is safely contained in Gi. However,
determining the absence of such a path requires a path-sensitive analysis. We limit our solution space to path-insensitive
analyses.

49

Figure 3.5: An example region decomposition.

Definition 3.1 (Vertex Multicut): Let G = (V,E) be a directed graph with set of vertices V and edges

E. Assume that we are given pairs of vertices A ⊆ V × V . A subset of vertices H ⊆ V is called a vertex

multicut for A if in the subgraph G′ of G where the vertices from H are removed, for all ordered pairs

(a, b) ∈ A there does not exist a path from a to b in G′.

Let G = (V,E) be our control flow graph, A the set of antidependence edge pairs in G, and H a

vertex multicut for A. Each hi ∈ H implicitly corresponds to a region Gi as follows:

• The set of nodes Vi of Gi consists of all nodes v ∈ V such that there exists a path from hi to v

that does not pass through a node in H − {hi}.

• The set of edges Ei is E ∩ (Vi × Vi).

It follows that a minimum vertex multicut H = {h1, · · · , hk} directly corresponds to an optimal

region decomposition {G1, · · · , Gk} of G over the set of antidependence edge pairs A in G.

Solution Using Hitting Set

The vertex multicut problem is NP-complete for general directed graphs [42]. To solve it, we

reduce it to the hitting set problem, which is also NP-complete, but for which good approximation

algorithms are known [23].

Definition 3.2 (Hitting Set): Given a collection of sets C = {S1, · · · , Sm}, a minimum hitting set for

C is the smallest set H such that, for all Si ∈ C, H ∩ Si 6= ∅.

50

Note that we seek a setH ⊆ V such that, for all (ai, bi) ∈ A, all paths π from ai to bi have a vertex

in H (in other words, H is a “hitting set” of Π = ∪(ai,bi)∈Aπi, where πi is the set of paths from ai to

bi). This formulation is not computationally tractable, however, as the number of paths between any

pair (ai, bi) can be exponential in the size of the graph. Instead, for each (ai, bi) ∈ A, we associate a

single set Si ⊆ V that consists of the set of nodes that dominate bi but do not dominate ai. We then

compute a hitting set H over C = {Si|Si for (ai, bi) ∈ A}. Using Lemma 3.1 it is easy to see that for

all antidependence edges (ai, bi) ∈ A, every path from ai to bi passes through a vertex in H . Hence,

H is both a hitting set for C and a vertex multicut for A.

We use a greedy approximation algorithm for the hitting set problem that runs in timeO(
∑

Si∈C |Si|).

This algorithm chooses at each stage the vertex that intersects the most sets not already intersected.

This simple greedy heuristic has a logarithmic approximation ratio [23] and is known to produce

good quality results.

Lemma 3.1. Let G = (V,E, s) be a directed graph with entry node s ∈ V and (a, b) be a pair of vertices.

If x ∈ V dominates b but does not dominate a, then every path from a to b passes through x.

Proof. We assume that a pair of vertices (a, b) are both reachable from the entry node s. Let the

following conditions be true.

• Condition 1: There exists a path from (a, b) that does not pass through the node x.

• Condition 2: There exists a path from s to a that does not pass through x.

If conditions 1 and 2 are true, then there exists a path from s to b that does not pass through x.

This means x cannot dominate b. In other words, conditions 1 and 2 imply that x cannot dominate

b.

Given that x dominates b, one of the conditions 1 and 2 must be false. If condition 1 is false, we

are done. If condition 2 is false, then x dominates a, which leads to a contradiction.

51

Figure 3.6: Clobber-free allocation of self-dependent pseudoregister dependences.

3.3.2 Cutting Self-Dependent Pseudoregister Dependences

After non-local memory antidependences have been cut, we have a preliminary region decom-

position over the function. From here, we consider the remaining category of potential clobber

dependences—the self-dependent pseudoregister dependences—and allocate them in such a way

that they do not emerge as clobber dependences.

In SSA form, a self-dependent pseudoregister dependence manifests as a write occurring at the

point of a φ-node assignment, with one of the φ-node’s arguments data-dependent on the assigned

pseudoregister itself. Due to SSA’s dominance properties, such self-dependent pseudoregister

assignments alway occur at the head of loops (for natural loops). Figure 3.6(a) provides a very

simple example. Note that in the example the self-dependent “dependence” show, is actually

two antidependences, S1 → S2 and S2 → S1 (in the general case, it might also form an output

dependence along some path through the loop where the pseudoregister is not read before it is

updated). We refer to it as a single “dependence” for ease of explanation.

To prevent self-dependent pseudoregister dependences from emerging as clobber dependences,

the invariant we must enforce is that a loop containing such a dependence either contains no cuts

or contains at least two cuts along all paths through the loop body. If either of these conditions is

already true, no modification to the preliminary region decomposition is necessary. Otherwise, we

insert additional cuts such that the second condition becomes true. The details on why and how

are provided below.

52

Case 1: A Loop With No Cuts

Consider the self-dependent dependence shown in Figure 3.6(a). For a loop that contains no cuts,

this dependence can be trivially register allocated as shown in Figure 3.6(b). In the figure, we define

the register (which could also be a stack slot if registers are scarce) of the dependence outside the

loop and hence across all loop iterations all instances of the dependence are preceded by a flow

dependence.

Case 2: A Loop With At Least 2 Cuts

A self-dependent dependence for a loop that contains at least two cuts can also be trivially-register

allocated as shown in Figure 3.6(c). Here the dependence is manipulated into two antidependences,

one on R0 and one on R1, and the antidependences are placed so that they straddle region boundaries.

Note that, for this to work, at least two cuts must exist along all paths through the loop body. This is

obviously true in Figure 3.6(c) but in the general case it may not be.

Case 3: Neither Case 1 Or 2

In the remaining case, the self-dependent dependence is in a loop that contains at least one cut but

there exist one or more paths through the loop body that do not cross at least two cuts. In this case,

we know of no way to register allocate the dependence such that it does not emerge as a clobber

dependence. Hence, we resign ourselves to cutting the dependence edge so that we have at least

two cuts along all paths in the loop body, as in Case 2. This produces a final region decomposition

resembling Figure 3.6(c).

3.4 Optimizing for Dynamic Behavior

Our static analysis algorithm optimizes for static region sizes. However, when considering loops,

we know that loops tend to execute multiple times. We can harness this information to grow the

sizes of the dynamic paths that execute through our regions at runtime.

We account for loop information by incorporating a simple heuristic into the hitting set algorithm

from Section 3.3.1. In particular, we adjust the algorithm to greedily choose cuts at nodes from the

53

outermost loop nesting depth first. We then break ties by choosing a node with the most sets not

already intersected as normal. This improves the path lengths substantially in general, although

there are cases where it reduces them. A better heuristic most likely weighs both loop nesting depth

and intersecting set information more evenly, rather than unilaterally favoring one. Better heuristics

are a topic for future work.

3.5 Summary and Conclusions

This chapter described an algorithm for identifying the largest idempotent regions in a function

given semantic program constraints. It presented a framework for the analysis idempotence in

terms of data dependence information, and introduced the terms clobber dependence and clobber

antidependence (a special type of clobber dependence) to describe the data dependence patterns that

inhibit idempotence. It then presented an algorithm to partition functions into idempotent regions

by first removing program artifacts that inhibit effective idempotence analysis and subsequently

cutting the antidependences that remain. Finally, it described optimizations for dynamic behavior.

Overall, the algorithm operates at a high level and effectively abstracts out the fundamental

constraints on idempotence to deliver a clean and modular solution to the partitioning problem.

This abstract modularity allows it to be easily extended to incorporate various custom heuristics, or

to operate at an inter-procedural level, as desired in future pursuits.

54

4 Code Generation of Idempotent Regions

The static analysis algorithm developed in Chapter 3 approximates the largest semantically idem-

potent regions in a function. These regions are a rough upper bound on the sizes of the regions

that can constructed by a source code transformation tool such as a compiler, which must observe

programmer- and language-specified semantics. The primary purpose in identifying these largest

possible regions is that it is generally straight-forward to take these large idempotent region and par-

tition them into smaller regions as desired, whereas the reverse problem of taking small idempotent

regions and making them larger is a much harder problem.

This chapter considers opportunities to sub-divide our large idempotent regions and describes

a code generation flow to map idempotent regions to machine code. Specifically, Section 4.1

considers the opportunity to tailor the static analysis region construction to accommodate the

constraints of the application and the environment in which the regions are to be used for recovery.

Section 4.2 then describes the algorithms used to compile the final set of idempotent regions such

that the idempotence property is preserved through the compiler’s register and stack allocation

process. Section 4.3 presents end-to-end code generation examples. Finally Section 4.4 presents a

summary and conclusions. (Specific details regarding compiler implementation are also discussed

in Appendix A.)

4.1 Tailoring Idempotent Region Sizes

Even in the context of generating code for idempotence-based recovery, large idempotent regions

often remain best for two reasons: they minimize the detection stall latency at idempotent region

boundaries, and they minimize the register pressure overhead of preserving live register state across

55

Figure 4.1: The runtime overhead in relation to idempotent region size for three different contribut-
ing factors (approximate; not to scale).

idempotent regions. However, it is not always possible to construct idempotent regions large

enough to minimize register pressure over a sufficiently large group of instructions. Additionally,

minimizing the re-execution penalty in the event of recovery favors smaller region sizes.

The trade-off among these three factors is sketched in the graph of Figure 4.1. The shapes of the

curves are explained as follows:

Detection stall latency: To support idempotence-based recovery, program execution may not pro-

ceed beyond the end of an idempotent region until that region is verified to be free of failures.

Otherwise, the following region could overwrite one of the earlier region’s inputs, which

would render recovery impossible. Hence, larger region sizes allow execution to proceed

“speculatively” over longer periods of time while potential execution failures remain unde-

tected.

Given a type of execution failure with detection latency d instructions, let r represent the

number of instructions to execute a region. Equation 4.1 computes the detection stall latency, l,

as a fraction of r. The latency l is inversely proportional to r, approaching zero as r approaches

infinity, irrespective of d. This inverse relationship is what is shown for the corresponding

curve of Figure 4.1.

l = d

r + d
(4.1)

Register pressure: Rather than present an equation that models the effect of register pressure, the

curve shown in Figure 4.1 can be explained more easily by appealing to intuition. For ease

of explanation, we make the simplifying assumption that there are enough live variables at

56

any given point in the program that all of a processor’s physical registers can be usefully

employed at all times.

Initially assume each instruction forms its own idempotent region. This can be supported

quite simply by modifying instructions that overwrite a source register to write to a separate

register (spilling another register if necessary). The occurrence of such instructions is in most

cases rare1, and hence this configuration introduces only modest additional register pressure

and hence incurs little runtime overhead as illustrated at the far left point of the curve on

Figure 4.1.

As region size grows beyond one instruction, however, the registers that were live at that

initial instruction must be preserved by idempotence, even if they were previously killed2

by that instruction or subsequent instructions. Hence, quickly register pressure grows and

registers need to be spilled to make room. Initially, the rate of growth can be as high as one

register spill for each register-writing instruction added to a region, and control divergence

only exacerbates the rate at which the list of live-ins accumulates. Eventually, however, the

number of registers live at the entry point of the region starts to diminish as the values in

those registers are forcibly spilled, allowing those registers to be re-used. Eventually the

worst case is reached, where all of a region’s live-in registers are pushed to the stack before

the region’s start. This worst case entails a fixed maximum cost that is amortized over the

region’s execution, and hence as region size approaches infinity, the fractional overhead due

to additional register pressure approaches zero.

Re-execution penalty: When an execution failure occurs, recovery is performed by re-executing the

containing idempotent region. Assuming a fixed per-instruction execution failure probability

p and a region of length r instructions, the average number of times a region must be re-

executed before it completes successfully, e, is exponentially proportional to r according to

the following equation:
1It is rare generally speaking, although it is not true for instruction sets with predominantly two-address instructions

(e.g. x86). See Section 5.4.

2An instruction kills a register if is the last instruction to use the value held in that register.

57

Factor Example Optimal Size

Long detection latencies Page faults in GPUs Large
Limited semantic idempotence Object-oriented programs Lowest pressure
Frequent execution failures Branch mis-predictions Small

Table 4.1: Example factors that affect optimal idempotent region size.

e =
(1

1− p

)r

(4.2)

We derive this equation as follows. Let the random variable X denote the number of instruc-

tions executed before a failure occurs. X has a geometric distribution with P (X = k) =

(1− p)k−1p. Let psucc denote the probability of a successful (failure-free) execution of a region.

psucc = P (X > r) = (1 − p)r. It follows that the number of attempts to execute over the

region before success, denoted by the random variable Y , has a geometric distribution with

P (Y = k) = (1− psucc)k−1psucc and expected number of executions:

e = E(Y) = 1
psucc

= 1
(1− p)r

=
(1

1− p

)r

If we allow the simplifying assumption that the number of “wasted” instructions w executed

before failure during a failed execution grows proportionally3 to r, then the overall overhead

of re-execution grows exponentially with r. This growth is illustrated by the corresponding

curve of Figure 4.1.

Given the interplay of the various overhead factors illustrated by Figure 4.1, it is evident that

optimal region size is dependent on a number of external factors. Table 4.1 lists some of these

factors, along with examples of where they come into play using idempotence for recovery and

how they impact the optimal region size.
3In practice, w grows slightly sub-linearly with respect to r, intuitively because a failure is more likely to occur earlier

rather than later during the execution of a region (assuming independent failure). However, this effect is not strong
enough to counter-act the overall exponential growth in overhead with respect to r.

58

Strategy Goal

Max-Size Maximize region size
Min-Pressure Minimize register pressure
Min-Recovery Minimize re-execution time

Table 4.2: Code generation strategies and the goal of each.

4.1.1 Code Generation Strategies

To balance the size versus performance trade-off for application and environmental factors such as

those in Table 4.1, we propose the three recovery code generation strategies shown in Table 4.2. The

strategies are labeled Max-Size, Min-Pressure, and Min-Recovery. They are explained below.

Max-Size: Constructing the maximum possible idempotent region sizes is ideal for recovering

from execution failures such as exceptions or hardware faults that (a) are infrequent, (b)

involve potentially long detection latencies, and (c) occur in programs that have inherently

large idempotent regions (over which register pressure can be minimized). These are the

types of execution failures ideally targeted by the compilation strategy Max-Size.

A compelling example use-case for this strategy is in supporting infrequent exceptions with

long detection latencies, such as page faults under a virtual caching implementation, on

architectures that execute programs with inherently large idempotent regions, such as GPUs.

Supporting page faults to enable demand-paged virtual memory on GPUs would ordinarily

require large checkpointing or buffering structures, which are difficult to support without

excessively compromising throughput or energy-efficiency. Since GPU programs have inher-

ently large idempotent program regions (see Chapter 5), idempotent regions could be used

for recovery with comparatively little hardware and only minimal performance overhead.

Min-Pressure: GPU programs and other computationally-intensive applications tend to have inher-

ently large idempotent regions. However, programs written for general purpose processors—

particularly those written in an object-oriented style with frequent updates to object member

variables in heap memory—do not generally have such large regions. As seen in the static

analysis example of Section 3.1.2, these programs often contain many ambiguous “may-

59

alias” memory references of the same variety as those that inhibit automatic parallelization

opportunities in compilers [71].

For these programs, the semantically idempotent regions are not generally large enough to

usefully amortize the register pressure overheads of preserving their idempotence throughout

the compilation process. If execution failure detection latencies are not particularly long, then

programs are better served by judiciously shortening region sizes to minimize overheads

resulting from register pressure. This is the approach of compilation strategy Min-Pressure.

Strategy Min-Pressure takes as argument a pressure threshold, which is a value from 1 to 10. It

examines the entry point of each basic block and computes the 10 “heaviest” (least likely to be

spilled) pseudoregister values at those points using various weighting heuristics such as loop

depth, etc. Among those 10 pseudoregisters it computes the number whose values would be

preserved purely for idempotence purposes. If that number equals or exceeds the pressure

threshold, then an idempotence boundary is placed at the entry point of the basic block.

The algorithm examines the entry point of basic blocks because that is where the number of

held registers is typically highest due to registers becoming dynamically dead as a result of

control divergence. An example that illustrates this is provided in Section 4.3.

Min-Recovery: Even when semantically large idempotent regions are abundant, for types of

execution failures that occur frequently, these regions may be unsuitably large. For instance,

if we assume a region length of 100 instructions (r = 100), a per-instruction failure probability

of 1% (p = 0.01) and approximate the wasted instructions of a failed execution at half of the

instructions in a region (r/2), using Equation 4.2 the re-execution overhead computes to:

(1
(1− p)

)r

× r

2 =
(1

1− 0.01

)100
× 100

2 = 136.6

Hence, with these parameters more than half of the time attempting to execute the region is

spent in wasted (unproductive) execution cycles.

The compilation strategy Min-Recovery attempts to minimize the re-execution cost by placing

region boundaries as close to the site of an execution failure as possible. It assumes that only

60

specific instructions, such as branches, loads, or stores, can cause execution failures, and that

the compiler potentially has some information that allows it to predict with some accuracy

how likely such an instruction is to cause an execution failure.

To illustrate the benefit, consider a low-confidence branch instruction with a 30% mis-prediction

probability (p = 0.3). Under Min-Recovery, the compiler might construct a 10-instruction re-

gion starting immediately before that instruction (r = 10). Assume that once a misprediction

occurs it does not recur, and that a 2-instruction processing delay exists before misprediction

is detected and re-execution can be initiated. The average re-execution overhead for this

branch is then 2× 0.3 = 0.6 instructions compared to (2 + 10)× 0.3 = 4 (almost half of r) had

the branch been allowed to occur in the middle of a similarly-sized region.

4.2 Idempotence State Preservation

After the idempotent region boundary locations are finalized by applying one of the compilation

strategies from the previous section, the job of the compiler is to generate code for these regions in

such a way that their semantic idempotence is preserved throughout the process of register and

stack allocation. This section covers the algorithms involved in this task specifically.

Live Intervals, Region Intervals, and Shadow Intervals

To preserve the idempotence of semantically idempotent regions, we introduce the concepts of a

region interval and a shadow interval. These concepts are analogous to the existing concept of a live

interval, which is a concept commonly used to track the liveness of variables.

A live interval spans the definition point(s) of a variable to all uses of that variable, and is easily

computed using well-known data-flow analysis techniques [4]. Figure 4.2 shows the assignment to

a variable x in basic block A and the sole use of the variable x in basic block B. The live interval

of variable x shown using a transparent light gray overlay. A region interval spans all basic block

ranges contained inside a region, and a shadow interval, associated with each variable, spans the

ranges where a variable must not be overwritten specifically to preserve idempotence. Since the live

61

Figure 4.2: An example CFG subset showing the live interval for a variable x.

interval already prevents overwriting where a shadow interval and live interval might otherwise

overlap, for clarity the shadow interval is kept disjoint from the live interval.

The shadow interval is computed in terms of live intervals and region intervals using an algo-

rithm that is specific to the idempotence model. Below, the algorithms for contextual idempotence

and architectural idempotence are presented in Sections 4.2.1 and 4.2.2, respectively. We consider the

state preservation algorithm for contextual idempotence first since it is simpler than for architectural

idempotence.

4.2.1 State Preservation for Contextual Idempotence

For contextual idempotence, within an idempotent region no variable write may be co-allocated

with a variable that is live-in to the region, lest the write will create a clobber dependence on the

allocated resource. For this idempotence model, the shadow interval of the live-in variable is thus

simply the region interval with all live interval ranges removed. The algorithm for computing the

shadow interval is thus also very simple. Given as inputs a variable v and the set of region intervals

R in v’s function, the algorithm is as presented in Algorithm 1.

62

Algorithm 1 Compute-Contextual-Idempotence-Shadow-Interval(v, R)
1: s← ∅
2: l← Compute-Live-Interval(v)
3: for r ∈ R such that (the entry point of r) ∈ l do
4: s← s ∪ r
5: end for
6: return s \ l

Figure 4.3: Shadow intervals in the case of contextual idempotence.

The result of applying this algorithm to the example CFG of Figure 4.2 (with v = x) is illustrated

in Figure 4.3, with the shadow interval shown using a transparent dark gray overlay. It shows how

the variable y cannot be co-allocated with variable x because its definition point falls in the shadow

interval of x.

Algorithmic Complexity

Assuming the union (logically “append”) and difference (logically “remove”) binary set operations

used in Algorithm 1 have complexity O(|z|), where z is the operand to the right, the worst case

complexity of the loop is bounded by
∑

r∈R |r|, which is in turn bounded by n · s, where n is the

number of instructions in the function and s is the sharing factor—the maximum number of regions

63

to which a single instruction may belong. While s is theoretically bounded by n—implying worst

case complexity O(n2)—in practice s is small with s� n and s can moreover be statically bounded

if needed. Hence, in practice the complexity is only O(n). To provide contrast, the complexity of

the live interval computation is also O(n).

4.2.2 State Preservation for Architectural Idempotence

The constraints for architectural idempotence are more specific than for contextual idempotence.

Hence, the resulting algorithm is slightly more complex. For architectural idempotence, a variable

write may be co-allocated with a variable that is live-in to the region, as long as the live-in variable

is dynamically dead at the entry point of the region with respect to the point of the write. As

identified in Chapter 3, a live-in variable is known to be dynamically dead beyond some point in

the region if (a) no read of that variable’s value may have occurred along any path leading up to

that point and (b) no read of that variable’s value can occur anywhere after that point. Hence, a

variable may not be overwritten only in the inverse case, i.e. (a) a read of that variable’s value may

have already occurred or (b) a read of that variable’s value can occur in the future. The live interval

concept already prevents (b); hence, the shadow interval concept need only additionally prevent

(a). The shadow interval of a live-in variable under architectural idempotence is thus the portion of

a region interval that is reachable from a read inside the region (with all live interval ranges again

removed).

The algorithm for computing this shadow interval is shown in Algorithm 2. Similarly to

Algorithm 1, it takes as input a variable v and the set of region intervals R in v’s function. The key

difference is that it accumulates on the shadow interval s only those ranges in a region r that are

reachable from the use points of v (the points where v is read). The result of applying this algorithm

to the example CFG of Figure 4.2 (again, with v = x) is illustrated in Figure 4.4. The shadow interval

of x is shown using a dark gray overlay. The live interval of the variable y is also shown in order to

concretely motivate the the use of the shadow interval concept in contrast to simply extending the

live intervals of idempotence-preserved variables. Simply extending the live intervals would not

allow x and y to be co-allocated. With the shadow interval concept, however, a live interval may

64

Algorithm 2 Compute-Architectural-Idempotence-Shadow-Interval(v, R)
1: s← ∅
2: l← Compute-Live-Interval(v)
3: U ← Get-Use-Points(v)
4: for all r ∈ R such that (the entry point of r) ∈ l do
5: for all u ∈ U such that u ∈ r do
6: i← Compute-Reaching-Interval-In-Region(u, r)
7: s← s ∪ i
8: end for
9: end for

10: return s \ l

Figure 4.4: Shadow intervals in the case of architectural idempotence.

overlap a shadow interval as long as the definition point(s) of the live interval do not overlap the

shadow interval.

Algorithmic Complexity

Recall that Algorithm 1 has worst case complexity bounded by n · s. Algorithm 2 adds |U | as an

additional factor and is thus bounded by n · s · |U |. While, relative to Algorithm 1, some additional

work is performed in the inner loop of Algorithm 2 to compute the reaching interval of v with

65

respect to r, the overall work of the inner loop is still bounded overall by |r| just as in Algorithm 1,

and hence only the newly introduced iteration over U is of significance. While |U |, similarly to s, is

also theoretically bounded by the number of instructions in the function, n—implying worst case

complexity O(n2) even with s held constant—in practice |U | is small with |U | � n and the mean

|U | across all variable instances v in the function is a constant. The latter is because, intuitively, the

total number of uses must grow proportionally to the number of variables. Hence, in practice the

complexity remains O(n).

4.3 Code Generation Examples

Examples 4.1, 4.2, and 4.3, in combination with Figures 4.5, 4.6, and 4.7, show sample compiler output

for the running example of Figure 2.1. The examples consider each of the Max-Size, Min-Pressure,

and Min-Recovery strategies and use the contextual idempotence state preservation algorithm

of the previous section. (The differences between architectural and contextual idempotence are

omitted since there are no differences for the running example. In general the differences are not

substantial; see evaluation Section 5.3.) We consider the Min-Recovery strategy for recovery from

branch misprediction specifically.

In each figure, the left side shows the function compiled to assembly code with arrows connecting

the control flow between basic blocks. As in Section 2.1, the code assumes four registers are available,

R0-R3, with function arguments held in registers R0 and R1, and R0 also the return register. The

compiler produces idempotence boundaries at either (1) register move and store instructions (a

free “marker” bit is assumed for those instruction types), for which the boundary logically occurs

before the instruction, or (2) at stack pointer register SP updates, for which the boundary logically

occurs after the instruction (SP updates are a special class of non-idempotent instruction allowed

to terminate a region as allowed by the Commit sequencing model of Section 2.3.) For the Min-

Recovery strategy, boundaries may also appear immediately before branch instructions (again, a

free bit is assumed).

The middle of each figure marks the region(s) each instruction belongs to, according to the

legend shown at the bottom of the figure (“IR” stands for Idempotent Region). The right of each

66

Figure 4.5: Compiler output with code generation strategy Max-Size.

figure shows two columns with the column headers “live” and “held”. The live column marks

the number of general-purpose registers (R0-R3) live immediately before each instruction. The

held column marks the number of registers immediately before each instruction that are dead but

not re-usable because they are live at a containing region’s idempotence boundary. These “held”

registers are those that contribute register pressure due to idempotence.

Example 4.1 (Strategy Max-Size): The result of compiling for strategy Max-Size closely resembles

the output of the static analysis presented in Section 3.1.2, since the sole responsibility of the

67

Figure 4.6: Compiling for strategy Min-Pressure.

compiler given this compilation strategy is simply to preserve live state across the semantically

idempotent regions identified in that analysis.

Figure 4.5 shows the result. The cut placed before S9 in Figure 3.3 translates to a cut before the

store instruction on line 18. The compiler preserves the function argument list that is live at the

entry of region IR2, initially in R1, by re-assigning it to R2 in lines 9 and 11. To accomodate the

increase in register pressure in block B4 where R1 is held (dead but unavailable), R2 is spilled on

line 12 and then re-loaded on line 17. In total, 21 instructions are generated by the compiler.

Example 4.2 (Strategy Min-Pressure): Strategy Min-Pressure attempts to minimize register pres-

68

sure by sub-dividing the semantically idempotent regions into smaller regions when idempotence-

induced register pressure is particularly high. It does this specifically by examining the entry

point of each basic block and placing an idempotence boundary at that point if the number of held

registers exceeds the threshold value.

The algorithm examines the entry point of basic blocks because that is where held registers

typically emerge as a result of control divergence. This can be seen examining the output of strategy

Max-Size in Figure 4.5. At the start of B2 register R1 is a held register because it is dead along

that control flow path. Given a pressure threshold value less than 2, the algorithm places a region

boundary at the very start of B2 as shown in Figure 4.6. The register pressure exerted by R0 along

that control flow path is subsequently removed. As a result, the number of register spills is reduced

by 1 and the code is more compact with a total of only 17 instructions, a reduction of 4 instructions

over strategy Max-Size. This total number of instructions is in fact ideal—this code would also

contain 17 instructions if idempotence was not considered.

Example 4.3 (Strategy Min-Recovery): Strategy Min-Recovery minimizes the recovery re-execution

cost by placing region boundaries close to likely points of failure. For the specific case of branch

misprediction recovery, it places region boundaries immediately before the site of low-confidence

branches, such as the branch instruction on line 6 of Figure 4.5. The result is shown in Figure 4.7.

Unfortunately, the effect of placing region boundaries at the end of basic blocks under this

strategy (in contrast to at the beginning of basic blocks under strategy Min-Pressure) aggravates

the register pressure effects of idempotence due to control flow divergence. Figure 4.7 shows this

specifically for the branch condition value stored in R3. Immediately after the branch, this value is

effectively dead—it is not used again until the return at the very end of the function and hence it is

a great candidate for spilling—however, the register is not profitably spilled because its value is

live at the start of region IR3 and thus spilling it would require a spill and a reload immediately

before and after the start of IR3. In the end, the compiler determines that the value is best pinned

down throughout IR3, along both control flow paths, forcing a spill and refill of register R1 instead.

This way, the total number of instructions is 20. While this is 3 instructions more than than strategy

Min-Pressure, spilling R3 instead of R1 would produce code identical to the Max-Size case of

69

Figure 4.7: Compiling for strategy Min-Recovery.

Figure 4.5, which has even more instructions with 21 instructions in total.

These three examples illustrate how control flow divergence tends to aggravate register pressure

for the strategies Max-Size and Min-Recovery, and how strategy Min-Pressure tends to alleviate

this pressure. It also shows that the compiler-induced overheads for strategy Max-Size can be high

when region sizes are necessarily small, as is the case for small functions such as the example

function.

70

4.4 Summary and Conclusions

This chapter presented three different code generation strategies to tailor idempotent region sizes

for factors relating to (a) the inherent degree of idempotence in applications and (b) the effects

of using idempotence to recover from different types of execution failures. It also presented two

algorithms—one for contextual idempotence and one for architectural idempotence—for preserving

the idempotence property of semantically idempotent regions during code generation using the

concept of shadow intervals. The contextual idempotence algorithm is simpler than the one for

architectural idempotence, but their computational complexity is effectively the same—effectively

linear with respect to the size of the function.

Finally, several examples were shown to demonstrate the code generation flow when compiling

for idempotence, and to illustrate the trade-offs in compiling for the three different code genera-

tion strategies Max-Size, Min-Pressure, and Min-Recovery. While Max-Size produces the largest

idempotent regions, Min-Pressure is able to reduce the compiler-induced runtime overhead by

judiciously sub-dividing regions when semantically idempotent region sizes are small and register

pressure is high. Finally, Min-Recovery sacrifices region size and suffers high runtime overhead by

aggravating control divergence effects, but successfully reduces the recovery re-execution time to

support branch mis-prediction recovery.

71

5 Compiler Evaluation

This chapter evaluates the results of the static analysis algorithm presented in Chapter 3 and the code

generation strategies presented in Chapter 4. Section 5.1 presents the experimental methodology

and results are subsequently presented in three parts. First, Section 5.2 presents results for the static

analysis described in Chapter 3. Second, Section 5.3 presents results for the code generation flow of

Chapter 4. Third, Section 5.4 presents results on ISA sensitivity, comparing performance across

two different ISAs, x86 and ARM, and across compilations varying the number of available general

purpose registers. Finally, Section 5.5 presents a summary and conclusions.

5.1 Experimental Method

Below we present the compiler, benchmarks, measurements, and sampling method used in the

evaluation of this chapter.

Compiler

The static analysis and code generation algorithms from Chapters 3 and 4 are implemented on top

of a modified version of LLVM 3.0 [62]. Source code is compiled to LLVM IR using GCC with the

LLVM DragonEgg plug-in [1]. The static analysis is performed on the IR, and the code generator

takes the output of this analysis and forms the regions as the IR is gradually lowered to machine

code. The compiler targets both the x86 (x86-64) and ARM (ARMv7) instruction sets.

72

Binary version Generated using...

Original Regular optimized LLVM compiler flow
Max-Size Strategy Max-Size
Min-Pressure-5 Strategy Min-Pressure with threshold value 5
Min-Pressure-2 Strategy Min-Pressure with threshold value 2
Min-Recovery Strategy Min-Recovery cutting before every conditional branch

Table 5.1: Binary versions and how they are generated.

Benchmarks

For benchmarks, we consider the same three benchmark suites as in the analysis of Chapter 2: SPEC

2006 [99], a suite targeted at conventional single-threaded workloads, PARSEC [16], a suite targeted

at emerging multi-threaded workloads, and Parboil [100], a suite targeted at massively parallel

GPU-style workloads written for CPUs. Using our compiler, the benchmarks are compiled with

full optimizations (-O3, etc.) to the five different binary versions shown in Table 5.1. These different

binary versions are used in our evaluation as described below.

Measurements

Section 5.2 evaluates the static analysis algorithm of Chapter 3 by measuring the sizes of the idempo-

tent regions formed by the algorithm. Specifically, we use Pin [65] to measure the idempotent path

lengths that execute through the idempotent regions in terms of the number of x86-64 instructions

for binary version Max-Size. For specific cases where the region formation falls short of what is

possible in the ideal case (comparing against the dynamic empirical measurements from Chapter 2)

we analyze and measure the extent to which more sophisticated compiler analysis or source code

restructuring code improve the algorithm’s performance.

Next, Section 5.3 evaluates the effectiveness of the code generation strategies developed in

Chapter 4 considering all binary versions in Table 5.11. Here, we measure performance degradation

in terms of increase in dynamic instruction count, again using Pin. For justification, Figure 5.1

plots the increase in cycle count as a result of increase in dynamic instruction count compiling for

Max-Size and simulating a wide range of benchmarks for 10 billion instructions using the gem5
1As explained in Section 4.1, a Pressure threshold value of x implies that a region is cut if x/10 of the “heaviest” live

or held intervals at a given point in the region are held.

73

1.0 1.1 1.2 1.3 1.4
instruction count

1.0

1.1

1.2

1.3

1.4

cy
cl

e
co

un
t

y = 1.0735x− 0.0727

Figure 5.1: Mean idempotent path lengths.

simulator [17]. As shown, increase in cycle count correlates very closely with increase in dynamic

instruction count. While the processor core modeled in the simulator is simple—a two-issue in-order

core that can complete most instructions in a single cycle—this core design is representative of the

types of architectures considered later in Chapter 6, while dynamic instruction count furthermore

provides an architecture-neutral platform for compiler evaluation.

Finally, Section 5.4 evaluates ISA senstivity by isolating ISA-specific sources of impact between

the x86 and ARM instruction sets. For this analysis, gem5 [17] is used to gather the same measure-

ments for the ARMv7 instruction set as are gathered for x86-64 using Pin.

Sampling Method

To account for the differences in instruction count between the different ISAs and binary versions,

simulation/monitoring time in Pin (x86-64) and gem5 (ARMv7) is measured in terms of the number

of functions executed, which is constant between all versions compiled for the same instruction set.

Initially, all benchmarks execute unmonitored for the number of function calls needed to execute at

least 10 billion instructions on the Original binary. Execution is then monitored for the number

of function calls needed to execute 10 billion additional instructions on the Original binary. For

benchmarks with fewer than 20 billion instructions, the entire execution is monitored following the

number of function calls needed to exit the setup phase of the benchmark.

74

asta
r
bzip

2 gcc

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
100

101

102

103

SPEC INT

3,500

Compiler Ideal

dealII lbm milc
namd

pov
ray

so
plex

sp
hinx3

gmean
100

101

102

103

SPEC FP

108

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

str
eamclu

ste
r

sw
aptio

ns

gmean
100

101

102

103

PARSEC

13,000

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
100

101

102

103

Parboil

8,500 22,000,90,000

Figure 5.2: Mean idempotent path lengths.

5.2 Static Analysis Results

A key characterstic of the static analysis algorithm of Chapter 3 is the size of the idempotent

regions it produces. In particular, we care about the length of the paths that dynamically execute

through these idempotent regions at runtime, since those are the distances that are actually covered

dynamically executing real programs. In general, longer path lengths are better because they allow

for the greatest flexibility: when shorter path lengths are desirable to minimize re-execution costs

or reduce register pressure, the static analysis does not get in the way of sub-dividing paths into

smaller sub-paths if needed.

Unmodified Benchmark Path Lengths

Figure 5.2 evaluates how close the static analysis algorithm is able to approximate the ideal idempo-

tent path lengths measured in the empirical analysis study of Chapter 2 for unmodified benchmarks.

It shows the (arithmetic) mean idempotent path length produced by the static analysis (Compiler)

75

SPEC INT SPEC FP PARSEC Parboil Overall
Compiler 12.4 16.5 32.1 65.8 21.6
Ideal 52.0 347.9 140.7 686.8 160.2
Ideal excluding outliers 35.4 42.4 45.0 415.0 61.5

Table 5.2: Geometric mean idempotent path lengths.

compared to configuration Unconstrained from Section 2.4.1 (Ideal)2. Geometric mean values across

benchmarks are presented in Table 5.2. For Compiler the path length is the distance between

idempotence boundaries in binary version Max-Size.

Table 5.2 shows numerically that the overall difference between Compiler and Ideal is quite

large—roughly 7x (20.4 vs. 137.5). Four benchmarks have much longer path lengths (over 100x)

in the ideal case: hmmer (3,500 vs. 11.6), lbm (100,000,000 vs. 19.0), streamcluster (13,000 vs. 120.7),

and fft (8,500 vs. 24.6). In all cases, these large discrepancies are primarily due to limited aliasing

information in the compiler (more details in the next sub-section). With more sophisticated alias

analysis or small modifications to the source code that improve aliasing knowledge, longer path

lengths can be achieved. If we ignore these four outliers, the difference narrows to roughly 3x

comparing the top and bottom rows of Table 5.2.

Figure 5.3 shows the median idempotent path lengths across the benchmark suites with the 25th

to 75th percentile range shown using vertical error bars. Across the vast majority of benchmarks,

most idempotent path lengths are consistently in the range of 8-16 instructions. Some benchmarks,

such as mri-q and blackscholes have median path lengths over 100 instructions. However, these types

of benchmarks are not common. The following observation summarizes our analysis of Figures 5.2

and 5.3:

Observation 5.1. Median idempotent path lengths produced by the static analysis algorithm are typically

8-16 instructions long, which is typically 3-8x lower than what can be achieved in the ideal case. Compute-

intensive applications tend to have more variance, with a heavier tail, suggesting that these applications

present the greatest flexibility and opportunity.

2In the case of blackscholes and canneal, the Compiler measurement is higher than the Ideal measurement. This is due
to inlined assembly synchronization that ends a region in the Ideal case but not in the Compiler case; the compiler is not
programmed to detect inlined assembly interactions.

76

asta
r
bzip

2 gcc

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
100

101

102

103

SPEC INT

dealII lbm milc
namd

pov
ray

so
plex

sp
hinx3

gmean
100

101

102

103

SPEC FP

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

str
eamclu

ste
r

sw
aptio

ns

gmean
100

101

102

103

PARSEC

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
100

101

102

103

Parboil

32,000

Figure 5.3: Idempotent path lengths for Compiler with unmodified benchmarks. Bars plot median
values and the error bars plot the 25th to 75th percentile range.

Analysis of Limiting Factors

For several benchmarks, idempotent path lengths are much shorter than they could be. Limited

aliasing information in the compiler is in part responsible for the reduced path lengths for specific

benchmarks such as hmmer, lbm, and fft. However, there are at least two other reasons why path

lengths may be artificially small: overlooked loop optimization opportunities and large storage

arrays. Additionally, as a fourth reason, our analysis is only intra-procedural while some inter-

procedural information can often improve idempotent path lengths. In the discussion that follows,

these four total problem sources are identified using the labels Aliasing, Loop-Opt, Arrays, and

Scope respectively.

Aliasing: With limited aliasing information, a pair of load and store instructions may be believed

to potentially alias while in practice they could not, or would only alias under specific and

rare circumstances. In some cases, the ambiguity is due to a lack of source-level annotations

and/or inter-procedural scoping. However, in several cases the problem is simply that LLVM

77

Before:

1 for (int i = 0; i < end; ++i) {

2 *result += compute(i);

3 }

After:

1 float accum = 0.0;

2 for (int i = 0; i < end; ++i) {

3 accum += compute(i);

4 }
5 *result += accum;

Figure 5.4: Example showing scalarization of a loop accumulation variable.

does not provide a flow-sensitive alias analysis.

Flow-sensitivity helps particularly in the case of loops, for instance, where a load and store may

only alias across iterations of some outer loop, or where a store and load may alias only when

the store comes before the load inside the same loop iteration (i.e. the aliasing dependence

relationship is strictly a flow dependence). Such loop-level aliasing information is a common

feature of auto-parallelizing compilers [71], and although forthcoming in LLVM [26], this

information is not supported in LLVM at the time of writing. For data-parallel applications in

particular, the lack of loop-dependence information results in pessimistic aliasing assumptions

that limit idempotent path lengths.

Loop-Opt: Certain loop optimizations, such as loop fission/fusion, loop interchange, loop peeling,

loop unrolling, scalarization, etc. allow the construction of larger idempotent regions because

they allow clobber antidependences to span longer distances. Scalarization is an example of

an optimization that can be particularly helpful. The optimization is illustrated by Figure 5.4

and involves a memory variable being temporarily held and updated inside a register before

being written back to memory. The version of LLVM we used (in combination with the GCC

DragonEgg plug-in) does not provide automatic support for this optimization, although it

is legal even under strict sequential consistency semantics provided that there are no other

memory operations inside the loop.

Scalarization of the loop accumulation variable in Figure 5.4 allows the non-local memory

antidependence inside the loop to be moved outside the loop, consequently allowing an

idempotent path to contain the entire loop execution. In contrast, without scalarization, at

least two idempotent paths must form per loop iteration to allow proper allocation of the

78

loop-dependent variable i as described in Section 3.3.2. The latter can significantly degrade

code generation flexibility and hence performance suffers as well.

Arrays: Chapter 3 (Section 3.2) showed how non-clobber antidependences (write-read-write pat-

terns) on non-local memory could be eliminated by using local storage to hold the result of the

first write and replacing the read to use the local storage. This technique can be impractical,

however, particularly for a large or unknown number of initial writes (as in e.g. array initial-

ization), since it effectively requires duplicating the non-local memory storage on the local

stack. In addition to stack memory often being bounded, the state duplication can reduce

cache locality and hurt performance.

To support writes to such large or potentially unbounded arrays efficiently, our compiler does

not duplicate large structures or arrays in local memory, and hence must conservatively cut

the potentially non-clobber antidependences that they create on the assumption that their

occurrence is rare (see Appendix A, Section ??). However, there is a specific pattern, the

initialization-accumulation pattern, that is common among certain data-parallel applications

where these antidependences arise in abundance. In this pattern the initialization phase and

accumulation phase together are idempotent but the accumulation phase alone is not.

To support the initialization-accumulation pattern and similar patterns, the compiler analysis

can be augmented to identify and ignore potentially non-clobber antidependences in the

antidependence cutting phase of the static analysis, and then handle these antidependences

in a separate post-cutting phase “as-needed” in the same manner that potentially non-clobber

self-dependent pseudoregister dependences are handled as a post-pass (see Section 3.3.2).

Scope: Several applications, particularly those written in an object-oriented style, tend to execute

in sequences of relatively small functions. Naturally, small function bodies limit any intra-

procedural alias analysis and our current idempotence analysis furthermore forces cuts at

function boundaries to contain inter-procedural effects.

Before our static analysis, a simple top-down interprocedural analysis that identifies whether

a function is wholly idempotent is relatively cheap and could serve as an input to the static

79

Benchmark Limiting Factor(s) Length Before Length After
blackscholes Aliasing, Scope 78.9 >10,000,000
canneal Scope 35.3 187.3
fluidanimate Arrays, Loop-Opt, Scope 9.4 >10,000,000
streamcluster Aliasing 120.7 4,928
swaptions Aliasing, Arrays 10.8 210,674
cutcp Loop-Opt 21.9 612.4
fft Aliasing 24.7 2,450
histo Arrays, Scope 4.4 4,640,000
mri-q — 22,100 22,100
sad Aliasing 51.3 90,000
tpacf Arrays, Scope 30.2 107,000

Table 5.3: The benchmarks from the PARSEC and Parboil benchmark suites, their limiting factors,
and the mean path lengths produced by the static analysis before and after addressing these limiting
factors.

analysis. With such simple inter-procedural information, along with the capability to save

the stack pointer value along with the program counter, idempotence could be used to safely

recover back up the program call stack in a number of cases. Future work Section 8.2 covers

in more detail on how to cheaply integrate inter-procedural information.

Modified Benchmark Path Lengths

We now evaluate possible idempotent path lengths given the capability to overcome each of the four

limiting factors identified above. We consider as a case study the PARSEC and Parboil benchmarks,

which are relatively small and well-contained, and thus suitable for manual analysis and modi-

fication. They are also limited by each of the four factors in the manner indicated by the second

column of Table 5.3.

To address the Aliasing problem, we assist the compiler in identifying no-alias memory re-

lationships by manually providing source code annotations using the C restrict keyword and/or

performing code refactoring. To address the Loop-Opt problem, we manually modify the program

source code for scalarization of non-local memory variables. To address the Arrays problem, we

manually modify the benchmark binary to simulate the behavior of the compiler analysis extension

we described. Finally, to address the Scope problem, we perform manual inlining.

Table 5.3 shows that very large path length improvements can be achieved with these modifica-

80

tions. In all cases, the mean path length is at least in the hundreds of instructions and in the vast

majority of cases path lengths of many thousands of instructions are possible. In all cases, path

lengths can be effectively arbitrarily reduced employing loop blocking and other similar techniques.

Unfortunately, LLVM does not yet have the features of an automatic parallelizing compiler to

realize the above manually implemented transformations easily. Hence, automating them through

a compiler or other code rewriting tool remains a topic for future work. The following observation

summarizes our analysis and modification results:

Observation 5.2. Factors including limited aliasing information, overlooked loop optimizations, array ini-

tialization patterns, and inter-procedural scoping effects often obscure the inherent idempotence of programs

and limit idempotent path lengths. With the capability to account for and mitigate these factors, many

benchmarks—particularly “emerging” benchmarks such as those from the PARSEC and Parboil suites—

have large regions of code that are inherently idempotent.

5.3 Code Generation Results

During code generation, forcing the register allocator to preserve live-in state across an idempotent

region adds overhead because the allocator may not re-use live-in register or stack memory resources.

Code generation strategy Min-Pressure attempts to minimize this source of overhead. Additionally,

both code generation strategies Min-Pressure and Min-Recovery trade off path length to reduce

register pressure and re-execution time costs, respectively.

In this section, we first consider register pressure overheads in compiling specifically for each of

the Max-Size, Min-Pressure-5, Min-Pressure-2, and Min-Recovery binary versions, considering

the effects of both architectural idempotence and contextual idempotence. We then explore the

impact of these strategies on idempotent path lengths. Finally, we consider the overhead effects of

the modifications to the PARSEC and Parboil benchmarks described in Section 5.2.

Unmodified Benchmark Overheads

Figures 5.5 and 5.6 report the increase in dynamic instruction count executing the four binary

versions compiling for architectural idempotence (Figure 5.5) and contextual idempotence (Fig-

81

asta
r
bzip

2 gcc

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
0%

10%
20%
30%
40%

SPEC INT

MAX-SIZE MIN-PRESSURE-5 MIN-PRESSURE-2 MIN-RECOVERY

dealII lbm milc
namd

pov
ray

so
plex

sp
hinx3

gmean
0%

10%
20%
30%
40%

SPEC FP

56.347.0

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

str
eamclu

ste
r

sw
aptio

ns

gmean
0%

10%
20%
30%
40%

PARSEC

69.5

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
0%

10%
20%
30%
40%

Parboil

Figure 5.5: Instruction count overheads compiling for architectural idempotence.

SPEC INT SPEC FP PARSEC Parboil Overall
Max-Size 15.0 14.1 11.6 9.3 13.1
Min-Pressure-5 11.4 12.5 10.8 9.3 11.1
Min-Pressure-2 11.9 12.7 10.8 12.2 12.0
Min-Recovery 15.7 26.8 25.4 13.7 19.4

Table 5.4: Geometric mean percentage overheads under architectural idempotence.

SPEC INT SPEC FP PARSEC Parboil Overall
Max-Size 16.2 14.7 11.6 9.1 13.6
Min-Pressure-5 11.9 12.6 11.1 8.9 11.3
Min-Pressure-2 12.3 12.7 10.8 12.2 12.1
Min-Recovery 18.9 27.7 25.4 14.2 21.0

Table 5.5: Geometric mean percentage overheads under contextual idempotence.

ure 5.6). Tables 5.4 and 5.5 show the geometric mean values across benchmarks and overall as well.

A first observation regarding the difference between architectural and contextual idempotence

immediately presents itself:

Observation 5.3. Dynamic instruction count overheads are largely unaffected by the distinction between

82

asta
r
bzip

2 gcc

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
0%

10%
20%
30%
40%

SPEC INT

49.3

MAX-SIZE MIN-PRESSURE-5 MIN-PRESSURE-2 MIN-RECOVERY

dealII lbm milc
namd

pov
ray

so
plex

sp
hinx3

gmean
0%

10%
20%
30%
40%

SPEC FP

56.347.1

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

str
eamclu

ste
r

sw
aptio

ns

gmean
0%

10%
20%
30%
40%

PARSEC

69.5

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
0%

10%
20%
30%
40%

Parboil

Figure 5.6: Instruction count overheads compiling for contextual idempotence.

architectural and contextual idempotence.

The overheads of strategy Max-Size for architectural idempotence range from roughly 9 to

15%, while for contextual idempotence the range is only slightly higher from roughly 9 to 16%.

The differences for the other three strategies are similarly not significant. The intuitive reason

for this small difference is captured in the code generation example considered in Section 4.3. In

particular, architectural idempotence allows statically live-in but dynamically dead registers to be

re-used . However, the occurrence of this statically-live and dynamically-dead condition—and the

opportunity to take advantage of it—is relatively rare: it requires both an interval where a register

is live but only used after control flow divergence (in which case the register is a good candidate for

spilling) and register scarcity (if registers were indeed scarce, the live register would most likely

already have been spilled).

A second observation regarding the difference between strategies Max-Size and Min-Pressure

is the following:

Observation 5.4. Strategy Min-Pressure reduces register pressure overheads relative to Max-Size, but

83

not substantially, even across a range of pressure threshold values.

Here, while strategy Max-Size yields runtime overheads of roughly 9-16%, Min-Pressure-5

and Min-Pressure-2 yield reduced overheads of 9-13% and 10-13%, respectively—a significant 3%

reduction at the high end. However, the differences between Min-Pressure-5 and Min-Pressure-2

(and neighboring threshold values; not shown but independently measured) are not substantial.

Finally, we make a third observation regarding the difference between strategies Min-Recovery

and the other strategies:

Observation 5.5. Strategy Min-Recovery incurs high register pressure overheads relative to the other

strategies.

Strategy Min-Recovery yields high, 13-28%, overheads. The reason for this is primarily that

placing region boundaries immediately before conditional branches aggravates the effects of control

divergence on register pressure (as also identified in the code generation example from Section 4.3).

However, this alone does not explain why, in the specific cases of libquantum, soplex, sphinx3, and

streamcluster, the overheads of Min-Recovery are really high—over 45%. In these cases the bodies

of inner loops that are otherwise idempotent are being cut at the branch points. This cut forces a

second cut in the loop for the reasons given in Section 3.3.2. These two cuts together significantly

expand the register pressure in the loop and cause very high overheads. Incidentally, this pair of

cuts in a loop is also what causes the high overheads of Parboil benchmark histo. However, for that

benchmark the second loop cut is required because of the clobber antidependence on the memory

variable (the histogram bucket) being conditionally updated inside the loop.

While, for Min-Recovery, the overheads of architectural idempotence are not as high for con-

textual idempotence, architectural idempotence requires that the hardware contain the effects of

control flow divergence over pseudoregister state, and hence it is not a useful idempotence model

for the purposes of branch misprediction recovery.

Path Lengths

We now briefly examine the effects of the code generation strategies on idempotent path lengths.

Figure 5.7 show the mean idempotent path lengths and geometric mean values are given in Table 5.6.

84

asta
r
bzip

2 gcc

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
100

101

102

SPEC INT

MAX-SIZE MIN-PRESSURE-5 MIN-PRESSURE-2 MIN-RECOVERY

dealII lbm milc
namd

pov
ray

so
plex

sp
hinx3

gmean
100

101

102

SPEC FP

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

sw
aptio

ns

gmean
100

101

102

PARSEC

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
100

101

102

Parboil

14,000-22,000

Figure 5.7: Mean idempotent path lengths.

SPEC INT SPEC FP PARSEC Parboil Overall
Max-Size 12.3 16.5 23.1 65.8 20.4
Min-Pressure-5 9.8 13.9 19.1 56.4 16.8
Min-Pressure-2 6.5 9.6 14.4 41.2 11.7
Min-Recovery 5.6 9.9 10.5 11.6 8.1

Table 5.6: Geometric mean idempotent path lengths.

Table 5.6 shows that strategy Max-Size produces the largest idempotent path lengths (these are

the same lengths as in Section 5.6). Binary versions Min-Pressure-5 and Min-Pressure-2 results in

shorter path lengths by roughly 10-25% and 35-50%, respectively. Strategy Min-Recovery reduces

path length the most, by 45-80% overall.

Modified Benchmark Overheads

Finally, we consider the register pressure overheads resulting from the benchmark modifications

described in Section 5.2. Table 5.7 shows the decrease in dynamic instruction count compiling with

strategy Max-Size before and after modification. In most cases, runtime overhead is effectively

85

Benchmark % Overhead Before % Overhead After
blackscholes -2.9 -0.05
canneal 5.3 1.3
fluidanimate 26.6 -0.62
streamcluster 13.6 0.00
swaptions 17.6 0.00
cutcp 6.38 -0.01
fft 11.11 0.00
histo 23.46 0.00
mri-q 0.00 0.00
sad 4.17 0.00
tpacf 12.36 -0.02

Table 5.7: Percentage overheads for the six benchmarks from the Parboil benchmark suite before
and after addressing the limiting factors identified in Section 5.2.

100 101 102 103 104 105 106 107

path length

0%

10%

20%

30%

pe
rc

en
to

ve
rh

ea
d

Figure 5.8: Idempotent path length plotted against dynamic instruction count overhead.

eliminated. The data strongly supports constructing larger idempotent regions to reduce runtime

overheads. The reason is intuitive: larger regions allow amortizing the cost of preserving region

live-in state over longer distances.

Observation 5.6. The best way to reduce the runtime overhead of idempotent region construction is to

enable the construction of idempotent regions with path lengths over 50 instruction.

Figure 5.8 plots the correlation between path length and overhead for both the modified and

unmodified benchmarks compiled with Max-Size. The data suggests that path lengths of 50

instructions and more are sufficient and yield negligible overhead overall; benchmarks omnetpp,

blackscholes, canneal, sphinx3, and sad all have average path lengths in the range of 30-80 instruction

under strategy Max-Size, and in all cases the overhead is relatively low, between -2 and 5%. The main

86

exception is streamcluster, which has path lengths of over 100 instructions but still has overheads in

the 10% range without modification. For this benchmark, the compiler compiles the most critical

loop of the benchmark differently for idempotence, inserting one extra instruction under Max-Size

compared to the original and growing the size of the loop from 7 instructions to 8 instructions.

The reason is not clear—the extra instruction appears redundant. Indeed, comparing against the

same code compiled for ARMv7 (more detail in Section 5.4), the loop is compiled without any extra

instructions and the overall overhead becomes negligible (see Figure 5.9). We thus conclude that

this difference is purely due to noise resulting from the way our code generation algorithms interact

with the the compiler’s register allocation flow.

Of course, we note that large idempotent regions (e.g. over 50 instructions) are inappropriate

when failures are frequent (e.g. over 1% probability per instruction). In some scenarios, they also

present problems relating to potential livelock. The issue of livelock is explored as an architecture-

specific detail in Chapter 6.

5.4 ISA Sensitivity Results

Instruction sets vary in a number of ways. When compiling regions for idempotence, the following

three ways in which they differ can be of significance:

Register-memory vs. register-register: Whether an instruction set is a RISC-like load/store in-

struction set or not can affect the performance overhead of idempotence particularly in terms

of any resulting increase in the dynamic instruction count. x86 is not a load/store instruction

set, and hence it is often able to account for additional register pressure by spilling instruc-

tions “for free”, folding a register spill or reload into an existing instruction by converting the

instruction from a register-register instruction to a register-memory instruction. A load/store

instruction set such as MIPS, SPARC, or ARM does not share this capability.

Two-address vs. three-address instructions: Certain instruction sets, such as x86, implement many

operations as so-called “two-address” instructions. These instructions read two source

operands and overwrite one of the source operands with the result. In contrast, instruc-

87

tion sets such as MIPS, SPARC, or ARM instead implement “three-address” instructions

where a third destination operand can be specified that can be made distinct from the source

operand locations. Two-address instructions are self-antidependent and hence not idempotent.

Therefore, when contained inside idempotent regions they must be preceded by some instruc-

tion that defines the overwritten source register before it is again re-defined in order to avoid

a clobber dependence. When no such instruction already exists, a (logically redundant) move

or copy instruction must be inserted to satisfy this requirement. This can artificially boost

idempotent performance overheads particularly when idempotent region sizes are small.

Three-address instructions avoid this inconvenience, and hence are preferred.

Few registers vs. many registers: For load/store instruction sets, more registers allow the instruc-

tion set to accommodate additional register pressure due to idempotence more easily by

simply allocating more available registers rather than spilling to the function stack. However,

as is the case without idempotence, more registers are only beneficial as long as they are

useful. Hence, the same trade-off in choosing the number of architectural registers exists with

or without idempotence; idempotence only affects this trade-off to the extent that it may exert

extra register pressure.

Unfortunately, there is no practical way to evaluate the positive impact of register-to-memory in-

structions independent of the negative impact of two-address instructions given that no mainstream

register-to-register two-address instruction set (nor register-to-memory three-address instruction

set) exists. Instead, we evaluate the impact of both features at the same time by comparing dynamic

instruction count increase across the x86-64 and ARMv7 instruction sets (compiling for architec-

tural idempotence using strategy Max-Size). Although not a perfectly controlled experiment, both

instruction sets have the same number of general purpose integer registers (16) and we compile

then with the same floating point support (x86-64 has 16 single-precision floating point registers

with SSE2 and we compile ARMv7 to similarly use only 16 single-precision floating point registers,

even though 32 are available, with NEON).

Figure 5.9 plots per-benchmark performance numbers and Table 5.8 presents overall geometric

mean values. Overall, Table 5.8 indicates a lower geometric mean overhead for ARMv7, at 12.6%,

88

asta
r
bzip

2

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
0%

10%
20%
30%
40%

SPEC INT

X86-64 ARMV7

dealII lbm milc
namd

so
plex

gmean
0%

10%
20%
30%
40%

SPEC FP

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

str
eamclu

ste
r

sw
aptio

ns

gmean
0%

10%
20%
30%
40%

PARSEC

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
0%

10%
20%
30%
40%

Parboil

Figure 5.9: Instruction count percentage overhead for x86-64 vs. ARMv7.

SPEC INT SPEC FP PARSEC Parboil Overall
x86-64 15.6 17.9 11.1 9.3 13.9
ARMv7 16.8 13.4 9.7 6.7 12.6

Table 5.8: Geometric mean percentage overhead for x86-64 vs. ARMv7.

than for x86-64, which has 13.9% overhead. Curiously the differences closely correlate with the

type of benchmark—integer (SPEC INT) vs. floating point (SPEC FP, PARSEC, and Parboil). For

floating point benchmarks, ARM performs better by a relatively large margin because register

pressure is lower, which enhances the benefit of three-address instruction support in ARM relative

to memory-register support in x86. With integer benchmarks, however, we see the opposite effect;

x86 performs slightly better than ARM because register pressure is higher, which enhances the

benefit of memory-register support in x86 relative to three-address instruction support in ARM.

Overall, however, the differences are not strong—both architectures support the construction of

idempotent regions with a comparable degree of overhead. Thus, we make the following summary

observation regarding the memory-register and three-address instruction ISA effects:

89

asta
r
bzip

2

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
0%

10%

20%

30%

SPEC INT

14-GPR 12-GPR 10-GPR MIN-PRESSURE-5

dealII lbm milc
namd

so
plex

gmean
0%

10%

20%

30%

SPEC FP

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

str
eamclu

ste
r

sw
aptio

ns

gmean
0%

10%

20%

30%

PARSEC

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
0%

10%

20%

30%

Parboil

Figure 5.10: Performance overhead for ARMv7 assuming 10, 12, and 14 general purpose registers
(GPRs) compared to Original (which has 16 GPRs) as the baseline. The overhead of strategy
Min-Pressure-5 is shown for comparison.

Observation 5.7. In general, memory-register support (in x86) and three-address instruction support (in

ARM) do not appear to significantly impact performance in terms of raw instruction count, and intuitively

as regions grow larger the effects of such ISA features approach insignificance.

To compare the effect of the number of available registers, Figure 5.10 compares the increase in

dynamic instruction for ARMv7 reducing the number of general purpose registers (GPRs) from 16

to 14, 12, and 10. Examining the data leads to the following observation:

Observation 5.8. For integer benchmarks, the performance of having only 10 (removing 6 out of 16) gen-

eral purpose integer registers roughly corresponds with the performance of code generation strategy Min-

Pressure-5. The implicication is that, assuming region sizes are constrained and register pressure is contin-

ually high (as is presumably the case with only 10 registers), compiling for idempotence with no performance

90

loss generally requires a roughly 6
10 = 60% increase in the number of available registers.

The effective 60% increase in register pressure due to idempotence seems remarkably high.

However, it is fairly intuitive that idempotent region sizes in the range of 5 to 10 instructions have a

roughly proportional number of live-in registers that must be preserved for idempotence.

5.5 Summary and Conclusions

This section evaluated an LLVM-based compiler implementation employing the static analysis

and code generation algorithms of Chapters 3 and 4. Analysis of experimental data yielded eight

distinct observations in total (Observations 5.1-5.8) summarized as follows:

Static Analysis: Across most benchmarks, the compiler static analysis produces idempotent region

sizes that are typically around 10-20 instructions in size. As expected, the memory- and

control-intensive SPEC benchmarks have significantly smaller idempotent region sizes than

the more compute-intensive PARSEC and Parboil benchmarks. Program transformations

that help to extract the inherent idempotence in applications, manually applied (although

automatable), showed that, for several benchmarks, much larger idempotent region sizes are

achievable.

Code Generation: The state preservation of small idempotent region sizes introduces runtime over-

heads in the range of 10-20% percent. While seemingly quite high, this overhead approaches

zero in the limit as region size grows beyond a few tens of instructions. Distinguishing

between architectural and contextual idempotence affects performance only minimally, and

while greater differences arise distinguishing between code generation strategies Max-Size,

Min-Pressure, and Min-Recovery, overall the differences are also not particularly significant.

ISA Sensitivity: Three ways in which the ISA might affect the overheads of idempotence-based

compilation were identified. Of the three, the number of available registers was determined

to be the most significant; naturally, more registers allows the register pressure effects of

the idempotence state preservation to be reduced. Overall, idempotence was measured as

91

increasing the register pressure of general purpose integer registers by approximately 60%

when region sizes were constrained and register pressure effects were already initially high.

Based on these results, the evidence thus strongly suggests that the principal advantage of

idempotence is not in how it simplifies the preservation of register state—as the 60% increase in

register pressure over small regions clearly indicates—but rather in how it simplifies the preservation

of memory state by allowing such state to be freely overwritten without preservation over large

groups of instructions. Assuming recovery is infrequent, architectures designed with idempotence

in mind thus might benefit most from programs with extractably large idempotent regions written

in domain-specific or other high-level functional or declarative languages, since straight C/C++,

while manageable, evidently imposes difficulties and requires advanced compiler technologies to

enable low software overheads.

92

6 Architecture Design and Evaluation

Compiler-constructed idempotent regions have applications in computer architecture design, and

this chapter considers three important application categories: Section 6.1 considers idempotence

for efficient exception and context switching support on GPUs; Section 6.2 considers idempotence

for out-of-order execution in general-purpose CPUs; and Section 6.3 considers idempotence for

hardware fault recovery in emerging architectures. The three sections each present background,

a design, and a high-level evaluation in support of each of the application scenarios using the

compiler evaluated in Chapter 5. Finally, Section 6.4 presents a summary and conclusions.

6.1 General Exception Support in GPU Architectures

Since the introduction of fully programmable vertex shader hardware, GPU computing has made

tremendous advances. To improve the effectiveness of GPUs as general-purpose computing de-

vices, GPU programming models and architectures continue to evolve, and exception support—

particularly demand-paged virtual memory support—appears a crucial next step to further expand

their scope and usability. Unfortunately, traditional mechanisms to support exceptions and specu-

lative execution are intrusive to GPU hardware design.

Legacy Challenges

Implementing general exception support on GPUs presents two key challenges. The discussion

below discusses these two challenges in the context of exception support on CPUs, to elucidate how

CPU mechanisms are problematic to apply directly to GPUs.

93

For CPUs, the problem of exception support was solved relatively early on [93, 95]. Instrumental

at that time was the definition of precise exception handling, where an exception is handled precisely

if, with respect to the excepting instruction, the exception is handled and the process resumed at a

point consistent with the sequential architectural model [93]. With support for precise exceptions,

all types of exceptions could be handled using a universal mechanism such as the re-order buffer.

Unfortunately, precise exception support has historically been difficult to implement for architectures

that execute parallel SIMD or vector instructions, where precise state with respect to an individual

instruction is not natural to the hardware. High fan-out control signals to maintain sequential

ordering in a vector pipeline are challenging to implement, and while buffering and register

renaming approaches have been proposed [35, 61, 93], they are costly in terms of power, area,

and/or performance. Hence, a key challenge is in supporting consistent exception state by exposing

sequentially-ordered program state to an exception handler and enabling program restart from a

self-consistent point in the program.

A second reason for the widespread adoption of precise exception support in CPUs was that it

enabled support for demand paging in virtual memory systems: to overlap processor execution

with the long latency of paging I/O, the state of a faulting process could be cleanly saved away

and another process restored in its place. Simply borrowing techniques from the CPU space to

implement context switching on GPUs, however, is difficult. In particular, saving GPU state and

then context switching to another process while a page fault is handled imposes a monumental

undertaking: while on a conventional CPU core a context switch requires little more than saving and

restoring a few tens of registers, for a GPU it can require saving and restoring hundreds of thousands

of registers. Thus, a second key challenge is supporting efficient context switching by minimizing the

amount of state that must be saved and restored to switch among running processes.

Exception Support Using Idempotent Regions

The above two challenges of enabling general exception recovery on GPUs are fundamentally

bounded by the ability to (i) restart from a consistent program state, and (ii) minimize the amount of

program state to be preserved. When cast in these terms, idempotence provides a natural fit because

it (i) allows restart from a consistent program state at configurable program points, and (ii) allows

94

Figure 6.1: GPU support for exceptions and context switching using idempotence.

these points can be chosen intelligently such that the amount of program state to be preserved

from that point forward is minimized. This observation, combined with the insight that GPU

workloads typically have large regions of code that are idempotent [70], allows the implementation

of exception and context switching support using idempotent regions with very low overhead.

Figure 6.1 illustrates how idempotence can provide efficient exception and fast context switching

support. Figure 6.1(a) shows that at each point in a program’s execution there are differing amounts

of live state, and Figure 6.1(b) shows how programs can be decomposed into idempotent regions,

with the boundaries between regions preferentially chosen at locations that contain relatively little

amounts of live state. As previously mentioned, GPU application programs tend to have large

regions of code that are idempotent and hence these regions can be very large.

Figure 6.2(a) shows how these regions can be used to efficiently recover from exception conditions

requiring a context switch. Suppose that in the midst of executing region B2 a page fault occurs.

Suppose also that the running program pushes and pops only a small number of live registers from

the program stack at the boundary points between idempotent regions. Then, the page fault can

be serviced and a context switch can occur effectively instantaneously. After the fault is serviced,

95

Figure 6.2: GPU support for fast context switching and exceptions using idempotence.

the original process can be switched back in at a convenient time, restarting from region B1. In

this scenario, the exception handling need not be “precise” with respect to the faulting instruction,

and hence the exception can be both handled and a context switch performed immediately without

concern for the program’s state at the point of the fault.

Figure 6.2(b) shows how the idempotent regions can be used to recover from general exception

conditions where precise state is important as well. Suppose that an arithmetic exception occurs

executing region B2 and that the architectural state at the point where it is detected is not sequen-

tially consistent with respect to the excepting instruction. The GPU recovers by re-executing the

short region precisely to the point of the exception, handles the exception, and then recovers by

resuming execution from the immediately following instruction. The precise re-execution allows

the exception handler to see a consistent live program state with respect to the point of the exception,

with forward progress ensured when augmented with some support for avoiding live-lock, using

mechanisms such as those described in Section 6.1.2.

96

Term used NVIDIA term OpenCL term

SIMD processor Streaming Multiprocessor Compute Unit
SIMD instruction PTX instruction FSAIL (AMD) instruction
SIMD thread Warp Wavefront
SIMD thread lane Thread Work item
SIMD thread group Thread block Work group

Table 6.1: GPU terms used in this paper (adapted from Hennessy and Patterson [49]).

Section Organization

The remainder of this section (Section 6.1) presents a GPU design that supports the mechanisms

shown in Figure 6.2. Section 6.1.1 first presents background on GPUs and Section 6.1.2 subsequently

describes a GPU architecture for idempotence-based recovery with supporting mechanisms for

exception recovery and fast context switching. Finally, Section 6.1.3 presents an evaluation.

6.1.1 GPU Background

The discussion below gives background on the memory and register architecture of current-

generation GPUs, the state of exception support in those GPUs, and how idempotence manifests

strongly particularly in GPU workloads.

Terminology

Table 6.1 shows GPU terms used as well as the equivalent NVIDIA and OpenCL terms. A GPU

consists of a number of SIMD processors that execute SIMD instructions sequentially ordered into

SIMD threads. A vertical cut of a SIMD thread, which corresponds with one element of a SIMD

lane, we call a SIMD thread lane. Finally, identical SIMD threads that run on the same processor

form a SIMD thread group.

GPU Memory and Register Architecture

Figure 6.3 shows the high-level architecture of a modern GPU that supports virtual address transla-

tion. Each SIMD processor has a hardware-managed L1 cache, we assume each processor has a TLB,

and all processors share an L2 cache. NVIDIA’s most recent GPU architecture, Fermi, and AMD’s

97

Figure 6.3: The organization of a modern GPU that supports address translation.

GPU architecture L2 State L1 State Register State

AMD HD 6550D 128KB 40KB 1.28MB
NVIDIA GTX 580 768KB 1MB 1.92MB

Table 6.2: The memory and register size characteristics of two commodity GPUs.

recent Llano Fusion architecture both resemble this description [7, 8, 77]. The size characteristics

for an integrated AMD GPU part and a discrete NVIDIA GPU part are shown in Table 6.2. The

table shows that GPU register state is more than both the L1 and L2 cache state combined.

GPU Exception Support

Current GPUs do not implement general exception support, although Fermi supports timer inter-

rupts used for application time-slicing [77], which can be scheduled at convenient points in time.

Demand paging, in contrast, requires support for page faults, which present much more onerous

timing and restartability constraints.

While both Fermi and Llano support virtual addressing on some level [7, 77], neither supports

all the features of virtual memory, such as demand paging and complete support for execution

of processes only partially resident in memory. Specifically, Fermi does not support paging at

all, while Llano supports a limited form of paging at kernel boundaries [7]. Llano requires the

memory accesses to be known in advance, which allows paging to be orchestrated by the GPU

driver software at scheduling time. Although demand paging is not supported, it is on the AMD

Fusion roadmap for the future [6]. However, this support must find a way to overcome the vast

amount of process-local state that must be saved and restored to support context switches on page

faults. As is evident, saving and restoring all register state is likely to be both slow and power

intensive.

98

1 __global__ void MatrixMultiplyAccumulate(Matrix A, Matrix B, Matrix C) {

2 int row = blockIdx.y * blockDim.y + threadIdx.y;

3 int col = blockIdx.x * blockDim.x + threadIdx.x;

4 float Cvalue = C.data[row * C.width + col];

5 for (int i = 0; i < A.width; ++i)

6 Cvalue += A.data[row * A.width + i] * B.data[i * B.width + col];

7 C.data[row * C.width + col] = Cvalue;

8 }

Figure 6.4: A simple matrix multiplication CUDA kernel.

Idempotence in GPU Workloads

Figure 6.4 illustrates how idempotence exists in abundance in traditional GPU workloads by present-

ing example GPU code. It shows a simple GPU kernel written in C for CUDA that is representative

of the types of workloads typically run on GPUs—workloads that have a high degree of data

parallelism and have regular streaming memory interactions. A common byproduct of these char-

acteristics is distinct read and write data sets, which implies a lack of antidependences, which leads

to the property of idempotence.

This specific kernel computes the matrix multiplication of matrices A and B and accumulates

the result onto matrix C. The accumulation is not standard for matrix multiplication. However, it

makes the example interesting since the accumulation forms a clobber antidependence across lines

4→7, and hence the kernel is not completely idempotent, allowing us to revisit this kernel as a

running example in the next section.

6.1.2 GPU Design

This section develops the architecture and mechanisms of a GPU leveraging idempotence for

exception recovery. Figure 6.5 shows the modifications over a conventional GPU architecture. The

compiler, ISA, and hardware extensions are described in this section and are marked in the figure

using black boxes.

Compiler: The device code generator of a traditional GPU is modified as shown at the top of

Figure 6.5. The code generator generates device code from an intermediate representation

(IR) and with our modifications it identifies the idempotent regions in the IR GPUs already

99

Figure 6.5: GPU software (top) and hardware (bottom) with modifications in black.

use an SSA-like IR (e.g. NVIDIA’s PTX) with infinite registers, so IR antidependences already

occur only among non-local variables or across loop iterations, assisting in the static analysis

of Chapter 3. The code generator constructs idempotent regions by cutting them as described

in that chapter, with the key difference that it prefers to place cuts before instructions with

the minimum amount of live state. This process of placing idempotent region boundaries is

the region formation phase of the code generator.

After the regions are formed, the code generator then enters a second phase, the state preser-

vation phase. During this phase, the code generator prevents new clobber antidependences

from arising during register and stack memory allocation by allocating local variables in

such a way that those variables live at idempotence boundaries are not overwritten using

the techniques detailed in Chapter 4. Figure 6.6 illustrates the overall flow for the example

kernel from Figure 6.4 using a stylized device code representation. Recall that the kernel

contains one clobber antidependence. For region formation, the clobber antidependence is

cut at the point with the least live state, which occurs immediately before the loop entry at

the initialization of loop variable i in register r2. The idempotence boundary is placed as

shown in the lower half of Figure 6.6. During state preservation, the code generator then

logically inserts a move instruction from register r1 to a freshly allocated register, r3, after

the boundary instruction. From that point on, it accumulates the CValue variable onto r3

instead of r1, preserving the value in the live register r1 at the expense of some additional

register pressure on the kernel. The other live variables at the idempotence boundary are not

subsequently overwritten and hence require no action to be preserved.

100

Before:

... ($r0 holds C.data offset)
add.u32 $r0, param[C_data], $r0;

mov.f32 $r1, global[$r0];

mov.u32 $r2, 0x00000000;

LOOP:

...

After:

... ($r0 holds C.data offset)
add.u32 $r0, param[C_data], $r0;

mov.f32 $r1, global[$r0];

idem.boundary;
mov.f32 $r3, $r1;
mov.u32 $r2, 0x00000000;

LOOP:

... (uses of $r1 replaced by $r3)

Figure 6.6: GPU state preservation.

ISA: The ISA is extended with a special instruction to mark the boundaries between idempotent

regions as shown in Figure 6.6, When the boundary instruction is executed, the PC value

associated with the immediately following instruction is saved away in a special RPC (restart

PC) register. The boundary instruction also acts as an instruction barrier such that a SIMD

thread’s in-flight instructions must retire before proceeding. This ensures that a region

remains recoverable while an exception or a mis-speculation remains undetected for the

region’s in-flight instructions.

Hardware: To support idempotence-based recovery in the hardware, one RPC register is associated

with each SIMD thread and some decode logic is added to process boundary instructions.

These two changes are illustrated on the right side of Figure 6.5. NVIDIA’s Fermi architecture

allows a maximum of 48 SIMD threads per SIMD processor, so for this case the RPC state

would amount to a 192-byte register file (assuming 4-byte RPC values) physically removed

from the hardware critical path.

To support the possibility of thread divergence causing thread lanes of the same thread to

enter different idempotent regions (for which multiple RPC values would be required to

maintain correct execution), we assume thread splitting techniques such as the one proposed

by Meng et al. are employed when needed to maintain a single RPC per thread [69]. This

allows divergent paths to be treated as separate logical SIMD threads, each maintaining its

own RPC value. Reconvergence of divergent SIMD threads to saturate the available SIMD

width is allowed as well, with the additional restriction that thread reconvergence may occur

101

only after encountering the first boundary instruction following the path reconvergence point.

Overall, the hardware changes are small, especially considering the many thousands of

registers and tens of functional units already resident on the SIMD processors of modern

GPUs. Alternative CPU-like mechanisms to achieve both exception and speculation support

would require much more hardware. Additionally, at the circuit level, the timing of exception

and mis-speculation control signals can be relaxed compared to traditional hardware pipeline-

based approaches (such as those covered in Section 6.2).

General Exception Support Mechanisms

General exception support on GPUs requires exposing consistent exception state to an exception

handler and mechanisms to prevent exception live-lock. The problem of supporting consistent

state is that on a GPU multiple exceptions can occur executing a single SIMD instruction, and

determining in an exception handler which lanes of the instruction experience an exception can

be difficult. The problem of exception live-lock is that multiple recurring exception conditions

inside a single idempotent region can lead to live-lock. The discussion below presents software and

hardware solutions to both problems.

Consistent exception state: To service SIMD exceptions, an exception handler must determine

which lanes in a SIMD instruction experience an exception. We initially propose to achieve

this without hardware modification as follows. First, prior to re-execution, a software routine

patches the excepting instruction with a trap to an emulation routine, similarly to the way a

debugger inserts a breakpoint into a running program. Upon re-execution, the emulation

routine then emulates the instruction in its entirety, servicing all exception conditions. It then

“unpatches” the instruction and resumes execution at the immediately following instruction,

as before. Other solutions that require hardware support, such as adding exception status bits

to record the excepting lanes of an instruction and the associated circuitry, are also possible.

With this solution, the exception handler would require that an excepting instruction execute

all lanes of the instruction to completion, updating all result registers except those whose

lanes experience an exception.

102

Figure 6.7: Live-lock under multiple recurring exceptions.

Exception live-lock: A potential live-lock condition is indicated if, during re-execution, an instruc-

tion experiences an exception and its PC value does not match the PC of the instruction that

initiated the re-execution. Consider, for instance, a region that experiences two arithmetic

exceptions as shown in Figure 6.7. After the first exception is handled, the second exception is

encountered shortly afterwards. However, upon subsequent re-execution, the first exception

is encountered again, leading to live-lock.

One way to detect live-lock is to save the PC value of an excepting instruction to a dedicated

register for comparison during re-execution. Live-lock is then detected as soon as an exception

recurs a second time, as shown in Figure 6.7.

To resolve the live-lock condition after it has been detected, single-stepped execution at

the granularity of individual SIMD lanes allows precise servicing of individual exceptions.

However, GPUs do not natively support this type of execution and adding it requires non-

trivial modification to the hardware. Instead, an alternative option is to leverage the virtualized

nature of modern GPU instruction sets and employ dynamic re-compilation to prevent live-

lock. Rather than the hardware entering a single-stepping mode upon live-lock detection, a

dynamic compiler instead recompiles the code such that the two excepting instructions causing

the live-lock condition are placed in separate idempotent regions. Afterwards, idempotence-

based re-execution can be retried, and the re-compilation effort ensures forward progress.

Alternatively, single-stepped lane execution can be implemented in the hardware. Both

solutions would be slow to execute; however, it is important to note that potential live-lock

should arise only in rare circumstances for the vast majority of possible exception conditions.

103

Efficient Context Switching Mechanisms

Idempotence-based recovery can substantially reduce the overheads of context switching on GPUs.

This is particularly valuable to the implementation of demand paging, for which a context switch

would traditionally require saving and restoring vast amounts of register state. The key insight is

that, utilizing idempotence, context switch state need only be saved and restored with respect to

the boundaries between idempotent regions, and that the locations of these boundaries is moreover

configurable. Hence, boundary locations can be chosen such that this state is minimized, enabling

much more efficient context switching.

To minimize live state on context switches, antidependences are simply cut at instructions

where there is the least amount of live state, as demonstrated earlier. To illustrate how this helps,

suppose that a page fault occurs executing the statement on line 6 of the kernel in Figure 6.4. Using

traditional state-minimization techniques [79, 89], a minimum of 8 live registers would need to be

saved to memory1. However, restarting from our idempotence boundary at the head of the loop,

only 3 live registers need to be saved. This is a greater than two-fold reduction in context switch

state.

6.1.3 GPU Evaluation

This section presents an abstract evaluation of the GPU design of the previous section. A more

detailed evaluation is covered in the co-authored work on the iGPU architecture [70]. While the iGPU

architecture evaluation evaluates GPU CUDA workloads using Ocelot [31] and GPGPUSim [12], in

this dissertation we focus on the CPU versions of the Parboil benchmarks, targeted at GPUs, which

allows us to use the LLVM-based compiler implementation evaluated in Chapter 5.

Experimental Method

As mentioned above, we consider the Parboil benchmark suite [100] specifically, which consists

of compute kernels that have been ported to both GPUs using “C for CUDA” and CPUs using
1Although the A, B, and C matrix objects (with member variables width and data) are live on entry, along with

built-in variables blockIdx, blockDim, and threadIdx, these are read-only kernel input variables that are backed in
memory. They are assumed to be loaded on first use inside a region and hence do not need to be saved on a context
switch.

104

GPU Hardware Configuration
Pipeline fetch/decode/issue/commit: 2-wide
L1 caches 1KB per thread context, 2-way set-associative, 64-byte line size
L2 cache 1MB 8-way set-associative, 64-byte line size, 10-cycle hit latency
Memory 200-cycle access latency

Table 6.3: GPU-like configuration for evaluation. Latencies in cycles are “effective cycle” latencies
that account for the latency-hiding effects of multi-threading on GPUs.

traditional C/C++. We use the CPU versions of the benchmarks modified as described in Section 5.2

and subsequently further modified to model a partitioning among threads2. We then compile this

CPU code using our LLVM compiler employing code generation strategy Max-Size. To minimize

context switch overhead, we observe that compiling for the largest idempotent regions produces

region boundaries contained in outer-most loops, and that live variables at these points are often

spilled to the stack anyway to free the registers for use inside the idempotent regions, and hence

Max-Size is used unmodified. Although incorporating liveness information into the LLVM region

construction is possible as a future extension, LLVM’s target-neutral IR makes this challenging.

After compilation, we simulate the benchmarks, which are fairly short, to completion using

gem5 [17] for ARM. While executing ARM instructions does not allow us to model GPU-specific

effects such as branch divergence/re-convergence of parallel threads, stalls for thread barrier

synchronization, or special functional unit (SFU) operations, the compiler behavior and the resulting

execution is only negligibly impacted, if at all, by these effects. The approach of simulating a GPU ISA

using a CPU ISA is moreover an accepted method for GPU evaluation [76], and it allows to faithfully

capture the compiler aspect of the architecture using our fully-working LLVM implementation,

which does not support either compiling CUDA code or producing device-specific GPU machine

code. The GPU-like configuration modeled in gem5 is shown in Table 6.33.

For measurements, idempotent region sizes are measured in terms of instructions and run-

time performance overhead is measured in terms of the percentage of additional execution cycles

simulating a simple two-issue in-order core that completes most instructions in a single cycle (as
2We partition to optimize for path lengths on the order of thousands of instructions. We note that this may yield

sub-optimal throughput for certain GPU device characteristics.

3NVIDIA’s Fermi similarly supports dispatching 2 warp instructions per cycle [77].

105

Parboil Benchmark Mean Path Length % Run-time Overhead
cutcp 612.4 1.42
fft 2,452.1 0.38
histo 4,683.3 0.29
mri-q 5,825.9 0.19
sad 3,021.2 0.42
tpacf 3,215.8 0.39

Table 6.4: GPU evaluation results.

is effectively the case for a GPU with multi-threading). At the boundaries between regions, we

conservatively model a 10-cycle stall latency to ensure the absence of any exception conditions before

proceeding. Finally, context switch efficiency is qualitatively measured by manually inspecting

the compiler assembly output and observing that a majority of live registers are spilled to stack

memory as a side-effect of preserving the idempotence property.

Results

Column 1 of Table 6.4 shows the mean idempotent path length of each of the six Parboil benchmarks

after all code modification compiling with code generation strategy Max-Size. Column 2 shows the

overhead of the resulting code in terms of execution cycles compared to the same code compiled

using the normal optimized LLVM compiler flow. While the overhead is low, we acknowledge

the possibility of under-estimating this overhead given that GPUs often statically constrain the

number of available registers at compile-time based on resource requirements, while ARM CPUs,

in contrast, have a (relatively high) fixed number of available registers. Hence, if a program would

otherwise not be able to use all the available registers on a CPU, no overhead may be recorded

for the CPU, whereas on the GPU this might alter the number of registers statically allocated to a

thread, potentially affecting overall throughput. We assume that this explains the larger overhead

numbers reported in the iGPU work [70], which also has higher overhead due to a higher modeled

spill/re-fill latency. However, even in that work, the overheads do not exceed 4%. The evident

conclusion is thus that compiling for idempotence introduces only small amounts of run-time

overhead even in the worst case.

106

6.2 Out-of-Order Execution in CPU Architectures

Emerging challenges in technology scaling present diminishing opportunity to improve the energy

efficiency of (general-purpose) CPU processors at the transistor level. As a result, the task of

improving CPU energy efficiency is increasingly falling to computer architects. This section explores

how idempotence-based execution can alleviate CPU overheads associated with in-order retirement

of instructions, a feature widely assumed necessary in CPUs to ensure that processor state is

consistent with respect to a running program at all times. In-order retirement simplifies program

debugging and enables seamless support of page faults and other exceptions in software. However,

special-purpose hardware structures, such as a reorder buffer or speculative register file, are often

required, and the resulting hardware complexity and power consumption can be high [52, 93, 95,

105].

Enabling out-of-order retirement in CPUs is in many ways the complement of providing ex-

ception support in GPUs—for CPUs idempotence can preserve exception support while enabling

simpler hardware, while for GPUs it can enable exception support while preserving simple hard-

ware. As for GPUs, idempotent regions can be used to recover sequentially correct state for CPUs

by jumping back to the beginning of a region and re-executing precisely up to the point of a specific

instruction and no further. In the CPU context, the approach is similar to previous proposals

for speculative out-of-order retirement using hardware checkpoints [5, 24, 52, 67]. However, it is

software co-designed to incur substantially less hardware power, area, and complexity overhead

leveraging the property of idempotence.

Out-of-Order Execution Using Idempotent Regions

Figure 6.8 illustrates how sequentially-correct state can be recovered despite out-of-order retirement

on a CPU for a simple sequence of three instructions using idempotence. It assumes a very simple

single-issue CPU design that issues instruction in program order but retires them potentially out of

order. Figure 6.8(a) shows the instruction sequence along with the issue cycle, execute latency, and

writeback cycle of each instruction, and Figure 6.8(b) shows the cycle-by-cycle state of the processor

pipeline as instructions move through it.

107

Instruction Issue Cycle Execute Latency WB Cycle

A. R2 ← add R0, R1 1 1 3
B. R3 ← ld [R2 + 4] 2 3 6
C. R2 ← add R2, R4 3 1 5

(a) A simple three-instruction code sequence and execution characteristics.

(b) Execution
through the issue, execute, and write-back pipeline stages.

Figure 6.8: Out-of-order retirement over a simple instruction sequence.

In the example, a page fault occurs during the execution of instruction B in cycle 5. Because

instruction C retires in that same cycle, normally speaking a processor is unable to cleanly resume

execution after handling the page fault because the program state at the end of cycle 5 is not

consistent with respect to the start of either instruction B or C. However, the program state is

consistent with respect to the start of instruction A; after servicing the page fault, it is possible

to resume execution from instruction A. Alternatively, the processor can first issue and execute

from instruction A precisely to instruction B, service the page fault, and then resume execution

from instruction C. This is possible because instructions A-C form an idempotent region. The same

idea can be applied to provide recovery support for other out-of-order techniques such as branch

prediction and memory dependence prediction as well.

Opportunity Analysis

Within an idempotent region, a CPU may execute and retire instructions out of order. This enables

three key simplification opportunities in the processor design. First, it allows the results of low

latency operations to be used immediately after they are produced, without the need for complex

staging and bypassing as in conventional processors. Second, it simplifies the implementation of

exception support, particularly for long latency operations such as floating point operations. Finally,

it enables instructions to retire out of order with respect to instructions with unpredictable latencies,

108

Figure 6.9: A comparison between idempotent and traditional CPU designs.

Figure 6.10: The CPU design space.

such as loads.

Figure 6.9 compares the resulting execution behavior of an a processor using idempotent regions

for recovery to that of an in-order and out-of-order processor. While the in-order and out-of-order

processor both stage and bypass instruction results until they are able to retire in order, the processor

executing idempotent regions does not.

To understand the energy impact of this idea across a range of CPU designs, the discussion

below uses the Pareto-optimal energy-performance frontier as a framework for analysis. Azizi

et al. measured this frontier for microprocessors using existing techniques [11], and Figure 6.10

approximates their findings. The black line shows the energy-performance frontier curve with

annotations for the four processors designs that Azizi et al. determine perform optimally over

different ranges on the curve. The gray line projects this curve for processors executing idempotent

regions: for some ranges on the curve, performance and energy improve; for other ranges, there is

a loss. The rationale for the projected shifts are given below.

109

Among in-order processors, single-issue in-order processors benefit from the ability to retire

instructions ahead of a cache miss: normally, a miss forces a stall. However, with only modest

pipeline depths and only one instruction issued per cycle, there is limited apparent benefit. As

a result, the overall gain for these processors is relatively small. In contrast, dual-issue in-order

processors are often designed with much deeper pipelines, have a range of execution unit latencies,

and utilize extra logic to track in-flight instructions and ensure they commit in order. Hence, these

processors benefit from each of three simplification opportunities mentioned earlier and thus the

curve shifts more drastically.

Dual-issue out-of-order processors can complete many instructions out of order, and idempotent

processing enables those instructions to also retire out of order. However, relative to an in-order

processor, the processor energy budget is substantially higher to implement out-of-order issue.

Additionally, these processors may re-use some of the retirement ordering logic to also resolve data

hazards and recover from branch mispredictions perhaps more efficiently than can be achieved

utilizing idempotence, diminishing the overall benefit. For small instruction windows, there may

still be an overall benefit. However, as the window size increases, there is an eventual loss in

efficiency as the idempotent region sizes begin to limit the capability and efficiency of out-of-order

issue.

Section Organization

Based on the analysis of Figure 6.10, the remainder of this section (Section 6.2) explores the op-

portunity for dual-issue in-order processor designs. Section 6.2.1 first presents background on the

complexities arising from in-order retirement in modern dual-issue in-order processors, giving

supporting references to commercially available processor designs. Section 6.2.2 then shows how

out-of-order retirement enables power and complexity savings. Finally, Section 6.2.3 presents an

evaluation.

110

Figure 6.11: Baseline processor configuration.

6.2.1 CPU Background

Idempotence enables safe out-of-order retirement within a region. This enables valuable pipeline

simplifications for processors that employ special-purpose hardware to manage in-order retirement.

This section shows the ways in which in-order retirement complicates a conventional processor

design.

As a representative processor, we consider an aggressively-designed two-issue in-order pro-

cessor, loosely based on the energy-efficient ARM Cortex-A8 processor core [14]. However, we

also make reference to two other widely-used two-issue in-order processor implementations—the

Cell SPE [57], and the Intel x86 Atom [44]—when their design choices differ significantly from the

Cortex-A8.

Figure 6.11 shows an initial, baseline processor configuration with features similar to those of

the Cortex-A8, but without any high-performance optimizations to overcome the inefficiencies

introduced by in-order retirement. In the following sections, we incrementally add in these opti-

mizations. The processor is aggressively pipelined with 3 cycles for fetch, 5 for decode and issue,

and the following execution unit latencies: 1 cycle for integer ALU operations and branches; 4 cycles

for integer multiply, load, store, and floating point ALU operations; and 8 cycles for floating point

multiply and divide. Since the processor is dual-issue, the processor has two integer ALU units.

The pipeline supports bypassing results over the result bus immediately before writeback.

111

The Complexities of In-Order Retirement

In-order retirement complicates the design of (1) the integer processing pipeline, (2) the floating

point processing pipeline, and (3) support for cache miss handling, as described below.

Staging and bypassing in the integer pipeline: In Figure 6.11, integer ALU operations complete

before integer multiply and memory operations. Hence, the processor cannot immediately

issue ALU instructions behind these other instruction types because it will lead to out-of-

order retirement. To improve performance, the pipeline can be modified to retire the ALU

instructions in order using a technique called staging. Using staging, retirement of ALU

instructions is delayed so that they write back to the register file in the same cycle as the

multiply and memory operations. This technique is used to achieve in-order retirement of

integer operations on each of the Cortex-A8, Cell SPE, and Atom processors. The Cortex-A8

has up to 3 cycles [14], Atom has up to 5 cycles [44], and the Cell SPE has up to 6 cycles of

staging [57].

A basic implementation of staging involves the insertion of staging latches to hold in-flight

results as they progress down the pipeline. Results are then bypassed to executing instructions

by adding a unique data bus for each staging cycle and destination pair. Unfortunately, this

implementation results in combinatorial growth in the complexity of the bypass network.

For this reason, a sometimes preferred solution is instead to implement a special register-file

structure to hold results until they are allowed to retire. Results are then bypassed out of

this structure in a manner similar to how results are read from the ROB in an out-of-order

processor. González et al. describe this structure in more detail, calling it the staging register

file (SRF) [39].

Figure 6.12 shows the addition of an SRF to our processor to temporarily hold completed

results. To determine whether values should be read from the register file (RF) or SRF after

issue, it also includes an extra rename stage in the pipeline to map registers to their location

in either the RF or SRF (the Cortex-A8 includes such a rename stage after issue [14]). Finally,

the pipeline flush logic is added to flush the pipeline in the event of an exception or branch

misprediction in the integer pipeline. It is worth noting that support for result bypassing is

112

Figure 6.12: The complexities introduced by in-order retirement.

more complicated than depicted in Figure 6.12 for processors with execution unit pipelines

that consume and produce values at multiple stages, such as the actual Cortex-A8 and the

Atom, and for processors with very deep pipelines, such as the Cell SPE.

Exception support in the floating point pipeline: In Figure 6.12, integer operations retire after

all possible exception points in the integer pipeline, but the floating point pipeline may

experience exceptions as well. Although floating point exceptions are typically rare, the

IEEE floating point standard requires that five specific floating point exception conditions be

minimally detected and signaled [3]. The IEEE standard also recommends precise floating

point exception support for trapping to software.

Regarding the latter, supporting precise floating point exceptions in hardware is difficult.

Hence, many processors, including the Cortex-A8 and Cell SPE, do not support it [9, 53].

Atom does support it [56]. Unfortunately, the specific details on Atom’s implementation are

not publicly available. The remaining aspects of the IEEE standard are implemented in the

Cortex-A8 using a second, much slower, non-pipelined floating point unit that handles IEEE

compliant floating point operations, with exceptions handled entirely in hardware. Figure 6.12

shows this support added to our representative processor.

113

Cache miss handling: Occasionally, a load or store will miss in the L1 cache. In this case, an in-

order processor must typically wait until the cache is populated with the missing data before

it can resume execution. In the case of a simple in-order pipeline, the pipeline often simply

asserts a global stall signal that prevents instructions from advancing down the pipeline.

However, for deeper pipelines with many stages this stall signal must propagate over long

distances to many latches or flip flops and thus often forms one or more critical paths [18, 33].

The Cortex-A8 has such a deep pipeline. Hence, it uses a different approach, which is to issue

a replay trap—re-use the exception logic to flush the pipeline and re-execute—in the event of

a cache miss [14]. The pipeline is then restarted to coincide precisely with the point where

the cache line is filled. To enable this coordination of events, the Cortex-A8 employs a replay

queue to hold in-flight instructions for re-issue. Figure 6.12 shows the addition of the replay

queue to our representative processor. Compared to the Cortex-A8, the Cell SPE does not

implement special support for cache misses since the SPE cache is software managed, while

specific details on Atom’s implementation are unavailable.

Overall, while conceptually simple, modern in-order processors are quite complex and exhibit

multiple sources of overhead relating to in-order retirement as demonstrated by the differences

between Figures 6.11 and 6.12. This includes the extra register state to hold bypass values in the

SRF, the additional rename pipeline stage to map operand values into the SRF, additional circuitry

to flush the pipeline for exceptions and cache misses, additional floating point resources, a special

replay queue to hold in-flight instructions, and associated circuitry to issue from the replay queue

and force replay traps. As we show in the next section, this additional complexity can be eliminated

in a processor using idempotent regions for recovery.

6.2.2 CPU Design

For a processor executing idempotent regions, out-of-order retirement of integer and floating point

operations are not problematic within the confines of a region, floating point exceptions are easily

supported precisely, and the processor pipeline must neither stall nor flush in the presence of a cache

miss. It must use only slightly modified scoreboarding logic, and the only additional hardware

114

requirement is the ability to track the currently active idempotent region and only issue instructions

from that region. In particular, if a potentially excepting instruction from the currently active region

is still executing in the processor pipeline, an instruction from a subsequent region may not issue

if it might retire ahead of the exception signal. Constraining issue in this way ensures that the

contents of regions retire in order with respect to the contents of other regions. In our CPU design,

we propose a special counter to track the number of potentially excepting instructions executing in

the pipeline (up to 4). The processor only advances the active region and begins issuing instructions

from the next region when the counter is at zero.

Power and Complexity

Intuitively, significant power and complexity savings are enabled by the opportunity to eliminate

staging, bypassing, and support for replay traps. In particular, we eliminate all of the following:

a 6-entry SRF and a 8-entry replay queue (both dual-ported circular buffers), the entire rename

pipeline stage including the rename table, the pipeline flush and issue logic for exceptions and

replay traps (likely to form one or more critical paths), an entire IEEE-compliant floating point

execution unit, and all of the control logic associated with each of these various pieces.

While arguably these savings are specific to this particular dual-issue core design, similar core

designs have been repeatedly built over the years [33, 51] and similar savings would be achieved

even for single-issue in-order designs such as those used in embedded processors. The latter

claim is supported by Wang and Emmett, who evaluate VLSI implementations of a range of in-

order retirement buffering strategies for a simple pipelined RISC processor and find that area and

performance overheads are both in excess of 15% [105].

ISA Support

ISA support is similar to the ISA support for the GPU design from Section 6.1.2. Rather than create

a special dedicated instruction, however, we propose to divide regions at specially marked store

instructions, repurposing a single bit in the immediate offset field of the store to indicate whether it

marks an idempotent region boundary. As an example, store instructions for the ARM ISA use a 12

115

bit immediate field for immediate offset addressing. We shorten this to 11 bits and use the freed bit

to mark region boundaries.

In the event of mis-speculated out-of-order retirement (i.e. an exception), the CPU takes the

following corrective action: (1) it stores the PC value of the excepting instruction to a register (e.g.

the exception register); (2) it sets the PC to the PC of the most recent idempotent region boundary

point; and (3) it resumes the processor pipeline, issuing instructions only up to the PC of the

excepting instruction. When the excepting instruction executes and causes the exception a second

time, the CPU traps to software precisely with respect to that point in the program. After the

exception is handled, execution is resumed from the PC of the excepting instruction. As a fallback,

live-lock is handled by single-stepped re-execution with in-order retirement as described for the

GPU hardware case.

6.2.3 CPU Evaluation

This section presents an abstract evaluation of the CPU design of the previous section. A more

detailed evaluation is covered in co-authored work on Idempotent Processors, which also augments

the design with some low-complexity out-of-order issue support [28].

Experimental Method

To evaluate our CPU design, we consider the benchmarks from the SPEC 2006 [99] and PARSEC [16]

suites and simulate them using gem5 [17] for ARM. We measure runtime overheads for two

compiler/hardware configurations. For the first configuration, we assume branch mis-prediction

recovery in the hardware. We compile using code generation strategy Min-Pressure with threshold

value 5 and assume architectural idempotence. For this configuration, we stall in the simulator

only to clear potential exception conditions. For the second configuration, we assume branch mis-

prediction recovery using idempotence. We compile using code generation strategy Min-Recovery

and assume contextual idempotence. For this configuration, we stall in the simulator to clear both

potential exception conditions and branch mis-predictions.

The CPU hardware configuration we model in gem5 is shown in Table 6.5. The hardware

116

CPU Hardware Configuration
Pipeline fetch/decode/issue/commit: 2-wide
L1 caches 32kB DCache, 2-way set-associative, 64-byte line size
L2 cache 1MB 8-way set-associative, 64-byte line size, 10-cycle hit latency
Memory 200-cycle access latency

Table 6.5: CPU hardware configuration for evaluation.

asta
r
bzip

2

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
0%

10%
20%
30%
40%

SPEC INT

45.5

MIN-PRESSURE MIN-RECOVERY

dealII lbm milc
namd

so
plex

gmean
0%

10%
20%
30%
40%

SPEC FP

MIN-PRESSURE overall gmean: 9.1%
MIN-RECOVERY overall gmean: 18.1%

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

str
eamclu

ste
r

sw
aptio

ns

gmean
0%

10%
20%
30%
40%

PARSEC

Figure 6.13: The percentage run-time overheads of idempotence for recovery on a CPU.

configuration is similar to the GPU configuration from Section 6.1.3, except that (a) the L1 cache size

is much larger given that the cache is not shared among many thread contexts as on a GPU, and (b) we

model the longer functional unit execution latencies of the baseline CPU shown in Figure 6.11. Run-

time overheads are measured in terms of simulated execution cycles using the same methodology as

in the compiler evaluation methodology of Section 5.1, with the single difference that benchmarks

are only simulated for one billion instructions to accommodate increased simulator complexity in

modeling a variable latency pipeline.

117

Results

Figure 6.13 shows the overheads considering separately code generation strategies Min-Pressure

and Min-Recovery. Across all benchmarks the geometric mean overhead for Min-Pressure is 9.1%,

whereas for Min-Recovery it is roughly double at 18.1%. The higher overheads for Min-Recovery

are predominantly due to the increased compiler-induced overheads in compiling for this strategy.

However, the overheads of contextual idempotence and also of stalling for branch resolution each

play a small factor as well.

Overall, it appears likely that using idempotence to achieve recovery from mis-predicted

branches is not profitable, although the potential improvements from allowing branch-dependent

instructions to issue early were not evaluated. Using idempotence simply to enable out-of-order

retirement, however, appears like it could enable overall efficiency savings. In general, the overhead

of strategy Min-Pressure is less than 10%, and the overheads are particularly low for floating point

benchmarks, where the relative cost of additional register-to-register move and stack spill/reload

operations is low compared to the latency of the floating point operations.

6.3 Hardware Fault Recovery in Emerging Architectures

As CMOS technology scales, individual transistor components will soon consist of only a handful

of atoms. At these sizes, transistors are extremely difficult to control in terms of their individual

power and performance characteristics, their susceptibility to soft errors caused by particle strikes,

the rate at which their performance degrades over time, and their manufacturability—concerns

commonly referred to as variability, soft errors, wear-out, and yield, respectively.

Checkpoints provide a conceptually simple solution to these problems. However, in the context

of hardware faults, checkpoints are problematic for several reasons. First, software checkpoints often

have high performance overhead and hence, to maintain reasonable performance, hardware support

is often necessary. This hardware support, however, forces interdependencies between processor

structures, occupies space on the chip, and entails recurring energy expenditure regardless of

failure occurrence. Particularly for emerging massively parallel and mobile processor designs, the

per-core hardware support comes at a premium, while the recovery support may be desirable only

118

Figure 6.14: The evolution of hardware, architecture, and applications in the context of hardware
fault recovery.

under specific or rare circumstances. Hardware checkpointing resources are also rarely exposed to

software, and are even less often configurable in terms of their checkpointing granularity, limiting

their wider applicability. Finally, checkpoints have limited application visibility and are often overly

aggressive in saving more state than is required by the application.

Hardware Fault Recovery Using Idempotent Regions

Compared to checkpoints, idempotence-based recovery of hardware faults presents a low-overhead,

more configurable alternative. When hardware detection and recovery support is unavailable, such

as on current-generation GPUs or mobile CPUs, idempotence-based recovery can be opportunisti-

cally combined with software detection techniques for recovery. And even when hardware detection

and recovery support is available, idempotence can still provide a more efficient alternative to

hardware checkpoints when the inherently idempotent regions in programs are large and thus the

overheads of executing idempotent regions is low.

Figure 6.14 shows the evolutionary path to idempotence-based recovery considering recent

trends in hardware, architecture, and applications. Historically, traditional applications running on

traditional superscalar processor architectures built on top of perfect CMOS technology required

no recovery as indicated on the left of the figure. Even with imperfect CMOS, these applications

still work best utilizing hardware recovery when running on traditional processor architectures as

shown center-left. However, with emerging data-parallel applications containing large inherently

idempotent regions and running on emerging architectures, hardware recovery introduces the

inefficiencies described above, as indicated center-right. In the future, while hardware substrates

119

will be unreliable, mechanisms that provide flexibility to software and keep the architecture simple

are desireable. An architecture that exposes the occurrence of hardware faults to allow software

recovery using idempotence enables synergy between applications and architectures as shown on

the right.

Section Organization

The remainder of this section (Section 6.3) presents a range of architecture designs that support

idempotence-based recovery of hardware faults. Section 6.3.1 describes the architecture design

issues, ranging from fault detection support to the hardware organization, and Section 6.3.2 presents

an evaluation.

6.3.1 Fault-Tolerant Design

This section presents the design of emerging architectures that implement fault tolerance using

idempotence. The section first discusses the hardware benefits of using idempotence for fault

recovery. It then discusses the necessary ISA support, detection support, and possible hardware

organizations.

Hardware Simplification

Idempotence-based fault recovery provides several hardware benefits. First, the hardware need not

provide support for buffering, checkpointing, or rollback for software-recoverable errors. Second,

idempotence reduces hardware design complexity because design margins to account for silicon

uncertainity can be relaxed. This also potentially improves energy efficiency, as it allows hardware

to be designed for correct and efficient operation under common case conditions, but with possible

failures under dynamically worst case conditions. The overall result is hardware that is error-prone,

but is easier to design and potentially more energy efficient.

ISA Semantics

Recovery using idempotence allows instructions to commit potentially erroneous state, while the

compiler ensures that this state is either discarded or overwritten after the fault is discovered and

120

recovery is initiated. However, for the compiler to ensure recovery from the fault, the resulting

error must be a locally correctable error, as defined by Sridharan et al. [98], i.e. the error must be

spatially and temporally contained, forcing the ISA constraints listed below. These constraints were

previously implicitly enumerated in the idempotence taxonomy’s definition of execution failure

from Section 2.2, and are re-iterated here only for completeness:

1. Errors must be spatially contained to the target resources of an idempotent region’s execution.

In other words, an instruction must not commit corrupted state to a register or memory

location not written to by other instructions in the idempotent region. For stores, this means

that a store must not commit if its destination address is corrupt, or if the store is reached

through erroneous control flow. A simple (but high overhead) way to handle this is to stall on

the error detection logic prior to committing a store. For other instructions that write only

to registers, a tight coupling between the detection logic of the destination register datapath

and the instruction commit logic enables rapid resolution of writes to incorrect destination

registers.

2. The contents of memory locations must not spontaneously change, e.g. due to a particle strike.

Idempotence-based recovery depends on traditional mechanisms such as ECC to protect

memories, caches, and registers from soft errors. Other errors that cannot be temporally

contained to the scope of a idempotent region, such as most faults in the cache coherence or

cache writeback logic, are also not recoverable using idempotence.

3. Arbitrary control flow is not allowed. Control flow must follow the program’s static control

flow edges. Note that under contextual idempotence faulty control decisions are still acceptable

since the static control flow is not violated.

4. Hardware exceptions must not trigger until hardware detection ensures that the exception is

not the result of an undetected hardware fault.

Execution may leave an idempotent region once the hardware detection guarantees error-free

execution. In the event of an error, the hardware must trigger recovery at some point before

execution leaves the idempotent region.

121

Fault Detection Support

Idempotence-based recovery requires support for low-latency fault detection in either software

or hardware. Two viable hardware alternatives are Argus [68] and redundant multi-threading

(RMT) [74]. Argus provides comprehensive error detection specifically targeted at simple cores,

and RMT runs two copies of a program on separate hardware threads and compares their outputs

to detect faults. Software detection techniques such as instruction-level dual-modular redundancy

(DMR) [86, 78] are also viable techniques when hardware support is not available but resiliency is

important. For example, commodity GPUs are able to provide order-of-magnitude performance

improvements, but due to their commodity nature, are typically unreliable. Software DMR allows

GPUs to still offer substantial performance improvements while simultaneously providing reliable

execution for applications that need it, such as scientific computing applications.

Hardware Organization

While hardware that uses idempotence everywhere and has no recovery support at all is possible,

it is disruptively different from existing hardware and may not be optimal considering that (a)

architectures are becoming increasingly heterogeneous [20], and (b) the performance of compiling

for idempotence is heavily dependent on the workload (see Chapter 5). In particular, workloads

that have large idempotent regions are the best candidates for idempotence-based fault recovery

because hardware faults are presumably rare. In this case the re-execution penalty is outweighed

by the performance savings of constructing large idempotent regions.

Configurations that partially implement idempotence, such as the ones shown in Figure 6.15,

can be incrementally built into existing hardware organizations and can opportunistically exploit

idempotence where it is most beneficial. Below, we consider three such organizations with both

simplified hardware and normal hardware, where idempotent regions execute on the simplified

hardware and other code executes on the normal hardware, and where this partitioning can be

configured either statically, at manufacturing time, or dynamically, at runtime.

A first alternative is a statically configured heterogeneous architecture with support for relatively

fine-grained parallelism, where idempotent regions are enqueued on a neighboring, unreliable

122

Figure 6.15: Hardware organizations that uses idempotence opportunistically.

core (such as a GPU-like SIMD core or Cell-like SPE core). This is the configuration shown in

Figure 6.15(a). A second alternative is an organization where both hardware detection and recovery

support exist, but where the recovery support is adaptively disabled to save power and energy

when executing low-overhead idempotent regions. This is one example of the configuration shown

in Figure 6.15(b). Finally, a third alternative is a dynamically configured architecture that does not

have hardware recovery support but has efficient detection support and uses dynamic frequency

and voltage scaling (DVFS) inside idempotent regions to run more efficiently in the presence of

faults when the trade-off is favorable. This is another example of the configuration shown in

Figure 6.15(b).

6.3.2 Fault-Tolerance Evaluation

This section presents an abstract evaluation of the fault-tolerant architecture design of the previous

section. A more detailed evaluation is covered in co-authored work on demonstrating the appli-

cation of the static analysis algorithm proposed in this thesis [29] as well as in work on the Relax

framework [27].

Experimental Method

To evaluate our fault-tolerant architecture design, we consider the benchmarks from the SPEC

2006 [99], PARSEC [16], and Parboil [100] suites. Using our LLVM compiler, we compile these

123

benchmarks using code generation strategy Pressure with threshold value 5 and assume contextual

idempotence to allow divergent control flow effects over pseudoregisters.

We consider as a fault-tolerance scenario the case for recovery from transient hardware faults

(soft errors) and evaluate against two other compiler-based recovery techniques. For all techniques

we assume compiler-based error detection using instruction-level dual-modular redundancy (DMR),

with detection at load, store, and control flow boundaries, as previously proposed by Reis et al. [86]

and Oh et al. [78]. In our experiments, the DMR is modeled by enabling only half of the available

registers in the compiler and duplicating instructions to use the other set of available registers during

simulation in the instruction stream. We note that while the overhead of such DMR techniques can

be high (typically 1.5x [86]), we assume that this overhead is more than offset by any performance

improvements running on a commodity architecture that is not inherently fault-tolerant. An

example of where this might be true is in running highly sensitive scientific compute kernels on

GPUs, where no fault-tolerant alternative to a GPU exists that provides comparable performance.

Figure 6.16 illustrates the behavior of the three recovery alternatives we consider. The first re-

covery technique, Instruction-TMR, implements TMR at the instruction level. Our implementation

attempts to replicate the work of Chang et al. [21], which adds a third copy of each non-memory

instruction and use majority voting before load and store instructions to detect and correct failures.

We support the majority voting as a single-cycle operation. The second technique, Checkpoint-and-

Log, is an implementation of software logging similar to logging in software transactional memory

systems [48]. Before every store instruction, the value to be overwritten is loaded and written to a

log along with the store address, and the pointer into the log (assigned a dedicated register, lp) is

incremented. In our implementation, as the log fills, the log is reset and a register checkpoint is

taken, which starts a new checkpointing interval. We assume a 16KB log size (1K stores per check-

point interval) with intelligent periodic polling for log overflow using a technique similar to that

proposed by Li and Fuchs [64]. In our simulations, all log traffic writes through the L1 cache, and

we optimistically assume that both the register checkpointing and periodic polling contribute no

runtime overhead. The final technique, Idempotence, is our idempotence-based recovery technique.

Here, as each idempotent region boundary is encountered, its address is written to the register

rp. In the event that a fault is detected, execution jumps to the address contained in rp (the use of

124

load old value at destination address
store old value and address to log

advance log pointer

DMR Baseline Instruction-TMR Checkpoint-and-Log Idempotence

check(r0 != r0’)
ld r1 = [r0]
ld r1’ = [r0]
add r2 = r3 , r4
add r2’ = r3’, r4’
check(r1 != r1’)
check(r2 != r2’)
st [r1] = r2

majority(r0, r0’, r0’’)
ld r1 = [r0]
ld r1’ = [r0]
ld r1’’ = [r0]
add r2 = r3 , r4
add r2’ = r3’ , r4’
add r2’’ = r3’’, r4’’
majority(r1, r1’, r1’’)
majority(r2, r2’, r2’’)
st [r1] = r2

br recvr, r0 != r0’
ld r1 = [r0]
ld r1’ = [r0]
add r2 = r3 , r4
add r2’ = r3’, r4’
br recvr, r1 != r1’
br recvr, r2 != r2’
ld tmp = [r1]
ld tmp’ = [r1]
br recvr, tmp != tmp’
br recvr, lp != lp’
st [lp] = tmp
st [lp + 8] = r1
add lp = lp + 16
add lp’ = lp’ + 16
st [r1] = r2

retry:
mov rp = {retry}
...
jmp rp, r0 != r0’
ld r1 = [r0]
ld r1’ = [r0]
add r2 = r3 , r4
add r2’ = r3’, r4’
jmp rp, r1 != r1’
jmp rp, r2 != r2’
st [r1] = r2

Figure 6.16: Three software recovery techniques on top of instruction-level DMR. Changes over
original load-add-store sequence in bold.

a register to hold the restart address is necessary to handle potentially overlapping control flow

between regions).

We simulate our benchmarks using gem5 [17] for ARM to measure the overheads of the three

techniques, assuming a simple two-issue in-order core that completes most instructions in a single

cycle. We do not inject faults on the assumption that fault occurrence is rare and that subsequently

the act of recovery does not signficantly impact performance. The hardware configuration we model

in gem5 and the simulation methodology is otherwise the same as for the CPU design evaluation

of Section 6.2.3.

Results

Figure 6.17 presents results comparing the overhead of the three techniques relative to performance

of the underlying DMR. Across all benchmarks, Instruction-TMR performs worst with 29.3%

geometric mean performance overhead, Checkpoint-and-log has 22.2% overhead, and Idempotence

performs best with only 9.0% overhead.

Compared to Instruction-TMR, Checkpoint-and-log performs worse for applications with

frequent memory interactions, such as several SPEC INT applications, but better for all other

applications where its per-instruction overheads are lower. Overall, Idempotence outperforms both

125

asta
r
bzip

2

gobmk

h264ref

hmmer

lib
quantum mcf

omnetpp

perlb
ench

sje
ng

xa
lancb

mk

gmean
0%

10%
20%
30%
40%
50%

SPEC INT

INSTRUCTION-TMR CHECKPOINT-AND-LOG IDEMPOTENCE

dealII lbm milc
namd

so
plex

gmean
0%

10%
20%
30%
40%
50%

SPEC FP

bla
ck

sc
holes

ca
nneal

flu
idanim

ate

str
eamclu

ste
r

sw
aptio

ns

gmean
0%

10%
20%
30%
40%
50%

PARSEC

cu
tcp fft

hist
o
mri-q sa

d
tpacf

gmean
0%

10%
20%
30%
40%
50%

Parboil

Figure 6.17: Overhead of the three software recovery techniques relative to the DMR baseline.

techniques by a significant margin. It avoids the redundant operations added by Instruction-

TMR to correct values in-place, and avoids the overheads associated with unnecessary logging

in Checkpoint-and-log. In particular, under Checkpoint-and-log, only the first memory value

written to a particular memory location must be logged. However, the occurrence of this first write

is not statically known and cannot be efficiently computed at runtime. Additionally, Idempotence

understands the concept of a store to memory being idempotent, which precludes the necessity

for logging, and it also preserves local stack memory more efficiently with its fully-integrated

compile-time approach.

6.4 Summary and Conclusions

This chapter explored several applications of idempotence in architecture design. It considered

specifically its application in the GPU (high-throughput), CPU (general-purpose), and fault-tolerant

architecture space.

126

GPUs: Modern GPUs do not support exceptions, severely limiting their usability and programma-

bility. Specifically, they do not provide demand-paged virtual memory support or provide

efficient means to switch between running contexts. Supporting these features using tradi-

tional techniques is not economical for GPUs—the power and area resources are typically

better spent elsewhere. However, we observe that GPU workloads contain large regions of

code that are idempotent and that these regions can be formed in such a way that contain

little live register state at their entry point, enabling both features. The hardware support

is minimal and the construction of idempotent regions is moreover fully transparent under

the typical dynamic compilation framework of GPUs. Our evaluation of traditional GPU

workloads demonstrates very low overheads for recovery from page faults using idempotence.

CPUs: For CPUs, energy efficiency is today’s primary design constraint. While CPU workloads

tend to have more traditional characteristics than those of GPUs—i.e., they have less inherent

idempotence—incremental hardware checkpointing additions remain expensive and idempo-

tence can enable better energy efficiency with simpler hardware. We specifically demonstrated

how idempotent processing simplifies the design of in-order processors, which conventionally

suffer from significant complexities to support the execution of variable latency instructions

and enforce precise exceptions. Idempotence can eliminate much of this complexity and allow

instructions to retire out of order. Our evaluation demonstrates that idempotence can enable

fundamentally simpler hardware with typical compiler-induced runtime overheads in the

range of 5-20%.

Fault-Tolerance: As hardware devices continue to shrink, reliability is an ever-growing concern.

To allow programs to operate correctly even in the face of hardware transient or permanent

faults, some form of recovery support is increasingly needed. However, emerging hardware

such as GPUs and embedded processors often employ simple, in-order cores to maximize

throughput and energy efficiency with little or no support for buffering or checkpointing

state. Idempotence-based recovery can enable flexible hardawre fault recovery support with

very little hardware. We describe ISA-level requirements of how faults can manifest to allow

recovery using idempotence, and describe possible hardware organizations and supporting

127

detection mechanisms. Our evaluation shows that idempotence-based recovery is more

than twice as efficient as (has less than half the overhead of) two competing state-of-the-art

compiler-automated recovery techniques.

128

7 Related Work

The idea of leveraging idempotence for recovery is fairly new and has previously received only a

modest amount of attention from researchers. With respect to the compiler work of Chapters 3-5,

the only related work is the work of Hampton [46] and Feng et al. [36], and with respect to the

idempotence taxonomy of Chapter 2 there has been no prior work—the closest related work we are

aware of would be the work of Sridharan et al. on their taxonomy on error recovery and correction

in software [98].

There has, however, been some broader work on the applications of idempotence for recovery in

architectures and programming languages. Below, Section 7.1 expands on related work in this area,

with a discussion of related compiler work included therein. Section 7.2 then ends by reviewing

alternative, classical approaches to recovery.

7.1 Idempotence-Based Recovery

Over the years, idempotence has been both explicitly and implicitly employed as a recovery alter-

native to checkpoints. Tables 7.1 and 7.2 classifies known prior work in terms of its application

domain and the level at which idempotence is used and identified. As the tables show, prior work

on idempotence (also referred to as “restartable program regions”) has been sporadic and applied

only under specific domains such as speculation and multi-threading (Table 7.1), and often only

under restricted program scope using only limited or no static analysis (Table 7.2).

129

Technique name Year Application domain

Sentinel scheduling [66] 1992 Speculative memory re-ordering
Fast mutual exclusion [15] 1992 Uniprocessor mutual exclusion
Multi-instruction retry [63] 1995 Branch and hardware fault recovery
Atomic heap transactions [90] 1999 Memory allocation
Reference idempotency [59] 2006 Reducing speculative storage
Restart markers [47, 46] 2006 Virtual memory for vector machines
Relax [27] 2010 Hardware fault recovery
Data-triggered threads [102] 2011 Speculative multi-threading
Encore [36] 2011 Hardware fault recovery

Table 7.1: Previous applications of idempotence in architecture design.

Technique name Program scope Idempotence analysis

Sentinel scheduling [66] Speculative regions Register-level analysis
Fast mutual exclusion [15] Atomicity primitives Programmer inspection
Multi-instruction retry [63] Whole program Antidependence analysis
Atomic heap transactions [90] Garbage collector Programmer inspection
Reference idempotency [59] Non-parallel code Memory-level analysis
Restart markers [47] Loop regions Loop analysis
Relax [27] Selected regions Programmer inspection
Data-triggered threads [102] Selected regions Programmer inspection
Encore [36] Selected regions Interval analysis

Table 7.2: Program scope and idempotence analysis in prior work.

Idempotence in CPU Design

Specifically for CPUs, one of the earliest uses of idempotence is the work of Mahlke et al. on sentinel

scheduling (1992), which uses restartable instruction sequences for exception recovery to enable

compiler speculative memory re-ordering in VLIW and superscalar processors [66]. Whenever a

potentially-excepting instruction is speculatively re-ordered, the compiler inserts a non-speculative

sentinel instruction at the instruction’s logical point of occurrence to check if an exception occurred.

The technique to recover from such an exception is to simply re-execute from the point of the

speculatively re-ordered instruction after handling the exception, with the program compiled

such that the path between the speculatively re-ordered instruction and the sentinel is idempotent.

Although this technique is similar in spirit to the techniques explored in this dissertation, our

techniques are far more general and can be applied across a broader range of circumstances.

In an ostensibly unrelated domain, the atomic heap transactions work of Shivers et al. (1999) [90]

130

and the fast mutual exclusion work of Bershad et al. (1992) [15] both explore using idempotence

to achieve atomicity on uniprocessors. Both observe that, when a process is de-scheduled in the

midst of an atomic operation that logically commits only upon execution of the final instruction,

restarting the operation from the beginning of the operation maintains the perception of atomicity

in a uniprocessor environment. Shivers et al. apply this observation to provide memory allocator

atomicity by advancing a single pointer value at the end of an atomic operation, which then absorbs

the operation’s work into the state of the program. Similarly, Bershad et al. effectively propose

to implement the load-linked store-conditional synchronization sequence for uniprocessors as a

simple load and store sequence that is restarted if pre-empted.

The work of Li et al. on multi-instruction retry (1995) develops compiler-driven re-execution as a

technique for branch misprediction recovery [63]. Similar to the work of this dissertation, they break

antidependences to create recoverable code regions. However, they do so over a sliding window of

the last N instructions rather than over static program regions. As such, they never explicitly refer to

the more general concept of idempotence and do not distinguish between clobber antidependences

and other antidependences; all antidependences must be considered clobber antidependences over

a sliding window, since any flow dependence preceding an antidependence will eventually lie

outside the window. The use of static program regions in this dissertation work further allows for

the construction of much larger recoverable regions with relatively low overheads.

Finally, Tseng and Tullsen’s data-triggered threads (2011) [102] and Kim et al.’s reference idempotency

(2006) [59] work apply idempotence in the context automatic parallelization and thread-level

speculation. Tseng and Tullsen manually identify and construct idempotent code regions in their

programs to run on top of their architecture, which requires parallel tasks to be idempotent because

they may be spuriously executed or asynchronously aborted as a result of data modifications. In

contrast, Kim et al. track idempotent memory references that need not be tracked in the thread-

speculative storage, and can instead directly access non-speculative storage, which substantially

reduce the occurrence of speculative storage overflow.

131

Idempotence in GPU Design

This dissertation work is the first to explore idempotence applied specifically to GPU architectures.

However, in a very related domain, Hampton and Asanović apply idempotence explicitly to im-

plement virtual memory for CPUs with tightly-coupled vector co-processors [46, 47]. There are

several differences, however. First, they explore only simple compute kernels executed by a vector

co-processor, consider only loop regions, and do not develop mechanisms to tolerate multiple recur-

ring exceptions. Second, their work also does not tie the benefits of idempotence-based exception

recovery with the benefits of the large idempotent regions and the reduced live register state at

region boundaries on data-parallel architectures. Finally, their technique does not support excep-

tions that require visibility to precise program state, whereas this dissertation demonstrates how

idempotence provides a unified mechanism for both speculation and general exception support.

Regarding optimizations for context switching specifically, others have developed techniques to

reduce the overhead but have failed to synergistically exploit the property of idempotence. Snyder

et al. describe a compiler technique where each instruction is accompanied by a bit that indicates

whether that instruction is a “fast context switch point” [94]. Zhou and Petrov also demonstrate

how to pick low-overhead context switch points where there are few live registers [110]. Although

both approaches work well for servicing external interrupts, neither approach can be used to service

exception conditions associated with a specific instruction such as page faults. Additional examples

include the work of Saulsbury and Rice on compiler annotations to mark whether registers are

live or dead [89], and the the IBM System/370 vector facility’s use of “in-use” and “changed” bits

for vector registers to avoid unnecessary saves and restores on a context switch [79]. While these

latter two approaches can be used to reduce switching overheads for page faults, the swapped state

must still be sequentially precise with respect to the faulting instruction. Idempotence allows us to

side-step this requirement for even lower context switch overheads.

Idempotence for Fault Tolerance

Relax (a work of the author that is not otherwise mentioned in this dissertation) was the first

to propose leveraging the property of idempotence for hardware fault recovery [27]. It did so

132

over programmer-identified code regions. Encore later leveraged the concepts of Relax to provide

low-cost hardware fault recovery for selected code regions automatically using a compiler [36]. In

contrast to this dissertation work, Encore builds idempotent code regions using a different type of

compiler analysis and using a hybrid checkpointing/idempotence approach. Idempotent regions

are formed using compiler interval analysis, where each region corresponds with an interval that,

by definition, includes a dominating header node. As a result, their applications do not cleanly

decompose into entirely idempotent regions and several non-idempotent regions remain after the

interval analysis completes. These regions are selectively made “idempotent” by checkpointing

live-in state that they overwrite when the overhead is modest. The Encore authors claim their

best-effort approach achieves 97% coverage with an average of 14% overhead across an assortment

of SPEC 2000 and MediaBench benchmarks.

Compared to Encore, the approach of this dissertation is fundamentally different. In Encore,

intervals are checked for idempotence in a hierarchical manner with idempotent regions greedily

formed. In contrast, the static analysis presented in Chapter 3 identifies fundamental data depen-

dence constraints and constructs regions by formulating the region construction problem as a graph

cutting problem subject to these data dependence constraints. Among other things, this allows

(a) applications to be decomposed solely into idempotent regions, and supports (b) a variety of

code generation strategies, such as the Pressure and Recovery strategies of Chapter 4, cleanly and

modularly integrated into the region formation process.

7.2 Classical Recovery

There are a wide variety of classical recovery techniques that have been proposed for exception

recovery, branch misprediction recovery, and hardware fault recovery, particularly in the general-

purpose CPU space, but also, although to a lesser extent, in the throughput-oriented GPU space.

Classical Recovery in CPU Design

There is a long history of prior work on recovery techniques targeted specifically at general-purpose

processors. With respect to the complexities of out-of-order execution and support for precise

133

program state in hardware, seminal works include the work of Hwu and Patt on processor check-

point repair [52], the work of Smith and Plezkun on the re-order buffer, history buffer, and future

file approaches for maintaining a sequential execution abstraction [93], and the work of Sohi and

Vajapeyam on the unified RUU structure for handling precise exceptions, renaming, and out-of-

order execution [95]. These works have had strong influence and variations on them have been

integrated into a variety of commercial processor designs [30, 50, 58, 80, 91, 108]. Recent follow-on

work in hardware recovery has focused specifically on support for large instruction windows and

speculative out-of-order retirement using checkpoints [5, 24, 67].

As a contrast to hardware techniques, software techniques include Gschwind and Altman’s ex-

ploration of precise exception support in a dynamic optimization environment using repair functions

invoked prior to exception handling [40], a technique used in Daisy [32]. Other software techniques

for architecture recovery are few and far between, perhaps in part because well-established hard-

ware techniques generally work well enough, while have the side-benefit of enabling support for

dynamic out-of-order execution, a standard feature in modern high-performance processors.

With the growth of mobile and GPU architectures and the emergence of energy-efficiency

as the primary design constraint, however, software techniques may have renewed potential. In

particular, the idempotence technique proposed in this dissertation enables recovery without explicit

checkpoints or buffers, instead identifying and constructing implicit, low-overhead checkpoint

locations in the application itself. The power and complexity overheads of supporting re-execution

from these locations in the hardware are demonstrably small, and results show that the software

performance overheads are low enough that the technique is practical and can be used to improve

energy efficiency. When used in combination with selective hardware buffering or checkpointing

techniques, it can potentially provide unprecedented levels of energy efficiency.

Classical Recovery in GPU Design

Smith and Plezkun discuss the complications of precise exception support in vector architectures

(among which the GPU is an example), and suggest duplicated vector register state to achieve it [93].

They argue that such duplicated state is preferable to the performance complications arising from

instead buffering completed results. For a processor implementing short-width SIMD processing

134

capability, duplicated register state may be practical, but for a GPU it is not.

The approach of using a unified register file structure to hold speculative state alongside

renaming hardware, first proposed by Moudgill et al. [73], has been proposed for GPU-like vector

architectures as well [34, 35, 61]. However, compared to general-purpose CPUs, the benefits to

GPU-like processors are less clear as out-of-order execution (a side benefit of register renaming) is

typically not necessary to achieve high performance. Hence, the additional hardware complexity,

additional register pressure, and resulting performance loss (the CODE project measures the

performance loss due to register pressure at roughly 5% [61] and Espasa et al. measure it as even

higher [35]) only to support precise exceptions are hard to justify for GPUs.

Lastly, Imprecise exception support mechanisms that involve snapshotting some amount of

microarchitectural state have also been proposed. These include the “length counter” technique of

the IBM System/370 [79], the “invisible exchange package” of the CDC STAR-100, the “instruction

window” approach of Torng and Day [101], the WISQ “exposed re-order buffer” approach of

Pleszkun et al. [82], and the “replay buffer” approach of Rudd [87]. While these mechanisms

provide full exception support, they expose microarchitectural details and are likely too complex

for GPUs.

Today, GPUs do not support exceptions, and hence no exception recovery mechanism has proven

sufficiently efficient and straightforward that it can be incorporated into modern GPUs, despite

the fact that the desire for full virtual memory support on GPUs has been widely recognized. In

particular, id Software has demonstrated a need to support multi-gigabyte textures larger than can

be resident on GPU physical memory, and develop a technique called virtual texturing to stream

texture pages from disk [54]. Unfortunately, the technique requires careful scheduling effort on

the part of the programmer. GPU virtual memory paging would simplify its implementation and

the implementation of similar techniques. Gelado et al. recognize the GPU productivity issue and

explore asymmetric distributed shared memory (ADSM) for heterogeneous computing architectures.

ADSM allows CPUs direct access to objects in GPU physical memory but not vice-versa [38]. This

improves programmability at low hardware cost, but falls short of supporting a complete virtual

memory abstraction on the GPU.

135

Classical Recovery for Fault Tolerance

Substantial prior work has explored recovery specifically in the context of fault tolerance and Sorin

provides a complete treatment of fault recovery solutions [96]. He describes two primary approaches

to error recovery: backward error recovery (BER) and forward error recovery (FER). Examples of each

that are notable with respect to idempotence are considered below.

While idempotence-based recovery is itself a BER technique, it is distinct from other mechanisms

primarily in that it does not involve any restorative action (e.g. restoring a checkpoint). It also

notably is software based and has a small sphere of recoverability, which is relatively unique: other

software approaches have larger spheres of recoverability [64, 81, 106] which comes at a substantial

cost to performance, while hardware approaches have both large [83, 75, 97] and small [10, 43, 85]

spheres of recoverability. Among hardware approaches, ReVive I/O is particularly notable for its

use of idempotence to recover certain I/O operations efficiently. One challenge with hardware

approaches in the fault-recovery context, however, is that large hardware checkpointing structures

may not be feasible when dealing with highly error-prone environments where the checkpoints

themselves cannot be made relatively immune to faults. For this reason, the fine-grained software

recovery enabled by idempotence may be a good fit for a possible future with high fault rate systems.

On the FER side, the main competing approach is triple-modular redundancy (TMR). However,

even TMR is not commonly employed since it can entail substantial overheads. The most noteworthy

application of TMR for fault recovery is Chang et al.’s compiler work on transient fault recovery

at the granularity of single instructions using TMR on top of DMR [21]. Chang et al. also explore

two partial recovery techniques in addition to TMR. However, for full recovery functionality, the

overheads remain effectively the same as TMR, and this dissertation’s results show that idempotence-

based recovery typically has better performance than TMR.

7.3 Summary and Conclusions

Compared to prior work on idempotence, the work of this dissertation is unique in many respects: it

develops a compiler analysis to uncover the minimal set of semantically idempotent regions across

entire programs, it uniquely describes both the algorithmic and implementation challenges and

136

techniques for compiling these regions, and explores how the regions can be used to recover from

several different types of execution failures considering a range of architecture designs.

137

8 Conclusions and Future Work

The aim of this dissertation was to explore the concept of idempotence as it applies to computer

architecture, and to evaluate its opportunity as a recovery tool in compiler and architecture design.

The work arose from the observation, first articulated in the author’s work on Relax [27], that

checkpoint-based recovery approaches are often overly aggressive, particularly in the context of

emerging media-intensive applications, and that re-execution is often a simple and effective means

of recovery given the right application behavior. The subsequent follow-on work, presented in

this dissertation, identified how applications could be fully and automatically decomposed into

safely re-executable (idempotent) regions, and that this decomposition had applications in GPU

exception recovery, CPU design simplification, and hardware fault recovery. This chapter reviews

the technical contributions of the dissertation, presents possible directions for future work, and

offers some final, concluding remarks.

8.1 Summary of Contributions

This dissertation is the first comprehensive study of idempotence in the computer architecture space,

its applications therein, and the role of the compiler in potentially identifying and constructing

idempotent regions for architecture consumption. Contributions are established in three broad

areas:

Idempotence in Computer Architecture: We examined a spectrum of idempotence interpretations

(“models”), formulated a taxonomy, performed an empirical workload analysis, and identi-

fied two important and practical idempotence interpretations that were further developed,

explored, and evaluated.

138

Compiler Design: We detailed a complete end-to-end compiler design and implementation for the

automated formation and code generation of idempotent regions. We developed techniques

to uncover the coarsest semantically idempotent regions and to balance a range of design

trade-offs in the compilation of idempotent regions.

Architecture Design: We identified and explored in detail the opportunity to apply idempotence

to achieve general exception support and efficient context switching on GPUs, simplified pro-

cessor pipeline design in CPUs, and hardware fault recovery support in emerging architecture

designs.

All proposed techniques were evaluated with experimental studies across a diverse suite of

benchmark applications. These experimental studies demonstrated the applicability and effective-

ness of the proposed techniques, both generally, and in considering specific application domains.

8.2 Future Work

The work presented in this thesis is complete in that it has exhaustively explored the opportunity

to use compiler static intra-procedural analysis and code generation techniques for recovery using

pure idempotence. However, the work opens up several interesting avenues for future work in

the areas of inter-procedural, dynamic, or hybrid idempotence-checkpointing techniques. Below,

Section 8.2.1 considers future work in using inter-procedural and dynamic analysis techniques to

enlarging regions and reduce runtime overheads, and Section 8.2.2 considers the opportunity of

hybrid checkpointing-idempotence techniques.

8.2.1 Enlarging Regions to Reduce Pressure and Stall Latencies

Enlarging idempotent region sizes has the potential to reduce the register pressure and detection

stall latency overheads identified in Chapter 4. Below, two specific means for achieving larger regions

are discussed: augmenting the static analysis with interprocedural information, and compiling

with optimistic aliasing assumptions.

139

Interprocedural Analysis, Dynamic Analysis. and Language-Level Constructs

While this dissertation showed that idempotent regions can be large, limited program knowledge

sometimes inhibits region sizes unnecessarily. However, there are opportunities to mitigate this

problem. First, as shown in previous work by the author (in material not covered in this dissertation),

allowing idempotent regions to cross function call boundaries potentially yields region sizes that

are larger by a factor of 10 (geometric mean exclusing outliers yielded a factor of 4) [29]. While

extending the static analysis of Chapter 3 across procedure call boundaries (beyond run-of-the-mill

inlining) is likely to be computationally prohibitive, a simple top-down preliminary interprocedural

analysis that identifies whether functions that are wholly idempotent, and annotates them as such,

is relatively cheap and can help a great deal. Additionally, incorporating a dynamic analysis that

tracks common-case behavior and performs adaptive recompilation, or programmer annotations

that effectively say “this function’s execution is behaviorally idempotent”, can also help.

With inter-procedural analysis capability and the capability to save the stack pointer value

along with the program counter, recovering back “up” the program stack is always safe since,

in the process of resetting the stack pointer, all local variables below the stack pointer will nec-

essarily be regenerated. (Recovering “down” the program stack is unsafe due to the possible

occurrence of intervening function calls that can clobber the call stack, and hence this behavior

remains undefined.) In this manner, better aliasing information (either dynamically informed or

programmer directed) and/or the use of more declarative programming styles that allow effective

inter-procedural optimization may allow the construction of much larger idempotent regions.

Compiling with Optimistic Aliasing Assumptions

As described in Chapter 5 (Section 5.2), the reduced size of the compiler-generated regions compared

to the Pin-measured ideal regions is primarily due to conservative memory aliasing assumptions

in the compiler; if the load and store of a memory clobber antidependence may potentially alias,

the compiler conservatively assumes they do alias, and does not allow a region to contain the

antidependence. The accompanying discussion proposes and evaluates the results of applying more

sophisticated alias analysis and/or source code annotations to assist the compiler in confirming no-

140

alias relationships. However, such alias analysis and source annotations are not always a practical.

Not only can they substantially increase compile-time and/or excessively burden the programmer,

but there are cases where it is impossible to determine with 100% accuracy that two memory

locations never alias under all circumstances.

With hardware support, the compiler could make optimistic aliasing assumptions instead of

conservative ones. Leveraging existing memory disambiguation hardware support, the compiler

could construct two versions of an optimistically idempotent region—one version with the single

region constructed assuming no aliasing, and the other version with multiple regions assuming

potential aliasing. At the head of the optimistic region, the compiler encodes for the hardware the

address of the conservative code version. The hardware then checks for load-to-store aliasing for

memory operations inside the region and then, if such aliasing exists, redirects the program to the

conservative code region. Assuming the likelihood that potentially aliasing memory operations

actually alias is very low, this optimization will allow noticeable increases in constructed region

sizes, which is likely to reduce runtime overheads as a result.

8.2.2 Hybrid Checkpointing-Idempotence Techniques

Hybrid checkpointing techniques combining both idempotence with buffering/checkpointing

have the potential to perform more efficiently than either pure buffering/checkpointing or pure

idempotence alone. Such hybrid techniques can be employed either statically, dynamically, or

through some combination of the two.

Static Hybrid Checkpointing with K-Idempotence

Let k-idempotence be the property that a region overwrites no more than k inputs. This dissertation

has described how to identify 0-idempotent regions. We can generalize the techniques of Chapter 3

for k-idempotent regions by cutting antidependences such that no region contains more than k

clobber antidependences.

At first glance, k-idempotence appears a sensible and attractive extension of this work. Indeed,

Pin-based experiments (results omitted) suggest that each incrememntal value of k should in

141

principle allow a steady and noticable increase in average region size. However, when considering

k-idempotence it is important to distinguish between statically and dynamically occurring clobber

antidependences. For k = 0, this distinction is not important since no static clobber antidependences

implies no dynamic ones as well. However for k > 0, the k value specifically pertains to the number

of dynamic clobber antidependences. Unfortunately, initial results suggest that determining the

number of dynamic occurrences of each static antidependence in a program is hard; in most cases

the number of dynamic occurrences is unknown.

To overcome the lack of dynamic information, techniques such as loop unrolling, loop block-

ing, loop interchange, etc. can help. For example, ordinarily with k-idempotence a potentially

unbounded loop containing a clobber antidependence must be cut at least once. However, utiliz-

ing loop unrolling, for instance, to unroll the loop k times, a region boundary needs to appear

in only one unrolled iteration of the loop1. Then, instead of crossing a region boundary at each

loop iteration, execution only crosses at each kth loop iteration. These and other ideas relating to

k-idempotence are interesting for exploration in future work.

Dynamic Hybrid Checkpointing with Buffering or Logging

For the reasons given above, bounding the value of k in k-idempotence is pragmatically challenging

while the transformations required to usefully exploit it may be overly invasive to the standard

compiler code generation and optimization flow. Hence, a perhaps preferable alternative is to

augment idempotence with selective dynamic checkpointing capability; when semantic idempotent

regions are small, performance overheads can be high, and allowing almost-idempotent regions

in combination with some dynamic checkpointing can improve overall efficiency. As an example,

using software checkpointing to log the address and old value of an antidependent memory location

can allow an otherwise idempotent region to perhaps span a loop, potentially alleviating register

pressure overheads enough to generate an overall performance gain.

It is possible, however, that even such partial idempotence techniques—even with hardware

support—are likely to remain unsuitable in a number of cases. For fine-grained recovery from out-

of-order execution, for instance, the standard register renaming and re-order buffer approaches of
1Although a second boundary is probably still also needed for the reasons given in Section 3.3.2.

142

modern out-of-order processors are efficient and are synergistic with out-of-order issue techniques.

Even among high-performance in-order processors, these techniques work fairly well, and register

renaming is a fairly standard and low-overhead technique for these processor designs [14, 39, 44].

While idempotence information could allow some efficiency improvements in in-order designs

beyond those demonstrated in Section 6.2, e.g. by informing the processor when saving of an

overwritten register is unnecessary because its value is dead, the overall benefit remains unclear

considering the ISA modifications required. Nevertheless, this topic remains a largely unexplored

area with ample opportunity for deeper exploration and research work.

8.3 Reflections

This dissertation has demonstrated idempotence as a powerful recovery primitive with key applica-

tions specifically in the field of computer architecture. Through the exercise of compiler design

and implementation, and through the various empirical analyses presented in this dissertation,

we have also made several observations and insights, on which we now take the opportunity to

reflect. For those who might wish to follow in our footsteps, such reflections may be among the

most valuable contributions of this work.

Fitting a Square Peg into a Round Hole

Following our work on Relax, it seemed obvious that the restartability property afforded by idem-

potence could be applied across whole programs, and could also be applied in a variety of domains

beyond simply fault recovery. It was, however, not obvious what those domains were, and in many

ways it felt as though we had a solution that, despite its inherent conceptual interest, remained in

search of a relevant problem.

One early idea was to apply idempotence to assist recovery in out-of-order issue processors.

However, from the very beginning there were doubts. First, recovery from out-of-order issue was

a very old problem that many intelligent and far more experienced people had worked on for

many, many years. The notion of supplementing out-of-order issue with software support was

moreover not new, and had been previously explored in depth, particularly in VLIW and binary

143

translation contexts. Indeed, Transmeta, Dynamo, and Daisy, among others, all implemented

various sophisticated hardware/software co-designed techniques to achieve efficient out-of-order

execution and recovery [13, 30, 32, 40].

Beyond this obstacle, there were many practical complications as well. We knew intuitively

that idempotent regions had to be quite large to keep the compiler-induced run-time overheads

low. However, large regions were not always possible, we knew, and even if they were, there was

the inescapable truth that large regions forced high re-execution costs. As such, in recovery from

frequent mis-speculations such as branch mis-predictions, it seemed that most of the execution

time would be spent re-executing. For the case of branch mis-prediction, however, the hope was

that by placing idempotent regions next to mispredicted branches the re-execution penalty could

be nullified. It turns out, though, that the act of doing so aggravates register pressure effects due

to control divergence (see Section 5.3), and while opportunity to reduce these effects may exist

through dynamic analysis and selective checkpointing techniques, these techniques seemingly

complicate an otherwise fairly straight-forward compilation flow. In the end, it is not at all clear that

these techniques would allow idempotence to compete with hardware renaming-based techniques

that are generally efficient, operate seamlessly underneath the ISA, and moreover already assist in

dynamically resolving data dependences to enable out-of-order issue.

From there, there was some conjecture that we could use idempotence to enable fundamentally

new speculative hardware mechanisms of the variety that optimize for common-case conditions,

but may fail under worst-case conditions. However, existing out-of-order architectures—which

effectively had equivalent (or better) levels of recovery support—did not already do this. So while

in principle we could claim to decouple detection from recovery support, in practice there was

nothing we could provide that couldn’t already be handled by raising some sort of exception signal

in combination with existing recovery support in out-of-order issue processors. One promising

idea we had was that idempotence could freely enable speculative memory re-ordering coupled

with hardware memory disambiguation support using re-execution for recovery. It was not one

of these fundamentally new mechanisms, but hiding memory latencies remained an important

problem even for simpler architectures. However, that idea, in turned out, was already two decades

old [37, 66].

144

The Elusive Square Hole

It was evident then, fairly early on, that this concept of idempotence was likely to be valuable

only for relatively simple architectures that could not afford extensive buffering or checkpointing

support. Embedded systems seemed like a great target, but the benefit would have been hard

to quantify since the simplification would be at the circuit level (relaxed signaling constraints to

reduce power and improve timing) rather at the microarchitecture level. Not only would circuit

level simplifications be a hard sell for the architecture community, but we were ill equiped (and I

personally was entirely unmotivated) to take on the implementation and evaluation effort.

Our MICRO 2011 paper was thus a gamble, eschewing a detailed power and circuit-level

evaluation and instead appealing to intuition by illustrating high-level inefficiencies specifically in

high-performance in-order architectures. Without a detailed hardware prototype, however, the

work remains inconclusive, and I personally remain unconvinced one way or the other, but the

potential for the idea was thus demonstrated. The key challenge that remains is that idempotent

region sizes in conventional workloads remain small, and these small sizes result in high register

pressure overheads (recall the 60% number from Section 5.4). In the end, the key advantage of

idempotence is not in how it simplifies the preservation of register state (after all, increasing the

number of general purpose registers by 60% to achieve comparable performance—to the extent that

that is even possible—is a daunting proposition), but rather in how it simplifies the preservation of

memory state by allowing such state to be freely overwritten without preservation. And the larger

the idempotent regions, the greater the savings due to this particular aspect. Assuming recovery

is infrequent, architectures designed with idempotence in mind thus might benefit most from

large idempotent regions, and thus would work best running programs written only in functional,

mostly functional [60], domain-specific [107], or other high-level or declarative language styles,

since straight C/C++ evidently imposes difficulties.

This of course is what led to the ISCA 2012 paper on applying idempotence to CUDA programs

on GPUs. In retrospect, it was perhaps obvious that GPUs were an excellent candidate, since

they can be very complex in their non-sequential nature, and tracking the microarchitectural state

associated with this complexity to support page faults, even without the need to support backward

145

compatibility in the physical ISA, is difficult for a multitude of reasons. On top of this, we were

able to identify a secondary advantage of idempotence in enabling context switching GPU program

state with relatively very low overhead. The excellent fit of GPU demand-paged virtual memory

can thus be attributed to it meeting the three efficiency requirements for idempotence perfectly;

namely that, (1) the type of execution failure (page fault) is infrequent, (2) GPU programs have

inherently large regions of code that are idempotent, and (3) detection latencies may be large or

difficult to bound, but large detection latencies are easily tolerated with large regions.

8.4 Closing Remarks

During the second half of the 20th century, computer architects primarily focused on the single

objective of improving single-thread single-chip performance, and decade after decade they suc-

ceeded in continually furthering this objective. However, today the computing landscape and the

constraints driving computer architecture research are vastly different from even just ten years ago.

Performance is no longer the primary driver of computer architecture research. Instead, power and

energy are primary design constraints, the shadow of fundamentally unreliable hardware is ever-

looming, and, with the emergence of mainstream parallel hardware, usability and programmability

are once again important fundamental challenges.

Given this modern context, idempotence is a conceptually powerful tool with many prevailing

qualities. In the context of energy efficiency, idempotence can enable fundamentally simpler

and more energy efficient processor designs. Additionally, it provides a powerful primitive for

supporting fault tolerance and unreliablility, and it can further the usability of massively parallel

hardware by enabling key programmer abstractions such as virtual memory. In this dissertation,

each of these applications was demonstrated, with a focus on the compiler support to transparently

enable them. Although the future is never easy to predict, it is our hope that this work will inspire

new insights, motivate future researchers, and enable continued innovation in computer architecture

into the rest of the 21st century and beyond.

146

A Code Generator Specifics

This chapter discusses compiler implementation specifics in compiling loops from SSA to machine

code (Section A.1), supporting large structures and arrays (Section A.2), supporting architecture-

specific calling conventions (Section A.3), and statically verifying code generation output (Sec-

tion A.4). Additional details on each of these aspects, and others, are available in the publicly-

released source-code compiler documentation [2].

A.1 Out-of-SSA Translation and Back-Edge Clobbers

The application of static single assignment (SSA) form in the static analysis of Chapter 3 eliminated

all antidependences and output dependences on pseudoregister locations except for those that

appear across loop iterations. In Section 3.3.2, loops were cut to enable the clobber dependences

that could subsequently still arise to be removed. However, these clobber dependences were not

actually removed at that time; the capability was merely provided. In transitioning out of SSA

in preparation for register and stack allocation—a process commonly referred to as out-of-SSA

translation—the code generator must remove this final source of clobber dependences to set the

necessary invariant in place.

The problem that needs to be solved we refer to as the “back-edge clobber” problem, and it is

illustrated using an example in Figure A.1. While a minimum of two boundary crossings exist for

all paths through the loop body, as is required, a clobber dependence on variable x still exists—the

assignment to x at the head of the loop clobbers the use of x in the region that crosses the back-edge

of the loop. In the pre-allocation phase of the code generator, we insert copies to avoid this. In

the case of Figure A.1, we insert a copy from pseudoregister x to a newly-allocated pseudoregister

147

Figure A.1: The “back-edge clobber” problem in out-of-SSA translation.

x’ before the back-edge region of the loop, and then replace all uses (only the uses) of x in this

back-edge region with x’. The solution specific to this example is fairly straightforward. However, a

general solution to this problem requires a complex algorithm. In our implementation, we employ

an iterative algorithm that converges on a stable solution [2].

We note that migrating the assignment of z before the back-edge region boundary can avoid

the need to insert a copy. The general case where this opportunity most often arises is much more

complex than in Figure A.1, however. Hence, for simplicity, we do not implement or otherwise

explore this optimization as it is not required for correctness.

A.2 Scalar Replacement of Aggregates

After SSA, the second transformation applied in Chapter 3 showed how non-clobber antidepen-

dences (write-read-write patterns) on non-local memory could be eliminated by using local storage

to hold the result of the first write and replacing the read to use the local storage. This technique

can be impractical, however, particularly for a large or unknown number of initial writes (as in e.g.

array initialization), since it effectively requires duplicating the non-local memory storage on the

local stack. In addition to stack memory often being bounded, the state duplication can reduce

cache locality and hurt performance.

To support writes to such large or potentially unbounded structures efficiently, our compiler

implementation does not duplicate large aggregate structures or arrays in local memory, and hence

the static analysis conservatively cuts the potentially non-clobber antidependences that they create

on the assumption that their occurrence is rare. For most benchmarks, they are indeed rare, with

148

any additional cuts that they would require masked by inter-procedural effects. Augmented with

inter-procedural analysis capability, however, it would be beneficial to incorporate this aspect into

the static analysis algorithm. One possible solution is presented in the static analysis evaluation of

Section 5.2.

A.3 Support for Calling Conventions and Condition Codes

For most purposes, function calls and returns are non-idempotent since they minimally read-modify-

write the stack pointer register. To allow these read-modify-write patterns, we assume that stack

pointer register updates are operations that either complete successfully and start a new idempotent

region, or fail with no side-effects (see Commit sequencing from Chapter 2). Additionally, the

preservation of callee-saved registers at call return sites creates further complexities that are further

documented elsewhere [2].

Finally, with respect to condition code registers (e.g. x86 EFLAGS), we make the simplifying

assumption that condition code register state is saved and restored prior to re-execution using

idempotence. This is because the architecture-specific information necessary to place boundaries

to avoid clobber dependences over condition code registers is not available at the LLVM IR level.

While this information could be incorporated, it was not done in this work.

A.4 Static Output Verification

The idempotence property can be statically verified in the compiler during code generation. Under

contextual idempotence, the simple invariant that must be maintained is that a storage resource

live at the start of an idempotent region must not be overwritten anywhere inside that region. The

constraint for architectural idempotence is more complex, however. Here, a live storage resource

may not be overwritten at some point only if it might have been used before that point (i.e. it

was dynamically live on entry). We employ an iterative data-flow analysis to determine the latter

condition and check that no such storage resources are overwritten. Hence, we are able to statically

verify both architectural and contextual idempotence at each step in the code generation process [2].

149

Bibliography

[1] DragonEgg - Using LLVM as a GCC backend. http://dragonegg.llvm.org.

[2] iCompiler - LLVM Code Generation of Idempotent Regions.
http://research.cs.wisc.edu/vertical/iCompiler.

[3] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–58, 2008.

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison Wesley, 2nd edition, 2007.

[5] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint processing and recovery: Towards
scalable large instruction window processors. In Proceedings of the 36th Annual International
Symposium on Microarchitecture, MICRO ’03.

[6] AMD. Evolution of AMD Graphics. http://developer.amd.com/afds/assets/keynotes/6-
Demers-FINAL.pdf.

[7] AMD. Memory System on Fusion APUs. http://goo.gl/r72cp.

[8] AMD. AMD Accelerated Parallel Processing OpenCL Programming Guide, Rev. 1.3f. 2011.

[9] ARM. Cortex-A8 Technical Reference Manual, Rev. r2p1.

[10] T. Austin. DIVA: A Reliable Substrate for Deep Submicron MicroarchitectureDesign. In
Proceedings of the 32nd Annual International Symposium on Microarchitecture, MICRO ’99.

[11] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz. Energy-performance tradeoffs in
processor architecture and circuit design: a marginal cost analysis. In Proceedings of the 37th
Annual International Symposium on Computer Architecture, ISCA ’10.

[12] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing CUDA workloads using
a detailed GPU simulator. In Proceedings of the IEEE International Symposium on Performance
Analysis (ISPASS), ISPASS ’09.

[13] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization
system. In Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’00.

[14] M. Baron. Cortex-A8: High speed, low power. Microprocessor Report, 2005.

BIBLIOGRAPHY 150

[15] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast mutual exclusion for uniprocessors. In Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’92.

[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT), PACT ’08, pages 72–81.

[17] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt. The M5
simulator: Modeling networked systems. IEEE Micro, 26:52–60, July 2006.

[18] E. Borch, S. Manne, J. Emer, and E. Tune. Loose loops sink chips. In Proceedings of the
International Symposium on High-Performance Computer Architecture.

[19] S. Borkar. Designing reliable systems from unreliable components: the challenges of transistor
variability and degradation. Micro, IEEE, 25(6):10–16, 2005.

[20] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The yin and yang of power and
performance for asymmetric hardware and managed software. In Proceedings of the 39th
Annual International Symposium on Computer Architecture, ISCA ’12.

[21] J. Chang, G. A. Reis, and D. I. August. Automatic instruction-level software-only recovery. In
International Conference on Dependable Systems and Networks, DSN ’06, pages 83–92.

[22] E. F. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387, June 1970.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, 2nd edition, 2001.

[24] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-order commit processors. In Proceedings
of The International Symposium on High-Performance Computer Architecture, HPCA ’04.

[25] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient method of
computing static single assignment form. In Proceedings of the 16th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’89.

[26] S. Das. Loop Dependence Analysis Patch for LLVM. https://github.com/sanjoy/llvm/tree/lda.

[27] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architectural framework for
software recovery of hardware faults. In ISCA ’10.

[28] M. de Kruijf and K. Sankaralingam. Idempotent processor architecture. In Proceedings of the
44th annual ACM/IEEE international symposium on Microarchitecture, MICRO ’11.

[29] M. de Kruijf, K. Sankaralingam, and S. Jha. Static analysis and compiler implementation for
idempotent processing. In Proceedings of the 2012 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12.

BIBLIOGRAPHY 151

[30] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, and J. Mattson. The
Transmeta code morphing software: Using speculation, recovery, and adaptive retranslation
to address real-life challenges. In International ACM/IEEE Symposium on Code Generation and
Optimization, CGO ’03.

[31] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot: A dynamic compiler for bulk-
synchronous applications in heterogeneous systems. In Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), PACT ’10.

[32] K. Ebcioğlu and E. R. Altman. Daisy: dynamic compilation for 100% architectural compatibil-
ity. In Proceedings of the 24th Annual International Symposium on Computer Architecture, ISCA
’97.

[33] J. H. Edmondson, P. Rubinfeld, R. Preston, and V. Rajagopalan. Superscalar instruction
execution in the 21164 alpha microprocessor. IEEE Micro, 15(2):33–43, 1995.

[34] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T. Juan, G. Lowney,
M. thew Mattina, and A. Seznec. Tarantula: A Vector Extension to the Alpha Architecture. In
Proceedings of The 29th International Symposium on Computer Architecture, pages 281–292, May
2002.

[35] R. Espasa, M. Valero, and J. E. Smith. Out-of-order vector architectures. In Proceedings of the
30th annual ACM/IEEE international symposium on Microarchitecture, MICRO ’97.

[36] S. Feng, S. Gupta, A. Ansari, S. Mahlke, and D. August. Encore: Low-cost, fine-grained
transient fault recovery. In Proceedings of the 44th annual ACM/IEEE international symposium
on Microarchitecture, MICRO ’11.

[37] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W.-m. W. Hwu. Dynamic
memory disambiguation using the memory conflict buffer. In International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’94, pages
183–193.

[38] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-m. W. Hwu. An asymmet-
ric distributed shared memory model for heterogeneous parallel systems. In International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’10.

[39] A. González, F. Latorre, and G. Magklis. Processor Microarchitecture: An Implementation Per-
spective. Morgan & Claypool, 2010.

[40] M. Gschwind and E. R. Altman. Precise exception semantics in dynamic compilation. In
Proceedings of the 11th International Conference on Compiler Construction, CC ’02, pages 95–110.

[41] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki. Synergistic
processing in Cell’s multicore architecture. IEEE Micro, 26(2):10–24, 2006.

[42] J. Guo, F. HÃ¼ffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complexity and exact
algorithms for vertex multicut in interval and bounded treewidth graphs. European Journal of
Operational Research, 186(2):542–553, 2008.

BIBLIOGRAPHY 152

[43] M. Gupta, K. Rangan, M. Smith, G.-Y. Wei, and D. Brooks. Decor: A delayed commit and roll-
back mechanism for handling inductive noise in processors. In Proceedings of the International
Symposium on High-Performance Computer Architecture, HPCA ’08.

[44] T. R. Halfill. Intel’s tiny Atom. Microprocessor Report, April 2008.

[45] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding sources of inefficiency in general-purpose
chips. In Proceedings of the Annual Symposium on Computer Architecture, ISCA ’10.

[46] M. Hampton. Reducing Exception Management Overhead with Software Restart Markers. PhD
thesis, Massachusetts Institute of Technology, 2008.

[47] M. Hampton and K. Asanović. Implementing virtual memory in a vector processor with
software restart markers. In Proceedings of the 20th annual international conference on Supercom-
puting, ICS ’06.

[48] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory. Morgan & Claypool, 2nd edition,
2010.

[49] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers, Inc., 5th edition, 2011.

[50] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The microar-
chitecture of the pentium 4 processor. Intel Technology Journal, February 2001.

[51] T. Horel and G. Lauterbach. UltraSPARC-III: designing third-generation 64-bit performance.
Micro, IEEE, 19(3):73 –85, May/Jun 1999.

[52] W. W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order execution machines. In
Proceedings of the Annual Symposium on Computer Architecture, ISCA ’87, pages 18–26.

[53] IBM. SPU Instruction Set Architecture, Rev. 1.2. 2007.

[54] id. id tech 5 challenges: From texture virtualization to massive parallelization. In SIGGRAPH
’09.

[55] Intel. Itanium Architecture Software Developer’s Manual Rev. 2.3.
http://www.intel.com/design/itanium/manuals/iiasdmanual.htm.

[56] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual. 2011.

[57] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Introduction
to the Cell multiprocessor. IBM Journal of Research and Development, 49(4/5), September 2005.

[58] R. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24–36, March/April 1999.

[59] S. W. Kim, C.-L. Ooi, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar. Exploiting reference
idempotency to reduce speculative storage overflow. ACM Trans. Program. Lang. Syst., 28:942–
965, September 2006.

BIBLIOGRAPHY 153

[60] T. Knight. An architecture for mostly functional languages. In Proceedings of the 1986 ACM
conference on LISP and functional programming, LFP ’86, pages 105–112.

[61] C. Kozyrakis and D. Patterson. Overcoming the limitations of conventional vector processors.
In Proceedings of the Annual Symposium on Computer Architecture, ISCA ’03.

[62] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis &
transformation. In International ACM/IEEE Symposium on Code Generation and Optimization,
CGO ’04, pages 75–88.

[63] C.-C. J. Li, S.-K. Chen, W. K. Fuchs, and W.-M. W. Hwu. Compiler-based multiple instruction
retry. IEEE Transactions on Computers, 44(1):35–46, 1995.

[64] C.-C. J. Li and W. K. Fuchs. CATCH – Compiler-assisted techniques for checkpointing. In
Proceedings of the 20th Symposium on Fault-Tolerant Computing (FTCS-20), FTCS ’90, pages 74
–81.

[65] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program analysis tools with dynamic instrumen-
tation. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pages 190–200.

[66] S. A. Mahlke, W. Y. Chen, W.-m. W. Hwu, B. R. Rau, and M. S. Schlansker. Sentinel scheduling
for VLIW and superscalar processors. In International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’92, pages 238–247.

[67] J. Martinez, J. Renau, M. Huang, and M. Prvulovic. Cherry: Checkpointed early resource recy-
cling in out-of-order microprocessors. In Proceedings of the 35th annual ACM/IEEE international
symposium on Microarchitecture, MICRO ’02.

[68] A. Meixner, M. E. Bauer, and D. J. Sorin. Argus: Low-cost comprehensive error detection in
simple cores. IEEE Micro, 28(1):52–59, 2008.

[69] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivision for integrated branch and
memory divergence tolerance. In Proceedings of the 37th Annual International Symposium on
Computer Architecture, ISCA ’10.

[70] J. Menon, M. de Kruijf, and K. Sankaralingam. iGPU: exception support and speculative
execution on GPUs. In Proceedings of the 39th Annual International Symposium on Computer
Architecture, ISCA ’12.

[71] S. P. Midkiff. Automatic Parallelization: An Overview of Fundamental Compiler Techniques. Mor-
gan & Claypool, 2012.

[72] Motorola. M68000 Family Programmer’s Reference Manual.
http://www.freescale.com/files/archives/doc/ref_manual/M68000PRM.pdf.

[73] M. Moudgill, K. Pingali, and S. Vassiliadis. Register renaming and dynamic speculation: an
alternative approach. In Proceedings of the 26th annual ACM/IEEE international symposium on
Microarchitecture, MICRO ’93.

BIBLIOGRAPHY 154

[74] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed design and evaluation of redundant
multi-threading alternatives. In ISCA ’02, pages 99–110.

[75] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas. Revivei/o: Efficient handling of
i/o in highlyavailable rollback-recovery servers. In HPCA ’06, pages 203–214.

[76] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt. Improving
gpu performance via large warps and two-level warp scheduling. In Proceedings of the 44th
annual ACM/IEEE international symposium on Microarchitecture, MICRO ’11, pages 308–317.

[77] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, Ver. 1.1. 2009.

[78] N. Oh, P. Shirvani, and E. McCluskey. Error detection by duplicated instructions in super-
scalar processors. Reliability, IEEE Transactions on, 51(1):63 –75, March 2002.

[79] A. Padegs, B. Moore, R. Smith, and W. Buchholz. The IBM System/370 vector architecture:
design considerations. Computers, IEEE Transactions on, 37(5):509–520, May 1988.

[80] D. Papworth. Tuning the pentium pro microarchitecture. Micro, IEEE, 16(2):8 –15, Apr. 1996.

[81] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE Trans. on Parallel and
Distributed Systems, 9(10):972–986, 1998.

[82] A. R. Pleszkun, J. R. Goodman, W. C. Hsu, R. T. Joersz, G. Bier, P. Woest, and P. B. Schechter.
Wisq: a restartable architecture using queues. In Proceedings of the Annual Symposium on
Computer Architecture, ISCA ’87, pages 290–299.

[83] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-effective architectural support for
rollback recovery in shared-memory multiprocessors. In ISCA ’02, pages 111–122.

[84] R. Rajwar and J. R. Goodman. Speculative lock elision: enabling highly concurrent multi-
threaded execution. In Proceedings of the 34th annual ACM/IEEE international symposium on
Microarchitecture, MICRO ’01, pages 294–305.

[85] J. Ray, J. Hoe, and B. Falsafi. Dual use of superscalar datapath for transient-fault detection
and recovery. In Proceedings of the 34th annual ACM/IEEE international symposium on Microar-
chitecture, MICRO ’01.

[86] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August. Swift: software implemented
fault tolerance. In International ACM/IEEE Symposium on Code Generation and Optimization,
CGO ’05.

[87] K. W. Rudd. Efficient exception handling techniques for high-performance processor archi-
tectures. Departments of Electrical Engineering and Computer Science, Stanford University,
Technical Report CSL-TR-97-732, August 1997.

[88] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation or
the sun network filesystem, 1985.

[89] A. Saulsbury and D. Rice. Microprocessor with reduced context switching and overhead and
corresponding method. United States Patent 6,314,510, November 2001.

BIBLIOGRAPHY 155

[90] O. Shivers, J. W. Clark, and R. McGrath. Atomic heap transactions and fine-grain interrupts.
In Proceedings of the International Conference on Functional Programming, ICFP ’99.

[91] T. J. Slegel et al. IBM’s S/390 G5 microprocessor design. IEEE Micro, 19(2):12–23, 1999.

[92] J. E. Smith. A study of branch prediction strategies. In Proceedings of the 8th annual symposium
on Computer Architecture, ISCA ’81, pages 135–148, 1981.

[93] J. E. Smith and A. R. Pleszkun. Implementing precise interrupts in pipelined processors.
IEEE Transactions on Computers, 37:562–573, May 1988.

[94] J. S. Snyder, D. B. Whalley, and T. P. Baker. Fast context switches: Compiler and architectural
support for preemptive scheduling. Microprocessors and Microsystems, 19(1):35–42, 1995.

[95] G. S. Sohi and S. Vajapeyam. Instruction issue logic for high-performance, interruptable
pipelined processors. In Proceedings of the Annual Symposium on Computer Architecture, ISCA
’87.

[96] D. J. Sorin. Fault Tolerant Computer Architecture. Morgan & Claypool, 2009.

[97] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. SafetyNet: improving the availability
of shared memory multiprocessors with global checkpoint/recovery. In ISCA ’02, pages
123–134.

[98] V. Sridharan, D. A. Liberty, and D. R. Kaeli. A taxonomy to enable error recovery and
correction in software. In Workshop on Quality-Aware Design, 2008.

[99] Standard Performance Evaluation Corporation. SPEC CPU2006, 2006.

[100] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, and L.-W. Chang. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. IMPACT Technical
Report, University of Illinois at Urbana-Champaign IMPACT-12-01, 2012.

[101] H. Torng and M. Day. Interrupt handling for out-of-order execution processors. Computers,
IEEE Transactions on, 42(1), 1993.

[102] H.-W. Tseng and D. Tullsen. Data-triggered threads: Eliminating redundant computation. In
Proceedings of the International Symposium on High-Performance Computer Architecture, HPCA
’11.

[103] J. Turley. ARM launches Cortex-A15. Microprocessor Report, September 2010.

[104] W3C. Hypertext Transfer Protocol – HTTP/1.1. http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[105] C.-J. Wang and F. Emnett. Implementing precise interruptions in pipelined risc processors.
Micro, IEEE, 13(4):36 –43, Aug. 1993.

[106] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala. Checkpointing and its applica-
tions. In FTCS ’95, page 22.

[107] Wikipedia: Domain-specific language, http://en.wikipedia.org/wiki/domain-
specific_language.

BIBLIOGRAPHY 156

[108] K. C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, 16(2):28–40, 1996.

[109] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. In Proceedings of the
24th annual ACM/IEEE international symposium on Microarchitecture, MICRO ’91, pages 51–61.

[110] X. Zhou and P. Petrov. Rapid and low-cost context-switch through embedded processor
customization for real-time and control applications. In Proceedings of the Annual Conference
on Design Automation, DAC ’06.

	Contents
	Abstract
	Introduction
	Contributions
	Summary of Findings
	Organization
	A Note on Experimental Methodology
	Relation to Author's Prior Work

	Idempotence in Computer Architecture
	Idempotence by Example
	Terms, Definitions, and Axioms
	A Taxonomy of Idempotence
	The Control Axis
	The Sequencing Axis
	The Isolation Axis

	Measurement, Analysis, and Synthesis
	Measurement and Analysis: Model Characterization
	Synthesis: Model Selection

	Summary and Conclusions

	Static Analysis of Idempotent Regions
	Static Analysis Overview
	Idempotence Analysis Using Data Dependence Information
	The Partitioning Algorithm

	Program Transformation
	Static Analysis
	Cutting Non-Local Memory Antidependences
	Cutting Self-Dependent Pseudoregister Dependences

	Optimizing for Dynamic Behavior
	Summary and Conclusions

	Code Generation of Idempotent Regions
	Tailoring Idempotent Region Sizes
	Code Generation Strategies

	Idempotence State Preservation
	State Preservation for Contextual Idempotence
	State Preservation for Architectural Idempotence

	Code Generation Examples
	Summary and Conclusions

	Compiler Evaluation
	Experimental Method
	Static Analysis Results
	Code Generation Results
	ISA Sensitivity Results
	Summary and Conclusions

	Architecture Design and Evaluation
	General Exception Support in GPU Architectures
	GPU Background
	GPU Design
	GPU Evaluation

	Out-of-Order Execution in CPU Architectures
	CPU Background
	CPU Design
	CPU Evaluation

	Hardware Fault Recovery in Emerging Architectures
	Fault-Tolerant Design
	Fault-Tolerance Evaluation

	Summary and Conclusions

	Related Work
	Idempotence-Based Recovery
	Classical Recovery
	Summary and Conclusions

	Conclusions and Future Work
	Summary of Contributions
	Future Work
	Enlarging Regions to Reduce Pressure and Stall Latencies
	Hybrid Checkpointing-Idempotence Techniques

	Reflections
	Closing Remarks

	Code Generator Specifics
	Out-of-SSA Translation and Back-Edge Clobbers
	Scalar Replacement of Aggregates
	Support for Calling Conventions and Condition Codes
	Static Output Verification

	Bibliography

