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hardware to understand performance bottlenecks and facilitate expansion of those models

to incorporate microarchitectural changes. Finally, we develop an approach to predict a new

architecture’s performance using data collected on another architecture without developing

code for the second architecture would be even more useful for cases where the second

architecture is not yet available or the programmer overhead to convert code is high. Through

these three approaches, we find new possibilities for modeling in the architectural flexibility
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1 introduction

Trends in microarchitecture, reliability, and devices are forcing computer architecture toward

a cross-roads. This cross-roads necessitates accelerated exploration of new architectural ap-

proaches. As a result, tools to rapidly evaluate new architectural ideas on specific benchmarks

are needed. These tools could serve a variety of roles to aid in the rapid development of new

architectures.

This dissertation considers mechanistic models that fill different use-cases for the rapid

exploration of new architectures. These mechanistic models consider core performance as

complex systems that can be broken into individual components and their interactions. This

flexible approach is applied, through three different mechanistic models, to address several

use-cases throughout this dissertation.

The use-cases for these models are wide-ranging. The ability to see the impact of power,

area, and performance trade-offs as power and area change at different rates would aid in

resource planning for multicores. Accurate processor models validated on real hardware

would allow architects to understand performance bottlenecks and, if straight-forward, ex-

tend those models to incorporate microarchitectural changes. Predicting a new architecture’s

performance using data collected on another architecture without developing code for the

second architecture would be even more useful for cases where the second architecture is not

yet available or the programmer overhead to convert code is high. In this dissertation, we

focus on modeling tools that are tailored to addressing each of the use-cases above.

In this introduction, we discuss the dissertation’s goals, give an overview of the work that

is included in the dissertation, highlight the contributions of the work, and give an overview

of the document’s organization.

1.1 Goals

This dissertation’s goal is to understand the performance implications of new architectures

using analytic models of the architectures with key benchmark characteristics for rapid design

evaluation. It includes three approaches, each geared toward a different use-case, that each

contribute separately toward this goal.

This dissertation develops a set of models that each extend previous work to explore new

domains. We focus on central processing unit (CPU) and graphics processing unit (GPU)
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Figure 1.1: Multicore and core model interaction. Key dissertation contributions are to the
shaded core model. Inputs and outputs are in dotted boxes.

architectures as they are an interesting and challenging use-case, but are also developed

enough that tools are available for us to validate our results. This is not a limitation as

the approaches we develop could be used for other emerging architectures. In addition to

the use-cases discussed for each model, the dissertation includes a running example in each

chapter to compare CPU and GPU performance projected to future technology nodes for

individual benchmarks. This running example demonstrates how each model increases the

realism of the projections.

1.2 Overview

In this section, we give an overview of the multicore model approach used in this dissertation,

highlight that the dissertation’s focus is on the core model component, and discuss the three

different core modeling approaches used in this dissertation.

As part of a running example throughout this dissertation, we consider a modeling frame-

work to predict the fraction of a chip’s area that must go unused due to power constraints

(dark silicon). As shown in Figure 1.1, three key modeling pieces and two sets of inputs

are combined to produce three outputs: the projected multicore speedup, the number and

types of cores, and the fraction of the chip that is dark silicon. The software and hardware

inputs may vary depending on the core model from a very small number (e.g., five workload

characteristics) to a much larger set. The three model components are the core performance

model, chip and topology constraint model, and multicore performance model. The chip

and topology constraint model and the multicore model are primarily modeled with simple

Amdahl’s Law based equations [3, 48] that are discussed briefly in Chapter 2; they are not
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Figure 1.2: S-Core and M -Core Summary.

Definition 1.1 (Cores). A core consists of, at least, one or more execution units,
a register file, a control unit, and a memory unit. We consider two types of cores:
S-Cores and M -Cores.

Definition 1.2 (S-Cores). An S-Core is a single-threaded CPU-like core, with a
general purpose architecture.

Definition 1.3 (M-Cores). A M-Core is a many-threaded GPU-like core, with
hundreds or thousands of threads.

a focus of this work.

We next introduce several terms used throughout this dissertation to describe the model

domain and how each model is evaluated. We consider analytic mechanistic models, which

model complex systems (computer chips, in this dissertation) by considering the components

of the system that impact performance and how those components interact; these effects

are modeled using a set of equations that use system characteristics as inputs. They are

constructed using a detailed knowledge of the systems, and may be refined through empirical

data. In this work, we focus on CPU-like and GPU-like chips. CPU-like chips are multicore

chips with general purpose cores designed for high single-threaded performance. GPU-like

chips are general purpose GPU chips designed for high many-threaded performance. We

define the cores that we consider from each chip in Definitions 1.1- 1.3 and Figure 1.2.
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Figure 1.3: Expected Core Model Trade-offs. Contributions are shown in blue. Quantified
trade-offs are given in Chapter 6.

Definition 1.4 (Architectural Flexibility). Architectural flexibility refers to
the range of multicore architectural features that are captured with a single model.
Architectural flexibility can be either coarse-grained or fine-grained. Coarse-grained
flexibility includes flexibility at the highest level, including S-Core versus M -Core
styles and the chip topology (symmetric, asymmetric, and other heterogeneous
styles). Fine-grained flexibility includes more micro-architectural design features
such as the cache sizes, issue-widths and styles, execution units, and pipeline depth.

Definition 1.5 (Accuracy). Accuracy refers to how close the model’s predicted
performance is to the performance directly measured on hardware. We consider
performance in terms of execution time in ns and execution time speedup over a
baseline (generally, a single-threaded Nehalem or Sandybridge core). Our accuracy
descriptions include both quantitative and qualitative-trend comparisons.

A single M -Core may have multiple processing units that execute in parallel (usually

referred to as streaming processors); an S-Core may also have a SIMD unit that executes

on multiple data elements at once but also will have scalar execution units. S-Cores and

M -Cores may appear on the same chip, and not all S-Cores or M -Cores on a chip need be

identical. The chip design space is designed in more detail in Chapter 2.

Although mechanistic models tend to include only first order effects, the level of detail

and versatility can vary. A key theme in our description of the models in this dissertation

is the trade-off between architectural flexibility and model accuracy. The most beneficial
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Figure 1.4: Core Models Overview. Contributions are shown in shaded boxes.

mechanistic model for a given use-case is dependent on the desired trade-off level. The three

models in this work are placed in context with previous work in terms of these trade-offs

in Figure 1.3. In the figure, the x-axis depicts the relative architectural flexibility and the

y-axis describes the relative accuracy, which are defined below the figure. We revisit the

figure in Chapter 6, where we replace the estimates in Figure 1.3 with measured data from

this work.

1.2.1 Core Models

This dissertation is built off of the rich related work in mechanistic models of both S-Cores

and M -Cores [56, 33, 49, 88]. As shown in Figure 1.4, we have completed three key model

extensions built off of the detailed S-Core and M -Core models in prior work: an Upper-
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Bound Core Model, Customizable Modular Microarchitecture Extensions, and Translation-

Based Architecture Extensions. In the figure, we briefly describe the goals, constraints,

inputs, and use-cases for these three models. Below, we describe these contrasts in more

detail.

The three core models in this dissertation each have a different set of assumptions and

intended uses, and as a result pick a different architectural flexibility and model accuracy

trade-off point. The first core model in this thesis, the upper-bound model in Chapter 3,

focuses on models with high architectural flexibility but low accuracy. The second model

in this thesis, the customizable modular microarchitecture extensions in Chapter 4, focuses

on models with high accuracy but low architectural flexibility. These two models provide

a backdrop for the flexible and accurate models in Chapter 5 which leverage insights from

the previous models. The three approaches highlight trade-offs between model prediction

accuracy and the architectural flexibility, and are discussed in more detail below.

Upper-bound Core Model: The upper bound model is the most abstract model that

we consider; it abstracts away components of the mechanistic model until converging on

a single model that can be used for both S-Cores and M -Cores. The goal is to be able

to move from a simple resource trade-off curve (e.g., power/performance Pareto frontier)

to a per benchmark speedup prediction using only a few real program characteristics. We

assume that we have the resource trade-off function, some knowledge of the architecture

(S-Core or M -Core style and the processor frequency at trade-off function end-points), and

five workload-specific inputs. These workload-specific inputs can be the same for both S-

Cores and M -Cores. We can use this model to predict optimistic results about the speedups

using only minimal information about the cores; this makes the model a perfect fit for dark

silicon projections where we do not have information about the specific processors. The

abstraction brings with it a severe limitation: the microarchitecture is described with a

single performance score, so changes to the microarchitecture cannot be accurately modeled.

The coarse-grain architectural flexibility limits more fine-grained architectural flexibility,

making this approach most useful for upper-bound scalability studies.

Modular Microarchitecture Extensions: The custom modular microarchitectural ex-

tensions allow accurate performance predictions even with small changes to the microar-

chitecture. The goal is to predict a specific workload’s performance on real hardware us-
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ing run-time statistics. We use only real hardware, with performance counter and binary

instrumentation (or emulation, for GPUs). These models allow us to accurately predict

performance for real hardware, can be used to model the impact of small changes to the

architecture, and in the case of dark silicon projections, can be used to predict the future

technology scaled performance of multicores built from cores that lie beyond the Pareto

frontier. The usage of the S-Core and M -Core modular custom models is equivalent to that

of an architectural simulator (e.g., SimpleScalar [16]): they can be used out of the box,

the effort to make architectural changes ranges from minimal for parameterized features to

more extensive for new features, and the knowledge required to implement changes ranges

accordingly. The approach therefore increases the architectural flexibility of mechanistic

models. The models are detailed enough for higher accuracy than the upper-bound model,

and intermediate values in the model provide insights into architectural bottlenecks.

Translation-based Architecture Extensions: Diverse architectures (e.g., CPUs and

GPUs) require different analytic models and different inputs for accurate performance mod-

eling. The translation based architectural extensions return to the upper-bound models’

attempt at a single model for both S-Cores and M -Cores, but, recognizing the significant

differences in S-Core and M -Core architectures, instead only attempts to use a single set of

inputs for both models. Inputs gathered for a CPU are translated to use with a GPU model,

and vice versa. The goal of this approach is to use performance characteristics measured on

one architecture to predict performance on another. The potential users for this approach

includes both architects and programmers. New architectures require significant hardware or

simulator implementation work and heavy programmer involvement to realize performance

benefits, yet the rapid evolution of hardware presents time-sensitive implementation chal-

lenges for both groups. Architects would benefit from early analysis of new designs without

full implementation as well as a way to observe the impact of future technology trends on

current designs. Programmers would benefit from a tool to understand which code to port

and to which architecture. This approach provides all of the flexibility of the custom modular

microarchitectural extensions, with additional flexibility in the overall thread organization.

There is an accuracy cost in the translation process, but it is smaller than the cost in the

upper-bound model.

In this section, we summarized our three models which are described in more detail in

Chapters 3, 4, and 5. In the next section, we describe the contributions of each of these
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models and how they extend our ability to pick between different modeling goals.

1.3 Contributions

This dissertation develops a series of mechanistic performance models to predict chip per-

formance with varying levels of architectural flexibility and model accuracy. The goal is

to produce a high fidelity, cross-architecture performance projection mechanism for current

and emerging cores and benchmarks that does not require programmer involvement. The

contributions of this work are succinctly described by Figure 1.3, which shows how the work

in this dissertation fills several points in the trade-off space between architectural flexibility

and model accuracy which previous models have failed to explore.

Specifically, the dissertation makes the following contributions:

• Distillation of mechanistic models to unified upper-bound models that cover a diverse

architecture space

• General modular approach to architecture-specific mechanistic models

• New mechanistic model modules to accurately predict performance on real hardware

• Identification of architecture-independent qualities of important performance charac-

teristics

• Cross-architecture performance prediction using architecture-independent measurements

and no user intervention

• Application of the three different models to dark silicon projections to improve under-

standing of future technology challenges

The goal of this work is to expand the tool-set available to architects for rapid exploration

of new ideas. Early computer architects used analytic mechanistic models to quantify a

wide range of architectural design problems at a time when full system simulation was

difficult. Today, with the increasing complexity of both hardware and software, we expect a

renaissance in the utility of analytic mechanistic modeling as a tool for computer architects.

The models in this disseration are a step toward adding analytic mechanistic modeling tools

back into the architect’s performance evaluation tool-set.
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1.4 Summary of Findings

The evaluation in this thesis has two components: model accuracy for each set of models,

and the empirical results from related case studies.

• Upper-Bound General Model:

– Over a subset of the PARSEC benchmark suite, the average speedup predicted

using the upper-bound general model is within 10% of the measured speedup for

two S-Core chips in two configurations each.

– Over a subset of the benchmarks included with GPGPUSim, the average error

in the speedup predicted using the upper-bound general model is less than 42%

with between one and 120 M -Cores as compared to simulated performance.

– Using the upper-bound general model with the PARSEC benchmarks, we predict

that even at the 8nm technology node, the average speedup will only be 3.7× to

7.9× that of a 45nm Nehalem quad-core chip. Using the modular microarchitec-

ture extensions with the CAB benchmarks1, between 52% and 81% of the chip is

lost to dark silicon, only 19 to 42 cores are used, and geometric mean-speedup is

between 5.2× and 20.4× at 8nm.

• Modular Microarchitecture Extensions

– Over the CAB benchmark suite , the modular microarchitecture extensions im-

prove accuracy by up to 1.7× for S-Cores and by up to 1.6× for M -Cores.

– Even with improved accuracy, per-benchmark errors can range from -53% to 148%

from S-Cores and from -46% to 653% for M -Cores.

– On average, errors for S-Cores and M -cores are less than 50% for benchmarks

that have measurable speedups.

– Using the modular microarchitecture extensions with the CAB benchmarks, be-

tween 20% and 81% of the chip is lost to dark silicon, more than 60 cores are

1A set of compute-intensive, highly data-parallel benchmarks developed in this dissertation work and
discussed in Chapter 2.
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used, and geometric mean-speedup is between 2.5× and 20×. The increased di-

versity in projections is a result of the more realistic per benchmark performance

variability.

• Translation-Based Architecture Extensions

– S-Core to M -Core translation is sensitive to the number of warps, but with the

correct number of warps, errors are similar to those for the custom model.

– M -Core to S-Core translation model is as accurate as the custom model when

speedups exist.

– Errors introduced by models such as the translation-based architecture extensions

do not significantly influence projections at future technology nodes.

1.5 Organization

Chapter 2 presents the basic multicore model, the design space under consideration, and

the methodology used throughout the dissertation. The three main contributions of the

dissertation are organized into Chapters 3- 5, where each chapter includes the related prior

work, a description of the modeling contribution, validation of the approach, and application

to a running example, projections for dark silicon:

Upper-bound General Model Chapter 3 describes the high-level upper-bound model

for CPUs and GPUs which sacrifices accuracy for generality.

Modular Microarchitecture Extensions Chapter 4 describes custom CPU and GPU

models. It includes detailed descriptions of the prior work for both and the contributions

of this thesis to the models. It concludes with analysis of both models on a range of real

hardware with real benchmarks.

Translation-Based Architecture Extensions Chapter 5 describes a novel translation

approach to modify measurements from one architecture to use as inputs for performance

models for another architecture. It discusses translation from CPUs to GPUs and the resul-

tant accuracy, translation from GPUs to CPUs and the resultant accuracy, and concludes

with a discussion of key principles for extending the approach to other accelerators.
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Chapter 6 presents conclusions, and highlights potential applications to other architec-

tures through an example.
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2 framework and methodology

This chapter describes the framework on which the core models are built and evaluated: the

design space under consideration, the multicore model, the benchmarks, measurements, and

hardware used for evaluation, and the framework for a running example, the application of

the models to dark silicon projections. The decisions in this chapter reflect the desire to

cover a wide hardware design space, perform thorough validations on real hardware, and

maintain relevance in the evaluation workloads. The chapter largely describes well-known,

state-of-the-art techniques that are applied throughout the remaining chapters.

The chapter’s content is largely summarized in two tables: Table 2.1 covers the multi-

core assumptions discussed in the first half of the chapter, and Table 2.2 summarizes the

infrastructural decisions discussed in the second half of the chapter.

Table 2.1 outlines the design space and explains the roles of the cores during serial and

parallel portions of applications for CPU- and GPU-like chips. Single-thread (S) cores are

uni-processor style cores with large caches and many-thread (M) cores are throughput cores

with smaller caches (e.g., an SM from a GPU). These were defined in Chapter 1 and are

discussed in more detail in the next subsection.

Table 2.1: Multicore Topology Descriptions

Topology Serial Mode Parallel Mode

Symmetric 1 Lightweight S-Core N Lightweight S-Cores
Asymmetric 1 Heavyweight S-Core 1 Heavyweight S & N Lightweight S Cores
Dynamic 1 Heavyweight S-Core N Lightweight S-Cores
Fused 1 Heavyweight S-Core N Lightweight S-Cores

(a) CPU: Single-Threaded (S) Cores

Topology Serial Mode Parallel Mode

Symmetric 1 M -Core Thread N M -Cores
Asymmetric 1 Heavyweight S-Core 1 Heavyweight S & N M -Cores
Dynamic 1 Heavyweight S-Core N M -Cores
Fused 1 Heavyweight S-Core N M -Cores

(b) GPU: Multi-Threaded (M) and S Cores
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Table 2.2: Framework Summary

Chapter/Model Topologies Benchmarks Measurements Validation

3. Upper-Bound
Sym/Asym/ S PARSEC prior work1 Xeon/i7 (HW)
Dyn/Fused M GPGPUsim GPGPUsim Pre-Fermi (Sim)

4. Modular µ-arch Sym
S CAB/Rodinia HW/Pin A8/Atom/Xeon/i7(HW)
M CAB/Rodinia HW/Ocelot Pre-Fermi/Kepler (HW)

5. Translation-Based Sym
S CAB/Rodinia HW/Ocelot Atom/i7 (HW)
M CAB/Rodinia HW/Pin Pre-Fermi/Kepler (HW)

Table 2.2 gives an overview of the evaluation methodology used for each model: the

topologies evaluated, benchmarks used, measurements taken, and cores validated against.

Although we have attempted to use the same approach across all models, there are some

inconsistencies due to the time frame when the work was done and the differing design goals

at the time.

The rest of this chapter is structured as follows. We start with our design space goals

and the multicore model framework that defines many of our design decisions. In the infras-

tructure chapter, we discuss our benchmark, hardware, and other implementation decisions.

Finally, we describe how performance projections from the next three chapters are used to

generate dark silicon projections as a running application example, and then conclude. This

chapter can be used as reference.

2.1 Design Space Goals

The goal of the design space is to cover the widest array of current and future topologies as

possible to maintain relevance at future technology nodes. The design space is broken into

two pieces, as is this section: (1) the chip level (e.g., how cores are combined on a single

piece of silicon), and (2) the core level (e.g., what kinds of cores are used). Consideration of

“uncore” components such as caches, off-chip memory bandwidth, on-chip interconnection

network, and memory characteristics are not an explicit goal of this dissertation and as such

are not discussed below. However, they can contribute to performance bottlenecks, and are

included in the core models as appropriate.
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2.1.1 Chip Level

In this section, we describe the chip topologies that we consider and the types of chips that

we believe is included in this design space.

CPU versus GPU: The two mainstream classes of multicore organizations under con-

sideration, multicore CPUs and many-thread GPUs, represent two extreme points in the

threads-per-core spectrum. The CPU multicore organization represents general-purpose

heavy-weight multicore designs oriented toward high single-thread performance as found

in a range of devices from smart phones to desktops. The GPU multicore organization

represents GP-GPU lightweight cores with heavy multi-threading support and poor single

thread performance.

Topology: In addition to the design choice between CPU or GPU chips, there are also

different chip configurations, or topologies, possible. For each multicore organization, the

dissertation categorizes multicore designs into four topologies: symmetric, asymmetric, dy-

namic, and composed (also called fused). These topologies may have cores of different sizes:

lightweight cores are smaller, simpler cores while heavyweight cores are larger and more

performance-oriented. The topologies are discussed below.

• Symmetric multicores consist of multiple identical copies of a core. All resources,

including the power and area budget, are shared equally across all cores.

• Asymmetric multicores consist of one heavyweight monolithic core and multiple

identical copies of a lightweight core. The high-performing heavyweight core improves

performance for serial portions of the code and the lightweight cores plus the heavy-

weight core improve performance for parallel portions of code.

• Dynamic multicores consist of the same core configuration as asymmetric multicores.

To reduce power requirements, during parallel code portions, the heavyweight core is

shut down and, conversely, during the serial portion, the lightweight cores are turned

off and the code runs only on the heavyweight core [18, 91].
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• Composed/Fused multicores consist of a collection of lightweight cores that can

logically fuse together to compose a higher-performance heavyweight core to improve

performance of the serial portion of code [59, 53].

Heterogeneous configurations like AMD APUs and Intel Sandybridge2 combine the CPU

and GPU designs on a single chip. The asymmetric and dynamic GPU topologies resemble

those two designs, and the composed topology models configurations similar to AMD Bull-

dozer. The methodology implicitly models heterogeneous cores of different types (mix of

issue widths, frequencies, etc.) integrated on one chip by allowing any combination of cores

on a chip.

2.1.2 Core Level

As summarized above, S-Cores (single-threaded) are uni-processor style cores with large

caches and M -Cores (many-threaded) are throughput-oriented cores with typically smaller

caches. We consider a range of both S-Cores and M -Cores to cover a wide-design space to

mimic the many architectural solutions currently being considered. The range of cores of

interest are briefly discussed below.

S-Cores

In this section, we will describe our design space goals in selecting S-Cores. Our specific S-

Core choices are discussed in the infrastructure section that follows. Before discussing S-Core

goals, we briefly define some general terms that are used throughout the dissertation:

• Mobile S-Core: CPU-style cores that are designed specifically for power-efficiency,

and tend to be lower performance as a result

• Desktop S-Core: CPU-style cores that are designed primarily for high-performance,

and tend to require more power as a result

Note that both classes of cores may be energy-efficient, since energy is a function of both

power and performance, and that the trade-offs may be application dependent.

The range of S-cores could potentially range from power-optimized lower performance

mobile S-Cores to performance-optimized desktop S-Cores. The mobile S-Cores tend to

2When we later consider Sandybridge cores, we are only considering the CPU multicore portion.
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be in-order dual-issue cores with relatively small structures to keep die area and power low

(e.g., a Cortex-A8). Desktop S-Cores tend to be out-of-order, superscalar cores with larger

structures to increase performance (e.g., a Nehalem or Sandybridge). These cores may

have different cache sizes, issue widths, processor models, ISAs, execution units, memory

bandwidths, and memory sizes, among other differences. In Chapters 4 and 5, we assume

that S-cores have SIMD units. In all chapters, for validation purposes, we pick only a few

representative cores.

M-Cores

Similarly to the S-Core section, we will describe our design space goals in selecting M -

Cores below. Our specific M -Core choices are discussed in the infrastructure section that

follows. Before discussing M -Core goals, we briefly define some general terms that are used

throughout the dissertation:

• SP : the smallest unit of a GPU, an SP performs a single operation on data from a

single thread.

• SFU : also a per thread unit, an SFU can perform more complex operations (like

computing transcendentals).

• SM : a streaming multi-processor, consisting of multiple SP s and SFUs, warp sched-

uler(s), a register file, and potentially a cache; an SM is an example of a M -Core.

• Warp: a set of 32 threads that execute in lockstep in an SM .

• Pre-Fermi: the earliest generations of Nvidia’s general purpose GPUs, with the fewest

performance optimizations. Each SM has only eight SP s, two SFUs, and one warp

scheduler. There is 16KB of shared memory per SM .

• Fermi: Nvidia’s second generation of general purpose GPUs, featuring warp-width

enhanced caching and warp-coalescing to reduce memory bottlenecks. Each SM has

32 SP s, four SFUs, and two warp schedulers. There is 64 KB of memory per SM ,

plus a shared 768 KB L2 cache.
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• Kepler: Nvidia’s most recent generation of general purpose GPUs, with 192 SP s per

SM , 32 SFUs, and four warp schedulers. There is 64 KB of memory per SM , and

1536 KB of L2 cache.

GPUs, in particular, have a set of terminology that is still evolving. In this dissertation, we

tend to use Nvidia-style terminology for clarity as it is currently the most commonly used,

although we recognize that other terminology may be clearer [47].

The range of M -cores, similarly, could range from simple pre-Fermi cores with few SP s

per SM all the way to Kepler architectures with thousands of cores. The range of pre-Fermi

to Kepler architectures includes changes in SIMD and SFU widths, on-chip caching, the

number of instructions issued per cycle, and memory access coalescing. These differences

are discussed in more detail in Chapter 4. In Chapter 3, we consider only pre-Fermi M -

Cores; Chapters 4 and 5 consider both pre-Fermi and Kepler M -Cores. The cores used for

validation are discussed in Section 2.3.3, and the cores used for the running dark silicon

example are discussed in Section 2.4.

2.2 Multicore Model Framework

This dissertation includes performance projections for multicore chips. In this section, we

describe the multicore model: the chip topologies and constraints considered, the Amdahl’s

Law based multicore performance model, and the multicore speedup calculation. Below, we

discuss multicore models with area and power constraints; we use this approach both to

compute multicore speedup and as part of the dark silicon projections discussed later in this

chapter and used as a running example throughout this dissertation. This work is discussed

further elsewhere [27].

2.2.1 Multicore Topology and Chip Constraints

In this section, we describe the chip topologies under consideration and how they interact

with chip constraints. Note that in Chapter 3, we consider all four topologies: symmetric,

asymmetric, dynamic, and fused. Since the focus of Chapters 4 and 5 is on the core models

themselves, there we only consider symmetric cores. This is not a limitation of the approaches

in those chapters; the other topologies could also be modeled there. However, since we

validate on real hardware, validation on non-symmetric cores would be a challenge.
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The number of cores, N , that fit in the chip’s resource budget is dependent on the

types of cores used, the uncore components included (e.g., a second level of cache), and the

chip topology. The type of cores used (qd,th) affects the resources required based on the

known performance/resource constraint trade-off (R(qd,th)). Equations for chip constraints

have been constructed for area constrained chips [48] and for area and power constrained

chips [27].

Asymmetric, dynamic, and fused multicore topologies look similar at the performance

level, but are significantly different at the resource constraint level. Asymmetric cores have

one large core and multiple smaller cores, all of which always consume power. The dynamic

core addresses the needs of power-constrained chips: the large core is disabled during parallel

code segments and the smaller cores are disabled during serial code segments. The fused core

addresses the needs of power- and area-constrained chips: the smaller cores are fused together

to form one larger core during serial execution. Although the fused topology primarily affects

the resource budget, it may have performance impacts: fused cores may not perform as well

as similarly sized serial cores in asymmetric or dynamic topologies.

2.2.2 Multicore Performance

Amdahl’s Law [3] is extensively used to generate upper-bound multicore speedup projections.

Hill and Marty’s extensions study a range of multicore topologies [48]. They model the trade-

off between core resources (r) and core performance as perf(r) =
√
r (Pollack’s Rule [83]).

Performance of various multicore topologies is then a function of r, perf(r), and the fraction

of code that is parallelizable. This dissertation uses a similar approach, but uses a core

model to find the performance of each core.

The core model component finds serial (single-threaded) performance (P1) and parallel

performance (P∞) of an either CPU or GPU multicore. Two performance bottlenecks limit

P1 and P∞: computation capability and bandwidth limits. In the upper-bound model, these

quantities are found separately while in the custom S-Core and M -Core models they are

found as part of the single-core performance calculation. Equations showing the approach

for the upper-bound model are listed below; they are trivially modified by removing the

minimum calculation for the other models.

The maximum computation performance is the sum of the performances for each core

on the chip, the PC(qd,th, T ) values. By definition, for completely serial code, this is just
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Table 2.3: Topology-specific P1 and P∞ Calculations

Topology P1 P∞

Symmetric min (PC(qL,S , 1), PB(qL,S)) min (N × PC(qL,S , 1), PB(qL,S))
Asymmetric min (PC(qH ,S , 1), PB(qH ,S)) min (PC(qH ,S , 1) +N × PC(qL,S , 1), PB(qL,S))
Dynamic min (PC(qH ,S , 1), PB(qH ,S)) min (N × PC(qL,S , 1), PB(qL,S))
Fused min (PC(qH ,S , 1), PB(qH ,S)) min (N × PC(qL,S , 1), PB(qL,S))

(a) CPU

Topology P1 P∞

Symmetric min (PC (qL,M , 1), PB(qL,M )) min (N × PC (qL,M , TM ), PB(qL,M ))
Asymmetric min (PC (qH ,S , 1), PB(qH ,S)) min (PC (qH ,S , 1) +N × PC (qL,M , TM ), PB(qL,M))
Dynamic min (PC (qH ,S , 1), PB(qH ,S)) min (N × PC (qL,M , TM ), PB(qL,M ))
Fused min (PC (qH ,S , 1), PB(qH ,S)) min (N × PC (qL,M , TM ), PB(qL,M ))

(b) GPU

the performance of a single core, PC(qd,th, T ). For parallel code, PC(qd,th, T ) is generally

multiplied by the number of active cores.

During serial and parallel phases, core resources are allocated based on the topology as

described above and in Table 2.1; serial performance (P1) and parallel performance (P∞)

are thus computed based on the particular topology and organization’s execution paradigm.

For CPU organizations, topology specific P1 and P∞ calculations are in Table 2.3a.

For GPU organizations, the symmetric organization is similar to a simple GPU. Hetero-

geneous organizations have one CPU-like core for serial work and GPU-like cores for parallel

work as show in Table 2.3b.

2.2.3 Multicore Speedup

Per Amdahl’s law [3], system speedup is 1

(1−f)+ f
S

where f represents the portion that can be

parallelized, and S represents the speedup achievable on the parallelized portion. Following

previous work [48], we expand this approach to use performance results from the previous

section.

To find the overall speedup, the model finds P1 and P∞ and a baseline core and topology’s

(e.g., a quadcore Nehalem’s) serial and parallel performance as computed using the multicore
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performance equations above (PB1 and PB∞, respectively). The serial portion of code is thus

sped up by S1 = P1/PB1 and the parallel portion of the code is sped up by S∞ = P∞/PB∞.

The overall speedup is then:

Speedup = 1/
(

1−f
S1

+ f
S∞

)
(2.1)

2.3 Infrastructure

While the previous section described the modeling framework within which the core models

in this dissertation are used, in this section we focus on the infrastructure which we use

to implement and evaluate the models. We first describe our benchmark selection process;

benchmark selection is complicated by our requirement that we have identical workloads

for both S-Cores and M -Cores to evaluate the translation model. Finally, we describe our

measurement strategy on real hardware, how the models are implemented, and our validation

process.

2.3.1 Benchmarks

Four benchmark suites appear throughout this dissertation: the PARSEC benchmark suite [10]

and a set of GPU benchmarks distributed with GPGPUsim [7] in Chapter 3, and, in the re-

maining chapters, the Rodinia benchmark suite [19] and our Cross-Accelerator Benchmarks

(CAB) a set of custom benchmarks with high data-parallelism. These benchmarks are pri-

marily computation- and memory-bound; we leave I/O-bound workloads for future work.

The remainder of this subsection describes the rational for each suite and, in particular, the

criteria for and writing process for the custom benchmark suite.

Overview In Chapter 3, we are concerned with primarily with multicore performance and

require a benchmark with realistic multicore performance. We thus use measurements from

the PARSEC benchmark suite as it is a multi-threaded CPU benchmark suite with detailed

published performance studies [10, 9]. However, since PARSEC does not include CUDA

implementations of benchmarks, the M -Core validation in that chapter uses a set of GPU

benchmarks distributed with GPGPUsim [7].
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In Chapters 4 and 5, we want to use benchmarks where both S-Core and M -Core imple-

mentations are available. The best solution would include both hand-optimized SSE/AVX

code and hand-optimized CUDA code for each platform for fair comparisons between the

two types of accelerators. Suites with hand-optimized SSE/AVX code and hand-optimized

CUDA code have not been publicly released, although some work has been done in the area

by Intel [67, 86]. Instead, we were forced to write our own benchmarks3.

CAB Benchmark Suite We chose the set of custom benchmarks–the Cross-Accelerator

Benchmarks (CAB)– to construct a comprehensive set of benchmarks that included sig-

nificant parallelism potential, used simple single-function kernels for analysis ease, and

spanned a range of applications. After considering benchmark suites from multiple sources

[67, 82, 86, 90, 10, 7], we decided on nine of the 14 benchmarks from Lee et al. [67]. The five

excluded benchmarks are a constraint solver (rigid body physics), GJK (collision detection),

radix-sort, tree search, and bilateral filter (image processing). The constraint solver and GJK

are both large benchmarks that require gather/scatter operations, which are not supported

in the SSE and AVX implementations to which we have access 4. The optimized radix-sort

from the CUDA SDK had subtle errors that caused Ocelot to fail. From our exploration, the

performance of the CPU implementation of tree search did not improve with SSE instruc-

tions; we believe most performance improvements would be from multi-threading. Bilateral

is a non-linear filter, which includes transcendental operations, which are outside the scope

of this work. These were less common in other representative benchmarks than our other

more complex benchmarks, Monte Carlo, LBM, and Ray Casting. Other suites all either

include more complex kernels, which are less helpful for stressing high throughput machines,

or focus on streaming media applications which are more amenable to other accelerators.

The benchmarks in this suite are described in more detail in Appendix A.

Rodinia Benchmark Suite As a set of “challenge” benchmarks, we include results for

GPU performance using a subset of the Rodinia benchmark suite. Accuracy on these bench-

marks is expected to be lower than on the hand-written benchmarks as they tend to include

more complex kernels. Further, SIMD performance is not expected to be accurate for these

3Benchmark code development performed with Vijay Thiruvengadam and Newsha Ardalani
4Gather instructions are supported with AVX2, and scatter instructions are supported on Intel‘s new

MIC co-processor.
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benchmarks as it is computed using auto-vectorized code compiled with ICC and with all

loops marked with pragma simd. These results provide a more real-world application of the

approach. Note that no model refinements were performed based on results from this suite

- all tuning was performed using the simpler set of benchmarks described above.

DSL-based Alternatives Note that we could have used OpenCL to generate CUDA and

SSE code as an alternative to writing the above benchmarks, but we found this approach

to have several limitations. Both Parboil [90] and Rodinia [19] benchmark suites include

OpenCL implementations. Studying the Parboil and Rodinia benchmark OpenCL code,

we found that of the 11 Parboil benchmarks, six use optional OpenCL features and would

require algorithmic changes to be compatible with Intels OpenCL distribution5. We also

analyzed SPMV and SGEMM, for which we have both hand optimized SSE code and OpenCL

code. The hand-optimized SSE code had higher speedups than the OpenCL code in both

benchmarks. We also could have used OpenCL to implement our GPGPU applications, as

it provides most of the same hardware abstractions as CUDA. However, as shown by [34],

though there is no fundamental reason why OpenCL doesn’t perform as well as CUDA,

OpenCL can lose performance due to compiler and runtime differences.

2.3.2 Measurements and Implementation

We briefly outline our measurement methodology below; additional details, as necessary, are

in the relevant chapters. We conclude the subsection with a discussion of the debugging

process used throughout this dissertation.

Input Measurement: In Chapter 3, model workload inputs for the PARSEC benchmark

suite are from published papers [10, 9]; specific inputs derived from those papers are listed in

Appendix B. In Chapters 4 and 5, model inputs come from performance counters and either

binary instrumentation (S-Cores, using Pin [70]) or emulation (M -Cores, using Ocelot [24],

since binary instrumentation is not available for them). Both binary instrumentation and

emulation are significantly faster than simulation and are also more platform-independent.

5One uses special image processing instructions and the remaining five use atomic or synchronization
instructions.
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The CAB benchmarks and Rodinia are both instrumented with start and stop macros to

collect data only from the key computation kernels.

Implementation: Models from all three chapters are implemented in Python. Using

workload inputs from either csv files (Chapter 3) or directly from hardware counter, binary

emulation, and emulation outputs (Chapters 4 and 5) and hardware inputs from csv files, the

models are written in a modular fashion and require no user-intervention; the entire process

in Chapters 4 and 5 is push button.

Refinement and Debugging: In Chapters 3 and 4, we build our work off of previously

published models, and in 5, we find a new way to compute the inputs to those models to

allow us to use inputs collected on a completely different architecture. In all three situations,

we find that some model refinement is necessary. For these mechanistic approaches, model

refinement is an iterative process that includes finding the source of error, finding a new

way to model that component once it has been identified, and computing the new result to

evaluate the solution.

Identifying the source of error can require some creativity: since we are not using a

simulator, we are limited to the information that we can collect using performance counters

and Pin. Techniques that may be useful for architects adapting a model to their own system

include:

• Identify trends: group benchmarks by common characteristics (e.g., branch mispre-

diction rates, number of memory accesses, unusual instructions) and check to see if the

set has a higher error rate than disjoint sets

• Work backwards: assuming that all but one input is correct, use the known perfor-

mance to find what that input would need to be for higher accuracy. If the predicted

input is consistently different than the measured input, either the measurement is

incorrect or it is being used incorrectly.

• Measurement studies, optimization guides, and white papers: Validating

model assumptions against published measurement studies, optimization guides, and

architectural white papers can illuminate incorrect assumptions in the model.
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2.3.3 Validation

In this dissertation, we evaluate on real hardware when possible to mitigate any errors or

simplifications from simulator models; we further describe our approach in this section.

In particular, we evaluate against state of the art hardware as possible; as a result, we use

slightly different architectures in Chapter 3 than in Chapters 4 and 5. For S-Cores, all model

validation is on real hardware. For M -Cores, validation is on real hardware in Chapters 4

and 5; in Chapter 3, M -Core validation is via simulation.

Error Reporting: For each benchmark and core considered, we report the speedup of

that combination over the reference performance. The reference performance is the scalar

implementation of the benchmark run on a baseline core. For “measured” speedups, both

measurements are taken on hardware6 . For modeled speedups, the reference speedup is

still measured on hardware; this eliminates any error normalization that could occur if the

reference speedup was also modeled. For individual benchmarks, we report the error, quanti-

fied as (predicted− measured)/measured. Finally, we report average absolute error across

benchmark suites; average absolute error is found by taking the absolute value of each error

estimate and then finding the mean of the individual measurements. In this work, average

absolute error is preferable to other approaches, such as root-mean-square-error (RMSE), as

it does not penalize outliers more than smaller errors but still prevents positive and negative

errors from canceling each other out.

Simulator Effects: Although running on real hardware introduces challenges including

repeatability and system overheads, we believe it is preferable to simulation as simulators can

also have errors. We expect that many un-modeled effects in our models are also un-modeled

in simulators; we thus expect that when our modeled performance is not accurate, the

modeled performance is closer to simulated performance than it is to measured performance.

Upper-Bound Model: In Chapter 3, the cores used for validation reflect state-of-the-

art components available at the time that the work was completed. For S-Core validation,

we use two Intel cores, a Xeon E5520 and a Core i7 860. For M -Core validation, we use

GPGPUSim instead of an actual GPU. Since scaling effects are a key component of the

6Except for M -Cores using the upper-bound model, where measurements are taken using GPGPUsim
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validation in this chapter, we use the simulator so that we can configure it to model a

pre-Fermi style architecture with between 1 and 120 SM cores.

Custom and Translation Models: In Chapters 4 and 5, we use a larger set of cores

to show both that the model is valid and that it is scalable. For S-Cores, we use an ARM

Cortex-A8, an Intel Atom, an Intel Xeon, and a Sandybridge core. For M -Cores, we use

both pre-Fermi and Kepler architectures with a range of off-chip bandwidths and numbers

of SMs. The complete details of cores used are in Table 2.4a for S-Cores and Table 2.4b for

M -Cores.

2.4 Application to Dark Silicon Projections

As an example use-case for all three models, we apply each of them to a multicore model

framework with area and power constraints and technology scaling information to find the

speedup, number of cores, and type of cores that could be used for future multicores, as

suggested by Figure 5.1. These results include dark silicon projections, the fraction of a

multicore chip’s area that must go unused due to power constraints. This running example

addresses the question of how processor performance will scale in future technology genera-

tions given area and power constraints. We will apply techniques from previous work [27] in

combination with our core models. In that work, technology scaling projections, single-core

design scaling, multicore design choices, actual application behavior, and microarchitectural

features are all combined to predict the speedup, number of cores, and percentage of dark

silicon for multicores at future technology nodes. In this section, we review the parts of that

approach necessary to use our core models to make these dark silicon projections.

In this dissertation, the focus is on techniques to predict single-core performance; appli-

cations within this framework are a key use-case and are a running example throughout.

2.4.1 Overview

To provide context for these examples, this section gives an overview of the general approach

and specific implementation details where appropriate. Below, we summarize each of the

steps previously developed to project performance and fraction of dark silicon at future

technology generations:
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Table 2.4: Hardware used for validation. Quadro FX580 is modeled with GPGPUSIM in
Chapter 3.

Cortex-A8 Atom Xeon Nehalem Sandybridge
OMAP3340 N450 E2550 i7-965 i7-2600

Execution Model In-Order In-Order Out-of-Order Out-of-Order Out-of-Order
Issue Width 2 2 4(6) 4(6) 4(6)
Freq (Ghz) 0.6 1.66 2.27 3.2 3.40
L1 Cache/core 16KB 32KB 64KB 64KB 64KB
L2 Cache/core 256KB 512KB 256KB 256KB 256KB
L3 Cache/chip — — 8MB 8MB 8MB
BW (GB/s) — 5.3 26 21 26
SIMD Width 4 4 4 4 8
TDP (1 core, 45nm) 0.8W 2.8W 16.8W 30W 38W
Area (1 core, 45nm) 7.5mm2 8.1mm2 18.4mm2 28.7mm2 29.1mm2

SPECmark 1.19 6 26 36.5 47.1
Validation Chapter 4/5 4/5 3/4/5 3/4/5 4/5
Dark Silicon Chapter 4/5 3/4/5 3/4/5 3 4/5

(a) S-Cores

Quadro GeForce GeForce GeForce GeForce
FX 580 8400GS GT330 GTX480 GTX660 Ti

Arch pre-Fermi pre-Fermi pre-Fermi Fermi Kepler
Compute Capability 1.1 1.2 1.2 2.0 3.0
SP/SM 8 8 8 32 192
# of SMs 4 1 12 7
Freq 1.12 1.24 1.34 0.71 0.98
Mem BW 25.6 4.8 25.3 144.2
TDP (1 SM, 45nm) — — 2.4W 16.7W 35.7W
Area (1 SM, 45nm) — — 8.1mm2 16.1mm2 54.0mm2

Validation Chapter 3∗/4/5 4/5 4/5 — 4/5
Dark Silicon Chapter — — 3/4/5 4/5 4/5

(b) M -cores

• Device scaling model summarizes area, power, and frequency changes at future tech-

nology nodes as multiplicative factors. The factors are for 45 nm to as small as 8 nm

based on ITRS projections [54] and more conservative projections from Borkar [14].

• Core scaling model consists of power/performance (Watts per SPECmark) and area/per-
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Figure 2.1: Area and Power Trade-offs.

formance (mm2 per SPECmark) single core Pareto frontiers derived from a large set

of diverse microprocessors with performance spanning from that of Intel Atom cores

to that of Intel Nehalem cores. Note that all cores considered use 45 nm transistors,

only L1 caches are included, and power is measured as reported thermal design power

(TDP).

• Multicore scaling model is used to compute the area, power, and performance of any

application for “any” chip topology for CPU-like and GPU-like multicore performance;

this model was described earlier Section 2.2 of this chapter.

• Device × core model combines Pareto frontiers and the device model to find the

Pareto frontiers at future technology nodes; any performance improvements for future

cores will come only at the area and power costs defined by these curves.

• Device × core × multicore model with an exhaustive state-space search finds

maximum multicore speedups for future technology nodes while enforcing area, power,

and benchmark constraints.

2.4.2 Core Characteristics

In this section, we describe how we pick cores to include in dark silicon projections. In Chap-

ter 3, we find core characteristics from the Device × core model. The required transition

from SPECmark scores on a Pareto frontier to actual performance characteristics is a key
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contribution of the upper-bound model in Chapter 3. However, for Chapters 4 and 5, the

emphasis is on the actual core models and interpolating necessary hardware characteristic

inputs for points on the curve is impractical. We therefore must pick several representative

S-Core and M -Core points to use in the state space search for performance and dark silicon.

We discuss how we pick those representative cores below.

Representative points: To pick the representative points, we first divide the Pareto

frontiers from our previous work [27] into regions: In-order 2-issue, Out-of-Order 2-issue, and

Out-of-Order 4-issue. These regions are based on the optimal energy-performance trade-offs

across macro-architectures from previous work [5]. To divide the curve into these regions,

we scale the performance from that work such that their cross-over points (e.g., from an

Out-of-Order 2-Issue core to a 4-Issue core) occur at points that fit with our core SPECmark

scores. After scaling the region transition points using the same factor, we find the regions

shown in Figure 2.1.

Extended frontiers: Since Esmaeilzadeh et al. [27], the use of even simpler S-Cores in

multicore chips has increased, and microarchitectural advances have pushed performance

higher with small power and area impacts. To reflect these changes, we add two new points:

the next microarchitectural generation of an Intel Desktop S-Core (a Sandybridge i7-2600

CPU) and an even simpler in-order, 2-issue mobile S-Core (an ARM Cortex-A8). Neither of

these cores are available at the 45nm technology node, so we use scaling parameters derived

from SPEC numbers to find their area and power at 45nm. Data from [12] is used to find

the A8 point (S1). We observe that the Atom (S2) has 5.5x higher performance than the

A8 with 3.6x higher power. We add the Sandybridge core (S4+) using reported SPECmark

scores and TDP, and area from die photos.

After adding the cores, we extend the frontiers to include the cores. We extend the

trade-off curves slightly to the lower left to include the Cortex-A8 by adding power/area/per-

formance trade-offs using the slope at the Atom point. We also extend the curve to the

upper-right to include the performance level of the Sandybridge. The resulting curves, with

extrapolated frontiers in gray, are shown in Figure 2.1. Since the curves previously passed

through the Nehalem core (S4) and Sandybridge includes microarchitectural improvements,

the Sandybridge is to the right of the Pareto frontiers. This motivates our search for a way

to move beyond Pareto frontiers to predict core performance.
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S-Cores: We pick five real cores to use as S-Cores. The points chosen loosely correspond

to an ARM A8 (S1), an Intel Atom (S2), an Intel Xeon using the Nehalem microarchitec-

ture (S3), an Intel i7 using the Nehalem microarchitecture (S4), and an Intel i7 using the

Sandybridge microarchitecture (S4+) based on known area/power/performance trade-offs.

Although some of these cores fall on the Pareto frontiers, it is important to note that they

may not be Pareto optimal; they fall on the curves only because the curves were constructed

from data points that include these cores. Power, area, SPECmark scores, and microarchi-

tectural characteristics are listed in Table 2.4a.

M-Cores: For the M -Cores, we cannot usefully map M -Core performance to a SPECmark

score, and so instead focus on spanning a similar space to that spanned by the S-Cores. We

find the area, power, and performance using reported values and die photos for the three

common Nvidia M -Core architectures, as detailed below.

We first consider the pre-Fermi M -Core architecture. From Atom and pre-Fermi die

photos inspections, we estimate that a pre-Fermi SM (8 SP cores), its caches, and thread

register file can fit in the same area as one Atom processor [27]. We assume a similar

correspondence with power, although this may be an overestimate.

For the M2 and M3 cores, we estimate area from die photos and power from Nvidia

reported TDP [85, 87]. We use scaling projections from previous work [27] where necessary

normalize to 45nm. The three major architecture revisions currently available, pre-Fermi,

Fermi, and Kepler, span a large architectural design space: the Fermi has 4× more SP cores

per SM than the pre-Fermi, and the Kepler has 24× more SPs per SM than the pre-Fermi.

Kepler SMs also has more advanced issue units and other features that are expected to

improve performance over pre-Fermi SMs (note that the A8’s scaled SPECmark score is

about 33× that of the Nehalem). The area and power impact is smaller: a Kepler SM uses

only 3.1× more area and 7.1× more power than a pre-Fermi SM (compared to 3.8× more

area and 25× more power for the Nehalem than an A8). By picking these three SMs as our

M -Core design points, we have picked representative M -Core points that cover a design space

similar to that of the S-Cores. The cores’ area, power, SPECmark and microarchitectural

characteristics are listed in Table 2.4b.
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2.4.3 Projection Implications

We briefly consider the implications of the different design space assumptions in each chapter.

As a result of differing core and benchmark design spaces, we do not expect to find the same

results in Chapters 4 and 5 as in Chapter 3 and previously published work. As a reference,

we compute dark silicon using the new assumptions and the upper-bound model. We expect

those results to be more optimistic than the results obtained using the custom S-Core and

M -Core models.

Additional implementation details and results can be found in the original publication

[27]. The multicore model is explained in more abstract terms in a later work [11]. Expanded

sensitivity studies and discussions of implications are included in several later pieces [30, 28,

29].

2.5 Summary

In this chapter, we provided an overview of the framework on which the core models are built

and evaluated: the design space under consideration, the multicore model, the benchmarks,

measurements, and hardware used for evaluation, and the framework for a running example,

the application of the models to dark silicon projections. This content was summarized

in two tables that were featured at the beginning of the chapter: Table 2.1 covered the

multicore assumptions discussed in the first half of the chapter, and Table 2.2 summarized

the infrastructural decisions discussed in the second half of the chapter.

In the next three chapters, we will describe each of the three models summarized in

Chapter 1. Throughout those descriptions, the interested reader should refer back to this

chapter for clarifications on terminology and methodology.
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3 an upper-bound general model

This chapter describes the general upper-bound core model that we use for abstract perfor-

mance projections. This is the most abstract model that we consider in this dissertation.

The upper-bound model abstracts away components of the mechanistic model until converg-

ing on a single model that can be used for both S- and M - cores. This work is also described

in another work [11].

Goals and Constraints: Our goal is to move from a simple resource trade-off curve to a

per benchmark speedup prediction using only a few real program characteristics.

Inputs: The model assumes only a few inputs: the resource trade-off function, some knowl-

edge of the architecture (S-Cores or M -Cores, processor frequency at the end-points of the

resource trade-off function), and only five workload-specific inputs. Those workload-specific

inputs can be the same for both S- and M -cores.

Use-case: We can use this model to predict optimistic results about the speedups using

only minimal information about the cores; this makes it a very useful model for abstract

performance projections where we have minimal information about specific processors.

Upper-Bound 
S-Core & M-Core
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Per-Benchmark 
Performance

Software Inputs

Hardware Inputs
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Figure 3.1: Upper-bound model overview.
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The abstraction does bring with it a severe limitation: the microarchitecture is described

with a single performance score, so specific changes to the microarchitecture cannot be

accurately modeled. The coarse-grain architectural flexibility limits more fine-grained archi-

tectural flexibility, making this approach most useful for upper-bound scalability studies.

The upper-bound model approach was specifically developed to use in conjunction with

resource trade-off curves. Examples of trade-off curves include the power-performance Pareto

frontiers [27] and the use of Pollack’s Rule [83] by Hill and Marty [48]; Pollack’s Rule models

the trade-off between core resources (r) and core performance as perf(r) =
√
r. Performance

of symmetric, asymmetric, dynamic, and fused multicore topologies is then a function of r,

perf(r), and the fraction of code that is parallelizable. The upper bound core model in this

dissertation tightens their upper-bound on multicore performance using real core measure-

ments in place of the perf(r) function and considers the impact of additional architectural

and application characteristics.

The remainder of this chapter describes the first order core model using architectural

and application input data in the context of the multicore model from Chapter 2; Figure 3.1

shows the specific implementation used in this chapter of the general multicore model from

Figure 1.1 in Chapter 1. The goal is to improve multicore performance projection accuracy

while maintaining simplicity and generality.

3.1 Model Description

In Chapter 2, we described multicore performance in terms of serial performance (P1) and

parallel performance (P∞). Then, we broke each of those components into limits due to core

performance (PC) and chip memory bandwidth (PB). This chapter is focused on finding

PC , but for completeness and to show an application of the descriptions in Chapter 2, we

summarize the use of the other multicore components here. In Chapters 4 and 5, we will

only focus on core models (PC).

Below and in Figure 3.1, we summarize the model components’ intuition, simple inputs,

and useful outputs.

Core Performance: This component finds the expected performance of a single core. The

impact of core microarchitecture, S-Core orM -Core organization, and memory access latency

are all incorporated here. The inputs include organization, CPI, frequency, cache hierarchy,

and cache miss rates. Because our cores are initially described only as a performance score,
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we develop an approach to find CPI and frequency using that score relative to the scores of

the cores that are on the trade-off function’s end points.

Memory Bandwidth Performance: This component finds the maximum performance

given memory bandwidth constraints by finding the number of memory transactions per

instruction. The inputs are the trade-off function design point, application memory use, and

maximum memory bandwidth.

Chip and Topology Constraints: This component finds the number of each type of core

to include on the chip, given the multicore topology, organization, trade-off function, and

resource constraints. Four multicore topologies are described in detail in Table 2.1. Each

core is described as a combination of the trade-off function design point and thread style.

Multicore Performance: This component finds the expected serial and parallel perfor-

mance for an application on a multicore chip with a particular topology. Inputs include

outputs from the previous three models: core performance, number of cores of each type,

and the memory bandwidth performance. We assume the first order bottlenecks for chip

performance are core performance and memory bandwidth, and compute the total serial

and parallel performance using these constraints.

Multicore Speedup: This component accumulates the results with the fractions of parallel

and serial code into a single speedup projection using an Amdahl’s Law based approach.

3.1.1 Design Space

The range of low to high performing cores is represented using simple performance/resource

constraint trade-offs (the trade-off function). These model inputs can be derived from a

diverse set of input measures for performance (e.g., SPECmark, CoreMark) and resource

constraints (e.g., area, power). In our results, we assume two trade-off functions: Pareto-

optimal frontiers with area-performance trade-offs and power-performance trade-offs. They

are then used to predict performance in a diverse set of applications with only a few addi-

tional application-specific parameters. The trade-off function may be concrete points from

measured data, a function based on curve fitting to known designs, or an abstract function of

expected trade-offs. Examples of the input trade-offs using curve fitting are Pareto frontiers

like those presented in Figure 2.1, previous work [4, 27], or even more abstract trade-off

functions like Pollack’s Rule [83].
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Table 3.1: Model Input Parameters. Recall that L refers to lightweight cores, H refers to
heavyweight cores, S- refors to S-Cores, and M refers to M -Cores.

Software Input Description

CPIexe Cycles per inst (zero-latency cache) from comp model
f∞ Fraction of code that can be parallelized
rls Fraction of instructions that are loads or stores
mL1 L1 cache miss rate (from cache model or measured)
mL2 L2 cache miss rate (from cache model or measured)

Core Level Input Description

qd,th Core performance (e.g., SPECmark, d: L/H, th: S/M)
R(qd,th) Core resource cost (area, power) from trade-off func
ν Core frequency (MHz) from computation model
T Number of threads per core (CPU or GPU style)
tL1 L1 cache access time (cycles)
tL2 L2 cache access time (cycles)
tmem Memory access time (cycles)

Chip Level Input Description

BWmax Maximum memory bandwidth (GB/s)
b Bytes per memory access (B)

3.1.2 Model Details

This section describes in detail the model’s five components. Building on previous work [41]

for an idealized symmetric multicore with a perfectly parallelized workload (Equations 1-4

below) and heterogeneous multicore extensions [48] to Amdahl’s Law using abstract inputs,

we use real core and multicore parameters and add additional hardware details to find a

tighter upper-bound on multicore performance. The simple inputs listed in Table 3.1 are

easily measured, derived from known results, or even based on intuition.

Each component is described by first outlining how it is modeled and then discussing any

derived model inputs. This approach highlights our novel incorporation of real application

behavior and realistic microarchitectural features.

Core Performance

Single core performance (PC(qd,th, T )) is calculated in terms of instructions per second in

Equation 3.1 by scaling the core utilization (η) by the ratio of the processor frequency to

CPIexe:
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PC(qd,th, T ) = η × ν/CPIexe (3.1)

The CPIexe parameter does not include stalls due to cache accesses, which are considered

separately in the core utilization (η). The core utilization is the fraction of time that threads

running on the core can keep it busy. The maximum number of threads per core is a key

component of the core style: CPU-like cores are single-threaded (S) and GPU-like cores are

many threaded (e.g., 1024 threads per 8 cores). Topologies may have a mix of heavyweight

(d = H) and lightweight (d = L) cores. Core utilization is modeled as a function of the

average time (cycles) spent waiting for each load or store (t), fraction of instructions that

are loads or stores (rls), and the CPIexe:

η = min

(
1,

T

1 + t× rls/CPIexe

)
(3.2)

We assume two levels of cache and an off-chip memory that contains all application data.

The average time spent waiting for loads and stores is a function of the time to access the

caches (tL1 and tL2), time to visit memory (tmem), and the predicted cache miss rate (mL1

and mL2):

t = (1−mL1)tL1 +mL1(1−mL2)tL2 +mL1mL2tmem (3.3)

Although a cache miss model could be inserted here (e.g., [55, 27]), we assume the miss rates

are known here. Changes in miss rates due to increasing number of threads per cache should

be reflected in the inputs. We assume the number of cycles per cache access is constant as

the frequency changes, while memory latency (in cycles) increases linearly with frequency

increases. Note that Fermi style GPUs could be modeled using this cache latency model and

cache miss rate inputs.

Derived Inputs

To incorporate known single-threaded performance/resource trade-offs into the model, we

convert single-threaded performance into an estimated core frequency and per-application

CPIexe. This novel approach uses generic single-threaded performance results (e.g. SPEC-

mark scores) to derive parameters for specific multi-threaded applications. This works be-

cause, assuming comparable memory systems, the key performance bottlenecks are the pro-

cessor frequency (ν) and microarchitecture (summarized by CPIexe). The approach finds the
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for each point k on Trade-off Function do
νk=(νmax − νmin)/nPoints× k + νmin;
CPIexe,k=l;
speedup goal=(SPECk/SPECmax);
compute perf for point max, Pmax;
while speedup goal and speedup achieved not within threshold do

compute perf for point k, Pk;
speedup achieved=(Pk/Pmax);
if speedup achieved < speedup goal then

try a smaller CPIexe,k;
else

try a larger CPIexe,k;
end

end

end

Algorithm 3.1: Pseduocode to find CPIexe and ν.

processor frequency and microarchitecture impact based only on the known single-threaded

performance and the frequency of the highest and lowest performing processor, so it can be

applied to abstract design points where only the performance/resource trade-offs are known.

The approach is described below, and summarized in Listing 1.

ν: To find each core’s frequency, we assume frequency scales linearly with performance, from

the frequency of the lowest performing point to the that of the highest performing point.

CPIexe: Each application’s CPIexe is dependent on its instruction mix and use of hardware

optimizations (e.g., functional units and out-of-order processing). Since the measured CPIexe

for each benchmark is not available, the core model is used to generate per benchmark CPIexe

estimates for each design point. With all other model inputs kept constant, the approach

iteratively searches for the CPIexe at each processor design point. The initial assumption is

that the highest performing core has a CPIexe of `. The smallest core should have a CPIexe

such that the ratio of its performance to the highest performing core’s performance is the

same as the ratio of their measured scores. Since the performance increase between any two

points should be the same using either the measured performance or model, the same ratio

relationship is used to estimate a per benchmark CPIexe for each processor design point.

This flexible approach uses the measured performance to generate reasonable performance

model inputs at each design point.
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Memory Bandwidth Performance

The maximum performance possible given off-chip bandwidth constraints (PB(qd,th), in in-

structions per second) is the ratio of the maximum bandwidth to the average number of

bytes of data required per operation:

PB(qd,th) =
BWmax

b× rls ×mL1 ×mL2

(3.4)

This is from Guz et al.’s model; previous bandwidth saturation work includes a learning

model [92].

Limitations

The model’s accuracy is limited by our optimistic assumptions, thus making our speedup

projections over-predictions.

Memory Latency: A key assumption in the model is that memory accesses from a pro-

cessor are in order and blocking. We observe that for high performance cores where CPIexe

approaches 0, performance is limited by memory latency due to the in order and blocking

assumption:

lim
CPIexe→0

PC(qd,th, T ) = lim
CPIexe→0

ν

CPIexe
min

(
1,

T

1 + t rls
CPIexe

)
=

Tν

t× rls

This limitation is expected to have negligible impact when CPIexe is greater than 1, but

its impact increases as CPIexe decreases, implying more superscalar functionality in the core.

Microarchitecture: We assume memory accesses from different cores do not cause stalls.

Further, we assume that the interconnect has zero latency, shared memory protocols have

no performance impact, threads never migrate, and thread swap time is negligible. The

assumptions cause the model to over-predict performance, making projected speedups opti-

mistic.

Application Behavior: The model optimistically assumes the workload is homogeneous,

parallel code sections are infinitely parallelizable, and no thread synchronization, operating
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(a) Two Threads on Xeon E5520 (S3)
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(b) Two Threads on i7-860 (S4)
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(c) Four Threads on Xeon E5520 (S3)
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(d) Four Threads on i7-860 (S4)

Figure 3.2: S-Core Validation: Speedup over one i7-860 thread

system serialization, or swapping overheads occur.

3.2 Model Validation

To validate the model, we compare speedup projections from the model to measured and

simulated speedups for CPU and GPU organizations. To validate the model’s tighter bound,

we also find the speedup projections using Amdahl’s Law.
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Figure 3.3: M -Core Validation: speedup over one SM

For S-cores, we compare the predicted speedup to measured speedups on 11 of the 13

PARSEC benchmarks using either 2 or 4 threads on two four-core chips, a Xeon E5520 and

a Core i7 860, as shown in Figure 3.2. We assume tL1 = 3 cycles, tL2 = 20 cycles, and

tmem = 200 cycles at 3.2Ghz.

The model captures the impact of the differing microarchitectures and memory systems,

is still optimistic, and provides a tighter bound than the Amdahl’s Law projections. The

upper-bound core model’s errors range from -29% to 70% with an average absolute error

of 14%, while the Amdahl’s Law approach has errors that range from -16% to 86% with

an average absolute error of 31%. We use the average CPIexe approach as described above

using average SPECmark performance to guide our predicted CPIexe vales. We thus expect

that (1) per-benchmark performance predictions may not be optimistic, if the benchmark

has computation or branch prediction behavior not represented by the average performance

characteristics, and (2) the average speedup over the set of PARSEC benchmarks would be

optimistic and more accurate than individual per-benchmark results. Indeed, we find that

the average speedup predicted is within 10% of the measured average speedup.

We validate M -core projections comparing speedups generated using the model to those

simulated using GPGPUSim (version 3, PTX mode) [7]. We use the number of threads

and blocks generated by the CUDA code to deal with occupancy issues beyond the warp

level, and estimate f from the speedup between 1 and 32 SMs (assuming perfect memory).

f therefore includes the effect of blocking and other serializing behavior. For the M -Core
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model, we use tL1 = 1 and let tmem be the average memory latency over the entire kernel as

reported by GPGPUSim for a 32 SM GPU (varies from 492-608 cycles).

Figure 3.3 shows results for 7 of GPGPUSim’s 12 CUDA benchmarks. The three specific

benchmarks demonstrate three cases: the highly parallel StoreGPU is well predicted by

both Amdahl’s Law and the upper-bound core model, N-Queens Solver’s limited number

of threads is significantly better predicted using the upper-bound core model, and Neural

Network’s memory bandwidth saturation is poorly predicted by both models; these results

are shown in more detail in Appendix C.

The geometric mean (C.1d) shows that the model maintains a tighter upper bound on

speedup projections than Amdahl’s Law projections. However, per-benchmark errors are still

large: they range from 0% to 423%. The average absolute error is 106% for the upper-bound

core model versus 189% for the Amdahl’s Law approach, showing the improved predictions.

Note that upper-bound model approach is philosophically different than Hong and Kim’s

approach of using model inputs based on the CUDA program implementation [49], which

will be discussed in more detail in Chapter 4.

3.3 Application to Dark Silicon Projections

Throughout this dissertation, we use the models described in each chapter to produce dark

silicon projections and associated speedups for future technology nodes. The approach for

these projections was described in Chapter 2. Additional implementation details and results

using the upper-bound core model are presented elsewhere [29].

As an example, Figure 3.4 shows results found when applying this approach to a set of

performance trade-off curves for power and area and searching for the configuration with

the best speedup at a series of technology nodes. Figure 3.4 summarizes all of the speedup

projections in a single scatter plot for conservative and ITRS scaling models. For every

benchmark at each technology node, we plot the speedup of eight possible multicore config-

urations (CPU-like, GPU-like) × (symmetric, asymmetric, dynamic, composed). The upper

curve indicates performance Moore’s Law or doubling performance for every technology gen-

eration.

• With optimal multicore configurations for each individual application, at 8 nm, only

3.7× (conservative scaling), or 7.9× (ITRS scaling) geometric mean speedup is possible.
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Figure 3.4: Speedup across process technology nodes across all organizations and topologies
with PARSEC benchmarks.

• Highly parallel workloads with a degree of parallelism higher than 99% will continue

to benefit from multicore scaling.

• At 8 nm, the geometric mean speedup for heterogeneous dynamic and composed topolo-

gies is only 10% higher than the geometric mean speedup for symmetric topologies.

• Improvements in transistor process technology are directly reflected as multicore speedup;

however, to bridge the dark silicon speedup gap even a disruptive breakthrough that

matches our aggressive scaling model is not enough.

Our analysis above examined “typical” configurations and showed poor scalability for

the multicore approach. A natural question is, can simple configuration changes (percentage

cache area, memory bandwidth, etc.) provide significant benefits? We elaborate on three

representative studies of simple changes (L2 cache size, memory bandwidth, and SMT)

below. Further, to understand whether parallelism or the power budget is the primary

source of the dark silicon speedup gap, we vary each of these factors in two experiments at

8 nm. The upper-bound model is flexible enough to perform these types of studies.
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Figure 3.5: Impact of L2 size and memory bandwidth on speedup at 45 nm.

L2 cache area. Figure 3.5(a) shows the optimal speedup at 45 nm as the amount of a

symmetric CPU’s chip area devoted to L2 cache varies from 0% to 100%. In this study we

ignore any increase in L2 cache power or increase in L2 cache access latency. Across the

PARSEC benchmarks, the optimal percentage of chip devoted to cache varies from 20% to

50% depending on benchmark memory access characteristics. Compared to a 30% cache area,

using optimal cache area only improves performance by at most 20% across all benchmarks.

Memory bandwidth. Figure 3.5(b) illustrates the sensitivity of PARSEC performance to

the available memory bandwidth for symmetric GPU multicores at 45 nm. As the memory

bandwidth increases, the speedup improves as the bandwidth can keep more threads fed

with data; however, the increases are limited by power and/or parallelism and in 10 out of

12 benchmarks speedups do not increase by more than 2× compared to the baseline, 200

GB/s.

SMT. To simplify the discussion, we did not consider SMT support for the processors

(cores) in the CPU multicore organization. However, SMT support can improve the power
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efficiency of the cores for parallel workloads to some extent. We studied 2-way, 4-way, and

8-way SMT with no area or energy penalty, and observed that speedup improves with 2-way

SMT by 1.5× in the best case and decreases as much as 0.6× in the worst case due to

increased cache contention; the range for 8-way SMT is 0.3-2.5×.

3.4 Related Work

Hill and Marty [48] extend Amdahl’s Law to model multicore speedup with symmetric,

asymmetric, and dynamic topologies and conclude dynamic multicores are superior [48].

Several extensions to Hill and Marty [48] model have been developed for modeling ‘uncore’

components (e.g. interconnection network and last level cache), [69], computing core con-

figuration optimal for energy [65, 21], and leakage power [101]. All these model uses area

as the primary constraint and model single-core area/performance trade-off using Pollack’s

rule (Performance ∝
√
Area [83]) without considering technology trends.

Azizi et al. [4] derive the single-core energy/performance trade-off as Pareto frontiers

using architecture-level statistical models combined with circuit-level energy-performance

trade-off functions. For modeling single-core power/performance and area/performance

trade-offs, our core model derives two separate Pareto frontiers from empirical data. Further,

we project these trade-off functions to the future technology nodes using our device model.

Esmaeilzadeh et al. [31] perform a power/energy Pareto efficiency analysis at 45 nm using

total chip power measurements in the context of a retrospective workload and microarchi-

tecture analysis. In contrast to the total chip power measurements for specific workloads,

we use the power and area budget allocated to a single-core to derive the Pareto frontiers

and combine those with our device and chip-level models to study the future of multicore

design and the implications of technology scaling.

Chakraborty [18] considers device-scaling and estimates a simultaneous activity factor

for technology nodes down to 32 nm. Hempstead et al. [46] introduce a variant of Amdahl’s

Law to estimate the amount of specialization required to maintain 1.5× performance growth

per year, assuming completely parallelizable code. Chung et al. [22] study unconventional

cores including custom logic, FPGAs, or GPUs in heterogeneous single-chip design. They

rely on Pollack’s rule for the area/performance and power/performance trade-offs. Using

ITRS projections, they report on the potential for unconventional cores considering parallel

kernels. Hardavellas et al. [45] forecast the limits of multicore scaling and the emergence of
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dark silicon in servers with workloads that have an inherent abundance of parallelism. Using

ITRS projections, Venkatesh et al. [97] estimate technology-imposed utilization limits and

motivate energy-efficient and application-specific core designs.

Previous work largely abstracts away processor organization and application details. This

study provides a comprehensive model that considers the implications of process technol-

ogy scaling, decouples power/area constraints, uses real measurements to model single-core

design trade-offs, and exhaustively considers multicore organizations, microarchitectural fea-

tures, and real applications and their behavior.

3.5 Summary and Open Questions

Our first order multicore model projects a tighter upper bound on performance than previ-

ous Amdahl’s Law based approaches. This extended model incorporates abstracted single

threaded core designs, resource constraints, target application parameters, desired architec-

tural features, and additional first order effects—exposing more bottlenecks than previous

versions of the model—while remaining simple and flexible enough to be adapted for many

applications.

The simple performance/resource constraint trade-offs that are inputs to the model can

be derived and used in a diverse set of applications. Examples of the input trade-off functions

may be Pareto frontiers like those presented in Azizi et al. [5] and Esmaeilzadeh et al. [27],

known designs that an architect is deciding between, or even more abstract trade-off functions

like Pollack’s Rule [83] used in Hill and Marty [48]. The proposed speedup calculation

technique can be applied to even more detailed parallelism models, such as Eyerman and

Eeckhout’s critical sections model [32]. This complete model can complement simulation

based studies and facilitate rapid design space exploration.

The upper-bound model’s flexibility is also the source of its most significant limitations.

The microarchitecture is described with a single performance score, so most changes to the

microarchiteture cannot be accurately modeled. The coarse-grain architectural flexibility

limits more fine-grained architectural flexibility. Further, per-benchmark results have lim-

ited accuracy since they are based on so few inputs. Performance limiters like instruction

level parallelism, long-latency instructions, and resource contention for execution units are

not modeled, leading to optimistic projections. This leads to our next model, modular

microarchitecture extensions to predict performance for real cores.
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4 modular microarchitecture extensions

This chapter describes modular microarchitecture extensions to previously published S- and

M - models.

Goals and Constraints: The immediate goal of this work is to use previous performance

models to accurately predict performance on real hardware; a more far-reaching goal is to

make it easier for architects to modify custom models to accurately explore the impact

of proposed microarchitecture changes; and the ultimate goal is to provide a basis for the

translation-based architecture extensions in Chapter 5.

In the previous chapter, we described upper-bound performance models that used a

known performance on a representative workload (e.g., SPECmark) along with a few simple

inputs to predict performance for multi-core topologies. Because of that model’s approach,

per benchmark speedup predictions had errors up to 70% for S-Cores and higher for M -

Cores, but trends over a set of benchmarks tended to be more accurate. In this chapter, we

consider the case where we can run the workload of interest on hardware, but are interested

in predicting performance on that workload using an analytic model1.

Inputs: Our assumptions in this chapter include that we have real hardware on which we

can take measurements using performance counters and either binary instrumentation or an

emulator, any changes to the hardware do not lead to changes in memory behavior (or we

can accurately predict those changes), we have binaries compiled for the architecture under

study, and that we are not using a simulator for any measurements. Relying on hardware

and either binary instrumentation or emulation limits the types of measurements that we

can make, but also increases tool portability and makes data collection very fast.

Use-case: The use-cases for this model include predicting performance when changes are

made to the microarchitecture (e.g., issue width or instruction latency); the predicted per-

formance can be used either to investigate the performance impact of a specific change or

for design space exploration. Applying the example to our running dark silicon projections

example, the detailed mechanistic models in this chapter can be used to add projections for

1See the Use-case paragraph below for the utility of such a model.
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new cores that are outside of the Pareto-frontier we used previously. In another application,

these models are an essential component of our cross-architecture performance prediction in

Chapter 5.

The chapter starts with model descriptions for both S- and M - cores developed by others.

We then consider the models as a modular framework upon which we build modular exten-

sions to capture additional features. We adapt the models to specific cores using subsets of

those modular extensions, and validate the resulting models against measurements on real

hardware. Finally, we use the models to generate multicore projections and explore the dark

silicon projections from the previous chapter in more detail. The chapter concludes with

related work and a discussion of open questions.

4.1 Background: Generic Models

We leverage two first order models that were developed independently: Eyerman’s out of

order S-Core model [56, 33] and Hong and Kim’s M -Core model [49, 88]. Additional mech-

anistic models for both S-Cores and M -Cores may have slightly different assumptions, but

the approaches are all similar. We discuss these other approaches in more detail in this

chapter’s related work, Section 4.7.

At the highest level, both models measure the amount of time required for computation,

memory accesses, and control, and the amount of time from each of those categories that

can be overlapped:

T = Tcomputation + Tmemory + Tcontrol − Toverlap (4.1)

In each section below, we describe the computation for each of the components in Equa-

tion 4.1 for the S- and M - models as described in previous work. In Sections 4.2 and 4.3, we

will describe extensions to these models and modifications required to use only real execution

on real processors along with, if necessary, binary instrumentation (S-Cores) or emulation

(M -Cores, since binary instrumentation is unavailable)2.

4.1.1 S-Core Performance Models

Mechanistic S-models include the Tcomputation, Tmemory, and Tcontrol terms from equation 4.1:

2Previous S-Core models and some M -Core models assumed access to a simulator.
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Figure 4.1: Basic Execution Models for S-Cores.

T = Tcomputation + Tmemory + Tcontrol (4.2)

For S-Core Models, the Tcomputation term is a function of the number of instructions and how

quickly they can be executed, assuming no pipeline stalls. The remaining two terms, Tmemory

and Tcontrol, quantify the expected pipeline stalls due to events such as memory accesses and

branch mispredictions. The interval approach is shown in Figure 4.1 for both In-Order and

Out-of-Order cores and notation used in this chapter is summarized in Table 4.1.

The memory cost is modeled as the number of cache miss events (of various types), the

latency of each miss event, and the effect of the miss event on the issue rate. The cache

miss events considered depend on the hardware; previous work includes L1 cache misses, L2

cache misses, ITLB misses, and DTLB misses [33] . The complete set of inputs used in the

S-Core model are listed in Table 4.1.

The computation cost is modeled as the number of instructions, the amount of instruction

level parallelism, and the average instruction latency. Instruction level parallelism and the

average instruction latency together determine the IPC (independent of stalls, similar to

IPCexe in Chapter 3). Instruction level parallelism has slightly different derivations between

In-Order cores and Out-of-Order cores, as detailed below.

In-Order: Basic in-order single threaded processor models have been proposed in multiple

contexts [15, 37, 13, 26, 64]. Instruction stalls can be caused by dependencies, long latency

instructions, and cache misses even at nearby first-level caches. To find the average time

required for each instruction type, we find, for each instruction type, the average time re-

quired to maintain in order completion and time required for for branch mispredictions, in
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order pipeline, and dependency information [26, 37]:

Tcomputation =
NI

D
+ Pd ×Nd + PL ×NL (4.3)

In the above equation, NI is the number of instructions, D is the issue width, Pd is the average

penalty for dependent instructions, Nd is the number of instructions that have dependent

instructions following them, PL is the average penalty for long latency instructions, and NL

is the number of long latency instructions.

Out-of-Order: For out-of-order cores, Tcomputation = N/IPC. Here, we find IPC by not-

ing that IPC = ILP/lavg, where IPC and ILP are measured without considering processor

stalls due to memory, branch mispredictions, or other non-ideal behavior.

In previous work, instruction level parallelism is measured by simulating benchmarks

with extra instrumentation that measures the length of each dependency chain (that fits in

the instruction window) every cycle [56]. The average ILP is, then, the average dependency

length divided by the processor’s issue width. Rather than use a simulator, we measure

ILP using a Pin based tool, MICA, which measures ILP by maintaining an instruction

window and checking how many instructions are available to be issued each cycle. The two

approaches are equivalent.

Next, we describe an M -Core model at a similar level of detail.

4.1.2 M-Core Performance Models

This section presents an overview of previous GPU models; refinements to the model are in

the next two sections. We consider Hong and Kim’s model and its extensions [49, 88].

At the top level, the Hong and Kim model combines time spent on execution (including

control) and time spent on memory accesses, then subtracts overlap:

T = Tcomputation + Tmemory − Toverlap (4.4)

The exeuction pipeline that leads to these overlaps is shown in Figure 4.2.

The key idea of the M -Core models is to figure out how much work (computation and

memory) occurs per warp, how many warps are co-located on each SM, whether there are
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Table 4.1: Inputs to S-Model and Modules Where Used.

Software Input Description Module(s)

f∞ Fraction of code that can be parallelized —
NI Total number of instructions Issued Insts.
NM Total number of µ-ops Issued Insts.
ni Number of instructions of type i Avg. Inst. Lat.
nµ Number of µ-ops of type µ Avg. Inst. Lat.
ILP Instruction level parallelism, given window size ILP
µLP µ-op level parallelism, given window size ILP
NmL1 Number of L1 cache misses L2 Accesses
NmL2 Number of L2 cache misses L3 Accesses
NmL3 Number of L3 cache misses Mem Accesses
NmITLB Number of ITLB cache misses DTLB Misses
NmDTLB Number of DTLB cache misses ITLB Misses
NmL3 o Number of L3 cache misses that overlap Mem Accesses

Core Level Input Description Module(s)

D Issue width ILP, Tmem
W Instruction window size (= D, for in-order cores) ILP
li Latency of instruction of type i (cycles) Avg. Inst. Lat.
pi Ports on which instruction may issue (0-5) Resource Cont.
M(i, µ) Mapping from instructions to µ-ops Issued Insts.
ν Core frequency (MHz) Ttotal
Ldr Window drain time Tcontrol
Lfe Front end pipeline length Tcontrol
tL1 L1 cache access time (cycles) Avg. Inst. Lat.
tL2 L2 cache access time (cycles) L2 Accesses
tL3 L3 cache access time (cycles) L3 Accesses
tmem Memory access time (cycles) Mem. Accesses
tITLB Latency of an ITLB miss (cycles) ITLB Misses
tDTLB Latency of a DTLB miss (cycles) DTLB Misses

Chip Level Input Description Module(s)

BWmax Maximum memory bandwidth (GB/s) —
b Bytes per memory access (B) —

any chip-wide bottlenecks (e.g., memory bandwidth exceeded), and finally how much of the

work overlaps. This approach is detailed in [49, 88].
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Figure 4.2: Basic Execution Models for M -Cores

4.2 Customizable Modular Mechanistic Models

In this section, we describe the new modules that we added to accurately predict performance

on real hardware. We split the modules into S-Core and M -Core specific modules. Although

some modules were initially developed for a particular architecture (e.g., the resource con-

straint module was initially developed to improve accuracy in Sandybridge performance

projections), the modules are generic and can be applied to multiple architectures (e.g., the

resource constraint module is also used for Nehalem architectures).

This section describes new modules without focusing on where they are used; in the next

section, we describe core-specific models built by picking the correct custom modules to add

to the model and include the validation of those models.

4.2.1 S-Core

When each architectural component’s effect is considered independently as in Figure 4.3, it

highlights the modular nature of the mechanistic model. Each effect is its own independent

module, and new effects can be layered into the model by adding new modules. Below,

we explain a set of new modules and how they can be incorporated into the model. In

Section 4.3, we will pick specific modules to model specific cores and show the accuracy of

the resulting models.
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Table 4.2: M -Core Inputs and Modules Where Used.

Software Input Description Module(s)

WSM Number of warps per SM Ttotal
NI Total number of instructions per warp Tparallel,Toverlap
NM Total number of micro-ops per warp Tparallel,Toverlap
NSFU Total number of micro-ops that execute in SFU per warp SFU
Nsync Total number of synchronization instructions per warp Synchronization
NCF div Extra instructions due to control flow divergence per warp Branches
Ncon Memory bank conflict overheads per warp Banks
ni Number of instructions of type i per warp Avg. Lat.
nµ Number of µ-ops of type µ per warp Avg. Lat.
ILP (W ) Instruction level parallelism per warp IPC
Nmem Number of Memory Accesses per warp Tmem,Toverlap
Noff chip Number of off-chip memory accesses per warp Tmem,Toverlap
avg trans warp Average transactions per access Tmem,Toverlap

Core Level Input Description

D Issue width Tparallel
W Instruction window size Tparallel
li Latency of instruction of type i (cycles) Avg. Lat.
M(i, µ) Mapping from instructions to µ-ops Issued Insts.
ν SM frequency (MHz) Ttotal
SM Number of SMs Ttotal
SP Number of SPs per SM Tparallel
tmem Memory access time (cycles) Tmem
∆ Transaction delta Tmem

Chip Level Input Description Module(s)

BWmax Maximum memory bandwidth (GB/s) Tmem
b Bytes per memory access (B) Tmem

Issued Instructions: A key input to the model is the number of instructions executed,

along with their latencies and the amount of instruction level parallelism. Although the

model is intrinsically agnostic to the ISA, the x86 ISA’s use of micro-ops does introduce an

additional layer of complexity. To properly model the processor, we need to consider the

instructions as they are actually executed, in the micro-op form.

Using x86 cores thus introduces new complexity: instructions from a trace do not include

the micro-ops that are actually executed and each instruction must be parsed to see which

instructions include memory operations. This is addressed by examining the operands for

each instruction to find any memory operands. Further, we use a dictionary with known
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Figure 4.3: Hierarchical modules that effect performance for S-Cores. New modules have
dotted borders. The starred Naccel module is discussed in Chapter 6.

micro-op breakdowns (and latencies) for each instruction [35].

Since the model actually operates at the micro-op level, not the macro-op level, the

impact on the ILP, which was measured at the macro-op level, must also be addressed.

However, we observe that ILP = µLP : since each instruction is assumed to take one cycle

in the ILP calculation and micro-ops are (generally) a dependent chain, the net effect on the

ILP is zero:

µLP =
NM

Tcomp,M
=

NI ∗ avg M per I

Tcomp,I ∗ avg M per I
= ILP (4.5)

L3 Accesses: Adding a layer of cache is relatively straight-forward. The key decision is

whether the module inflates instruction latencies or whether it causes a pipeline stall. In

this case, we assume that the addition of an L3 cache makes L2 cache misses just act like

a long instruction (instead of a stall). L3 cache misses lead to memory accesses, which we

assume still cause a pipeline stall.
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In-Order Issue Constraints: In-order, superscalar pipelines imply that two instructions

that issue in the same cycle may not be dependent on each other. In previous work, the

penalty due to this dependence requirement only included instructions stalled after the de-

pendent instruction. We update this penalty to include the dependent instruction. For our

2-wide processors, this equation becomes:

Pd = Ndep ×
D − 1

D
(4.6)

Here, Ndep is the number of instructions that are dependent on the next instruction, D is the

issue width, and (D− 1)/D is the probability that two instructions that have a dependence

are in the same stage.

To find Ndep, we directly use a Pin-based tool, MICA, which includes an ILP measurement

component [51]. Since we are only interested in dependency distances of one, we observe

that we can use MICA’s ILP calculation with the instruction window size set to 2 to get

the global probability that an instruction is dependent on the instruction immediately after.

The ILP tool assumes an out-of-order processor with single cycle instructions, but by setting

the window size to two, we force it to only consider two instructions at a time. Since these

two instructions can only issue at the same time if there is no dependence between them, we

can use this to find the probability that each instruction has a dependency distance of one:

pdistance=1 = ILP − 1 (4.7)

Note that ILP is always greater than or equal to one given the assumptions in the MICA tool.

We could get this information more directly, but this allows us to use the same off-the-shelf

tools for both the In-Order and Out-of-Order models. Note that this approach will not work

for wider issue widths, but we assume that issue widths greater than two will not be used

for in-order processors.

Resource Constraints for Simple Pipelines: Each pipeline in a core may only be

able to execute certain instructions. For relatively narrow pipelines (e.g., dual-issue), these

constraints are fairly simple to model. Below, I describe the approach for the Atom pipeline;

the approach for the Cortex-A8 is similar.

We start by computing the fraction of instructions that can issue from only port 0, only
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port 1, or either port. Note that memory accesses, integer shift/shuffle/pack instructions,

multiplies, divides, and other complex instructions only issue from port 0, but (some) SIMD

instructions can issue from either port, as shown in Figure 4.4a.

Then, we distribute the instructions that can issue to either port across the two ports to

get the best balance possible between the two pipelines:

fportX = fregmov + fINTadd + fBOOL
fport1 = ffpadd + fbranch + fLEA
fport0 = 1− fportX − fport1

Then, we use a simple queuing model to find any overheads introduced by the unbalanced

pipeline, as described below.
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Resource Contention for Wider Pipelines: As shown in Figure 4.4b, the Sandybridge

architecture includes six execution ports, but each port has only limited functionality (three

execution ports with varying SIMD capabilities, two load ports, one store port). In most

cases, this is not an issue: the distribution of ports tends to be sufficient given the ILP

and instruction mixes for most programs. However, for some benchmarks (especially SIMD

heavy benchmarks), the pipeline can be a constraint.

The resource contention module computes the impact of any contention for the individual

pipelines. To do so, it first finds the probability than a micro-op that is ready to issue will

be issued to a given port, pµ. We assume a uniform distribution of instruction types. This is

possible because we keep a dictionary with instructions as keys and the number of micro-ops

are issued as a result of that instruction to each port (in some cases, the instruction may

be able to issue to more than one port; in rare cases for less commonly used instructions,

we do not have complete mapping information and make an informed guess). Since some

instructions can issue to more than one port, we use an iterative approach to balance the

instructions across ports as best as possible. This may lead to an optimistic distribution of

instructions across ports. The approach is shown in Listing 2.

Then, we find the average arrival rate for each execution port i, λi, as a function of the

IPCM , D (issue width), and the probability that a ready µ-op will be issued to that port,

pµ:

λi =
min(D, IPCM)

D
∗ pµ (4.8)

Then, observing that pipelined execution units mean that an instruction can be issued

to a port every cycle (service time, ω, is one), we use basic M/M/1 queuing equations for

each pipeline i to find the average wait time for each pipeline:

Wi =
1

ω − λ
− 1

ω
=

1

1− λ
− 1 (4.9)

Finally, the new average micro-op latency, lµ, is increased by the largest wait time across

the execution ports, Wmax:

lµ = lµ +Wmax (4.10)
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for all instruction types, i do
for all µ in M(i, µ) do

nµ+ = ni;
end

end
for all µ-op types, µ do

for all r in R(µ, r) do
nr+ = nµ;

end

end
for all µ-op types, µ do

if length(R(µ, r)) == 1) then
Add µ-op to that port;

end

end
while unbalanced do

for all µ-op types, µ, where length(R(µ, r)) > 1) do
try a new distribution of µ-ops

end

end

Algorithm 4.1: Approach to find distribution of instructions across ports.

4.2.2 M-Core

As discussed for S-Cores, we can consider the M -Core model in a modular fashion, as shown

in Figure 4.5. This representation highlights the modular nature of the models. Like in the

S-Core model, we consider each component as an independent effect. However, unlike the

S-Core model, in the M -Core model threading can hide latencies from some events. This is

captured in the Toverlap module.

Below, we describe additions or modifications to modules in the M -model. GPU architec-

tures are classified by their compute capability; early GPGPUs had compute capability 1.x,

Fermi architectures use compute capability 2.x, and Kepler architectures have compute ca-

pability 3.x. The compute capability includes general architectural factors including ability

to coalesce memory accesses, support for atomic and sync instructions, dynamic parallelism,

maximum grid and block sizes, shared/local/constant memory sizes, number of registers

per SM and per thread, and number of SP s/SFUs/warp schedulers/instructions issued per
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Figure 4.5: Hierarchical modules that effect performance for M -Cores. New modules have
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scheduler per SM. Where relevant, we discuss the impact of the compute capability on each

module.

Previous work [88] added support for caching and limited support for the impact of ILP

on wider SMs. Below, we discuss the impact of two compute capability factors, memory

coalescing and the ability to issue multiple instructions per clock in a single SM; we also

discuss the impact of GPU machine code and SFU instructions. Each factor is accounted

for by adding a new module to the model.

Instruction timing: In recognition of the differences in instruction throughput for dif-

ferent instructions, we use the instruction throughput and latency findings from [100] to

refine the average instruction latency calculation. In addition, we observe that some ptx

instructions are mapped to multiple SASS instructions on the actual hardware. Although

previous work has used either ptx instructions directly [49] or used decuda to get actual
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SASS instructions [88], we use a dictionary to map ptx instructions to the SASS (essentially,

micro-op) equivalents.

SFU Instructions: In previous work, the SFU instruction cost is considered only in terms

of whether or not SFU work can be overlapped with regular computational work [88]. Al-

though this is an important consideration, the impact of issuing SFU instructions must also

be considered. We therefore include SFU instructions in our total instruction count. When

SFU instructions are included in the total instruction count, the cost of issuing them is

included in the computation of Wparallel. If their issue cost is not included, they can be

completely hidden and effectively execute for free.

Multi-Instruction Issue To add multi-issue, we use ILP to find the probability that

multiple instructions issue per cycle, as described here. In previous work, the assumption is

that the number of instructions in flight per SM is limited by ITILPmax, the amount of ILP

required to hide all pipeline latency [88],:

ITILPmax =
l

warp size/SIMD width
(4.11)

Since Kepler SMs are wide and sophisticated enough to issue multiple instructions per

warp, we update this equation:

ITILPmax = W × l

warp size/SIMD width
(4.12)

Memory Coalescing The key impact of compute capability that we consider is its impact

on memory coalescing. We derive empirical functions to find the amount of warp coalescing

based on memory access patterns; previous work has estimated warp coalescing through

code inspection [49] or through direct measurement [88]. Warp coalescing is a key input as

it can be the difference between 32 individual memory transactions and a single memory

transaction for a single warp’s memory load or store.

• Compute Capability less than 1.2: Warp coalescing is on the half-warp level. All

threads in a half warp must access a single aligned 64B, 128B, or 256B segment, and

they must issue addresses in sequence in order to be coalesced: the kth thread in a
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half warp must access the kth word in a segment (although not all threads need to

participate in the memory access). If these requirements are not met, each thread in

the warp will issue a separate 32B transaction. We measure the warp coalescing rate

by modifying a built-in trace analyzer for Ocelot that previously found the coalescing

rate for compute capability 1.2 or 1.3.

• Compute Capability 1.2 or 1.3: Coalescing occurs for any pattern of accesses that

fits into a segment (32B for 8-bit words, 64B for 16-bit words, or 128B for 32- and

64-bit words). The transaction size can be halved if only the lower or upper half of the

transaction will be used. We measure the warp coalescing rate using a built-in trace

analyzer for Ocelot.

• Compute Capability 2.0 or higher: The addition of caching simplifies the problem.

Memory accesses by threads of a warp are coalesced into the minimum number of L1-

cache-line-sized aligned transactions necessary to satisfy all threads. We measure the

warp coalescing rate directly for Kepler GPUs using Nvidia’s Visual Profiler.

Figure 4.6 shows the expected number of memory transactions per warp, a measure of

warp coalescing, for each compute capability using the approach detailed above for each

benchmark in the CAB suite. Note that 32 transactions per warp implies that every data

element generates its own memory transaction, while one transaction per warp is suggests

perfect coalescing.

4.3 Modeling Specific Cores

Below, we discuss the modules from the previous section required for each core, real world

considerations, and the measured and predicted performance for each S-Core and M -Core

under evaluation, with particular attention paid to the goals below. For both S-Cores and

M -Cores, we find the model’s accuracy on the CAB and Rodinia benchmark suites3.

As discussed in Chapter 2, the S-Core and M -Core models are validated against a rep-

resentative set of cores. When comparing the model results against performance results on

real cores, we have four key goals:

3The subset of Rodinia benchmarks and our selection of the CAB benchmarks was discussed in Chapter
2.
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• Automation: Push-button predictions; no per-benchmark refinements.

• Accuracy: Individual measurements are accurate; analyzed through per-benchmark

analysis for each core.

• Inter-Architecture Trends: Within S- or M -Cores, trends correctly predicted; an-

alyzed through the geometric mean, maximum, and minimum speedup for each core

at the end of the S-Core and M -Core subsections.

• Intra-Architecture Trends: Between S- and M -Cores, trends correctly predicted;

analyzed through the per-benchmark multicore speedup at the end of this section.

Before describing our specific models and their accuracy, we briefly discuss the state-

of-the-art for S-Core and M -Core models. M -Core models have been previously validated

on real hardware with simple kernels and either do not report the error in execution time

estimates or only provide predicted relative speedups between different algorithms [49, 88].

We are not aware of previous work that includes M -Core model for Kepler architectures.

S-Core models are validated on simulators, where some microarchitecture effects are missing

and simulation errors may introduce random noise. Our goals in this chapter are to increase

accuracy over state-of-the-art and to include important S-Core and M -Core specific details

where they have not been previously modeled.
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In this chapter, our key motivation is to build a set of S-Core and M -Core models that we

can use in Chapter 5 for cross-architecture modeling. We are not trying to accurately model

small changes in the microarchitecture - we are more interested in performance changes on

the scale of 50% than 5%. As a result, larger errors are tolerable.

We now describe our S-Core and M -Core models and the accuracy which we achieve.

4.3.1 S-Cores

We consider four specific S-Cores: the Cortex-A8, the Atom N450, a Xeon 5220, and a

Sandybridge i7-2600, as described in Chapter 2. For each core, we detail the additional

modules that we added to accurately model the core and then discuss the accuracy of our

performance predictions. Each core’s architecture and timing information is from a mix of

vendor-supplied processor white papers and other sources [35, 43, 42].

For each S-Core, we include results for the CAB benchmark suite and the Rodinia bench-

mark suite4. For each suite, we include a bar-graph showing measured and predicted SIMD

speedup over scalar Sandybridge performance5. In the bar-graphs, we show both a generic

prediction and a custom prediction. The generic predictions are from a direct implemen-

tation of the previous work using performance counter and binary instrumentation tools;

these predictions do not include any custom modules. The custom predictions for each core

include modules listed in a table below the relevant figure. We conclude this section by

looking at intra-S-Core accuracy, comparing accuracy trends across the cores. All results in

this section are for a single core.

S1: Cortex-A8

Among the cores that we examine, the Cortex-A8’s architecture is the simplest and requires

the fewest custom modules. In fact, other than modifications required to get our data

from real hardware instead of from a simulator, the in-order issue module, and the resource

constraints for simple pipelines modules, the Cortex-A8 requires no additional modifications.

The Cortex-A8 includes a NEON SIMD unit that is separate from the other execution

units; there is a 20-cycle penalty to move data from the general purpose pipeline to the

NEON unit (although is hidden with enough instructions). Because our SIMD versions of

4Additional CAB results are in Appendix D; all Rodinia graphs are in Appendix E.
5Due to measurement limitations, for the Cortex-A8 we show only relative error, as discussed below
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Figure 4.7: S-Model for Cortex-A8. Error in normalized cycle counts given at top of graphs.

benchmarks are written with x86 intrinsics, we only used scalar code for the Cortex-A8. If

we had used the NEON unit, it would require an additional module to predict the impact

of this 20-cycle penalty.

For the Cortex-A8, we are only able to get full application measurements; we were unable

to use performance counters on regions of code. This is an infrastructure problem that

has been fixed for newer ARM boards and operating systems. For the purposes of this

dissertation, the only limitation of using full application measurements is that we cannot

compare against Sandybridge kernel performance as we do for all other cores. A detailed

comparison of these architectures is available in prior work [12].

Figure 4.7 shows our model accuracy for the Cortex-A8 on the CAB and Rodinia bench-

marks. The accuracy is severely impacted by two factors: (1) the full application profiling
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Figure 4.8: S-Model for Atom. Error in speedups given at top of graphs.

includes many compulsory cache misses and (2) the Cortex-A8 has only 256 MB of memory.

The operating system and application data are both stored on an SD-card attached to the

same board as the core, but access times are significant (greater than 1 ms/access) and not

modeled. Adding SD-card accesses would be an additional module in the S-Core custom

model, and would improve accuracy significantly for the Cortex-A8.

We next consider a core with a similar issue model, but added complexity from the x86

ISA and additional performance features, the Atom.

S2: Atom

Figure 4.8 shows predicted speedups over the baseline, a Sandybridge core running scalar

code. We pick this metric so that we can compare S-Cores and M -Cores against a single
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baseline. Since the Atom’s clock rate less than half that of the Sandybridge, the Atom is

an in-order core, the Atom has a narrower issue rate, and the Atom is also running scalar

code, these “speedups” are actually slow-downs. The benchmarks that run the fastest are

still only half as fast as the Sandybridge.

The Atom architecture requires four extra modules: the x86 micro-op conversion module,

the in-order execution module, the SIMD module, and the resource constraints for simple

pipelines module.

We plot results for both the CAB benchmark suite and the Rodinia benchmark suite6;

these speedups are only for the main computation kernels in the benchmarks. For CAB

benchmarks, if there are multiple kernels, they are aggregated into a single speedup number.

Note that the lbm benchmark did not compile correctly for the Atom core, despite passing

the correct flags.

We find that the errors are relatively large for both benchmark suites: on average, we

predict performance that is 2× better than it actually is for both suites. These errors are,

again, due to under-predicting the performance impact of memory and disk accesses. We

note that the Atom’s wall clock execution time is actually slower than the A8’s wall clock

time for at least two of the complete benchmarks due to disk accesses.

In the figures, we show both generic and custom predictions. Our custom predictions are

1.3× and 1.4× better than generic predictions from previous work on average for the CAB

and Rodinia suites, respectively. Although our errors are still large, they are better than our

implementations of state of the art analytic models.

S3: Xeon

In Figure 4.9, we show the Xeon performance speedups over the Sandybridge scalar baseline.

Benchmarks are ordered from least to greatest measured speedup within each benchmark

suite. For the hand-vectorized CAB benchmarks, we observe speedups that range from less

than one (due to minimal vectorization and Xeon’s relatively lower expected performance

than the Sandybridge) up to four times (the width of the Xeon’s SIMD unit).

To model the Xeon core, we use the x86 micro-op module, out-of-order execution module,

resource contention module, L3 cache module, and branch replay module.

6See Appendix E.
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Figure 4.9: S-Model for Xeon. Error in speedups given at top of graphs.

We next consider the errors in speedup predictions for the CAB and Rodinia benchmark

suites7. We observe that the errors in predicted speedups over a scalar Sandybridge imple-

mentation range from -16% to 127%, with an average error of 36%. This is more accurate

than our previous results for the A8 and Atom models, as the Xeon’s larger memory leads

to minimal stalls for disk accesses.

The remaining errors are due to memory overlapping and performance optimizations

which are not included in our model. Accurate predictions for the fraction of off-chip memory

accesses that are over-lapped are difficult and have a large impact on this out-of-order core.

The impact is clear in our predictions for the Rodinia benchmark suite, where we have larger

7Recall that we include only a subset of the Rodinia benchmarks that compiled on all platforms
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Figure 4.10: S-Model for Sandybridge. Error in speedups given at top of graphs.

data-sets which lead to more off-chip data accesses. The error in this more challenging set of

benchmarks ranges from -70% to 457% and is 55% on average. This suggests that additional

work on predicting memory access overlaps would improve our accuracy.

We observe that the custom modules have significantly higher accuracy than the generic

predictions. With generic predictions, errors across the two suites range from -66% to 484%.

The Average Absolute Error is 75% for the CAB benchmark suite and 197% for the Rodinia

benchmark suite. This is 1.7× and 2.0× higher, respectively, than the Average Absolute

Error using the custom models.
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S4+: Sandybridge

To model the Sandybridge core, we use the x86 micro-op module, out-of-order execution

module, resource contention module, L3 cache module, and branch replay module. Note that

these are the same modules as we used for the Xeon core, but that we have different hardware

characteristics for each. In particular interest for the model, the Xeon and Sandybridge have

different instruction timings, pipeline constraints, and core frequencies.

In constructing the Sandybridge model, several microarchitectural details led to addi-

tional differences in the model as compared to previously published work:

• The use of SIMD code does not fundamentally impact the performance model and thus

does not lead to a new module; SIMD instructions are added to the latency, resource

contention, and micro-op dictionaries, but no other change is required. One notable

change is that SIMD loads and stores take, on average, a cycle longer than scalar loads

and stores.

• Sandybridge has an issue width of four instructions, but, after the issue cycle, instruc-

tions are decoded into micro-ops and there is a micro-op cache for instructions in loops.

As a result, Sandybridge can supply up to six instructions per cycle to the execution

units; we therefore set what was previously called the issue width to six.

• Sandybridge has two window sizes that could be picked from when finding the ILP:

the actual instruction window and the reservation station micro-op window. Although

we are interested in the micro-op ILP, we find that looking at all instructions in the

larger instruction window provides a better estimate of ILP

• Although we account for some speculative instructions in the branch prediction cal-

culation, we find that due to additional speculative execution, small errors in the

instruction to micro-op process, and the potential for micro-op fusion, the number of

micro-ops predicted from the number of instructions is not always correct. As a result,

we use the number of micro-ops counted by the performance counters as an input.

In Figure 4.10, we show S-Model accuracy on CAB benchmarks for the Sandybridge core.

Note that speedup trends are similar to those observed for the Xeon. For the Sandybridge,

we allowed the compiler to use AVX instructions; as a result, bfs is nearly 8× faster than

the scalar version.
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Figure 4.11: S-Model Trends Across Cores.

For the CAB benchmark suite, we find that errors in speedup predictions range from

-53% to 114%, with an average of 29%. The range is larger for the Rodinia benchmark

suite: errors in speedup predictions range from -77% to 641% with an average error of 83%.

The large under-predictions for speedups are due to unexpected architectural performance

optimizations that are not included in the model. We believe that over-predictions for

speedups (e.g., large under-predictions for execution time) are caused by over-estimating the

number of over-lapped memory accesses, as discussed in the Xeon model.

As for Xeon, we note that the generic prediction model has even larger errors: errors

in predictions range from -86% to 748%. The Average Absolute Error is 1.6× and 1.7×
higher for the generic predictions than for the custom predictions for the CAB and Rodinia

benchmark suites, respectively.

Intra-S-Core Accuracy

Finally, we consider accuracy trends across S-Cores. In Figure 4.11, we have plotted the

geometric mean speedup across each benchmark suite for the Atom, Xeon, and Sandybridge

S-Cores8. The whiskers on each bar show the maximum and minimum speedup. We observe

that as the core complexity increases, our prediction accuracy decreases. There are additional

8Cortex-A8 is excluded as we only have per-benchmark, instead of per-kernel, information for it.
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second-order effects that we have not modeled that become important as core performance

increases.

4.3.2 M-Core

In this section, we consider two specific cores: a pre-Fermi core, the FX Quadro 580, and a

Kepler core, the GeForce GTX 660 Ti. Although we do not evaluate the model on a Fermi

core, by including both a pre-Fermi and Kepler architecture, we span all changes included

in the Fermi architecture. For each core, we detail the additional modules that we added

to accurately model the core and then discuss the accuracy of our performance predictions.

Each core’s architecture and timing information is from a mix of vendor-supplied processor

white papers and other sources [78, 79, 100, 1].

For each M -Core, we include results for the CAB benchmark suite and the Rodinia

benchmark suite9. For each suite, we include a bar-graph showing measured and predicted

per-M speedup over measured scalar Sandybridge performance. We conclude this section

by looking at intra-M -Core accuracy, comparing accuracy trends across the cores.

M1: Pre-Fermi

We first consider a pre-Fermi M -Core, the Quadro FX580. For this core, we add an in-

struction timing module and our custom implementation of the SFU and Sync instruction

overhead modules.

In Figure 4.12, we show the per-SM speedup over a Sandybridge S-Core running scalar

benchmarks. Note that all benchmarks except for montecarlo and raycasting are actually

slower on the preFermi SM; this is not surprising since the pre-Fermi core’s frequency is only

1.12 Ghz and the core is designed to be one of many units used in parallel.

On the CAB benchmark suite, the percent error in predicted speedups ranges from -42%

to 253%. Large errors are most common for benchmarks with very low speedups (less than

0.25×). Excluding these points, our errors range from -55% to 34% with sgemm and lbm as

outliers with errors of 118% and 253%, respectively. We overpredict speedups for these two

benchmarks. We note that these benchmarks have more instructions and memory accesses

9Additional results for CAB cores in Appendix D and all results for Rodinia in Appendix E.
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Figure 4.12: M -Model for Pre-Fermi. Error in speedups given at top of graphs.

per warp than any other benchmark that we consider. We believe that our implementation

overestimates the level of memory level parallelism for these benchmarks.

For the Rodinia benchmark suite, we over-predict speedups in all cases, by between 3%

and 1015%. For benchmarks where the chip performance (4 SMs) would at least match

Sandybridge performance, the Rodinia speedups that we predict all have errors of 52% or

less. For the benchmarks that do not experience speedups, we correctly predict that the

benchmark is not sped up, even if the error in the prediction is large.

Finally, we note that although our custom model does improve predictions for the ma-

jority of benchmarks, the Average Absolute Error is only improved by 6%.



71

ra
y
ca

st
in

g

sa
x
p
y

lb
m

sp
m

v ff
t

co
n
v
o
lu

ti
o
n

sg
e
m

m

m
o
n
te

ca
rl

o

0

4

8

12

16

20

24
S
p
e
e
d
u
p
 o

v
e
r 

B
a
se

lin
e

-66%

29%

10%

-44%

1381%

653%

-52%

125%

67%

67%

-91%

-29%

-97%

-25%

5%

-46%

Measurement

Generic Prediction

Custom Prediction

Modules Instruction Timing, SFU & Sync Instructions, Caching, Multiple Issue
Limitations No binary instrumentation
Accuracy CAB:-29% to 29% for benchmarks with speedups, Avg. Abs. Error 127%

Rodinia: -45% to 74%

Figure 4.13: M -Model for Kepler. Error in speedups given at top of graphs.

M3: Kepler

We next consider a Kepler M -Core, the more powerful M -core. For this benchmark, in addi-

tion to the modules used for the pre-Fermi M -Core, we add modules for multiple instruction

issue, caching, and improved warp coalescing.

In Figure 4.13, we show the per-SM speedup over a Sandybridge S-Core running scalar

benchmarks. A single Kepler SM can be much higher performing than a single pre-Fermi

SM since it has 24× more SMs, more SFUs, better memory coalescing, higher memory

bandwidth, and can issue more threads per cycle. This is reflected in the higher per-SM

speedups, which range from negligible to over 24×.

We next consider the errors in our predicted speedups. The errors for CAB benchmark



72

pre-Fermi Kepler
0

1

2

3

4

5

6

S
p
e
e
d
u
p
 o

v
e
r 

B
a
se

lin
e

Measured

Predicted

(a) CAB Benchmarks

pre-Fermi Kepler
0

1

2

3

4

5

6

S
p
e
e
d
u
p
 o

v
e
r 

B
a
se

lin
e

Measured

Predicted

(b) Rodinia Benchmarks

Figure 4.14: M -Model Trends Across Cores.

predicted speedups are between -46% and 653%, but we again note that the largest errors

are for benchmarks that do not have significant speedups on the M -core. Excluding those

points, the errors in our predicted speedups range from -46% to 29%. We note that the

errors computed without our new modules are significantly higher, up to 1381%. The errors

for the Rodinia benchmarks follow a similar pattern.

Intra-M-Core Accuracy

Finally, we consider accuracy trends across M -Cores. In Figure 4.14, we have plotted the

geometric mean speedup for each M -Core, along with whiskers to show the maximum and

minimum speedups. We observe that for the pre-Fermi core, we correctly predict, on average,

a speedup of 0.5×. For the Kepler M -Core, we only predict a speedup of 2.5× on average,

compared to the measured 4×. However, the custom modules still do better than the generic

model, which predicts a slowdown on average.

4.4 Multicore Applications

To summarize, we consider accuracy of predictions for S-Core and M -Core symmetric mul-

ticores. Although a multicore model is not the focus of this dissertation, the work described

in Chapter 2 and elsewhere [27] includes a symmetric multicore model which we use here.

Additional future work on the multicore models, for S-Cores in particular, include cache con-

tention models, communication overheads, and parallelism effects. This section is included
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Figure 4.15: S- and M -Core Symmetric Multicore Projections. Stars show measured core
performance. For benchmarks marked with a +, measured multicore performance found
using multicore model using measured core performance.

for completeness and to set up the framework for the dark silicon projections in the next

section; it is not a key finding.

In Figure 4.15, we show the accuracy for a set of four multicores: (1) a dual-S-Core

chip using Atom cores, (2) a quad-S-Core chip using SandyBridge cores, (3) a quad-M -Core

chip using pre-Fermi cores, and (4) a hepta-M -Core chip using Kepler cores. For the M -

Core chips, we compare against hardware measurements on the Quadro FX580 and GeForce

GTX660 Ti, as discussed in Chapter 2. We do not have multi-threaded S-Core benchmarks.

Instead, observing that the CAB benchmark kernels are highly parallel, we assume 99%

parallelism in these benchmarks and project results for a symmetric multi-core. Note that

the “measured” results for S-Cores are based on single-core measurements and must also

make this assumption.

In Figure 4.15, predicted speedups over a single Sandybridge S-Core running a scalar

binary are shown as bars, and the measured speedups are shown as stars. We are interested

in several metrics here: (1) are trends between S-Cores and M -Cores correctly predicted,

(2) is S-Core model and M -Core model accuracy similar, (3) are there intrinsic factors that
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make S-Core or M -Core models harder to make accurate, and (4) do any of the trends

lead to biased results (e.g., do we consistently over-predict for one meta-architecture, but

under-predict for another?).

We consider each of the above questions separately:

Q1 Trends between S-Cores and M -Cores are correctly predicted in all but one case,

convolution. In that case, the Kepler GPU outperforms the quad-core Sandybridge

by a small margin and the Kepler model slightly underpredicts performance.

Q2 Both models have similar accuracy patterns; Kepler has more cores and thus per core

errors are exacerbated in the multicore model.

Q3 S-Core models’ difficulties come from the many optimization structures that have

been added to improve single-core performance; M -Core models’ difficulties come from

predicting how work will be overlapped in their highly-threaded computational model.

Although both models have challenges, neither is intrinsically easier than the other.

Q4 Neither model consistently over or under predicts.

4.5 Application to Dark Silicon Projections

In this section, we consider the impact of using these models on dark silicon projections for

future technology generations. The framework for this running example was discussed in

Chapter 2. In Chapter 3, we showed results for this example using assumptions from [27]. In

this chapter, our assumptions have changed discussed in Chapter 2, and summarized here:

• Cores: We only allow five cores, the Sandybridge, Nehalem, Xeon, Atom, and A8.

• Benchmarks: We use the CAB benchmark suite.

• Parallelism: We assume 99% parallelism for the CAB benchmarks on S-Cores.

• Topologies: We only consider the symmetric topology.

While the above assumptions limit the study’s design space, they are not intrinsic limitations

of the approach. Further, since the goal of this running example is to show ways in which the

approaches could be used to extend the dark silicon approach, rather than full exploration of
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Figure 4.16: Number of each S-Core (blue) and M -Core (green) that fit per generation.
Darker bars are power limited.

the dark silicon design space, these assumptions do not limit the applicability of the results

below.

In this section, we present two sets of results: (1) projections using the upper-bound

model, and (2) projections using the custom models. Projections using the upper-bound

model are reproduced here with the new set of assumptions from above to provide a baseline

on which to compare the new custom model projections.

4.5.1 Projections

Chapters 3, 4 and 5 each include dark silicon projections using the approach detailed above.

In Figure 4.16, we show the maximum number of each type of core at each technology

node, assuming a symmetric topology. Initially, all chips are area constrained; darker bars

indicate that the chip is power, not area, constrained. The small S1 core is the only core

that is never power constrained; all of the other cores are power constrained by the 18nm

technology generation. The number of cores at 8nm ranges from 16 S3 cores to as many as

480 S1 cores using conservative scaling and from 29 S3 cores to as many as 480 S1 cores

using ITRS scaling.
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Figure 4.17: Dark Silicon Projections using Upper-Bound Model.

4.5.2 Upper-Bound

In the interest of fair comparisons, in this section we reproduce results using the upper-bound

model from Chapter 3 with the above assumptions. These results are shown in Figure 4.17

with both conservative and ITRS projections. The geometric mean speedup using S-cores

over the CAB benchmark suite at 8 nm is 5.2× (conservative) or 20.4× (ITRS), depending

on the scaling used. We note that these geometric means are higher than those found in

Chapter 3, 3.1× to 6.4×. This difference was expected as (1) the CAB benchmark suite is

assumed to have 99% parallelism, and (2) two new cores, the A8 and Sandybridge, extend the

frontier. Further, the M -Core speedups are significantly larger: 10.3× to 24.0. Again, the

difference is expected since the benchmarks are more highly parallel and we have introduced

new architectures. In particular, the new Fermi and Kepler architectures have improved

caches and warp coalescing that lead to fewer bandwidth constrained situations for those

cores.

We now look at the results in more detail, first looking at overall impacts on number



77

of cores and the amount of dark silicon, and then looking at specific core choices and their

impact.

Dark silicon: The amount of dark silicon is similar to previous work: 81% (cons) to 72%

(ITRS) for S-Cores and 72% (cons) to 52% (ITRS) for M -Cores. The number of each type

of core chosen is also similar: 37 (cons) to 39 (ITRS) for S-cores and 19 (cons) to 42 (ITRS)

for M -cores. The amount of dark silicon is slightly lower for the GPU due to the new more

memory efficient architectures (M3).

Core choice: Atom and A8 were never chosen. We can do a back of the envelope cal-

culation to understand why they were never chosen. Assuming memory bandwidth is not

a constraint, our main consideration is the speed of each processor and how many we can

fit. The Sandybridge is 40× faster than an ARM A8 core, but even at 8nm only 15× more

ARM A8 cores are projected to fit onto the die. Therefore, the Sandybridge is expected to

outperform the ARM A8 cores using our upper-bound model. This trend holds true for the

Atom core, as well. Using this back of the envelope calculation, we find that if the A8 were

about ten times smaller (at 45nm) and all other constraints stayed the same, an A8 based

chip would outperform a Sandybridge based chip. When area or mildly power constrained,

tend to pick a Xeon as more fit. S3/S4/S4+ all have similar speedups (within 10%) at

8nm, so we always pick one of them. M2 or M3 is always chosen because of their improved

performance and memory coalescing. At 8nm, Kepler is almost always chosen. However,

its high power and area footprint mean that at some larger technology nodes, we still pick

Fermi over Kepler.

S-Core versus M-Core: The M -core is faster than an S-Core for five of nine benchmarks

using ITRS scaling and for eight of nine benchmarks using conservative scaling. This is in

contrast to our previous results, and a direct result of improved GPU architectures coupled

with a highly data parallel workload.

4.5.3 Custom

In Figure 4.18, we consider the impact of future technology nodes using our custom models.

The custom models find IPC for each core based on detailed input parameters, have more
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Figure 4.18: Dark Silicon Projections using Custom Models.

detailed cache miss rate parameters, and do not assume that performance scales directly

with frequency increases. As a result, we would expect the speedup projections to be lower

than with the upper-bound model.

We notice several trends. The S-Core results are similar to the results we saw using

the upper-bound model: after 5 technology generations, the geometric mean speedups range

from 6× to 20×, depending on the scaling used. The range of per benchmark speedups is

also similar. However, for M -Cores, the results are significantly different. The geometric

means speedup is only 2.5× to 3×, and speedups can be much higher (up to 40×) for highly

parallel workloads that are not memory bound. However, the workloads with very small

speedups (or slow downs) on M -cores prevent the average speedup from being any larger.

Theoretically, using the custom models or the upper-bound models to generate these

results should not impact the predicted geometric mean speedup. As long as the trends

between cores are the same (e.g., performance difference between Nehalem and Sandybridge

is preserved), using the custom models should not be any different than using the trade-

off based model. Custom models may model the cache behavior better than the trade-off
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function based upper-bound models (although in this example we used known miss rates for

the benchmarks in the upper bound model, so it is not applicable).

For the M -Core model, we have a more sophisticated multicore model, and so more

factors will come into play and we expect that our results may differ. Namely, we do not

have the 99% parallelism assumption that we used for the S-Core multicores, and parallelism

will play a larger part. In addition, improved cache modeling will improve the quality of

our projections for M -cores. For those benchmarks with high parallelism, we often pick the

lighter weight M1 cores, and as a result the percentage of dark silicon is lower in these cases.

However, the trade-off based result requires knowing a wide spectrum of SPECmark

scores. We could use the custom models to predict the Sandybridge performance without

having actually measured anything on the Sandybridge. In fact, we could use the model with

varying parameters to find enough points to generate an entirely new Pareto frontier. The

strength of this model is not that we can find more accurate future dark silicon projections,

but that we can model cores that may lie outside of the Pareto frontier and add them to our

projections.

4.6 Application to Instruction Set Architecture Studies

In this section, we consider an additional application of the custom models in this chapter:

the use of the custom models to understand processor behavior to aid in an instruction set

architecture (ISA) study.

RISC versus CISC wars raged in the 1980s when chip area and processor design com-

plexity were the primary design constraints and desktops and servers exclusively dominated

the computing landscape. Today, energy and power are the primary design constraints and

the computing landscape is significantly different: growth in tablets and smartphones run-

ning ARM (a RISC ISA) is surpassing that of desktops and laptops running x86 (a CISC

ISA). Further, the traditionally low-power ARM ISA is entering the high-performance server

market, while the traditionally high-performance x86 ISA is entering the mobile low-power

device market. Thus, the question of whether ISA plays an intrinsic role in performance

or energy efficiency is becoming important, and we seek to answer this question through

a detailed measurement-based study on real hardware running real applications in another

work [12].

In that work, we analyze measurements on the ARM Cortex-A8 and Cortex-A9 and Intel
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Atom and Sandybridge i7 microprocessors over workloads spanning mobile, desktop, and

server computing. We use intuition gained from the custom modular models described in

this chapter toward a methodical understanding of the role of the ISA (versus other micro-

processor features such as the cache size and speed) in modern microprocessors’ performance

and energy efficiency. We find that ARM and x86 processors are simply engineering design

points optimized for different levels of performance, and there is nothing fundamentally more

energy efficient in one ISA class or the other.

In the remainder of this section, we briefly discuss the utility of the custom models in

this study and conclude with a summary of our results from the study; additional details

can be found in our other work [12].

4.6.1 Methodology Overview

In this study, we our overall approach is to understand all performance and power differences

and use measured metrics (e.g., execution time, instructions executed, cache miss counts) to

quantify the root cause of differences and whether or not ISA differences contribute.

In particular, to find the impact of the ISA on performance, we find the execution time

and cycle counts to understand raw performance differences between the processors. We

then measure the dynamic instruction counts, instruction mixes, code binary size, and av-

erage dynamic instruction length to understand the impact of the ISA on code generation.

Finally, to understand performance differences not attributable to ISA, we measure detailed

microarchitecture events.

Using a simplified version of the custom models in this chapter, we attribute performance

gaps between processors to frequency, ISA, or ISA-independent microarchitecture features.

This reasoning is summarized below:

• We observe that the Intel i7 has at least twice the issue width of the other processors

(four versus two). We use the Pin-based MICA tool to confirm that our benchmarks all

have limit ILP greater than four; the difference in issue width thus explain performance

differences up to 2×.

• We observe large microarchitectural event count differences (e.g., A9 branch misses are

more common than i7 branch misses). These differences are not because of the ISA,
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Figure 4.19: Energy-Performance Trade-offs for ISA study.

but rather due to microarchitectural design choices (e.g., A9s BTB has 512 entries

versus i7’s 16K entries).

• Per benchmark, we can use intuition from the custom S-Core models to attribute

the larges gaps in i7 to A9 performance (and in Atom to A8 performance) to specific

microarchitectural events: namely, differences in branch mis-predictions per thousand

instructions, instruction cache misses, and data cache misses.

Using the intuition from these models, we conclude that the microarchitecture has sig-

nificant impact on performance. The ARM and x86 architectures have similar instruction

counts. The highly accurate branch predictor and large caches, in particular, effectively al-

low x86 architectures to sustain high performance. Inefficiencies due to the x86 ISA, if any,

are not observed.

4.6.2 Results Overview

In this section, we summarize the findings of the ISA study. In addition to the performance

analysis described above, we additionally measured the average power use for each processor

while executing each benchmark. Using that information with the performance data, we

constructed energy-performance trade-off curves.

In Figure 4.19, we show the geometric mean energy-performance trade-off using technol-

ogy node scaled energy. We generate a quadratic energy-performance trade-off curve. Note

that given the limited number of points used, a core’s location on the frontier does not imply

optimality.
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We used intuition from the custom models in this chapter to generate additional, synthetic

processor points which are shown using hollow points. These synthetic points include a

performance targeted ARM core (A15) that was unavailable at the time and frequency

scaled A9, Atom, and i7 cores.

For the A15, we use reported CoreMark scores (CoreMarks/MHz) and mW/MHz from

Microprocessor reports and ARM documentation. We assume a 2 GHz operating frequency

and compute the CoreMark score and energy. We then scale A9 BIPS results by the ratio of

the A15 CoreMark score to the A9 CoreMark score to get an A15 BIPS-based performance

projection.

For the frequency scaled cores, we project performance by assuming a linear relation-

ship between performance and frequency. We scale energy projections using DVFS-based

assumptions.

Using these results, we find that regardless of ISA, balancing power and performance

leads to energy-efficient cores. It is the design goals and methodology, not the ISA, that

really matters.

4.7 Related Work

Performance evaluation techniques include analytic models, simulation, and statistical sim-

ulation. Analytic models have the advantage that they are fast and their design can lend

intuition [25, 65, 75]. Analytic models can be separated into those that are empirical, from

first principles (mechanistic), or a hybrid of the two. Empirical models, often generated

using regression analysis after simulating multiple design points, do not lend intuition about

first order effects or accuracy outside of the simulated range. Mechanistic models are based

on an understanding of the system and can therefore be expected to be reasonable estimates

outside of the validated range. The models that we propose are a hybrid of empirical and

mechanistic models; using a hybrid model is similar to gray-boxing techniques and lends

flexibility and simplicity to the model [25].

Single core performance models tend to range from relatively simple for in-order cores [64,

13, 26, 37, 15], to more complex for out-of-order cores [56, 57, 33, 20]. Karkhanis and

Smith developed a CPI based model for out of order processors that assumes stalls for

memory accesses and branches [56, 57] and has since been expanded to include additional
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stalls [33, 20]. At a high level, these models look very similar to the simpler in-order core

models, although the inputs (e.g., number of concurrent critical paths) are more complex.

GPU performance models follow a similar stall based strategy, but with special features

to accommodate the GPU SIMT instruction model [49]. Improved memory performance

models in CuMAPz improved projections [60]. A more abstract model used GPU CUDA

code to estimate performance without executing the code [6]. Analytic models that use the

actual instruction trace have shown improved accuracy on simple benchmarks [88, 63]. Using

microbenchmarks to timing information and extrapolate performance is also effective [102,

63, 80].

Energy models for GPUs have also been proposed [50, 71].

Multicore performance models range from the very high level Amdahl’s law [3] to more

complex models, such as the LogP model and its variants that include thread communication

and synchronization overheads [23]. Multicore performance models like that from Guz et

al. [41] and the Copernicus model [37] assume infinite parallelism, independent threads,

and homogeneous threads. These models provide a way to predict the impact of resource

contention at the core, cache, and memory levels while abstracting away parallelism and

workload heterogeneity issues. Other work, including that of Sorin et al. [89], includes

models adapted for heterogeneous workloads.

4.8 Summary and Open Questions

In this chapter, we have described a modular approach to both S-Core and M -core custom

models. We’ve shown that these basic models can be made accurate for real processors by

adding new modules that cover the additional complexity of real processors (e.g., µ-ops and

pipeline constraints). Finally, we showed that this style of model can be used to find dark

silicon projections. In particular, we include projections using the Sandybridge processor

which, due to microarchitectural improvements, is outside of the Pareto frontier used in

Chapter 3.

The custom models have fine-grained architectural flexibility, so an architect could predict

the impact of making a small change (e.g., increasing the issue width or adding a new

execution unit). However, the S-Core and M -Core models each require inputs generated on

their respective hardware, include different key inputs, and use different equations to find

performance. There is no opportunity to directly predict performance for both S-Cores and
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M -Cores using a single model, like we did in Chapter 3. A mechanism to predict S-Core

performance from inputs generated on an M -Core, and vice versa, is the focus of the next

chapter.

As motivation for the work in the next chapter, we re-consider Figures 4.3 and 4.5. We

observe that at the highest levels, the two models look very similar. Further, the inputs vary

from identical (e.g., number of instructions, number of cache misses) to surprisingly parallel

(e.g., ILP and ITILP). These similarities are considered in more detail in the next chapter

as we consider the possibilities of cross-architecture performance prediction.
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5 translation-based architecture extensions

This chapter considers a single framework that can project performance across architectures.

Goals and Constraints: Our goal is to use performance characteristics measured on one

architecture to predict performance on another architecture. In a broad sense, our approach

is to take measurements on one chip, translate them to a generic set of workload charac-

teristics, and then translate that set of generic characteristics into inputs to the analytic

architecture for the second architecture. In this chapter, we show this approach applied to

two architectures, S-Cores and M -Cores.

The modular custom models in the previous chapter had a significant limitation: any

large changes to the architecture (for example, the transition from general purpose cores to

throughput oriented ones) could not be modeled. In the upper-bound models from Chapter 3,

we could model both S-Cores and M -Cores with a single model, but accuracy and flexibility

within that approach was limited. In this chapter, we address these issues. Recognizing that

a single model with sufficient accuracy would be either infeasible or so complicated as to be

intractable, we instead develop the novel input translation approach.

Inputs: In this chapter, we assume that we have the following: (1) a known architecture

with available hardware, performance counters, compiler, benchmark code, and access to

either binary instrumentation tools or a simple emulator, and (2) an analytic model for a

second architecture. We do not need to re-write or compile code for the second architecture

to predict its performance (although, for validation, we do need to have both the compiled

code and real hardware to execute it on).

Use-case: This general approach could be used to rapidly evaluate novel architectures

where building the full design chain (e.g., optimized code, compiler, simulator/hardware)

would be time-consuming. In our more practical S-Core and M -Core application, we have

the ability to compare S-Core and M -Core performance for real applications without the

overhead of actually rewriting the code. This is particularly useful as S-Core and M -Core

architectures are rapidly evolving.

Architects would benefit from early analysis of new designs without full implementa-

tion as well as a way to observe the impact of future technology trends on current designs.
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Figure 5.1: Translation Overview

Programmers would benefit from a tool to understand which code to port and to which

architecture. The rapid evolution of hardware presents time-sensitive implementation chal-

lenges for both architects and programmers who want to exploit emerging accelerators. Our

translation provides a mechanism for this.

This chapter opens with an overview of our approach and the rationale behind it. We then

describe the models as we have implemented them to translate from S-Core measurements

to M -Core performance projections and vice versa. We show the accuracy of our approach

on the inputs to the second architecture’s inputs, and then validate performance projection

results for multicores built from the second architecture. We continue our running example

with the application of this approach to dark silicon projections. The chapter concludes with

related work and a discussion of open questions.

5.1 Overview

In this section, we give an overview of the approach that we use to predict cross-architecture

performance and give some initial insights to motivate that approach.

In our efforts to build a single framework that can project performance across different

architectures, we continue our use of analytic models for each architecture. Our inspiration

is the somewhat tantalizing resemblance in the models’ workload inputs, foreshadowed in

the previous chapter and discussed next. When approached this way, the problem becomes

somewhat simple. We briefly describe our approach for developing a model of translating

the inputs from one model to another and the surprising accuracy of a naive implementation

as inspiration for the detailed implementation and analysis that follows in the rest of the

paper.

We leverage a first principles understanding of the inputs to the custom models from

the previous section, and consider how those inputs could be derived from another system.

To do so, we distill these inputs into their hardware independent characteristics. Given

this perspective, our generic approach is show in Figure 5.1: using code written for a spe-
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Table 5.1: CPU and GPU models: Workload Inputs and Translation Mechanism

CPU GPU Translation Assumption

C
o
m

p
u

te Number of instructions Number of Instructions x86 µops → ptx insts

Instruction mix Instruction Mix Similar

ILP ILP Low (≈ 1)

M
em

or
y Cache and TLB miss rates Number of off-chip accesses L2 miss → off-chip access

SSE Loads and Stores Fraction of accesses coalesced SSE load or store → coalesced access

Memory Level Parallelism Low (≈ 1)

C
on

tr
o
l Branch mispredictions Average warp occupancy Diff. code paths → thread divergence

# of outer loop iterations Number of threads Outer loop → thread

# of inner loop iterations Synchronization Inner loop → sync point

Block & Grid Configuration Use model to find best config

cific architecture, measure key characteristics on that architecture. Then, use a translation

mechanism to find key parameters for a second architecture and apply those parameters to

a mechanistic model for the second architecture to find a performance projection.

We focus on two specific examples, M -Core performance from an S-Core and vice versa,

to introduce the approach and for detailed analysis in this chapter. Table 5.1 depicts the

workload based inputs needed for S-Core and M -Core models as discussed in the previous

chapter. We group these inputs into three categories: computation, memory, and control.

Computation refers to the number of instructions and also how much instruction level par-

allelism, within a single-thread, can be expressed; this may be thought of as the level of

“near-parallelism”. Control refers to the number of threads, outer-loop executions, and re-

quired synchronization instructions; this may be though of as the level of “far-parallelism”.

Finally, memory refers to the amount of data required by the benchmark and how much of

that data can be cached.

There are clear parallels across the three categories of computation, memory, and control;

we observe that we can translate inputs that describe a characteristic of a workload for

one model to inputs for another model by considering the hardware’s effect on the inputs.

Workload characteristics fit into one of three categories: characteristics that we translate

directly, characteristics that we translate based on dynamic trace analysis, or characteristics

that we either ignore or assume have a set value. Thus to develop a cross-architecture

model, we can start by measuring the typical S-Core model inputs, apply simple translation
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mechanisms to find appropriate M -Core inputs, and then use the translated M -Core inputs

to find M -Core performance. The last column in Table 5.1 describes the high level translation

principles for this example.

We use two metrics to evaluate our prediction results:

• Trends: Does the translation model correctly predict when an architecture completes

a benchmark more quickly than another architecture?

• Accuracy: How close are projected speedups to the measured speedup?

Using the very straightforward translation approach outlined in Table 5.1, we evaluate

the approach according to the metrics outlined above:

• Trends: The naive translation correctly predict that a GPU will complete the bench-

mark more quickly than the scalar CPU implementation in all but two cases. The two

benchmarks where the trend is incorrectly predicted, saxpy and spmv, both have GPU

implementations that outperform the CPU implementation by less than 2×.

• Accuracy: Although three of the benchmarks with the smallest performance dif-

ferences between the CPU and GPU are correctly predicted to have small differences,

speedups can be greatly overestimated (e.g., by more than 28× in the case of convolu-

tion) or underestimated (e.g., by more than 15× in the case of sgemm) due to either

mis-translated inputs or missing performance effects in the first order model.

However, the initial results are promising, and in the next section, we develop more

refined models and translation mechanisms. Using those more refined approaches, we then

we present our final, more refined, results. We also show how these more abstract inputs

effect projections using the dark silicon running example.

5.2 Model Description

In this section, we describe the translation process from S-Cores to M -Cores and from M -

Cores to S-Cores. The process is inspired by the idea that workload characteristics could be

translated to a generic intermediate format that expresses key characteristics that impact

performance on all platforms. This intermediate, architecture independent representation is

listed briefly in Table 5.2. Although some of the characteristics are familiar from previous



89

Table 5.2: Intermediate Representation Translation Equivalents.

IR S-Core M-Core

C
om

p
u

te RISC-like instructions, R M(R, x86) or M(R,ARM) M(R, PTX)

→ NI ,ni → NI , ni, NSFU , NMem

Per-R dependence trace Trace analysis Trace Analysis

→ ILPx86 or ILPARM → ILPPTX

M
em

or
y

RISC-like instructions, R nload, nstore nload, nstore

Memory Footprint, Simple Cache Model Footprint analysis

Memory Access Pattern → NmL1, NmL2, NmL3 → Noffchip

Access Pattern Analysis Access Pattern Analysis

→ SSE accesses → Access Coalescing

Accesses Per Loop Analysis

→ Memory Level Parallelism

C
o
n
tr

ol

Minimum piece of Work ≈# of outer-loop iterations ≈ # of threads

Reductions ≈ inner-loops, data reductions ≈ # of sync threads

Optimization Search Loop unrolling, loop ordering Block/Grid configuration

work on S-Cores [51], we note that the addition of control flow information necessary for

the transition between single-threaded and many-threaded architectures. In addition, the

inputs that we collect on the S-Cores and M -Cores are microarchitecture independent; the

microarchitectural features of the source architecture should not impact our results.

In the current implementation, we translate directly between measurements from cores

and the intermediate layer is not explicitly generated. Adding this layer would make our

tool-chain immediately applicable to additional architectures. An architect would be able

to immediately model their new idea after inputting an analytic model of their architecture

plus a set of mappings from the generic IR to their new architecture. For clarity, we describe

the approach in terms of this IR.

In this section, we describe each component of the IR, how we find can find that compo-

nent of the IR from both S-Cores and M -cores, and how we can translate the IR component

to the necessary S-Core and M -core model inputs. The approach is summarized in Table 5.2,

and our descriptions below follow the outline suggested by the table.
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5.2.1 Computation

Both S-Core and M -Core models are dependent on the total number of instructions, the mix

of instruction types, and dependences between instructions. The instruction types impact

both the average instruction latency and any resource contention when the instructions are

executing. Dependences between instructions impact which instructions can be issued with

other instructions, which leads to the ILP used throughout this thesis.

Instructions: S-Core micro-ops and M -core ptx instructions can map to a single inter-

mediate IR; translation is then a trivial process of mapping the IR to the target architecture’s

ISA. In our implementation, we directly map between x86 micro-ops and ptx instructions,

skipping the intermediate step. This mapping works well and is straight-forward as both

sides are RISC in nature (after x86 instructions are first mapped to micro-ops). After com-

pleting the mapping, we directly find the instruction count, instruction mix, and average

instruction latency from the new set of instructions. The dictionary look-up for M -Cores

also includes the unit where instructions are executed (e.g., SPs, SFU, or DPU) to facilitate

counting instructions executed in the SFU.

ILP: The number of instructions that can issue per cycle from a single thread is a func-

tion of the ILP. In the case of out-of-order cores, the ILP is only a function of instruction

dependences; for in-order cores, the ILP is a function of both instruction dependences and

in-order sequencing requirements. The most generic IR-centric approach would be to main-

tain instruction dependence information as part of the IR and then compute ILP for the

target architecture from that information. In our work, we find that the ILP computed for

the Cortex-A8 and the Atom processor has similar enough constraints to the ILP on M -cores

to consider them equivalent. When predicting performance for the out-of-order wide-issue

S-Cores from M -Core measurements, we assume the average ILP on those cores over the

entire benchmark suite.

5.2.2 Memory

Performance on both S-Core and M -Core architectures is directly limited by the frequency

of data accesses, the latency of those data requests, and by how regular the data accesses
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are. For the S-Core, the amount of data required and the regularity of the accesses to that

data impacts the frequency of cache misses and the number of SIMD data accesses. For the

M -Core, the caches (if any) tend to be less useful, and the memory footprint plus whether

or not accesses are regular impact the number of off-chip memory accesses and whether or

not accesses from different threads can be coalesced into a single access.

Number of Data Accesses: We find the number of data accesses directly from the

number of data accesses in the source implementation. This assumes that register pressure

on both the source and target architecture does not force extra data loads or stores.

Number of Off-Chip Memory Accesses (Source): The number of cache misses and

off-chip accesses is a sensitive and difficult to predict input. We split our description into

two parts: how we collect data on the source machine and how we translate that data to use

as model inputs for the target machine. For S-Core source machines, we use a Pin-based

MICA tool to collect the data footprint size and data access stride information [51]. For

M -Core source machines, we lack such a tool, and instead determine footprint and stride

information empirically. For the footprint size, we observe that optimized CUDA programs

will place any shared data in the on-chip memory, and most off-chip accesses will be to

unique addresses. We find a lower bound on the number of off-chip memory accesses using

the memory footprint on the M -core and the on-S-core memory capacity: First, we find the

number of off-chip memory accesses for the M -core (Foff−chip). Then, using Foff−chip and

the on-chip capacity (Con−chip, in B), we find the size of the S-core footprint (FCPU , in B):

FCPU = Foff−chip + Con−chip (5.1)

Number of Off-Chip Memory Accesses (Target): We now describe how we translate

from the footprint information to memory inputs for both S-Cores and M -Cores.

For S-Cores, we assume that all cache misses are due to limited cache capacity; this is

reasonable since all of the workloads that we consider are data intensive and have minimal

sharing. For each level of cache, we find how much of the memory footprint will fit in the

cache. Any part of the footprint that does not fit into a level of the cache is assumed to miss

in the cache; we assume only one cache miss per cache line.
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For M -Cores, we find a lower bound on the number of off-chip memory accesses using

the memory footprint on the S-Core, the on-M -core memory capacity, and the maximum

M -core memory transaction size:

First, we find the amount of required data that does not fit on the M -core (Foff−chip)

using the size of the S-Core footprint (FCPU , in B) and the on-chip capacity (Con−chip, in B):

Foff−chip = max(FCPU − Con−chip, 0) (5.2)

For simplicity, here we assume that the on-chip capacity is the amount of shared memory

per SM times the number of active SMs (64 KB/SM × 4 SMs). The approach could be

modified for newer M -cores with on-chip caches; we ignore the impact of constant memory

since the constant memory tends to be small and is read-only.

Then, the number of memory instructions per warp is the amount of off-chip memory di-

vided by the memory access size (b, in Bytes) and the number of threads (Nwarps×warp size):

Memory Instructions Per Warp =
Foff−chip

b×Nwarps × warp size
(5.3)

We may be able to use the inner loop footprint and memory access strides to get improved

predictions; this is future work.

Types of Accesses: We use data access stride information to predict how S-Cores and

M -Cores can group data accesses for faster memory performance. Since SSE does not have

gather/scatter capabilities, we assume that only benchmarks with completely coalesced M -

Core accesses (e.g., sequential) are SIMD loads/stores. The percentage of S-core loads that

are SIMD are the same as the percentage of M -core memory accesses that are memory

coalesced. For the number of transactions per warp for the M -core (a measure of warp

coalescing), we observe that, since SSE does not have gather/scatter capabilities, any SSE

load is continuous in memory. Therefore, the percentage of S-Core loads that are SIMD are

representative of how often the M -core data is laid out appropriately for memory coalescing.

When SIMD-optimized code is not available, we use stride length information from the S-

core execution and assume that only accesses with stride length equal to one are coalesced.

Note that regular stride patterns may indicate the possibility that algorithm re-organization

could be used to increase the memory access coalescing rate; this is an area for future work.
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5.2.3 Control

So far, we have assumed that the overall program structure does not change between code

written for S-Cores and M -Cores. However, this is not true: S-Core kernels tend to be

written as a single outer-loop that is executed many times, while M -Core kernels are written

as, effectively, the interior of that loop, and launched by many threads. In the most direct

translations, the number of threads in the M -Core implementation is equal to the number

of outer-loop iterations in the S-Core implementation. In this section, we describe how we

find the impact of this translation. These impacts include the computation’s organization,

branching effects, and any necessary synchronization.

As part of our commitment to using data only from the real hardware and either binary

instrumentation or emulation, we primarily leverage a dynamic trace of the basic blocks

executed and, in the case of the M -Core, the per-warp active threads masks associated with

that basic block trace.

S-Core Outer-Loops: When translating from the M -core to the S-core, we must form

the SIMD instructions and compute the number of loop iterations which must occur. Our

model records the thread mask for each basic block, and breaks it into SIMD chunks (size

4 for SSE, size 8 for AVX). The number of outer loops, then, is the number of threads

divided by the SIMD width. Since S-core code usually uses SSE instructions to implement

masks and blend instructions to deal with control flow divergence, all diverged instructions

are executed serially; the number of S-Core instructions may be under-counted due to mask

management.

M-Core Threads: When translating from the S-Core to the M -core, we must form the

threads and warps which perform synchronous independent computation. Our model com-

bines sets of eight S-Core outer-loop executions into a single warp, reflecting the difference

in vector to warp size. The number of warps, then, is the number of remaining outer-loop

iterations on the S-Core. Since S-Core code usually uses masks and blend instructions to

deal with control flow divergence, all diverged instructions are executed serially; this matches

with M -core execution of diverged code. If a warp does not experience control flow diver-

gence, this may lead to an over-approximation of the number of instructions on the M -core.

A challenge in this process was that the inner loop does not always represent the smallest
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granularity of work: some benchmarks, like saxpy, are unrolled by the programmer, even

in the scalar version. The scalar version of saxpy actually works on 4 elements at a time,

so everything is off by a factor of four and we miss how many threads could actually be

worked on. This is actually a general problem: any loop unrolling will confuse the instruc-

tion counting process. Rather than modifying the code, take the number of unrolled bits per

inner loop as input; even if such loop unrolling does is not done explicitly in the code, it may

also occur at the compiler level. We could guide the SIMD-loop warp formation process by

including the number of data elements (or maximum number of inner loop iterations) as an

input.

Warp Synchronization: To model the required warp synchronization, we insert a sync

operation at the end of any inner-loops observed in the code. This approach is conservative,

but we found that most benchmarks required this because of shared memory use.

Optimization We could attempt to find the optimal number of blocks given the total

number of threads and hardware capabilities, dividing into a number of blocks that will keep

all SMs busy. We discuss the need for such a search in the next section.

In this section, we described how input translation works. In the next section, we will

describe how the translation impacts our inputs; the following section describes the impact

of those inputs on performance predictions.

5.3 Input Translation Accuracy

In this section, we present the model validation results. Model validation, now, includes

three components: (1) the custom model, (2) the translated inputs, and (3) the custom

model with the translated inputs. Since custom model accuracy was discussed at length in

Chapter 4, in this section we only consider the accuracy of the translated inputs and of the

custom models with the translated inputs.

5.3.1 S-Core to M-Core

We first consider the accuracy as we use S-Core inputs to predict M -Core performance.

Note that since the inputs that are translated are platform independent, we do not need to

consider a specific S-Core as our starting point.
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Table 5.3: Errors in Translated M -Core Control Flow Inputs (N: Native, T: Translated)

Warps Blocks # Syncs / Warp
N T N T N T

raycasting 4096 76038 512 9505 1 0
saxpy 32000 8000 4000 1000 0 0
lbm 40000 31250 10000 3906 0 0
spmv 1852 1400 463 350 2 16
fft 2048 3072 64 768 0 0
convolution 8176 8176 1022 1022 0 0
sgemm 512 1040384 128 130048 128 0
montecarlo 8000 8000 1000 1000 0 12

(a) Control Flow

# Insts/Warp # SFU / Warp
N T N T

raycasting 489 160 80 0
saxpy 17 20 3 4
lbm 554 336 106 81
spmv 304 54 87 18
fft -1 31 5 4
convolution 95 103 60 25
sgemm 18035 27 88 4
montecarlo 83 228 70 98

(b) Computation

# Mem / Warp Rate Coalesced
N T N T

raycasting 3 0 1.0 0.0
saxpy 2 2 1.0 0.0
lbm 20 1 0.0 0.5
spmv 1 18 0.0 0.0
fft -1 1 0.0 0.3
convolution 5 2 0.0 0.3
sgemm 608 3 0.0 0.0
montecarlo 6 6 1.0 0.4

(c) Memory

In this section, we evaluate the accuracy of the input translation process, specifically from

a Sandybridge core to a pre-Fermi M -Core. We classify the input translation process using

the same categories used throughout this chapter: control flow, computation, and memory.

Table 5.3 shows the key native and translated inputs for the pre-Fermi M -Core; the

Kepler M -Core has additional inputs for instruction level parallelism and caching effects.

Below, we discuss key discrepancies in the translation process and why they occur. In the

next section, we show how these inputs impact speedup predictions.

Control flow: In Table 5.3a, we see the measured and predicted number of warps, blocks,

and synchronization instructions. We immediately note that we correctly predict the number

of warps in the M -Core program in only two cases. For sgemm, we observe that the pro-

grammer chose to use the number of outer loops, rather than inner loops, as the number of
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warps. For saxpy, sgemm, and spmv, the optimized S-Core code includes loop unrolling; four

values are computer per iteration instead of just one. For example, for saxpy, our prediction

of 8,000 warps, instead of 32,000, thus makes sense. Given the large impact that the warp

and block structure can have on M -Core performance, we expect these errors to have a large

impact on our performance predictions in the next chapter.

Computation: In Table 5.3b, we observe that the predicted number of instructions

per warp appears to be incorrect in most cases. However, we note that for convolution,

a benchmark where the number of warps was predicted within 1% of the actual value,

the predicted number of instructions is also within 8% of the measured number. After

correcting for loop unrolling and other factors that impact the number of warps, we find

that our instruction count predictions are also significantly improved. For five out of the

eight benchmarks, the number of SFU instructions is predicted within 50% of the measured

value. Additional accuracy would be achieved by recognizing code patterns on the S-Core

that correspond to M -Core SFU instructions.

Memory: In Table 5.3c, we observe that the number of memory instructions per warp

is, like the total number of instructions per warp, strongly influenced by the number of warps.

Our approach for estimating how often memory accesses are coalesced is conservative, and

tends to under-estimate how much co-coalescing can occur.

We have not discussed inputs that are used only in the Kepler model, the cache miss rate

and the amount of instruction level parallelism. We will briefly discuss the impact of those

inputs when we show the accuracy of our model on the Kepler architecture. We next discuss

the accuracy of our translation approach when translating from M -Core inputs to S-Core

inputs, and then show the speedup prediction accuracy after each translation approach.

5.3.2 M-Core to S-Core

We first consider the accuracy as we use M -Core inputs to predict S-Core performance.

Note that since the inputs that are translated are platform independent, we do not need

to consider a specific M -Core as our starting point (although we have found a pre-Fermi

architecture to be an easier starting point since its memory hierarchy is simpler).

In this section, we evaluate the accuracy of the input translation process, specifically from

a pre-Fermi M -Core to a Sandybridge core. We classify the input translation process using

the same categories used throughout this chapter: control flow, computation, and memory.
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Table 5.4: Errors in Translated S-Core Control Flow Inputs (N: Native, T: Translated)

# Branch Misses
N T

raycasting 7,274 29,612
saxpy 8 23,034
lbm 14,155 14,114
spmv 3,959 21,091
fft 1,279 242
convolution 547 27,498
sgemm 66,082 133,015
montecarlo 680,375 -1

(a) Control Flow

# Instructions ILP
N×106 T×106 N T

raycasting 33 7.7 3.3 6.2
saxpy 2.6 2.8 6.1 6.2
lbm 238 108 7.1 6.2
spmv 1.0 6.3 7.0 6.2
fft 1.9 1.1 7.7 6.2
convolution 10.4 17 6.8 6.2
sgemm 173 153 6.9 6.2
montecarlo 94 -1 4.7 6.2

(b) Computation

# L1 Data Misses # L2 Misses # LLC Misses
N×103 T×103 N×103 T×103 N T

raycasting 0 12 0 2 0 0
saxpy 130 92 182 12 59,088 0
lbm 11,427 3,116 15 390 9,826 2,620,000
spmv 55 65 57 9 16,048 0
fft 51 56 3 8 0 0
convolution 24 37 2 5 2 0
sgemm 8,800 617 5,388 78 271 122,592
montecarlo 195 -1 98 565 5,941 0

(c) Memory

Control flow: In Table 5.4a, we show the natively measured and translation predicted

number of branch mispredictions. For branch misses, we assume that 3% of all branches are

mispredicted. This is almost exactly true for the lbm benchmark; for other benchmarks, it

is an over-prediction because these programs are very regular.

Computation: In Table 5.4b, we show the natively measured and translation predicted

instruction counts and ILP. First, for instructions, we not that we are within a factor of

two for all but one instruction count predictions. Our assumption that ILP is always 6.2 is

actually reasonable for most benchmarks; only raycasting has a significantly different ILP.

Memory: In Table 5.4c, we show our predicted cache miss rates. For the L1 cache miss

rate, our predicted cache miss rate is qualitatively close the to measured miss rate for all
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benchmarks except for lbm and sgemm. Interestingly, for these benchmarks, we over-predict

the number of LLC misses, and for all other benchmarks, we find that there are no LLC

caches.

5.4 Translated Core Accuracy

In this section, we find the impact of the translated inputs on our model predictions. We

consider translation both from S-Core inputs to M -Core inputs and vice versa.

As discussed at the beginning of this chapter, we have the following goals:

• Trends: Does the translation model correctly predict when an architecture completes

a benchmark more quickly than another architecture?

• Accuracy: How close are projected speedups to the measured speedup?

This section evaluates each of those goals for both input translation and speedup pre-

dictions for the S-Core to M -Core and the M -Core to S-Core cross-accelerator performance

predictions using the CAB benchmark suite. Additional results for the CAB benchmark

suite are in Appendix F; results using the Rodinia benchmark suite are in Appendix G.

5.4.1 S-Core to M-Core

In this section, we evaluate the accuracy of the input translation process, specifically from

a Sandybridge core to a pre-Fermi M -Core. In addition to speedup graphs, we provide

the accuracy range and average, the input-based error, and limitations below each figure.

Input-based error, here, is calculated as the error in the translated speedup prediction that

is beyond the error in the custom speedup prediction from the last chapter. This is the

additional error introduced due to the errors in our inputs.

In the input translation validation section above, we found two key sources of error in

the inputs: loop-unrolling on the S-Code, and warp-block configurations that did not match

our predictions. Since loop-unrolling can be easily detected, and warp-block configurations

can either be given by the programmer or found through a search process using our model,

we assume below that these error sources have been fixed.

In Figure 5.2, we show the predicted speedups using the S-Core to M -Core translation

approach for the pre-Fermi core, along with the measured speedup and the predicted speedup
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Measured

Custom Predicted

Translation Predicted

Accuracy -56% to 680%, average 171%
Input-based Error: 0% to 671%, average 122%
Limitations Model error, memory coalescing predictions, # of SFU instructions

Figure 5.2: S-Core to M -Core Translation: pre-Fermi

using the custom model and native inputs. In this initial approach, errors range from -56%

to 680%. As shown in the table, we find that although some errors can be attributed

to input errors, on average, the errors in our inputs contribute significantly to speedup

prediction errors. We note that convolution, in particular, is impacted by the number

of SFU instructions that we predict (25) versus the number that are actually executed

(60). Correcting this input reduces the error in our predicted speedups for convolution

significantly.

In Figure 5.3, we show the predicted speedups when we use Sandybridge measurements

to predict performance on a Kepler SM. We find improved accuracy results compared to the

translation to the Pre-Fermi SM. We believe this is related to the improved memory behavior

on the Kepler M -Core.
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Input-based Error: 0% to 229%, average 44%
Limitations Model error, # of SFU instructions

Figure 5.3: S-Core to M -Core Translation: Kepler

5.4.2 M-Core to S-Core

In this section, we evaluate the accuracy of the input translation process, specifically from a

pre-Fermi M -core to an Atom core and a Sandybridge core. Note that due to the S-Core’s

more advanced single-thread optimizations, we expect accuracy to be lower than when we

used cross-accelerator prediction in the other direction.

In Figure 5.4 and 5.4.2, we show the predicted speedups using the M -Core to S-Core

translation approach, along with the measured speedup and the predicted speedup using the

custom model and native inputs. Note that montecarlo translation failed due to an Ocelot

error and is not included.

In this initial approach, errors range from -71% to 476%. We correctly predict whether

or not a benchmark is sped up using the SIMD unit on the Sandybridge in all but two cases.
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Accuracy -44% to 1134%, average 313%
Input-based Error: 0% to 1134%, average excluding outliers 33%
Limitations Model error, algorithmic changes, memory contention

Figure 5.4: M -Core to S-Core: Atom

Of particular note is the raycasting benchmark, which has high speedup prediction errors

for both the Atom and the Sandybridge cores. We note that the M -Core implementation

has algorithmic changes compared to the S-Core implementation which our approach cannot

predict.

On the Sandybridge, the errors in the inputs are small enough such that we have reason-

able accuracy, are mostly optimistic about speedups, and predict trends correctly in most

cases. Atom predictions are reasonable, but we are further limited by the Atom’s memory

constraints, which lead to cache misses that our simple capacity based model cannot predict.
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Figure 5.5: M -Core to S-Core: Sandybridge

5.5 Application to Dark Silicon Projections

In this section, we consider the impact of using these models on dark silicon projections for

future technology nodes, continuing our running example from the last two chapters. The

framework for this running example was given in Chapter 2, and results using the previous

two models are toward the end of Chapter 4 for reference.

In this section, our goal is to show that the projections, even with significantly less

accurate inputs, are still useful. This motivates the idea that cross-accelerator projections

using the approach in this chapter, even for more diverse accelerators, could be used to

predict the impact on future technology generations.

In Figure 5.6, we show the dark silicon projections when inputs have significantly more

error. Rather than using the translation model to generate these inputs, we add a random
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Figure 5.6: Dark Silicon Projections using Custom Models.

amount of error between -20% to +20% to each term. This approach is conservative - in many

cases the errors added by the translation process are less than 20%. Using this approach,

we find that at 8nm, the geometric mean speedup for S-Cores is between 3.2× and 22× and

for M -Cores is between 2.4× and 6.3×. The number of cores ranges from 35 to 119, and the

amount of dark silicon ranges from 19% to 81% at 8nm, depending on scaling assumptions

and the type of core used.

These results, on average, are almost identical to the results in Chapter 4. The key

difference is that at each point, there may be higher or lower speedups due to the random

error. On average, however, the results remain the same. Note that if we had observed

biased errors in the translation process (e.g., translation systematically led to speedup over-

predictions), these systemic errors would also be introduced into the speedup projections.

The utility of the translation model in the dark silicon projection framework is that we

can now project speedups for cores without implementing them (or the software for them).

Given the CAB benchmark suite implemented for S-Cores, for example, we could predict

whether the speedups at 8nm for M -Cores would justify rewriting the benchmark suite for
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M -Cores.

5.6 Related Work

In this section, we consider other approaches for finding performance of a target architecture

given code written for the source architecture. These approaches are summarized in Fig-

ure 5.7, and grouped into four categories: analytical, empirical, auto-tuning, and DSL-based

approaches.

In all cases, the goal is to start with source-code implemented for one accelerator (CPU)

and develop intuition on performance on another accelerator (GPU). The limitations of the

prior work is also outlined in the figure. The Upper-Bound model in Chapter 3 and related

work from Guz et al. [41] are both related to the translation model in this Chapter, but

those abstract models for measuring architecture tradeoffs do not include microarchitecture

characteristics and have limited accuracy.

We summarize the work in each of the four areas below.
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5.6.1 Analytic Approaches

Several analytic approaches have been previously proposed; we specifically consider a sta-

tistical translation-based approach, Grophecy, Boat-Hull, and Idiom-Finding, all described

below.

The approach most related to our work is a statistical approach to translate between

CPU and GPU performance using key metrics. Such statistical approaches include [58], who

find that collecting metrics on four GPUs and three CPUs can predict performance on other

GPUs or CPUs, although for reasonable accuracy, they can only predict performance within

the same class (GPU or CPU).

Grophecy [73] is a recently proposed novel framework with similar goals as ours. How-

ever, they require programmers to skeletonize their CPU code, in a way that inputs can be

extracted for a GPU analytical model and then project performance. These code skeletons

require heavy programmer involvement, unlike our push-button approach. Further, their

approach cannot predict performance for CPUs with SIMD acceleration.

The Boat-Hull approach [77] is an even more recently proposed approach. This work

predicts performance on either a CPU or GPU based on both the hardware characteristics

and software inputs. However, the software inputs include classification of the benchmark

into a specific class; each class of benchmarks then has a specific analytic model to pro-

duce performance estimates. This approach produces useful predictions, but again requires

programmer effort.

Finally, the idiom-finding approach [17, 74] presents one of the first works in this area

of cross-accelerator tools. Their tool focuses on program idioms (specifically scatter/gather)

and develops models to project their performance if ported to FPGAs or GPUs. Our work

looks at full applications which are are well beyond the scope of idioms and also look at

translation both from CPUs to GPUs and vice versa.

5.6.2 Empirical Approaches

Empirical studies have been performed porting suites of applications on CPU and GPUs to

answer questions on portability [67, 76, 40].

Of particular note among the empirical works is [86], which argues that established

compiler technology and pragmas are sufficient to effectively utilize throughput accelerators
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and only “low programming effort” is necessary. Their study is an empirical result for a

suite of benchmarks and hence of limited use for new workloads and application develop-

ers. Maleki’s [72] controlled and rigorous study of vectorizing compilers makes the opposite

claim: “ only a few loops from the real applications are vectorized by the compilers (GCC

(version 4.7.0), ICC (version 12.0) and XLC (version 11.01) we evaluated.” We argue that

given the programmer expertise necessary to insert useful pragmas and to verify that all

useful parallelism has been extracted, auto-generated approaches for empirical performance

comparisons are still labor intensive.

5.6.3 Auto-Tuning

Mainstream techniques include a plethora of code profiling and analysis tools like gprof,

VTune, valgrind, which allow detailed analysis of code written for one architecture to be

further tuned for it. A body of literature has focused on analyzing sequential code to inform

programmers on multi-core parallelization strategies [36, 62, 2, 94]. Without programmer

involvement, the tools provide the required information to programmers. As with the em-

pirical approaches above, heavy programmer involvement is still required, and many of the

tools are domain specific.

Somewhat similar to the auto-tuning approach, many recent works provide frameworks

for automatically or semi-automatically generating efficient GPU code. Examples include

PGI compiler [99], OpenMPC [66], Mint [96], and C-to-CUDAs [8]; compared to our focus,

these works are meant for one accelerator require pragmas inserted by programmer, and

are typically restricted to one domain of problems, e.g., stencil computation, affine trans-

formation. Other works present a performance analysis framework for suggesting further

optimizations for GPU given CUDA code as input [88, 6].

5.6.4 DSL

Finally, we consider architecture independent code that can be compiled for multiple plat-

forms. Specifically, we consider OpenCL, which can be compiled for both CPUs and GPUs.

However, OpenCL tools are still evolving and have not yet achieved the same performance

as native code [34].
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In summary, though good tools exist for understanding performance bottlenecks within

a particular domain, which could serve as the underpinnings of a more general approach,

a high-fidelity cross-accelerator performance projection/profiling programmer-uninvolved tool

has remained elusive.

5.7 Summary and Open Questions

In this chapter, we considered the use of inputs measured on one architecture to predict the

performance of a benchmark on another architecture. This approach is extremely powerful

as it allows both architects and programmers to explore new designs without completely

re-writing their programs (and compilers, simulators, etc.).

Although accuracy is not as high as with custom models, we feel that these results are

useful as a first-order tool while developing new accelerators. The key value of this tool is

in its application to future accelerators that have not yet been designed. We discuss the

tool’s application to a more sophisticated accelerator with functionality specialization in our

conclusions, and observe that increasing functionality specialization leads to simpler, easier

to predict benchmarks.
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6 conclusions and future work

In this section, we conclude the dissertation with a summary of contributions and a discussion

of future work.

6.1 Summary of Contributions

We began this dissertation with a summary cartoon showing the architectural trade-offs and

anticipated accuracy for our three models in relation to previous work. In Figure 6.1, we

revisit this trade-off figure with real data from the dissertation.

As a metric for architectural flexibility, we count the degrees of freedom for each model.

To give weight to the difficult problem of processor-threading, we give the ability to model

both single-threaded and many-threaded architectures with a single model a weight of ten.

Other characteristics, like cache miss rate, core frequency, and issue width, each have a

weight of one. As a metric for accuracy, we consider the Average Absolute Error across a

benchmark suite. So that our accuracy ranges from zero (very poor) to one (exactly correct),

we plot 1/Average Absolute Error.

Using these metrics, we find that our initial cartoon under-estimated the utility of several

of each model in different respects. We did not anticipate that the modular microarchitecture

extensions, in addition to increasing the microarchitectures that we could model with a single

model, would also increase accuracy on previously modeled architectures. Using the measure

of architectural flexibility above, the translation model is actually the most flexible modeling

approach that we have considered. Finally, the upper-bound core model, although it has

limited flexibility, can actually be very accurate for processors that it has detailed information

for.

As discussed in the introduction, the key contributions of this thesis are the following:

• Distillation of mechanistic models to unified upper-bound models that cover a diverse

architecture space

• General modular approach to architecture-specific mechanistic models

• New mechanistic model modules to accurately predict performance on real hardware
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Figure 6.1: Detailed Trade-offs. Green models are from prior work and blue models are from
this dissertation. Dots show per-core averages; lines show range of prediction errors.

• Identification of architecture-independent qualities of important performance charac-

teristics

• Cross-architecture performance prediction using architecture-independent measurements

and no user intervention

• Application of the three different models to dark silicon projections to improve under-

standing of future technology challenges

6.2 Future Work

This dissertation leaves several open questions. We consider three, in particular: applying the

model to functionality specialization, adding power and energy predictions, and approaches

to further improve accuracy. Below, we discuss each of these areas and ideas for future work.
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6.2.1 Functionality Specialization

Throughout this dissertation, the emphasis has been on specialization through data-level

parallelism with our consideration of M -Cores and S-Cores with SIMD units. We now

consider how this work could be applied to architectural improvements that use functionality

specialization - approaches with custom hardware targeted to improve application execution.

As an example, we briefly consider the Dyser architecture, which support both functionality

specialization and data-level parallelism [38].

Before discussing how we would add the Dyser architecture to our infrastructure, we

briefly describe the architecture. The Dyser (Dynamically Specializing Execution Resources)

architecture consists of a set of heterogeneous functional units, connected via simple switches,

which are integrated with a general-purpose architecture. A compiler detects commonly

executed regions, and those regions are ported to the Dyser unit. The general purpose

processor’s standard pipeline is used for all un-ported instructions, as well as for cache,

prefetch, and memory functions.

First, we discuss what would need to be done to create a Dyser mechanistic model, and

then we discuss what new inputs and translation mechanisms we would need to add to our

translation methodology.

For the Dyser mechanistic model, we observe that the Dyser unit is integrated in an

S-Core, and so we begin with the S-Core model. By sending regions of code to a specialized

unit, the approach effectively replaces code segments with long latency instructions. In

Figure 4.3, we included a module for Naccel. This module counts the number of accelerator

(Dyser) instructions and the number of S-Core instructions that the accelerator instructions

replace. The long latency accelerator instructions, then, can be modeled like any other long

latency instruction in the S-Core. The latency of these instructions would be based on the

longest dependency chain of instructions in the Dyser unit and the latencies of each; this

could be further refined using additional information.

In addition to knowing how many instructions are mapped to Dyser, we also need to

know how many load-slices are generated. This requires predicting the region of code that

is mapped to Dyser and how it is sliced; we can find an upper-bound from the number of

backward load-slices and number of loads. Further work would be required for refinements

including handling loop unrolling and vectorization optimizations [39]. We assume that

memory accesses and cache usage would not change since Dyser fairly directly replaces the
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S-Core code.

Finally, we consider how adding the Dyser accelerator would impact our translation

approach. Specifically, we consider modeling Dyser performance from M -Core inputs. We

observe that, as in the mechanistic model description above, the new component is predicting

the number of instructions that would be mapped to the Dyser and how they would be

arranged into load-slices. This could be done similarly to as above after mapping the M -

Core instructions to an intermediate format, as discussed in Chapter 5.

6.2.2 Improving Accuracy

Throughout this dissertation, we have commented on areas where our estimations could

be improved through additional data to improve model accuracy. These comments are

summarized below for each model.

Upper-Bound Model: The upper bound model’s generality makes it interesting for

basic scaling design space exploration. In addition, it would be interesting to generate new

Pareto frontiers at current technology nodes, and for both S-Cores and M -Cores. Exploring

the M -Core design space through Pareto frontiers could be particularly interesting as M -

Cores become more general purpose. Finally, adding more details to the parallelism model

used in this work, perhaps by applying a critical sections model [32] could add interesting

refinements as to the importance of parallelism and how it is quantified.

Custom Model Extensions: In the results that we presented, a key source of error

was the fact that we did not model disk accesses; this played a large part in our errors for

the Cortex-A8 and Atom processors. Adding this component would greatly improve our S-

Core prediction accuracy. For the M -Cores, we used Fermi timing information in the Kepler

model due to availability; refined data would improve results.

Translation-Based Extensions: There is still space for refinements in this approach

to improve accuracy. We have included a very simple cache miss model for S-Cores that is

based only on the memory footprint that is sufficient for our mostly regular applications,

but recognize that a more detailed model based on memory re-use and access stride patterns

would be more accurate, especially for more irregular applications. Similarly, our simple
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memory access coalescing model could be improved with further memory modeling develop-

ment. Implementing an optimization pass that considers different layouts for the translated

code could also improve accuracy, and partially addresses concerns about simple algorithmic

changes. Although we detected them by hand, adding a pass to auto-detect loop unrolling

would also improve push-button accuracy.

6.2.3 Power and Energy

Throughout this dissertation, we considered a running example in which we computed the

number of cores that could fit on future multicore chips given area and power constraints

and scaling factors. In Chapter 3, we considered a model that included resource trade-off

curves with the performance achievable given an area or power budget. In Chapters 4 and 5,

however, we considered modelling approaches for architectural improvements that could not

be readily included in those resource trade-off functions.

Very interesting future work would be to extend the performance models in this disser-

tation to include power and energy estimates. The most straight-forward approach would

be to compute activity factors for these architectures and use them in a modified power

estimation tool such as McPAT [68].

6.3 Closing Remarks

In this dissertation, we have three modeling approaches to expand the architectural trade-off

and accuracy space. These models, an upper-bound model, custom model extensions, and

translation-based architectural extensions, each have specific use-cases and strengths. Using

the models, we are able to generate dark silicon projections as a running example of the

models’ utility and strengths.

The goal throughout this work is to expand the tool-set available to architects for rapid

exploration of novel ideas. The strengths of this work lie in the ability to model new ideas

without having to implement the hardware or software necessary to use that hardware.

Accuracy at this early stage does not need to be within 10%, and as a result the approaches

discussed in this dissertation can be useful to architects.

Analytic mechanistic models have a long history in computer architecture research. In the

first five years of ISCA proceedings, they were applied to problems as varied as instruction
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design to minimize program size [98], pipeline buffering [81], memory hierarchy design [84],

understanding memory and CPU bandwidth trade-offs and addressing efficiency [44], multi-

core workloads and distributed parallel machines [93, 61], and input/output latency hiding

using multi-programmed workloads [95]. At the time, they provided an approach to quan-

tify design impacts when full system simulation was difficult, due to both computation and

infrastructure limitations. Today, with the increasing complexity of both hardware and soft-

ware and the highly optimized stacks that require changes at all levels to implement new

ideas, we expect a renaissance of the utility of analytic mechanistic modeling as a tool for

computer architects.

The increasing need for more new architectural ideas that do not rely on increasing energy

use has forced interest in new ways to rapidly evaluate ideas. The models in this dissertation

are one step toward a new set of tools in architects’ toolboxes.
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a custom benchmarks

SGEMM: SGEMM is the C = ABT , column-major version of dense matrix multiply.

We vectorize the two inner-loops, and perform standard locality, unrolling, and alignment

optimizations. The optimized CUDA SGEMM is based on the register-tiling GPU code

by Stratton et al. [90], and is one of the fastest known implementations. It uses per-thread

register caches for access to A to reduce total shared memory accesses.

Convolution: Convolution is a widely used image filtering technique that has applications

in image processing and edge detection. We use a 5x5 filter, applying it to each pixel of

a padded image. The CPU version efficiently vectorizes pixel computation, but relies on

unaligned loads to fetch contiguous data. The CUDA implementation uses shared memory

to load image regions, reducing the required memory bandwidth, and uses the constant

memory for the filter.

FFT: Traditional Fast Fourier Transform is a fundamental algorithm in signal processing

and differential equation solving. Our SSE implementation interchanges loops of the standard

FFT butterfly formula for better temporal locality, enabling efficient, aligned vectorization.

The CUDA version uses a similar iteration pattern, first shuffling the data, then performing

the butterfly algorithm in separate kernels. Both versions use pre-generated look-up tables

for sine and cosine coefficients.

SAXPY: SAXPY (Single-Precision AX Plus Y) performs a scalar multiplication and

vector addition, and is a standard function in the Basic Linear Algebra Subroutines (BLAS)

library. The SSE vectorization of SAXPY is straight-forward and utilizes software prefetching

for marginal performance improvements. The CUDA version is similarly simple, using one

thread per element.

SPMV: Sparse matrix vector multiplication is a primitive in sparse linear algebra with an

irregular access pattern, making it memory bound. We first implement non-blocked versions

for SSE and CUDA, which either perform no vectorization, or attain no memory coalescing.

Next, our blocked version for both architectures use the BCSR [52] data structure, which
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coarsens the granularity of sparsity, and enables vectorization/coalescing at the cost of some

redundant computation.

Histogram: Our histogram bins 32-bit integers into 64K bins. We found no vectorization

potential in the histogram computation. The CUDA version of histogram applies a simple

parallelization, and uses an atomic memory update.

Monte Carlo: Monte Carlo is a class of stochastic algorithms that rely on repeated

random sampling to compute their result, and our version has applications in economics.

Different algorithmic phases show varying degrees of parallelism, so we cannot vectorize the

entire kernel for SSE. Some optimization is achieved through loop unrolling and loop fission.

Likewise, the CUDA version requires somewhat different parallelization strategies for each

phase.

LBM: LBM is a computational fluid dynamics benchmark that requires a variety of

arithmetic operations and control flow. Our vectorization strategy avoids vector-scalar and

scalar-vector operations, but requires vector masking to deal with vector-path based control-

flow in the benchmark. The CUDA version of LBM is based on the Parboil [90] version.

Since LBM is bandwidth bound, optimizations focus on addressing the layout of the lattice

data, and include using a tiled structure-of-arrays that achieves both good coalescing and

parallel memory bank usage.

Ray Casting: Ray Casting is a graphics benchmark with significant control flow di-

vergence. For this reason, vectorization of this benchmark requires too many vector mask

instructions to be profitable. The CUDA version of this benchmark exploits massive thread

level parallelism for increased performance.
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b parsec characteristics for upper-bound model

Table B.1: PARSEC Characteristics Used in Upper-Bound Model

mL1 Parameters mL2 Parameters
f∞ rls α β α β

Blackscholes 0.984 0.325 1.5 100 2.0 8025
Bodytrack 0.75 0.326 3.0 27272 5.0 351302
Canneal 0.865 0.386 1.6 1536 1.6 1652000
Dedup 0.87 0.400 1.6 269 1.6 57810
Facesim 0.86 0.480 2.5 16243 2.5 365727
Ferret 0.95 0.362 1.5 227 2.4 348595
Fluidanimate 0.95 0.423 1.9 710 1.6 337750
Freqmine 0.94 0.495 2.0 1540 2.0 134851
Streamcluster 0.99 0.429 1.5 391 1.4 52934
Swaptions 0.9999 0.442 1.8 1819 2.0 39677
Vips 0.85 0.267 1.5 83 3.0 325143
X264 0.99 0.06 2.0 5224 2.0 84626
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c additional m-core upper-bound model results
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Figure C.1: M -Core Validation: speedup over one SM
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d cycle counts using custom models

In this appendix, we show the predicted and measured cycle counts for each CAB benchmark

on each of the cores considered in Chapter 4. We include a dotted line with ±40% error.

Points that fall within the dotted lines thus have accuracy within 40%. Analysis of these

results was included in Chapter 4.
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Figure D.1: In-order S-Cores
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Figure D.2: Out-of-Order S-Cores
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e custom models on challenge benchmarks

In this appendix, we consider a more challenging benchmark suite, a sub-set of the Rodinia

suite. Note that these benchmarks are not optimized for the S or M cores that we consider.

Due to some non-ideal behaviors, we do not expect our models to achieve the same accuracy

as we did with the CAB benchmarks in Chapter 4. For the Rodinia benchmarks, which were

auto-vectorized, most benchmarks do not see a significant speedup. The largest speedup is

for bfs, which is sped up by nearly six times.

We include both a cycle count graph and a bar graph with speedups and percent errors

in speedups. On the cycle count graphs, we include a dotted line with ±40% error. Points

that fall within the dotted lines thus have accuracy within 40%. A brief nalysis of these

results was included in Chapter 4.

For the Rodinia benchmarks, we include five benchmarks, three of which have multiple

kernels. In the figures, “r1” and “r2” refer to different regions, or kernels, in the code.
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Figure E.2: S2-Core: Atom
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Figure E.4: S4+-Core: Sandybridge
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f cycle counts using translation models

Below, we show the predicted and measured cycle counts for CAB benchmarks on the two

S-Cores and two M -Cores considered in Chapter 5. We include a dotted line with ±40%

error. Points that fall within the dotted lines thus have accuracy within 40%.
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g translation models on challenge benchmarks

In this appendix, we consider a more challenging benchmark suite, a sub-set of the Rodinia

suite. Note that these benchmarks are not optimized for the S or M cores that we consider.

Benchmarks are not necessarily well-optimized in either the S-Core on M -Core source code.

As a result, we do not expect our models to achieve the same accuracy as we did with the

CAB benchmarks in Chapter 5.

We evaluate the Rodinia benchmarks only for S-Core to M -Core translation direction,

as the benchmarks were not compatible with our Ocelot-based tools. We include both a

cycle count graph and a bar graph with speedups and percent errors in speedups. On the

cycle count graphs, we include a dotted line with ±40% error. Points that fall within the

dotted lines thus have accuracy within 40%. A brief nalysis of these results was included in

Chapter 4.

We do not do any hand-tuning or warp/block size analysis beyond our push-button tools.

Given the expected inaccuracies, the results are surprisingly accurate.
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