
1

Design, Implementation, and Verification of DySER for Dynamic

Specialization in General Purpose Processors

Jesse Benson

University of Wisconsin – Madison

jmbenson2@wisc.edu

Abstract

The Dynamically Synthesized Execution (DySE) model is an execution model to improve the

energy efficiency and performance of general purpose programmable processors through dynamic

specialization. The purpose of this project was to develop a prototype implementation of a DySE

Resource (DySER) to demonstrate the viability of the design. A scalable DySER block was developed and

integrated into the OpenSPARC T1 pipeline. The modified processor was synthesized onto a Virtex-5

FPGA and can execute application binaries created with our co-designed compiler.

This paper provides an overview of the DySE Resource (DySER) design, hardware and compiler

implementations, verification, and design analysis. Performance analysis shows speed-up can be

achieved for programs that execute in phases or that contain ample computation reuse.

1. Introduction

The Dynamically Synthesized Execution (DySE)

model is an execution model to improve the

energy efficiency and performance of general

purpose processors [1,2]. The main insight

behind the model is as follows. Applications

often execute in phases, and these phases can

generally be identified at compile time. A

heterogeneous array of computational units

and interconnection can be configured to

execute a portion of the phase’s datapath. A

co-designed compiler constructs application

path-trees to identify phases. The compiler

slices path-trees and maps them onto DySE

Resource (DySER) blocks [3]. The programmer

continues to write programs in high-level

languages such as C++, requiring no extra

programmer burden.

My contributions to the research include the

implementation of DySER in Verilog,

verification, analysis, and contributions to the

compiler. The current design is scalable, and a

script allows automatic generation of any

desired DySER block size. A simulator for DySER

was created for inclusion in the GEMS

framework for performance analysis and

ongoing research. The co-designed LLVM

compiler was extended to target this particular

DySER design. A block containing 16 functional

units was integrated into the OpenSPARC T1

pipeline [5] and successfully synthesized onto a

Virtex-5 board as a prototype. A suite of micro-

benchmarks demonstrates the supported

functionality and identifies workloads that

2

perform well and workloads that perform

poorly on a DySER-enhanced processor.

The remainder of this paper is organized as

follows. Section 2 describes the DySER

implementation and section 3 describes the

integration with the OpenSPARC processor and

FPGA synthesis. Section 4 discusses trade-offs

in the design and section 5 describes the

compiler. Section 6 discusses verification and

section 7 contains performance analysis.

Section 8 concludes.

2. DySER Implementation

This research demonstrates one possible

instantiation of the proposed Dynamically

Synthesized Execution model. This section

provides an overview of the modules that make

up a DySE Resource (DySER) block. The core of

a DySER is made up with an array of functional

units interconnected with switches (Figure 1a).

An input and output bridge provide the

interface between the processor and a DySER

block.

2.1 Functional Unit

The functional unit provides the computation in

a DySER block (Figure 1b). The mix of

computation provided by the functional units

can vary throughout a block. Based on

configuration (configuration registers not

shown in the diagram), the functional unit will

take one or two operands from the four input

directions. The right operand can optionally be

a constant embedded during configuration. The

result of the computation is always sent to the

south-east switch.

To provide control flow in a DySER block, the

functional units have the ability to optionally

predicate the result. This is done by using a

third input as the predicate flag, again using one

of the four input directions. Predication is

discussed more in Section 4.

2.2 Switch

The switch is the main module for moving data

within a DySER block and to functional units

(Figure 1c). A switch takes inputs from the four

orthogonal “neighbor” switches, and from the

north-west functional unit. It provides outputs

to the four orthogonal switches and four

neighboring functional units, with edge

switches having correspondingly fewer inputs

and outputs (note Figure 1a). Based on

configuration (not shown), each of the eight

outputs will either be off or configured to

Figure 1: Major components of a Dynamically Synthesized Execution Resource.

3

forward data from one of the five input

directions.

In the compiler literature, there is a notion of a

Phi-function, which is related to control flow

and diverging execution paths. Switch outputs

support being configured as a Phi-function. This

allows it to select between two values based on

those values’ predication.

2.3 Processor Interface

A DySER block must first be configured before it

can be used. Each switch and functional unit

requires configuration. A special instruction

(dyser_init - see section 3) is used to send

configuration bits to the block. A sequence of

dyser_init instructions send configuration bits

through a statically determined path through

the existing switch network until all switches

and functional units are configured. The

number of dyser_init instructions required to

configure a block is proportional to the number

of switches and functional units.

Once configured, data is sent from the register

file or memory to a DySER input port

(corresponding to one of the edge switches).

Data flows through the DySER block along the

now configured paths. Switches and functional

units use credit-based flow control to manage

the flow of data in the network (Figure 1d,e).

The results can be retrieved by reading from a

DySER output port.

2.4 Module Synthesis

The modules were synthesized to compare

approximate areas for the main components in

a DySER block. Synthesis was performed using

the Synopsis tool chain with a 55 nm standard

cell library (Table 1). The area breakdown is

normalized to the area of a SPARC ALU, and

shows where effort should be focused to make

the most effective improvements. Ideally, the

majority of the DySER block area would be

consumed by computational components with

minimal routing. A DySER block is made up of

approximately an equal number of functional

units and switches. A switch’s primary function

is to route data between functional units, so its

area should be minimized. From Table 1, a

switch actually consumes the most area, making

it an ideal target for improvements. A

reasonable goal would be to get the “overhead”

reduced below the area of the components

providing computation.

3. Integration with OpenSPARC

This section provides an overview of

modifications to the OpenSPARC processor

pipeline [4] and FPGA synthesis. The

OpenSPARC modifications were primarily

accomplished by Chris Frericks and the FPGA

synthesis done by Ryan Cofell. A DySER block

Module Area

SPARC ALU 1.000

Functional unit (with SPARC ALU) 1.944

Switch (no Phi-function) 2.281

Switch (Phi-function) 2.525

Table 1: Approximate synthesis areas for DySER

components (normalized to the SPARC ALU).

4

was integrated into the OpenSPARC pipeline

logically in the execution stage (Figure 2).

3.1 Instruction Set Extensions

The SPARC instruction set was extended with six

instructions to facilitate processor and compiler

interaction with a DySER block. The instructions

allow the compiler to configure the DySER

block, send data from memory or the register

file to the DySER block, and send data from the

DySER block to memory or the register file. The

instructions are detailed in Table 2.

3.2 FPGA Prototype

FPGA prototyping of the DySER-enhanced

processor was one of the original goals of the

project. The prototype shows it’s feasible to

integrate our “accelerator” into a commercial

processor. The integrated design and FPGA

prototype allows us to run a full operating

system and full binaries. A lite version of

Ubuntu 7.10 is being used. The application

binaries are created using the co-designed

compiler (discussed further in Section 5). As a

consequence, full benchmarks can be executed

with larger data sets on the FPGA prototype

than can be simulated.

Instruction Description

dyser_init [config data]

The DySER block is placed

in config mode, and the

config data is shifted into

the block.

dyser_send RS1=>DI1

dyser_send RS1=>DI1,

RS2=>DI2

Reads from the register file

and sends the data to a

DySER block. 1 or 2 source

registers (RS1, RS2) are

sent to the specified DySER

input ports (DI1, DI2).

dyser_recv DO=>RD Writes output data from

DySER to the register file.

dyser_load [RS]=>DI Reads from memory using

the address in register RS

and sends the result to

DySER input port DI.

dyser_store DO=>[RS] Writes data from DySER

output port DO to memory

using the address in register

RS.

dyser_commit

Signals DySER to write all

ready data back to general-

purpose registers and/or

memory. This facilitates

out-of-order execution.

Table 2: Stylized SPARC instruction set extensions

to support DySER operations.

Figure 2: The OpenSPARC T1 pipeline with a DySER block integrated in the execute pipeline stage.

5

We have successfully synthesized a DySER block

containing 16 functional units arranged in a 4x4

tiled array onto a Virtex-5 board. The modified

OpenSPARC processor operates at a 50 MHz

clock frequency. The prototype is also being

used to verify the GEMS DySER simulator for

functional correctness and cycle accuracy.

Once the cycle accuracy of the simulator is

known for the smaller DySER blocks that fit on

the FPGA, larger blocks or multiple blocks can

be simulated with an empirical confidence.

4. Design Decisions and Trade-offs

This project involved a number of design

decisions and trade-offs. The project involved

three large concurrent tasks: DySER

development, OpenSPARC modifications, and

the co-designed compiler. All three portions

informed design decisions among each other.

This section discusses several of these

decisions.

The co-designed compiler informed several

changes to the DySER hardware

implementation. Analysis from the compiler

determined it’s common to have constants

across invocations of a computation slice.

Under normal operation, all values must be sent

to the DySER block using dyser_send

instructions. For values that stay constant

across DySER invocations, this represents a

significant waste. The hardware was extended

to support stored constants as an input to any

functional unit. To support this, the constant

values are embedded in the configuration bits.

This makes configuration time longer (a one

time occurrence), but reduces the number of

dyser_send operations.

The first design iteration did not support control

flow execution. Supporting simple control flow

cases would allow more path-trees to be

scheduled onto a DySER block, which is

attractive. To do this, functional units were

extended to have predicated results, and

switches have embedded Phi-function support

to choose between two predicated results. This

provides a simple control flow mechanism.

Configuration management and interaction

with the operating system were design

concerns. One main concern was handling

interrupts, system calls, or any other event that

leave the DySER block in a partially configured

state. The chosen design was to make

configuration idempotent and restrict the

operating system from using a DySER block.

The configuration bits are embedded in the

dyser_init instructions. This is a simple but

wasteful design, since each 32-bit instruction

embeds only 21 configuration bits. However, it

was chosen because it naturally benefits from

existing cache techniques, and page

faults/cache misses do not cause any problems.

If configuration is interrupted, resuming at the

paused instruction (which most processors do

by default) or restarting from the beginning of

the configuration instructions will both result in

correct execution.

The OpenSPARC modifications were done to be

minimally disruptive. An implementation

dependent instruction was used for four of the

DySER instructions. The DySER block is logically

placed parallel to the SPARC ALU in the execute

phase. This choice enabled the instructions to

act like any other R-type instruction except they

use the DySER block instead of the normal

execution pipeline. The two memory

instructions used the existing SPARC load and

6

store instructions by mapping DySER as an

alternative memory space (the normal memory

hierarchy is alternate space 0). This choice

allowed most of the existing decode and control

signals to be re-used.

The main objective with FPGA synthesis was to

create a working prototype. It showed the

feasibility of integrating a DySER block into a

commercial processor. We were limited by

area to integrating a 16 functional unit array

onto the Virtex-5 board, which was smaller than

desired. However, as a proof-of-concept and to

validate the simulator, this is sufficient. It

allowed all functionality to be tested and

reasonable performance on several

benchmarks. In future work, the project will

investigate cross synthesis on multiple FPGAs to

allow mapping of larger (e.g. 8x8) or multiple

DySER blocks.

5. DySER Software Compiler

A critical component of the DySE model is the

accompanying compiler. This section provides a

brief overview of the compiler. The DySER

compiler is an extension of LLVM performed

mostly by Venkatraman Govindaraju and Tony

Nowatzki. My contributions to the compiler

work were to provide the details of the DySER

block to the compiler, generate the

configuration information for a scheduled

computation slice, and create a DySER simulator

to verify the compiler’s code.

The compiler creates a program dependency

graph (PDG), analyzes a sample execution of the

program, slices the PDG, and schedules slices

onto a DySER block. The PDG determines all

possible execution paths in a program (Figure

3a). The code is then instrumented and

executed with representative inputs to analyze

the frequency that different execution paths are

taken. The compiler uses heuristics to find

suitable candidate sections of the PDG to map

onto a DySER block (Figure 3b). Each suitable

PDG slice is scheduled onto the available DySER

block’s resources (Figure 3c). Finally, the

supporting code is generated to configure, send

data to, and receive data from the DySER block.

5.1 DySER Configuration

A model of a DySER block is provided to the

compiler to schedule slices of the PDG onto.

Currently, the model needs to exactly match

what is provided in the hardware on which the

program will be executed. Once a PDG slice is

scheduled onto the block, there is a one to one

mapping to what the configuration bits need to

be. An ordered list of dyser_init instructions are

generated, which is the code to configure the

DySER block to perform that computation slice.

5.2 DySER Simulator

A simulator for DySER was created to allow

verification of the compiler generated code.

The simulator in written in C++ to closely match

Figure 3: Scheduling a phase of Black-Scholes onto

a DySER block with a 3x2 array of functional units.

7

how execution happens in hardware. The

switches, functional units, input ports, output

ports, and flow of data in DySER are all

modeled. Instructions (dyser_init, dyser_send,

dyser_recv, etc.) can be executed on the

simulator in sequence, as they would in

hardware. The results can be compared to a

reference output, such as the results from the

program execution used for compiler path-tree

analysis.

In future work, the simulator’s cycle accuracy

will be improved so that performance heuristics

can be incorporated into the compiler to help

inform when scheduling a portion of code will

be beneficial. The simulator can also be

extended with a power model or other metrics.

6. Verification

Verification was performed across all parts of

the project. A suite of verilog testbenches were

used to verify the DySER implementation and

the C++ simulator. A provided regression suite

was used to verify the modified OpenSPARC

processor maintained ISA compatibility. The

DySER simulator was used to verify the

compiler. A suite of self-checking micro-

benchmarks were developed to run on the

FPGA prototype to verify correct functionality of

the DySER block.

6.1 DySER

Verilog testbenches were created to validate

each individual DySER component, and were

combined into a regression suite. The top level

testbench tested the interface between the

processor and DySER. The C++ DySER simulator

was designed to look very similar to the DySER

verilog testbench. This allowed the verilog

simulation results to be used to verify the C++

simulator.

6.2 OpenSPLySER

OpenSPARC is released with a regression test

suite which verifies compatibility with the

SPARC ISA. As the pipeline was modified, the

regressions ensured the processor still

performed normal SPARC instructions correctly,

which significantly eased verification. We

added a several tests to the suite to ensure

functionally correct DySER instruction operation

when a DySER block is present.

6.3 Compiler

The compiler output can be validated using the

DySER simulator. The compiler includes a step

to execute the original source code with a

representative input set. The results of this run

can be compared with the simulation of the

final source code to verify valid generated code.

6.4 FPGA Prototype

Once all the components are verified in

simulation, the synthesized FPGA prototype

needs to be verified. To do this, a suite of self-

checking micro-benchmarks were compiled to

binaries targeting Ubuntu running on the

modified OpenSPARC processor. This

regression suite can verify the DySER block is

functionally correct and meeting timing.

8

7. Performance Analysis

The purported benefits of the DySE model is

improved performance and/or increased energy

efficiency. Some initial performance analysis

has been done on the modified OpenSPARC

processor in both simulation and on the FPGA

prototype. A GEMS simulation framework is

being developed to simulate a DySER block with

cycle accuracy close to the hardware

implementation. This enables a faster

simulation than gate-level simulation, and

allows larger DySER blocks than can fit on an

FPGA while maintaining reasonable cycle

accuracy.

7.1 Micro-benchmark Performance

A number of micro-benchmarks have been

developed to demonstrate general application

characteristics that perform well and that

perform poorly on a DySER-enhanced processor

(Figure 4). The graph shows the kernel speed-

up on a 2x2 DySER block versus executing the

same computation on the SPARC processor.

The sample kernels demonstrate a few key

points about DySER execution. A DySER block

must be configured before use, which is shown

by the ramp-up time to achieve speed-up in the

graph. The configuration time is quickly

amortized as the iteration count increases.

Kernel 1 is characterized by low communication

between the processor and DySER (few

dyser_send and dyser_recv instructions) and has

been properly software pipelined. It is an ideal

kernel for this 2x2 DySER block and achieves an

asymptotic speed-up of 1.8. Kernels 2 and 3

contain the same computation which is

characterized by high communication, except

kernel 2 has been properly software pipelined

and thus achieves higher speed-up. Kernel 4

reconfigures the DySER block often, which

demonstrates a poor reuse of the DySER block.

Figure 4: Speed-up for four sample micro-kernels on a 2x2 DySER block versus executing the same

computation on the baseline SPARC processor.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 10 20 30 40 50 60 70 80 90 100

Sp
e

e
d

-u
p

 o
ve

r
SP

A
R

C
 e

xe
cu

ti
o

n

Loop Iterations

Kernel Speed-up on DySER
1. Low Comm+SW Pipelining

2. High Comm+SW Pipelining

3. High Communication

4. Poor DySER Reuse

9

7.2 Ideal Kernel Characteristics

The following are general characteristics of that

a micro-benchmark can contain and their

associated performance effects when executing

on a DySER block:

Perform Well:

1. Application executes in phases.

2. Computationally intensive code regions.

3. Frequent execution of code regions.

4. High reuse of variables in computations.

Perform Poorly:

1. Poorly identifiable phases.

2. Minimal re-execution of code regions.

3. Sporadic execution of code regions.

4. Little or no variable reuse in computations.

Applications that execute in phases or have

computationally intensive regions that are

invoked frequently (not necessarily back to

back) tend to get the most benefit. This is

because the DySER block will have high

utilization of functional units, and the

configuration time will be amortized over the

numerous invocations. A computational region

that contains a high degree of variable reuse or

constant values will have a strongly positive

effect on performance because the variable will

be sent to the DySER block once and used in

numerous functional units.

Applications with no identifiable execution

phases, or that execution several code regions

sporadically rather than one region repeatedly

will suffer in performance. Executing a code

region requires the DySER block to be

configured for that region. If that region is not

executed enough times before the next code

region needs to be executed, the configuration

time for each region will eliminate most

performance gains. Similarly, sending data to

and reading data from a DySER block requires

dyser_send and dyser_recv instructions. A

computation slice with little variable reuse will

require more send and receives, mitigating

some of the performance gains.

The theoretical maximum speed-up for this

DySER implementation is given by the number

of functional units divided by the time to send

and receive all the inputs and outputs. This can

be understood by the following. A configured

DySER block looks and acts like a long latency

function with multiple inputs and outputs. A

properly scheduled DySER block can be utilizing

all functional units on each cycle. Each

invocation of the DySER block requires at least

one dyser_send and at least one dyser_recv

instruction. Since the OpenSPARC T1 processor

is a single-issue, in-order processor, this

requires at least 2 cycles so the theoretical

maximum speed-up on it is the number of

functional units divided by two.

8. Conclusion

The Dynamically Synthesized Execution (DySE)

model allows dynamic specialization in general

purpose processors to achieve performance

improvement or energy efficiency. The co-

designed compiler analyzes and schedules code

onto the DySE Resource (DySER) block, letting

the programmer continue to write in high-level

languages without extra burden.

The primary focus of this research was to create

a proof of concept implementation of the

proposed DySE model. The design described in

this paper shows one possible instantiation of

the DySE model. A scalable DySE Resource

10

block was integrated into the pipeline of a

simple, in-order OpenSPARC T1 processor. The

design was successfully synthesized onto a

Virtex-5 FPGA as a prototype. The board runs a

lite Ubuntu 7.10 operating system and can

execute application binaries created using the

co-designed compiler.

Future work and directions exist for this design.

Ideally, the majority of the area would be

consumed by computational blocks. Anlysis

shows there is still significant area overheads

due to data routing and configuration flexibility.

The performance analysis shows the types of

workloads and behaviors that result in good and

poor performance on a DySER-enhanced

processor. This analysis can be incorporated in

the compiler to improve the heuristics. This

DySER design can be incorporated into both

superscalar and out-of-order processors.

Acknowledgements

Many thanks to the Vertical Research Group

including my advisor, Karthikeyan

Sankaralingam; Chris Frericks and Ryan Cofell

for the OpenSPARC and FPGA work; Tony

Nowatzki and Venkatraman Govindaraju for

compiler work; and Chen-han Ho for the initial

DySER design.

References

[1] K. Jeong, A. Kahng, A power-constrained

MPU roadmap for the International Technology

Roadmap for Semiconductors (ITRS), SoC Design

Conference (ISOCC), 2009 International, pp. 49-

52, Nov 2009.

[2] V. Govindaraju, C. Ho, and K. Sankaralingam.

Dynamically Specialized Datapaths for Energy

Efficient Computing. In Proceedings of 17th

International Conference on High Performance

Computer Architecture, February 2011.

[3] C. Ho. Dynamically Synthesized Execution

Resources (DySER) Design Specification.

Technical Report.

[4] C. Frericks, J. Benson, and R. Cofell.

OpenSPLySER: The Integrated OpenSPARC and

DySER Design. University of Wisconsin –

Madison Computer Science Technical Report.

[5] OpenSPARC T1 Microarchitecture

Specification. Sun Microsystems, Inc. 2006.

[6] D. Patterson and J. Hennessy. Computer

Organization and Design. Morgan Kaufman

Publisher 4th Edition, 2008.

http://www.cs.wisc.edu/~venkatra
http://www.cs.wisc.edu/~karu

