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Abstract 

 

The Dynamically Synthesized Execution (DySE) model is an execution model to improve the 

energy efficiency and performance of general purpose programmable processors through dynamic 

specialization.  The purpose of this project was to develop a prototype implementation of a DySE 

Resource (DySER) to demonstrate the viability of the design.  A scalable DySER block was developed and 

integrated into the OpenSPARC T1 pipeline.  The modified processor was synthesized onto a Virtex-5 

FPGA and can execute application binaries created with our co-designed compiler. 

This paper provides an overview of the DySE Resource (DySER) design, hardware and compiler 

implementations, verification, and design analysis.  Performance analysis shows speed-up can be 

achieved for programs that execute in phases or that contain ample computation reuse. 

 

 

1.  Introduction 

 

The Dynamically Synthesized Execution (DySE) 

model is an execution model to improve the 

energy efficiency and performance of general 

purpose processors [1,2].  The main insight 

behind the model is as follows.  Applications 

often execute in phases, and these phases can 

generally be identified at compile time.  A 

heterogeneous array of computational units 

and interconnection can be configured to 

execute a portion of the phase’s datapath.  A 

co-designed compiler constructs application 

path-trees to identify phases.  The compiler 

slices path-trees and maps them onto DySE 

Resource (DySER) blocks [3].  The programmer 

continues to write programs in high-level 

languages such as C++, requiring no extra 

programmer burden. 

 

My contributions to the research include the 

implementation of DySER in Verilog, 

verification, analysis, and contributions to the 

compiler.  The current design is scalable, and a 

script allows automatic generation of any 

desired DySER block size.  A simulator for DySER 

was created for inclusion in the GEMS 

framework for performance analysis and 

ongoing research.  The co-designed LLVM 

compiler was extended to target this particular 

DySER design.  A block containing 16 functional 

units was integrated into the OpenSPARC T1 

pipeline [5] and successfully synthesized onto a 

Virtex-5 board as a prototype.  A suite of micro-

benchmarks demonstrates the supported 

functionality and identifies workloads that 
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perform well and workloads that perform 

poorly on a DySER-enhanced processor. 

 

The remainder of this paper is organized as 

follows.  Section 2 describes the DySER 

implementation and section 3 describes the 

integration with the OpenSPARC processor and 

FPGA synthesis.  Section 4 discusses trade-offs 

in the design and section 5 describes the 

compiler.  Section 6 discusses verification and 

section 7 contains performance analysis.  

Section 8 concludes. 

 

 

2.  DySER Implementation 

 

This research demonstrates one possible 

instantiation of the proposed Dynamically 

Synthesized Execution model.  This section 

provides an overview of the modules that make 

up a DySE Resource (DySER) block.  The core of 

a DySER is made up with an array of functional 

units interconnected with switches (Figure 1a).  

An input and output bridge provide the 

interface between the processor and a DySER 

block. 

 

2.1 Functional Unit 

 

The functional unit provides the computation in 

a DySER block (Figure 1b).  The mix of 

computation provided by the functional units 

can vary throughout a block.  Based on 

configuration (configuration registers not 

shown in the diagram), the functional unit will 

take one or two operands from the four input 

directions.  The right operand can optionally be 

a constant embedded during configuration.  The 

result of the computation is always sent to the 

south-east switch. 

 

To provide control flow in a DySER block, the 

functional units have the ability to optionally 

predicate the result.  This is done by using a 

third input as the predicate flag, again using one 

of the four input directions.  Predication is 

discussed more in Section 4. 

 

2.2 Switch 

 

The switch is the main module for moving data 

within a DySER block and to functional units 

(Figure 1c).  A switch takes inputs from the four 

orthogonal “neighbor” switches, and from the 

north-west functional unit.  It provides outputs 

to the four orthogonal switches and four 

neighboring functional units, with edge 

switches having correspondingly fewer inputs 

and outputs (note Figure 1a).  Based on 

configuration (not shown), each of the eight 

outputs will either be off or configured to 

Figure 1:  Major components of a Dynamically Synthesized Execution Resource. 
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forward data from one of the five input 

directions. 

 

In the compiler literature, there is a notion of a 

Phi-function, which is related to control flow 

and diverging execution paths.  Switch outputs 

support being configured as a Phi-function.  This 

allows it to select between two values based on 

those values’ predication. 

 

2.3 Processor Interface 

 

A DySER block must first be configured before it 

can be used.  Each switch and functional unit 

requires configuration.  A special instruction 

(dyser_init - see section 3) is used to send 

configuration bits to the block.  A sequence of 

dyser_init instructions send configuration bits 

through a statically determined path through 

the existing switch network until all switches 

and functional units are configured.  The 

number of dyser_init instructions required to 

configure a block is proportional to the number 

of switches and functional units. 

 

Once configured, data is sent from the register 

file or memory to a DySER input port 

(corresponding to one of the edge switches).  

Data flows through the DySER block along the 

now configured paths.  Switches and functional 

units use credit-based flow control to manage 

the flow of data in the network (Figure 1d,e).  

The results can be retrieved by reading from a 

DySER output port. 

 

2.4 Module Synthesis 

 

The modules were synthesized to compare 

approximate areas for the main components in 

a DySER block.  Synthesis was performed using 

the Synopsis tool chain with a 55 nm standard 

cell library (Table 1).  The area breakdown is 

normalized to the area of a SPARC ALU, and 

shows where effort should be focused to make 

the most effective improvements.  Ideally, the 

majority of the DySER block area would be 

consumed by computational components with 

minimal routing.  A DySER block is made up of 

approximately an equal number of functional 

units and switches.  A switch’s primary function 

is to route data between functional units, so its 

area should be minimized.  From Table 1, a 

switch actually consumes the most area, making 

it an ideal target for improvements.  A 

reasonable goal would be to get the “overhead” 

reduced below the area of the components 

providing computation. 

 

 

3.  Integration with OpenSPARC 

 

This section provides an overview of 

modifications to the OpenSPARC processor 

pipeline [4] and FPGA synthesis.  The 

OpenSPARC modifications were primarily 

accomplished by Chris Frericks and the FPGA 

synthesis done by Ryan Cofell.  A DySER block  

Module Area 

SPARC ALU 1.000 

Functional unit (with SPARC ALU) 1.944 

Switch (no Phi-function) 2.281 

Switch (Phi-function) 2.525 

Table 1:  Approximate synthesis areas for DySER 

components (normalized to the SPARC ALU). 
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was integrated into the OpenSPARC pipeline 

logically in the execution stage (Figure 2). 

 

3.1 Instruction Set Extensions 

 

The SPARC instruction set was extended with six 

instructions to facilitate processor and compiler 

interaction with a DySER block.  The instructions 

allow the compiler to configure the DySER 

block, send data from memory or the register 

file to the DySER block, and send data from the 

DySER block to memory or the register file.  The 

instructions are detailed in Table 2. 

 

3.2 FPGA Prototype 

 

FPGA prototyping of the DySER-enhanced 

processor was one of the original goals of the 

project.  The prototype shows it’s feasible to 

integrate our “accelerator” into a commercial 

processor.  The integrated design and FPGA 

prototype allows us to run a full operating 

system and full binaries.  A lite version of 

Ubuntu 7.10 is being used.  The application 

binaries are created using the co-designed 

compiler (discussed further in Section 5).  As a 

consequence, full benchmarks can be executed 

with larger data sets on the FPGA prototype 

than can be simulated. 

Instruction Description 

 

dyser_init [config data] 

The DySER block is placed 

in config mode, and the 

config data is shifted into 

the block. 

dyser_send RS1=>DI1 

dyser_send RS1=>DI1, 

RS2=>DI2 

Reads from the register file 

and sends the data to a 

DySER block.  1 or 2 source 

registers (RS1, RS2) are 

sent to the specified DySER 

input ports (DI1, DI2). 

dyser_recv DO=>RD Writes output data from 

DySER to the register file. 

dyser_load [RS]=>DI Reads from memory using 

the address in register RS 

and sends the result to 

DySER input port DI. 

dyser_store DO=>[RS] Writes data from DySER 

output port DO to memory 

using the address in register 

RS. 

 

dyser_commit 

Signals DySER to write all 

ready data back to general-

purpose registers and/or 

memory.  This facilitates 

out-of-order execution. 

Table 2:  Stylized SPARC instruction set extensions 

to support DySER operations. 

Figure 2:  The OpenSPARC T1 pipeline with a DySER block integrated in the execute pipeline stage. 
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We have successfully synthesized a DySER block 

containing 16 functional units arranged in a 4x4 

tiled array onto a Virtex-5 board.  The modified 

OpenSPARC processor operates at a 50 MHz 

clock frequency.  The prototype is also being 

used to verify the GEMS DySER simulator for 

functional correctness and cycle accuracy.  

Once the cycle accuracy of the simulator is 

known for the smaller DySER blocks that fit on 

the FPGA, larger blocks or multiple blocks can 

be simulated with an empirical confidence. 

 

 

4.  Design Decisions and Trade-offs 

 

This project involved a number of design 

decisions and trade-offs.  The project involved 

three large concurrent tasks:  DySER 

development, OpenSPARC modifications, and 

the co-designed compiler.  All three portions 

informed design decisions among each other.  

This section discusses several of these 

decisions. 

 

The co-designed compiler informed several 

changes to the DySER hardware 

implementation.  Analysis from the compiler 

determined it’s common to have constants 

across invocations of a computation slice.  

Under normal operation, all values must be sent 

to the DySER block using dyser_send 

instructions.  For values that stay constant 

across DySER invocations, this represents a 

significant waste.  The hardware was extended 

to support stored constants as an input to any 

functional unit.  To support this, the constant 

values are embedded in the configuration bits.  

This makes configuration time longer (a one 

time occurrence), but reduces the number of 

dyser_send operations. 

 

The first design iteration did not support control 

flow execution.  Supporting simple control flow 

cases would allow more path-trees to be 

scheduled onto a DySER block, which is 

attractive.  To do this, functional units were 

extended to have predicated results, and 

switches have embedded Phi-function support 

to choose between two predicated results.  This 

provides a simple control flow mechanism. 

 

Configuration management and interaction 

with the operating system were design 

concerns.  One main concern was handling 

interrupts, system calls, or any other event that 

leave the DySER block in a partially configured 

state.  The chosen design was to make 

configuration idempotent and restrict the 

operating system from using a DySER block.  

The configuration bits are embedded in the 

dyser_init instructions.  This is a simple but 

wasteful design, since each 32-bit instruction 

embeds only 21 configuration bits.  However, it 

was chosen because it naturally benefits from 

existing cache techniques, and page 

faults/cache misses do not cause any problems.  

If configuration is interrupted, resuming at the 

paused instruction (which most processors do 

by default) or restarting from the beginning of 

the configuration instructions will both result in 

correct execution. 

 

The OpenSPARC modifications were done to be 

minimally disruptive.  An implementation 

dependent instruction was used for four of the 

DySER instructions.  The DySER block is logically 

placed parallel to the SPARC ALU in the execute 

phase.  This choice enabled the instructions to 

act like any other R-type instruction except they 

use the DySER block instead of the normal 

execution pipeline.  The two memory 

instructions used the existing SPARC load and 
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store instructions by mapping DySER as an 

alternative memory space (the normal memory 

hierarchy is alternate space 0).  This choice 

allowed most of the existing decode and control 

signals to be re-used.   

 

The main objective with FPGA synthesis was to 

create a working prototype.  It showed the 

feasibility of integrating a DySER block into a 

commercial processor.  We were limited by 

area to integrating a 16 functional unit array 

onto the Virtex-5 board, which was smaller than 

desired.  However, as a proof-of-concept and to 

validate the simulator, this is sufficient.  It 

allowed all functionality to be tested and 

reasonable performance on several 

benchmarks.  In future work, the project will 

investigate cross synthesis on multiple FPGAs to 

allow mapping of larger (e.g. 8x8) or multiple 

DySER blocks. 

 

 

5.  DySER Software Compiler 

 

A critical component of the DySE model is the 

accompanying compiler.  This section provides a 

brief overview of the compiler.  The DySER 

compiler is an extension of LLVM performed 

mostly by Venkatraman Govindaraju and Tony 

Nowatzki.  My contributions to the compiler 

work were to provide the details of the DySER 

block to the compiler, generate the 

configuration information for a scheduled 

computation slice, and create a DySER simulator 

to verify the compiler’s code. 

 

The compiler creates a program dependency 

graph (PDG), analyzes a sample execution of the 

program, slices the PDG, and schedules slices 

onto a DySER block.  The PDG determines all 

possible execution paths in a program (Figure 

3a).  The code is then instrumented and 

executed with representative inputs to analyze 

the frequency that different execution paths are 

taken.  The compiler uses heuristics to find 

suitable candidate sections of the PDG to map 

onto a DySER block (Figure 3b).  Each suitable 

PDG slice is scheduled onto the available DySER 

block’s resources (Figure 3c).  Finally, the 

supporting code is generated to configure, send 

data to, and receive data from the DySER block. 

 

5.1 DySER Configuration 

 

A model of a DySER block is provided to the 

compiler to schedule slices of the PDG onto.  

Currently, the model needs to exactly match 

what is provided in the hardware on which the 

program will be executed.  Once a PDG slice is 

scheduled onto the block, there is a one to one 

mapping to what the configuration bits need to 

be.  An ordered list of dyser_init instructions are 

generated, which is the code to configure the 

DySER block to perform that computation slice. 

 

 

5.2 DySER Simulator 

 

A simulator for DySER was created to allow 

verification of the compiler generated code.  

The simulator in written in C++ to closely match 

Figure 3:  Scheduling a phase of Black-Scholes onto 

a DySER block with a 3x2 array of functional units. 
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how execution happens in hardware.  The 

switches, functional units, input ports, output 

ports, and flow of data in DySER are all 

modeled.  Instructions (dyser_init, dyser_send, 

dyser_recv, etc.) can be executed on the 

simulator in sequence, as they would in 

hardware.  The results can be compared to a 

reference output, such as the results from the 

program execution used for compiler path-tree 

analysis. 

 

In future work, the simulator’s cycle accuracy 

will be improved so that performance heuristics 

can be incorporated into the compiler to help 

inform when scheduling a portion of code will 

be beneficial.  The simulator can also be 

extended with a power model or other metrics. 

 

 

6.  Verification 

 

Verification was performed across all parts of 

the project.  A suite of verilog testbenches were 

used to verify the DySER implementation and 

the C++ simulator.  A provided regression suite 

was used to verify the modified OpenSPARC 

processor maintained ISA compatibility.  The 

DySER simulator was used to verify the 

compiler.  A suite of self-checking micro-

benchmarks were developed to run on the 

FPGA prototype to verify correct functionality of 

the DySER block. 

 

6.1 DySER 

 

Verilog testbenches were created to validate 

each individual DySER component, and were 

combined into a regression suite.  The top level 

testbench tested the interface between the 

processor and DySER.  The C++ DySER simulator 

was designed to look very similar to the DySER 

verilog testbench.  This allowed the verilog 

simulation results to be used to verify the C++ 

simulator. 

 

6.2 OpenSPLySER 

 

OpenSPARC is released with a regression test 

suite which verifies compatibility with the 

SPARC ISA.  As the pipeline was modified, the 

regressions ensured the processor still 

performed normal SPARC instructions correctly, 

which significantly eased verification.  We 

added a several tests to the suite to ensure 

functionally correct DySER instruction operation 

when a DySER block is present. 

 

6.3 Compiler 

 

The compiler output can be validated using the 

DySER simulator.  The compiler includes a step 

to execute the original source code with a 

representative input set.  The results of this run 

can be compared with the simulation of the 

final source code to verify valid generated code. 

 

6.4 FPGA Prototype 

 

Once all the components are verified in 

simulation, the synthesized FPGA prototype 

needs to be verified.  To do this, a suite of self-

checking micro-benchmarks were compiled to 

binaries targeting Ubuntu running on the 

modified OpenSPARC processor.  This 

regression suite can verify the DySER block is 

functionally correct and meeting timing. 
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7.  Performance Analysis 

 

The purported benefits of the DySE model is 

improved performance and/or increased energy 

efficiency.  Some initial performance analysis 

has been done on the modified OpenSPARC 

processor in both simulation and on the FPGA 

prototype.  A GEMS simulation framework is 

being developed to simulate a DySER block with 

cycle accuracy close to the hardware 

implementation.  This enables a faster 

simulation than gate-level simulation, and 

allows larger DySER blocks than can fit on an 

FPGA while maintaining reasonable cycle 

accuracy. 

 

7.1 Micro-benchmark Performance 

 

A number of micro-benchmarks have been 

developed to demonstrate general application 

characteristics that perform well and that 

perform poorly on a DySER-enhanced processor 

(Figure 4).  The graph shows the kernel speed-

up on a 2x2 DySER block versus executing the 

same computation on the SPARC processor. 

 

The sample kernels demonstrate a few key 

points about DySER execution.  A DySER block 

must be configured before use, which is shown 

by the ramp-up time to achieve speed-up in the 

graph.  The configuration time is quickly 

amortized as the iteration count increases.  

Kernel 1 is characterized by low communication 

between the processor and DySER (few 

dyser_send and dyser_recv instructions) and has 

been properly software pipelined.  It is an ideal 

kernel for this 2x2 DySER block and achieves an 

asymptotic speed-up of 1.8.  Kernels 2 and 3 

contain the same computation which is 

characterized by high communication, except 

kernel 2 has been properly software pipelined 

and thus achieves higher speed-up.  Kernel 4 

reconfigures the DySER block often, which 

demonstrates a poor reuse of the DySER block. 

Figure 4:  Speed-up for four sample micro-kernels on a 2x2 DySER block versus executing the same 

computation on the baseline SPARC processor. 
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7.2 Ideal Kernel Characteristics 

 

The following are general characteristics of that 

a micro-benchmark can contain and their 

associated performance effects when executing 

on a DySER block: 

 

Perform Well: 

1. Application executes in phases. 

2. Computationally intensive code regions. 

3. Frequent execution of code regions. 

4. High reuse of variables in computations. 

 

Perform Poorly: 

1. Poorly identifiable phases. 

2. Minimal re-execution of code regions. 

3. Sporadic execution of code regions. 

4. Little or no variable reuse in computations. 

 

Applications that execute in phases or have 

computationally intensive regions that are 

invoked frequently (not necessarily back to 

back) tend to get the most benefit.  This is 

because the DySER block will have high 

utilization of functional units, and the 

configuration time will be amortized over the 

numerous invocations.  A computational region 

that contains a high degree of variable reuse or 

constant values will have a strongly positive 

effect on performance because the variable will 

be sent to the DySER block once and used in 

numerous functional units. 

 

Applications with no identifiable execution 

phases, or that execution several code regions 

sporadically rather than one region repeatedly 

will suffer in performance.  Executing a code 

region requires the DySER block to be 

configured for that region.  If that region is not 

executed enough times before the next code 

region needs to be executed, the configuration 

time for each region will eliminate most 

performance gains.  Similarly, sending data to 

and reading data from a DySER block requires 

dyser_send and dyser_recv instructions.  A 

computation slice with little variable reuse will 

require more send and receives, mitigating 

some of the performance gains. 

 

The theoretical maximum speed-up for this 

DySER implementation is given by the number 

of functional units divided by the time to send 

and receive all the inputs and outputs.  This can 

be understood by the following.  A configured 

DySER block looks and acts like a long latency 

function with multiple inputs and outputs.  A 

properly scheduled DySER block can be utilizing 

all functional units on each cycle.  Each 

invocation of the DySER block requires at least 

one dyser_send and at least one dyser_recv 

instruction.  Since the OpenSPARC T1 processor 

is a single-issue, in-order processor, this 

requires at least 2 cycles so the theoretical 

maximum speed-up on it is the number of 

functional units divided by two. 

 

 

8.  Conclusion 

 

The Dynamically Synthesized Execution (DySE) 

model allows dynamic specialization in general 

purpose processors to achieve performance 

improvement or energy efficiency.  The co-

designed compiler analyzes and schedules code 

onto the DySE Resource (DySER) block, letting 

the programmer continue to write in high-level 

languages without extra burden. 

 

The primary focus of this research was to create 

a proof of concept implementation of the 

proposed DySE model.  The design described in 

this paper shows one possible instantiation of 

the DySE model.  A scalable DySE Resource 
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block was integrated into the pipeline of a 

simple, in-order OpenSPARC T1 processor.  The 

design was successfully synthesized onto a 

Virtex-5 FPGA as a prototype.  The board runs a 

lite Ubuntu 7.10 operating system and can 

execute application binaries created using the 

co-designed compiler. 

 

Future work and directions exist for this design.  

Ideally, the majority of the area would be 

consumed by computational blocks.  Anlysis 

shows there is still significant area overheads 

due to data routing and configuration flexibility.  

The performance analysis shows the types of 

workloads and behaviors that result in good and 

poor performance on a DySER-enhanced 

processor.  This analysis can be incorporated in 

the compiler to improve the heuristics.  This 

DySER design can be incorporated into both 

superscalar and out-of-order processors. 
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