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ABSTRACT
In this paper we introduce the Mozart Processor, which implements
a new processing paradigm called Reuse Exposed Dataflow (RED).
RED is a counterpart to existing execution models of Von-Neumann,
SIMT, Dataflow, and FPGA. Dataflow and data reuse are the funda-
mental architecture primitives in RED, implemented with mecha-
nisms for inter-worker communication and synchronization. The
paper defines the processor architecture, the details of the microar-
chitecture, chip implementation, software stack development, and
performance results. The architecture’s goal is to achieve near-CPU
like flexibility while having ASIC-like efficiency for a large-class of
data-intensive workloads. An additional goal was software maturity
— have large coverage of applications immediately, avoiding the
need for a long-drawn hand-tuning software development phase.
The architecture was defined with this software-maturity/compiler
friendliness in mind. In short, the goal was to do to GPUs, what
GPUs did to CPUs — i.e. be a better solution for a large range of
workloads, while preserving flexibility and programmability. The
chip was implemented with HBM and PCIe interfaces and taken to
production on a 16nm TSMC FFC process. For ML inference tasks
with batch-size=4, Mozart is integer factors better than state-of-the-
art GPUs even while being nearly 2 technology nodes behind. We
conclude with a set of lessons learned, the unique challenges of a
clean-slate architecture in a commercial setting, and pointers for
uncovered research problems.

CCS CONCEPTS
• Computer systems organization → Data flow architectures;
• Hardware→ Hardware accelerators.
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1 INTRODUCTION
This paper introduces SimpleMachines’ Mozart processor, which
implements the Reuse Exposed Dataflow (RED) architecture. The
processor architecture is a commercialization of two facets of aca-
demic research. On the architecture side, we implement the stream-
dataflow execution [41] and hybrid Von-Neumann dataflow execu-
tion paradigms [42]. On the software side, our compiler framework
utilizes synthesis based compilation [43]. The key metrics we focus
on are: software maturity, compiler-friendliness and aspirational
performance improvement goal of 10× performance per watt over
competitive solutions.

Early in the engineering development cycle, we defined our
problem-scope to first focus on small-batch AI inference, as this
provided a customer/business differentiation and product-market
fit1. The Mozart implementation was targeted at data-center in-
stallations, PCIe Half Height Half Length (75W HHHL) and Full
Height Full Length (<300W) form-factors. The architecture itself
was designed to scale to training, online training and general data-
analytics (including other forms of ML, graph-processing, conven-
tional HPC, etc.) in future implementations across different power
envelopes. The business motivation was the low utilization of the
state-of-the-art product NVIDIA T4 (and now A100) on small-batch
inference: At batch-size=1, the A100 utilization from our measure-
ments is: Resnet50 (2.6%), BERT (26%), SSD-Resnet34 (3.4%), RNN-T
(0.75%).
Why a new architecture? As we looked at the needs of applica-
tions, their evolving behavior, and the low utilization/performance
of GPUs, it became clear that exposing reuse present at other
levels of algorithms could overcome the need for batch-level
parallelism. Second, exposing abstractions close to ML algo-
rithms — but not tied to deep-learning(DL) models — would allow
architecture/application-fit even as the applications rapidly evolved.
Data reuse is at the heart of ML/DL as data (weights/samples) is
transmuted during training or inference.

To address the business/programmer expectation of software
maturity, an architecture-level abstraction is necessary to allow
software to access the hardware’s benefits. By softwarematurity, we
mean quick and easy integration with frameworks like TensorFlow,
allowing a seamless user experience for AI developers/customers.
The role of themicroarchitecture then becomes hitting performance,

1Several Fortune-500 companies were focused on single-batch when engaged with us
in customer discovery discussions.
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power, area goals, and the role of the compiler becomes correct and
performant code.

The existing architecture landscape of CPU, GPU, FPGA, and
“general" dataflow failed to recognize reuse as a fundamental primi-
tive. The first step in commercialization of the academic research
was to define architecturally how to handle and exploit reuse, which
led to defining the Reuse Exposed Dataflow architecture, which
is a new class of ISAs. The key innovations are disclosed in these
patents [50–52].
Contributions. This paper presents the architecture (section 2) —
in our opinion, one of the first attempts at defining an architecture
(as opposed to an implementation) for future AI workloads and
beyond. It includes a summary of the formal ISA and points to our
abstraction of a performance specification. Such a performance
specification is going to be increasingly important for future chips
as the age of “transparent" speedups fades. The paper also describes
in depth the microarchitecture development needed to take such
an architecture to commercial production (section 3). It is the most
detailed and modern implementation of a dataflow machine dis-
closed. We touch upon physical design challenges (section 4). We
also discuss software stack development needed to get an architec-
ture to be software mature (section 5). We elaborate a bit here on
the context of software support for a chip like ours. In a commer-
cial setting, meeting developers at the TensorFlow/PyTorch level
abstraction was considered a necessity and the hardware needed
to be able to run diverse models easily with no hardware developer
hand-holding. In a way, like how a CPU needs to be able to boot an
OS, provide a GCC stack, and mother-board related firmware issues,
a modern DL accelerator must run existing standard benchmarks
like MLPerf at a minimum, and for customer viability allow them to
easily run their workloads. This “turn-key" nature was a big factor
in the architecture and implementation decisions — both hardware
and software. Our quantitative evaluation presents key insights and
results (section 6). We then present a reflection on what worked
for us, what we learned and what the academic community could
learn from our experience (section 7).

To set the context for the remainder of the paper, we distill our
key lessons below:

• A behavior-oriented ISA design philosophy is critical for stay-
ing relevant in the face of rapid DNN algorithm evolution.

• The added programmer burden for accelerator architectures
make accessible performance specs increasingly important.

• There are surprisingly many dimensions of dataflow machines
left to innovate on, including basic microarchitecture, hybrid
cache/scratchpads with prefetching, interconnection networks,
scalable spatial scheduling algorithms, and even just datapath
modules.

• Accurate early (pre-RTL) power estimates for novel microar-
chitectures could help reduce design-time.

• The software lift needed on non-novel pieces is quite high,
thus the ease of software development is becoming a primary
driver for future hardware.
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Figure 1: Mozart Hardware and its Reuse-Exposed Dataflow
Architecture (RED)

2 ARCHITECTURE: REUSE EXPOSED
DATAFLOW

Here we describe the RED execution model and ISA, and explain a
performance spec to aid programmers.
Overview. Figure 1 overviews the key architecture abstractions for
Reuse Exposed Dataflow. The architecture exposes multiple “tiles”
(analogous to cores in a multicore architecture), where each tile
has a dataflow accelerator and control core, local scratchpad for on-
chip reuse, and fast access to a partition of the global address space.
The tile-level execution model is stream-dataflow [41]: coarse-grain
memory patterns are expressed as streams, which produce and
consume values from computations expressed as a dataflow graph
(DFG). Stream-dataflow abstractions are blended into a hybrid Von-
Neumann/dataflow [42] execution model to allow an imperative
ISA to simplify programming.

Other aspects of the execution model provide efficient multi-
tile execution by giving the programmer control over locality and
spatial reuse. First, RED uses a partitioned global address space that
enables programmers to allocate tile-local data-structures for fast-
access, while the global address space preserves programmability
(essentially exposing the hardware’s underlying NUMA nature).
RED also introduces new communication abstractions: prethrow
for multicast writes, and podcast for multicast reads.

2.1 Tile-level Execution Model
Abstractions. The RED ISA exposes three fundamental abstrac-
tions: streams, dataflow graphs, and ports. Memory streams express
coarse-grain patterns of accesses. Mozart supports affine access
patterns, parameterized by a starting address, access size, stride,
and number of strides: a[stride*j+i] for i𝑎𝑐𝑐_𝑠𝑖𝑧𝑒0 j𝑛𝑢𝑚_𝑠𝑡𝑟𝑖𝑑𝑒𝑠

0 .
Streams may access two address spaces: one global and one local
for the scratchpad.

The dataflow graph (DFG) represents computation instructions
and their dependences. Ports interface between streams and
dataflow: each stream is connected to a port, and the port
provides data to (or consumes from) one or more DFG instructions.
DFGs will be “scheduled” by the compiler onto elements of the
reconfigurable dataflow hardware. While the DFG is flexible,
any hardware instance will impose limitations as described in
subsection 2.3, including on instruction and port count.

DFGs execute in a series of instances. Each instance consumes a
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B = sizeof(datatype)
MEM_RD(I[], 0, B*Ni, Tj, port_I)
SPD_RD(W[], 0, B*Ni*Tj, 1, port_W)
for j = Sj to Ej by 2
CONST(0, (Ni/2)-1, port_C)
DISCARD((Ni/2)-1, port_O)
CONST(1, 1, port_C)
MEM_WR(port_O, 0, B * 2, 1, O[j])
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Figure 2: Example Program and RED ISA Specification

predefined amount of data from each input port (called the “port
width”), executes instructions in the order defined by DFG depen-
dences, and finally produces a predefined amount of data for each
output port. All inter-instance dependences, generally arising from
loop-carried dependences, must be explicit. They can either be han-
dled with RECURRENCE streams, which forward data from output
to input ports, or they can be handled by updating state that is
maintained per-DFG instruction (e.g. accumulators).

In addition to memory and recurrence streams, RED includes
additional abstractions to facilitate loop-control. This includes a
stream which repeatedly sends a constant value (e.g. for loop in-
variants), and a DISCARD stream which discards a series of values
(e.g. for discarding intermediate outputs of an accumulated value).
Tile-level Example. Figure 2(a) shows the pseudocode of a blocked
matrix multiply of an input tensor I by a weight tensor W, and 2(b)
shows the translation to RED ISA abstractions for a single tile:
streams, ports, and the DFG for this program phase. Here, the
weights are stored in scratchpad, and inputs/outputs are stored in
global memory. Vectorization is performed by unrolling the loops
corresponding to both tensor dimensions, so this DFG performs
a 2x2 matrix multiply. A control signal C periodically resets the
accumulator state held by the acc instruction.

Note that we will use this same example for the for multi-tile
execution as described in the next section, where each block maps
to one hardware tile. Hence, Figure 2(a) uses the variable “tid” (tile
id) to index into each block to indicate how we parallelize this
program across tiles for implementing single-batch parallelization.

2.2 Multi-Tile Execution model
Three abstractions enable the programmer to exploit locality and
reuse across tiles: PGAS, podcast, and prethrow.
PGAS. RED adopts a partitioned global address space (PGAS), with
equal size memory partitions for each tile. Contiguous memory
partitions are mapped to contiguous hardware tiles. This feature en-
ables hardware implementations to use non-uniform cache/memory
systems effectively (e.g. a mesh-topology interconnecting tiles), as

programmers can reason about locality across tiles when partition-
ing work and data-structures. The purpose of this scheme is to
enable better programmer control over locality, while preserving
the simple programmability of a global address space.

2.3 ISA Specification
Podcast. A podcast is a multicast read stream that facilitates
bandwidth-efficient access to the global address space, especially
for arrays mapped across partitions. A podcast coordinates a set
of tiles to take turns multicasting data read from their memory
partition to the input ports of other tiles in the set. Podcasts work
similarly to stream reads, but they also specify a tile mask to
indicate participating tiles. All tiles in the podcast receive the same
data at the specified input port, with data sequenced in increasing
order of tile ID. Podcasts are limited to a subset of tiles called a pod
(hence the name). This restriction enables podcast to be supported
by a specialized multicast ring-network with sufficiently-low
latency.

Figure 2(c) shows an example use case of podcast when paral-
lelizing the code in Figure 2(a). Here, the input vector is partitioned
across tiles. Instead of having each tile redundantly read the same
data (causing slowdown due to contention), a podcast can be used to
coordinate all tiles in the pod to multicast their data while preserv-
ing a consistent ordering. Note that the RED commands implement
this strategy, and will be explained in subsection 2.3.
Prethrow. A prethrow is a multicast write stream, that enables
efficient high-bandwidth writes to the global address space, also
for arrays that are mapped across partitions2. A prethrow works
similarly to a stream write, but it also includes a tile mask to specify
which destination tiles will be updated.

Figure 2(d) is an alternative implementation of the matrix-vector
multiply that shows how prethrow can be used instead. Here, the
input vector is replicated across all tiles, so that conventional read
streams can be used during the computation. At the end of the
phase, each tile performs a prethrow to multicast its portion of the
output vector to the input vector replicas of the next phase.

2Prethrows are not limited to be confined within Pods.
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Figure 3: Mozart Performance Spec

Multicast Comparison. Both podcast and prethrow eliminate the
expensive serialization required when communicating data from
one tile to another. Even though both can be used for multicasting
constant data or computation results, there are tradeoffs: Prethrow
uniquely requires data replication in the global address space, so
should be only be used for smaller data sizes. The implementation
of podcast has a pipeline setup overhead, and is also less flexible
because the source and destination tiles of the multicast must be
the same. Having both enables better flexibility, and enables RED
to exploit reuse without relying on batch-level parallelism

These multicast abstractions give RED an edge over existing CPU
and GPU ISAs in helping to reduce network traffic and shared cache
bandwidth demand. To explain, consider a convolutional neural net-
work (CNN) which is parallelized across output feature maps. While
each worker computes a portion of the output feature map, they all
need all the input activations. On a GPU architecture, this means
that all GPU cores would redundantly fetch the same data, putting
additional pressure on the GPU network on chip (NoC) and shared
cache bandwidth. Podcast solves this problem by multicasting the
input activations to all consumers without requiring them to issue
loads. This saves address generation overhead, cache access, and
network traffic. In a CNN, regardless of the parallelization strategy,
there will be at least one data structure which is read by more than
one worker, and this reuse is often simultaneous; this highlights
the importance of multicast-enabling optimizations.
Imperative ISA Integration. For programmability, RED com-
mands are embedded into a conventional imperative ISA (and in
Mozart encoded with RISC-V instructions). Figure 2(c) and 2(d)
also show the podcast and prethrow strategies written in RED
commands, with 2(e) summarizing the RED ISA.

A program can consist of multiple kernels, with each kernel com-
prising a set of RED accelerator commands and general purpose
code running on the control core. The reconfigurable dataflow ac-
celerator is configured to execute a DFG by loading configuration
bits from memory using the CONFIG command. In our Mozart im-
plementation, the reconfigurable dataflow hardware is called CSCA:
circuit-switched compute array. The (low-level) programmer spec-
ifies the DFG in a simple SSA [13] format, and the compiler is
responsible for scheduling the DFG onto elements of the CSCA and
generating CSCA configuration bits.

Once configured, the accelerator is invoked purely by issuing
stream commands to move data to/from its input ports — i.e. see
the examples in Figure 2(c) and (d), which show the podcast and
prethrow kernels in RED commands. Commands are defined to
execute in parallel, unless they access the same port, or are serialized
(e.g. scratchpad barrier BAR_RD/WR or WAIT command which blocks
until accelerator execution completes).

We remark that the overall tile ISA is heterogeneous; this allows
RED to be simple and focus on performance-critical abstractions,
and leave complex control and memory accesses to a modest von-
Neumann core. By allowing streams and DFGs to be configurable
independently, DFGs can often be reused across different program
phases, saving configuration time.
Architecture Constants. An implementation of RED exposes sev-
eral hardware constants to programmers; Mozart’s parameters are
enumerated in Figure 2(e). These include a maximum memory par-
tition and scratchpad size, as well as total tiles and tiles/podcast.
The DFG is restricted in total instructions (including specific types),
as well as input/output port counts and widths. Mozart’s datapath
size is 64-bits, and smaller ops use subword SIMD. All constants
here are hard constraints (violating these constraints will generally
cause compile-time errors).
Performance Specification. While RED exposes programmers to
low-level ISA abstractions, it also simplifies performance reasoning
by being sufficiently deterministic. Most importantly, it enables
pipelined dataflow computation at the rate of one DFG instance per
cycle3. Multiplying the DFG I/O by reuse ratio (streams abstractions
make this easier to compute) gives the required bandwidth at each
memory/network level — immediately revealing the bandwidth
bottlenecks. To make this insight easier for programmers, we devel-
oped a pictorial performance spec that characterizes the capacity,
fill-rates, and latency between architecture primitives. A simplified
version is shown in Figure 3 for Mozart’s implementation of the
RED architecture. While this performance spec is not mathemati-
cally formal, it proved to be surprisingly effective, necessary and
sufficient: our software team, with little knowledge of chip archi-
tecture or background in high-performance assembly coding, was
able to write high performance code (See section 5).

3The latency of a DFG instance is generally in the 10s of cycles, but the hardware
guarantees pipelined execution at the rate of one instance per cycle.
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Host-to-RED Integration. Because RED accelerators are attached
to a host, a host program needs to be able to invoke RED accelera-
tor functionality. In our implementation, we enable this through
an API resembling CUDA and OpenCL, including APIs for mem-
ory allocation/deallocation and kernel invocation/synchronization.
Because PGAS and multicast requires some specific programmer
considerations in memory allocation, we elaborate further on that
aspect in particular.

First, the accelerator’s global address space is mapped as a con-
tiguous region of the host’s virtual address space. As in CUDA,
accelerator-specific malloc/free functions manage the accelerator
address space, and there are specific APIs to copy data between
host and device. Data structures allocated in the accelerator region
may be used and modified by either the host or accelerator, but
updates must be copied explicitly.

Both podcast and prethrow abstractions require that memory
source (for podcast) or destination (for prethrow) addresses are to
the same relative offset within each partition of the global address
space. To simplify this for the programmer, we add a PGAS-aware
malloc which allocates memory at the same relative offset in all
designated partitions.

3 MICRO-ARCHITECTURE
In this section, we first describe the SoC design and then micro-
architecture of the tile, which is the key building block.

3.1 SoC Organization
Mozart’s tiled architecture, shown in Figure 4, is instantiated as a
System-on-a-Chip (SoC) where tiles are arranged in a 4x16 organiza-
tion using two-dimensional mesh. The 256-bit mesh network across
all the tiles uses x-y dimensional routing and a packet-switching
protocol with a single cycle hop-to-hop latency. For supporting
podcast semantics, the tiles are further organized into the abstrac-
tion of Pods, consisting of 16 tiles organized in a 2x8 grid. A 512-bit
broadcast bus running in anti-clockwise direction among the pod
tiles helps achieve fast data sharing via the podcast mechanism.
At the northern periphery of the chip are two HBM2 controllers,
logically split into 16 DFI-level channel controllers [22], with 8
channel-controllers in each hemisphere, operating at maximum
bandwidth of 2000Mbps. Each channel-controller further has 2
pseudo-channels, with each channel connecting to 2 tiles of a given
pod for off-chip high-bandwidth memory access. A bridge module
called Edge-memory-manager (EMM) is instantiated at the top of
pods, for protocol conversion from HBM-AXI to the internal mesh
network. A series of NetworkInterface-Controller (NIC) blocks form
the configuration datapath of all the IP blocks (tiles, HBM/PCIe PHY
and controllers during boot) and for low-speed inter-IP communi-
cation (SPI, I2C, SMBUS). The SoC also contains a Gen3 x16 PCIe
endpoint controller and PHY. The host can query and configure
Mozart through PCIe by accessing internal registers. The SoC runs
on a single global clock, the PCIe and HBMs have their own clock
and PLL, and the configuration registers run on their low-speed
clock used only during boot/bringup. We included a debug subsys-
tem that allowed memory and execution tracing of the control-core,
which was invaluable during bringup.
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Figure 5: Mozart Tile Microarchitecture
3.2 Tile
Fig 5(a) shows the organization of an individual tile, which consists
of 5 blocks: Tile Controller, Network Controller, Uncore, Softbrain,
and Von-Neumann Engine. Here we detail the components of the
tile, except the Softbrain compute accelerator. The tile is managed
by the tile controller. This module orchestrates tile execution, com-
pletion, aborting, signalling the host via interrupts, clock gating,
and tile configuration via the PCIe-accessible APB-based config-
uration ring. It also handles explicit cache flush mechanisms of
uncore’s L2-cache and the Von-Neumann Engine’s L1-caches be-
fore or after kernel execution based on user-exposed configuration,
as well as includes a global lookup table to manage the PGAS.

Network Controller. Each tile has a 256-bit mesh network in-
terface in all 4 directions — north, south, east and west, used for
inter-tile and peripheral (HBM2) communication; a forwarder mesh
network interface is also present for the tiles in the bottom pods to
forward their request and responses to/from the HBM2. The net-
work controller is responsible for handling communication with the
mesh. Its router block is a fairly conventional: 256-bit physical link, 8
virtual channels, credit-based flow-control, and dimension-ordered
X-Y routing. The interesting/non-conventional pieces are hardware
support structures for performing the podcast and prethrow op-
erations. Incoming podcast streams, via the 512-bit broadcast bus,
are forwarded to Softbrain ports for consumption and are back-
pressured when ports are full. Similarly, the network controller also
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monitors the prethrow responses and forwards the write request to
the uncore and formulates the write request to remote tiles. Each
tile can generate 128 64B worth of outstanding read and write re-
quests to each of the HBM controller’s AXI channels to saturate
the memory bandwidth.
Uncore. The uncore is a collection of modules responsible for hold-
ing on-tile L2-cache storage, coordinating local and remote tile
cache accesses, and synchronization. Regarding synchronization,
we extend the original “A" extension of the RISC-V ISA to allow
tile-local thread synchronization and global barriers. Mozart has
a HRF consistency model [27], with programmers expected to use
atomics to achieve cross-tile coherence and writing well-behaved
code. The uncore also includes the control state machines needed
for podcast and prethrow operations. In terms of performance, the
primary requirements are i) to provide high-bandwidth access to
Von-Neumann Engine’s cores (1 cacheline per cycle) and Softbrain
(2 cachelines per cycle to achieve one DFG instance per cycle execu-
tion rate in the common case), ii) fast load-to-use latency from the
first request it receives, and iii) support many in-flight requests to
exploit bandwidth — it supports up to 64 HBM2 memory requests
in-flight.

The tile-wide L2-cache is a banked cache supporting a fully
pipelined interface for local accesses from the cores and Softbrain.
Each bank is a 16KB instantiated SRAM macro having one read and
one write port. Uncore instantiates a crossbar called L1_L2_net for
requests/responses incoming into the local L2 cache, and another
crossbar called L2_mem_net for requests/responses to be sent to
HBM2 via the network-controller. Both the crossbars implement
a customized version of the tilelink protocol [12, 34] modified for
RED ISA’s semantics. Each cache bank further features read and
write transaction handling registers (TSHRs), enabling up to 16/16
in-flight memory reads/writes in parallel.
Von-Neumann Engine. The Von-Neumann engine shown in Fig-
ure 5(a) is composed of 2 RISC-V in-order general purpose pro-
grammable cores. The Control Core is extended to run the RED
command ISA, and the Prefetch core coordinates cache manage-
ment, podcast and prethrow. The cores instantiated are based on
an open-source implementation of Rocket core [3] and implements
RV64IM ISA completely, with substantial modifications to support
atomics (synchronization between 2 cores inside the tile and across
tiles, faster L1-access pipeline, and L2-prefetch). Each core has a lo-
cal 8KB instruction-cache and 16KB data-cache, and both the cores
have high-bandwidth access to the uncore’s L2-cache, and are able
to read and write a 64B cacheline every cycle when there are L1-
cache misses. Configuration registers in the core allows transparent
mapping of the host address space to the PGAS address space based
on tile location. The Rocket Custom Co-Processor (RoCC) interface
was used to communicate between the cores and Softbrain.

3.3 Softbrain
The Softbrain module shown in Fig 5(b) implements the compute
dataflow abstraction of the RED ISA, using pipelined computation
and streaming access. It consists of a circuit-switched compute
array (CSCA), which has similarities to a conventional coarse grain
reconfigurable architecture (CGRA). To supply the CSCA at peak
throughput, we have a stream-dispatcher (command dispatch unit),

several stream engines to manage coarse grain memory streams, in-
put and output vector ports (that implements the ISA’s port abstrac-
tion), a programmable scratchpad, and a balance unit to arbitrate
between these modules. Its goal is to achieve an execution rate of
one DFG instance per cycle, which translates to a performance of
64 64-bit and 512 8-bit ops/cycle per tile.
CSCA. The CSCA is an 8x8 array of functional units interconnected
by a circuit-switched, software re-configurable network. The con-
figuration is produced by a scheduler, which we discuss in section 5.
Each functional unit executes one of several operations (e.g. add,
mul or non-linear operations). Operations can perform sub-word
SIMD execution to operate on different datatypes (e.g. int8, float32).
CSCA configuration takes 60 cycles if the configuration data is
cache resident.
Stream Engines. Softbrain contains stream-engines (shown in
Fig 5(c) for handling memory (by memory stream engine or MSE)
and scratchpad (by scratchpad stream engine or SSE) data streams.
The MSE and SSE stream engine consists of 2 main sub-blocks —
stream controllers (read and write) and a command allocator. The
command allocator receives coarse-grained stream commands from
the stream dispatcher and allocates them to read and write stream
controllers based on the data stream type, while respecting the de-
pendency among them. Read and write stream controllers can both
process the streams in parallel, continuously generating memory
and scratchpad vector loads and stores whose access patterns are
encoded in the stream commands received.

Recurrence and constant data streams are handled by the data re-
currence engine (DRE). A recurrence stream causes one output port
of the CSCA to be piped to an input port to support dependences
between DFG instances. Constant streams transmit a user-specified
constant value into input ports. The DRE is a stateless block re-
sponsible for implementing these stream behaviors. To support
recurrence streams, it receives commands to transfer the partial
data produced by CSCA from output ports back to input ports to
be used in the next DFG instance.

The stream controller’s internal design consists of a dispatch unit
and multiple stream nodes (Fig 5(e)). Each stream node includes
FIFOs to buffer multiple data stream requests and address genera-
tor units. Addresses for memory, scratchpad reads and writes are
produced by high-performance, affine address generators (AGU)
(Fig 5f). We include multiple units to support many requests to be
generated per cycle. Each AGU, based on the data stream’s access
size and stride patterns, generates a bitmask at 8-byte word granu-
larity which is used to compute cacheline aligned addresses to be
sent to the tile’s cache and local scratchpad. The state generator
tracks the progress of the data stream and updates the parameters
of the stream until the boundary conditions of the stream are met.

The basic stream engine design is instantiated twice to imple-
ment the MSE and SSE with each instance connecting to differ-
ent ports on the input/output interfaces. The MSE is responsible
for streaming data from the memory hierarchy to/from Softbrain
through interfaces to the uncore and the vector ports. The MSE
is capable of issuing and consuming two cacheline reads and two
cacheline writes per cycle. The scratchpad stream engine (SSE) sim-
ilarly handles data streams in and out of local scratchpad memory
to CSCA with the same bandwidth requirement as the MSE.
Vector Ports. Input Vector Ports (IVPs) are a staging area for data
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Figure 6: (a) Backend design flow and (b) chip bringup time-
line. Shaded events required 3rd Party Vendor signoff.

to be injected into the CSCA to implement the RED execution
model of graph execution. Multiple vector ports can link to switches
on the CSCA, though only a subset are active at a given time,
corresponding to the active configuration. IVPs can consume one
cacheline worth of elements per cycle. Output Vector Ports (OVPs)
serve a similar role, but as outputs. They consume words produced
by computation in the CSCA and reassemble them into cacheline
sized chunks. Stream engines consume these streams of data to be
used to write to memory, or used in a recurrence stream.
Balance Unit. The balance unit (Fig 5d) is responsible for prior-
ity allocation of stream engines to allow streams to make forward
progress to ensure optimal execution of Softbrain’s compute re-
sources and also to avoid CSCA stalls. It does this by tracking
current state, fill-drain rates and the depth and width of all inter-
mediate buffers in the dedicated status monitors for each vector
port. A central arbiter and crossbar is responsible for switching
streams via round-robin mechanism to hide the latency of vector
ports fill-drain operation and also to allow multiple streams to be
assigned to MSE, SSE and DRE.

4 CHIP IMPLEMENTATION
Figure 6 shows our development flow and bringup timeline. Due to
the nature of the chip, the team comprised of two chip leads with
20+ years of implementation experience and numerous previous
chip tapeouts, and also a fairly inexperienced team but most with
intuitive knowledge on dataflow principles. The entire teamwas less
than 20 engineers to allow an agile flow, and based on our mind-set
of team-augmentation and to add members only if necessary. The
chip bringup timeline is shown in Figure 6(b) — the massive time
investment (manual detail-oriented work) in validation planning
between tapeout and chips-in-house allowed a 21-day bringup, in
spite of an unconventional HBM/interposer methodology and IP
vendor mixing of controller/PHY. The main hiccup was in HBM
PHY tuning, which required close collaboration with the vendor
to hit the target frequency. Although generally “straight-forward,"
the amount of tricks/intuition necessary from experience for a
successful tapeout was re-affirmed.

Most of what we did for implementation was conventional — ex-
cept for the use of Chisel (https://www.chisel-lang.org/) for design

entry, which we abandoned for the next chip4.
On the physical-design, the amount of somewhat mechanical

manual effort was large, but is considered common-place in in-
dustry. Much of the microarchitecture modeling-level area/power
estimates were optimistic, but were useful as general guidelines and
helped us quickly arrive at post first-RTL area/power estimates for
floorplanning and package design (there were some quirks where
the SRAM aspect-ratio had an outsize influence on area — less ap-
preciated in academia but common knowledge in industry). Even
though the design was logically distributed, we used a single global
clock to minimize verification surprises at PD-level and CDC timing
closure issues, which ultimately led to at most 25% hit in Fmax. In
retrospect, we would stick to this even for a do-over, simply to
minimize risk.

Our use of interposer was fairly straight-forward in-spite of some
DFT/Wafer-level challenges from multi-vendor interaction. Due to
constraints on what IP block was available in what technology node
variant with test silicon, we were forced into combining PHY and
controller from different vendors. At the time, only a prohibitively
expensive vendor with turnkey IP and design service had a PCIe
PHY+controller and HBM PHY+controller in a single technology
node. This mixing led to a small dollar-cost in verification, and later
in the project an unexpected nearly 4 month delay in the vendor
completing the PHY (because of design bugs in level shifters inside
the PHY, and a late-stage design bug in the PHY training linkup
sequence).

On the verification side, a comprehensive random program gen-
erator at the RED ISA level, with industry-standard methodology of
checkers, provided 100% coverage at RTL/microarchitecture level
pre-tapeout. There was a concern whether the ISA abstracts too
much, requiring other ad-hoc testing for high coverage, but we did
not need it.

5 SOFTWARE STACK
Deep Learning Framework Integration. Mozart’s toolchain and
software stack were designed primarily to support modern deep
learning (DL) applications. [35] describes these general components
well. Additionally, because the RED architecture exposes AI primi-
tives, the intellectual software lift did not become excessive in any
one layer. Table 1 shows the capability of this toolchain and results
from pushing through our flow the original FP32 trained models
of applications from MLPerf. The Table shows the total number
of operators in the dynamic graph for each DNN (Ops) and the
number of unique operators (Uniq). Recall that here operator refers
to a graph-level operator like convolution or matmul, which oper-
ate with tensors as inputs and outputs. Our software framework
is comprehensive enough to cover a wide mix of operators across
DNNs. The last 3 columns show performance, which we cover later.
In general, we wrote a significant amount of infrastructure code,

4The choice of Chisel presented significant challenges as soon as initial physical design
started, but we were too far along to revisit. The shortcomings (for which we developed
workarounds) included: constructs which were highly unfriendly for synthesis for
several design components, poor support for straight-forward high-fanout distribution
creating clock tree synthesis challenges, failing IEEE standards for correctness in
generated RTL leading to LEC violations, small design changes created major upheaval
in RTL which caused churn in PD flow, naming conventions used broke industry-
standard ECO flow, fundamental incompatibility with scan-insertion at RTL level,
forcing netlist level scan insertion which is highly undesirable for productivity.
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Figure 7: Mapping Dataflow Graphs (DFGs) to CSCA. (a) Pic-
torial representation and code representation of a DFG. (b)
Mapped DFG to small CSCA. (c) Full mapping on Mozart’s
large CSCA. Colors represent different DFG edges.

which was mostly straightforward software engineering. We use a
modified TensorFlow v1 for our frontend, adding parsing code for
networks, device specific graph transformations, our own quanti-
zation/calibration flow, high-speed runtime, and low-level library
toolchain. More than 90% of our software development time went
into the above implementation, even though none of it was a new
or hard problem.

To map operators to Mozart, we implemented an operator li-
brary with our low-level toolchain, which plugged into Tensorflow,
to support execution of DL applications on the Mozart platform.
This involved a manual approach to implementing TF-level opera-
tions on the RED ISA. Even NVIDIA, which has the most mature
software stack in this space, uses a mix of hand-generation and
auto-tuning [5, 44].
Kernel Compilation and Runtime. The kernel-level compilation
approach is similar to prior work on stream-dataflow [41]. Kernels
are written in C/C++, with intrinsics to specify RED commands,
and DFGs to specify the computation for CSCA. For compiling
the C/C++ program, we use RISCV GCC and extended its assem-
bler with RED specific instructions. The “scheduler” compiles each
programmer-specified DFG to the CSCA, and the configuration
bits are embedded into the RISC-V binaries. Finally, on the host
side, a low level management library communicates with a device
driver to facilitate host-accelerator memory movement and kernel
launch/synchronization.

DFG Scheduler. The scheduler is the key intellectual aspect on
the software side. The scheduler’s role is to map DFGs to the CSCA
hardware: assigning instructions onto processing elements, rout-
ing dependences onto dedicated network paths, and matching the
timing of operands for functional-units and ports (due to static
scheduling). Figure 7 shows example mappings.

The scheduler uses a stochastic-search based approach that it-
eratively refines the schedule. The scheduler’s performance was
initially an issue due to the size and connectivity of the CSCA.
Three innovations enabled fast scheduling. The first was allowing
the scheduler to make certain kinds of mistakes during scheduling
(i.e. overprovisioning a network or routing resource), where those
mistakes are constrained and still permit analysis of “how good"
the schedule is. This enables iterative refinement even when the
intermediate schedule does not satisfy all hardware constraints.
The second was using a consistent global objective function for all
scheduling decisions rather than custom (often faster to compute)

Table 1: Toolchain Results and Full application performance
in terms of inf/sec/watt normalized to NVIDIA T4. Mozart
power is 75W. Mozart++ 7nm is projected performance.

FP32 Mozart Opt. Performance
Model Ops Uniq Ops Uniq A100 Mozart Mozart++
RN50 461 14 84 12 0.96x 3.3x 8.4x
SSD 3320 46 111 10 1.4x 1.9x 4.9x
BERT 757 24 322 17 1.63x 7.8x 20.1x
DLRM - - - - 0.5x 0.63x 3.52x
RNNT - - - - 1.5x 11.4x 29.5x

heuristics for each decision. This enabled better decision-making,
e.g. mapping decisions take into account their impact on routing
and timing. The third was related to delay-matching: matching
the arrival time of data items for each hardware element. Delay-
matching is critical for performance [40], and often there were
overly-tight operand-timing paths (e.g. for controlling accumula-
tor reset); therefore we developed a heuristic to insert “loops" to
lengthen such paths. Integrating these enabled a scheduler that ran
in seconds and did not sacrifice programmer productivity.
Overall Efficacy. The primitives in the architecture being closely
aligned with AI behaviors enabled software programmers with
little knowledge of hardware, ML, or linear algebra to produce
high-performance code in 2-4 weeks.

Also, while not our primary goal, we remark that the Mozart
compiler flow is fast. For example, starting with a Tensorflow frozen
model as input on which calibration has been done for quantization,
our compiler produces quantized models with object code in 3-29
seconds.

6 QUANTITATIVE CHARACTERIZATION
Performance. First, we discuss overall performance by comparing
MLPerf application performance against the state-of-the-art, which
is NVIDIA A100, at batch-size 4. Table 1 shows the results with
the NVIDIA T4 as the baseline5. Since the A100 has a substantial
technology advantage, we also report some simulation results of
a Mozart++ 7nm chip that includes some microarchitecture opti-
mizations as well (the final row in Table 4). In general, Mozart is
integer factors better, even while being nearly 2 technology nodes
behind. On DLRM, we are limited by PCIe bandwidth and soft-
ware/algorithm optimization because of the nature of the workload.
This DLRM issue of very large tables and a somewhat simple MLP
for the computation, requiring memory layout and algorithm op-
timization, applies to other accelerators as well. On SSD-Resnet,
the large layers at the start end up being conducive to efficiency
on the GPU, providing ample embarrassing parallelism even at
small batch-size. At very large batch-sizes, the gap between Mozart
and a GPU are likely to be small. Our overall point is that such
a latency-optimized design targeting small-batch efficiency could
trigger new types of training algorithms, and is a better candidate
for data-center and edge inference.

To get some insights on the RED architecture, microarchitec-
ture, and application interplay, we examine two well understood
operators that dominate CNNs and Transformers: convolution and
5We understand there may be some more recent results from NVIDIA on the A100
results. These are results as of late 2020.
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Table 2: Chip Utilization for various ML operators.

Op-Type Input-0/Input-1/Output Shape % Util
AddRR [56,56,256]/[56,56,256]/[56,56,256] 20%
AddRR [14,14,1024]/[14,14,1024]/[14,14,1024] 13%
Conv2DBR [x,14,14,256]/[1024,1,1,256]/[14,14,1024] 27%
Conv2DBR [x,28,28,128]/[512,1,1,128]/[28,28,512] 32%
Conv2DBRR [x,30,30,256]/[256,3,3,256]/[x,14,14,256] 9%
Conv2DBRR [x,56,56,256]/[128,1,1,256]/[x,56,56,128] 44%
MatmulBR [128,768]/[3072,768]/[128,3072] 34%
MatmulBRRT [128,768]/[768,768]/[1,12,128,64] 13%
SoftMax [1,12,128,128]/[]/[1,12,128,128] 9%

RR: RequantizeRelu; BR: BiasAddRequantize; BRR:
BiasAddRequantizeRelu; BRRT:

BiasAddRequantizeReshapeTranspose.

matmul. In a DL-application, they appear with different tensor
shapes and are fused with different operators, imputing various
needs on the hardware. Table 2 shows a representative sample that
covers almost 60% of execution cycles, including easy and hard
shapes, to showcase this diversity. By exploiting available reuse,
we sustain around 45% utilization running at an extreme case of
single-batch inference while considering all hardware latencies
and contention issues. The primary micro-architecture-application
behavior interactions that prevent 100% utilization are: i) fill and
drain cycles for a tile to achieve steady-state, which involves core-
bootstrapping, CSCA configuration etc.; ii) time taken for loading
input tensors into local scratchpad is not fully hidden or overlapped
with compute cycles, iii) special handling of boundary conditions
for non-standard tensor shapes; iv) read streams’ L2-Cache cold
misses and servicing; v) write streams’ low-cache utilization be-
cause of pollution/evictions, poor locality and other bottlenecks;
vi) vector-port balancing overheads and stream switching control
penalty. Utilization on a reuse-fits-on-chip mode (i.e. models that
are L2 cache resident), is typically around 90%.

The takeaways from this performance analysis are: i) the RED ar-
chitecture is able to successfully implement applications unknown
at arch/design time (BERT’s invention after architecture freeze), ii)
we can extract high-performance using techniques like operator
fusion, batching kernels and prefetching to maximize reuse, and iii)
we can perform arbitrary specialized computation like Softmax, ERF
and others using the CSCA array without any hardware functional
unit specialization (while more fixed approaches like NVIDIA’s
tensor-cores cannot).
Power and Area. We now provide details on overall chip power
and area. We note here that with RED being a new architecture and
Mozart being its first implementation, power-aware microarchitec-
ture design and RTL implementation was known to be a challenge
— and we made a conscious decision that we were not going to be
aggressive in power optimization, with the insight that the archi-
tecture provides high power efficiency to begin with. As a result,
the breakdown of power should be considered as a starting point.
Post-tapeout, with further design and implementation optimiza-
tions, power and area were reduced by more than a factor of 2 (see
next subsection). Overall, the tiles consumed nearly 90% of the total
power and area, and the CSCA was roughly 50% of chip power and
42% of chip area. Breakdown within a tile and within Softbrain is

Table 3: Power And Area Breakdown

Module % Power % Area
NetworkController 3.1% 5.2%
TileController 7.4% 0.3%
Uncore 17.1% 22.4%
Von-Neumann Engine 5.9% 10.6%
Softbrain 66.5% 61.5%

Softbrain breakdown
CSCA 51.6% 42.5%
MSE 3.5% 3.3%
SSE 3.1% 7.4%
IVP 2.5% 5.2%
OVP 1.1% 1.8%

BALANCE-UNIT 2.3% 0.8%
RSE 0.5% 0.3%

STREAM-DISPATCHER 0.2% 0.2%
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Figure 8: Power validation and peak power

shown in Table 3. The design ended up having a substantially larger
ratio of flip-flops to gates than we expected, because of various
physical design constraints that would have been best solved with
a microarchitecture revision (but tapeout time constraints did not
allow this) leading to some power inefficiency. Figure 8 shows the
results of our power validation at the chip level, running a typical
application and our synthetic power-virus used for TDP estima-
tion and package design. Roughly, we see a linear increase with
frequency (we did not implement DVFS as energy optimization was
not a first order constraint for Mozart).
Sensitivity studies. We conclude with a summary of two sensi-
tivity studies that highlight the RED architecture’s potential and
what implementations different from Mozart could achieve. Each
row in Table 4 corresponds to a design feature change (removal or
addition) with detailed post-tapeout area estimation (we expect the
final Silicon area to be within 2% to 4% of this number). Through
successive simplifications, and then adding optimizations, we can
achieve a nearly 2X reduction in area and power savings, with the
same performance. Additional research ideas could improve this
even further, growing RED’s advantage over conventional archi-
tectures. Second, a hybrid DLRM accelerator based on RED using
LPDDR5 was designed based on how most of the tables are unused
and a very small portion have hot traffic [2, 33]. We were able to
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Table 4: Sensitivity of Mozart Microarchitecture

Version Area (𝑚𝑚2) Normalized
Area

Mozart POR 1.69 1
(-) Only Mul and Add opcodes 1.18 0.7
(-) No Non-linear Op 1.11 0.66
(-) Reduced CSCA connectivity 1.04 0.62
(+) 2x L2-Cache size 1.08 0.64
(+) 2x Scratchpad size 1.12 0.66
(-) Optimized uncore 1.01 0.6
(-) Reduced L1-cache size 0.97 0.57
(-) Optimized stream engines 0.94 0.56
(-) Total delay fifo depth = 8 0.9 0.53
(-) Total delay fifo depth = 0 0.87 0.51
(-) Replacing Mesh with a ring 0.82 0.49
(-) Software controlled L2-cache 0.75 0.44
(+) Add more opcodes 0.88 0.52
(+) Optimized CSCA network 0.89 0.53
(+) Full CSCA network 0.93 0.55
(+) Mesh Network for tile 0.96 0.57
(+) Delay fifo = 8 0.99 0.59
(+) Non-linear op back in 1 0.59

obtain a 2.6X speedup over an A100 and a nearly 8X improvement
in throughput/watt (at the same latency) in a small M.2 form-factor
chip, showing the RED architecture is able to scale along many
dimensions, including large and sparse data-analytics problems.

We briefly comment on non-DL workloads we can support. This
includes blockchain processing (particularly for memory-hardened
protocols like Ethereum) — essentially, the stream abstractions and
flexible DFGs allows the architecture to traverse the tree structure
needed for Ethereum [23, 45], traditional genome sequence align-
ment like BWA-MEM [56], some forms of SSL-offload, where each
tile does an independent network query, and gradient boosting
trees for ML [7].

7 LESSONS, EXPERIENCES AND CHALLENGES
AHEAD

7.1 Architecture Lessons
Behavior oriented principles are needed as primitives for
new architectures. The Reuse Exposed Dataflow architecture pro-
vides high generality, efficiency and software friendliness. Overall,
the key motivation of the architecture was to expose the reuse
behavior and achieve as much low-latency execution as possible
without needing any embarrassing parallelism in the form of large
batch size, which we achieved. In practice, we were able to support
many applications, unknown during architecture design time. For
example, the architecture was frozen well before transformers [55]
became mainstream, or the RNN-T paper’s [25] publication. We had
not had the internal resources to analyze LSTMs in depth. Since
we had architecturally exposed primitives for AI behaviors; this
allowed running the applications that arrived post-architecture
finalization. Specifically, the operator-fusion and kernel-batching

operations that eliminated the overheads of low-reuse element-
wise operators were implemented purely with software (See sec-
tion 5). The architecture was able to quite easily support a variety
of DL and non-DL algorithms, including SSL, graph processing,
and sequence alignment, and extreme DL workloads like DLRM. A
behavior-oriented ISA design philosophy is key to staying relevant in
the face of rapid DNN evolution.

Perf Specs must be communicated in a programmer-
accessible way. Even very well understood architectures like
SIMD/FPGA have failed in capturing performance in a way that
is intuitive and well communicated to the programmer. AVX2,
for example, relies on 72-pages of a performance manual [20, 29],
FPGAs rely on informal guidelines that are hard-to-follow for
software developers. Our concise pictorial form for RED ISA and
Mozart worked, but it’s just a start. We believe that achieving
an intuitive performance specification demonstrates that we got
the architecture “right” in balancing the role of programmer,
compiler, and hardware which is as much art, science and luck.The
broader takeaway is that future architectures and chips must grapple
with such performance specification — it’s a place for academics
to formalize with deeply thought-out principles and whether
DSLs/compilers could obviate such a need.

7.2 Microarchitecture Lessons
Microarchitecture surprisingly complex and new. The
amount of micro-architecture invention, design, and specification
we needed to do was surprising. With the long history of
explicit dataflow machines in academia, we had felt the basic
stream-dataflow design would be relatively quick to convert
into an implementation. As we embarked on the detailed micro-
architecture, we realized this space is not as well understood,
and had to invent substantial components to get a working, high
performance micro-architecture. Table 4 (section 6) shows 19
micro-architecture configurations we explored — we have by
no stretch of imagination done justice to policies/parameters
within those, or how these really interact. As another example, the
compute pipeline setup latency to start execution of a graph was
nearly 40 cycles; for loops that executed for as little as 200 cycles
typically, this setup latency became an unexpected 1st order per-
formance constraint. A fairly “simple" micro-architecture change
in terms of out-of-order command execution with modifications
to stream-dispatcher/IVP/OVP module’s interface and efficient
handshake mechanisms cut this down to 4 cycles, providing even
more flexibility for programmer freedom. The microarchitecture
(various flavors) of dataflow machines is a rich unexplored design
space. We say this with a bit of tongue in cheek: we think there are
100s of papers to write on address generators for streams, balance
unit possibilities, stream engine design, vector port interface, much
like the 100s of papers on branch prediction, cache policies, MSHR
design, LSQ design etc. Especially with conventional cores being
harder to transmogrify for future data-analytic workloads, and GPU
speedups slowing down, architectures like RED that provide equally
good software maturity, but much higher performance, could become
essential to overcome the slowing of technology scaling while also
retaining software productivity.
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Better cache/scratchpad to manage pollution would improve
performance. Hybrid memory designs that support a blend of
caching, prefetch, and scratchpad impute a complicated interplay
of cache pollution and effectiveness with bandwidth, capacity, and
algorithmic-reuse. Cache-management instructions in state-of-the-
art high-end CPUs could be improved further (even with careful
prefetching, Intel CPUs for example can use effectively half the
cache when supporting well-behaved tensors for convolution [21]).
We suffered some substantial performance degradation because we
did not have hybrid scratchpad mode in the L2-cache. In retrospect,
we would have liked to mark certain addresses as evict-last in the L2
memory to manage cache pollution.

7.3 Chip Implementation Lessons
Accurate power estimates at design time were hard since
the microarchitecture was clean-slate. Power estimates at the
concept stage were quite hard and proved to have almost 2X over-
all, and sometimes 5X error for some submodules. There are two
reasons for this — first, some of the SRAM modeling mentioned
above is not well handled by tools like CACTI [4]. Second, in a
clean-slate architecture, it is hard to estimate the microarchitecture
complexity, and we deferred power-optimization to the next chip.
Consequently, our flip-flop to gate ratio was quite a bit different
from a mature CPU’s design, against which McPAT-like tools are
calibrated [36]. This mismatch led to the high errors. However, we
always felt the power numbers from our early modeling seemed
quite aggressive whenever we compared our modeling power to an
NVIDIA GPU’s TDP. Microarchitecture/CAD research explorations
that better formalize the complexity impact on frequency/power/area
would have built confidence for us to take on power-optimization also
in the first implementation.

Interconnect design unexpectedly complicated requiring a
substantial amount of clean-state work. We had expected to be
able to use an off-the-shelf commercial NoC. Our need of a heteroge-
neous NoC with 2D mesh virtual channels and a wider ring was not
available, leaving us with the design, implementation, verification,
and floorplanning and some PD tasks. Also, the low-frequency serial
network we had to build to interconnect configuration register and
low-speed peripherals was unexpected. Turn-key solutions did not
play nice with other IP blocks and had odd IP inter-dependencies.

Off-the-shelf datapath modules still surprisingly un-
optimized for power and area. We were surprised to find
there was a decent amount of headroom in improving the PPA of
basic things like adders, multipliers, FP16 blocks and compound
functional units. DL-tuned arithmetic modules are an unexpected
low-hanging fruit for architecture academic research as well,
which we and others are pursuing [10, 17, 30, 54].

7.4 Software Stack Lessons
Software lift needed on non-novel software pieces is very
large. The amount of code we needed to write to bringup the
toolchain was surprisingly large (from informal discussions and
looking at job positings, this is true in at-least 3 other chip-unicorn

startups). Existing frameworks were bloated, and nearly impossi-
ble to disaggregate, missing a non-trivial number of features. For
example, Halide [47] was nice, but there wasn’t a way to cleanly
roll it up into our flow. Similarly, TVM [8] looked nice conceptu-
ally, but TensorFlow provides everything we needed except TVM’s
automated mapper, and in the context of providing model parsing,
quantization, operator fusion, and lowering into our operator li-
brary, with dynamically managed memory, it did not provide value
for us. We needed to develop a surprising amount of domain knowl-
edge to write the SW toolchain, including (in parallel with other
companies) inventing the concepts of operator fusion, merging
element-wise operators into other operators to optimize for mem-
ory bandwidth, and co-optimizations for performance and accuracy.
On a positive note, the design of the RED architecture allowed us to
contain these cross-cutting concerns; keeping them from affecting
the architecture or implementation.

Spatial schedulers have several unsolved research problems.
Our scheduler eventually needed heuristics to be programmer
friendly, as ILP [40, 43] was not fast enough for the CSCA size,
connectivity, and static-timing requirement. However, the heuristic-
based scheduler took significant development time; before we com-
pleted it, the daunting uncertainty over the scheduler slowed code-
sign decisions, like what radix switch to use, or what CSCA topol-
ogy and size. A fast, scalable, declarative scheduler would have
a high value. Revisiting the capability of synthesis/optimization
techniques to address mapping issues in emerging architectures
could provide huge benefits in productive software toolchains. Re-
cent examples like NVIDIA’s DSL [5], CoSA which looks at pure
static machines [28], and ML-based scheduling [37] address some
aspects of this. Many unsolved problems remain open to architects,
especially when considering static/dynamic hybrids like RED and
GPUs.

8 RELATEDWORK
Through the recent resurgence of hardware architecture for AI [48],
most solutions are matrix-engine based [19] (Graphcore, Habana,
Baidu Kunlun, Alibaba HanGuang, Huawei Ascend). Qualcomm’s
AI-100 seems to be based on VLIWDSPs. Google’s TPU uses systolic
arrays [31, 32]. Groq [1] uses an extremely static approach with
sliced functional units (like an uber-FPGA), while Xilinx is taking
FPGAs and adding matrix engines like structures to it with Versal.
Sambanova implements a chip-scale CGRA with more restrictive
thread and address space model than RED [61]. With the MI100,
AMD has added matrix-engines to its GPUs, and in terms of raw
performance and perf/watt it seems to rival the A100.

None of these seem to have addressed the software friendliness,
basic usability, and hardware efficiency challenge yet, with the ex-
ception of NVIDIA (evolving CUDA over decades [11]) and Google’s
TPU (presumably benefiting from organic Tensorflow evolution).
Mozart introduces a completely new architecture from the ground-
up, rethinking the role of computation, communication, and storage
for the new generations of data-intensive workloads, while being
cognizant that supporting the deep learning software stack is a
necessity.

In academia, while many purpose-built accelerators [6, 9, 24, 46]
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have been proposed, including recent efforts targeting sparsity [18],
they pay insufficient attention to software integration or rapidwork-
load evolution, leading to quick obsolescence, alluded to by [26].
Mittal et al. [39] presents a survey of deep-learning on CPUs where
the SW lift is ameliorated somewhat. Cambricon [38] is of interest,
since it exposes linear algebra concepts as architecturally supported
primitives — similar to how RED exposes new primitives at the
ISA level, but lacks a performance contract between the implemen-
tation and programmer. In contrast, Mozart’s RED instruction set
has a concrete performance contract, which allows for verifiably
high-performance code to be authored with relative ease. Our re-
sults show that a more general approach enabled by a clean-slate
architecture is quite attractive, and we hope to steer more academic
research into architecture, microarchitecture, and software ideas in
this space.

Mozart focuses on expressive inter-core data reuse for stream-
dataflow and defines the Reuse Exposed Dataflow ISA. Other works
also build on stream-dataflow, including for supporting irregular
memory [16], control [60], and parallelism [14, 15]. TaskStream [15]
extends the ISA for task parallelism, enabling dynamic reordering of
tasks to exploit opportunities for multicasting data shared between
tasks. Prior work also adds stream abstractions to CPU ISAs [57–
59]; the “stream confluence” optimization [59] enables recognizing
simultaneous reuse across multiple cores and combines streams
dynamically to reduce requests to shared cache and reduce traffic
by multicasting. Overall, the realization of Mozart lends credence
to the practicality of adopting these ideas in industry.

9 CONCLUSIONS
The RED architecture and Mozart implementation effectively tar-
gets low-latency with the ability for high performance without any
batch parallelism (i.e. small batch size is enough) and provides a
unique and disruptive design point to focus on. At small-batch,
as shown in the microarchitecture section, we feel there is much
room to innovate and push performance and efficiency even higher.
Conversely, when abundant parallelism is available (large-batch
training/inference), other uncore effects dominate, making savings
from core micro-architecture insignificant, and the GPU is hard
to beat. Indeed, DL has large data-level parallelism at the sample
level [53]. However, this comes at an exorbitant demand onmemory
capacity and bandwidth — among DL/ML scientists, often multi-
ple GPUs are used just for extra memory storage during training,
resulting from doing large-batch training.

Architecture and hardware optimized for high utilization at
small-batch can provide disruptively new ways to reduce the dollar-
cost and power of DL (inference and training). For large-batch, Ten-
sorCore/MatrixEngines for DL are analogous to the mature OOO
pipeline for CPUs — we feel it is not the place to compete for a
startup, as their “demonstrable unfair advantage” [49] is negligible.

The overarching lesson for us is that a small design team with
only 20 full-time team members was sufficient to build a high-
performance clean-slate architecture on a leading edge technol-
ogy node. The implementation of the chip demonstrates the effec-
tiveness of the architecture in delivering on its goals of software-
maturity and high-performance.
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