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Abstract
Hardware specialization has become a promising paradigm
for overcoming the inefficiencies of general purpose micro-
processors. Of significant interest are Behavioral Specialized
Accelerators (BSAs), which are designed to efficiently exe-
cute code with only certain properties, but remain largely
configurable or programmable. The most important strength
of BSAs – their ability to target a wide variety of codes – also
makes their interactions and analysis complex, raising the
following questions: can multiple BSAs be composed syn-
ergistically, what are their interactions with the general pur-
pose core, and what combinations favor which workloads?
From a methodological standpoint, BSAs are also challeng-
ing, as they each require ISA development, compiler and as-
sembler extensions, and either simulator or RTL models.

To study the potential of BSAs, we propose a novel mod-
eling technique called the Transformable Dependence Graph
(TDG) - a higher level alternative to the time-consuming tra-
ditional compiler+simulator approach, while still enabling
detailed microarchitectural models for both general cores
and accelerators. We then propose a multi-BSA organi-
zation, called ExoCore, which we model and study using
the TDG. A design space exploration reveals that an Exo-
Core organization can push designs beyond the established
energy-performance frontiers for general purpose cores. For
example, a 2-wide OOO processor with three BSAs matches
the performance of a conventional 6-wide OOO core, has
40% lower area, and is 2.6× more energy efficient.

1. Introduction
Hardware specialization has become a promising paradigm
for continued efficiency improvements. The insight of this
paradigm is that, depending on the type of program or code,
relaxing certain capabilities of the general purpose core,
while augmenting it with others, can eliminate energy over-
heads and greatly improve performance.
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Figure 1: ExoCore-Enabled Heterogeneous System

Within the broad specialization paradigm, approaches can
be categorized as either domain specialized or behavior spe-
cialized. A domain specialized approach uses hardware cus-
tomized for a specific domain of computation or even a sin-
gle algorithm (resembling the SoC paradigm). This allows
these accelerators to be extremely efficient for certain do-
mains. Since this approach requires domain-specific infor-
mation to be conveyed to the architecture, their use is largely
non-transparent to the programmer. Examples include accel-
erators for convolution [42], neural networks [7, 30], approx-
imate computing [3, 13], video encoding [19] and database
processing [24, 56].

Behavior specialized accelerators (BSAs), the focus of
this work, differ in that they attempt to exploit program
behaviors and their inter-relationship to hardware microar-
chitecture1. A well-known example is short-vector SIMD
instructions, which exploit local data-parallelism. Research
examples include BERET [18], which specializes for hot
program-traces, XLOOPS [49], which specializes for loop
dependence patterns and DySER [17], which exploits mem-
ory/computation separability in data-parallel code. Special-
izing for program behaviors is advantageous both because
fewer accelerators can target a large variety of codes, and be-
cause these behaviors are typically analyzable by a compiler,
meaning their use can be largely transparent to the program-
mer. Though non-transparent BSAs have been proposed (eg.
LSSD [37]), we focus on transparent BSAs in this work.

Since programs exhibit a variety of behaviors, and BSAs
each target different behaviors, it is natural to consider com-
bining them. We propose an organization called ExoCore, as
shown in Figure 1. An ExoCore integrates a general purpose
core with several BSAs targeted at different program behav-

1 The line between BSA and DSA can be sometimes blurry. Considering
the NPU [13] accelerator, a sophisticated compiler could automatically
determine neural-network mappable regions, perhaps making NPU a BSA.
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Figure 2: TDG-based Accelerator Modeling Framework

iors. At run-time, depending on the affinity of the code, the
execution may migrate to one of the BSAs, a process which
is transparent to the programmer. To enable fast switching
between cores, without the need for migrating state, BSAs
share the virtual memory system and cache hierarchy.

Studying Behavioral Accelerators Considering designs
that incorporate multiple synergistic behavior-specialized
accelerators, many questions become immediately apparent:
can the performance and energy benefits be worth the area
costs? Is there opportunity for multiple-BSAs inside appli-
cations, and at what granularity? What types of BSAs are
synergistic, and is there a minimal useful set? Which type
of general purpose core should they integrate with? When
accelerators target overlapping regions, how should the de-
cision be made to switch between BSAs?

We argue that thus far, these questions have not been ad-
dressed adequately for at least two reasons. First, prior to
the advent of “dark silicon”, such a design would not have
been sensible given that certain portions of the core would
go unused at any given time – now the tradeoffs are more
plausible. Secondly, we simply lack effective ways to study
an organization like ExoCore. Evaluating even one BSA re-
quires extensive effort, including the definition of a new ISA
and possibly ISA extensions for the host processor, com-
piler analysis, transformations and assembler implementa-
tion, and finally for evaluation requires either a simulator
or RTL model. Exploring ExoCore designs incorporating
many BSAs has so far been intractable, and evaluating new
BSAs takes considerable effort; a higher-level evaluation
methodology, retaining the ability of modeling the effect of
both the compiler and the detailed interaction of the micro-
architecture seems necessary.

Goals and Contributions This paper’s goal is to elucidate
the potentials of synergistic BSAs. To achieve this, the first
thrust of this paper is to propose a novel BSA-modeling
methodology, called the transformable dependence graph
(TDG). The approach is to combine semantic information
about program properties (eg. loop dependence, memory
access patterns) and low-level hardware events (eg. cache
misses, branch mis-predictions, resource hazards) in a single
trace-based dependence graph representation. This depen-
dence graph is transformed, by adding or removing edges,
to model how it specializes for certain program behaviors
(Figure 2).

Using the TDG as the modeling methodology, we ex-
plore a design space of ExoCore organizations that draws
accelerators from the literature, evaluating 64 design points
across more than 40 benchmarks. Our analysis shows that
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Figure 3: Results of Design-Space Exploration Across 64
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having multiple BSAs can be helpful both within workload
domains and within single applications. Understanding this
design space would have been intractable without a TDG
style approach2.

To summarize, this paper’s contributions are:

• A novel methodology (TDG) for modeling behavior spe-
cialized acceleration (see www.cs.wisc.edu/vertical/
tdg for implementation details), that is practical and ac-
curate (less than 15% error in relative performance and
energy efficiency for existing BSAs).

• Defining the ExoCore concept, and developing a syner-
gistic composition of BSAs which significantly pushes
the performance and energy frontiers of traditional cores.

• Design-space exploration of ExoCore configurations
(Figure 3). Specifically, a 2-wide OOO processor with
three BSAs matches the performance of a conventional
6-wide OOO core with SIMD, has 40% lower area and is
2.6× more energy efficient. We also find that BSAs have
synergistic opportunities across and within workloads.

Paper Organization We first describe the background, in-
tuition, and details of the TDG-based accelerator model-
ing approach, along with single-accelerator validation (Sec-
tion 2). We then use the TDG methodology to design and
model an ExoCore system with four synergistic BSAs (Sec-
tion 3). Section 4 has methodology, and Section 5 has results.
Section 6 is related work, and Section 7 concludes.

2. Transformable Dependence Graphs
In this section, we describe our approach for modeling be-
havior specialized accelerators: the Transformable Depen-
dence Graph (TDG). We first describe the requirements for a
BSA-modeling framework, then overview our proposed ap-
proach, and go into detail with a specific accelerator exam-
ple. We also discuss implementation, validation, usage and
limitations.

2 We note that TDG is a simulation-modeling technique that does not pro-
duce a compiler artifact, or microarchitecture spec, or RTL of the modeled
BSA. Its potential usefulness is in research of accelerator ideas and early
design-space exploration - it is analogous to a cycle-level trace simulator.



2.1 Insights and Background
Requirements For modeling the workings of behavior spe-
cialized accelerators, a useful evaluation approach must cap-
ture the following aspects of execution:

1. General Purpose Core Interaction Since transparent
accelerators selectively target certain code, the general
purpose core must be modeled in detail (eg. pipelining,
structural hazards, memory-system etc.). In addition, ac-
celerators can interact with different parts of the general
purpose core (eg. sharing the LSQ), so this must be mod-
eled as well.

2. Application/Compiler Interaction Much of a BSA’s
success depends on how well the compiler can extract
information from the application, both for determining a
valid accelerator configuration, and for deciding which
accelerator is appropriate for a given region.

3. Accelerator Behavior Naturally, the low-level detailed
workings of the accelerator must be taken into-account,
including the microarchitecture and dynamic aspects of
the execution like memory latency.

A traditional compiler+simulator can capture the above
aspects very well, but the effort in building multi-BSA com-
pilers and simulators is time consuming, if not intractable.
What we require are higher-level abstractions.

Leveraging Microarchitectural Dependence Graphs (µDGs)
For a higher-level model of microarchitectural execution,
we turn to the µDG, a trace-based representation of a pro-
gram. It is composed of nodes for microarchitectural events
and edges for their dependences. It is constructed using dy-
namic information from a simulator, and as such, is input-
dependent. The µDG has traditionally been used for model-
ing out-of-order cores [15, 28]. Overall, it offers a detailed-
enough abstraction for modeling microarchitecture, yet is
still abstract and easy to model modifications/additions of
effects.

What is missing from the above is the capability of cap-
turing compiler/application interactions. Our insight is that
graph transformations on the µDG can capture the effects
of behavioral specialization – after all, a BSA simply re-
laxes certain microarchitectural dependences while adding
others. To perform these transformations, we require know-
ing the correspondence between the program trace and the
static program IR. This can be reconstructed from the binary.

2.2 The Transformable Dependence Graph
Approach Overview Putting the above together, the crux
of our approach is to build the Transformable Dependence
Graph (TDG), which is the combination of the µDG of the
OOO core, and a Program IR (typically a standard DFG +
CFG) which has a one-to-one mapping with µDG nodes.

As shown in Figure 2, a simulator produces dynamic in-
struction, dependence, and microarchitectural information,

which is used by the constructor to build the TDG. The TDG
is analyzed to find acceleratable regions and determine the
strategy for acceleration. The TDG-transformer modifies the
original TDG, according to a graph re-writing algorithm, to
create the combined TDG for the general purpose core and
accelerator. As part of the representation, the TDG carries in-
formation about overall execution time and energy. The next
subsection describes the approach using an example.

Notation To aid exposition, the notation TDGGPP,ACCEL
refers to a TDG representation of a particular general pur-
pose processor (GPP) and accelerator. TDGOOO4,SIMD, for
example, represents a quad-issue OOO GPP with SIMD. As
a special case, the original TDG prior to any transformations
(not representing an accelerator) is TDGGPP,∅.

2.3 Transformable Dependence Graph Example
Here we define the components of our approach using a run-
ning example in Figure 4, which is for transparently apply-
ing a simple fused multiply-accumulate (fma) instruction.
We intentionally choose an extremely simple example for
explanatory purposes, and note how a more complex accel-
erator would implement that component. Detailed modeling
of such accelerators are in Section 3.2.

Constructing the TDG To construct TDGGPP,∅, a con-
ventional OOO GPP simulator (like gem5 [5]) executes an
unmodified binary3, and feeds dynamic information to the
TDG constructor (Figure 4(a)). The first responsibility of
the tool is to create the original µDG, which embeds dy-
namic microarchitectural information, including data and
memory dependences, energy events, dynamic memory la-
tencies, branch mispredicts and memory addresses. We note
that this makes the TDG input dependent, which is similar
to other trace-based modeling techniques.

To explain an example, Figure 4(b) shows the µDG for
the original OOO core, which in this case was a dual is-
sue OOO. Here, nodes represent pipeline stages, and edges
represent dependencies to enforce architectural constraints.
For example, edges between alternate dispatch and com-
mit nodes model the width of the processor (Di−2

1−→ Di,
Ci−2

1−→ Ci). The FU or memory latency is represented by
edges from execute to complete (Ei → Pi), and data depen-
dencies by edges between complete to execute (Pi

0−→ Ej).
The second responsibility of the constructor is to create

a program IR (also in Figure 4(b)) where each node in the
µDG has a direct mapping with its corresponding static in-
struction in the IR. We analyze the stream of instructions
from the simulator, using known techniques to reconstruct
the CFG, DFG with phi-information, and loop nest structure
using straightforward or known techniques [33]. Also, regis-
ter spill and constant access is identified for later optimiza-
tion. To account for not-taken control paths in the program,

3 Our implementation assumes that compiler auto-vectorization is off.



for dyn_inst in dep_trace:
  if is_fma_multiply(dyn_inst):
    dyn_inst.type=fma
    dyn_inst.e_to_p_edge->lat=4
    set_inst_deps(dyn_inst) 
 

  else if is_fma_add(dyn_inst):
    #attach input deps to fma
    dyn_fma = fma_for(dyn_inst)
    
add_data_deps(dyn_fma,dyn_inst)

  else:  # normal path
    set_inst_deps(dyn_inst)

func set_inst_deps(dyn_inst):
  set_pipe_deps(dyn_inst)

  set_data_deps(dyn_inst)     … 

for bb in BBs:
  for inst in BB.insts:
    if !inst.isFAdd():
      continue
    for dep_inst in inst.deps:
      if !dep_inst.isFMul():
        continue            
      if single_use(dep_inst):
        set_fma(dep_inst,inst)

        break                  

1

4

1

I1

P

C

E

D

I2

P

C

E

D

3

I3

P

C

E

D

I4

P

C

E

D

1

1

3

1

1

1

1

1

1

1

I5

P

C

E

D

I1

P

C

E

D

I0

P

C

E

D

1

1 1

1

3

1

1

1

1 1

1

1

B
B
0

Program IR

fmul

ld

fmul

fadd

brnz

B
B
1

sub

...

B
B
0

(b) Transformable Dependence Graph (TDG)

Core µDG 

TDG
Constructor

Program Binary

(a) TDG Construction

I0:fmul r5, r3,2 
I1:ld r2,[r0+r1]
I2:fmul r4,r2,r3
I3:fadd r5,r4,r5
I4:sub  r1,r1,4
I5:brnz r1,I1

Simulator

(c) TDG Analyzer (d) TDG Transformer

D: Dispatch, E: Execute, P: Complete, C: Commit

(e) Core+Accel TDG

1

4

1

D

I1

P

C

E

1

4

1

1 1

1

I0

P

C

E

D

I1

P

C

E

D
1

1

1 1

1

1

I2'

P

E

D

C

1

1

3

1

I4

C

E

D

P

I5

P

C

E

D

1

D: Dispatch, E: Execute
P: Complete, C: Commit

Figure 4: Example TDG-Based model for transparent fused multiply-add (fma) specialization.

we augment the program IR with the CFG from binary anal-
ysis.

TDG Analyzer The next step is to analyze the TDG to de-
termine which program regions can be the legally and prof-
itably accelerated, as well as the “plan” for transformation.
This “plan” represents the modifications a compiler would
make to the original program. We explain with our example.

Figure 4(c) shows the algorithm (in pseudo-code) re-
quired for determining the fma instructions. To explain, the
routine iterates over instructions inside a basic block, look-
ing for a fadd instruction with a dependent fmul, where the
fmul has a single use. The function set fma(inst1,inst2)

records which instructions are to be accelerated, and passes
this “plan” to the TDG transformer. In concrete terms, a
TDG-analysis routine is a C++ module that operates over
the TDG’s trace or IR, and the “plan” is any resulting infor-
mation or data-structures that are stored alongside the TDG.

While the above is basic block analysis, more complex
accelerators typically operate on the loop or function level.
For example, determining vectorizability in SIMD would
require analyzing the IR for inter-iteration data dependences.

TDG Transformer This component transforms the origi-
nal TDG to model the behavior of the core and acceler-
ator according to the plan produced in the previous step.
It applies accelerator-specific graph transformations, which
are algorithms for rearranging, removing, and reconstruct-
ing µDG nodes and dependence edges. In our notation, this
is the transformation from TDGGPP-X,∅ to TDGGPP-Y,ACCEL.

Figure 4(d) outlines the algorithm for applying the fma

instruction, which iterates over each dynamic instruction in
the µDG. If it is an accelerated fmul, it changes its type
to fma and updates its latency. If the original instruction
is an accelerated fadd, it is elided, and the incoming data
dependences are added to the associated fma.

This simple example operates at an instruction level, but
of course more complex accelerators require modifications
at a larger granularity. For instance, when vectorizing a loop,
the µDG for multiple iterations of the loop can be collected
and used to produce the vectorized µDG for a single new
iteration.

Core+Accelerator TDG The core+accelerator TDG repre-
sents their combined execution, an example of which is in

Accel. Base P Err. P Range E Err. E Range

OOO8�1 – 3% 0.05�1.0 IPC 4% 0.75�2.75 IPE
OOO1�8 – 2% 0.02�5.5 IPC 3% 0.39�1.7 IPE
C-Cores IO2 5% 0.84�1.2× 10% 0.5�0.9×
BERET IO2 8% 0.82�1.17× 7% 0.46�0.99×
SIMD OOO4 12% 1.0�3.6× 7% 0.30�1.3×
DySER OOO4 15% 0.8�5.8× 15% 0.25�1.28×

Table 1: Validation Results (P: Perf, E: Energy)

Figure 4(e), for TDGOOO2,fma. Here, I2’ represents the spe-
cialized instruction, and I3 has been eliminated from the
graph. In practice, more complex accelerators require more
substantial graph modifications. One common paradigm is
to fully switch between a core and accelerator model of exe-
cution at loop entry points or function calls.

Finally, this TDG can be analyzed for performance and
power/energy. The length of the critical path, shown in bold
in the figure, determines the execution time in cycles. For
energy, we associate events with nodes and edges, which can
be accumulated and fed to standard energy-modeling tools.

2.4 Implementation: Prism
Our framework’s implementation, Prism, generates the orig-
inal TDG using gem5 [5], enabling analysis of arbitrary pro-
grams. We implement custom libraries for TDG generation,
analysis and transformation (more details on specific mod-
eling edges are in a related paper [38]). Since transforming
multi-million instruction traces can be inefficient, Prism uses
a windowed approach. Windows are large enough to capture
specialization granularity (max ∼10000 instructions). The
final outputs include cycle count and average power.

Power and Area Estimation Prism accumulates energy
event counts for both the GPP and accelerator from the TDG.
It then uses McPAT [29] internally for computing power,
calling McPAT routines at intervals over the program’s ex-
ecution. We use 22nm technology. The GPP core activity
counts are fed to McPAT [29], a state-of-the-art GPP power
model. For accelerators, a combination of McPAT (for FUs)
and CACTI [34] is used, and for accelerator-specific hard-
ware we use energy estimates from existing publications.
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Figure 5: Prism Validation

2.5 Core and Single-Accelerator Validation
We perform validation by comparing the TDG against the
published results of four accelerators, each of which use tra-
ditional compiler+simulator evaluation. These results used
benchmarks from the original publications [17, 18, 53], and
Parboil [1] and Intel’s microbenchmarks for SIMD. The
original µDG is generated by fast-forwarding past initializa-
tion, then recording for 200 million instructions. Here, the
error is calculated by comparing the relative speedup and
energy benefits over a common baseline, where we config-
ured our baseline GPP to be similar to the reported baseline
GPP. Note that for SIMD and DySER, we were able to ad-
just the transformations to match the compiler output, as we
had access to these compiler infrastructures.

Table 1 presents a validation summary for the OOO core
and accelerators, where column “Base” is the baseline GPP,
“Err.” is the average error, and “Range” is the range of
compared metrics. Figure 5 shows the validation graphs for
each architecture, including performance (left) and energy
(right). Each point represents the execution of one workload,
and the distance to the unit line represents error. The X-Axis
is the validation target’s estimate (from published results or
measured from simulation), and the Y-Axis is the TDG’s
estimate of that metric. We describe the validation of the core
and accelerators below.

OOO-Core To determine if we are over-fitting the OOO
core to our simulator, we perform a “cross validation” test:
we generate a trace based on the 1-Wide OOO core, and use
it to predict the performance/energy of an 8-Wide OOO core,
and vice-versa. The first two graphs in Figures 5 show the
results. The benchmarks in this study [2] are an extension
of those used to validate the Alpha 21264 [9] (we omit
names for space). The high accuracy here (< 4% on average)
demonstrates the flexibility of the model in either speeding
up or slowing down the execution.

Conservation Cores are automatically generated, simple
hardware implementations of application code [53], which
are meant as offload engines for in-order cores. We validate
the five benchmarks in the above paper, and achieve an aver-
age of 5% and 10% average error in terms of performance
improvement and energy reduction. The worst case is for
401.bzip2, where we under-predict performance by 15%.

BERET is also an offload engine for hot loop traces, where
only the most frequently executed control path is run on the
accelerator, and diverging iterations are re-executed on the
main processor [18]. Efficiency is attained through serialized
execution of compound functional units. We achieve an av-
erage error of 8% and 7% in terms of performance improve-
ment and energy reduction. We over-predict performance
slightly on cjpeg and gsmdecode, likely because we approx-
imate using size-based compound functional units, rather
than more restrictive pattern based (to not over-conform to
the workload set).



BSA (Acronym) Exploited App. Behavior Benefits vs General Core Drawbacks vs General Core Granularity Inspired By

Short-Vector SIMD Data-parallel loops with
little control

Fewer instructions and less
port contention

Masking/predicated inst
penalty

Inner Loops

Data Parallel
CGRA (DP-
CGRA)

Parallel loops w/ separa-
ble compute/memory

Vectorization + fewer insts.
on general core

Extra comm. insts, predi-
cated inst penalty

Inner Loops DySER [17],
Morphosys [47]

Non-speculative
Dataflow (NS-DF)

Regions with non-critical
control

Cheap issue width, larger
instruction window

Lacks control speculation,
requires instr. locality

Nested Loops SEED [36],
Wavescalar [50]

Trace-Speculative
Proc. (Trace-P)

Loops w/ consistent
control (hot traces)

Similar to above, but larger
compound insts.

Trace mispeculation
requires re-execution

Inner Loop
Traces

BERET [18],
CCA [8]

Table 2: Tradeoffs of Behavior Specialized Accelerators (BSAs) in this Work

SIMD validation is performed using the Gem5 Simula-
tor’s implementation, configured as a 4-Wide OOO proces-
sor. Figure 5(e) shows how we attain an average error of
12% and 7% in terms of performance improvement and en-
ergy reduction. Our predictions for SIMD are intentionally
optimistic, as there is evidence that compilers will continue
to see improved SIMD performance as their analysis gets
more sophisticated. We remark that our transformations only
consider a straight-forward auto-vectorization, and will not
be accurate if the compiler performs data-layout transforma-
tions or advanced transformations like loop-interchange.

DySER is a coarse grain reconfigurable accelerator (CGRA),
operating in an access-execute fashion with the GPP through
a vector interface [17]. On the Parboil and Intel microbench-
marks, we attain an average error of 15% for both speedup
and energy reduction.

In summary, The TDG achieves an average error of less
than 15% for estimating speedup and energy reduction, com-
pared to simulator or published data.

2.6 Using TDG Models in Practice
The TDG can be used to study new BSAs, their compiler
interactions and the effect of varying input sets. In practice,
running TDG models first requires TDG-generation through
a conventional simulator. The generated TDG can be used to
explore various core and accelerator configurations. Since
the TDG is input-dependent, studying different inputs re-
quires the re-running the original simulation.

Implementing a TDG model is a process of writing
IR analysis routines, graph-transformation algorithms and
heuristics for scheduling, as outlined in Appendix A.

2.7 Limitations of TDG Modeling
Lack of Compiler Information First, since the TDG starts
from a binary-representation, it lacks native compiler infor-
mation, which sometimes must be approximated in some
way. An example is memory aliasing between loop instruc-
tions, useful for determining vectorization legality. In such
cases, we use dynamic information from the trace to esti-
mate these features, though of course this is optimistic.

Other Sources of Error Another consequence of begin-
ning from a binary representation are ISA artifacts in the
TDG. One important example is register spilling. In this
case, the TDG includes a best-effort approach to identify
loads and stores associated with register spills, which can
potentially be bypassed in accelerator transformations.

The graph representation is itself constraining, in partic-
ular for modeling resource contention. To get around this,
we keep a windowed cycle-indexed data structure to record
which TDG node “holds” which resource. The consequence
is that resources are preferentially given in instruction order,
which may not always reflect the microarchitecture.

Another source of error is unimplemented or abstracted
architectural/compiler features. An example from this work
is the lack of a DySER spatial scheduler – the latency be-
tween FUs is estimated. Of course, TDG models can be
made more detailed with more effort.

Flexibility The µDG itself embeds some information about
the microarchitectural execution (eg. memory latency, branch
prediction results), meaning that its not possible to change
parameters that affect this information without also re-
running the original simulation. Understanding how those
components interact with specialization would require record-
ing multiple TDGs.

Transformation Expressiveness Some transformations
are difficult to express in the TDG, limiting what types of ar-
chitectures/compilation techniques can be modeled. In par-
ticular, non-local transforms are challenging, because of the
fixed instruction-window that the TDG considers. One ex-
ample of this would be an arbitrary loop-interchange.

3. Designing ExoCore Systems
Now that we have described an effective modeling technique
for studying multiple BSA designs, the TDG, we employ it
to study multi-BSA organizations - we call such an archi-
tecture an ExoCore. As shown earlier in Figure 1, an Ex-
oCore integrates a general purpose core with several other
programmable or configurable BSAs targeted at different
kinds of program behaviors. At runtime, depending on the
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Figure 6: This work’s behavior-space.

affinity of the code, the execution may migrate to one of the
BSAs, a process which is transparent to the programmer.

In this section, we first discuss how to construct a com-
position of BSAs to form an ExoCore, then give background
on the individual BSAs that comprise it, and finally describe
how they are modeled using the TDG.

3.1 Opportunities for Behavioral Specialization
An effective ExoCore design must incorporate accelerators
which are synergistic, meaning they can effectively work to-
gether for added benefits. Intuitively, BSAs that are synergis-
tic will simply specialize different types of behaviors. Fig-
ure 6 shows an example taxonomy of program behaviors,
where leaf nodes in this tree are program types that can be
mapped to specific hardware specialization mechanisms.

With our behavior space outlined, we can now begin to
compose a set of BSAs which target those behaviors. Fortu-
nately, we can draw from the existing accelerator literature
to fill these niches. Table 2 shows how different accelerators
can map onto the specializable behaviors, and gives insights
into their benefits and drawbacks versus a general purpose
core. We describe these accelerators below; their high-level
architecture is in Figure 7.

SIMD Short vector SIMD is a well known BSA for target-
ing data parallel regions, where a limited amount of control
and memory irregularity exists.

Data-Parallel Access-Execute Past a certain degree of
control, SIMD is no longer effective. An alternate approach
is to offload the computation of the loop to a CGRA which
natively supports control, and pipeline the CGRA for ex-
ecuting parallel loops (eg. DySER [17], Morphosys [47]).
This works well when the memory and computation are
separable (fewer communication instructions). Also, these
architectures handle some memory irregularity by providing
a shuffle network in their flexible input/output interfaces.

We call this design Data-Parallel CGRA (DP-CGRA). Its
design point has 64 functional units (FUs), and is configured
similar to previous proposals [17].

Non-speculative Dataflow In code regions that are not
data-parallel, but still have high potential ILP, non-speculative
dataflow processors can be highly effective, especially when
the control flow does not lie on the critical path.

We model this BSA after the recent SEED [36] architec-
ture, using distributed dataflow units communicating over a
bus, and compound FUs (CFUs) for computation. This de-
sign targets inlined nested loops with 256 static compound
instructions. We refer to this as NS-DF, for non-speculative
dataflow.

Trace-Speculative Core Often, control is on the critical
path, meaning speculation is necessary for good perfor-
mance, but it is highly biased – creating one hot path through
a loop. Architectures like BERET [18] exploit this by se-
quencing through a speculative trace of instructions, using
CFUs for energy efficiency. Instructions diverging from the
hot loop trace require re-execution on the general core.

We model a trace-speculative BSA similar to BERET, ex-
cept that we add dataflow execution. This enables the design
to be more competitive with an OOO core. We add a loop-
iteration versioned store buffer to save speculative iterations.
We refer to this design as a Trace-P for trace-processor4.
Compared to NS-DF, Trace-P requires half as much operand
storage, and can have larger CFUs, as compound instructions
in Trace-P can cross control boundaries.

ExoCore Architecture Organization Putting the above to-
gether, Figure 7 shows how an ExoCore combines a general
core with the four different BSAs. DP-CGRA and SIMD are
integrated with vector datapaths from the general core. All
designs besides SIMD are configurable, and require a con-
figuration datapath. NS-DF and Trace-P are offload architec-
tures, meaning they have their own interfaces to the cache
hierarchy, and can power down parts of the core.

We emphasize that the detailed microarchitecture is not
the emphasis or contribution of this work. The novel and
new ability to model such an architecture using the TDG,
and the implications of this design organization are the main
contributions.

3.2 TDG-Modeling of BSAs
We now discuss how each BSA is modeled inside the TDG
framework. Each accelerator model discusses the analysis
plan and transforms, and Figure 8 shows an example code
and transform for each BSA.

SIMD (Loop Auto-vectorization) TDG For SIMD we fo-
cus on vectorizing independent loop iterations, as this is the
most common form of auto-vectorization.

TDG Analysis: First, a pass optimistically analyzes the
TDG’s memory and data dependences. Memory-dependences

4 Not to be confused with the Trace Processor from [43]
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between loop iterations can be detected by tracking per-
iteration memory addresses in consecutive iterations. Loops
with non-vectorizable memory dependences are excluded,
and considering loop-splitting and loop-reordering to break
these dependences is future work. Similarly, loops with
inter-iteration data dependences which are not reductions
or inductions are excluded.

For vectorizing control flow, the TDG analysis consid-
ers an if-conversion transformation, where basic blocks in
an inner-loop are arranged in reverse-post order, and con-
ditional branches become predicate-setting instructions. In
the case of non-local memory access, packing/unpacking in-
structions are inserted into the loop body. For alignment, we
assume we have the use of unaligned memory operations
(like in x86). This analysis also computes where masking
instructions would need to be added along merging control
paths. The TDG decides whether to vectorize a loop by com-
puting the expected number of dynamic instructions per iter-

ation by considering path profiling information. If it is more
than twice the original, the loop is disregarded.

TDG Transform (TDGGPP,∅ to TDGGPP,SIMD): When a
vectorizable loop is encountered, µDG nodes from the loop
are buffered until the vector-length number of iterations are
accumulated. The first iteration of this group becomes the
vectorized version, and not-taken control path instructions,
as well as mask and predicate instructions, are inserted. Most
instructions are converted to their vectorized version, ex-
cept for non-contiguous loads/stores, for which additional
scalar operations are added (as we target non-scatter/gather
hardware). At this point, memory latency information is re-
mapped onto the vectorized iteration, and the non-vector it-
erations are elided. If fewer than the minimum vector length
iterations remain, the SIMD transform is not used.

Data-Parallel CGRA (DP-CGRA) TDG TDG Analysis:
The analysis “plan” is a set of legal and profitable loops,
potentially vectorized, where for each loop the plan contains
the computation subgraph (offloaded instructions). Vector-
ization is borrowed from SIMD, and a slicing algorithm [17]
is used to separate instructions between the general core and
CGRA. Control instructions without forward memory de-
pendences are offloaded to the CGRA.

Similar to SIMD, a new version of the inner loops is con-
structed, except here the computation subgraph is removed
from the loop, and communication instructions are inserted
along the interface edges. If the loop is vectorizable, the
computation can be “cloned” until its size fills the available
resources, or until the maximum vector length is reached, en-
abling more parallelism. The analysis algorithm disregards
loops with more communication instructions than offloaded
computation.

TDG Transform (TDGGPP,∅ to TDGGPP,DP-CGRA): The
DP-CGRA keeps a small configuration cache, so if a con-
figuration is not found when entering a targeted loop, in-
structions for configuration are inserted into the TDG. Sim-
ilar to SIMD, µDG nodes from several loop iterations are
buffered until the vectorizable loop length is reached. At this
point, if the loop is vectorizable, the first step is to apply
the SIMD transformation as described earlier (TDGGPP,∅ to
TDGGPP,SIMD).
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Figure 9: Amdahl Tree – Example of Triple Nested Loop

Offloaded instructions require two additional edges to en-
force accelerator pipelining: one for the pipeline depth be-
tween computation instances, and one for in-order comple-
tion. We model the scheduling and routing latency by adding
delay on the data dependence edges.

Non-speculative Dataflow (NS-DF) TDG TDG Analysis:
The primary analysis here is to find fully inlinable loops or
nested loops that fit within the hardware budget. Once a loop
nest selected, the control is converted into data-dependences
by computing the program dependence graph. This deter-
mines where “switch” instructions should be inserted to han-
dle control. Instructions are then scheduled onto CFUs using
known mathematical optimization [36] techniques.

TDG Transform (TDGGPP,∅ to TDGGPP,NS-DF): This trans-
form operates at basic-block granularity, by inserting edges
to enforce control dependences and to force each compound
instruction to wait for all operands before beginning execu-
tion. It also adds edges to enforce writeback network capac-
ity. Additionally, edges between the general core and NS-DF
regions are inserted to model live value transfer time.

Trace-Processor (Trace-P) TDG TDG Analysis: The anal-
ysis plan is a set of eligible and profitable inner loops and
compound instruction schedules. Eligible loops with hot
traces are found using path profiling techniques [4]. Loops
are considered if their loop back probability is higher than
80%, and their configuration size fits in the hardware limit.
A similar CFU scheduling technique is used, but compound
instructions are allowed to cross control boundaries.

TDG Transform (TDGGPP-Orig,∅ to TDGOOO,Trace-P): This
transform is similar to NS-DF, except that the control de-
pendences are not enforced, and if Trace-P mispeculates the
path, instructions are replayed on the host processor by re-
verting to the TDGGPP-Orig,∅ to TDGGPP-New,∅ transform.

3.3 BSA Selection
A practical consideration is how to choose between BSAs
throughout the program execution. This is complicated by
the fact that the decision is hierarchical in program scope
(eg. target an entire loop nest, or just the inner loop?).

We propose a simple strategy called the Amdahl Tree,
as shown in Figure 9. Each node in the tree represents a
candidate loop, and is labeled with the speedup of each
BSA, and the expected execution time. This speedup can
be approximate based on static or profile information. A
bottom-up traversal, applying Amdahl’s law at each node,

Suite Benchmarks

TPT conv, merge, nbody, radar, treesearch, vr
Parboil cutcp, fft, kmeans, lbm, mm, needle, nnw, spmv, stencil, tpacf
SPECfp 433.milc 444.namd 450.soplex 453.povray 482.sphinx3
Mediabench cjpeg, djpeg, gsmdecode, gsmencode cjpeg2, djpeg2, h263enc,

h264dec, jpg2000dec, jpg2000enc, mpeg2dec, mpeg2enc
TPCH Queries 1 and 2
SPECint 164.gzip, 181.mcf, 175.vpr, 197.parser, 256.bzip2 429.mcf,

403.gcc, 458.sjeng, 473.astar, 456.hmmer, 445.gobmk

Table 3: Benchmarks

IO2 OOO2 OOO4 OOO6

Fetch, Dispatch
Issue, WB Width 2 2 4 6

ROB Size - 64 168 192
Instr. Window - 32 48 52
DCache Ports 1 1 2 3
FUs (ALU,Mul/Div,FP) 2,1,1 2,1,1, 3,2,2 4,2,3

Table 4: General Core Configurations

can determine the best architecture for a given region. In
practice, a profile-based compiler can make BSA selections
and embed them in the program binary.

4. ExoCore Exploration Methodology
The following methodology is used in the design-space ex-
ploration in the next section.

Benchmarks Selection Benchmarks were chosen from a
wide range of suites (Table 3). These include highly regular
codes from Intel TPT [17], scientific workloads from PAR-
BOIL [1], image/video applications from Mediabench [27]
and irregular workloads from SPECint. The diversity high-
lights ExoCore’s ability to target a large variety of codes.
Also, as much as possible, we picked benchmarks and suites
from the respective accelerator publications.

General Core Configurations We considered four differ-
ent cores of varying complexity, with parameters as outlined
in Table 4. The common characteristics are a 2-way 32KiB
I$ and 64KiB L1D$, both with 4 cycle latencies, and a 8-
way 2MB L2$ with a 22 cycle hit latency. We model 256-bit
SIMD.

Area Estimation We use McPAT for estimating area of
general cores, and use area estimates from relevant publi-
cations [17, 18, 36].

Runtime Accelerator Selection Because we are exploring
the potential of ExoCore systems, most of our results use
an Oracle scheduler, which chooses the best accelerator for
each static region, based on past execution characteristics.
The selection metric we use is energy-delay, where no indi-
vidual region should reduce the performance by more than
10%. One later set of results compares the oracle and Am-
dahl Tree schedulers.
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5. Design Space Exploration
In this section, we explore a design space comprising the
combinations of four general purpose cores and 16 choices
for the subset of BSAs (from the set of four BSAs we study).
For this section, a “full ExoCore” consists of an ExoCore
with all four BSAs. We report three important results first:

• High Potential of BSAs Across all workloads, a full
OOO2-based ExoCore provides 2.4× performance and
energy benefits over an OOO2 core (dual-issue, out-of-
order). Compared to an OOO6 core, an OOO6 ExoCore
can achieve up to 1.9× performance and 2.4× energy
benefits.

• Design Choice Opportunities Our analysis suggests that
there are several ways to break through current energy,
area, and performance tradeoffs. For example, there are
four OOO2-based ExoCores and nine OOO4-based Ex-
oCores that achieve higher performance than an OOO6
with SIMD alone. Of these, the OOO2SIMD+DP-CGRA+NSDF
ExoCore achieves 2.6× better energy efficiency, while
requiring 40% less area.

• Affinity Behavior ExoCores make use of multiple accel-
erators, both inside workload domains, and inside appli-
cations themselves. Across all benchmarks, considering

a full OOO2 ExoCore, an average of only 16% of the
original programs’ execution cycles went un-accelerated.

We discuss each of these results in the following subsec-
tions. We also again emphasize that, in principle, the same
analysis could be done by implementing and integrating
many compilers and simulators inside the same framework.
However it is difficult and impractically time-consuming.
See Appendix A for steps in TDG modeling.

5.1 High Potentials of ExoCores
Overall Trends Figure 10 shows geometric mean perfor-
mance and energy benefits of single-BSA designs as well as
full ExoCores across all workloads. Each line in this graph
represents the set of designs with the same combination of
accelerators (or no accelerators), and each point on the curve
represents a different general purpose core. As alluded to, we
show that each BSA alone has significant potential, and their
combination has even more.

Workload Interaction To observe workload domain spe-
cific behavior, Figure 11 divides the previous results into
highly regular, semi-regular, and highly irregular workload
categories. The major result here is that even on the most
challenging irregular SPECint applications, ExoCores have
significant potential. A full OOO2 ExoCore can achieve
1.6× performance and energy benefits over OOO2 with
SIMD. For OOO6, ExoCore achieves 1.25× performance
and 50% energy efficiency improvement. Our findings also
confirm the intuitive result that BSAs have a high potential
on regular workloads, where ExoCore achieves 3.5× perfor-
mance and 3× energy improvement for OOO2 core.

5.2 Design Choice Opportunities
An ExoCore organization opens design opportunities which
can push traditional energy and performance tradeoffs for-
ward, and this is true for both complex and simple general
purpose cores. The TDG enables the exploration of these de-
signs.

To demonstrate this capability, and examine some new
opportunities, we perform a design space exploration across
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Figure 12: Design-Space Characterization. S: SIMD, D: Data-Parallel CGRA, N: Non-spec Dataflow, T: Trace-Processor

all combinations of general purpose cores and BSAs across
all workloads. The resulting performance, energy efficiency
and area metrics are shown in Figure 12, where all points are
relative to the dual-issue in-order (IO2) design. On the graph,
higher is better for performance and energy efficiency, and
lower is better for area. There are many valuable quantitative
insights.

• [Performance] Compared to the OOO6 core with SIMD5,
four OOO2 and nine OOO4 ExoCore configurations
match the performance with lower energy and area, by
as much as 2×. This gives the designer freedom even if
performance is a hard constraint.

• [Performance] No in-order ExoCore configuration can
match the OOO6 performance. The best achieved is 88%
of the OOO6, with almost 1.7× lower area.

• [Energy] The OOO2 core with SIMD is the most energy
efficient baseline core. Compared to this core, twelve in-
order and five OOO4 ExoCores have higher energy ef-
ficiency - by as much as 65% and 25% respectively. In
addition to being more energy efficient, these configura-
tions are up to 1.35× (IO2-SDN) and 1.9× (OOO4-SNT)
higher performance.

• [Energy] A full OOO6 ExoCore achieves the same en-
ergy efficiency (within 1%) of the OOO2-SIMD core and
has 2.2× higher performance, but is nearly twice the area.

• [Full ExoCores] The full IO2 ExoCore is the most
energy-efficient among all designs. The full OOO6 Ex-
oCore has the best performance, the next best is the full
OOO4 ExoCore, which has 10% lower performance,
1.25× lower energy and 1.36× lower area.

Overall these results suggest two trends. Behavior spe-
cialized cores are extremely effective at reducing energy

5 We use OOO6-SIMD as the baseline - since this resembles commercial
processors with AVX2 etc. Note that if we had used OOO6 without SIMD
as the baseline, the benefits of ExoCores would be even higher.

regardless of core type. They provide high performance-
improvements for in-order, small and medium-sized OOO
cores - but not much for big OOO cores. Therefore, the most
high impact opportunity for future BSAs is to improve the
performance of OOO cores, while further increasing their
energy efficiency. The TDG enables this and other such ex-
plorations.

5.3 Affinity Behavior
We have thus far considered aggregate metrics across work-
loads, but the TDG also enables application-level analysis,
which we perform next.

Inter-application Affinity Figure 13 considers an OOO2-
based ExoCore, and shows each benchmark’s energy and ex-
ecution time breakdown. The baseline is the OOO2 alone.
Most benchmarks, even irregular workloads, have some po-
tential to effectively use BSAs, ranging from 100% of the
program being offloaded, to around 20%. Secondly, some
workloads can benefit from multiple BSAs inside a single
application. For example, cjpeg-2 makes use of SIMD, NS-
DF and Trace-P during its execution.

Considering energy breakdowns in Figure 13, observe
that for SIMD and DP-CGRA, the percentage of cycles of-
floaded is proportional to the energy contribution. For NS-
DF, because it can power-gate portions of the general core
when in use, the energy reduction is higher than the execu-
tion time reduction.

Affinity Granularity To give insight into the dynamic be-
havior of an ExoCore, Figure 14 shows a trace of execution
for two benchmarks. These graphs show the relative perfor-
mance benefits of a full OOO2 ExoCore over the OOO2 core
alone, over time. These graphs demonstrate both that appli-
cations can have fine-grain affinity for different accelerators,
and that a TDG-based framework can capture and model this
behavior.
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Figure 13: Per-Benchmark Behavior and Region Affinity
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Figure 14: ExoCore’s Dynamic Switching Behavior
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Figure 15: Oracle versus Amdahl Tree Scheduler

5.4 Practicality
Though we have shown that ExoCores have significant po-
tential, an important concern is whether they can practically
provide benefits without oracle information. To study this,
Figure 15 presents a comparison of the performance and
energy of the Amdahl scheduler (left-bar) and the Oracle
scheduler (right-bar). Here, the general core is the OOO2,
and we are showing challenging benchmarks from Media-
bench which require using multiple different accelerators in
the same application to be effective.

Compared to the oracle scheduler, our scheduler is slightly
over-calibrated towards using the BSAs rather than the gen-
eral core, meaning it is biased towards energy efficiency
– across all benchmarks (including those not shown) the
scheduler provides 1.21× geomean energy efficiency im-
provement, while giving 0.89× performance of the Oracle

scheduler. These heuristics can be tuned with more effort
to favor different metrics, or to be useful for the OOO4 or
OOO6 cores.

5.5 Evaluation Limitations and Extensions
This evaluation has explored a design space across cores,
accelerators and various metrics. Of course, there is a much
larger design space including varying core and accelerator
parameters, modifying their frequencies, and including other
proposed or novel accelerators. Though we have admittedly
just scratched the surface, the TDG can enable insightful
modeling of this design space.

The TDG framework and the benefits of combining BSAs
suggests that a fruitful area of future work is to see if an Exo-
Core can be designed to match domain specific accelerators
in certain domains.

Also, our TDG transforms are simply written as short
functions in C/C++. A DSL to specify these transforms
could make the TDG framework even more productive for
designers.

6. Related Work
Parallel and Heterogeneous Architecture Modeling An
alternative to modeling architectures with the TDG are an-
alytical models. Relevant works include those which reason
about the benefits of specialization and heterogeneity [11,
20, 45, 57], high-level technology trend projections [6, 22],
or even general purpose processors [10, 12, 14]. There are
also several analytical GPU models [21, 32, 39, 40, 46, 54].



The drawback of such models is that they are either specific
to the modeling of one accelerator or general-purpose core,
or they are too generic and do not allow design space explo-
rations which capture detailed phenomenon.

Kismet [16, 23] is a model which uses profiles of serial
programs to predict upper-bound speedups for paralleliza-
tion. It uses a hierarchical critical path analysis to character-
ize the available and expressible parallelism.

Perhaps the most related technique is the Aladdin frame-
work [44], a trace-based tool that uses a compiler IR in-
terpreter, that enables design space exploration of domain
specific accelerators. Using such an approach for behavioral
specialized accelerators is possible, and should reduce errors
from ISA artifacts. The drawback would be that the interac-
tion with the general purpose core in that framework would
be more difficult to capture. However, that style of approach
may be an avenue for improving accuracy in the future.

Core Heterogeneity Single-ISA heterogeneous architec-
tures have been extensively explored, starting with Kumar
et al. [25]. Later work extended this by exploring a large de-
sign space of microarchitectural design points [26], and Lee
et al. use regression analysis to broaden this design space
even further. A related design approach is to use a shared
pipeline frontend, but use a heterogeneous backend inside
the microarchitecture, like Composite Cores [31].

To a lesser extent, multi-ISA heterogeneity (where all
cores are general purpose) have been previously studied,
including Venkat et al. [52], who show that heterogeneity in
the ISA alone can provide benefits. Our work considers the
composition of accelerator-type architectures, which offer
tradeoffs beyond those of general purpose architectures.

Relatedly, many past works have explored processor
steering methods on heterogeneous architectures [35, 41,
48, 51, 55]. The unique aspect of the scheduling problem
in this work is that entry points to different accelerators are
restricted by the program’s loop structure.

7. Conclusions
In this work, we proposed the ExoCore design which incor-
porates multiple behavior-specialized accelerators inside a
core, and a comprehensive and novel modeling methodol-
ogy for studying such architectures called the transformable
dependence graph (TDG).

The TDG consists of a closely-coupled µDG and Pro-
gram IR for analysis. This representation allows the study of
the combined effects of compiler and hardware microarchi-
tecture as graph transformations. We showed the TDG ap-
proach is accurate and allows deep and insightful analysis
and design-space exploration.

Broadly, the ExoCore approach could be influential in
two ways. First, it simplifies general purpose core design –
behavior-specific microarchitecture blocks can be designed
and integrated into the core in a modular fashion, without
disruptive changes to the core’s microarchitecture. Second,

it provides a promising approach for exceeding the perfor-
mance/energy frontier of conventional approaches. Finally,
an open question that arises from this paradigm is how pow-
erful must the baseline core be - can one design sufficiently
powerful and expressive BSAs, where only a simple in-order
core is sufficient, and most of the application time is spent in
a BSA.

A. Steps in TDG Model Construction
Here we discuss the practical aspects and steps in construct-
ing a TDG model.

Analysis The first step is identifying the required compiler
analysis or profiling information, and implementing a pass to
compute it, operating on the IR or trace respectively. Often,
the required information (eg. path profiling) already exists
because it is common among BSAs. When this information
cannot be computed, approximation may be appropriate.

Transformations The next step is to write an algorithm
(a “transform”) which reads the incoming µDG trace, and
modifies dependences to model the behavior of the BSA
in question. Depending on the granularity of acceleration,
a transform may operate on a single instruction at a time,
or it might collect a basic block, loop iteration, or several
iterations before it can decide what the final µDG should be.
The modified µDG is transient, and is discarded after any
analysis (eg. critical path analysis), once it is no longer inside
the current instruction window. A transformation should also
include a model for how it interacts with the core when it
enters and exists a region.

Scheduling Finally, the model must decide when to apply
the BSA transform (ie. at what point in the code). In a
single-BSA system, the BSA’s transform can be used at any
legal entry point. For multi-BSA systems, the model should
provide per-region performance (or other metric) estimates
relative to the general purpose core for the BSA based on
either the IR or profiling information. This is used with the
Amdahl tree to decide which BSA to use in each region.

Validating new BSAs Validating a TDG model of newly-
proposed BSAs is similar to validating a cycle-level simula-
tor. Writing microbenchmarks and sanity checking is recom-
mended (eg. examining which edges are on the critical path
for some code region).
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