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Abstract—Specialization and accelerators are being proposed
as an effective way to address the slowdown of Dennard scaling.
DySER is one such accelerator, which dynamically synthesizes
large compound functional units to match program regions, using
a co-designed compiler and microarchitecture. We have com-
pleted a full prototype implementation of DySER integrated into
the OpenSPARC processor (called SPARC-DySER), a co-designed
compiler in LLVM, and a detailed performance evaluation on an
FPGA system, which runs an Ubuntu Linux distribution and
full applications. Through the prototype, this paper evaluates the
fundamental principles of DySER acceleration.

Our two key findings are: i) the DySER execution model
and microarchitecture provides energy efficient speedups and
the integration of DySER does not introduce overheads – over-
all, DySER’s performance improvement to OpenSPARC is 6×,
consuming only 200mW ; ii) on the compiler side, the DySER
compiler is effective at extracting computationally intensive
regular and irregular code.

I. INTRODUCTION

Accelerators [26], [36], [72], [34], [2], [29], [19] are
designed to push their baseline architectures across the es-
tablished energy and performance frontier, a trend we have
depicted in Figure 1. Accelerators, which are shown as vec-
tors (arrows), move the baseline processor to a new point
on the graph that has a better performance and/or energy
tradeoff. Many coarse-grain reconfigurable accelerators have
been proposed to achieve this goal, each exploiting different
program properties, and each designed with their own funda-
mental principles [29], [72], [34], [19], [44]. These principles
ultimately decide the magnitude and direction of the benefit
vector components, which intuitively quantifies accelerator
effectiveness. While early stage results from simulation and
modeling provide good estimates, performance prototyping on
a physical implementation uncovers the fundamental sources
of improvement and bottlenecks. This paper undertakes such
a prototype evaluation of DySER, which is based on three
principles:

1) Exploit frequent, specializable code regions
2) Dynamically configure accelerator hardware and

therefore accelerate code regions
3) Integrate the accelerator tightly, but non-intrusively,

to a processor pipeline
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Prior works have presented DySER’s architecture and early
stage results [26], [22], ISA design and proof-of-concept inte-
gration into OpenSPARC [6], compiler [27] and scheduler [47].
In this paper, we use a performance-capable FPGA-based pro-
totype, its compiler, and meaningful workloads and undertake
an end-to-end evaluation of what we call the SPARC-DySER
system. Like any full system prototype evaluation, our end
goal is to elucidate the merit of the underlying principles using
detailed quantitative measurements and analysis of a physical
prototype. To this end, we perform the following analyses for
the three principles:

1) Compiler analysis: to measure the feasibility and
effectiveness of exploiting specializable regions.

2) Performance, power and energy analysis: to quantify
the effectiveness of dynamic configuration and its
impact on performance and energy.

3) Area analysis: to assess the tight integration of
DySER to a processor pipeline.

Our paper’s main contribution is in demonstrating that dy-
namic specialization in a coarse-grained substrate like DySER
is achievable by building the end-to-end system: compiler,
microarchitecture, core integration. Our findings from this end-
to-end evaluation are: First, the DySER compiler can extract
frequent specializable regions, and achieves 3× speedup over
the original code. Second, DySER hardware speeds up the
program through concurrently active functional units, and is
limited by the data delivery rate of the integrated processor.
Third, irregularity in the code does not limit the compiler,
but the overly decoupled nature of the current DySER imple-



mentation limits opportunities. In particular, having conditional
loads/stores whose condition is computed inside DySER, or the
capability for some load/store execution inside the array would
be beneficial. Fourth, DySER can be tightly integrated into a
processor with small power and area overhead. Finally, we
can compare performance, power, and energy of the DySER
prototype to various other platforms like a Cortex-A8, A9, A15
and show DySER provides a compelling alternative to improve
performance and reduce power.

Our paper is organized as follows. Section II gives a
background of DySER and describes our performance-capable
FPGA-based implementation. Section III presents methodol-
ogy for the quantitative measurements. Sections IV-VII cover
the compiler, performance, power/energy, and area analysis
respectively. Section IX concludes with lessons learned.

II. DYSER DESIGN

DySER’s microarchitecture and compiler concepts have
been reported in previous publications. This includes the
architecture description [26], [22], detailed compiler descrip-
tion [27], scheduler [47], and a proof-of-concept integra-
tion [6]. This section first provides an overview and back-
ground, and then lists the necessary work to bring the DySER
prototype to design that is capable of performance evaluation.
Chen-Han [35] describes the detailed microarchitecture and
physical design and Govindaraju [23] describes in detail the
compiler. We refer the reader to those publications for details.

A. Background

Figure 2 shows an overview of the DySER architecture.
First, the original code is processed by the DySER compiler,
a process we term ”DySERizing.” DySERization splits a code
region into two components: the computation component and
the memory component. The computation is mapped onto the
DySER hardware, and the memory access is transformed to
include communication instructions which are from DySER’s
instruction set extensions. One example of a DySER communi-
cation instruction is the DySER vector load, shown as dld vec
in Figure 2. Further ISA extension details are in [6], [22].
The computation component is executed on DySER by the
configuration shown in the blue circle of Figure 2. Through
dconfig DySER instruction, we can set up the functional
units (computation) and switches (interconnection) prior to the
accelerated region.

The processor-DySER interface is shown in Figure 2 as
the striped boxes between D$ and DySER (described in [22]).
The two vector DySER access interfaces are: i) to a single
DySER port (deep communication), or ii) across multiple ports
(wide communication). To explain the utility of this feature, we
introduce the term invocation, which means one instance of
the computation for a particular configuration. This deep and
wide flexibility allows DySER to vectorize loops via inter- or
intra-invocation parallelism, which is intractable for traditional
SIMD techniques [27].

The DySER approach relies on the compiler to identify and
transform amenable program regions. The DySER compiler,
implemented on top of LLVM, creates the aforementioned
computation component and memory access component, and
represents them with the Access Execute Program Dependence

Graph (AEPDG) [27]. The DySER compiler performs trans-
formations on the AEPDG to optimize the memory accesses
and vectorize them if possible.

OpenSPLySER is an integration of DySER and
OpenSPARC [6], built to demonstrate that non-intrusive
integration is possible. It includes many simplifications,
including modified switch microarchitecture, flow-control,
DySER configuration, output retrieving mechanisms, and
DySER size. The largest DySER configuration possible was
a 2×2 configuration, or an 8×8 configuration with only 2-bit
datapath. Hence, only peak performance was quantified with
simple microbenchmarks.

B. From Prototype to Performance Evaluation

The OpenSPLySER design provides support for the claim
that DySER is a non-intrusive approach, however, it is not a
feasible platform for performance evaluation because of the
following reasons: 1) simplifications in integration break the
precise state of the processor; 2) it lacks the performance
critical vector interface, and other optimizations; and 3) it has
limited resources for DySER, due to FPGA size constraints.
We describe novel implementations that overcome these hur-
dles, and they are contributions of this paper.

1) Retire Buffer and Stall-able Design: For simplicity, the
OpenSPLySER prototype does not consider OpenSPARC T1
traps and exceptions and hence cannot deploy real workloads.
Moreover, because the DySER FIFO resides in a prior stage
than the register file, utilizing the existing OpenSPARC roll-
back and re-execute mechanisms that preserve RF states will
lose DySER FIFO states. Therefore, we modify the existing
OpenSPARC trap logic to support DySER instructions, and
add a three-entry retire buffer at the DySER output, which is
shown in Figure 3(a). The retire buffer discards DySER outputs
only after all exceptions are resolved.

2) Enhancements for performance: Since OpenSPLySER
was not designed for performance evaluation, it did not include
the vector interface [22]. To achieve a performance-accurate
design and implementation without significantly increasing
design complexity, we implemented a simplified vector inter-
face, as shown in Figure 3(b). Essentially, the vector load is
emulated by performing a scalar load, and duplicating the data
for each appropriate DySER input FIFO. This mechanism is
performance-equivalent to wide or deep loads, and we verify
that we do not affect the benchmark’s execution path.

3) Coping with FPGA limitations: As previously men-
tioned, the OpenSPLySER prototype can only fit a small (2X2)
DySER or a DySER with a 2-bit datapath. The previously
mentioned optimizations reduce the area required for DySER,
but are still insufficient to fit a full DySER prototype on
the Virtex-5 evaluation board. To mitigate this problem and
achieve a performance capable system, our strategy is to
remove the unused functional units and switches in DySER,
and perform FPGA synthesis for each configuration. Though
this means that the prototype does not retain reconfigurability,
it is still performance-equivalent and emulates the generic 8x8
DySER. This is because we keep the specialized datapath
intact, and we continue to issue dconfig instructions, even
though they do not actually reconfigure DySER.
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III. EVALUATION METHODOLOGY

a) Evaluation Flow Outline: Figure 4 gives an
overview of our evaluation method. First, we run annotated
and DySERized benchmarks on the three implementations of
SPARC-DySER: RTL-level Synopsys VCS simulation, FPGA,
and gem5-based cycle accurate simulator. To control the ex-
periment, we use VCS simulation to analyze the compiler,
performance, power/energy and area. We verified the VCS
performance numbers and the architecture events with FPGA
numbers and performance counter outputs. The gem5 simula-
tion is only used in Section IX for sensitivity analysis.

Second, the power, area and layout metrics are collected
with Synopsys Design Compiler and IC Compiler under VLSI
design flow. Third, the performance and area metrics are in
addition compared with other state-of-the-art processors. To
this end, we run the non-DySERized binaries on different
native platforms for performance comparison. The area of
other microprocessors are gathered from the literature.

Finally, we select some representative benchmarks in
the Parboil [51] suite, throughput kernels from [58], and
SPECINT [62]. The Parboil and throughput kernels serve as
emerging workloads, and the SPEC benchmarks help us to
understand DySER’s effectiveness on “code in the wild” or
legacy code. The analysis metrics, measurements and bench-

marks used are summarized in Table I, and the state-of-
the-art processors we used for comparison are in Table II.
They represent a wide spectrum ranging from low-power to
high-performance processors and also from general purpose
to specialized architecture. Overall, our goal is to understand
the effectiveness of DySER’s three driving principles through
quantitative analysis.

b) Role of the FPGA: We elaborate on the role of
the FPGA and what it means for performance evaluation
on an FPGA. Like any FPGA, ours runs at a much lower
frequency than ASIC (50 MHz vs. GHz and higher for the
comparison platforms). So our goal in developing the FPGA
is to demonstrate that the software runs end to end, that all of
the microarchitecture pieces are modeled correctly, to create
an emulation platform for running long workloads which aids
compiler development. Our performance comparison use cycle
counts instead of execution time in seconds for this reason. In
all cases, we checked our workloads for correctness by running
on our FPGA and comparing the outputs produced. An FPGA
prototype by itself is not useful for power measurements.
Instead we use VCS simulation with activity from benchmarks
for power estimation.

Since our goal is to specifically isolate individual mi-
croarchitecture performance sources and bottlenecks, in this
paper we report data obtained from VCS simulation instead



Benchmarks Parboil [51], two throughput kernels, and SPECINT [62].
Metrics Performance, energy and power.
Performance
Measurements Dynamic instruction counts, cycle counts, and µarch. events.

Energy
Measurements

VLSI-based Power (55nm standard-cell library) from Synopsys
Power Compiler, annotated with SAIF file.
Watts from Watts-up meter for native platforms.

Area
Measurements

Area from Synopsys Design Compiler and IC Compiler in
32nm standard-cell library1

TABLE I. METRICS AND MEASUREMENTS

Cortex-A8 Cortex-A9 Cortex-A15 Ivy Bridge GPU(Tesla)
Proc. OMAP4430 OMAP3530 Exynos 5 i7-3770k NVS 295
Freq. 0.6GHz 1GHz 1.7GHz 3.5GHz 540MHz
Board Begalboard Pandaboard Arndaleboard Desktop Desktop

TABLE II. SUMMARY OF THE NATIVE PLATFORMS

of reporting coarse-grained performance from the FPGA. This
does not mean that we are not evaluating the FPGA - it is
simply stating that for particular fine-grained measurements to
analyze microarchitecture events, VCS cycle traces are easier.
By definition, our FPGA execution is simply an accelerated
execution of VCS simulation.

IV. COMPILER ANALYSIS

To show that the DySER compiler can exploit the frequent
specializable regions (the first DySER principle), we describe
the compiler generated regions, and compare the performance
of the compiler generated code with the scalar and with the
hand DySERized code. We first focus on the emerging work-
loads and conclude this section describing the generality of the
current compiler implementation by compiling SPECINT for
DySER. In the remainder of the paper, the term ”DyVec” refers
to vectorized DySER codes and the term ”DySER” refers to
unvectorized codes.

A. Benchmark Characterization

Table III shows the characterization of the most frequently
executing regions as determined by the compiler: on average,

1Because of the lack of 55nm back-end technology library
Benchmark Scalar DyAccess DyOps DyVec DyVec

Access Ops
fft 58 48 10 17 20
kmeans 43 33 12 24 24
mm 13 13 2 5 16
mriq 24 21 10 14 20
spmv 45 37 8 37 8
stencil 34 27 7 5 14
tpacf 40 30 29 23 29
conv 133 150 16 68 16
radar 20 18 6 8 24
Average 45.6 41.9 11.1 22.3 19

Scalar - # instr. in region, DyAccess- # instr. in access component
DyOps - # ops. in DySER, DyVec Access - # instr. after vectorized
DyVec Ops - # operations in DySER after vectorized

TABLE III. CHARACTERIZATION OF TOP REGIONS

Benchmark Scalar DyAccess DyOps CFG shape
401.bzip2 21 19 9 Mult-exit
429.mcf 56 61 10 Ctrl-dep-mem
456.hmmer 106 110 7 Ctrl-dep-mem
462.libquantum 16 19 5 Ctrl-dep-mem
464.h264ref 9 9 0 Mult-exit
473.astar 224 224 0 Mult-exit

TABLE IV. CHARACTERIZATION OF TOP REGIONS: SPECINT
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Fig. 5. Compiler Performance

specialization regions are of length 45 instructions. Of those,
the compiler can offload 11 instructions to DySER with an
average of 8 communication instructions. With vectorization
(DyVec), these communication instructions are amortized and
on average 48% of code is off-loaded to DySER.

Finding 1: The DySER compiler can extract frequently
executed specializable regions.

B. Compiler Performance and Bottlenecks

Figure 5 compares the speedup (in RTL-level simulation)
of the compiler and hand DySERized code over the scalar
baseline. The autoVec and handVec shows the compiler
(auto) vectorized and hand vectorized performance. On av-
erage, compiler generated code performs 1.9× faster than the
scalar version. With vectorization, the geometric mean speedup
of the DySERized code is 3× over the scalar code.

Compared to compiler DySERized code, hand DySERized
fft, mm, stencil and tpacf shows significantly better
speedup. For conv, the compiler generated code actually per-
forms better than the manual version because the hand DySER-
ized code inadvertently created register pressure, causing more
registers spilling than necessary. Overall, the major limitation
in the DySER compiler compared to hand DySERization is
the lack of support for software-pipelining.

Finding 2: The DySER compiler can exploit benchmark
characteristics and generate binaries which execute 3× faster
than the scalar version.

Finding 3: On average, compiler generated code performs
within 50% of the hand optimized code and reduces the number
of dynamic instructions with vectorization.

C. Compiler Generality

To understand DySER’s effectiveness on legacy codes, we
analyzed the SPECINT benchmarks compiled by our compiler.

On a positive note, our compiler produces correct code
for all benchmarks and most times finds large specializable
regions. However, all of them report slowdowns. We discuss
the reasons here. Table IV shows code characteristics produced
by our compiler (this data is for the dominant function in
the benchmark and is representative of overall behavior). For
most cases, the candidate regions are quite large. However,
the problem is that the compiler is unable to off-load much
to DySER - the DyOps are in single digits, and excess
communication instructions create slowdowns.

Overall, these legacy codes have significantly more irregu-
lar control-flow graph shapes interacting with memory accesses
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that are not amenable to our current compiler’s heuristics.
Another reason is an artifact of how LLVM operates—it
sometimes creates internal arbitrary precision integers and
uses structures directly. This requires sophisticated analysis
to be correctly lowered into DySER, which we have not
yet implemented. Figure 6 shows the shapes of control flow
that are the source of the slowdown and Table IV shows
the characterization of selected SPEC benchmarks. In brief,
our DySER compiler does not offload the control instructions
to DySER because of few control-flow patterns such as the
control dependent memory operations (Ctrl-dep-mem) and
multiple exit blocks (Mult-exit).

a) Control dependent memory ops and multiple exits:
The current implementation of the compiler schedules all
control instructions that have dependent loads, stores or region
exit branches into the main processor pipeline along with
their backward slices. This limits the number of DySERizable
instructions for the two control flow graph shapes shown in
Figure 6(a) and 6(b), the control-dependent memory operations
and the exit branches. One solution is to use finer-granularity
control heuristics that schedule the computation of control
instructions to DySER, and only schedule the first branch in-
struction before the memory operations in the main processor.

b) Multiple small loops:: When a region has multiple
small inner loops as shown in Figure 6(c), our compiler treats
each loop as a region. To eliminate the need to switch configu-
rations between the loops, it could either schedule computation
from multiple small loops to the same configuration, or it could
coalesce the inner loops, creating a larger computation region
for DySER.

Finding 4: The DySER compiler finds acceleratable regions
even on highly irregular legacy codes. However, our DySER
implementation cannot accelerate specific irregular patterns
such as control-flow dependent memory operations.

V. PERFORMANCE ANALYSIS

This section quantitatively shows the second DySER prin-
ciple: DySER can dynamically specialize and accelerate fre-
quent regions in a program. For this purpose, we examine
the performance of SPARC-DySER in three perspectives: i)
the overall performance compared with other state-of-the-art
processors, ii) the source of the performance, and iii) the
bottlenecks. To eliminate the aforementioned compiler effects,
in this section (and all remaining sections) we use hand
DySERized benchmarks for evaluation.

A. Performance Comparison

Figure 7 shows the overall speedup over the baseline
(OpenSPARC T1) in terms of cycle counts. We classify the
processors into two categories: low-power processors and
high performance processors. Among low-power processors,
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SPARC-DySER is slightly behind the Cortex A9, but outper-
forms the Cortex A8 on average. This is an important result,
as the A8 is a sophisticated, dual issue in-order processor.
SPARC-DySER and other low-power processors are far behind
(more than 10×) the performance of high-performance pro-
cessors. GPU acceleration exhibits extraordinary performance
in certain benchmarks because the scalar version and the
accelerator version use very different algorithms to exploit
GPU memory. It is shown for reference, and we did not further
analyze and modify the GPU programs.

Finding 5: Equipped with DySER, a single-issue in-order
OpenSPARC processor can surpass dual-issue in-order A8,
and becomes comparable to a dual-issue out-of-order A9 in
performance. Dynamic specialization can energy efficiently
provide performance benefits of out-of-order and multi-issue
execution.

B. Performance Sources & Bottlenecks

Figure 8 summarizes our observations in the selected
Parboil benchmarks and throughput kernels. First, the his-
togram reports the percentage of time that a given number
of FUs are concurrently activated. The unvectorized version
frequently has 2 FUs activated in parallel, and the DyVec
has a wider distribution of parallel activated FUs (from 3
to 8). Second, the table in Figure 8 shows the maximum
concurrent activated FUs observed during execution. Except
spmv and radar, most benchmarks could activate more than
40% of the total functional units in parallel. From the above,
the major source of speedup is DySER’s ability to extract
more ILP than the 1-issue SPARC baseline processor. Also,
we observed low average/maximum utilization of DySER’s
functional units. Figure 9 explains this trend, by categorizing
the state of DySER functional unit into: i) Wait-Processor,
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benchmarks fft km mm mriq spmv stencil tpacf conv radar
Stall % 11.32 0 4.50 9.74 0 18.34 2.59 10.31 7.30

Stall % w/ Vec 4.59 3.02 7.94 1.14 0 7.92 5.65 23.21 0

TABLE V. PERCENTAGE OF STALLS ATTRIBUTABLE TO DYSER

Benchmarks astar bzip2 h264ref hmmer libquantum mcf
Speedup 1.01 1.00 0.97 1.11 0.75 1.02
TABLE VI. DYSER CHALLENGE BENCHMARKS: SPEC

which means the functional unit is stalling because at least
one of its input data is not fetched by processor pipeline,
ii) Wait-Fabric, which means the functional unit is waiting
for switches to pass the input data, and iii) Compute, which
means it is computing. We observed that the 1-issue in-order
SPARC processor is a major bottleneck because of the low
memory access performance. When executing the memory
access component of the specialized region, the data delivery
rate is considerably low, such that DySER is idling and waiting
for the data from processor. Furthermore, DySER cannot
pipeline iterations because of lacking in data. The functional
units often wait for full delay from input to itself, instead of the
delay from previous functional unit in the case of pipelining.

The last potential bottleneck comes from the interaction
between DySER and the processor pipeline. Table V shows
the stall statistics of the SPARC-DySER pipeline. The second
and third row shows the stalling ratio in execution. We list the
reasons for stalling behavior below:

• fft, mriq, stencil, and radar: If the
DySER code uses deep vectorization (where multiple
instances become pipelined), less stalling is expected
because the pipeline stalls due to DySER computation
latency are amortized across multiple invocations.

• kmeans, mm, tpacf, and conv: If the
DySER code uses wide vectorization (where each
instance is not pipelined), the computation time
cannot be hidden by the long and not-pipelined load
latency in OpenSPARC. The processor pipeline now
perceives a higher DySER latency, which results in
higher stalling time.

Finding 6: DySER provides performance though parallel
computation. The data it computes, however, is fetched from
the host processor, whose performance is a major bottleneck
to DySER.

C. DySER challenge benchmarks: SPEC

In this section, we describe the SPEC benchmarks alone
and discuss the performance sources and bottlenecks. First,
Table VI shows the overall speedup (slowdown) of SPEC

bench. astar bzip2 h264ref hmmer libquantum mcf
DySER 1 2 1 1 1 1

Total 8 5 6 14 6 2
TABLE VII. MAXIMUM OF CONCURRENT ACTIVE FUS: SPEC

benchmarks accelerated with DySER. Similar to the compiler
analysis, the SPEC benchmarks reports negligible speedup
over the OpenSPARC baseline with our hand-DySERized
codes. Figure VII also shows that the FU activation maximum
of our SPECINT implementation is only 1-2. We characterize
the reasons as follows:

• Control-flow: Because of the lack of the conditional
DySER access instructions (conditional DySER load
and stores) in our prototype, more instructions have
to be used in the memory access component to check
the validity of DySER generated values (astar and
libquantum). Also, bzip2 has significant control-
flow, and hence the DySER FU utilization is low.

• Loop carried dependence: hmmer has loop-carried
dependence such that our DySER prototype cannot un-
roll loops and create larger computation components.

• Small computation component: h264ref and mcf’s
frequent executed region has much more memory
operations than computation.

Finding 7: DySER provides negligible benefit on programs
with low computation to memory ratio and irregularity. The
current DySER implementation lacks a conditional interface
to accelerate control-heavy programs.

VI. POWER AND ENERGY ANALYSIS

In this section, we only show the results for se-
lected throughput kernels and Parboil benchmarks, since our
SPECINT code implementation cannot offload much work
onto DySER, as stated in the performance analysis. The goal
of this section is to quantify the second principle from a
power/energy perspective.

A. Overall Energy and Power

Figure 10 shows the normalized energy of SPARC-DySER
over the OpenSPARC baseline, per benchmark, based on cycle
counts and the Synopsys power report. On average, DySER
offers 2× better energy consumption and DyVec can achieve
4× energy improvement. Figure 11 shows the per-benchmark
power consumption. While the scalar code consumes 4 Watts
on average, SPARC-DySER accelerated code consumes be-
tween 5 and 6 watts. DySER itself contributes 200mW.
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Fig. 11. SPARC-DySER Power Breakdown

Finding 8: DySER’s dynamic specialization provides en-
ergy efficiency.

B. Energy/Power Sources & Bottlenecks: Throughput Kernels

Figure 11 also shows the breakdown of power sources for
throughput kernels, where the components are: ifu (instruction
fetch unit including I$), lsu (load-store unit including D$),
other (remainder of pipeline, including execution units), and
dyser (DySER accelerator power). The three bars for each
benchmark are the original code, unvectorized DySER code,
and vectorized DySER code. From the breakdown, we can
observe that DySER (which consumes around 200 mW) is not
the major source of power consumption compared to other
components. Most of power comes from memory accesses in
the lsu and ifu, though this might be partly attributable to the
under-optimization of these units in our synthesis tool. This
lsu and ifu power increases can be explained by examining
the actual IPC in Table VIII (the real instructions issued per
cycle, in contrast to effective IPC based on scalar instructions).
If more instructions are issued per cycle, we naturally consume
more power in the instruction fetch and load store units.
Also, since we need more DySER instructions to communicate
data in the non-vectorized versions, we observe higher power
consumption for DySER compared to DyVec.

Finding 9: The major source of energy improvement is
the speedup. SPARC-DySER consumes slightly more power
because it executes more instructions in a shorter time period.
DySER itself is not a major factor in the power consumption.

VII. AREA ANALYSIS

In this section, we compare the area of SPARC-DySER
to commercial processors. Through the analysis, we evaluate
the third principle that DySER can be tightly integrated into a
processor pipeline with negligible complexity.

Figure 12 shows the hierarchical view of the SPARC-
DySER layout with the Synopsys 32nm generic library. For

bench. fft km mm mriq spmv stencil tpacf conv radar gm
DySER 0.31 0.20 0.25 0.15 0.10 0.26 0.41 0.46 0.19 0.23
DyVec 0.18 0.12 0.09 0.11 0.09 0.24 0.23 0.50 0.12 0.16

TABLE VIII. SPARC-DYSER ACTUAL IPC
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SPU

TLU

MUL

DySER

FFU

Fig. 12. SPARC-DySER Layout

this synthesis we used RAM blackboxes based on area esti-
mates from CACTI. The SPARC-DySER core occupies 3.09
mm2 and DySER occupies about 8% of the area. The wiring
overhead is 44% excluding the SRAMs (this is on the higher
side but is expected because UltraSPARC’s register files are
implemented with flip-flops and DySER routers introduce
wiring overheads). Within DySER, the internal breakdown is
70% functional units and switch fabric, and 15% each for input
and output interface.

We show the comparison of core areas in Figure 13. From
die photos [1], Intel Atom Bonnell core occupies around
9mm2 at 45 nm, AMD Bobcat core occupies 5mm2 at 40nm,
and ARM Cortex A9 occupies 3.25mm2 and 2.45mm2 for
speed and power optimized versions at 40nm. The comparison
shows that the SPARC-DySER is relatively larger in area,
and this because of i) the physical implementation is under-
optimized, ii) the logical implementation is aimed at FPGA
synthesis instead of a low-power VLSI chip, and iii) our
functional-unit modules are inefficient. For DySER itself, the
simple vector interface can also be improved for lower area.

Finding 10: A SPARC-DySER core occupies 3mm2 in
32nm, and DySER itself occupies around 8% of the total area.
SPARC-DySER and DySER itself can be further improved by
physical-design optimizations in size.

VIII. RELATED WORK

Using specialized architectural designs to improve perfor-
mance and energy has been an active area of research for

Intel Atom
Bonnell
9mm 
@45nm

(not in actual shape and width/height ratio)

AMD Bobcat 5mm @40nm

A9 Area-opt:
2.45mm  @40nm

2

2

2

2

DySER:
0.4mm2

SPARC-DySER: 3.00mm
                      @32nm

Fig. 13. Architecture Comparison: Area



decades. We discuss below architecture and compiler works
related to DySER.

A. Hardware

One of the closest works to DySER from the classical
era of supercomputing is the Burroughs Scientific Processor
(BSP) [39]. BSP uses highly specialized arithmetic elements
that are fully pipelined to accelerate vectorized FORTRAN
code. The evolution of three important insights from BSP
leads to the DySER architecture. First, to achieve generality,
both BSP and DySER utilize compiler support to generate
configurations that map computations to an execution sub-
strate. DySER further expands the flexibility and efficiency
by introducing a circuit-switched network in the execution
substrate. This improvement needs several additional support-
ing mechanisms in the architecture such as flow control and
reconfigurability. Second, both BSP and DySER identify the
critical role of intermediate value storage for performance
and efficiency. The arithmetic elements in the BSP have
dedicated register files which are not part of the architectural
state. Unlike this “centralized” design, which is not energy
efficient, DySER provides distributed storage in its network
using pipeline registers. Third, to generate useful code, the
BSP compiler maps vectorized FORTRAN code to a set of
prebuilt templates called vector forms, which in turn have
an efficient mapping to the pipelined arithmetic elements. In
contrast, DySER uses a co-designed compiler that can identify
arbitrary code-regions and map them to DySER’s hardware
substrate. A final difference is in the implementation. While
the BSP spends much effort on building a fast storage system
(register, I/O, special memory), DySER uses a conventional
core for efficient data management to achieve the same goal.

We broadly classify the related work from the recent
literature into four categories: application specific accelerators,
coarse grain reconfigurable accelerators, tiled architectures,
and data parallel architectures. Table IX lists the related works
and their characteristics compared to DySER. Column 6 of
Table IX lists the characteristics of DySER. Govindaraju [23]
describes the related work in detail which we summarize
here in the interest of space. The design of DySER achieves
three goals simultaneously: generality in software, low design
complexity in hardware, and efficiency. Basically, it strives
to provide efficiency on diverse sets of workloads written in
the traditional programming model without increasing design
complexity.

Recent Proposals In the last few years, several works have
been published on using specialized hardware to achieve
energy efficiency or performance with an execution model
similar to DySER. Examples include HARP [69], NPU [16],
BERET [30], Convolution engine [55], Index Traversal Ac-
celeration [37], Q100 [70], LEAP [32] and SGMF [67]. We
describe the connections and influence of DySER in their
principles.

HARP [69] seeks to improve the throughput and energy
efficiency of large scale data partitioning, especially range
partitioning, with a domain specific accelerator and stream
buffers. Similar to DySER decoupled access/execute architec-
ture, the HARP accelerator is decoupled from the rest of the
microarchitecture with an input and an output stream buffer.

Like DySER, ISA extensions are used to manage data transfers
from memory to the stream buffers. The accelerator pulls its
data from the input stream buffer and delivers its output to the
output stream buffer. We can configure DySER to partition the
data and use its flexible vector interface to achieve efficiency
similar to HARP. However, HARP’s dedicated data path to
memory, dedicated stream buffers and dedicated hardware is
more energy efficient than DySER’s general purpose circuit
switched interconnect.

NPU [16] proposes an accelerator, called the Neural Pro-
cessing Unit, which accelerates applications with inexact com-
putation. Many modern applications such as image rendering,
signal processing, augmented reality, and data mining have
approximatable computation, i.e., they can tolerate a certain
degree of error in their outputs. The NPU approach exploits
these characteristics by replacing a large code region with
an invocation of neural network in the NPU. Similar to a
DySER invocation, the main processor communicates with
the NPU through input and output FIFOs. Unlike DySER,
which creates specialized data paths for the exact computation,
NPU accelerates the learned model of the neural network with
a specialized sigmoid functional unit and dedicated constant
broadcast network. DySER can be adapted to accelerate the
neural network model instead of the computation to mimic
NPU. However, NPU’s dedicated sigmoid functional unit and
constant broadcast network provide more efficient support for
computing the neural network than the resources available in
DySER.

BERET [30] specializes only code-regions with repeated
control-flow traces using its subgraph execution blocks (SEB),
which are customizable cluster of functional units. Lack of
divergent control-flow support limits the number of potential
code-regions that can mapped to SEBs. DySER’s ability to map
control-flow natively helps more code regions to be accelerated
with DySER. BERET is integrated with an inorder processor
as a coprocessor and does not lend itself to integrate with
an out-of-order processor, as it does not have mechanisms
to rollback misspeculated computation. Also, implementing
SEBs and integrating them to an existing microarchitecture
pipeline is hard, since the BERET architecture allows memory
operations to be performed from SEBs themselves. In contrast,
DySER’s decoupled access execute model makes it easier to
integrate with an out-of-order processor.

The convolution engine [55] targets image processing ker-
nels and stencil computations by exploiting the key data flow
patterns in the kernels. It uses custom load/store units, custom
shift registers, map and reduce logic, a complex graph fusion
unit, and custom SIMD registers to accelerate convolution
and other filter kernels. The programming for the convolution
engine is done through compiler specific intrinsics unlike
DySER. Since convolution type kernels have more fine grain
data level parallelism, we can specialize these kernels with
DySER and use its vectorized instruction to achieve high
throughput and efficiency.

Meet the Walkers [37] presents an on-chip accelerator,
called Widx, for indexing operations in big data analytics.
Widx uses a set of programmable hardware units to achieve
high performance by accessing multiple hash buckets concur-
rently and hashing input keys in advance, removing hashing
from the critical path. Widx itself is implemented with a



Application Spe-
cific accelerators

CGRAs Tiled DLP DySER

[41], [71], [31],
[50], [20], [48]

[15], [33], [18],
[60], [73], [11],
[13], [12], [42],
[10], [45], [43],
[14].

[64], [63], [7] [61], [21], [46],
[38], [40], [56],
[59], [52]

[26], [28], [24],
[25], [5], [4]

Software

Generality Application spe-
cific

Loop specific General Purpose Loop specific General Purpose

Scope Application Inner Loop Full Kernels/ Loops Code Regions

Flexibility None Limited Yes Limited Yes

Hardware

Overall
Complexity

High Medium High Low Low

Integration Dedicated coprocessor/ in-
core

Dedicated coprocessor/ in-
core

incore

Area Large Large/ Small Large Large/ Medium Medium

Performance High Low Medium High/ Medium Medium

Mechanisms

ISA New Co-designed New New/ Extension Extension

Compute
Elements

Custom Logic Functional Units Cores, RF,
buffers

SIMD Units FU/Switches

Network Custom Custom Packet Switch Custom Circuit Switch
TABLE IX. RELATED WORK ON SPECIALIZED ARCHITECTURE

custom RISC processor that supports fused instructions to
accelerate hash functions. The accelerator is programmed with
a limited subset of C, without any dynamic memory allocation,
no stack and with one output. DySER can specialize the in-
dexing operations using its substrate. However, the “Walkers”
architecture achieves high throughout by decoupling hashing
and hash table walking with a dedicated buffer. Without this
dedicated buffer, the DySER architecture stores and loads from
memory and consumes memory bandwidth, which may lead to
loss of efficiency. As with other domain specific accelerators,
the applicability of Walkers outside its chosen domain is
limited. In contrast, DySER accelerates a variety of workloads.

The Q100 [70] architecture accelerates database processing
tasks with a collection of heterogeneous ASIC tiles that can
efficiently perform database primitives like sort and scan. As
described by Govindaraju [23], DySER can specialize database
primitives and achieve significant energy efficiency. Compared
to Q100, which needs separate ASIC tiles for each primitive,
DySER can dynamically specialize for each primitive and
hence be more area efficient. However, for each specific
primitive, Q100 is more energy efficient than DySER because
DySER uses its general purpose circuit-switched network.

B. Compiler

In order to achieve high efficiency with coarse grain
reconfigurable architectures, a good compiler is essential to
manage and exploit the available heterogeneous computing
resources available. In addition to being a CGRA compiler,
the DySER compiler also borrows vectorization techniques to
generate DySER vector instructions to exploit fine grain data

level parallelism. We refer the reader to Govindaraju [23] for
details and discuss the most relevant works below.

The ispc compiler tries to solve the challenges with SIMD
by adopting a new language semantics and trying to overcome
compiler problems [53], whereas the DySER approach oper-
ates on C/C++ source code and makes the architecture more
flexible. Intel Xeon Phi [59], a recent SIMD architecture, and
its compiler help programmers tackle the challenges of SIMD
through algorithmic changes such as struct-of-arrays to array-
of-structs, blocking, and SIMD friendly algorithms, compiler
transformations such as parallelization, vectorization, and with
scatter/gather hardware support [57]. However, to successfully
use them, these changes require heavy programmer interven-
tion and application specific knowledge. The recent HELIX-
RC [8] framework is tangentially related to DySER. In short
HELIX-RC goes after “irregular” programs with ideas inspired
by thread-level-speculation. DySER goes after more “regular”
programs with ideas inspired by decoupled access execute and
dataflow.

IX. LESSONS LEARNED

A. Breaking the Frontier

Using the analysis of SPARC-DySER’s performance, en-
ergy, and area, we revisit the performance-energy frontier and
position SPARC-DySER. Figure 14 shows SPARC-DySER
and other state-of-the-art processors, as well as two simulated
OOO-DySER integration points. In this comparison, we take
the frequency and the technology node of each processor into
account, showing the energy in millijoules and instructions
per second. (DySER and DyVEC use scalar instruction count).
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The DyVec point represents SPARC-DySER with the vector
interface, and the accelerator benefit vector of DySER is shown
in dotted lines that connect T1 and DyVec. From the figure,
DySER successfully brings down the energy cost and improves
the performance of the OpenSPARC core. The DySER benefit
vector tuple in (IPS,mJ) is (0.34, 13.3).

In our Synopsys tools, the OpenSPARC T1 consumes much
more power than an ARM-processor. This may be because
of the technology library we used, and also our physical
implementation is not optimized. As as result, we show two
model-based points: T1-opt and DyVec-opt. These two points
represent the projected energy (the performance remains the
same) of T1 and SPARC-DySER if the OpenSPARC core
consumes the same power as A9. Recall A9 is out-of-order, so
this is a conservative projection, and this provides a conserva-
tive view of SPARC-DySER’s energy/performance behavior.
Overall, the energy of DyVEC is above both A8 and A9
even though the performance of DyVEC is in-between. For
the projected points DyVEC-opt, SPARC-DySER can achieve
slightly lower energy than A9, with lower performance.

From the microarchitecture evaluation, we have observed
that the OpenSPARC processor pipeline is the major perfor-
mance bottleneck. To understand DySER’s suitability for next
generation processors, we show DySER’s benefit vector with
out-of-order processors on the energy/performance frontier in
Figure 14. We use the GEM5 simulator to simulate DySER
with 2-wide and 4-wide out-of-order processors. The graph
elicits three observations: First, the 4-wide OOO processor has
around 2× better performance and 25% lower energy than the
2-wide. Second, DySER improves the performance and energy
of the 4-wide processor more than the 2-wide, because DySER
is more effective when it can be fed data faster.

Overall, we conclude that DySER integration is one ap-
proach that can increase energy efficiency and performance,
and could be considered when developing the next generation
of an architecture.

B. Prototype Evaluation

The findings of some other prototype evaluations are
summarized in Table X. Although quantitative results have
sometimes been lower in early stage results because of features
eliminated from the prototype compared to design proposals,
the studies have lasting impact by establishing the fundamental
merit of their underlying principles. For DySER, the early
results showed 2.1× speedup across workloads and 10% to
50% on SPECINT. Our current prototyping results show com-
pilation for SPECINT is quite challenging, but establish 6×

Work Quantitative results Demonstrated
insights

DySER

Early-stage: 2.1 × AVG on workloads [26]
Prototype: improvement on irregular work-
loads requires further compiler work, 3× com-
piler, 6.2× hand,on data-parallel workloads

Dynamic
specialization

TRIPS ◦ 1 IPC in most SPEC benchmarks
◦ best case 6.51 [17]

Dataflow
efficiency

RAW ◦ up to 10× on ILP workloads
◦ up to 100× on stream workloads [65]

Tiled
architecture

Wave
Scalar

◦ 0.8 to 1.6 AIPC on SPEC
◦ 10 to 120 AIPC with mutli-threading [54]

Dataflow
efficiency

Imagine IPC from 17 to 40, GFLOPS from 1.3 to 7.3 [3] Streaming
TABLE X. SUMMARY OF THE PERFORMANCE EVALUATION WORKS

manually-optimized and 3× compiler-optimized performance
improvements on emerging workloads. Qualitatively, the key
features between the early-stage design that proved overly
complex for the SPARC-DySER prototype are: i) performing
speculative loads and stores, and ii) address aliasing within
DySER. To some extent, the simple design of OpenSPARC
eliminates the potential benefit of these features.

Most prototyping tasks, including RTL implementation,
verification, FPGA mapping, compiler implementation, and
hand-DySERing code are proved manageable, except for de-
bugging the full system FPGA which was excessively tedious.
Reflecting on our experiences, we believe two main things
would help future accelerator prototype work:

• High-performance Open-source Processor: It would be
advantageous to have open-source implementations of
high-performance baseline processors reflecting state-
of-the-art designs. Among what is available, Open-
RISC [49] and Fabscalar [9] have low performance
(OpenRISC’s average IPC is 0.2) — and this could
impede the prototyping of accelerators.

• Compiler Transformation Framework: Though it was
relatively straightforward to design compiler trans-
formations and heuristics, the most time consum-
ing part was in implementation. A tool that took a
declarative specification of compiler optimizations and
manifested actual compiler transformations could be
useful. From almost two decades ago, Sharlit [66] and
the Gospel [68] systems provided ideas along these
lines. Such frameworks, in a readily usable form, in
a production compiler like LLVM or GCC, would be
immensely useful for future prototyping works.

The most limiting component we observed in the DySER
execution model is the reliance on the processor pipeline
for providing data. This is true for both performance and
power. Therefore, future developments must be for DySER’s
data fetching and retrieval engine. The conventional proces-
sor has many sophisticated mechanisms to perform memory
access. Specializing these mechanisms for DySER would
bring further improvement on performance and energy. In all,
we think specialization is a promising solution to break the
energy/performance frontier.
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