
Efficient Execution of Memory Access Phases Using Dataflow Specialization

Chen-Han Ho Sung Jin Kim Karthikeyan Sankaralingam
University of Wisconsin-Madison

{chen-han,sung,karu}@cs.wisc.edu

Abstract
This paper identifies a new opportunity for improving the

efficiency of a processor core: memory access phases of pro-
grams. These are dynamic regions of programs where most
of the instructions are devoted to memory access or address
computation. These occur naturally in programs because of
workload properties, or when employing an in-core acceler-
ator, we get induced phases where the code execution on the
core is access code. We observe such code requires an OOO
core’s dataflow and dynamism to run fast and does not execute
well on an in-order processor. However, an OOO core con-
sumes much power, effectively increasing energy consumption
and reducing the energy efficiency of in-core accelerators.

We develop an execution model called memory access
dataflow (MAD) that encodes dataflow computation, event-
condition-action rules, and explicit actions. Using it we build
a specialized engine that provides an OOO core’s performance
but at a fraction of the power. Such an engine can serve as
a general way for any accelerator to execute its respective
induced phase, thus providing a common interface and im-
plementation for current and future accelerators. We have
designed and implemented MAD in RTL, and we demonstrate
its generality and flexibility by integration with four diverse
accelerators (SSE, DySER, NPU, and C-Cores). Our quantita-
tive results show, relative to in-order, 2-wide OOO, and 4-wide
OOO, MAD provides 2.4×, 1.4× and equivalent performance
respectively. It provides 0.8×, 0.6× and 0.4× lower energy.

1. Introduction
This paper is a specialization technique targeted at a prevalent
and growing category of program behavior: memory access
phases. A memory access phase is a dynamic portion of a
program where its instruction stream is predominantly for (as
a heuristic say 90%) memory accesses and address generation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ISCA ’15, June 13 - 17, 2015, Portland, OR, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3402-0/15/06$15.00
DOI: http://dx.doi.org/10.1145/2749469.2750390

...
for(int y = 0; y < srcImg.height; ++y)
 for(int x = 0; x < srcImg.width; ++x){
 p = srcImg.build3x3Window(x, y);
 NPU_SEND(p[0][0]);NPU_SEND(p[0][1]);
 NPU_SEND(p[0][2]);NPU_SEND(p[1][0]);
 NPU_SEND(p[1][1]);NPU_SEND(p[1][2]);
 NPU_SEND(p[2][0]);NPU_SEND(p[2][1]);
 NPU_SEND(p[2][2]);NPU_RECEIVE(pixel);
 dstImg.setPixel(x, y, pixel);
 }
}
...
...
for (f=0; f<FSIZE; f+=4) {
 __m128 xmm_in_r = _mm_loadu_ps(in_r+p+f);
 __m128 xmm_in_i = _mm_loadu_ps(in_i+p+f);
 __m128 xmm_mul_r =
 _mm_mul_ps(xmm_in_r, xmm_coef);
 __m128 xmm_mul_i =
 _mm_mul_ps(xmm_in_i, xmm_coef);
 accum_r = _mm_add_ps(xmm_accum_r,
 _mm_sub_ps(xmm_mul_r, xmm_mul_i));
 accum_i = _mm_add_ps(xmm_accum_i,
 _mm_add_ps(xmm_mul_r, xmm_mul_i));
}
...

...
for(i=0; i<8; ++i) {
 for(j=0; j<8; ++j) {
 float sum=0;
 for(k=0; k<8; ++k) {
 sum+=matAT[i*matAcol+k]*
 matB[j*matBrow+k];
 }
 matCT[i*matBcol+j]+=sum;
 }
}
...

...
for (i=0;i<v_size;++i){
 A[K[i]] += V[i];
}
...

Natural memory
access phase

Execution
(Natural)

Execution
(Induced)

Induced memory
access phase

DySER (mm)

Aggregation

NPU (sobel)

SSE (radar)

Access
phase

Access
phase

Computation
on accel.

General
phase

General
phase

ld/send

st/recv

D$

D$

Accel.

Core

Host
core

Figure 1: Natural and Induced Memory access phases

In compiler terms, the load- and store- back-slice contribute
to 90% of dynamic instructions.

Observation We observe that memory access phases are
naturally prevalent in many applications. Profiling the
SPECINT2006 and Mediabench suite shows many such
phases; Table 1 explains their qualitative roles. We call
these natural memory access phases or simply natural-phases
through the rest of this paper and they are sketched at the top
of Figure 1. A second (and rapidly growing) category are
program phases that include code that executes concurrently
on an in-core accelerator and processor core. Here the code
running on the main processor feeds values to the accelerator.
Examples include code running with NPU [25], Convolution

bzip2 jpg2kenc DySER
(spmv)

SSE
(spmv)

NPU
(jpeg)

gm
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

IP
C (miss rate:

0.08->0.18)

Natural phases Induced phases w/ accel.

in-order OOO2 OOO4 OOO:MLP OOO:MLP+ILP

Figure 2: Performance on natural and induced phases
Engine [56], and DySER [32]. On compiler-generated or hand-
written SSE/AVX code regions, the non-compute instructions
form such a phase. We call these phases induced memory
access phases (or induced-phases). Their characteristic of
memory access behavior is induced by offloading the com-
putation to an accelerator1. With more accelerators, there
will be more and more induced phases increasing the opportu-
nity for specializing the core itself for such phases. We first
make the overarching observation that many accelerators can
be viewed as executing under the decoupled access execute
paradigm [62].

Our analysis of these phases, leads us to the following
observations. The properties of natural and induced phases
are similar and present an opportunity. They commonly have
abundant instruction-level parallelism (ILP) and memory-level
parallelism (MLP - ability to issue far away memory accesses),
they have much dynamic behavior in the cache hits/misses,
they have some control-flow, and they commonly have a small
static-code footprint of 10 to 300 instructions.

Figure 2 presents quantitative measurements that support
these observations by showing two representative natural
phases and three induced phases on three different acceler-
ators, and geometric mean across our entire suite (details in
Section 6). We first compare performance on an in-order
machine to two realistic out-of-order machines (OOO2 and
OOO4). Across natural-phases and induced-phases, in-order
cores are 2× to 4× worse than realistic OOO counterparts.
While an OOO core with ILP, MLP, and dynamism tolerance
is useful, it comes at an exorbitant power cost. Compared to
the in-order core, OOO2 is almost a factor of three higher in
power, and an OOO4 is another factor of three. Because of this,
the energy improvement from very low-power accelerators like
DySER, NPU, and even SSE (which consume on the order
of 200 to 400 mWatts [32, 33, 25, 19]) is constrained by the
2-watt to 7-watt OOO core (details in Section 6.2). Integrat-
ing these to OOO cores provides, overall higher energy than
integrating them with an in-order core (Table 3 in Results).

To examine whether there is the opportunity to exceed the
performance of an OOO core, we look at two hypothetical
configurations which isolate the benefits of MLP alone (an

1Offloading computation to off-core accelerators makes induced-phases
more prominent in the rest of the original program - there are not yet that
many benchmarks/applications of this type. Hence we don’t quantitatively
consider this. Regardless our technique should work there as well.

Domain Benchmark
Suites

Examples

Database
Analytics

Database ker-
nels

Array aggregation(aggre), compare
records to keys and update re-
sults(filescan).

Media Pro-
cessing

MediaBench
[42]

Convert samples to the output
color space(djpeg), synthesis
filter(gsmdecode).

Irregular
Codes

SPECINT Block sort(bzip2), check the cost of
the arcs and update the results(mcf).

Accelerators
(DySER,
SSE,
C-Cores)

Parboil,
Rodinia,
Throughput-
Kernels

Fast Fourier Transform(fft), dense
linear algebra(kmeans), convolution
(conv, radar).

Accelerators
(NPU)

NPU bench-
marks [25]

Fast Fourier Transform(fft), Jpeg en-
coding (jpeg).

Table 1: Memory access regions
OOO8 with 64 cache ports) and MLP+ILP (64-wide issue
OOO with 64 cache ports). Examining the last two bars, we
see there is a potential for 1.5× improvement over an OOO4
and up to 4× in some cases.

Problem statement This paper investigates the question of
how to build a power efficient and high performance mecha-
nism for executing memory access phases. Such a mechanism
can serve as a general way for in-core accelerators to integrate
with high-performance or low-performance cores without com-
promising performance yet running at low power by turning
off the core during such phases.

Lessons from OOO An OOO core does the following for
high performance: it dynamically unrolls the program, main-
tains it in the instruction window, repeatedly extracts the
dataflow graph, and uses register renaming and a large physical
register file to maintain multiple copies of an instruction’s out-
put across its various dynamic instances. Abstracting away mi-
croarchitecture implementation details, an OOO core’s prim-
itives are: (1) dataflow computation of address and control
conditions using the extracted graph; (2) the outcome of these
few dataflow computation patterns create events inside the
core pipeline (like values returned from cache); and (3) based
on these events, it performs actions like moving data between
the register file and memory (and an accelerator on induced
phases). Dataflow computation extracts ILP and concurrent
events and actions exploits MLP and dynamism.

Overview Our execution model and hardware architecture
called Memory Access Dataflow (MAD), expresses the afore-
mentioned OOO core’s primitives actions using the concept of
event-condition-action (ECA) rules and named event queues
for storage. ECA rules are borrowed from the databases and
algebraic theory literature and comprise two parts: first it for-
mally state a set of conditions as a boolean function of a set
of events, and second a set of actions are triggered when the
function evaluates to true. The idea of ECA rules elegantly and
explicitly specifies the OOO core’s primitives in the MAD ISA.
To explain, named event queues store data values produced
or consumed in a access phase. A programmable hardware
substrate implements the conditions and triggering logic to

1

2

Access
phase
in MAD

compute

(off)

(off)

General
phase

configure
MAD

Compiler/
Binary
translator

64 event queues, 256 ECA rules,
32iALU+4Mul with config $ for 256 nodes
8 32-bit index buffers,
action table (SRAM) for 512 actions

host
bin

MAD
bin

Accel
bin

Program Host Processor

Host

Event Block:
Event Queues,
comparators,
ECA rule table

(uArch details in figure 6)

MAD HW

Action Block:
Priotity
decoder&
action table

Computation Block:
ALUs, Multipliers and
interconnect for
executing dataflow graph

Accelerator D$

Create
events

Match
rules Drive

action

Act on Bus

4

3

5 6

7

Figure 3: MAD Overview

M
A
D

M
A
D

D$

DySER

SSE

NPU

C-Cores

D$

DySER

SSE

NPU

C-Cores

Natural memory
access phase

Induced memory
access phase

(host
 off)

(host
 off)

In-order,
OOO2, OOO4

In-order,
OOO2, OOO4

D$

D$

or

Executed
in core
pipe

Executed
in core
pipe

Executed
in MAD

Executed
in MAD

or

Figure 4: Integrating MAD with Accelerators

initiate actions based on the event queues. A dataflow sub-
strate computes addresses and values that are deposited into
the queues.

Compared to an OOO, MAD extracts ILP by explicit
dataflow computation on the event queue’s values. It extracts
MLP and achieves dynamism tolerance by triggering actions
using ECA rules avoiding any instruction-by-instruction seri-
alization. It achieves power benefits over an OOO by avoiding
the overheads of dataflow extraction and per-instruction over-
heads of fetch, register renaming, and buffering.

Microarchitecture and Hardware implementation Our
hardware design comprises of three high-level blocks. Each
block is simple and with well defined roles as shown in Fig-
ure 3. The MAD hardware engine is integrated into a core
and interfaces with its load-store unit (LSU). The computation

block includes a dataflow computation substrate and produces
values and events. The Event block includes named event
queues using FIFOs, a programmable boolean logic array
which applies boolean functions on events to trigger actions,
and the rules on how to trigger actions based on the events.
The Action block includes an action look-up table and a de-
coder that asserts control signals on communication buses to
move values as defined by the actions. The dataflow compu-
tation substrate eliminates the need for repeated instruction
fetch and rediscovery of dataflow. The named event queues
explicitly maintain multiple temporally ordered values of vari-
ables instead of renaming as accomplished in an OOO using
register-renaming and a big physical register file. And finally,
instead of control signals and dependence/control stalls, ex-
plicitly specified actions are triggered by applying boolean
functions on the status of multiple event queues as and when
they get populated. There are no large or associative structures
like in an OOO. Our implementation occupies 0.93 mm2 in
55nm technology, consumes typically 700 mwatts, most of
which is address computation power.

Integration with accelerators and target systems with
MAD The MAD execution model and hardware can serve
as a general means for any accelerator to run its induced-phase
as shown in Figure 4 outlining four diverse accelerators. The
core is turned off with MAD taking on the role of core in these
phases. We emphasize that MAD is useful for both accelerator-
free cores and for the emerging class of chips which integrate
accelerators into cores. For natural phases (Figure 4 top-half),
a microprocessor vendor who has interest in workloads that
are memory intensive (database workloads for example) can
put MAD into the core. MAD is a lightweight and simpler
(less effective) alternative to an entire specialized database-
accelerator for example. For induced phases, the workload is
run on an accelerator with MAD integrated on the chip (Fig-
ure 4 bottom-half). MAD serves as the engine to feed memory
values to the accelerator turning off the host core.

It is instructive to consider whether sophisticated prefetch-
ing combined with a simple inorder core is sufficient. Our
results show the MAD engine is lower-power than an in-
order core. Furthermore MAD’s OOO capability provide it
linked-data-structure (LDS) prefetching and other irregular
prefetching-like benefits. Conceptually MAD can be viewed
as a sophisticated, programmable, yet very power-efficient
prefetcher that powers off the core.

Overview of execution Below, we describe an end-to-end
overview of MAD’s execution, revisting Figure 3, with a
generic accelerator that uses MAD to execute the induced
memory access phase. First, a compiler creates MAD regions
and encodes them in the program binary 1 . For induced
phases, the compiler uses the accelerator compiler’s output,
while on natural phases it works on the IR. At run-time, upon
entering a memory access phase, the core first configures
MAD by sending it configuration information created by the

compiler 2 . The core also sends initial events to start MAD
execution. The core is then turned off except for its load-
store unit and MAD (for natural phases), or MAD+accelerator
(for induced phases), that execute. The initial events trigger
the computations in the computation block 3 ; the execution
model of the computation block is pure static dataflow, which
means that whenever a ready data appears at the input queues
of the computation block, computation is triggered. We as-
sume any accelerator integrated with MAD has a similar inter-
face. Based on the outcome of the computation, a new set of
events are created in parallel and arrive at the event block 4 .
The event block applies boolean algebra on the events (as con-
figured for that region with Event-Condition-Action (ECA)
rules) to generate any actions which are delivered as action
indices to the action block 5 . The action block takes the
indices, selects the ones that could be issued in the current
cycle, and controls the data bus to move the data values to the
accelerator or between event queues 6 7 . When executing
natural-phases, actions are exclusively data movement be-
tween event queues and the core’s load-store unit. This entire
cycle repeats itself and stops when the end-of-program action
is triggered. At that point, the MAD hardware wakes up the
core and through memory passes architectural state changes.

Results We evaluate MAD on natural-phases in the
SPECINT2006 and MediaBench suite, and induced-phases of
four diverse accelerators (DySER, SSE, NPU, and C-cores).
Our results show MAD is a high-performance and energy
efficient access engine: providing almost same performance
as a 4-wide OOO while consuming 0.4× energy, or 2.4×
performance of an in-order, consuming 0.8× of its energy.

Paper organization Section 2 and Section 3 describes the
MAD ISA and microarchitecture. Section 4 describes how to
integrate MAD to a conventional core and other accelerators
to MAD, and Section 5 discusses some complex access sce-
narios to demonstrate its versatility. Section 6 presents results,
Section 7 discusses related work and Section 8 concludes.

2. ISA
The MAD ISA has two components: computations specified
using named targets, and events/actions specified using formal
event-condition-action rules. We define these formally and
explain with a running example in this section. The next
section shows these abstractions are a natural fit for an efficient
hardware implementation of memory access phases.

Preliminaries We use a pseudo code snippet for an induced-
phase with a hypothetical coarse-grained reconfigurable ar-
chitecture (CGRA) accelerator as our running example. For
the purpose of this discussion, the only relevant detail is the
CGRA uses a FIFO interface and decoupled access-execute to
receive/send values from the core and performs computation
on them. Figure 5(a) shows a pseudo memory access region,
which has a loop that sends the data in array A and B into
the CGRA. This pseudo program is re-written into a stylized

generic RISC ISA as shown in 5b. In this RISC ISA, the
base address of array A and B is mapped to register $r0 and
$r1; the CGRA interface port is mapped to acc0, acc1, and
acc2; and the induction variable i and iteration number n is
mapped to register $r2 and $r3. The RISC program contains
five instructions: two loads to the accelerator, one store to
the cache, a loop counter increment instruction and a branch.
This code could also be a natural memory access region if
the inner-loop was simply C[i] = A[i] + B[i]. Readers
uninterested in the formal description of MAD’s ISA can skip
ahead to an example (Section 2.3).

2.1. Encoding the Computations
A memory access region’s computation is specified using a
single dataflow graph2. The input of dataflow graph nodes
can be (1) region invariants which do not change during an
application region; (2) intermediate computation results of
simple operations; and (3) external dynamic inputs (like from
memory) which we call dataflow events. Region invariants are
encoded as invariant constants (similar to immediate values in
a RISC ISA), intermediates are encoded with node names, and
events are assigned to named event queues. These event queues
communicate values within an access phase between address-
generation/control instructions and memory, or values between
an induced-phase and off-loaded computation. MAD ISA
encoding is shown in Figure 5(c) encoded for our example’s
two load instructions, one store, and one addi for control
(induction variable), encoded as as N0, N1 and N3.

2.2. Event-Condition-Action in MAD
The concept of event-condition-action (ECA) is related to
production rules [11] and formalized in the active database
literature [26, 48, 64, 47] and used in other domains [55]. The
MAD ISA leverages the same concept to encode the dataflow
events and data-movement actions. Compared to VLIW ISAs,
this eliminates the scheduling complexity for the compiler and
the hardware. Compared to dataflow ISAs, this provides more
efficient and rich control-flow support. An ECA rule in the
MAD ISA follows traditional semantics and syntax:

on event if conditions do actions

The event defines when a rule has to be triggered; a trig-
gered rule examines the current state and matches it with the
condition; and actions are fired if the condition holds. Execut-
ing a rule may fire the action that in turn triggers another rule.
In the MAD ISA, there is an end of program rule that trig-
gers an action that finishes the MAD execution and gives the
control back to the host processor to continue the application.

Events The event in a MAD ECA rule is a combination of
dataflow primitive-events through event algebra [29, 7]. While
there are many common operators in a traditional event al-
gebra, the MAD ISA only adopts conjunction operator (∧),

2Recall from the definition of the access phase that this computation is
predominantly for address generation and related control-flow.

Base of A,B is mapped to r0, r1
Accelerator i/o port is mapped
to acc0,acc1 / acc2
i is mapped to r2
$ n is mapped to r3
.L0 accld $r0+$r2 -> $acc
 accld $r1+$r2 -> $acc1
 accst $acc2 -> $r0+$r2
 addi $r2, 1 -> $r2
 ble $r2, $r3 .L0

BaseA BaseB 1 n i

Event-Condition-Action Rules
on $eq0 if do ld,$eq0->$eq1
on $eq2̂ &eq3 if do st,$eq3->$eq2
on $eq4 if do ld,$eq4->$eq5
on $eq6^$eq8 if $eq8(true) do mv,$eq6->$eq7,$eq8->

(a)Pseudo Program (b)RISC ISA (d) uArch

(c)MAD ISA

for (i=0;i<n;i++){

 load2Acc(A[i], 0);

 load2Acc(B[i], 1);

 accStore(2,A[i]);

}

Program
counter
sequence Computation

Invariants

Data movement

Dataflow Graph Nodes
N0: $eq7 + base A -> $eq0,$eq2 #Addr A
N1: $eq7 + base B -> $eq4 #Addr B
N3: $eq7 + 1 -> $eq6 #i++
N4: $eq7 < n -> $eq8 #i<n
Base of A,B and n is pre-configured as invariant constants
Accel i/o is mapped to $eq1,$eq5 / $eq3
Addresses are mapped to DF output $eq0,$eq2,$eq4

+ + + <

i is mapped to $eq7(DF in), $eq6(DF out)

Action
Block

decoder

Action 0
Action 1
Action 2
Action 3

Arbiter

Action
Table

ECA Rule 2

ECA Rule 2

ECA Rule 1

ECA Rule 3

ECA Rule 2

ECA Rule 2

ECA Rule 1

ECA Rule 3

ECA Rule 2

ECA Rule 2

ECA Rule 1

ECA Rule 3

To/From Accelerator

To LSU

Computation
Block

Event
Block

Q
u
e
u
e

s
t
a
t
e
s

actions (bit vector)

Computation Block
I/O Event Queues

Accelerator
I/O Event Queues

ECA Rule 2

ECA Rule 2

ECA Rule 1

ECA Rule 3

Comparator
Array

ECA Rule
Table

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

Dataflow
event

Event Queue
Assignment

FU and
Switches

Figure 5: The MAD ISA and microarchitecture

which can be naturally implemented with AND gates in hard-
ware. A dataflow primitive-event is the arrival of data result-
ing from computation (computation block or accelerator) or
memory access. Named event queues hold primitive events
holding both the data and two pieces of state-information indi-
cating data arrived and branch condition. Event algebra for
event evaluation operates only on the data arrived state.

Conditions The conditions in a MAD ECA rule specify
additional states for the primitive triggering events that have
to be satisfied to drive an action. In the MAD ISA, this is used
to steer tasks based on conditional branches by specifying
conditions on the branch condition state in the event queues.
A MAD ECA rule may not need to examine the state of the
event; the primitive event itself fulfills the driving condition.
In such a case, the condition part of the rule is empty.

Actions The action part in a MAD ECA rule specifies data-
movement actions, which includes loads, stores, or moves
between event queues. These actions pop or push data from
event queues and create new data-arrived primitive events.

2.3. MAD ECA Rules Example
As shown in Figure 5(c), parts of the RISC instructions are
translated into ECA rules. The Event-Condition and Action are
separately color coded in green and blue, respectively. Events
and conditions are both described with named event queues,
where in the event part the named event queues indicate the
data arrival state, and in the condition part they indicates the
true/false of the branch condition state of the queue. The
ECA rules of load and store actions are often triggered by
the dataflow primitive events on memory addresses (and data
in cases of stores). The branch instruction (ble $r2, $r3,

.L0) in the program, however, includes a non-empty condition
part; this condition part examines the brand condition state
of the 8th event queue ($eq8), and drives the action when
the state is true. The action moves the induction variable for

the next loop condition check and pops the 8th event queue
(discards it) since the value is no longer needed.

2.4. Compilation and Generating the MAD Configuration

Generating the MAD configuration bits in the MAD ISA can
be done in a co-designed compiler or in a binary translator
(and thus virtualized) in a straight-forward way. The compiler
can produce the MAD configuration in the machine code
generation pass using its internal representation of the memory
access region (after the accelerator-specific code generation
region in the case of induced regions). For this work, we
use a binary translator, which performs the following steps.
First, it scans the instructions and constructs the program
dependence graph from the instructions, which are the nodes
in the graph. Second, it breaks the graph into sub-graphs and
map computations into the computation block. Third it assigns
the leaf nodes in the subgraphs to either a load/store action, a
move action (moving data between event queues), or a branch
output that triggers different actions based on the outcome of
the branch. Finally, it prioritizes the above actions based on
the program order, creating the ECA rules for actions3.

3. The MAD Hardware
Figure 5(d) presents the detailed microarchitecture of the
MAD hardware comprising three main blocks. Through the
action block, MAD is interfaced to core’s Load-store unit
(LSU) (details in Section 4). In our description below, we
include the description of MAD’s interface to an accelerator to
execute induced-phases. In natural-phases, that part of MAD
is simply clock-gated and unused.

3We have completed an LLVM-based compiler for MAD for natural phases
(there isn’t anything particular novel in our implementation). It is not used in
this paper’s evaluation because integrating it with DySER, NPU, and C-cores
compilers is logistically overwhelming and this exercise is orthogonal to goals
of this paper. And we wanted to use a single framework for evaluation of
natural and induced phases.

3.1. Computation Block
The responsibility of the computation block is to perform
dataflow execution consuming values from event queues and
writing to event queues. For low power and area-efficient exe-
cution, many alternatives are possible spanning coarse-grained
spatial CGRAs [32, 30, 18], FPGAs [38, 24, 70], and com-
pound functional units [35]. In practice we found a small
number of recurring computation patterns in the memory ac-
cess phases, and the regions are themselves small. The com-
mon patterns are stack pointer, base address, offset, and index.
While few patterns dominate, they are not trivial either because
of the computations of these primitives may vary. The hard-
ware must be able to tolerate and handle non-deterministic
delays in arrival of inputs. Hence we choose coarse-grain
reconfigurable and circuit-switched clusters.

The computation block computes the pre-configured
dataflow graph statically with functional units (responsible
for compute operators) and switches (responsible for forming
dataflow graph edges). Figure 5(d) outlines a 16-functional
unit computation block. In this design, four function units
and four switches construct a cluster, and the clusters are in-
terfaced with event queues. The entire cluster is pipelined
and is implemented with a data-driven flow control mecha-
nism using a ready state bit in the reconfigurable datapath.
Thus, these circuit-switched clusters, with the ready signals
in the datapath, require no dynamic scheduling of operands
or functional units and can synchronize data in the datapath if
input operands to the same node are ready in different cycles.
To sum up, the configuration information establishes a static
dataflow path from the event queues to the cluster ports, the
data from the event queues to the clusters is dynamically used
when possible, and the functional units consumes the data
from previous stage whenever both of the operands are ready.

3.2. Event Block
The event block connects the datapath between the Load-store-
unit, the computation block and the execute accelerator. As
shown in Figure 5(d), it has the following sub-blocks.

Computation I/O event queues (and accelerator I/O event
queues): These event queues hold inputs and outputs for the
computation block and are implemented as FIFOs with data
and a few meta bits. Identical to the above, the block includes
accelerator I/O event queues which allow an accelerator to
interface to a core using MAD for running its induced phase
(elaborate discussion follows in Section 4).

ECA rule table: The ECA rules in the translated program
are stored in the ECA rule table, and are compared to the state
of event queues to trigger actions.

Comparator array: The event block employs a comparator
array to match the dataflow events and states from event queues
to pre-configured ECA rules. The comparator array takes three
types of inputs: (1) the pre-configured ECA rules from the
ECA rule table; (2) the data-arrived state of the event queues;

(3) the branch-control state of the event queue. It applies
the event algebra, check against conditions, and produces a
trigger bit-vector indicating which actions are triggered. The
comparator array is a tree of AND gates that compares the
state-information from the event queues with pre-configured
ECA-rules. The state-information (data-arrival and branch-
control) uses two bits, and our implementation employs an
array of 2 (states) x 4 (limiting event algebra and conditions
to 4 event queues each) x 256 AND and NOT gates for 256
ECA rules. We use mux for each gate for the event algebra
functions, and configure the mux and the rule table before
entering the phase. The output of these gates are a bit-vector
that indicates which actions are triggered. Comparing to an
OOO, this module entirely performs the role of wakeup, select,
and instruction control flow.

The triggering of the event-condition and the execution
of the action is decoupled; the triggering event queues in a
satisfied ECA rule turn into an inactive state before the values
are popped by actions. This strategy of deferring the driving
of the actions reduces the timing and bandwidth requirement
over matching events and driving actions in a single cycle.

3.3. Action Block
Finally, the action block is responsible for controlling the data
movement between event queues and the load-store unit of the
core MAD is embedded into. The actions in MAD ECA rules
are stored in an action table (a dual-ported SRAM); they are
indexed by the action index bit vector (received from the event
block). When the triggered actions arrive as a bit vector, the
action block buffers them and decodes them with a priority
decoder, which arbitrates the buffered actions. If there are
more triggered actions than the bandwidth of the data bus,
actions with higher priority are issued first.

3.4. Microarchitectural Execution Flow
Carrying the same pseudo program, Figure 6 shows the MAD
execution of the occurrence of two events, the matching two
ECA rules, and the driving of two actions. Before the ex-
ecution, the processor configures the 3 blocks of the MAD
hardware and fills configurations as shown in the colored dia-
logue boxes. For illustration purposes, we simplify the draw-
ing to present only the activated microarchitecture logic. The
example execution flow begins with three primitive dataflow
events 1 : there exists data arrival event in queue 0, 2, and 3.
Since there no conditions need to be evaluated in these two
rules, these events directly triggers two actions, action 0 and
1, as in the action index vector 2 . The priority decoder de-
codes the bit-vector from a buffer, and outputs the two actions,
ld,$eq0->$eq1 and st,$eq3->$eq2, to the bus controller
3 . Finally the bus controller pops the event queues and moves
the data values to LSU 4 .

3.5. Implementation and Design Decisions
We implemented the MAD microarchitecture in Verilog RTL
and synthesized it with a TSMC 55nm library and it occupies

Actions0

Actions1

Actions2

Actions3

Addr

Addr

Return value

Arbiter

Bus
control

Re
su

lt
B
us

ld->$eq1

FU FU

FUFU

$eq0:ldA
$eq1:in

$eq2:stA

$eq6:i++

$eq4:ldB

$eq8:i<n

i

LS
Q

A
ccelerator

st

ld

ld val.

Val

+A

B +

1 +

<

S S

S S

Comparator
Array

Event Table

Action Table
ECA Rule 0 : A0

ECA Rule 1 : A1

ECA Rule 2 : A2

ECA Rule 3 : A3

stall&bus
control

events:
eq0,2,3

1100

1
1
0
0

A0

A1

com
parators

on $eq0 : A0
on $eq2^eq3 : A1
on $eq4 : A2
on $eq6^$eq8 if $eq8(true) : A3

priotiry
decoder

Dataflow Graph Nodes
N0:$eq7 + base A ->$eq0,2 #Addr A
N1:$eq7 + base B ->$eq4 #Addr B
N3:$eq7 + 1 ->$eq6 #i++
N4:$eq7 < n ->$eq8 #i<n

$eq3:out

A0:ld,$eq0->$eq1
A1:st,$eq3->$eq2
A2:ld,$eq4->$eq5
A3:mv,$eq6->$eq7,$eq8->

2

1

3

4

Figure 6: Detailed MAD execution with a simple code

an area of 0.93 mm2. This section discusses several design
decisions. First, one can intuitively implement the intercon-
nections between event queues and comparator array as a
fully connected network; this implementation, however, may
cause timing problems and is over-designed. We observed
that, in a typical program, the ECA rules can be divided into
disjoint sets, and the hardware (event queues and compara-
tors) can be clustered. Second, the number of functional units
in the computation block determines the maximum available
computational parallelism in the MAD hardware. Our final
implementation uses 32 int ALU and 4 int multipliers, with a 4-
entry configuration buffer, allowing regions with 256 dataflow
graph nodes. The event block implements 64 (computation +
accelerator) event queues clustered into 8 groups, supporting
256 ECA rules each. The total configuration bits is 1.5KB per
phase.

4. Integration
We now describe MAD’s integration with a core and we
demonstrate its hardware generality by discussing how four
diverse in-core accelerators can interface with the core using
MAD instead of their current ad-hoc mechanisms.

4.1. MAD integration with core

The modifications to the core are simple and few. First, we
need some datapath extensions to write into the event-queues
to enable starting an access phase. This is used sparingly, so
is not performance critical. Second, the load-store interface
of the core should be muxed to communicate with MAD’s
memory ports. When MAD is integrated into an in-order
core (which lack load-store queues typically), for performance
reasons, integrating an LSQ inside MAD, will leverage it best.

4.2. Integrating other accelerators to MAD
In induced-phases wherein a compute accelerator is executing
concurrently, MAD takes on the role of the core and hence
provides the interface of the event queues to integrate with
accelerators. The accelerators themselves are oblivious to how

MAD works and can become oblivious to whether the core
allows memory reordering, its cache hierarchy etc. And MAD
is oblivious to what accelerator it is feeding and how the accel-
erator works. To be integrable with MAD, an accelerator must
use a queue interface and standard queuing semantics: pop val-
ues on arrival, and push values into the queues to return values
to MAD (Note: MAD supports multiple logical and physical
named queues). Almost all in-core accelerators adhere to these
semantics within a subtle design space of implicitly-decoupled,
explicitly-decoupled, and loosely-combined.

Implicitly-decoupled (SSE/AVX): An implicitly-
decoupled accelerator has code that is abstractly different for
access (induced) and execute regions, but both execute on a
tightly integrated substrate communicating through shared
architectural registers - SSE/AVX execution is an example and
is of industry relevance today. In such cases, the accelerator’s
implementation must be slightly modified to communicate
with event queues instead of reading from a register file.
Specifically for SSE/AVX, two modifications have to be made:
(1) the input operands of the SIMD unit have to be changed
from specialized vector register to the accelerator I/O event
queues in MAD; and (2) the front-end processor pipeline that
decodes SSE instructions for driving the SSE unit should be
augmented with a region cache interfaced to the event queue.
This is conceptually similar to loop cache and decoded µop
cache [9] (and on cores where this exists [19, 60], it needs
to be only slightly modified). The region cache checks the
operand readiness from event queues to issue SSE instructions
to the SSE unit. The SSE/AVX compilation’s final code
generation step should be extended to convert the x86 access
instructions into a MAD configuration.

Explicitly-decoupled (DySER/NPU): An explicitly-
decoupled accelerator already uses decoupled-access-execute
principles to communicate with the core to receive and send
memory values. DySER [32] and NPU [25] strictly adhere to
this, and Convolution Engine to some extent as well. In such
cases, no microarchitectures changes are necessary.

Loosely-combined (C-Cores): A loosely-combined accel-
erator, performs work for the access (induced) phase in a
substrate that is different from the core and is loosely com-
bined with the computation work it does. C-Cores [68] is an
example, wherein, hardware is synthesized for address genera-
tion of each basic block’s load and store as part of the c-cores.
CAMEL is another [18]. Using MAD instead, can reduce area,
make the C-cores paradigm more general, and allow higher
throughput delivery of memory compared to the serialized
single ld/store per cycle in the original C-cores design. To
integrate with MAD, we can remove all memory related data-
path (including address computation) and replace them with
accelerator I/O queues; this replacement divides C-Cores into
small computation operator clusters, where each of them is
attached to some subset of accelerator I/O event queues for I/O
operands. In the interest of extreme energy efficiency, C-Cores
allows one basic block to be active. Since MAD provides a
high delivery rate from memory, we can relax this to more
active basic blocks (we evaluate with two).

In general, when changes are required they are small.
MAD’s versatility frees future accelerator designers from hav-
ing to redesign and rethink interfacing to the core and provides
a general and efficient mechanism, freeing them to focus on
computation mechanisms alone. Furthermore integration with
high-performance and in-order cores becomes possible.

5. Complex Scenarios
To demonstrate MAD’s application generality, several complex
scenarios common in memory access phases are discussed
here: (1) indirect memory access, which creates irregular
offset addresses for a base; (2) nested loops and control-flow;
and (3) need for memory disambiguation. We explain using
Sparse Matrix-Dense Vector Multiplication (spmv) from the
Parboil suite [2] executing on DySER and its relevant induced
phase (with code cleaned up for readability). The only relevant
DySER detail is that it is a coarse-grained reconfigurable
compute engine. In terms of syntax, DyLOADPD and DyRECVF

are the DySER instructions ISA extensions for the core, which
load from the data cache to DySER ports and receive from
DySER ports to the MAD hardware, respectively.

Indirect Access: The MAD ISA (and hardware) elegantly
supports indirect access using named event queues. To do ld

[ld [x]], the inner load’s output is written to a named
queue, which is set as the input queue for the outer load
through an action. This can be naturally extended for many
levels, and using register fill/spill like techniques when names
are exhausted (in practice we never encountered this). In Fig-
ure 7(b), we show an example with MAD code and execution
steps on the hardware for DyLOAD(v[ind[x+off+0]],16).

Nested loops, control-flow: In general, event-algebra and
the ECA rules allow the encoding of the equivalent of any
particular branch being taken, control-serialization, and many
dynamic invocations. Every branch in a region creates its
own primitive event whose value is the condition being taken

or not-taken. Consider a two-level nested loop with events
eouter and einner for the branches. The condition ¬einner∧eouter
triggers the next iteration of the outer loop, and the condition
einner triggers the next iteration of the inner loop. Figure 7(c)
shows the execution of the nested loop indices i and j, with
simplified encoding and execution steps. Exploring a hybrid
of also using predicated dataflow execution [61], with φ func-
tion support in the computation block introduces interesting
tradeoffs which are future work.

Memory disambiguation: A final issue is ordering of loads
and stores without explicit data-dependence edges, deemed
may-alias at compile time. To explain how MAD supports
this, we revisit MAD’s interface to the core’s load-store unit.
Abstracting away the exact encodings, a load-store unit mod-
ule in a processor’s core, expects an address and a time-stamp
for all loads and stores. It may be serialized (stores held until
all prior stores), speculative and aggressive (return all loads
immediately, check violations on stores), or employ a memory
dependence predictor. There is rich literature on this topic and
one representative paper is [65]. If it employs speculation, it
also outputs a flush signal on a mis-speculation. MAD does
not have (or need) its own LSQ and uses the same LSQ as the
host. In our design, we assume this LSQ is part of the core’s
load-store-unit. For our quantitative evaluation, we assume
the load-store-unit uses the store set memory dependence pre-
dictor to reduce the number of LSQ searches. This reduces
the core’s (baseline) load-store serialization and LSQ power
and reduces MAD’s serialization and power as well.

To support memory disambiguation, MAD must provide
time-stamp information and capability to handle the flush
signal. The time-stamp information is readily available in the
hardware: it is action index with the iteration number from the
event queues providing an ordering of all loads and stores. To
handle a flush signal, we essentially use the dataflow encoding
to flush all dependents with a simple implementation avoiding
any need for checkpoints. We add state bits in each event
queue and ECA rule table to indicate if a value is speculative.
If the MAD execution reaches a load that may-alias with a
previous store, it sets the destination event queue entry into
speculative state. The speculative state propagates to triggered
ECA rules and computation block. On receipt of a flush signal,
the MAD hardware flushes all the incorrect values in the event
queues (and also the computation block that consumes this
mis-speculated value) by walking through the event block. An
LSU that has such prediction implements store buffers, and
will flush relevant entries using the time-stamp information.
If a speculative action targets an event queue that already
contains speculative data, the execution stalls; this simplifies
the hardware design by preventing overlapped speculation.
In essence, MAD handles mis-speculation by rolling-back in
dataflow order. Multiple speculation and deadlock on the same
MAD instruction can be detected and avoided using a physical
hardware index and iteration number (age). This information
allows earlier instructions to always make forward progress in

(a) Code Listing (b) Indirect Access (c) Nested Loop

for (i=0; i<dep ; i++) {

 int i_ptr=ptr[i];

 int i_len=len - i_ptr;

 for (j=0; j<i_len; j+=2) {

 int x=i_ptr+j ;

 float temp ;

 DyLOADPD(data[x],0) ;

 DyLOAD(v[ind[x+off+0]], 16);

 DyLOAD(v[ind[x+off+1]], 12);

 DyRECVF(45, temp) ;

 dst[perm[j+off]]+= temp;

 }

}

LSQAccelerator

j<i_len

i j

i < dep

mv i++ -> i #outer

mv 0 > j #inner

j<i_len ->$eq0

i<dep ->$eq1

j<i_len(false) #inner

jd<dep(true) #outer

Accelerator LSQ

ind[x+off+0] (rdy)

v[ind[x+off+0]](rdy)

ld ind[..]->DF ind[..]

ld v[ind[..]]->...

ind(Base)+x+off+0 -> ind[x+off+0]

v(Base)+ind[x+off+0] -> v[ind[x+off+0]]

x off

ind[..]

addr val.

vec[ind[..]]
1 1

2
3 3

4 4

5
2
5

Figure 7: MAD execution with a complex example

the dataflow fabric and in triggering events. More aggressive
speculative execution in MAD could potentially increase the
energy efficiency and is future work.

Memory models: MAD execution semantics with the trig-
gering of ECA rules, is dynamic dataflow execution follow-
ing the dataflow order in the program (enforced by ordered
queues), and can result in a weak memory consistency model
for multi-processor execution of access regions. It may reorder
the reads and writes to different memory address locations and
thus break the memory consistency model of the core’s ISA.

6. Evaluation

The goal of our evaluation is to understand MAD’s perfor-
mance, power and energy on natural phases and on diverse
accelerators in induced phases in comparison to in-order and
out-of-order cores. We consider the previously mentioned four
accelerators in Section 4 which demonstrated MAD’s general-
ity qualitatively. MAD is expected to have significantly (inte-
ger factors) lower power than an OOO, while for performance
it should match or come close to OOO cores, and combining
these two should provide significant energy reduction. Hence,
we describe our results in terms of power breakdown first and
them performance improvement and energy.

6.1. Experimental Setup

Performance models We use gem5 [10] for modeling of
three baseline x86 cores: single-issue in-order, a low power
dual-issue out-of-order core(OOO2) configured to resemble
Intel Silvermont or AMD Bobcat [3, 37], and a 4-issue out-of-
order core(OOO4) representing big cores such as Intel Sandy
Bridge [1]. We also developed a detailed performance model
for MAD, and developed (or downloaded) performance mod-
els for the four accelerators we study. We then integrated them
with the core models (DySER we downloaded, SSE is part of
gem5, NPU and C-cores we developed in-house based on their
papers). Our DySER configuration is 64 functional units [34],
we consider SSE/SSE2/SSE3, our NPU configuration is 8 neu-
rons and identical to [25], and for C-cores we implemented
benchmarks in RTL by hand. Our MAD configuration is de-
tailed in Section 3.5.

Parameters Dual-issue OoO 4-issue OoO
Fetch, Decode,

2 4
Issue, WB width
Branch Predictor Tournament predictor w/ 4K BTB
ROB Size 40 168
Scheduler 32 54
RF (Int/FP) 56/56 160/144
LSQ (ld/st) 10/16 64/36
DCache Ports 1(r/w) 2(r/w)
L1 Caches I-Cache: 32 KB, 2 way, 64B lines D-

Cache: 64 KB, 2 way, 64B lines
L2 Caches 2 MB, 8-way unified, 64B lines

Table 2: General purpose host processor models

Configuration and design space We evaluated three MAD
integrations: MAD+inorder, MAD+OOO2, and MAD+OOO4.
In all evaluations of MAD, upon starting a memory access
region, the core is turned off with only its load-store unit (LSU)
remaining on. The load-store unit of our in-order and OOO2
cores are identical (by design to simplify the presentation
results), and hence performance and power of MAD+inorder
is almost identical to MAD+OOO2 and this configuration is
simply called MAD2 4. Our MAD+OOO4 we call MAD4.
When considering induced phases, we compare core X running
induced phase + accelerator Y, to MAD (integrated into core
X, with core turned off) running induced phase + accelerator Y.
Our design space exploration is outlined in Figure 3 (page 3).
In total we examine 3 processor configs, 2 MAD configs, four
accelerators, and 38 benchmarks .

Power Modeling We use McPAT’s [43] power model for the
host processors and the SSE unit, DySER’s RTL model [23],
and our own RTL models for NPU and C-cores and estimate
power from Synopsys Design Compiler; we perform best-
effort to match the published results. We compare and report
core+MAD+accelerator power only (i.e. L2, L3, memory
system excluded since they are orthogonal and our focus is the
core), and only dynamic power. Note that, if we had included
static power, MAD’s power reduction could only be higher
since it is much smaller than the core.

4Our MAD design is equipped to issue two memory actions, but in this
configuration is always constrained to one by the core’s LSU.

a
g
g

a
st

a
r

b
zi

p
2

cj
p
e
g

d
jp

e
g fs

g
sm

d
e
c

g
sm

e
n
c

h
2
6
4

d
e
c

h
2
6
4

re
f

jp
g
2

ke
n
c

lib
q

m
cf sm g
m

0

1

2

3

4

5

6

7

8

D
y
n
a
m

ic
 P

o
w

e
r

(W
a
tt

s) OOO: 2.3,6.0
MAD: 1.7,1.9

Fetch, Decode, Dispatch, Issue, RF and Bypass FU LSU MAD2 MAD4

Figure 8: Power breakdown

Benchmarks To study natural phases, we consider three
dominant database analytics kernels: aggregate, filescan(fs),
and sortmerge (sm) [44, 69], the SPECINT2006 [63] and Me-
diaBench [42] suite. On the latter two, we are reporting only
benchmarks that have dominant memory access phases in them
i.e. they have regions where 90% of the instruction stream
of ld/st address generation (we perform this selection using
a Pin [45] tool we developed) and the static code fits in the
256-node MAD configuration. We exclude benchmarks whose
representative region is not a memory access region or if the
region’s static size exceeds MAD’s size (DFG nodes or ECA
rules).

To study induced phases (which are arguably more impor-
tant), we largely hold benchmarks constant across the accel-
erators; we use benchmarks in Parboil [2], Rodinia [14] and
throughput kernels from [59] to match the DySER and SSE
evaluation in [34]. We implemented RTL versions of these
for C-Cores. Note that our C-Cores model relaxes the single
basic block active and single load/store rule to get a better
tradeoff of performance vs. power, compared to the original
paper which was extreme power efficiency only. For NPU, we
used its benchmarks [25].

6.2. Power Breakdown

To isolate the power consumption of the core compared to
MAD, we report power breakdown for natural phases (there is
no concurrently running compute accelerator) as shown in Fig-
ure 8. We combine the power of fetch, decode, dispatch, issue,
RF and bypass logic as the red bar and show the functional
unit power and load-store unit power separately5. Within
MAD2, the computation block’s power is 639 mW (closely
matching and slightly less than FU power of OOO2), with the
rest consuming 112 mW; the LSU is 800 mW. Numbers are
in similar range for MAD4. Considering these, MAD’s ILP,
MLP, dynamism overhead is 6.5% to 9%. In comparison, for
OOO2 and OOO4 it is 38% and 67% respectively.
Observation-1: Overall, MAD2 is 1.3× lower power than
OOO2 and 3.4× lower power than an OOO4. Excluding

5Two clarifications are in order: LSU power consumption when using
MAD2 compared to an OOO2 is higher because of higher activity (which
results in more performance as we will show shortly). The OOO4’s LSU
power is much higher than an OOO2, partly because of more ports, and also
because it has higher activity.

Speedup Relative Energy
(Higher is better) (Lower is better)

O2 O4 MAD (M4) O2 O4 MAD (M4)

Natural 1.5 2.2 2.0 (2.3) 1.5 2.7 0.8 (0.8)
Ind-DySER 1.5 2.7 2.3 (2.6) 1.2 1.7 0.8 (0.7)

Ind-SSE 1.7 2.9 2.9 (3.6) 1.3 2.1 0.7 (0.7)
Ind-NPU 1.6 2.2 2.1 (2.5) 1.1 1.6 0.7 (0.6)

Ind-C-Cores 2.5 * 2.6 (*) 1.2 * 0.8 (*)
GM all 1.7 2.5 2.4 (2.7) 1.2 2.0 0.8 (0.7)

O2 is 2-wide OOO; O4 is 4-wide; M4 represents MAD4 config.

Table 3: Performance & Energy normalized to in-order

power of the LSU, MAD is 1.8× and 5.7× lower power. MAD
can extract dataflow with much less power than OOO.

6.3. Performance and Energy Results

Detailed graphs are in Figure 9 and Table 3 summarizes the
results. We report speedup relative to the in-order baseline
(higher is better) and relative energy (lower is better). So, to
compare OOO2 to MAD2, or OOO4 to MAD2, one can divide
the numbers in the relevant columns. Our high level findings
are below with analysis to follow.
Observation-2: Compared to an in-order, MAD provides typi-
cally ≥ 2× performance improvement and lower energy.
Observation-3: MAD2 improves performance compared to
an OOO2 by 1.4× because it can extract more ILP, and can
match an OOO4. Since it is much lower power than an OOO,
MAD2’s energy is 0.6× of OOO2, and 0.4× of OOO4.
Observation-4: For natural-phases MAD is better than in-
order, OOO2, and OOO4 for performance and energy.
Observation-5: For induced-phases (which use an accelera-
tor), MAD successfully eliminates the core as a performance
or power bottleneck. Accelerators+MAD perform at (or ex-
ceed) Accelerator+OOO performance at lower than Accel-
erator+inorder energy.

Natural phases In general, MAD2 and MAD4’s ILP, MLP,
and dynamism mechanism are superior to an OOO2 (because
of more functional units and larger window effectively) and
similar to an OOO4. Comparing OOO4 to MAD4 reveals
insights that point to MAD’s capabilities: In some cases MAD
is more control tolerant, wherein data-dependent branches and
high mis-prediction rate hurts OOO4 but not MAD - this use
case shows the benefit of ECA rules combined with dataflow.
For example in astar and fs. In some cases, like mcf, MAD
is control restricted, when there are parallel control-dependent
memory accesses where the control branch requires 4 compu-
tations and 2 loads to be executed. OOO4 can speculatively
execute the memory access before the branch is resolved.

Induced phases: Explicitly decoupled (DySER, NPU) and
loosely combined accelerators (C-Cores): Here the in-
duced and compute phase are nicely decoupled. Hence MAD2
easily and significantly outperforms in-order and OOO2 (be-
cause of more FUs and larger window it finishes the access

phase faster, feeding the accelerators faster). For bench-
marks with high ILP and no memory dependencies in their in-
duced phases (e.g., cutcp, sad, needle, and nbody), MAD4
even exceeds OOO4. Specifically in needle, the program is
software-pipelined and the dependencies are removed because
of the rearranging of the loads. This happens consistently for
NPU workloads, and hence MAD appreciably outperforms
OOO4+NPU (we examined the code and confirmed the rea-
sons is not the control tolerance property).

Behavior with C-Cores is similar, with the only difference
being OOO4 integration is omitted. The idea of C-Cores is
extreme efficiency with modest performance goals and inte-
gration/comparison to an OOO4 is unrealistic.

Induced phases: Tightly integrated accelerator (SSE)
For SSE execution, access and the compute (SSE) instruc-
tions stress the front-end and issue logic since both execute on
same core. With MAD based execution, this front-end pres-
sure is relieved and allows higher-throughput SSE execution.
Here MAD2 and MAD4 exceed OOO2 and OOO4 for two
reasons: they make the access phase faster for the aforemen-
tioned reasons and they free up compute resources on the core.
Note that in this execution, the core is not turned off, its SSE
units and a modeled region cache remain on and accounted for
in our power modeling.

Other sensitivity studies: We have completed sensitivity
studies to MAD’s queue sizes, amount of compute resources,
number of memory ports, various core parameters (larger in-
struction window, larger issue width etc.), and cache access
latency [39]. In particular, we comment on the role of par-
allelism. Increasing parallelism can be isolated by keeping
ports the same but more MAD resources. And our results
show MAD2 with doubled computation fabric improves per-
formance slightly (2%). Doubled parallelism (bigger fabric)
on MAD4 improves it by a further 10% to 20%. Recall that
MAD is already a highly parallel fabric.

7. Related Work

MAD is a novel confluence of concepts in disparate cate-
gories - accelerators/heterogeneity, the decoupled access/exe-
cute model, dataflow, and event-condition-action rules. Pre-
computation and loop accelerators share MAD’s end goal of
improving the memory behavior.

Decoupled access-execute The classic DAE model was in-
troduced in the early 1980s [62, 31], and is incarnated in
classic vector processors, conditional vectors, and the more re-
cent VT and Maven architectures which are decoupled vector
clustered microarchitectures [41, 8] and in very recent work,
in a fragment processor design [5] allowing/exploiting ex-
tremely regular addresses in graphics workloads. In a sense,
accelerators can be viewed as vector cores with arbitrary vec-
tor chaining. Their FIFOs provide a highly irregular vector
register file to vector functional unit mapping. In that regard,

dynamic vectorization conceptually seeks to achieve the same
as specializing the access-code [52, 67].

Dataflow Our dataflow execution model resembles the clas-
sic dataflow machines from 70s to 90s [20, 36, 40, 6, 53],
and more recent incarnations [58, 66, 12]: we also specify
explicit targets and dataflow based computation of work. Trig-
gered Instructions(TI) [54] which combined action/events with
dataflow is most similar to MAD. None of they use low-level
dataflow to address memory access. Nowatzki et al. argue
for a paradigm of fine-grained hybrid dataflow execution to
get benefits of OOO and dataflow [51], and MAD is one such
instance.

Event-condition-action rules The concept of event-
condition-action (ECA) is related to production rules [11] and
formalized in the active database literature [26, 48, 64, 47].
The MAD ISA leverages the same concept to encode the
dataflow events and data-movement actions. Compared to
VLIW ISAs, this eliminates the scheduling complexity for the
compiler and the hardware. Compared to dataflow ISAs, this
provides more efficient and rich control-flow support.

Pre-computation, pre-computation with reintegration,
runahead In pre-computation, the idea is to execute a re-
duced version of a program in the hope of triggering cache
accesses early for costly cache misses [72, 71, 4, 49] or
for branch mispredictions [27]. Assisted execution [21] and
SSMT [13] are general paradigms for such pre-computation,
and lookahead combines pre-computation and DAE [57, 28].
Pre-computation with register integration as developed in the
SDDM work when viewed in the accelerator context, creates a
data-driven thread for each load and store. This is conceptually
similar to MAD’s execution model, but with very different
implementation targets dictated by different end goals. Runa-
head execution is in this spectrum and has been proposed to
exploit MLP [22, 50, 15]. From a power perspective it does
not address von-Neumann inefficiencies and hence it does
not improve power efficiency when applied to big-cores or
in-order cores, and its ILP extraction is less than MAD when
applied to in-order cores.

Loop Accelerators (LA) Typically LAs include inter-
related compute and memory access techniques that are not
separable to be applied as a memory engine for other accelera-
tors [46, 16, 17].

8. Conclusion
In this paper, we have developed the Memory Access Dataflow
execution model and hardware architecture which combines
principles of decoupled access/execution, dataflow computa-
tion and event-condition-action rules. The MAD hardware
engine applies these concepts to re-develop the main prim-
itives of an OOO core in a power-efficient way targeted at
memory accesses which naturally occur in programs or get
induced when some work is offloaded to an accelerator. We
described our RTL implementation of MAD, qualitative and

a
g
g

a
st

a
r

b
zi

p
2

cj
p
e
g

d
jp

e
g fs

g
sm

d
e
c

g
sm

e
n
c

h
2
6
4

d
e
c

h
2
6
4

re
f

jp
g
2

ke
n
c

lib
q

m
cf sm g
m

0

.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

OOO:1.5,2.2
MAD:2.0,2.3

in-order OOO2 OOO4 MAD2 MAD4

a
g
g

a
st

a
r

b
zi

p
2

cj
p
e
g

d
jp

e
g fs

g
sm

d
e
c

g
sm

e
n
c

h
2
6
4

d
e
c

h
2
6
4

re
f

jp
g
2

ke
n
c

lib
q

m
cf sm g
m

0

.5

1

1.5

2

2.5

R
e
la

ti
v
e
 E

n
e
rg

y

OOO:0.9,1.7
MAD:0.5,0.5

in-order OOO2 OOO4 MAD2 MAD4

(a) Natural-phases Performance (b) Natural-phases Energy

cu
tc

p ff
t

lb
m

m
m

m
ri

-q
sa

d
sp

m
v

st
e
n
ci

l
tp

a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e
n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0
.5
1

1.5
2

2.5
3

3.5
4

S
p
e
e
d
u
p

(a) DySER

cu
tc

p ff
t

lb
m

m
m

m
ri

-q
sa

d
sp

m
v

st
e
n
ci

l
tp

a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e
n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0
.5
1

1.5
2

2.5
3

3.5
4 (b) SSE

OOO2 OOO4 MAD2

ff
t

in
v
k2

j
jm

e
in

t
jp

e
g

km
n
s

so
b
e
l

g
m

0
.5
1

1.5
2

2.5
3

3.5
4 (c) NPU

cu
tc

p ff
t

lb
m

m
m

m
ri

-q
sa

d
sp

m
v

st
e
n
ci

l
tp

a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e
n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0
.5
1

1.5
2

2.5
3

3.5
4 (d) C-Cores

in-order

(c) Induced-phases Performance with DySER, SSE, NPU, C-cores

cu
tc

p ff
t

lb
m

m
m

m
ri

-q
sa

d
sp

m
v

st
e
n
ci

l
tp

a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e
n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

.5

1

1.5

2

R
e
la

ti
v
e
 E

n
e
rg

y (a) DySER

cu
tc

p ff
t

lb
m

m
m

m
ri

-q
sa

d
sp

m
v

st
e
n
ci

l
tp

a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e
n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

.5

1

1.5

2
(b) SSE

OOO2 OOO4 MAD2

ff
t

in
v
k2

j
jm

e
in

t
jp

e
g

km
n
s

so
b
e
l

g
m

0

.5

1

1.5

2
(c) NPU

cu
tc

p ff
t

lb
m

m
m

m
ri

-q
sa

d
sp

m
v

st
e
n
ci

l
tp

a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e
n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

.5

1

1.5

2
(d) C-Cores

in-order

(d) Induced-phases Energy with DySER, SSE, NPU, C-cores

Note MAD4 bars omitted in (c) and (d) for readability.

Figure 9: Performance and Energy: Detailed results

quantitative results showing MAD can integrate with four di-
verse accelerators. On natural and induced memory access
phases, MAD provides higher performance and lower energy
than using in-order or big out-of-order cores.

MAD has promising potential to be a general mechanism
for future accelerators to tightly integrate with cores. Concep-
tually MAD can be viewed as a sophisticated, programmable,
yet very power-efficient prefetcher that powers off the core.
With computations off-loaded to accelerators, and memory ac-
cesses off-loaded to MAD, whether a high-performance core
is required at all is an open question. Another question for fu-
ture work is whether MAD can itself be simplified further - in
particular is it overly general? An alternative worthy of consid-
eration is whether the decoupled access/execute paradigm can
be combined with coarse-grained logic blocks that implement
commonly used memory access patterns.

Acknowledgments

We thank the anonymous reviewers, Greg Wright, Milo Mar-
tin, and the Vertical Research Group for their thoughtful com-
ments. Support for this research was provided by NSF un-
der the following grants CCF-1162215, CNS-1228782, CNS-
1218432.

References
[1] “Intel’s Sandy Bridge Microarchitecture,” http://www.realworldtech.

com/sandy-bridge/, accessed: 2014-08-14.
[2] Parboil Benchmark Suite. http://impact.crhc.illinois.edu/parboil.php.
[3] “Silvermont, Intel’s Low Power Architecture,” http:

//www.realworldtech.com/silvermont/, accessed: 2014-08-14.
[4] M. Annavaram, J. M. Patel, and E. S. Davidson, “Data prefetching by

dependence graph precomputation,” in ISCA ’01.
[5] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Boosting mobile gpu

performance with a decoupled access/execute fragment processor,” in
ISCA ’12.

[6] K. Arvind and R. S. Nikhil, “Executing a program on the mit tagged-
token dataflow architecture,” IEEE Trans. Comput., vol. 39, no. 3, pp.
300–318, Mar. 1990.

[7] E. Bach, “The algebra of events,” Linguistics and Philosophy, vol. 9,
no. 1, pp. 5–16, 1986.

[8] C. F. Batten, “Simplified vector-thread architectures for flexible and
efficient data-parallel accelerators,” Ph.D. dissertation, Cambridge,
MA, USA, 2010, AAI0822514.

[9] N. Bellas, I. N. Hajj, C. D. Polychronopoulos, and G. D. Stamoulis,
“Energy and performance improvements in microprocessor design using
a loop cache,” in ICCD ’99.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simu-
lator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug.
2011.

[11] L. Brownston, R. Farrell, and E. Kant, Programming Expert Systems in
Ops5: An Introduction to Rule-Based Programming. Addison-Wesley,
1985.

[12] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein, “Spatial
Computation,” in ASPLOS XI.

[13] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt,
“Simultaneous subordinate microthreading (ssmt),” in ISCA ’99.

[14] S. Che, M. Boyer, M. anoyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing.”

[15] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations
for exploiting memory-level parallelism,” in ISCA ’04.

[16] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris,
M. Schuette, and A. Saidi, “The reconfigurable streaming vector pro-
cessor,” in MICRO ’03.

[17] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-
specific processing on a general-purpose core via transparent instruc-
tion set customization,” in MICRO ’04.

[18] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and G. Rein-
man, “Composable accelerator-rich microprocessor enhanced for adap-
tivity and longevity,” in ISLPED ’13.

[19] K. Czechowski, V. Lee, E. Grochowski, R. Ronen, R. Singhal,
R. Vuduc, and P. Dubey, “Improving the energy efficiency of big
cores,” in ISCA ’14.

[20] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic
data-flow processor,” in ISCA ’75.

[21] M. Dubois and Y. H. Song, “Assisted execution,” Department of EE-
Systems, University of Southern California, Tech. Rep. #CENG 98-25,
1998.

[22] J. Dundas and T. Mudge, “Improving data cache performance by pre-
executing instructions under a cache miss,” in ICS ’97.

[23] “Hardware specialization with dyser.” [Online]. Available: research.cs.
wisc.edu/vertical/DySER

[24] C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapid - reconfigurable
pipelined datapath,” in FPL ’96.

[25] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in MICRO ’12.

[26] K. P. Eswaran, “Aspects of a trigger subsystem in an integrated database
system,” in ICSE ’76.

[27] A. Farcy, O. Temam, R. Espasa, and T. Juan, “Dataflow analysis of
branch mispredictions and its application to early resolution of branch
outcomes,” in MICRO ’98.

[28] A. Garg and M. C. Huang, “A performance-correctness explicitly-
decoupled architecture,” in MICRO ’08.

[29] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “Composite event
specification in active databases: Model & implementation,” in
VLDB ’92.

[30] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. Taylor, “PipeRench: A Reconfigurable Architecture and Compiler,”
IEEE Computer, vol. 33, no. 4, pp. 70–77, April 2000.

[31] J. R. Goodman, J.-t. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter,
and H. C. Young, “Pipe: A vlsi decoupled architecture,” in ISCA ’85.

[32] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in HPCA ’11.

[33] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy efficient computing,” IEEE Micro,
vol. 33, no. 5, 2012.

[34] V. Govindaraju, T. Nowatzki, and K. Sankaralingam, “Breaking simd
shackles: Liberating accelerators by exposing flexible microarchitec-
tural mechanisms,” in PACT ‘13.

[35] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,” in MICRO-44 ’11.

[36] J. R. Gurd, C. C. Kirkham, and I. Watson, “The manchester prototype
dataflow computer,” Commun. ACM, vol. 28, no. 1, pp. 34–52, Jan.
1985. [Online]. Available: http://doi.acm.org/10.1145/2465.2468

[37] T. R. Halfill, “AMD Bobcat snarls at Atom,” Microprocessor Report,
August 2010.

[38] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a
Reconfigurable Coprocessor,” in FPCC ‘97.

[39] C.-H. Ho, “Mechanisms Towards Energy-Efficient Dynamic Hardware
Specialization,” PhD Dissertation, Unversity of Wisconsin-Madison,
2014.

[40] R. A. Iannucci, “Toward a dataflow/von neumann hybrid architecture,”
in ISCA ’88.

[41] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris,
J. Casper, and K. Asanovic, “The vector-thread architecture,” Micro,
IEEE, vol. 24, no. 6, pp. 84–90, 2004.

[42] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communicatons
systems,” in MICRO ‘97.

[43] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in MICRO ‘09.

[44] Y. Li and J. M. Patel, “Bitweaving: Fast scans for main memory data
processing,” in SIGMOD ’13.

[45] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized pro-
gram analysis tools with dynamic instrumentation,” in PLDI ’05.

[46] B. Mathew and A. Davis, “A loop accelerator for low power embedded
vliw processors,” in CODES + ISSS 2004.

[47] D. McCarthy and U. Dayal, “The architecture of an active database
management system,” in SIGMOD ’89.

[48] M. Morgenstern, “Active databases as a paradigm for enhanced com-
puting environments,” in VLDB ’83.

[49] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi, “Slice-
processors: An implementation of operation-based prediction,” in
ICS ’01.

[50] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead execution: an
alternative to very large instruction windows for out-of-order proces-
sors,” in HPCA ’03, pp. 129–140.

[51] A. Nowatzi, V. Gangadhar, and K. Sankaralingam, “Exploring the
potential of heterogeneous von neumann/dataflow execution models,”
in ISCA ‘15.

[52] A. Pajuelo, A. González, and M. Valero, “Speculative dynamic vector-
ization,” in ISCA ’02.

[53] G. Papadopoulos and D. Culler, “Monsoon: an explicit token-store
architecture,” in ISCA ‘90.

[54] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess,
S. Maresh, and J. Emer, “Triggered instructions: A control paradigm
for spatially-programmed architectures,” in ISCA ’13.

[55] A. Poulovassilis, G. Papamarkos, and P. T. Wood, “Event-condition-
action rule languages for the semantic web,” in EDBT’06.

[56] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: Balancing efficiency &
flexibility in specialized computing,” in ISCA ’13.

[57] W. Ro, S. Crago, A. Despain, and J.-L. Gaudiot, “Design and evaluation
of a hierarchical decoupled architecture,” The Journal of Supercomput-
ing, vol. 38, no. 3, pp. 237–259, 2006.

[58] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, S. W. Keckler,
D. Burger, and C. R. Moore, “Exploiting ILP, TLP and DLP with the
Polymorphous TRIPS Architecture,” in ISCA ’03.

[59] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-
skiy, M. Girkar, and P. Dubey, “Can traditional programming bridge
the ninja performance gap for parallel computing applications?” in
ISCA ’12.

[60] R. Singhal, “"inside intel next generation nehalem microarchitecture",”
in Hot Chips, 2008.

[61] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDonald, D. Burger,
S. W. Keckler, and K. S. McKinley, “Dataflow Predication,” in MICRO
39.

[62] J. E. Smith, “Decoupled access/execute computer architectures,” in
ISCA ’82.

[63] SPEC CPU2006. Standard Performance Evaluation Corporation,
2006.

[64] M. Stonebraker, “A rules system for relational database management
system,” in International Conference on Databases, 1982.

[65] S. Subramaniam and G. H. Loh, “Fire-and-forget: Load/store schedul-
ing with no store queue at all,” in MICRO ‘06.

[66] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,”
in MICRO ‘03.

[67] S. Vajapeyam, P. J. Joseph, and T. Mitra, “Dynamic vectorization: A
mechanism for exploiting far-flung ilp in ordinary programs,” in ISCA

’99.
[68] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-

Martinez, S. Swanson, and M. B. Taylor, “Conservation Cores: Reduc-
ing the Energy of Mature Computations,” in ASPLOS ’10.

[69] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross, “Navigating big data
with high-throughput, energy-efficient data partitioning,” in ISCA ’13.

[70] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “Chimaera: a
high-performance architecture with a tightly-coupled reconfigurable
functional unit,” in ISCA ’00.

[71] C. Zilles and G. Sohi, “Execution-based prediction using speculative
slices,” in ISCA ’01.

[72] C. B. Zilles and G. S. Sohi, “Understanding the backward slices of
performance degrading instructions,” in ISCA ’00.

