
Hands-on Introduction to Computer Science at the
Freshman Level

Raghuraman Balasubramanian Zachary York Matthew Dorran
Aritra Biswas Timur Girgin Karthikeyan Sankaralingam

University of Wisconsin-Madison
karu@cs.wisc.edu

ABSTRACT
This paper details the creation of a hands-on introduction
course that reflects the dramatic growth and diversity in
computer science. Our aim was to enable students to get
an end-to-end perspective on computer system design by
building one. We report on a two-year exercise in using the
Arduino platform to build a series of hands-on projects. We
have used these projects in two course instances, and have
obtained detailed student feedback, which we analyze and
present in this paper. The instructions, code and videos
developed are available open-source.

1. INTRODUCTION
Computer science as a field has changed dramatically over

the past few decades. Today’s embedded computing de-
vices, like the Fitbit [5], provide more computing capability
than a super-computer from 30 years ago. Such systems em-
body several computer science principles such as program-
ming, compilation, operating systems, concurrent program-
ming and hardware organization. Computer science educa-
tion, especially freshman introduction to computer science,
typically includes lecture based instructions and simplistic
programming assignments and has not evolved much since
the 1980s. CS252 from UW-Madison and CS312 [1] from the
UT-Austin are representative example of many introductory
CS courses. There are a few examples like Stanford’s CS1C
that make a radical departure. Such a departure may not
be amenable to all institutions or undergraduate programs.

Our goal and motivation is to develop a freshman intro-
duction to computer science course which, without major
disruption to the existing curriculum, incorporates a hands-
on building component. The aim is to develop material in
which a team of students design and build a computer or
computing system and perform an evaluation of the system.
Many studies on teaching computer science have shown that
construction and team exercise accelerate learning [7]. Oth-
ers have shown that the material being“fun” is important [6,
8, 9] and the need for course projects to be challenging but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCSE ’14 March 05 - 08 2014, Atlanta, GA, USA
Copyright 2014 ACM 978-1-4503-2605-6/14/03 ...$15.00.

Ethernet Shield

Motor Shield

Touch and LCD Display Shield

Wireless Transceivers

IR transcievers

Ultrasonic transcievers

Arduino Uno

Figure 1: Arduino Uno board and select peripherals.

not daunting. Our other goal is to open source instructional
materials to increase availability. We intentionally avoid
choosing projects that are specific to a single paradigm, like
robotics, by providing hardware and software that can be
assembled in a variety of ways to embody a computing plat-
form. This allows students to choose from a diverse array of
projects aligning with their natural inclination.

Due to the benefits of Moore’s law and constantly reduc-
ing costs in the electronics industry, there are many viable
platforms to choose from. Specifically, the Arduino [3] plat-
form shown in Figure 1 provides tremendous hardware ca-
pability and a simple programming interface based on C
language. The Arduino supports a vast array of “shields”
or peripherals like ultra-sonic sensors, accelerometers, touch
displays and wireless communication hardware that can be
connected to the basic platform to build interesting systems.
There is a widespread community of hobbyist computing re-
sembling the 80s era of hobbyist PC building that is based
on Arduino, which costs only $20. The Arduino platform
has wide-spread open source community support, numer-
ous do-it-yourself projects, and is easy to use, making it an
excellent gateway to get students excited about computer
engineering. The challenge from a curriculum or teaching
perspective is to bring all this hardware and software into
a cohesive platform for computer science pedagogy. This is
particularly complex in a freshman course that is designed to
introduce the core ideas of computer science spanning bits,
gates and binary logic to programming and computer organi-
zation, The fundamental question is how to design hands-on

projects to enhance the experience of learning the fundamen-
tals of computer science?

In this paper, we share our experience gained from de-
veloping such a course at a public university with a large
computer science yearly enrollment of over 2500 students.
This paper is a report on the development of this curricu-
lum spanning a pilot version we implemented in Spring 2012,
the development of instructional material, assessing the ma-
terial, and a second version of the course in Spring 2013
based on this new material. In each instance, we also re-
port on detailed survey data and feedback collected from
the students.

Summary of implementation The projects were added
to an existing freshman introduction to computing course
(CS252) which is based on the Patt and Patel [10] book
and did not originally include any hands-on building compo-
nent. In the Spring 2012 offering of the course, the strategy
was to get something off the ground. We envisioned a few
Arduino-based projects, wrote up a description in a couple
of paragraphs, and provided students with hardware. We
provided little supplementary instructional materials. One
graduate student experienced in using the Arduino platform
was available for one hour each week to help students. A 5%
bonus credit was offered. We were pleasantly surprised by
the outcome. Figure 2 shows the completed projects, which
were all functional. All but one team completed the project
they had picked. In total, 73 of 191 enrolled students did the
projects. Based on their feedback, we then created detailed
instruction material with extensive videos, code tutorials,
and a week-by-week plan over the Summer and Fall 2012
semesters. The material itself was largely developed by 4
under-graduate students who took the course in Spring 2012.
The course was then offered in Spring 2013. We provided the
instructional material we developed, extensive daily office
hours and support through a Piazza forum. This paper re-
ports on this effort with the goal of providing lessons learned
and insights on how others can reuse and enhance our ma-
terial. We are making all resources publicly available at this
URL: http://www.cs.wisc.edu/vertical/arduino-252.

Overall our findings are the following :

• Hands-on projects based on Arduino platforms can be
effectively built as a 3 or 4 week project.

• The projects help teach and reinforce basic computer
science concepts.

• Students feel the projects serve the pedagogical pur-
pose and the experience gives them an enhanced un-
derstanding of the subject.

• The projects themselves can each be constructed with
hardware costing between $97 and $254 as a one-time
expense.

This paper is organized as follows. In Section 2 we describe
how the pilot Spring 2012 version was developed, including
a detailed explanation of the actual hands-on projects. In
Section 3 we describe how we used student feedback to de-
velop instruction material, and what instructional material
was developed. In Section 4 we describe how the Spring 2013
version of the course was run based on this instruction ma-
terial and student feedback. Section 5 addresses potential
issues which may arise during the adoption of this mate-
rial in other institutions. Finally, Section 6 concludes with
thoughts on lessons learned.

2. SPRING 2012
We now describe the first instance of the projects offered

in a give it to them and have them build it mode, cover-
ing logistics of implementation, a detailed description of the
projects and the outcome and student feedback.

2.1 Mechanics and Implementation
We provided the students choice of five projects and seven

weeks to complete them. We provided them some weekly
milestones to aim for and a brief progress report was due
each Friday. A final demo date was set at the end of seven
weeks. Students were informed that “completing” a working
demo would be sufficient and no other detailed grading was
involved. We provided bonus of 5% course credit awarded
for a completed project. We allowed project groups of two
to six students, and facilitated some matching of students
to projects based on programming experience. A total of
seventy three students opted to attempt the extra credit
course material. As the projects were optional, no lecture
hours were devoted to teaching particular skills to complete
the projects.

We provided a simple five minute demo of Arduino plat-
form at the start of the projects. For all projects we pro-
vided a description and relevant pointers to Internet re-
sources for the specific “shields” (sensors and actuators -
see also Figure 1). We also provided detailed usage notes to
get started on the following four topics since they spanned
many projects: i) Installing the software and getting a sim-
ple blink LED demo to work. ii) Getting two Arduinos to
talk to each other through a wireless transceiver. iii) Us-
ing Analog ports as Digital Ports. iv) Wiki links on how to
use “motor shields” to control the speed and direction of the
wheels for the projects with robots.

2.2 Description of Projects
We describe the projects below and in the Appendix list

the hardware required and cost per project. All software
tools used are free and open source.

Maze Navigating Robots In this project, students built a
robot that can auto-navigate in a maze to reach an exit. The
robot followed an arbitrarily drawn black path in a bright
background using a set of infrared sensors that were posi-
tioned roughly orthogonal to the line on the ground. The
data generated by the sensors are analyzed by the Arduino
processor which in turn controls DC motors to navigate
the robot. The students were expected to develop a fully-
functional line-tracking robot that could handle any path
complexity. We also provided a pointer to a PDF manual of
the infrared line follower kit which explained the wiring of
the infrared sensors and their communication protocol.

Obstacle Avoiding Robot In this project, the students
equipped robots with active range sensors to detect prox-
imity to objects and programmed them to avoid obstacles.
Students employed a commonly used method of depth ex-
traction to calculate the distance of objects around the robot
by using an ultrasonic sensor. A set of sensors that were po-
sitioned around the robot to act as its“eyes”. Students wrote
code that polled on the value returned by the ultrasonic sen-
sors periodically. They performed calibration to obtain the
thresholds to detect proximity. The obstacles were not nec-
essarily stationary — the robot was required to periodically
check its surroundings and react dynamically. We provided

http://www.cs.wisc.edu/vertical/arduino-252

Twitter Wireless Tic-Tac-Toe Maze Navigation Robot Angry Birds

Figure 2: Examples of the four projects students

the following pointers: (i) A Wikipedia link to how an ultra-
sonic sensor works and (ii) a page describing the ultrasonic
range measurement module we used and sample code.

Tic Tac Toe In this project, students created a handheld
game console. They were expected to design the game, the
input and output interfaces (using a touch screen LCD).
They also had to add a wireless module over two devices
for a multi-player mode. The students formed three groups
(i) the Game Designers - who implemented core game logic.
(ii) the user interface team - who coded what was displayed
on the screen. (iii) the wireless team - who setup communi-
cation between two Arduino boards. We provided links to
the following online resources: (i) the hobbyist website [4]
which lists instructions on how to use the nRF24L01 wireless
transceiver and (ii) the touch screen shield manual [2].

Twitter In this project, the students created a door display
that displayed messages of a twitter feed. They used a simple
two line LCD (optionally a graphical color LCD) powered
by an Arduino combined with an Ethernet shield that allows
the Arduino to connect to the Internet. Once connected,
students wrote code that used Twitter’s APIs to read and
write tweets. We provided links to an LCD shield tutorial
and a link to the Arduino Ethernet library.

Angry Birds This was the most ambitious project. In this
project students used a sensor to determine how far a target
was, and hurled an angry bird plush toy at it. We suggested
the use of an ultrasound sensor to detect the distance from
the target. Students wrote code that used this to calculate
the velocity at which the angry bird needed to be launched.
We also suggested the use of a servo motor and some kind of
spring mechanism and shaft assembly to control the distance
to hurl the angry bird. In addition to links on the working of
ultrasonic sensors and sample code, we also provided online
coding manuals for the servo motor.

2.3 Outcome and Feedback
Outcome Of the 16 teams, all but one team completed their
projects before the deadline and successfully demonstrated
it on the final demo day. A total of seventy three students
finished the projects. The Arduino platform proved to be
powerful yet simple. The longest code contained less than
1000 lines. The quality of the projects was quite sophisti-
cated as shown by the photos in Figure 2. In particular,
the completion of the Angry Birds projects was impressive,
as the students independently improvised the use of rubber-
bands to act as springs to control the hurling distance. The
grading of the projects was quite straight-forward – we felt
all projects were complete and deserved full credit. We elab-
orate more on enthusiasm and other qualitative comments

in the conclusion. Video demos are available on our website:
http://www.cs.wisc.edu/vertical/arduino-252.

Feedback At the end of the seven week period, students
were asked to fill out a survey (anonymously if they chose
to) and the feedback was recorded. The top half of Figure 3
shows the response to five basic questions. Overall most
students liked the project, but a significant number felt more
help was needed and that the project could not be completed
as a two person team. We used this feedback to develop
instruction materials over the Summer of 2012. The most
common responses on what changes the students wanted
to see were: i) Better explanation of the Arduino libraries.
ii) Detailed and week-by-week instructional materials and
milestones. iii) Projects to be given out at the beginning of
the semester rather than towards the end of the semester.

Learning In terms of pedagogy and learning, it was quite
clear that students learned quite a bit about programming
from these projects and felt this was a good introduction to
programming and computer science — over 85% answered
positively (52.7% say strongly agree) to the question: “Did
you learn a lot about computer science from these projects?”.
Although, we could not keep track of improvements in ex-
ams or other homeworks because of the projects, many com-
mented in the survey that they learned a lot about program-
ming. The following are two representative student com-
ments that capture the learning effectiveness: i) “Arduino
opens a wide range of fun projects that you can do, which
allow you to/force you to understand how the chip, memory,
buses, input.output types, computing, and general computing
magic happen. It gets you hooked on learning.” ii) “Creating
our Arduino robot helped me understand more how comput-
ers work and function than assembly language did.”

3. INSTRUCTIONAL MATERIAL
The Spring 2012 feedback gave us insights into a few is-

sues in project implementation. We understood that more
instructional material was key for the projects to become
part of core curriculum. We created a web based directory to
house the project instructional materials. Within this web
based directory, each project had its own respective page
comprising instructional videos, documents on hardware as-
sembly and wiring, pseudo code and basic code structure
for each project and a chronologically ordered list of weekly
milestones for an eight week plan. This structure provides
the students with a user friendly environment to access the
materials, which include step-by-step instruction manuals
while maintaining the spirit of discovery that is central to
these projects.

To expand the options available to the students, we added
two more projects. One is a rendition of the famous “Pong”
game using the Arduino micro-controller and a “GameBoy”

http://www.cs.wisc.edu/vertical/arduino-252

Spring 2012 instance

54.5%

16.4%
18.2%

9.1%

Arduino is Better than LC3 Programming

65.4%

25.5%

5.5%
3.6%

More Hands-on Opportunities Needed

52.7%

32.7%
9.1%
5.5%

I Learned A lot from This Project

46.7%

33.3% 20.0%

The Amount of Help was Sufficient

18.5%
11.1%

25.9%

24.1%
20.4%

2 Person Group Able to Finish Project

Strongly Agree Agree No Preference Disagree Strongly Disagree

Spring 2013 instance

80.0%

20.0%

Arduino is Better than LC3 Programming

86.7%

13.3%

More Hands-on Opportunities Needed

73.3%

26.7%

I Learned A lot from This Project

46.7%

33.3% 20.0%

The Amount of Help was Sufficient

73.3%

26.7%

2 Person Group Able to Finish Project

Strongly Agree Agree No Preference Disagree Strongly Disagree

Figure 3: Summary of feedback. LC3 programming refers to the assembly programming originally in CS252.

like accessory that includes a joystick and two selector but-
tons. The second, was a “Word Scramble” that would give
the user a scrambled word on an LCD screen. The user then
uses a PS2-based keyboard to enter the unscrambled word.
We also provided much more of the mechanical hardware
required for the Angry Birds project as part of the instruc-
tional development.

Testing We tested the material using two undergraduate
students from the Spring 2012 offering. They were requested
to follow the step-by-step procedure located in the web di-
rectory for each project, just as a real student of the class
would do. We monitored and recorded their progress and ob-
tained their feedback at each step. Based on this feedback,
we made many presentation changes and improvements.

4. SPRING 2013
We now describe the Spring 2013 offering which was based

on the instruction materials created in Summer and Fall 12.

4.1 Mechanics and Implementation
In the Spring of 2013, we offered the students of the

CS252 class an opportunity to work with the Arduino micro-
controller. Out of 160 students enrolled in the class, more
than 60 were interested. But we wanted to test in a more
controlled setting with a known TA/student ratio - we ran-
domly selected sixteen for doing the projects. Students were
then divided into teams of two to three. Each team had the
freedom to choose which of the seven projects they wanted
to work on, with some guidance from us based on their skill
level. The instructional material housed in the web-page
was also made available to the students.

Once the team had chosen the project they wanted to
work on, they were given a box containing the necessary ma-
terial/equipment to accomplish the corresponding project.
The goal set for all teams was to finish their assigned project
in six weeks or less. In comparison to the Spring 2012 ver-
sion in which we provided little or no support, we increased
the support provided to the Spring 2013 batch. For instance,
office hours with multiple (up to 4) TAs were made avail-
able every day for 3 hours. A “Frequently Asked Questions”
page was also created for each project with answers to ques-

tions that students might have while building their project.
The Q&A platform “Piazza.com” was also used for students
to ask questions about their projects online. A total of 21
questions were asked by the students, and 100% of the ques-
tions were answered by the TAs with an average time of 15
minutes. At the end of the given period, the students were
required to demonstrate their finished projects.

4.2 Outcome and Feedback
At the end of the given time-frame, all seven projects were

correctly completed. Compared to the previous Spring, the
final quality of the projects was significantly better, as many
groups did more than what was initially expected. For exam-
ple, the Pong game was implemented with an accelerometer
enabling the game to be played by tilting the screen instead
of using a joystick. Furthermore, the speed at which the
projects were finished was greatly improved, as most teams
had completed their project by week 4, and all teams had
finished by week 5. It was also observed that teams attended
less office hours than the previous year, getting most of the
help needed using the online instructional material that was
provided to them.

One major concern was to see whether the help provided
during Spring 2013 gave better results compared to the im-
plementation of the project in Spring 2012, where guidance
was minimal. During the six weeks period of Spring 2013,
students’ feedback regarding the entire process was obtained
on a weekly basis - they were asked to write up a short re-
port each week on the instruction material and critique it.
We analyzed this data and used this information to enhance
the instructional material.

Overall, the weekly feedbacks we received were positive.
However during the first two weeks, we noticed that the main
complaints students reported was that the instructional ma-
terial given to them did not meet their expectations. Stu-
dents started their projects thinking that all information
necessary to finish their project will be given to them. How-
ever, we intentionally limited the amount of information we
provided – making sure that some browsing and thinking was
necessary to understand the given material. Some informa-
tion was purposely left out to encourage the teams to think
by themselves and use their imagination to accomplish their

project. By the time they completed their projects, students
realized that the instructional material given to them was
actually of great help, some teams went further by saying
that it was too much help.

We did the same survey as in Spring 2012, and the results
are shown in Figure 3. Overall the response was overwhelm-
ingly positive. Except for one question, students answered
with a definitely yes or yes. For question-4 about whether
there was sufficient help, 20% were neutral, 80% were defi-
nitely yes or yes. To one of the most important questions of
“Did you feel you learned about programming and computer
science from the Arduino projects”, 73.3% replied“Definitely
yes”, and 26.7% replied “Yes”.

When asked what they thought of their project and how
hard it was for them to build it, one student replied “Not
a lot–for the scope it was intended, I think this was a good
project. I think most people with minimal to no prerequisite
programming knowledge should be able to accomplish some-
thing decent given the code provided, yet there is still room
for refinement for more advanced students.” Another stu-
dent had a valuable comment saying “I would have liked our
project to be a little more complex. This could have been
done by providing no skeleton code, allowing students to dig
deep into the Arduino reference page.”

Between the comments stating that the projects were too
easy, there was too much instructional material, and that all
groups but one finished their project early, we can conclude
that the provided instructional material is definitely suffi-
cient in helping students complete these hands on projects
in the required time frame. It is clear from the surveys and
overall time spent completing each project that the result
of instructional material is beneficial to the students. From
student surveys we can also see that the overall feeling about
having these projects as part of the course curriculum is pos-
itive. They believe that having a hands on experience simi-
lar to one they might have in the real world is an important
factor in determining whether or not to pursue Computer
Science/Computer Engineering as a major.

5. ADOPTION AT OTHER INSTITUTIONS
Our goal in writing about our experience is to facilitate

the adoption of the material we developed in similar courses
in other institutions. To that end we now comment on some
related issues.

Instructor background and training When we first en-
visioned the course in Spring 2012, the instructor (the last
author on this work) had no experience programming Ar-
duino - neither hardware nor software but was able to ramp
up quickly. Coding on the Arduino platform is straightfor-
ward to anyone proficient in C/C++ programming. Go-
ing through our online tutorials and other Arduino tutori-
als, one can become proficient with 10 to 20 hours of work.
The potentially biggest impediment to implementing certain
projects is minor hardware involvement. For example, a few
Arduino shields need some soldering - intimidating and un-
familiar to some CS students and CS instructors. This is
rare and in our case applied only for the Twitter project -
simply avoiding it can eliminate this issue.

Scaling to larger classes We believe these projects can
be considered for adoption in large classes in excess of 100
or 200 students. Much of the instructional material is web-
based and hands-on input from instructors and TAs are lim-

ited. The main issues to consider are cost, physical space,
and managing hardware failures - which we comment on
briefly. Cost per project ranged from about $100 to $250
in 2012 (see Appendix for a breakdown). As the Arduino
IDE works across platforms and is free, we left it to the stu-
dents to use any machine they preferred. For physical space,
we feel class room space is sufficient. We over-provisioned
our inventory anticipating hardware failures. However fail-
ures were extremely rare – two wireless modules failed and
a robot kit missed a gear component – and we were able to
instantly replace them.

Role of the TAs and TA training In our pilot run, the
TA’s spent significant time defining the projects. One par-
ticular graduate student (the lead author on this paper) was
available for consulting on hardware and software issues.

In the second run, the only role of the TAs was to be
available for 3 hours per weekday and answer questions on
Piazza. These were all under-graduate students who had
earlier taken the course. Their training was simple — they
were tasked with doing all the projects once and from this
learned pretty much all that was involved. The hardware
and software components of the Arduino platform are easy
to use and learn. In our experience, teaching assistants with
basic computer engineering knowledge were able to come
up-to-speed with the environment and test run the projects
with ease. In this second run, after the first two weeks, there
was little to no demand on the TA time - only a total of 21
questions were asked/answered on Piazza.

In summary, if built upon the projects we have already
developed, this could be implemented without TA support
if need be. It will likely require office hours contact with the
instructor, and his/her familiarity with the tools.

Alternatives to Arduino An important question to also
consider is alternatives to Arduino, of which quite a few
exist. They differ primarily in their software stack, hard-
ware capability, diversity of “shield” and sensors, and cost.
Platforms with Arduino-like software environments include
mbed, OOPC, RobotC, and TinkerForge. Although they
have similar hardware capability and cost, we feel commu-
nity support and availability of natively supported shields
is much less than for Arduino. Platforms with more sophis-
ticated software environments like .NET, Java and Python
include ioBridge, Make Controller Kit, Freedom Dev Board,
Gadgeteer and Netduino. Finally platforms with full-fledged
Linux/GCC include Intel Galileo, UDOO Raspberry Pi, and
Beaglebone. The latter two categories introduce more bar-
riers and complexity in interfacing with peripherals (and
hence sensors), making system-building harder. In our view,
Arduino’s simplicity, cost, widespread availability of shields
(hardware and software) and vast community support at
this time is unmatched and alternatives do not appear com-
pelling to us.

6. CONCLUSION
We have learned many things from the exercise of build-

ing these projects, instructional material and getting student
feedback. Most importantly, we found that students liked
the hands-on learning experience and appreciated this as a
great way to get introduced to computer science. Second,
we feel that with the materials in-place, and a pipeline of
trained TAs providing support, it is quite easy to establish
this as a continuous offering without significant recurring
capital or human resource investment. As all necessary in-

structional materials are located in a web based directory,
the bandwidth for providing these projects to 40 or more
students has already been established. We conclude making
a few other observations.

Diversity in technical background A challenge in any
introductory course is the diversity in the technical back-
ground of the students. Exceptionally talented students
sometimes had no computer science background. A few,
even at the freshman level, had good understanding of pro-
gramming. and had modest experience with high level pro-
gramming languages like Java. Thanks to the the nature of
the projects and the capability of the Arduino platform, we
were able to create a from-scratch learning environment for
students with little exposure and an open-ended structure
to challenge students with prior knowledge.

Time spent and enthusiasm We observed that students
were extremely enthusiastic about the projects, often spend-
ing significantly more time on these than the course home-
works or exam preparation. Some specific anecdotes: i) Two
teams wanted to keep the hardware as they wanted to con-
tinue modifying and fiddling with them. ii) One team went
above and beyond what was required by the Pong game,
by adding accelerometers and making the game controller-
free and instead simply tilt to play. iii) One team reverse-
engineered the PS2 protocol and found a way to add a key-
board to the Twitter project.

Less is more? Compared to the Spring 2012 offering, The
Spring 2013 version included a more detailed instruction ma-
terial. However, we feel that the students learned much more
in the Spring 2012 offering. Although it was more time con-
suming for the students, we think the students learned to
learn — with a number of “Aha!” moments while discover-
ing things on their own.

Computer science pedagogy In terms of computer sci-
ence pedagogy, the projects convey many concepts in a hands-
on and principled manner and are more effective than lec-
tures with small homeworks. The students wrote programs
and debugged them — getting introduced to a key skill
very early on. Many technical concepts like the right hand
rule, the fact that the maze can be represented as a graph,
the concept of backtracking (and hence stack) are all natu-
rally discovered by students as they implemented the maze
project. In handling issues in the ultra-sonic sensor and
infra-red sensor the students realize the concept of noisy
data, they independently discovered the concept of sam-
pling, averaging and noise correction. Most importantly,
when doing the projects, they realize an important principle
of system design – not to assume that things will work the
first time. Students naturally discover these principles and
hence this yields to be more effective than being taught with
a contrived or abstract example.

Overall, we feel this exercise in CS252 has provided a
project that can be done in a 4 to 6 week time-frame and
added to an existing 2 or 3 credit course on introductory
computer science. In our experience, it is an effective way
to introduce computer science in a hands-on fashion to covey
to freshman the excitement and diversity in the field.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for comments. Many

thanks to Mark Hill and Guri Sohi for facilitating the projects
in CS252 in Spring 2013. Thanks to Rebecca Lam and New-
sha Ardalani for much support in Spring 2012 in managing

the projects. Support for this research was provided by NSF
under the following grants: CCF-0845751, CNS-0917213,
and CCF-0917238.

8. REFERENCES
[1] “312 introduction to programming, ut-austin, cs,

http://www.cs.utexas.edu/undergraduate-program/
courses/312-introduction-programming.”

[2] “Adafruit, www.adafruit.com.”

[3] “Arduino, http://www.arduino.cc/.”
[4] “Code for nrf24l01 modules,

https://github.com/maniacbug/RF24.”
[5] “Fitbit flex teardown, http://www.ifixit.com/Teardown/

Fitbit+Flex+Teardown/16050/1.”
[6] J. Andrus and J. Nieh, “Teaching operating systems using

android,” in SIGCSE ’12, pp. 613–618.
[7] J. Bayzick, B. Askins, S. Kalafut, and M. Spear, “Read,

write, play: An educational mobile gaming platform,” in
SIGCSE 2013.

[8] S. Loveland, “Human computer interaction that reaches
beyond desktop applications,” in SIGCSE ’11.

[9] R. L. McFall and M. DeJongh, “Increasing engagement and
enrollment in breadth-first introductory courses using
authentic computing tasks,” in SIGCSE ’11.

[10] S. Patel and Y. Patt, Introduction to Computing Systems:
From Bits & Gates to C & Beyond. McGraw-Hill
Professional.

APPENDIX
Projects budget

1. Obstacle Avoidance - $254.93

(a) Arduino Uno Starter Pack ($65.00) x1

(b) Motor Shield ($16.00) x1

(c) Turtle 2WD Mobile Platform ($41.00) x1

(d) Ping Ultra Sonic Sensor ($29.99) x3

(e) Servo Extension Cables ($2.49) x3

(f) AA Batteries ($1.36) x4

(g) 9 volt Battery ($2.05) x1

2. Maze Navigating - $139.44

(a) Arduino Uno Starter Pack ($65.00) x1

(b) Motor Shield ($16.00) x1

(c) Turtle 2WD Mobile Platform ($41.00) x1

(d) Infrared Sensor ($9.95) x1

(e) AA Batteries ($1.36) x4

(f) 9 volt Battery ($2.05) x1

3. Tic Tac Toe - $381.40

(a) Arduino Uno Starter Pack ($65.00) x4

(b) TFT Touch Shield ($59.00) x2

(c) NRF24L01 Radio Transceiver ($3.70) x2

4. Pong - $163.36

(a) Arduino Uno Starter Pack ($65.00) x1

(b) Liquidware InputShield ($39.36) x1

(c) TFT Touch Shield ($59.00) x1

5. Twitter - $130.70

(a) Arduino Uno Starter Pack ($65.00) x1

(b) Graphic ST7565 Positive LCD (128x64) with RGB back-
light + extras ($17.95) x1

(c) Ethernet Shield ($45.00) x1

(d) Ethernet Cord ($2.75) x1

6. Word Scramble - $96.65

(a) Arduino Uno Starter Pack ($65.00) x1

(b) Graphic ST7565 Positive LCD (128x64) with RGB back-
light + extras ($17.95) x1

(c) PS2 Keyboard ($13.70) x1

http://www.cs.utexas.edu/undergraduate-program/courses/312-introduction-programming
http://www.cs.utexas.edu/undergraduate-program/courses/312-introduction-programming
www.adafruit.com
http://www.arduino.cc/
https://github.com/maniacbug/RF24
http://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050/1
http://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050/1

	Introduction
	Spring 2012
	Mechanics and Implementation
	Description of Projects
	Outcome and Feedback

	Instructional Material
	Spring 2013
	Mechanics and Implementation
	Outcome and Feedback

	Adoption at other institutions
	Conclusion
	Acknowledgments
	References

