
Understanding the Impact of Gate-Level Physical Reliability Effects
on Whole Program Execution

Raghuraman Balasubramanian
University of Wisconsin-Madison

ragh@cs.wisc.edu

Karthikeyan Sankaralingam
University of Wisconsin-Madison

karu@cs.wisc.edu

Abstract
This paper introduces a novel end-to-end platform called

PERSim that allows FPGA accelerated full-system simula-
tion of complete programs on prototype hardware with de-
tailed fault injection that can capture gate delays and dig-
ital logic behavior of arbitrary circuits and provides full
coverage. We use PERSim and report on five case stud-
ies spanning a diverse spectrum of reliability techniques
including wearout prediction/detection (FIRST, Wearmon,
TRIX), transient faults, and permanent faults (Sampling-
DMR). PERSim provides unprecedented capability to study
these techniques quantitatively when applied to a full pro-
cessor and when running complete programs. These case
studies demonstrate PERSim’s robustness and flexibility —
such a diverse set of techniques can be studied uniformly
with common metrics like area overhead, power overhead,
and detection latency. PERSim provides many new in-
sights, of which two important ones are: i) We discover an
important modeling “hole” — when considering the true
logic delay behavior, non-critical paths can directly tran-
sition into logic faults, rendering insufficient delay-based
detection/prediction mechanisms targeted at critical paths
alone. ii) When Sampling-DMR was evaluated in a real
system running full applications, detection latency is or-
ders of magnitude lower than previously reported model-
based worst-case latency - 107 seconds vs. 0.84 seconds,
thus dramatically strengthening Sampling-DMR’s effective-
ness. The framework is released open source and runs on
the Zync platform.

1. Introduction
Hardware reliability is growing in importance and many

argue it could become a first-order constraint. To ad-
dress this, a plethora of work on hardware fault detec-
tion [17, 18, 26, 36, 20, 4, 24, 38, 11], prediction [42, 44,
29, 3, 7, 13, 40, 45, 16, 6], recovery [32, 41], and toler-
ance [12, 23, 34] has been proposed. Understandably, these
works adopt various frameworks for quantitative evaluation
that fall under two broad categories, namely high-level per-
formance simulators or device-level models. As we elab-
orate below, both suffer from inadequacies and modeling
errors that affect understanding of reliability.

In the high-level performance simulator approach, a
fault model is used in a performance simulator. Many of
the reliability problems arise from static process variation,
dynamic temperature and voltage variation, and dynamic
wearout. These phenomena fundamentally change the de-
lay of logic gates and consequently the digital logic be-
havior. Building an approximate coarser-granularity fault-
model that captures these effects in a performance simulator
introduces large modeling and coverage problems. Typi-
cally the notion of gate-level delays is completely absent,
while the notion of gate-level logic effects is highly ab-
stracted. Further, even performance simulators have been
found ineffective to run entire programs — often-limiting
evaluation to a few 100 million instructions. FPGA accel-
erated simulation inherently can model only logic behavior,
and delay simulation and delay modeling is currently not
feasible. Overall, in this approach, the workload’s effect
is captured, but device and microarchitecture accuracy is
heavily compromised.

In the device-level approach, detailed device level sim-
ulation using SPICE or gate-delay aware simulation is em-
ployed. Since, it is time consuming, it is impossible and im-
practical to conduct an end-to-end evaluation when running
full programs. Typically a small and regular sub-circuit
like an adder, or a subset of critical paths is considered and
studied for a short duration with random inputs. In this ap-
proach, while device-level behavior is captured, the work-
load and architecture/microarchitecture are not modeled.

The important interaction of workload behavior with un-
derlying gate and circuit-level impact of reliability has re-
mained largely under-studied, and our community lacks
good tools for such studies. For “conventional” architec-
ture, microarchitecture, and hardware/software co-designed
approaches for reliability, this end-to-end capability can
complement the aforementioned techniques. For cross-
layer approaches that expose reliability concerns up to ap-
plications, this end-to-end capability is necessary for mean-
ingful evaluation. Our paper seeks to address this important
facet of quantitative studies by developing a framework that
allows the end-to-end investigation of the impact of physical
effects of individual gates when running full programs.

The key idea behind our framework is to monitor with
FPGA acceleration any arbitrary circuit of the processor be-
ing emulated, while running an actual workload of interest.
Four co-designed mechanisms form our framework called
PERSim - Physical Effects Reliability Simulator. A mech-
anism called input sequence extraction, extracts a log of all
inputs for a gate-level circuit during the execution of a pro-
gram. These inputs are used to analyze the circuit using
delay aware simulation and fault modeling to cover relia-
bility effects at the gate level. Using a mechanism for fault
injection and deterministic re-execution, the faults are in-
troduced back in to the system, and their effects studied
by running the full programs again using FPGA accelera-
tion. Using an approach with efficient fine-grained com-
munication with an FPGA, delay-aware simulation (not just
gate-level logic simulation) and accurate fault modeling,
we present a novel co-simulation environment that captures
the effects of reliability phenomena on application behav-
ior. The toolchain, along with documentation and tutorials,
can be found at http://research.cs.wisc.edu/
vertical/PERSim.

We make the following contributions.
• A framework with unprecedented fidelity in studying

the end-to-end physical effect of reliability at the gate-
level running entire programs. Our framework runs
the OpenRISC processor and is capable of running full
SPEC benchmarks and similar large code bases.

• An FPGA acceleration platform with fine-grained sig-
nal observability — enabling high simulation speeds
(25 million cycles per second per board) without any
limits on signal observability or fault site coverage.
Figure 1 shows our evaluation cluster of FPGA boards.

• Demonstrating four fault prediction and detection
techniques from the literature using PERSim. These
include FIRST [40], Wearmon [45], Online wearout
prediction [6], Sampling+DMR [27]. Compared to
what has been studied before for these mechanisms,
PERSim enables a significant leap in capability: it al-
lows detailed logic and delay simulation and measure-
ment of latencies for arbitrary gates in a full processor
running entire benchmarks.

• Evaluations running full applications on arbitrary
circuits helped uncover new design insights within
each technique (Table 2) and one important gen-
eral insight: when considering the true logic de-
lay behavior, non-critical paths can directly transition
into logic faults, rendering insufficient delay-based
wearout detection/prediction mechanisms targeted at
critical paths alone.

• The first end-to-end study of transient fault ef-
fects on application behavior with device-level charge
accumulation-based modeling of particle strikes.

This paper is organized as follows. Section 2 describes
the design, Section 3 describes our implementation using

Xilinx Zynq FPGA

Programming Cable

UART to Host

ZedBoards

Figure 1. PERSim FPGA cluster

Applications

µ-Architecture
Architecture
Compiler OS

Reliability Phenomena
(Wearout, particle strike, etc.,)

Gate level

Circuit level

Full system +
new reliability
technique

Processor

How does it affect the
gate characteristics?
(logic behavior, delay)

Is the fault picked up
here?

Whats the effect on the
application output?
Is the proposed reliability
idea effective?

Figure 2. Design goals and rationale

the Zynq platform, Section 4 describes the case studies,
Section 5 discusses related work and Section 6 concludes.

2. Design
In this section we first define our objective and break it

down into achievable design goals. Next, we describe how
our solution is organized. We then illustrate how this orga-
nization satisfies our design goals.

2.1. Objective
This work seeks to answer the question, “How does reli-

ability physics impact program behavior?” Figure 2 shows
the need for modeling reliability effects at the gate level and
analyzing the consequence at the architecture level. Relia-
bility phenomena change the characteristics of individual
gates. A faulty gate may adversely effect the logic behavior
at the circuit level. This fault may then cause an anomaly in
the application. This leads us to our three goals.

2.2. Design Goals
Capture reliability effects at the gate level The physics
of reliability is well understood at the gate level and matches
the physical phenomenon.
Capture fault propagation to circuit level At the circuit
level, gates may be abstracted by defining their logic behav-
ior and their propagation delay. The impact of a particular

Test Processor

Reliability
Idea

Design Under Test

Ap
pl

ica
tio

ns

1

1
0

Single Even
Upsets

Fault Vector
Fault?

Delay Aware Simulation
At the circuit level

Reference
Arch Trace

Arch Trace,
fault injected

?

Fault Injection and Deterministic re-execution
With application running on the full system

Er
ro

r?
Re

su
lts

Offline Analysis :
Delay Tracking Techniques

Application n

y circuits x
m

illi
on

cy
cl

es

Application 1

Device Wearout

Permanent Faults

Delay Increase / Fault

Fault Site

Test Processor
Design Under Test

Ap
pl

ica
tio

ns

Pr
ed

ict
io

n

1

2 4

3

5

Input Sequence Extraction
With application running on full system

Fault Modeling
At the gate level

Reliability
IdeaSlack

Input Sequences

6

Figure 3. Design overview

gate failure is dependent on the operation of the entire cir-
cuit. Hence, it is key to model the state of the circuit around
a faulty gate to capture its effect on the microarchitecture.

Check for errors at the full system running entire ap-
plications At any time, the utilization of a module in a
microprocessor is dependent on the application that is cur-
rently executing. Consequently, certain applications or ap-
plication phases may be unaffected by faults occurring in
certain areas in the microprocessor. It is hence critical to
evaluate the impact of faults in a full system setting.

In addition to these goals, we seek to create an easily
extensible platform to facilitate usage by researchers.

2.3. PERSim Organization

Our goal to check for errors at the full system can be
achieved by FPGA acceleration. However, our other goals
require gate level modeling and circuit level analysis, and
hence require the capability to observe and modify select
signals in fine detail when running on the FPGA. Figure 3
shows our overall design organized into the four mecha-
nism. The processor being studied we refer to as the test
processor Ê. We start by selecting fault sites in the test pro-
cessor. Next we isolate the circuit around the sites Ì and
subject them — these are much smaller compared to the
full processor — to delay aware simulation. Fault models
capture the effect of reliability phenomena on the logical
and delay behavior Í of the fault sites. The delay aware
simulation is augmented to incorporate these effects. FPGA
acceleration is augmented with hooks for input sequence ex-
traction to extract sequences from the running benchmarks
Ë to then drive the circuit under delay aware simulation.
The output of the delay aware simulation is then used to
create a cycle accurate fault vector Î that is then injected in
to the test processor. In this fault injection and deterministic
re-execution step, we again use FPGA acceleration to check
for the fault’s impact on the architecture state and program
execution Ï. The next four paragraphs describe the individ-
ual mechanisms.

Input Sequence Extraction Detailed delay aware simu-
lation on a full processor is time consuming, so, we simulate
only a fraction of it. A fault in a particular gate manifests
at the microarchitectural level (on a flip-flop that it drives)

only in certain conditions. In particular, characteristics of
other gates in its fan-out and fan-in and the logical values
driven in a particular cycle affect fault propagation. Hence,
we simulate all gates in the fan-in and fan-out of a fault site
in delay aware mode. While running an application in an
accelerated platform, the Input Sequence Extraction mech-
anism creates a cycle-by-cycle reference of signal states at
the fan-in that will serve as inputs to drive these circuits.

Delay Aware Simulation Using data collected from the
input sequence extraction, we run the circuit in detailed de-
lay aware simulation. Reliability phenomena modify the
logic behavior and electrical characteristics like the propa-
gation delay of a gate. The properties of the gate identified
as the fault site is augmented to include these effects. At
every clock cycle, this simulation checks for anomalies that
would cause a fault at latches driven by the circuit – like a
flipped logic value or an unstable signal at the end of the
clock period. The simulation creates a fault vector marking
the cycles in which faults appear at the circuit level.

Fault Modeling We utilize available fault models to ob-
tain the effect of phenomena such as device wearout, sin-
gle event upsets and permanent faults on the logic and de-
lay behavior of individual gates. These models include (i)
MOSRA1 which captures aging effects leading to device
wearout and breakdown [43], (ii) a charge accumulation
model to capture the effect of a particle strike leading to
single event upsets and (iii) probabilistic models that sim-
ulate device breakdown seen as permanent faults. Using
these gate level models implies that we isolate each gate
and obtain its physical properties independent of gates that
surround it.

Fault injection and Deterministic re-execution Using
the fault vector, we check the effect of the faults on the ar-
chitectural state and the program. We do this in two steps.
First we run the program to completion while saving the ar-
chitectural state transitions. Next we run the program with
a fault injected in the exact execution cycle identified by the
delay aware simulation. Using the state transitions obtained
earlier as the reference, we mark mismatches as faults.

PERSimUser Applications

Modifications (typically RTL) to
model new reliability technique

Architecture level :
Error trace/rates

µ-architecture level :
Faults and delay

Figure 4. Evaluating a technique using PERSim

U
AR

T-
Te

rm
in

al

51
2M

B
DD

R
m

em
or

y

AMBA Bus

ARM
Core

Programmable LogicXilinx ZYNQ FPGA

Memory

Insn Data

Arbiter

OpenRISC Core

32
x3

2
(C

on
fig

, s
ta

tu
s)

 R
eg

is
te

rs

Instruction, Data Trace

RST
Gate

CLK

C
yc

le
 C

ou
nt Fault Injection

Input Sequence

Register Interface

Architecture State

Start
PC

Current PC

Register W
Error? Mem Read

Mem Read

Hypervisor Hardware

Hy
pe

rv
iso

r F
irm

wa
re

PL

Hy
pe

rv
iso

r H
ar

dw
ar

e
+

O
R1

20
0

Pr
oc

es
so

r

AMBA Bus

Figure 5. The Zynq FPGA and hardware

2.4. Life of a PERSim Experiment
Figure 4 illustrates a researcher’s role in using PERSim

and its four mechanisms to implement and evaluate a new
reliability technique. The researcher primarily supplies ap-
plications and makes minor modifications to the test proces-
sor to model the proposed technique. They may choose to
augment the fault models if necessary and perform further
offline analysis on the faults that cause errors that are the
end output of PERSim’s fault-injected re-execution.
3. Implementation

This section describes our implementation of PERSim.
We introduce the FPGA platform and elaborate on the ar-
chitecture we implement to accelerate the experiments. We
then briefly elaborate on the key implementation features of
each mechanism.
3.1. FPGA accelerated system simulation

PERSim is built on the Xilinx Zynq FPGA platfrom. The
Zynq FPGA integrates an ARM processor with user pro-
grammable logic on a single chip and enables fine grained
communication between them. On the FPGA, we integrate
an OpenRISC OR1200 processor as our test processor and
a firmware-hardware layer we call the PERSim hypervisor.
Xilinx Zynq FPGA The Xilinx Zynq FPGA [1] inte-
grates a fully featured dual core ARM Cortex-A9 proces-
sor with a user programmable logic (FPGA) as an SOC.
The ARM core and user hardware realized are connected to
a shared bus, enabling fine-grained firmware-hardware in-
teraction. The shared bus also serves as the bridge to an
external memory. Development boards like the ZedBoard
[2] integrate the Zynq FPGA with on-board memory, code
download circuitry and a number of peripherals such as
USB ports, video and audio ports and GPIO. Both the ARM
core and user hardware can access a large external memory
through the shared bus.

1MOS Reliability Analysis is a plugin to Synopsys HSPICE to model
wearout at the transistor level.

Figure 5 shows the modules of our PERSim hypervisor
and the OpenRISC processor on a Zynq FPGA. Firmware
running on the ARM core communicates with registers in
hardware that wraps around the test processor. These reg-
isters may be programmed to control the operation of the
OpenRISC processor and also to orchestrate collecting sig-
nal and architectural state samples and fault injection stud-
ies. In the next few paragraphs, we describe the processor
under test and the PERSim hypervisor.
The OpenRISC processor The OR1200 core [28] is a
32-bit, in-order, 4-stage implementation of the OpenRISC
architecture. The core is written in Verilog RTL and is avail-
able open-source along with a firmware toolchain, linux
kernel port and a functional simulator. We chose this as the
test processor as it is simple to understand and modify and
is capable of running full applications — other processors
like OpenSPARC and FabScalar [10] may be used.

We made minor modifications to the RTL to expose pro-
cessor state (such as current PC) that the PERSim hyper-
visor uses to monitor application progress. Further modifi-
cations to extract input sequences and introduce faults are
discussed in detail in Section 3.2 and Section 3.5.
PERSim Hypervisor The hypervisor is a firmware-
hardware design created to enable fine grained control of
the test processor, monitoring application progress, input
sequence extraction and fault injection.

The hypervisor hardware is written in Verilog RTL and
mapped onto the programmable logic part of the FPGA and
is clocked at the same frequency as the processor under test.
The hypervisor firmware is written in C and runs on bare
metal on the ARM processor. The hardware hooks on to
the on-chip shared bus through two interfaces – to connect
the registers to the ARM core and to access the memory
directly to serve the processor under test. The hypervisor
performs a simple memory translation to forward memory
requests to an address space reserved for the test processor.
The hardware registers are visible to the firmware running
on the ARM core as memory mapped registers.

The firmware handles initialization and controls hard-
ware by programming registers. The hypervisor functions
are handled by hardware modules that enable the following:
• Fine grained processor control: Allows the test pro-

cessor to be brought back to its reset state, or paused
and played by controlling the reset and clock gating.

• Monitoring processor progress: By tracking the cur-
rent PC and the memory requests, the hypervisor en-
sures that the processor is making active progress.
Counters may be configured to count the number of
instructions and cycles after execution passes a pro-
grammed start PC.

• Input Sequence Extraction: Taps at inputs to circuits
driving fault sites feed memories in the hypervisor.
The values are saved on the fly based on programmed

cycle start and end values. When the memories are
full, the hardware clock gates the processor and waits
for firmware to read them. These memories can be
read through access registers.

• Fault injection: The firmware programs the type, lo-
cation (fault site), and the exact clock cycle in which
a fault is to be introduced. The hypervisor provides
the following options to emulate a fault – (i) holding
the previous value (ii) stuck at 0 (iii) stuck at 1 (iv)
bit-flip at the output. The hypervisor handles the fault
injection in two steps. First, the program is executed
without faults injected, and the hardware saves the ar-
chitectural state – namely the PC, register writes and
stores – to an on-chip memory. Next, in a fault-injected
re-execution, the hardware compares the architectural
state to the previously stored state and records a mis-
match as an error.

The OpenRISC processor enables running full appli-
cations while the hypervisor offers cycle-by-cycle visibil-
ity into specific circuit regions, and flexible fault injection
and error checking capability. This enables the input se-
quence extraction, and fault injection and deterministic re-
execution mechanisms. We next summarize how this plat-
form can be used in conjunction with delay aware simula-
tion and fault modeling to accurately model the effect of a
reliability phenomenon that is exposed by a new reliabil-
ity technique. More details about the implementation and
usage may be found at our website http://www.cs.
wisc.edu/vertical/PERSim.

3.2. Input sequence Extraction
Figure 6(a) illustrates the input sequence extraction

setup. At the end of each experiment, for each applica-
tion, this mechanism creates a file containing the state of
the latches that drive each subcircuit for a desired number
of clock cycles: A in Figure 6(a).

3.3. Delay aware simulation
Figure 6(b) illustrates the delay aware simulation setup.

Gate characteristics from a synthesis library are used to sim-
ulate circuits in delay aware mode. We augment these char-
acteristics, in particular the delay and logic behavior using
the fault models. Driving the inputs sequences, we record a
cycle-by-cycle trace of faults and output delays B , used by
fault modeling to drive fault injection.

3.4. Fault modeling
In PERSim fault models convey the effect of a reliability

phenomena by capturing the corresponding change in gate
behavior. As these effects vary, PERSim allows for creating
and integrating various models. We provide out-of-the-box
support for modeling the following:
• Device Wearout using Synopsys HSPICE with the

MOS Reliability Analysis plugin [43]. This model
captures aging due to NBTI and HCI [35, 25].

• Transient Faults using a charge accumulation model.
The model captures the effect of a particle strike as
a temporary logic glitch. The time at which a par-
ticle strikes and the charge transferred (consequently
the duration of an Single Event Upset) are modeled as
uniform and Gaussian random variables respectively.

• Permanent Faults using probabilistic models to pick
fault sites and the cycle in which a gate breaks down
as a stuck-at-0 or stuck-at-1 fault.

3.5. Fault injection and deterministic re-execution
Figure 6(c) illustrates the mechanism used to observe a

fault’s effect at the architecture level. The hypervisor first
creates a clean trace of the architecture state. Next, choos-
ing one fault site and using the information on when it man-
ifests B , the program is re-executed. Comparing the traces,
we obtain a cycle accurate architectural error trace C .
3.6. Implementation Considerations

The number of fault sites that can be simulated with
PERSim is unlimited. Naive storage of input sequences to
Block-RAMs limits the number of flip-flops monitored. In
contrast, our design enables saving any number of flip-flops
over arbitrary time durations. When the BRAMs are full,
the hypervisor hardware automatically clock-gates the pro-
cessor, freezing it. The firmware then reads the values and
removes the clock-gating, allowing input sequence extrac-
tion to continue till the BRAMs are full again. This repeats
for the desired number of cycles. The tradeoff is emula-
tion speed - while the processor operates at 50MHz, BRAM
reads are limited by UART baud rates.

Replacing the test processor in PERSim is straightfor-
ward. The hypervisor treats the processor as a gray box.
The only modifications to the processor are taps for input
sequence extraction, architecture state extraction and fault
injection. All complexity arises from mapping the original
design to the FPGA. Specific operations like mapping reg-
ister files to FPGA BRAMs are necessary. In our opinion,
the Zynq FPGA (with on-chip memory controllers and the
ARM core) reduces this complexity significantly. For ex-
ample, FabScalar could use the ARM core for system call
emulation (typically done by the host).

A multicore processor may be used as the test proces-
sor. OpenSPARC is one open-source cache-coherent multi-
core design available and porting it to a new FPGA plat-
form is non-trivial. Further considerations include the lim-
ited logic area on the FPGA and avoiding sources of inde-
terminate re-execution on multicore processors.

Modeling operating conditions such as temperature and
supply voltage are done during delay aware simulation and
SPICE simulations. A unique fault vector is generated for
each operating condition. As the Fault Injection mechanism
is oblivious to the operating condition, considering many
operations conditions translates to more runs (fault vectors),
with no additional mechanisms needed.

Fa
ul

t
sit

es

Identify
Inputs

OpenRISC
RTL RAM

Xilinx ISE

Zynq
FPGA

OpenRISC RTL

Synopsys Design
Compiler32

nm

lib

CLK

Netlist

Circuits Around Fault Sites

Input
Sequences

A

Circuits Around Fault Sites

Synopsys VCS

Fault Model

Delay Increase
Logic behavior change

Synopsys 32nm library

Input Sequences
A

Propagation delay,
circuit level logic faults

B

OpenRISC
RTL + fault

injection logic
RAM

Xilinx ISE

Zynq
FPGA

OpenRISC RTL +
new reliability technique

CLK

Fault inject
Fault type

Add fault injection logic

Architectural state
(PC, Register writes…)

Add logic to log
architecture state

Propagation delay,
circuit level logic faults

B
Fault
Vector

Arch
Error Trace

C

(a) Input Sequence Extraction (b) Delay Aware Simulation (c)Fault Injection & Deterministic Re-execution

Figure 6. PERSim mechanisms

Technique / Description
Phenomenon
FIRST [40] • Periodic hardware signature check

• Use BIST and test vectors
Wearout • Reduce clock period, voltage to mimic aging
WearMon [45] • Periodic DFT check

• Use existing scan hardware and test vectors
Wearout • Test at different clock periods

• Track and analyze failures offline
Online Wearout • Continuous signal delay monitoring
Prediction [6] • Delays digitized and sampled
Wearout • Offline analysis to calculate moving averages
Transient Fault • Particle strikes cause single event upsets
Analysis • Delay increase may (not) cause fault to be latched

• Gate’s output may (not) be masked by other gates
Single Event Upsets • Fault may (not) cause architectural error
Sampling+DMR [27] • Permanent faults typically cause frequent errors
Permanent Faults • DMR in short periods (sampling) sufficient to

capture these

Table 1. Case studies evaluated on PERSim

Our current fault modeling and fault injection infrastruc-
ture does not capture the interaction between faults, across
several fault sites. Faults that occur in a group of gates and
the change in behavior of gates surrounding a faulty gate
are not modeled. This is a limitation worthy of considera-
tion and improving in future work.

4. Using PERSim - Case-studies
In this section we pick five case studies and evaluate

them using PERSim. Table 1 summarizes the ideas and
the reliability phenomenon they handle. The five tech-
niques we picked have never been studied at this level of
detail. They are FIRST[40], WearMon[45], TRIX[6], tran-
sient fault modeling, and Sampling-DMR[27]. These cover
prediction and detection techniques that tackle a range of re-
liability phenomena including wearout, transient faults and
permanent faults. Before elaborating on the case studies, we
summarize our key findings. First, PERSim is robust and
extensible as it was easily adaptable for these five diverse
studies. In each of these cases, we were able to configure
PERSim with simple modifications to create a full system
evaluation platform. The configuration and usage of PER-
Sim is described in Table 3. We also uncovered some previ-
ously unknown limitations in these techniques and obtained
key insights into reliability issues as listed in Table 2.

This section is structured as follows. For each case study,
we start with a description of the technique, and summa-
rize the experiments done by the authors. We describe how
PERSim is adapted to evaluate the idea. We then describe
the results and analyze them — confirming, enhancing, or
contradicting the results with original work. In each evalua-
tion, we use a mix of the following seven benchmarks from
the SPEC2000 integer and floating-point suite: parser, bzip,
mcf, mesa, quake, and twolf. Their compiled binaries and
details on compilation, input sets etc. is on our website.

4.1. FIRST
Description FIRST is a wearout detection technique that
detects marginal failures while introducing marginal oper-
ation. Using existing scan and built-in self test (BIST) cir-
cuitry, test vectors are pushed and tested at different clock
frequencies. In a new chip, as the test frequency is in-
creased, more failures will be seen as the critical paths will
show up as timing failures. As the chip ages and the gates
slow down, timing faults become more prominent in lower
frequencies. The onset of failures is predicted by analyzing
the fault rate.

Prior experimental setup and results In their evalua-
tion, Smolens et al.[40] build a proof of concept using the
instruction fetch module in the OpenRISC processor. Using
a BIST module they inject test vectors and evaluate signa-
tures. By varying the clock period, they show that signature
mismatches occur at lower clock frequencies using 1000
BIST vectors. They do not model a fault or project these
results as the chip wears-out.

Implementation using PERSim Using SPEC bench-
marks, we derive large sequences that we use as test vec-
tors. We model degradation using Synopsys HSPICE with
the MOS Reliability Analysis (MOSRA) plugin. Next, we
use our delay aware simulation mechanism to check the de-
lay behavior of circuits around ten fault sites under multiple
clock periods to simulate marginal operation and for mul-
tiple months to capture wearout. We do not use the fault
injection mechanism, as this is a fault prediction technique.
Instead, we tabulate the number of errors in the output of the
delay aware simulation to pick the optimal threshold value
— number of errors above which — to make a prediction.

Technique Original Evaluation PERSim Evaluation Key advancement

FIRST • OpenRISC Instruction fetch module • Full Processor }
• No wearout modeling • NBTI + HCI Modeling Hole Covered

Wearmon • FPU module from OpenSPARC • Full OpenRISC Processor Gates in non-critical paths not covered.
Online Wearout • ALU from OpenRISC • Full OpenRISC Processor PERSim enables full processor coverage
Prediction • Random inputs • Full SPEC2000 benchmarks
Transient Fault • Gate level fault modeling and • Gate level modeling of Cross-layer transient fault analysis
Analysis microarchitecture impact analysis particle strike and application Accurate modeling of particle strikes

•Microarchitecture level fault modeling level impact analysis on individual gates⇒
application level impact analysis impact on full programs

Sampling+DMR • OpenSPARC FPU error traces • Full processor error traces Fine-grained signal visibility
used to train models used to train models Cycle-by-cycle error traces running full programs

Table 2. Key differences in evaluation methodology: State-of-the-art vs PERSim

Technique Input Sequence Delay Aware simulation Fault Injection and Fault Modeling
Extraction Deterministic re-execution

FIRST • No modifications • Several clock periods • N/A - Offline analysis. • Delay degradation due to wearout
• Several months of wearout • Errors at different clock periods • Synopsys HSPICE + MOS Reliability

Analysis
WearMon • No modifications • Several clock periods • N/A - Offline analysis • Delay degradation due to wearout

• Several months of wearout • Track errors using specific • Synopsys HSPICE + MOS Reliability
clock period for each signal Analysis

Online • No modifications • Added TDC to convert • N/A - Offline analysis. • Delay degradation due to wearout
Wearout slack to 5-bit precision number • Exponential Moving Average • Synopsys HSPICE + MOS Reliability
Prediction • Several months of wearout calculated per signal over time Analysis
Transient • No modifications • SEUs modeled • No modifications • Uniform probability of when a
Fault as increase in delay strike occurs in a clock cycle
Analysis • Also check for logic masking • Gaussian distributed increase in delay
Sampling+DMR • No modifications • N/A - delay aware mode • No modifications • Permanent faults triggered at random

disabled, reports logic masking fault sites picked at random times

Table 3. Using PERSim to evaluate reliability techniques

Description of PERSim results In our evaluation, we
start by recreating Smolens et al., setup — the result is pre-
sented in column 1 of Table 4(confirms prior results). The
operational clock period of our processor is 250ps. Under
the wearout we model, the faults manifest after 42 months.
In our experiments, we inject five million test vectors and
sum the errors from fault sites spread across the full proces-
sor. This is repeated at several clock periods — shown in
each row in the table. We repeat the experiment at monthly
increments of device wearout for four years.
Analysis of PERSim results Table 4 shows that as the
processor wears-out, the number of errors increases at all
clock periods. Using a period that is 2% less than the op-
erational period and an error threshold of 50000, we may
predict an onset of errors four months in advance. This is
highlighted in gray in Table 4. This is an empirical result
when using OpenRISC implemented using the particular 32
nm library we used. PERSim can be used to evaluate this
threshold for a different processor and technology.

We extend prior work by doing a full system analysis
while modeling device wearout. From the table we see that
lower clock periods may be used to increase the prediction
horizon. These serve to detect an emerging wearout fault
that would cause a soft fault — or a timing fault at the gates
they drive. Delay degradation is also a symptom before hard
faults manifest on non-critical paths. As the BIST mecha-

nism exposes delay faults only in critical paths, gates that
may directly transition into hard failures are left uncovered.

New Insights Our evaluation of FIRST shows that:
• Using marginal operation introduced by clock period

control and signatures at the circuit level helps predict
onset of wearout only in the critical paths effectively.

4.2. WearMon
Description WearMon works by analyzing errors in scan
tests to predict device wearout. WearMon uses periodic test-
ing similar to FIRST, using test vectors and comparing out-
puts against expected outputs. The tests are repeated with
decreasing clock frequencies, and the failures are saved in a
multilevel memory and analyzed offline to predict failure.

Prior experimental setup and results As WearMon test
may be run while functional units are unutilized, Zandian et
al. [45] show that the performance overheads are zero. Un-
like FIRST, WearMon works at the path level or the device
level, tracking errors specific to each path monitored. Using
the OpenSPARC FPU, the authors show that regions of ex-
ecution exist during which the FPU is unused. These occur
frequently and last for a duration when the test vectors can
analyze the module without any impact on performance.

Implementation using PERSim In our experiment, we
use the input sequence generated by running SPEC bench-

Months 0 1 2 3 4 5 6 7 ... 15 16 17 18 ... 36 37 38 39 40 41 42 43 44
250ps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2623 5246 7869
245ps 0 0 0 0 0 0 0 0 0 0 0 2623 47214 49837 52460 55083 57706 60329 62952 65575 68198
240ps 0 0 0 0 0 2623 5246 7869 28853 31476 34099 36722 71235 83936 97575 111214 124853 138492 152131 165770 179409
235ps 0 2623 5246 7869 10492 13115 15738 18361 61377 75016 88655 102294 334157 347796 361435 375074 388713 402352 415991 429630 444364
230ps 2623 5246 7869 21508 35147 48786 62425 76064 185176 198815 212454 227188 477666 492400 507134 527244 541978 556712 576822 596932 617042

Table 4. Evaluation of FIRST: Error rates measured as chip wears-out.

Figure 7. Evaluation of WearMon. Paths 2, 3, 4, 7
and 10 are non-critical and show no errors.

marks as the test vectors. We were unable to generate con-
cise ATPG sequences; however, we believe the test vectors
we use are sufficiently large to cover most transitions and
activate all paths. We also observe this in our experiment.
Using the test sequence to drive circuits, we save the er-
ror rates as a function of multiple clock frequencies (test
frequencies). This is done by controlling the clock peri-
ods in the delay aware simulation and is repeated at various
months of chip aging. One key feature of WearMon is to
save only the failures and sufficient metadata (such as which
frequency errors appear in and what test vector caused it).
We model this by saving the error rates along with test fre-
quency and the sequence number that caused the error. For
a given gate, it is sufficient to look at one test frequency
to predict errors. The experiment is repeated by applying
the delay degradation derived from MOSRA to track errors
over five years of chip operation.

Description of PERSim results Figure 7 shows the re-
sults from our experiments. We pick fault sites that are
spread across the processor and have different initial path
delays. Checking for faults at the path level enables us
to track faults using specific periods for each fault site we
track. The figure shows the errors as a function of device
wearout on ten fault sites, each tracked using a clock period
best suited for that fault site. These error values are contin-
uously analyzed offline to determine an impending failure.

Analysis of PERSim results The clock periods we used
to track ranged from the operational clock period to 30%
lower. We see that five of the fault sites do not show up as
errors before transitioning into hard breakdowns — these
sites have path delays significantly lower than the clock pe-
riod. Clocks with much lower periods must be used to cap-
ture the increase in their propagation delays due to wearout.

New Insights We evaluate WearMon on a full processor
system. This leads to the following new insights.

• Marginal operation using clock period control and
tracking timing faults at specific clock periods enables
predicting onset of failures in near-critical paths.

• Using a full system reveals that modules like the de-
coder do not have periods of under utilization.

• WearMon test may not be applied to modules that hold
state in latches without taking the processor offline —
a design concept occluded by previous evaluation.

4.3. Online Wearout Prediction
Description Continuously monitoring the degradation in
delay is another way to predicting failure. In the technique
proposed by Blome et al.[6], the circuit paths in a proces-
sor are sampled, and their remaining slack is digitized. This
is then averaged using an exponential moving average algo-
rithm (TRIX) over multiple cycles, to annul the effect of the
application on delay. By tracking this average over multiple
months, we can learn the trend in the degradation, and infer
an impending failure.

Summary of prior experimental setup and results
Blome et al.[6] pick the ALU from OpenRISC for their
evaluation. They model Oxide Breakdown as the reliability
phenomenon causing wearout. Using Monte-Carlo simula-
tions on the ALU, they show that using exponential moving
averages to track the path delays helps predict an onset of
failure. They use this setup to extensively evaluate the sen-
sitivity of weights in calculating the averages. The authors
quantify the overheads of using their technique. They ob-
serve the correlation between the number of samples con-
sidered in calculating the average and the prediction accu-
racy. They find that the prediction horizon varies across
different modules.

Implementation using PERSim Using SPEC bench-
marks as applications on our input sequence extraction, we
create a 50 million input sequence array. We model gradu-
ally manifesting failures such as NBTI and HCI. Degrada-
tion in delay is derived with a setup similar to the one used
in FIRST. We augment the delay aware simulation mech-
anism with the sampling and capture circuitry to digitize
the slack in the paths. We save this value at the output of
specific fault gates over the 50 million cycle execution. As
this is a prediction technique, we do not use the fault in-
jection and deterministic re-execution mechanism. Instead,
we feed the digitized slacks to a TRIX evaluation block and

0 10 20 30 40 50 60
Time in months

0.98
1.00
1.02
1.04
1.06
1.08
1.10

N
or

m
al

iz
ed

 M
ov

in
g

A
ve

ra
ge

Prediction Threshold

Onset of soft failures

Path 1

Path 2

Path 3

Path 4

Path 5

Path 6

Path 7

Path 8

Path 9

Path 10

Figure 8. Online wearout prediction results

save the averages over 50 million cycles of execution rep-
resenting one continuous sample. This experiment is then
repeated by increasing the age of the chip by a month per
experiment over 5 years.
Description of PERSim results Figure 8 shows the per-
path averages plotted as a function of device wearout. We
use an 8% increase in the average as the threshold value,
above which we predict a device failure. As Blome et al.,
conclude, the time when a prediction is made is not inde-
pendent on the circuit tracked. With additional resources,
the degradation rate may be combined with the delay aver-
ages to arrive a more timely prediction.
Analysis of PERSim results In our experiments, we ob-
serve that the program behavior has a significant effect on
the averages. For example, a code region that utilizes FPU
for a short period of time shows up as an increase in the av-
erage delay momentarily. In order to differentiate this effect
from actual wearout, it is essential to consider a moving av-
erage that includes samplings from a large period of time —
50 million cycles in our experiments.

In their evaluation Blome et al. use Oxide Breakdown —
which causes a sharp increase in delay — as the fault model
and simulate the ALU of a processor. In our evaluation, we
use a model that tracks the degradation due to NBTI and
HCI — phenomena that manifest as a gradual increase in
delay. As our fault sites were spread across the processor,
the inputs and utilization vary widely depending on the pro-
gram behavior. This helped us observe the influence of the
application on the moving average — and the need for a
large sampling period.

New Insights
• In addition to wearout, delay averages are influenced

by the program behavior. It is important to consider
the average over millions of application cycles.

• Continuous, high frequency sampling is necessary.
This limits the number of paths that can be monitored.
PERSim may be used to pick the paths that are most
vulnerable and to pick the coefficients of the averaging
algorithm.

The above microarchitecture level techniques rely on ob-
serving delay degradation to predict the on-set of failures.
Our evaluations reveal a common issue with partial system
evaluations — many gates that do not lie on near critical

paths do not show up as faults at the microarchitecture level.
PERSim covers this modeling hole — paths 2, 3, 4, 7 and
10 in Figure 8 are such non critical paths.
4.4. Transient Fault Analysis
Description In this section, we demonstrate how PERSim
can be used to check the behavior of an application execut-
ing when transient faults occur in the substrate. When a
particle strike occurs, the logical behavior of a gate may be-
come unpredictable for a short period of time. This may
result in one of the following outcomes.

1. Delay masking The period of the fault may be shorter
than the clock period and allow safe recovery of the
gate before its output is latched on.

2. Logic masking A gate may produce a wrong value but
be masked by other logic. For example C⇐ A OR B;
A transient fault in A is logically masked when B=1.

3. Architectural masking A transient fault may cause a
wrong value to be latched by a flip flop. In the follow-
ing cycles, if this sequential cell does not contribute to
an architectural state change, it causes no error visible
to the application.

4. Program corruption A transient fault may result in
crashing the application or cause erroneous results.

Summary of prior experimental setup The state-of-the-
art in transient fault analysis has been limited to
• Modeling particle strikes at the device level and anal-

ysis at the circuit level. An example is work done
by Shivakumar et al. [37]. They model a particle
strike at the device level as a transient increase in
charge accumulated and evaluate the effect at the cir-
cuit level. Using a simple circuit spanning a pipeline
stage, they classify the faults as logically masked, elec-
trically masked and latch-window masked.

• Using an abstract model in a performance simulator or
RTL model [33, 39, 8]. A specific example is research
by Saggese et al. [33] that uses FPGAs for acceleration
while modeling transient faults as a bit flip in a latch
or a gate and reports the impact on the program.

Implementation on PERSim We use a charge accumu-
lation model to capture the effect of a particle strike on a
gate. The behavior of the gate is perturbed while charge left
behind by a particle strike dissipates. In a given clock cycle,
we model the time at which the particle strikes using a uni-
form probability distribution. The increase in delay before
which the gate settles is a function of the charge accumu-
lated and is modeled using a Gaussian distribution centered
around the guard band period. We obtain the rate of tran-
sient faults that are not delay, logically or architecturally
masked. We simulate a stress test with 5 million particle
strikes targeting the 10 paths (a total of 72 gates) during the
representative region of the application. A particle strike’s
outcome being non-masked (i.e. causing program corrup-
tion or error) is dependent on the individual gates and time

parser bzip mcf mesa quake twolf average0
10
20
30
40
50
60
70
80
90

100
Pe

rc
en

ta
ge

 o
f f

au
lts

Logic Masked

Delay Masked

Architectural Masked

Program Crash

Figure 9. Transient Fault Analysis Results
at which a particle strikes. To estimate a stable or repre-
sentative error-rate, many particles must be observed. We
noticed the error-rate becomes stable when at least 3.5 mil-
lion strikes are considered.
Description of PERSim results Figure 9 shows the per-
centage of single event upsets that cause the program cor-
ruption and those that are delay, logic, architecture masked.
Analysis of PERSim results From our evaluation, we see
that only 5.1% of the single event upsets lead to a change in
program behavior. Previous techniques to mitigate transient
faults [31] use selective hardening and partial replication.
To identify the most vulnerable gates, they rely on path de-
lays, choosing gates that are not delay masked. Our results
help identify the fault sites that cause program corruption.
New Insights
• To the best of our knowledge, this is the first end-to-

end study of the impact of transient faults on appli-
cation behavior while modeling the effect of particle
strikes as charge accumulations at the device level.

• On average, considering particle strikes on logic
alone, 94.9% are masked, while 5.1% cause program
corruption. Thus reliability techniques for transient
faults must consider logic also, and considering only
flip-flop and SRAM susceptibility alone is insufficient.

4.5. Sampling+DMR
Description Sampling+DMR is a low overhead perma-
nent fault detection technique. With the application pro-
gram executing, a checked processor is coupled to a re-
dundant checker processor for a short period of time. Fre-
quently occurring permanent faults are caught immediately;
less frequently occurring faults are caught as architectural
errors eventually.
Summary of prior experimental setup and results The
key metrics to evaluate are the detection latency — num-
ber of cycles after which a permanent fault is detected and
the number of undetected errors — that escape before an
error falls in a sampling window. These variables are de-
pendent on the burstiness of the error occurrences. Nomura
et al. [27] use a two-step approach to evaluate these metrics.
First they train a 3 stage Hidden Markov Model with error
patterns from an OpenSPARC FPU running SPEC bench-
mark traces. Using this model, they derive the relationship
between the detection latency and number of undetected er-
rors as a function of sampling frequency and duration. They

Figure 10. Sampling+DMR : Empirical results vs.
Model predicted

Defect Rate
Detection Latency (seconds) @ % DMR

Author’s Results [27] Our Results
1% 5% 1% 5%

10−1 0.09 0.03 0.002 5× 10−6

10−2 2.2 1 0.47 0.22
10−4 72 10 0.80 0.64
10−6 107 21 0.84 0.71

3-stage HMM Coefficients s0 = 0.042, s1 = 0.478, s2 = 0.48

Table 5. Sampling+DMR : Detection Latency vs.
Defect Rate

validate the models by injecting faults while smaller bench-
marks are run on the OpenRISC processor. The models are
used to derive the worst case latency and number of unde-
tected errors accurately.
Implementation using PERSim Using input sequence
extraction running SPEC benchmarks, we derive circuit in-
puts for five million cycles. In our experiment, we model
permanent-stuck-at-faults only. The faults are introduced in
random gates at a random cycle past the initialization run
of the benchmark (in hot code). The delay aware simula-
tion mechanism is run with delay information ignored. This
helps us capture the logic masking effect, permanent faults
show up as bit flips in the latches that they drive only when
their outputs are not masked by the other gates. This fault
vector marking the exact cycles in which faults manifest is
used as the input to the fault injection and deterministic re-
execution mechanism. The architectural state is saved for
100000 cycles. Comparing the architecture state with a ref-
erence, we measure the error rate and the number of faults
detected in the first sample.
Description of PERSim results We introduced stuck-at-
faults into 71 gates picked across the processor. In our eval-
uation, we generate error patterns when permanent faults
are introduced in a full processor running applications. Us-
ing this pattern, we train the 3-stage HMM. We then use this
model to generate a realistic estimate of detection latency.
Analysis of PERSim results Nomura et al. use errors
seen on the OpenSPARC FPU to train the models. We en-
hance model accuracy by training it using real error patterns
observed as random gates fail across the processor while
executing applications. The error occurrence pattern could
itself serve as data to evaluate ideas that currently assume
a random occurrence pattern. We repeat the model vali-
dation experiment performed by the authors. The results

are shown in Figure 10. The blue dots represent measured
errors and the red line shows the bound predicted by the
model. As we use a more realistic processor, our data trains
the Hidden Markov Model to be more realistic and hence
close to observed data. This is also seen in our detection
latency measurements — Table 5 shows that in a real sys-
tem, Sampling+DMR captures errors in significantly fewer
cycles than the worst case prediction made by Nomura et al.
New Insights
• We obtained the exact architectural level error occur-

rence pattern caused by a device level permanent fault
and coefficients for the 3-state HMM models.

• Strengthens the case for Sampling-DMR’s effective-
ness — detection latencies considering full applica-
tions is orders of magnitude lower than previously re-
ported worst-case latencies.

5 Related Work
Full system simulation while modeling faults at the de-

vice level poses several challenges. FPGA-based emula-
tions like CrashTest [30] provide the much-needed accel-
eration to run full applications, but fall short in modeling
device level impact of reliability phenomena. Low level
simulators [39, 8] have incorporated accurate fault models,
but are limited by simulation speed. Cross layered simula-
tion platforms like [19] create a fault dictionary using de-
vice level modeling that is then introduced in higher level
simulations. This fails to capture the influence of program
behavior on the fault manifestations.

Of the cross layer simulation platforms, SWAT-Sim [21]
is closely related to PERSim. PERSim provides better sig-
nal observability, coverage, and simulation speed. SWAT-
Sim targets evaluating the impact of permanent faults mod-
eled at the gate level on application behavior. Their co-
simulation framework creates a one-to-one mapping from
the nets of a netlist version of a processor to variables in a
performance simulator. This limits visibility into arbitrary
signals. Although a functional simulator can simulate a full
system, it is significantly slower than an FPGA accelerated
version – limiting the analysis to a few 100 million cycles.

6 Conclusions
Our goal was to create a platform that allows end-to-

end investigation of reliability physics on individual gates
while running full programs. We developed four mecha-
nisms namely, input sequence extraction, delay aware sim-
ulation, fault injection and deterministic re-execution and
fault modeling, that work together to achieve this goal. We
implemented the input sequence extraction and fault injec-
tion and deterministic re-execution using a Xilinx Zynq
FPGA. These mechanisms enable running full programs.
PERSim’s fault modeling mechanism has out-of-the-box
support for modeling device wearout, permanent and tran-
sient faults. Delay aware simulation enables translating the
faults at the device level to the microarchitectural level.

Using PERSim we implemented and evaluated state-
of-the-art reliability techniques spanning wearout detec-
tion/prediction, permanent fault detection, and transient
fault effects. PERSim’s unprecedented capability to model
physical effect of reliability at the gate-level and propagate
its effect up through the application and run an entire appli-
cation yields new insights on these techniques. A key gen-
eral finding is that gates in non-critical paths age and may
breakdown before critical-path gates and hence wearout de-
tection/prediction targeted at critical-path alone is insuffi-
cient. Overall, PERSim appears to be an effective evalua-
tion tool — it helps uncover fundamental design issues that
are occluded by performance simulators and non end-to-
end simulation approaches. For example, using PERSim in
fault injection studies can provide much deeper understand-
ing compared to conventional studies which are restricted to
logic faults [9, 39] or utilize performance simulators [15].

Looking forward, reliability techniques are likely to re-
quire architecture solutions and there is evidence high-level
modeling is insufficient to gain meaningful intuition. Con-
sidering a somewhat well understood and narrowly scoped
area like transient faults, Cho et al. recently [9] showed that
“high-level error injection techniques can be highly inac-
curate.” On the other hand architecture solutions and even
disruptive ones like cross-layer approaches [5, 14, 12, 22]
may well become necessary to address reliability. How-
ever, insufficient evaluation and modeling errors are likely
to severely curtail their adoption and understanding of ef-
fectiveness. Going forward, tools and mechanisms like in
PERSim are likely essential for meaningfully understand-
ing and evaluating reliability concerns and could become a
foundational simulation framework.

7. Acknowledgments
We thank the anonymous reviewers and the Vertical

group for providing valuable comments. Support for this
research was provided by NSF under the following grant:
CNS-1117782.

References
[1] Xilinx zynq fpga. Website. www.xilinx.com/

products/silicon-devices/soc/zynq-7000.
[2] Zedboard. Website. www.zedboard.org.
[3] M. Agarwal, B. Paul, M. Zhang, and S. Mitra. Circuit failure

prediction and its application to transistor aging. In VTS ’07.
[4] T. M. Austin. Diva: A reliable substrate for deep submicron

microarchitecture design. In MICRO ’99.
[5] R. Balasubramanian and K. Sankaralingam. Virtually aged

sampling dmr: Unifying circuit failure detection and circuit
failure prediction. In MICRO ’13.

[6] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibrating
online wearout detection. In MICRO ’07.

[7] K. Bowman, J. Tschanz, C. Wilkerson, S. Lu, T. Karnik,
V. De, and S. Borkar. Circuit techniques for dynamic varia-
tion tolerance. In DAC ’09.

[8] H. Cha, E. M. Rudnick, J. H. Patel, R. K. Iyer, and
G. S. Choi. A gate-level simulation environment for alpha-
particle-induced transient faults. Computers, IEEE Transac-
tions on, 1996.

[9] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mi-
tra. Quantitative evaluation of soft error injection techniques
for robust system design. In DAC ’13.

[10] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh,
J. Gandhi, B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and
E. Rotenberg. Fabscalar: Composing synthesizable rtl de-
signs of arbitrary cores within a canonical superscalar tem-
plate. In ISCA ’11.

[11] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco.
Software-based online detection of hardware defects mecha-
nisms, architectural support, and evaluation. In MICRO ’07.

[12] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An
architectural framework for software recovery of hardware
faults. In ISCA ’10.

[13] Ernst et al. Razor: A low-power pipeline based on circuit-
level timing speculation. In MICRO ’03.

[14] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.
Architecture support for disciplined approximate program-
ming. In ISCA ’12.

[15] N. Foutris, D. Gizopoulos, J. Kalamatianos, and V. Sridha-
ran. Assessing the impact of hard faults in performance com-
ponents of modern microprocessors. In ICCD, 2013.

[16] V. Gherman, J. Massas, S. Evain, S. Chevobbe, and Y. Bon-
homme. Error prediction based on concurrent self-test and
reduced slack time. In DATE ’11.

[17] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran,
S. K. S. Hari, D. Sorin, A. Meixner, A. Biswas, and X. Vera.
Architectures for online error detection and recovery in mul-
ticore processors. In DATE ’11.

[18] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomer-
anz. Transient-fault recovery for chip multiprocessors. In
ISCA ’03.

[19] Z. Kalbarczyk, R. K. Iyer, G. L. Ries, J. U. Patel, M. S. Lee,
and Y. Xiao. Hierarchical simulation approach to accurate
fault modeling for system dependability evaluation. Soft-
ware Engineering, IEEE Transactions on, 1999.

[20] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar. Utiliz-
ing dynamically coupled cores to form a resilient chip mul-
tiprocessor. In DSN ’07.

[21] M.-L. Li, P. Ramachandran, U. R. Karpuzcu, S. K. S. Hari,
and S. V. Adve. Accurate microarchitecture-level fault mod-
eling for studying hardware faults. In HPCA ’09.

[22] X. Li and D. Yeung. Application-level correctness and its
impact on fault tolerance. In HPCA ’07.

[23] X. Li and D. Yeung. Exploiting Soft Computing for In-
creased Fault Tolerance. In Workshop on Architectural Sup-
port for Gigascale Integration, June 2006.

[24] A. Meixner, M. E. Bauer, and D. J. Sorin. Argus: Low-cost,
comprehensive error detection in simple cores. In MICRO
’07.

[25] K. Mistry and B. Doyle. How do hot carriers degrade n-
channel MOSFETs? IEEE Circuits and Devices Magazine,
1995.

[26] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading alterna-
tives. In ISCA ’02.

[27] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju,
M. de Kruijf, and K. Sankaralingam. Sampling+dmr: prac-
tical and low-overhead permanent fault detection. In ISCA
’11.

[28] OpenRISC, http://opencores.org/or1k/.
[29] J. Park and J. Abraham. An aging-aware flip-flop design

based on accurate, run-time failure prediction. In VTS ’12.
[30] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar,

V. Bertacco, and T. Austin. Crashtest: A fast high-fidelity
fpga-based resiliency analysis framework. In ICCD ’08.

[31] I. Polian, J. P. Hayes, S. M. Reddy, and B. Becker. Mod-
eling and mitigating transient errors in logic circuits. IEEE
Transactions on Dependable and Secure Computing.

[32] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: cost-
effective architectural support for rollback recovery in
shared-memory multiprocessors. In ISCA ’02.

[33] G. P. Saggese, N. J. Wang, Z. Kalbarczyk, S. J. Patel, and
R. K. Iyer. An Experimental Study of Soft Errors in Micro-
processors. IEEE Micro, 25(6):30–39, 2005.

[34] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. Enerj: Approximate data types
for safe and general low-power computation. In PLDI ’11.

[35] D. Schroder. Negative bias temperature instability: What do
we understand? Microelectronics Reliability.

[36] E. Schuchman and T. N. Vijaykumar. BlackJack: Hard Error
Detection with Redundant Threads on SMT. In DSN ’07.

[37] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on the
soft error rate of combinational logic. In DSN ’02.

[38] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and
T. Austin. Ultra low-cost defect protection for microproces-
sor pipelines. In ASPLOS ’06.

[39] V. Sieh, O. Tschache, and F. Balbach. Verify: evaluation of
reliability using vhdl-models with embedded fault descrip-
tions. In FTCS ’97.

[40] J. C. Smolens, B. T. Gold, J. C. Hoe, B. Falsafi, and K. Mai.
Detecting emerging wearout faults. In SELSE ’07.

[41] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood.
Safetynet: improving the availability of shared memory
multiprocessors with global checkpoint/recovery. In ISCA
’02.

[42] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli,
T. Karnik, and V. De. Tunable replica circuits and adaptive
voltage-frequency techniques for dynamic voltage, temper-
ature, and aging variation tolerance. In Symposium on VLSI
Circuits, pages 112–113. IEEE, 2009.

[43] B. Tudor, J. Wang, C. Sun, Z. Chen, Z. Liao, R. Tan, W. Liu,
and F. Lee. Mosra: An efficient and versatile mos aging
modeling and reliability analysis solution for 45nm and be-
low. In ICSICT ’10.

[44] X. Wang, D. Tran, S. George, L. Winemberg, N. Ahmed,
S. Palosh, A. Dobin, and M. Tehranipoor. Radic: A
standard-cell-based sensor for on-chip aging and flip-flop
metastability measurements. In ITC ’12.

[45] B. Zandian, W. Dweik, S. H. Kang, T. Punihaole, and
M. Annavaram. Wearmon: Reliability monitoring using
adaptive critical path testing. In DSN ’12.

