
Appears in 22nd International Conference on Parallel Architectures and Compilation Techniques, 2013

Breaking SIMD Shackles with an Exposed Flexible
Microarchitecture and the Access Execute PDG

Venkatraman Govindaraju
Department of Computer Sciences
University of Wisconsin-Madison

Email: venkatra@cs.wisc.edu

Tony Nowatzki
Department of Computer Sciences
University of Wisconsin-Madison

Email: tjn@cs.wisc.edu

Karthikeyan Sankaralingam
Department of Computer Sciences
University of Wisconsin-Madison

Email: karu@cs.wisc.edu

Abstract—Modern microprocessors exploit data level paral-
lelism through in-core data-parallel accelerators in the form
of short vector ISA extensions such as SSE/AVX and NEON.
Although these ISA extensions have existed for decades, compil-
ers do not generate good quality, high-performance vectorized
code without significant programmer intervention and manual
optimization. The fundamental problem is that the architecture
is too rigid, which overly complicates the compiler’s role and
simultaneously restricts the types of codes that the compiler can
profitably map to these data-parallel accelerators.

We take a fundamentally new approach that first makes
the architecture more flexible and exposes this flexibility to the
compiler. Counter-intuitively, increasing the complexity of the
accelerator’s interface to the compiler enables a more robust
and efficient system that supports many types of codes. This
system also enables the performance of auto-acceleration to be
comparable to that of manually-optimized implementations.

To address the challenges of compiling for flexible accel-
erators, we propose a variant of Program Dependence Graph
called the Access Execute Program Dependence Graph to capture
spatio-temporal aspects of memory accesses and computations.
We implement a compiler that uses this representation and
evaluate it by considering both a suite of kernels developed
and tuned for SSE, and “challenge” data-parallel applications,
the Parboil benchmarks. We show that our compiler, which
targets the DySER accelerator, provides high-quality code for
the kernels and full applications, commonly reaching within 30%
of manually-optimized and out-performs compiler-produced SSE
code by 1.8×.

I. INTRODUCTION

Most modern processors include ISA extensions for vector
operations like SSE/AVX, Altivec or NEON, which are de-
signed to accelerate single thread performance by exploiting
data-level parallelism (DLP). These SIMD operations provide
energy efficiency by reducing per-instruction overheads, and
performance by explicitly defining parallel operations. Al-
though programs can be vectorized manually with assembly or
compiler intrinsics, automatic support is a desirable solution
because it relieves the burden of performance and portability
from the programmer.

To this end, decades of compiler research has yielded
a plethora of automatic vectorization techniques [4], [23],
[21], [22], [26], [36], [8]. Yet, most modern compilers fail
to come close to the performance of manually vectorized
code. Maleki et al. show that for the GCC, XLC, and ICC
compilers, only 45-71% of synthetic loops, and 13-18% of
media applications can be vectorized [17]. Moreover, for these

applications, manual vectorization achieves a mean speedup of
2.1× compared to the automatic vectorization.

We posit that this enormous disparity is not because of
insufficient compiler development or missing optimization
modules, rather, it alludes to fundamental limitations of short-
vector SIMD architectures. By studying auto-vectorizing com-
pilers and the applications that are poorly vectorized, we
observe that there are limitations imposed by short-vector
SIMD architectures. Essentially, SIMD acceleration suffers
overheads when executing control flow, loops with carried
dependencies, accessing strided or irregular memory, and par-
tially vectorizable loops. Table I describes the “shackles” that
limit SIMD acceleration for each of the above code features,
and summarizes solutions proposed by researchers to alleviate
these limitations. Specifically, it lists the architecture support
for each code feature, the responsibility of the compiler in
generating code for the feature, and the overall effectiveness of
the approach for that feature. We elaborate on these approaches
below, which are classified into three broad categories.

SIMD Extensions: As shown in the first three rows in Table I,
prior works propose several extensions to the SIMD model to
address these challenges to exploit DLP [34], [8]. In general,
the compiler is unable to effectively map applications to
the architecture mechanisms. There are many compiler-only
approaches [13], [35], [15], but they are all somewhat limited
in the end by SIMD’s rigidity.

Other DLP Architectures: Another approach is to use alterna-
tive architectures focused on data-level parallelism. GPUs [19]
are a mainstream example and address SIMD’s challenges, pro-
viding significant performance through data-parallel optimized
hardware. The disadvantages are that programs in traditional
languages have to be rewritten and optimized for the specific
architecture used. From a hardware and system perspective,
the design integration of a GPU with a general purpose core
is highly disruptive, introduces design complexity, requires a
new ISA or extensive ISA extensions, and adds the challenges
associated with a new system software stack.

The Vector-Thread architecture is a research example that
is even more flexible than the GPU approach, but is difficult to
program [16]. Sankaralingam et al. develop a set of microarchi-
tectural mechanisms designed for data-level parallelism with-
out being inherently tied to any underlying architecture [29].
One of the recent DLP architectures is the Intel’s Xeon
Phi, which accelerates data parallel workloads through wider
SIMD [32] and hardware support for scatter/gather. In general,

1

Control Flow Strided Access Loop Carried Dep. Partial Vectorization Impossible Vectorization

SIMD Arch.
 Shackle
 Strategy

Masking Overhead,
Computation Redundancy

Shuffling Overhead,
Complex Data Structure

Transforms

Fixed Parallel Datapath,
Costly Dependence
Breaking Transforms

Shuffling Overhead,
Difficult Cost-

Benefit Analysis
Fixed Parallel Datapath

Foremost
Limitation

Traditional Vector
Machines[35]

Very efficient
highly-parallel
loops.

A. Masked Operations

No Solution No Solution No Solution No Solution
Limited
Applicability

C. Manage Condition Subsets

E. Medium Effectiveness

Vector + Scatter/
Gather[35]

Flexible Memory
Access

A. S/G & IOTA instruction A. Naturally Supported

No Solution

A. Naturally Supported

No Solution
Compiler
Complexity

C. Manage Condition Subsets C. Manage Index Vector C. Manage Index Vector

E. Medium Effectiveness E. High Effectiveness E. High Effectiveness

Vector+
Multi-Layout
Memory [11]

Highly
efficient&general
strided access

No Additional Support

A. Special Hardware/Instrs.

No Solution No Solution No Solution
Programmer
Burden

C. Programmer Macros

E. Very High Effectiveness

Vector Threads
[20]

Efficient DLP and
TLP

A. Multi-threading
No “vectorized” strided
access.

A. Cross-VP Queue A. Thread and Vector Ops A. Multi-threading Integration to
GPP/Compiler
Complexity

C. Splitting Loop Iterations C. Identify Deps./Add Comm. C. Compiler tradeoff Analysis C. Splitting Loop Iterations

E. High Effectiveness E. High Effectiveness E. High Effectiveness E. High Effectiveness

GPUs [24]
Programing Model
+hardware relieves
compiler burden.

A. Warp Divergence A. Dynamic Coalescing

Programmer Responsible

A. Multi-Threading A. Multi-Threading
Programmer
Burden

C. Annotate Splits/Merges C. No Compiler Cost C. Little Compiler Cost C. Little Compiler Cost

E. Medium Effectiveness E. High Effectiveness E. High Effectiveness E. High Effectiveness

Xeon Phi
Wider SIMD, Mask
registers,
scatter/gather

A. Masked Operations A. Naturally Supported

No Solution

A. Naturally Supported

No Solution

Programmer
Burden, Large
Area

C. Manage Condition Subsets C. Manage Index Vector C. Manage Index Vector

E. Medium Effectiveness E. High Effectiveness E. High Effectiveness

CGRA:
 DySER [13,12]

Broadens
Applicability,
+ energy efficient

A. Native Control Flow A. Flexible I/O Interface A. Configurable Datapath A. Flexible I/O Interface A. Pipelined Datapath Unproven
Research
Architecture

C. Utilize PDG Information C. Utilize AEPDG C. Identify Deps., Unroll C. Utilize AEPDG C. Utilize PDG Information

E. High Effectiveness E. High Effectiveness E. High Effectiveness E. High Effectiveness E. High Effectiveness

Legend: A: Architectural Support, C: Compiler Responsibility, E: Effectiveness Overall

TABLE I. TECHNIQUES TO ADDRESS SIMD SHACKLES

DLP architectures do not perform well outside the data parallel
domain and have additional issues when integrating them with
a processor core.

Coarse-grained Reconfigurable Architectures (CGRAs):
Recent research efforts in accelerator architectures like C-
Cores [38], BERET [11], and DySER [10], provide a high-
performance in-core substrate. We observe that they are con-
verging toward a promising set of mechanisms that can al-
leviate the challenges of compiling for SIMD. In this work,
we argue that CGRAs address the microarchitectural rigidity
of SIMD and improve compiler effectiveness, while also
avoiding programmer burden. By judiciously exposing their
mechanisms through well defined interfaces, we propose that
in-core accelerators can be freed of SIMD’s limitations, and
that conventional CPU architectures can provide performance
on a broad spectrum of DLP applications with little or no
programmer intervention. The three microarchitectural mech-
anisms we focus on are configurable datapaths, native control-
flow execution and flexible vector I/O between the accelerator
and the core. We show how these three mechanisms and a
co-designed compiler are enough to address the challenges in
exploiting DLP with in-core accelerators.

Our accelerator aware compiler solution consists of two
steps. First, we develop a variant of the program depen-
dence graph called the Access Execute Program Dependence
Graph (AEPDG) that captures the spatial and temporal com-
munication and computation aspects of the accelerator and
accelerator-core interface. We then develop a series of compiler
transformations, leveraging existing vectorization techniques
to operate on this AEPDG to handle various “irregular” and
SIMD-shackled code, ultimately creating a flexible and effi-
cient compiler. To evaluate these ideas and concretely describe
them, this paper uses the DySER architecture as the compiler’s
target. Overall, our paper’s contributions are:

• We develop a variant of Program Dependence Graph,
called the Access Execute Program Dependence Graph
(AEPDG), to capture the temporal and spatial nature
of computations.

• We develop compiler optimizations and transforma-
tions, using the AEPDG, to produce high quality code
for accelerators.

• We describe the overall design and implementation
of a compiler that constructs the AEPDG and applies
these optimizations. We are publicly releasing the
source code of our LLVM-based compiler implemen-
tation that targets DySER [2].

• We demonstrate how a CGRA’s flexible hardware
(specifically DySER), the AEPDG representation, and
compiler optimizations on the AEPDG can enable
specific transformations which break SIMD’s shackles
and expand the breadth of data parallel acceleration.

• We perform detailed analysis on two benchmark suites
to show how close the performance of automatically
compiled DySER code comes to its manual counter-
part’s performance, and how our automated compiler
outperforms ICC compilation for SSE by 1.8×.

This remainder of the paper is organized as follows. Sec-
tion II presents the background on challenges that a vectorizing
compiler face, and on the DySER architecture and its flexible
mechanisms. Section III presents the AEPDG, and section IV
describes our design and implementation of a compiler that
uses the AEPDG to generate optimized code for DySER. Sec-
tion V describes how DySER and the compiler transformations
broadens the scope of SIMD acceleration. Section VI presents
the evaluation and section IX concludes.

II. BACKGROUND

This section first describes classes of loops that vectorizing
compilers face, and describes the issues with compiling these
“challenge loops”. We then describe the DySER architecture
and its flexible mechanisms as a concrete example of an in-
core accelerator. We also contrast its mechanisms with SIMD
to show the benefits of the DySER’s flexibility as outlined
in Figure 1. The challenge loops and architectural details
serve as background and motivation for the development and
description of the AEPDG construct, compiler design, and
transformations.

A. SIMD Challenge Loops

In this subsection, we describe the SIMD approach to
vectorizing five classes of loops, explaining the difficulties
SIMD compilers face using examples in the first two columns
of Figure 6. The examples in this figure are later revisited to
demonstrate the DySER compiler’s approach.

Reduction/Induction: Loops which have contiguous memory
access across iterations and lack control flow or loop depen-
dencies are easily SIMD-vectorizable. Figure 6(a) shows an
example reduction loop with an induction variable use. The
SIMD compiler can vectorize the reduction variable “c” by
accumulating to multiple variables (scalar expansion), vector-
izing the induction variable by hoisting initialization out of the
loop, and performing non vector-size divisible loop iterations
by executing a peeled loop (not shown in diagram).

Control Dependence: SIMD compilers typically vectorize
loops with control flow using if-conversion and masking.
Though vectorization is possible, the masking overhead can
be significant. One example, shown in Figure 6(b), is to apply
a masking technique where both “sides” of the branch are
executed, and the final result is merged using a mask created
by evaluating the predicate on the vector “C”. Note that four
extra instructions per loop are introduced for masking.

Strided Data Access: Strided data access can occur for a
variety of reasons, commonly for accessing arrays of structs.
Vectorizing compilers can sometimes eliminate the strided
access by transforming the data structure into a struct of arrays.
However, this transformation requires global information about
data structure usage, and is not always possible. Figure 6(c)
shows the transformations for a complex multiplication loop,
which cannot benefit from array-struct transformations. A
vectorized version, provided by Nuzman et al. [22], packs and
unpacks data explicitly with extra instructions on the critical
path of the computation.

Carried Dependencies: SIMD compilers attempt to break
loop-carried memory dependencies by re-ordering loops after
loop fission, or reordering memory operations inside a loop.
These techniques involve difficult tradeoffs and can have
significant overheads. The example code in Figure 6(d) shows
a loop with an unbreakable carried dependence, which cannot
be SIMD vectorized. The statements cannot be re-ordered or
separated because of the forward flow dependence through
c[i] and the backwards loop anti-dependence on a[i],
creating a serial dependence chain.

Partially Vectorizable: When contiguous memory patterns
occur only on some streams in a loop, SIMD compilers must
carefully weigh the benefits of vectorization against the draw-
backs of excessive shuffling. One example is in Figure 6(e),
where the loop has two streaming access patterns coming from
the arrays “a” and “b”. The accesses from “a” are contiguous,
but “b” is accessed indirectly through the “index” array. Here,
the compiler has chosen to perform scalar loads for non-
contiguous access and combine these values using additional
instructions. This transformation’s profitability relies on the
number of instructions required to construct vector “D2”.

Memory / RegFile

FU FU FU FU

FU

FU FU

FU

Memory / RegFile

SIMD DySER

Configurable,
datapath,
Control Flow
Capability

Flexible
 I/O

Fixed
Parallel

Datapath

Fixed I/O Interface

Fig. 1. Conceptual Models of Vector SIMD and DySER

B. DySER’s Architecture and Execution Model

To address the challenges of SIMD compilation, we lever-
age the DySER architecture as our in-core accelerator. In this
subsection we briefly describe DySER, and further details are
in Govindaraju et al. [10], [9].

Architecture DySER is an array of configurable functional
units connected with a circuit switched network of simple
switches. A functional unit can be configured to receive
its inputs from any of its neighboring switches. When all
its inputs arrive, it performs the operation and delivers the
output to a neighboring switch. Switches can be configured
to route their inputs to any of their outputs, forming a circuit
switched network. With this configurable network of functional
units, a specialized hardware datapath can be created for a
sequence of computation. It supports pipelining and dataflow
execution with simple credit based flow control. The switches
in the edge of the array are connected to FIFOs, which are
exposed to the processor core as DySER’s input/output ports.
DySER is tightly integrated with a general purpose processor
pipeline, and acts as a long latency functional unit that has
a direct datapath from the register file and from memory.
The processor can send/receive data or load/store data to/from
DySER directly through ISA extensions.

Execution Model Figure 2 shows DySER’s execution model.
Before a program uses DySER, it configures DySER by pro-
viding the configuration bits for functional units and switches,
as shown in Figure 2c. Then it sends data to DySER either
from registers or from memory. Once data has arrived to
DySER’s input FIFO, it follows the configured path through
the switches. When the data reaches the functional units, the
functional units perform the operation in dataflow fashion.
Finally, the results of the computation are delivered to the
output FIFOs, from which the processor fetches the outputs
and sends them to the register file or to memory.

C. Overcoming SIMD Challenges with DySER

As shown in Figure 1, SIMD units and DySER exhibit
key similarities. They are tightly integrated to the core, are
composed of many functional units to exploit fine-grained par-
allelism and have wide memory interfaces. However, DySER’s
capability to overcome the challenges with SIMD arise from
three flexible mechanisms: i) configurable pipelined datapaths;
ii) native control capability; and iii) a flexible vector I/O
interface.

Configurable Datapath A SIMD unit’s datapath is fixed to
perform many equivalent operations in parallel. In contrast,

for(i=0; i<n; ++i) {
if(a[i]>0)

c[i] = 1/b[2i];
else

c[i] = b[2i]*2;
}

DyConfig <Config>
for(i=0; i<n-n%4; i+=4){
DyLd_Vec a[i:i+3]->P0;
DyLd_Vec b[2i:2i+3]->P1;
DyLd_Vec b[2i+4:2i+7]->P1;
DySt_Vec P2->c[i];

}
...

>0

1/ φ

P0(a):

×

0123

Input
Fifos

P1(b): 0x2x

P2(c): 0123

Output Fifo:

Configuration Bits:
Tile FU
1,1 >
1,2 / …
Switch
1,1 W->SE
2,1 S->SE
1,2 W->SE, W->E ...

1,1 2,1 3,1

1,1 2,1

(a) Original Loop (b) DySER-Accelerated Code (c) DySER Configuration

Fig. 2. DySER Execution Model

DySER extends the flexibility of this model by providing
a configurable datapath. Complex dependencies can be ex-
pressed inside the DySER hardware substrate, which is simply
a heterogeneous grid network of functional units and switches.

Control Mapping Executing control flow on a SIMD accel-
erator requires performing both paths of a control decision,
and must use explicit masking instructions to attain the final
output. DySER simplifies this by natively supporting control
flow inside the hardware substrate by augmenting the internal
datapath with a predicate bit, and provides the ability to per-
form select operations depending upon the validity of predicate
bit. This select operation is similar to the φ-function in the
Single Static Assignment (SSA) form of the code.

Flexible Vector I/O SIMD instructions, without the support
for scatter/gather operations–as is the case for most modern
SIMD implementations like SSE/AVX–can only load and store
contiguous sections of memory. This simplifies the hardware
for fetching vectors from the memory system by only requiring
one cache line fetch, or perhaps two if unaligned vector
access is supported. DySER retains this simplicity by requiring
contiguous memory on vector loads, but provides a flexible
I/O mechanism which can map locations in an I/O vector to
arbitrary ports in DySER. To support this, DySER’s configu-
ration includes vector port definitions, which map sequences
of DySER’s ports to virtual vector ports [9].

This mapping mechanism allows DySER to utilize vector
instructions for communication in different paradigms, as
shown in Figure 3. First, when the elements of a vector
correspond to different elements of the computation, this is a
“wide” communication pattern (Fig. 3a). This is most similar
to SIMD’s vector interface. When the elements of a vector
correspond to the same element of the computation, this is a
“deep” communication pattern(Fig. 3b). This corresponds to
explicitly pipelining a computation. The combination of the
above results in a “hybrid” pattern(Fig. 3c). Finally, when
certain vector elements are masked-off or ignored, this is an
“irregular” pattern(Fig. 3d). The flexibility of DySER’s I/O
interface, in part, gives rise to the need for a sophisticated
compiler intermediate representation.

III. ACCESS EXECUTE PDG

The motivation to develop a new compiler intermediate rep-
resentation is that, for an accelerator compiler to be successful,
it must be aware of the internal operation of the architecture
through spatial (via contiguous memory) and temporal (via
pipelined execution) dimensions.

The Program Dependence Graph (PDG) [7] makes the
data and control dependencies between instructions explicit,

4321

1 2 3 4

4321

1
2
3
4

4321 8765 9

1
4
7

2
5
8

3
6
9

(a) Wide (b) Deep (c) Hybrid

In
pu

t
Fi

fo
V

ec
to

r
M

ap

4xx1 x7xx x

1 4 7

(d) Irregular

Fig. 3. Flexible I/O Mechanisms in DySER

which closely matches two flexible mechanisms that DySER
provides, namely configurable datapath and control capability.
However the PDG does not explicitly capture the notion of
spatial access, meaning that it is unaware of the potentially
contiguous access for a computation. Also, it does not have a
notion of temporal execution, which corresponds to pipelining
computations through the accelerator. More fundamentally,
the PDG lacks a representation for the relationship between
spatial access to the memory and temporal execution in the
accelerator, i.e. the PDG is unaware of the correspondence
between the contiguity of inputs and outputs of a particular
computation through subsequent iterations. To address this
shortcoming, we develop the AEPDG, which captures exactly
this relationship with special edges in PDG.

Definition and Description: The AEPDG is simply a tradi-
tional PDG, partitioned into an access-PDG and an execute-
PDG. The execute-PDG is defined as a subgraph of the
AEPDG which is executed purely on the accelerator hard-
ware. The access-PDG is simply the remaining portion of the
AEPDG. Additionally, the AEPDG is augmented with one or
many (instance, offset) pairs at each interface edge between
the access and execute PDGs. The “instance” identifies the
ordering of the value into the computation, and the “offset”
describes the distance from the base of the memory address.
This decoupling and added information allows the compiler
to efficiently coordinate pipelined instances of an accelerator’s
computations through a flexible vectorized interface.

An Example: Figure 4 illustrates the usefulness of the
AEPDG. It shows the traditional PDG on the left pane, which
corresponds to original loop in Figure 2. In order to exploit the
data parallelism in the loop, we can perform unrolling, which
results in the “Unrolled PDG” in the second pane of figure 4.
Note how this traditional PDG representation lacks awareness
of the relationship between contiguous inputs and pipelineable
computations. We construct the AEPDG by determining the
relationship between memory accesses through iterations of the
loop. Here each edge between the access and execute PDGs
has an instance number and offset number. In the “AEPDG”

1/

>0

× 2

φ

b[2i]

c[i]

a[i]Loads:

Stores:

Access
Subgraph

Access
Subgraph

Execute
Subgraph

1/

>0

× 2

φ

b[2i+2]

c[i+1]

a[i+1]

Program Dependence
Graph (PDG) Unrolled PDG

1/

>0

× 2

φ

b[2i]

c[i]

a[i]

AEPDG

1/

1,0 >0

× 2

1,0

φ

0,0

b[2i+2]

c[i]

a[i]

0,0

Coalesced AEPDG

1/

0,0
1,2

>0

× 2

0,0
1,2

φ
0,0
1,1

b[2i]

c[i]

a[i]

0,0
1,1

AEPDG
Legend:

X,Y
X: Instance

Y: Offset

b[2i]

0,0
0,0

a[i+1]

1,0

c[i+1]

1,0

0x2x

0
2

0123

In
p

ut
 F

ifo
s

Vector Ports

P0(b) P1(a)

1/

>0

× 2

φ

3210 P3(c)

0
2

1
2
3

0

0
1
2
3 DySER

Mapping

O
u

tp
u

t
Fi

fo

Fig. 4. Construction of the AEPDG, and Mapping to DySER

pane of Figure 4, all offset numbers are 0, because the loads
and stores have not been coalesced. The next pane shows
how the AEPDG keeps track of multiple instances of the
computation through subsequent iterations. Some edges have
multiple pairs, indicating multiple loads from the same address,
and some computations are for two separate instances, indicat-
ing pipelined execution. The final pane, “DySER Mapping”,
shows how it is now simple to configure DySER’s flexible
I/O interface using the AEPDG. Each access pattern is simply
given a vector port, which, when utilized by an I/O instruction,
initiates a hardware mapping between the vector port and the
corresponding DySER port(s).

IV. COMPILING FOR DYSER USING THE AEPDG

We now describe the AEPDG compiler’s design and im-
plementation which consists of four main phases: i) Selection
of regions from the full program PDG that are candidates for
accelerator mapping. ii) Formation of the basic AEPDG encap-
sulating those code regions. iii) AEPDG transformations and
optimizations tailored to the architecture. iv) Code generation
of the access-PDG and execute-PDG.

A. Region Selection for Acceleration

Applications have many candidate code regions that can be
accelerated, and identifying most frequently executed regions
is an important task because it amortizes the cost of recon-
figuration. Many conventional techniques can be repurposed
for identifying the regions, including profiling, hyperblocks,
and pathtrees [10] or using static techniques like identifying
loops with high trip counts or using inner loops. In this work,
we identify the regions with programmer inserted pragmas.
Once the region for acceleration is identified, we construct the
corresponding PDG using existing techniques [7].

B. Initial AEPDG Formation

Forming the AEPDG means partitioning the PDG into the
access-PDG and execute-PDG. This task is important because
it influences the effectiveness of the acceleration. DySER’s
configurable datapath and control capability give the compiler
great flexibility in determining the execute-PDG.

We employ two heuristics to perform the partitioning.
In the first approach, we find the backward slices of all

address calculation from loads and stores inside the candidate
region, and place them in the access-PDG. The remaining
instructions form the execute-PDG. This works well for many
data parallel applications, where each loop loads many data
elements, performs a computation, and stores the result.

For applications where the primary computation is to
compute the address of a load or a store, the method described
above places almost all instructions in the access-PDG. In-
stead, we employ a method which first identifies loads/stores
that are dependent on prior loads/stores. Then, we find the
backward slices for the non-dependent loads/stores as we did in
our first approach. For the dependent loads/stores, we identify
the forward slices and make them also part of the access-PDG,
leaving the address calculation of the dependent loads/stores
as the execute subregion.

To select between these techniques, we simply chose the
one which provides the largest execute-PDG. It is possible to
develop more advanced techniques or selection heuristics, but
in practice, these two approaches are sufficient.

C. AEPDG Transformations and Optimizations

To accelerate effectively, the compiler should create
execute-PDGs whose number of operations is proportional
to the accelerator’s resources, and whose interface with the
access-PDG has few connections, minimizing the I/O cost.
Also, the compiler should schedule the execute-PDG to the ac-
celerator with high throughput and low latency as the primary
concerns. The initial AEPDG will need transformations to
achieve the above goals. In this subsection, we present how we
apply a suite of compiler transformations on the AEPDG that
make it suitable for DySER. Because these transforms impose
dependencies on each other, due to the close interaction of the
access-PDG and execute-PDG, we conclude by commenting
on how we coordinate these transformations.

Loop Unrolling for PDG Cloning: If the execute-PDG
under utilizes DySER, the potential performance gains will be
suboptimal. To achieve high utilization for a loop which has
no loop-carried dependencies, we can clone the execute-PDG,
potentially many times, until a sufficiently large execute-PDG
is created. This corresponds to unrolling in the access-PDG,
and reduces the trip count of the loop. This transformation
exploits the spatial aspect of the AEPDG to track the links
among the access subgraph nodes and cloned execute subgraph

1. Coalesces nodes to groups
with constant offsets.
Memory dependences are
respected.

2. Nodes are split into vector
length sized groups.

3. Update boundary edge
labels to reflect coalescing

1. Determine clone/unroll
parameters using the
DySER model and Ex. PDG

2. Create copies of the
nodes

3. Attach Copied nodes to
appropriate copied edges

4. Label edges at the
boundaries of the Access
& Execute PDGs.

 Input: aepdg, dyser_model, vec_len
 Output: transformed aepdg

 pdgclone(aepdg, dyser_model,vec_len):=
 numClones = max_epdgs_in_dyser(aepdg.epdg,dyser_model)
 numUnroll = vec_len / numClones;

 //copy epdg numClones times
 for i = 1 to numClones
 clonedEPDG[i] = aepdg.epdg.clone()

 //unroll apdg
 for i = 1 to numUnroll
 unrolledAPDG[i] = aepdg.apdg.unroll()

 // Insert I/O edges for Execute-PDG inputs
 forall node ∈ aepdg.epdg.inputs()
 for i = 1 to numUnroll
 idx = i%numClones
 // find the clone for the node.
 clonedNode = clonedEPDG[idx].find(node)

 forall pred ∈ clonedNode.predecessors()
 unrolledNode = unrolledAPDG[i].find(pred)
 edge(unrolledNode, clonedNode).addLabel(<i, 0>)

 // insert I/O edges for Execute-PDG outputs.
 ...

 aepdg.apdg.update_loop_control(vec_len)
 aepdg.delete_dead_nodes()

Input: aepdg
Output: aepdg with coalesced loads/stores

coalesce(aepdg):=
 S = aepdg.memory_nodes.sort_in_program_order()
 while |S| != 0
 candidate = first node in S
 coalescedNodes = {Candidate}
 forall node ∈ S in sorted order
 if candidate.isLoad() == node.isLoad()
 hasConstOffset(candidate.Addr, node.addr))
 coalescedNodes = coalescedNodes ∪ {node}
 //check dependences
 aliasedNodes = S.getAliasedNodes(coalescedNodes)
 if |aliasedNodes| != 0 // We cannot coalesce them
 S = S – (aliasedNodes ∪ coalescedNodes)
 continue

 cn = coalescedNodes.sort_by_offset()
 vecNodes = cn.split(maxVecSize)
 if candidate.isLoad()
 forall vecLoad ∈ vecNodes
 forall load ∈ vecLoad
 offset = load.get_offset_from(vecNode)
 for dy_edge ∈ aepdg.dyio_edges(load)
 edge(vecLoad, dy_edge.use).addLabel(
 <dy_edge.instance, offset>)
 // Handle stores
 ...
 //delete coalesced nodes and update S
 ...

(a) PDG cloning and Vector Deepening (vectorizable loop) (b) Load/Store Coalescing

Fig. 5. Compilation Algorithms

nodes. In the load/store coalescing transformation, described
later, the compiler uses these links to combine consecutive
accesses.

Strip Mining for Vector Deepening: In addition to paralleliz-
ing the loop for achieving the correct execute-PDG size, the
compiler can further parallelize the loop by pipelining com-
putations. This transformation, called strip mining, means that
additional loop iterations are performed in parallel by pipelin-
ing data through the execute-PDG. The effective “depth” of
the vectors is increased as an effect of this transformation.

Figure 5(a) shows the PDG cloning and vector deepening
algorithm, which creates edges to track the links between the
access and execute subgraphs. First, it uses the size and types
of instructions in the execute-PDG and the DySER model,
which includes the quantity of and capabilities of the func-
tional units in DySER, to determine the number of execute-
PDG clones and number of times the access-PDG should be
unrolled. After cloning the execute-PDG and unrolling the
access-PDG, it creates edges between appropriate nodes in
each. These interface edges are labeled to track the spatio-
temporal information.

Subgraph Matching: If the size of an execute-PDG is “larger”
than the size of DySER, many configurations will be required,
resulting in excess overhead per computation performed. If
computations in the execute-PDG share a common structure,
or formally an isomorphic subgraph, this can be exploited to
pipeline the computations through this subgraph. This trans-
formation, called subgraph matching, merges the isomorphic
subgraphs, and modifies the access nodes to use temporal
information encoded in the AEPDG to pipeline data.

Computing the largest matching subgraph is a difficult NP-
complete problem, so in this work, we mark these subgraphs
by hand. We can adapt previously proposed heuristics by Clark
et al. [6] and make them AEPDG complaint. Most program
regions we considered do not have common subgraphs, as
they most commonly arise when the code is unrolled before
AEPDG formation.

Execute PDG Splitting: When subgraph matching is insuffi-
cient to reduce the size of the execute-PDG, or when there is
not an isomorphic subgraph, it becomes necessary to split the
execute-PDG and insert nodes in the access-PDG to orchestrate
the dependencies among the newly created execute-PDGs.

Scheduling Execute PDGs: Once the final execute PDG
has been determined, we need to create a mapping between
the execute-PDG and the DySER hardware itself. We use a
greedy algorithm that places instructions in DySER with the
lowest additional routing cost. This greedy algorithm is similar
to other spatial architecture scheduling algorithms, completes
quickly, and is suitable for use in production compilers.

Another potential approach is to use the recently proposed
general constraint centric scheduler to map the execute-PDG
to the DySER hardware [20], [30].

Unrolling for Loop Dependence: When the AEPDG rep-
resents loops without data dependence, we can use it to
trivially unroll and vectorize the nodes in the access-PDG just
like traditional SIMD compilers. When loops have memory
dependencies across iterations, SIMD compilers usually fail
or use complex techniques, such as the polyhedral model, to
transform the loop such that they can be vectorized. In contrast,
we simply unroll the loop multiple times and combine the
dependent computation with the execute-PDG. It can acceler-
ate the loop considerably since the execute-PDG is pipelined
using DySER. Again, the AEPDG tracks the links between
the unrolled nodes in the access-PDG, which can be used to
combine the nodes in the load/store coalescing transform.

Traditional Loop Vectorization: We leverage several tech-
niques developed for SIMD compilers to vectorize loops when
the iterations are independent. These include loop peeling and
scalar expansion [23], to maintain correctness and to increase
parallelism respectively. In our compiler, we implement these
traditional vectorization techniques on the AEPDG, and the
techniques are designed not to interfere with its temporal and
spatial properties.

Challenge Loops & SIMD Approach DySER Approach
Original Code SIMD Acceleration DySER Acceleration Execute-PDG

(a
)

R
eg

ul
ar

for(i=0; i<n; ++i){
c += a[i] * i;

}

I={0,1,2,3}, C={0,0,0,0};
FOUR={4,4,4,4}
for(i=0; i<n-n%4; i+=4){
Ld_Vec A = a[i:i+3];
T = A * I;
C = C + T;
I = I + FOUR;

}
c = C[0]+C[1]+C[2]+C[3];

I={0,1,2,3}, C={0,0,0,0};
for(i=0; i<n-n%4; i+=4){

DyLd_Vec a[i:i+3]->P0;
DySnd_Vec I->P1;
DySnd_Vec C->P2;
DyRcv_Vec P3->C;
DyRcv_Vec P4->I;

}
c = C[0]+C[1]+C[2]+C[3];

× +4

+

P2 C

P0 a(i) P1 I

P3 C P4 I

...

(b
)

C
on

tr
ol

D
ep

. for(i=0; i<n; ++i) {
if(a[i]>0) {
c[i]=b[i]+5;

} else {
c[i]=b[i]-5;

}
}

for(i=0; i<n-n%4; i+=4){
Ld_Vec A=a[i:i+3];
Ld_Vec B=b[i:i+3];
Temp1 = B+5;
Temp2 = B-5;
Mask = A>0;
C = (Temp1 & Mask) |

(Temp2 & ˜Mask);
St_Vec c[i:i+3]=C;

}

for(i=0; i<n-n%4; i+=4){
DyLd_Vec a[i:i+3]->P1;
DyLd_Vec b[i:i+3]->P2;
DySt_Vec P3->c[i:i+3];

}

+5

P1 A

>

-5

φ

P3 C

P2 B

(c
)

St
ri

de
d

A
cc

es
s

for(i=0; i<n; ++i) {
c[2i] = a[2i]*b[2i]

- a[2i+1]*b[2i+1];
c[2i+1]=a[2i]*b[2i+1]

+ a[2i+1]*b[2i];
}

for(i=0; i<n-n%4; i+=4){
Ld_Vec A1=a[2i:2i+3];
Ld_Vec A2=a[2i+4:2i+7];
AO = extract odds(A1,A2);
AE = extract evens(A1,A2);
Ld_Vec B1=b[2i:2i+3];
Ld_Vec B2=b[2i+4:2i+7];
BO = extract odds(B1,B2);
BE = extract evens(B1,B2);
CE = (AE * BE) - (AO * BO);
CO = (AE * BO) + (AO * BE);
c[2i:2i+3]=itrl low(CE,CO);
c[2i+4:2i+7]=itrl high(CE,CO);

}

for(i=0; i<n-n%4; i+=4){
DyLd_Vec a[2i:2i+3]->P0;
DyLd_Vec a[2i+4:2i+7]->P0;
DyLd_Vec b[2i:2i+3]->P1;
DyLd_Vec b[2i+4:2i+7]->P1;
DySt_Vec P2->c[2i:2i+3];
DySt_Vec P2->c[2i+4:2i+7];

}

× ×

-

× ×

+

3210

0
2

1
3

4
6

5
7

7654

In
p

u
t

F
ifo

Vector Ports

P0(a) P1(b)

0
2

1
3

3210P2(c)

O
u

tp
u

t
Fi

fo

(d
)

U
nb

re
ak

ab
le

D
ep

.

for(i=1; i<n; ++i) {
c[i] = a[i-1]+b[i];
a[i] = c[i]*k;

}

Not SIMD
Vectorizable

for(i=1; i<=n-n%4; i+=4){
DyLd_Vec a[i-1]->P0;
DyLd_Vec b[i:i+3]->P1;
DySt_Vec P2->a[i:i+3];
DySt_Vec P3->c[i:i+3];

}

3210
P1(b)P0(a)

+

×
+

×
+

×
+

×

32103210
P2(a) P3(c)

(e
)

Pa
rt

.V
ec

to
ri

za
bl

e

for(i=0; i<n; i++){
d1 = a[i];
index = ind[i];
d2 = b[index];
c[i] = d1*d2;

}

for(i=1; i<n-n%4; i+=4){
Ld_Vec D1 = a[i:i+3];
Ld b0 = b[ind[i+0]]
Ld b1 = b[ind[i+1]]
Ld b2 = b[ind[i+2]]
Ld b3 = b[ind[i+3]]
D2 = {b1,b2,b3,b4};
C = A * B;
St_Vec c[i:i+3]=C;

}

for(int i=0; i<n-n%4; i+=4) {
DyLd_Vec a[i:i+3]->P0;
DyLd b[ind[i+0]]->P1;
DyLd b[ind[i+1]]->P2;
DyLd b[ind[i+2]]->P3;
DyLd b[ind[i+3]]->P4;
DySt_Vec P5->c[i:i+3];

}

× × × ×

3210
P0(b)

P1 P2 P3 P4

3210
P5(c)

Scalar
Ports

Vector Port

Fig. 6. Limitations of SIMD Acceleration, and the DySER Approach

Load/Store Coalescing: DySER’s flexible I/O interface en-
ables the compiler to combine multiple DySER communication
instructions which have the same base address, but different
offsets. We use the order encoded in the interface edges
between access and execute PDGs and leverage existing alias
analysis to find whether multiple access nodes can be coalesced
into a single node.

Figure 5(b) shows the load/store coalescing algorithm,
which tracks the offset information between the coalesced
loads and the computation in the execute-PDG. It iterates

through the memory instructions in program order and attempts
coalescing with nodes of the same type (i.e both loads or
stores) which also access addresses with a constant offset
(relative to the loop induction variable). Then, if any of the
coalesced nodes are dependent on other memory nodes in
the AEPDG, it discards the memory dependent loads from
coalescing. Coalesced nodes are split into vector-sized groups,
and for each group, a new node is created with updated
instance and offset information.

D. Coordinating Compiler Transformations

The compiler coordinates these transformations as fol-
lows. First, the compiler uses unrolling, subgraph matching
or splitting to create AEPDGs with execute-PDGs that can
be mapped to DySER successfully. Second, if the loop is
vectorizable, we use vector deepening/stripmining and other
traditional loop vectorization to further pipeline DySER. For
non-vectorizable loops, we use the “loop unrolling for loop
dependence” transform to accelerate the loop. Finally, after
attaining the correct region size for DySER, we perform the
load/store coalescing to reduce the communication cost.

E. Implementation

To implement our compiler, we leverage the LLVM com-
piler framework and its intermediate representation (IR). First,
we implement an architecture independent compiler pass that
processes LLVM IR and constructs the AEPDG. Second,
we develop a series of optimization passes that transform
the AEPDG to attain high quality code for DySER. Third,
we implement a transformation pass that creates LLVM IR
with DySER instructions from the access-PDG. Finally, we
extend the LLVM X86 code-generator to generate DySER
configuration bits from the execute-PDG. With this compiler,
we can generate executables that target DySER from C/C++
source code. Our implementation is publicly released with this
paper and more documentation is available here [2].

V. BROADENING THE SCOPE OF VECTORIZATION

In this section, we illustrate how the DySER compiler
broadens the scope of vector-SIMD acceleration by analyzing
the challenge loops introduced in Section II, which are gener-
alizations of those found in the applications we evaluated.

Reduction/Induction: The example in 6(a) demonstrates that
the techniques for traditional SIMD vectorization are also
applicable for DySER acceleration, as it provides a superset
of SIMD mechanisms. The third column shows transformed
code after DySER acceleration, while the fourth column shows
the execute-PDG, which directly corresponds to the DySER
accelerator’s configuration.

Control Dependence: The DySER compiler leverages the
AEPDG structure to represent control flow inside vectorizable
regions. The example in figure 6(b) shows how the DySER
compiler can trivially observe that the control is entirely in the
execute-PDG, enabling this control decision to be offloaded
from the main processor. This eliminates the need for any
masking instructions, reducing overhead significantly.

Strided Data Access: When non-contiguous memory prevents
straight-forward loop vectorization, the DySER compiler can
leverage the spatio-temporal information in the AEPDG to
configure DySER’s flexible I/O hardware to perform this
mapping. For the code in Figure 6(c), the compiler creates
interleaved wide ports to coordinate the strided data movement
across loop iterations. Since the DySER port configuration is
used throughout the loop’s lifetime, this is more efficient than
issuing shuffle instructions on each loop iteration.

Carried Dependencies: While vectorizing compilers will at-
tempt to break loop carried dependencies, the DySER compiler
takes advantage of these. The example in Figure 6(d) shows a

loop which has a non-breakable loop-carried dependence. By
unrolling the loop until the execute-PDG uses a proportional
number of resources to the hardware, contiguous memory
accesses are exposed. The loop dependencies, which are now
explicit in the execute-PDG, become part of DySER’s internal
datapath, enabling efficient vectorization.

Partially Vectorizable: Though partially vectorizable loops
pose complex tradeoffs for vector-SIMD compilers, the
DySER compiler represents these naturally with the AEPDG,
which is made possible by the flexible I/O interface that the
DySER hardware provides. For the loop in Figure 6(e), ac-
cesses to the “a” array are vectorized, and scalar loads are used
for “b”. Compared to the SIMD version, the DySER compiler
eliminates the overhead of additional shuffle instructions.

VI. EVALUATION

This section quantitatively evaluates the AEPDG-based
compiler implementation for DySER to support data-parallel
execution and is organized around two main questions: i)
How close to the performance of manually-optimized code
does our automatically-compiled code reach? ii) How does
our co-designed architecture and compiler compare to the
auto vectorized GCC/ICC-compiled code for the SSE/AVX
architecture?

A. Evaluation methodology

Compilers We implemented the DySER compiler in LLVM
v3.2, and compared it against GCC 4.7 and Intel’s compiler
ICC 12.1. Since GCC auto-vectorized code always performs
worse than ICC-compiled code, we only show the results for
ICC. All benchmarks include the restrict keyword on
array pointers, where appropriate, to eliminate the need for
interprocedural analysis of array aliasing.

Simulation Framework To attain performance results for
DySER and SSE, we use the gem5 simulator [1], with ex-
tensions to support the DySER instructions and its micro-
architecture. DySER is integrated into a 4 wide out-of-order
processor with 64KB L1-D$, 32KB-L1-I$, and a tournament
branch predictor with 4K BTB entries.

As described in Govindaraju et al. [9], we consider a 64-
tile heterogeneous (16 INT-ADD, 16 FP-ADD, 12 INT-MUL,
12-FP-MUL, 4 FP-DIV, 4 FP-SQRT) functional-unit DySER
array. It takes about 64 cycles to reconfigure DySER with
64 functional units, assuming that the L1I cache contains the
configuration bits for DySER and can sustain a bandwidth
of 128 bits/cycle. Area analysis comparing to SSE and AVX
shows this configuration has the same area as an AVX unit
and twice the area of a SSE unit.

Benchmarks We evaluate our compiler on two sets of bench-
marks. First, we use a similar suite of throughput kernels to
those of Satish et al. [31], which are easier to analyze, to
evaluate and compare against SSE performance. This suite
includes CONV (5x5 2D convolution), MERGE (merge phase
of bitonic sort), NBODY (N-Body simulation), RADAR (1D
Complex Convolution), TREESEARCH (Search a key through
a binary search tree), and VR (Volume Rendering). Second,
we consider the Parboil benchmark suite [24] as a “challenge”
benchmark suite, since its scalar code is not written with any

Loop Clasification Affected Benchmarks
No Shackles CONV, RADAR, NBODY,

MM, STENCIL, KMEANS
Loop Body Control Flow TSRCH, VR, CutCP, LBM
Strided Data Access FFT, MRI-Q, NNW, TPACF,

LBM
Loop-Carried
Dependence

NEEDLE, MERGE

Partially Vectorizable SPMV, NEEDLE
Impossible Vectorization None

TABLE II. CLASSIFICATION OF LOOPS EVALUATED

CO
NV

M
ERG

E

NBO
DY

RADAR

TREESRCH VR
HM

2

4

6

8

10

12

S
p

e
e

d
u

p

23 19
Kernels

Manual

Auto

CutC
P

FFT

KM
EANS

LBM
M

M

M
RI-Q

SPM
V

STENCIL

TPACF
NNW

NEEDLE
HM

Parboil

Manual

Auto

Fig. 7. Manual vs. Automatic DySER Performance

particular architecture in mind. We chose these benchmarks
because they have good data level parallelism and hence are
good candidates for acceleration. For both cases, we also
implemented hand-optimized DySER code, and either wrote
or obtained CUDA code for comparison with GPUs. Table II
classifies the benchmarks according to the five challenges.

B. Automatic vs Manual DySER Optimization

Figure 7 shows the speedup of manually-optimized and
compiler-generated DySER code relative to the baseline.

Kernels

Result: Manually-optimized DySER code achieves a harmonic
mean speedup of 3.5×, while automatic DySER compilation
yields 2.8×.

Analysis: As expected, manually-optimized code is faster than
the auto generated code, since programmers can apply applica-
tion specific knowledge when utilizing the accelerator. What
is notable in these results is the number of cases where the
DySER compiler can nearly perfectly utilize the accelerator.
For five out of six kernels, our flexible mechanisms give the
compiler enough leverage to create a datapath for the loop bod-
ies, and also provide an efficient interface to memory. The only
exception from this suite is Volume Rendering (VR), which is
difficult to automatically parallelize with DySER because it
requires indirect data access and cannot use DySER’s flexible
vector I/O. The manual version, however, computes multiple
rays in parallel using the loop flattening [37] transformation
on the outer loop to expose parallelism. This could be an
additional optimization for our compiler.

Compiler Behavior Benchmarks

Compiler effective All kernels (except VR)
MRI-Q, STENCIL, TPACF,
KMEANS

Heuristic Tuning Reqd. MM
Missing optimization VR, FFT, NEEDLE, CutCP

Architecture ineffective LBM, SPMV

TABLE III. SUMMARY OF DYSER COMPILER EFFECTIVENESS

CO
NV

M
ERG

E

NBO
DY

RADAR

TREESRCH VR
HM

2

4

6

8

10

12

S
p

e
e

d
u

p

16 18
Kernels

SSE

AVX

GPU

DySER

CutC
P

FFT

KM
EANS

LBM
M

M

M
RI-Q

SPM
V

STENCIL

TPACF
NNW

NEEDLE
HM

77
Parboil

SSE

AVX

GPU

DySER

Fig. 8. Performance of DySER compiled code vs. SSE/AVX and GPU

“Challenge” benchmarks - Parboil

Result: Automatic DySER compilation yields 2.3×, which
comes close to the Manually-optimized speedup of 3.4×

Analysis: These provide a spread of behavior and we analyze
the results for the four categories in Table III.

Compiler effective (4 of 11): MRI-Q, STENCIL, KMEANS
and TPACF perform equally as well in both manual and
automatic compilation. This is because the flexible-IO enables
the strided pattern in MRI-Q, the “deep” access pattern in
STENCIL, and load coalescing TPACF. KMEANS also attains
high performance, but doesn’t reach that of the manual version
because it uses an outer-loop unrolling technique to expose
extra parallelism.

More heuristic tuning required (1 of 11): For MM, our
compiler implementation fails to recognize when mapping
reduction to DySER is better than mapping scalar expansion,
and it suboptimally chooses scalar expansion.

Missing optimizations (4 of 11): FFT, NEEDLE, NNW, and
CutCP achieve less than 70% of manually-optimized code
due to missing optimizations. In FFT, the vector length needs
to be dynamically chosen. NEEDLE has a long dependence
chain caused by unrolling, and CutCP uses long latency
functional units, causing long latency execute-PDGs for both.
These benchmarks would benefit from software pipelining
invocations using a outer loop. Also, the NNW benchmark
uses a constant memory lookup table, which makes it hard for
the compiler to reason about contiguous access. The manual
version exploits the patterns in this lookup table, while the
DySER compiler falls back on only partial vectorization.

Architecture ineffective (2 of 11): The architecture is ill-suited
for LBM and SPMV, since even manually-optimized code
provides speedup less than 80%.

C. Automatic DySER vs SSE Acceleration

We now compare the compiler+architecture performance
of DySER to SSE/AVX. Figure 8 shows the speedup of
auto-vectorized SSE and AVX and the speedup of compiler
generated code for DySER, both measured against the same
baseline.

Result: Auto-vectorization provides only about 1.3× mean
speedup with SSE and 1.4× mean speedup with AVX, whereas
compiler generated code for DySER provides about 2.5×
mean speedup. In 3 of 6 kernels, and in 4 of 11 “challenge”
benchmarks, DySER is 2× faster than AVX.

Analysis: Auto-vectorization is generally effective in the pres-
ence of regular access and no control flow. For example, the
automatic compilation of CONV and NBODY performs well
for either SIMD or DySER. With complex access patterns or
complex control flow, SIMD compilers provide no speedup
(6 of 11 Parboil, and 2 of 6 kernels). DySER compilation,
on the other hand, shows speedup in all but two cases.
These results indicate DySER’s AEPDG based compilation for
flexible architectures is more effective than SIMD compilers.

Although both techniques reduce per-instruction overheads,
energy reduction from DySER is significantly better than
SSE, because DySER is able to handle more types of code
and produce more speedups. At times, SSE increases energy
consumption because of meager speedups and extra power
consumption by the SIMD register file and functional units.

VII. AUTOMATIC DYSER VS GPU ACCELERATION

GPGPUs tackle the challenges in exploiting DLP with
fundamentally new programming models such as CUDA,
OpenCL etc., and with an out-of-core accelerator. In contrast,
our approach addresses the SIMD challenges with an in-
core accelerator and targets programs written in a traditional
programming model. In this section, we address how our
approach compares to that of GPUs, which are a popular
solution for addressing data-parallel limitations. For this study,
we are comparing our fully automatic acceleration against a
combined architecture and programming model, so achieving
even similar performance would be a significant success. To
compare against a GPU, we consider a 1-SM/8-wide GPU
since its area and functional units are comparable to one
DySER block integrated with a 4-wide OOO processor.

Result: For kernels, the GPU provides a mean speedup of
3.6× and compiled DySER provides 2.8×. For Parboil, the
GPU provides only mean speedup of 1.9×, whereas compiler
generated code for DySER provides about 2.3× mean speedup.
The GPU reduces mean energy consumption by 82% and
DySER, with compiled code, reduces this by 65%.

Analysis: Since the workloads we considered are highly data
parallel and represent the best case scenario for GPU, the
GPU performs better as it removes the SIMD shackles with
mask generation and load coalescing. However, even with
highly favorable workloads for the GPU, DySER performs
better than or similar to the GPU. For example, DySER
performs better than GPU in NEEDLE, because it accelerates
a loop with unbreakable dependency as described in section V,
whereas the GPU diagonally accesses the data, which inhibits
memory coalescing and incurs runtime overheads due to extra

Datapath Control Flexible I/O
GARP [12] FPGA-Like Control-mux Memory Queue
C-Cores [38] Synthesized φ-function Serial load/store
BERET [11] Compound FU None Scalar I/O

TABLE IV. CGRA ENGINES AND THEIR INHERENT DLP SUPPORT

synchronization and shared memory accesses. CutCP and
MRIQ heavily use sqrt and sine/cosine and perform
better on the GPU because these operations are supported with
native datapath implementations (not because of architecture
or compiler reasons). SPMV is interesting, because the GPU’s
use of heavy multithreading to hide memory latency works
well even when accesses are very irregular, but DySER cannot
vectorize these because of indirect memory accesses.

VIII. RELATED WORK

Compiler writers have been working around SIMD’s lim-
itations in various ways to get high performance from data
parallel code [23], [5]. Specific examples include if-conversion
with masking to handle control-flow [3], branch-on-superword-
condition-code to skip vector instructions [33], overcoming
strided access limitations [22], general data permutations [28],
and loop-fission to handle loop-carried dependence and par-
tially vectorizable loops [14]. All of these techniques will nec-
essarily incur overheads that the DySER compilation approach
seeks to avoid.

The ispc compiler attacks the same problems as we do, but
targets SIMD and adopts new language semantics to overcome
compiler problems [27], whereas we stick with C/C++ and
make the architecture more flexible. Intel Xeon Phi [32], a
recent SIMD architecture, and its compiler help programmers
to tackle the challenges of SIMD through algorithmic changes
such as struct-of-arrays to array-of-structs, blocking, and
SIMD friendly algorithms, compiler transformations such as
parallelization, vectorization, and with scatter/gather hardware
support [31]. However, to successfully use them, these changes
require heavy programmer intervention and application specific
knowledge.

Like DySER, there are numerous coarse grain reconfig-
urable architectures (CGRAs) that utilize a configurable data-
path for acceleration [11], [38], [12], [18]. However, they have
not demonstrated or evaluated SIMD compilation capability.
Table IV shows the mechanisms in three representative CGRAs
which provide inherent DLP support, making them potentially
amenable to an AEPDG based compiler approach.

Similar to our approach, the newly proposed LIBRA archi-
tecture also uses the principles of heterogeneity and dynamic
reconfigurability to build a flexible accelerator [25]. It aug-
ments a SIMD architecture with a flexible network to improve
the scope of SIMD acceleration. Though this approach shows
promise, effective compilation techniques have not been fully
explored.

IX. CONCLUSION

In this work, we find that exposing an accelerator’s flexible
mechanisms to the compiler can liberate SIMD from its
shackles. We proposed a program representation, the AEPDG,

to effectively manage the spatio-temporal relationship of the
computation of an in-core accelerator. We develop a series of
transformations on top of the AEPDG to generate optimized
code for accelerators. We designed and implemented a LLVM
based compiler, which we are publicly releasing, that lever-
ages the AEPDG to exploit the DySER architecture’s flexible
microarchitecture mechanisms. Our results show the compiler
is effective and outperforms SIMD compilation and architec-
ture. Across a broad spectrum of data parallel applications,
DySER achieves an average performance improvement of
2.5×, whereas SSE and AVX can only achieve speedup 1.3×
and 1.4× respectively. In terms of maximum performance, we
find that the DySER compiler is still falling short of manually
optimized code in some cases, with 30% average performance
difference. As our analysis shows, much of this is simply
heuristic tuning, while a few benchmarks are ill-suited for the
data-parallel model.

It is widely accepted that compiler tuning for an architec-
ture is a multi-year effort. In that light, that one year of effort
is enough to enable the DySER compiler to outperform ICC
shows this approach holds promise as an alternative to SIMD.

X. ACKNOWLEDGMENTS

We thank the anonymous reviewers, the Vertical group for
their comments and the Wisconsin HTCondor project and the
UW CSL for their assistance. Support for this research was
provided by NSF under the following grants: CCF-0917238
and CCF-0845751. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF or
other institutions.

REFERENCES

[1] “The gem5 simulator system, http://www.m5sim.org.”
[2] “Slicer - compiler for dyser. http://research.cs.wisc.edu/veritcal/dyser-

compiler.”
[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of

control dependence to data dependence,” in POPL ’83.
[4] R. Allen and K. Kennedy, “Automatic translation of fortran programs

to vector form,” ACM Trans. Program. Lang. Syst. 1987.
[5] A. J. C. Bik, Software Vectorization Handbook, The: Applying Intel

Multimedia Extensions for Maximum Performance. Intel Press, 2004.
[6] N. Clark, A. Hormati, S. Mahlke, and S. Yehia, “Scalable subgraph

mapping for acyclic computation accelerators,” in CASES ’06.
[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program depen-

dence graph and its use in optimization,” ACM Trans. Program. Lang.
Syst., 1987.

[8] C. Gou, G. Kuzmanov, and G. Gaydadjiev, “Sams multi-layout memory:
providing multiple views of data to boost simd performance,” in ICS
’10.

[9] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy efficient computing,” IEEE Micro,
vol. 33, no. 5, 2012.

[10] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in HPCA 2011.

[11] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,” in MICRO-44.

[12] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a
Reconfigurable Coprocessor,” in FCCM ’97.

[13] J. Holewinski, R. Ramamurthi, M. Ravishankar, N. Fauzia, L.-N.
Pouchet, A. Rountev, and P. Sadayappan, “Dynamic trace-based analysis
of vectorization potential of applications,” SIGPLAN Not., 2012.

[14] K. Kennedy and J. R. Allen, Optimizing compilers for modern archi-
tectures: a dependence-based approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.

[15] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism
with multimedia instruction sets,” in PLDI ’00.

[16] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanović, “Exploring the tradeoffs between programmability and
efficiency in data-parallel accelerators,” in ISCA ’11.

[17] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua, “An
evaluation of vectorizing compilers,” in PACT ’11.

[18] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C.
Goldstein, and M. Budiu, “Tartan: evaluating spatial computation for
whole program execution,” in ASPLOS-XII.

[19] J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE Micro,
vol. 30, no. 2, Mar. 2010.

[20] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan,
and B. Robatmili, “A general constraint-centric scheduling framework
for spatial architectures,” in PLDI 2013.

[21] D. Nuzman and R. Henderson, “Multi-platform auto-vectorization,” in
CGO ’06.

[22] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved
data for simd,” in PLDI ’06.

[23] D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for
supercomputers,” Commun. ACM, 1986.

[24] “Parboil benchmark suite, http://impact.crhc.illinois.edu/parboil.php.”
[25] Y. Park, J. J. K. Park, H. Park, and S. Mahlke, “Libra: Tailoring simd

execution using heterogeneous hardware and dynamic configurability,”
in MICRO ’12.

[26] Y. Park, S. Seo, H. Park, H. K. Cho, and S. Mahlke, “Simd de-
fragmenter: efficient ilp realization on data-parallel architectures,” in
ASPLOS ’12.

[27] M. Pharr and W. R. Mark, “”ispc: A spmd compiler for high-
performance cpu programming”,” in InPar 2012.

[28] G. Ren, P. Wu, and D. Padua, “Optimizing data permutations for simd
devices,” in PLDI ’06.

[29] K. Sankaralingam, S. W. Keckler, W. R. Mark, and D. Burger, “Uni-
versal Mechanisms for Data-Parallel Architectures,” in MICRO ’03:
Proceedings of the 36th Annual International Symposium on Microar-
chitecture, December 2003, pp. 303–314.

[30] M. Sartin-Tarm, T. Nowatzki, L. De Carli, K. Sankaralingam, and
C. Estan, “Constraint centric scheduling guide,” SIGARCH Comput.
Archit. News, vol. 41, no. 2, pp. 17–21, May 2013.

[31] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-
skiy, M. Girkar, and P. Dubey, “Can traditional programming bridge the
ninja performance gap for parallel computing applications?” in ISCA
2012.

[32] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: a many-core x86 architecture for
visual computing,” in SIGGRAPH 2008.

[33] J. Shin, “Introducing control flow into vectorized code,” in PACT ’07.
[34] J. E. Smith, G. Faanes, and R. Sugumar, “Vector instruction set support

for conditional operations,” in ISCA ’00.
[35] K. Stock, L.-N. Pouchet, and P. Sadayappan, “Using machine learning

to improve automatic vectorization,” TACO 2012.
[36] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen,

“Polyhedral-model guided loop-nest auto-vectorization,” in PACT ’09.
[37] R. v. Hanxleden and K. Kennedy, “Relaxing simd control flow con-

straints using loop transformations,” in PLDI ’92.
[38] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-

Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing
the energy of mature computations,” in ASPLOS ’10.

