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Abstract

Recovery functionality has many applications in computing sys-
tems, from speculation recovery in modern microprocessors to fault
recovery in high-reliability systems. Modern systems commonly
recover using checkpoints. However, checkpoints introduce over-
heads, add complexity, and often save more state than necessary.

This paper develops a novel compiler technique to recover
program state without the overheads of explicit checkpoints. The
technique breaks programs into idempotent regions—regions that
can be freely re-executed—which allows recovery without check-
pointed state. Leveraging the property of idempotence, recovery
can be obtained by simple re-execution. We develop static analysis
techniques to construct these regions and demonstrate low over-
heads and large region sizes for an LLVM-based implementation.
Across a set of diverse benchmark suites, we construct idempotent
regions close in size to those that could be obtained with perfect
runtime information. Although the resulting code runs more slowly,
typical performance overheads are in the range of just 2-12%.

The paradigm of executing entire programs as a series of idem-
potent regions we call idempotent processing, and it has many ap-
plications in computer systems. As a concrete example, we demon-
strate it applied to the problem of compiler-automated hardware
fault recovery. In comparison to two other state-of-the-art tech-
niques, redundant execution and checkpoint-logging, our idempo-
tent processing technique outperforms both by over 15%.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation, compilers

General Terms  Algorithms, Design, Performance, Reliability

Keywords 1dempotent processing, idempotent regions

1. Introduction

Recovery capability is a fundamental component of modern com-
puter systems. It is used to recover from branch misprediction and
out-of-order execution [33, 38], hardware faults [32, 34], specula-
tive memory-reordering in VLIW machines [13, 18], optimistic dy-
namic binary translation and code optimization [11, 14], and trans-
actional memory [17, 28]. In each of these cases, recovery is used
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to repair the state of the program in the rare event that an execution
failure (i.e. a fault or mis-speculation) occurs.

Checkpoints provide a conceptually simple solution, and have
strong commercial precedent [11, 32, 37]. However, checkpoints
are problematic for several reasons. First, software checkpoints of-
ten have high performance overhead and hence, to maintain rea-
sonable performance, hardware support is often necessary. This
hardware support, however, forces interdependencies between pro-
cessor structures, occupies space on the chip, and entails recur-
ring energy expenditure regardless of failure occurrence. Partic-
ularly for emerging massively parallel and mobile processor de-
signs, the per-core hardware support comes at a premium, while
the recovery support may be desirable only under specific or rare
circumstances. Hardware checkpointing resources are also rarely
exposed to software, and are even less often configurable in terms
of their checkpointing granularity, limiting their wider applicabil-
ity. Finally, checkpoints have limited application visibility and are
often overly aggressive in saving more state than is required by the
application [9, 27].

To combat these difficulties, idempotence—the property that re-
execution is free of side-effects—has been previously proposed as
an alternative to checkpoints. In contrast to explicit checkpoints,
idempotence allows the architecture state at the beginning of a code
region to be used as an implicit checkpoint that is never explicitly
saved or restored. In the event of an execution failure, idempotence
is used to correct the state of the system by simple re-execution.

Over the years, idempotence has been both explicitly and im-
plicitly employed as an alternative to checkpoints. Table 1 classi-
fies prior work in terms of its application domain and the level at
which idempotence is used and identified [2, 9, 10, 12, 16, 19, 21,
23,25, 31, 36]. One of the earliest uses is by Mahlke et al. in using
restartable instruction sequences for exception recovery in specula-
tive processors [23]. More recently, Hampton and Asanovié¢ apply
idempotence to support virtual memory on vector machines [16],
Tseng and Tullsen apply idempotence to support data-triggered
parallel thread execution [36], and Feng et al. leverage idempo-
tence for low-cost hardware fault recovery [12]. As the table shows,
idempotence has historically been applied only under specific do-
mains such as exception recovery and multithreading, often only
under restricted program scope, and often using only limited or no
static analysis.

In this paper, we develop an analysis framework to enable each
of the above uses (and others yet to be invented), irrespective of
their application domain and their underlying purpose, and across
entire programs. In particular, we develop static analysis techniques
and a compilation strategy to statically partition programs into large
idempotent regions. We develop a provably correct region parti-
tioning algorithm, demonstrate a working compiler implementa-
tion, and demonstrate application to at least one specific problem
domain. We bring together the somewhat disparate uses listed in



Technique name Application domain

Program scope Idempotence discovery technique

Sentinel scheduling [23]
Fast mutual exclusion [2]
Multi-instruction retry [21]
Atomic heap transactions [31]
Reference idempotency [19]
Restart markers [16]

Relax [9]

Data-triggered threads [36]
Idempotent processors [10]
Encore [12]

iGPU [25]

Speculative memory re-ordering
Uniprocessor mutual exclusion
Branch mispredictions and faults
Memory allocation

Reducing speculative storage

Hardware fault recovery
Data-triggered multi-threading
Processor simplification
Hardware fault recovery

GPU exceptions and speculation

Virtual memory in vector machines

Speculative code regions
Atomicity primitives
Whole program
Garbage collector
Non-parallelizable code
Loops and vector code
Selected code regions
Selected code regions

Register-level compiler analysis
Programmer inspection

Compiler antidependence analysis
Programmer inspection
Memory-level compiler analysis
Compiler loop analysis
Programmer inspection
Programmer inspection

Whole program Unspecified compiler analysis
Selected code regions Compiler interval analysis
Whole GPU program PTX-specific compiler analysis

Table 1. Uses of fine-grained idempotence in hardware and software design (in chronological order).

Table 1 and unify them under a single paradigm we call idempotent
processing, which allows the synthesis of multiple such uses in a
single system or implementation artifact.

In brief, our approach operates as follows. First, we note that
using a conventional compiler, idempotent regions are typically
small. Our static analysis eliminates the compilation artifacts re-
sponsible for these small idempotent region sizes by identifying re-
gions in a function that are semantically idempotent. These regions
are then compiled in such a way that no artifacts are introduced and
the idempotence property is preserved throughout code generation.
To do this, the compiler limits register and stack memory re-use,
which reduces locality and thereby introduces runtime overhead.
However, typical overheads are in the range of just 2-12%.

In exchange for these overheads, our analysis partitions a func-
tion into regions that are close in size to the largest regions that
would be constructed given near-perfect runtime information. We
show that the problem of finding very large idempotent regions
can be cast as a vertex multicut problem, a problem known to be
NP-complete in the general case. We apply an approximation algo-
rithm and a heuristic that incorporates loop information to optimize
for dynamic behavior and find that overall region sizes are in most
cases close to ideal. Overall, we make the following contributions:

e We perform a detailed analysis of idempotent regions in con-
ventional programs and quantitatively demonstrate that conven-
tional compilers artificially inhibit the sizes of the idempotent
regions in programs, severely limiting their usefulness.

We develop static analysis and compiler techniques to preserve
the inherent idempotence in applications and construct large
idempotent regions. We formulate the problem of finding idem-
potent regions as a graph cutting (vertex multicut) problem and
optimize for runtime behavior using a heuristic that incorpo-
rates loop information.

We present a detailed characterization of our idempotent re-
gions, which can be applied in the context of the various uses
previously proposed in the literature.

We demonstrate our idempotent processing solution applied
to the problem of recovery from transient faults in micro-
processors. Our idempotence-based recovery implementation
performs over 15% better than two competing state-of-the-art
compiler-automated recovery techniques.

The remainder of this paper is organized as follows. Section 2
gives a complete overview of this paper. Section 3 presents a quan-
titative study of idempotent regions as they exist inherently in ap-
plication programs. Section 4 presents our idempotent region con-
struction algorithm. Section 5 gives details of our compiler imple-
mentation. Section 6 presents our quantitative evaluation. Section 7
presents related work. Finally, Section 8 concludes.

2. Overview

This section provides a complete overview of this paper. We define
idempotence in terms of data dependences and present a motivating
example that illustrates how data dependences can inhibit idempo-
tence. We show how these data dependences can be manipulated to
grow the sizes of idempotent regions and give an overview of our
partitioning algorithm that attempts to maximize the sizes of these
regions. Finally, we describe how statically-identified idempotence
can be used to recover from a range of dynamic execution failures.

2.1 Identifying Idempotent Regions

A region of code (assume a linear sequence of instructions for now)
is idempotent if the effect of executing the region multiple times is
identical to executing it only a single time. Intuitively, this behavior
is achieved if the region does not overwrite its inputs. With the
same inputs, the region will produce the same outputs. If a region
overwrites its inputs, it reads the overwritten values when it re-
executes, changing its behavior.

A variable is an input to a region if it is live-in to the region.
Such a variable has a definition that reaches the region’s entry point
and has a corresponding use of that definition after the region entry
point. Below, we use this observation to derive a precise definition
of idempotence in terms of data dependences. We use the term
Sflow dependence to refer to a read-after-write (RAW) dependence
and the term antidependence to refer to a write-after-read (WAR)
dependence.

By definition, a live-in variable has a flow dependence that
spans the region’s entry point. Because the variable’s definition
must come before the entry to the region, the definition is not inside
the region, and hence there is no definition that precedes the first
use of that variable inside the region. Hence, a live-in has no flow
dependence before the first use of that variable inside the region.
Since a live-in has no flow dependence, overwriting a live-in must
occur after the point of the use. Thus, an overwritten live-in has an
antidependence after the absence of a flow dependence. 1t follows
that a region of code is idempotent if it contains no antidependences
not preceded by a flow dependence.

The table below shows three statement sequences involving a
variable x and uses the above definition to identify whether the
sequences are idempotent or not:

RAW | RAW—WAR | WAR
x =5 x =5 y = X
Sequence y = x y = x x = 8
x =8
Idempotent? Yes Yes No

The antidependence after no flow dependence chain that breaks
the idempotence property as shown on the right we call a clobber



1 typedef struct {

2 int *buf; // buffer # bool overflow = [...]
3 int size; // num elements Si - mem[to + 4]

4 int cap; // capacity Sz | ts - memﬁ[ﬁto + 8]

5 } list_t; Ss| ts = t; == t3

6 # if (overflow)

7 extern list_t *other_list; Si| if t3 > 0

8

9 wvoid list_push(list_t *1list,

10 int elem)

11 { - -
12 // check for overflow # list = other list
13 int overflow = Ss to = mem[other list]
14 (list->size == list->cap);

15

16 // if overflow use other list

17 if (overflow)

18 list = other_list; Se | t2 = mem[to + 0]
19 Sr| ts = mem[to + 4]
20 // insert at end of list Se | mem[t, + t3] = t1
21 list->buf[list->size] = elem; . ,

22 list->sizet+; o IR G

ty = t3 + 1
Sw| mem[to + 4] = t;

24 return;

# list->buf[...] = elem

(a) A non-idempotent C function

(b) The control flow graph and
compiler intermediate code

S S,
[t2=mem[tg+4] ] [q = mem[t, + 8] ]
BB ——— — :
Sy T .
BZ
Bs

(c) A subset of the data dependence graph, showing flow
dependences (dashed), clobber antidependences (solid
dark), and non-clobber antidependences (solid light)

Figure 1. An example illustrating how clobber antidependences inhibit idempotence.

antidependence. Some clobber antidependences are strictly nec-
essary according to program semantics. These clobber antidepen-
dences we label semantic clobber antidependences. The other clob-
ber antidependences we label artificial clobber antidependences.
The following example demonstrates semantic and artificial clob-
ber antidependences.

A motivating example. For the remainder of this section, we use
the C function shown in Figure 1(a) as a running example. The
function, 1ist_push, checks a list for overflow and then pushes
an integer element onto the end of the list. The semantics of the
function clearly preclude idempotence: even if there is no overflow,
re-executing the function will put the element onto the end of
the already-modified list, after the copy that was pushed during
the original execution. As we will show, the source of the non-
idempotence is the increment of the input variable 1ist->size
on line 22: without this increment, re-execution would simply cause
the value that was written during the initial execution to be safely
overwritten with the same value.

Figure 1(b) shows the function compiled to a load-store inter-
mediate representation. The figure shows the control flow graph of
the function, which contains three basic blocks B1, Be, and Bs.
Inside each block are shown the basic operations, S;, and the use
of pseudoregisters, ¢;, to hold operands and read and write values
to and from memory. Figure 1(c) shows the program dependence
graph of the function focusing only on flow dependences (dashed)
and antidependences (solid). The antidependences are further dis-
tinguished as clobber antidependences (dark) and not clobber an-
tidependences (light)!. The figure shows four clobber antidepen-
dences: S1—S5, So— S5, S1—S10, and S7—S10. The first two
clobber antidependences depend on S5, which overwrites the pseu-
doregister to, and the second two depend on S10, which overwrites
the memory location at to + 4.

The two clobber antidependences that depend on S5 are unnec-
essary: they are artificial clobber antidependences. We can elimi-
nate these clobber antidependences simply by writing to a differ-
ent pseudoregister. Figure 2 shows the effect of replacing ¢o in Ss

'For simplicity, we assume the pointer argument list, the global
other_11ist, and their respective buffer arrays are known not to alias.

# bool overflow = [...]

Si| ty = mem[to + 4]
S;| t3 = mem[t, + 8]
Sa| ty =tz == t;3 B1

# if (overflow)
Si| if t5 > 0

A
# list = other list
S| te = mem [other_list] BZ
Su | ts = o | B
# list->buf[...] = elem
S ty = mem[ty + 0]
SS t; = mem[ts + 4]
S7 mem([t; + t3] = t1 B
8
# list->size++ 3
S ty = t3 + 1
S?o mem[ts + 4] = t3

Figure 2. Renaming ¢ in S5 to t4.

with a new pseudoregister ¢4. All uses of ¢y subsequent to S5 are
renamed to use t4 as well, and a new statement Sp; is inserted
that moves t¢ into ¢4 along the path where S5 is not executed. S11
is placed inside a new basic block B4 which bridges By and Bs.
A compiler can then permanently eliminate these artificial clobber
antidependences by ensuring that ¢4 and ¢ are not assigned to the
same physical register or the stack slot during register allocation.
If they are, then t4 will overwrite ¢, and the two clobber antide-
pendences will simply re-emerge. To do this, the register allocator
can be constrained such that all pseudoregisters that are live-in to
the region are also marked as live-out to the region. This enables
idempotence in exchange for some additional register pressure.
The final two clobber antidependences write to the memory
location to + 4 in Si0, which corresponds with the store of the
list->size increment on line 22 of Figure 1(a). Unfortunately,
the destination of this store is fixed by the semantics of the pro-
gram: if we didn’t increment this variable, then the function would
not increase the size of the list, which would violate the semantics



of the function. Because we cannot legally rename the store des-
tination, we label these clobber antidependences semantic clobber
antidependences.

Summary. Table 2 summarizes the differences between seman-
tic and artificial clobber antidependences. Semantic clobber antide-
pendences act on heap, global, and non-local stack memory, which
we hereafter often refer to as just “memory”. These memory loca-
tions are not under the control of the compiler; they are specified in
the program itself and cannot be re-assigned. In contrast, artificial
clobber antidependences act on “pseudoregister” locations: regis-
ters and local stack memory. These resources are compiler con-
trolled, and assuming effectively infinite stack memory, can be ar-
bitrarily re-assigned. While in practice stack memory is limited, our
compiler does not grow the size of the stack significantly and we
have no size-related difficulties compiling any benchmarks.

2.2 Constructing Idempotent Regions

Assuming we can eliminate all artificial clobber antidependences,
we show in Section 3 that the idempotent regions that exist in appli-
cation programs are potentially very large. However, the problem
of statically constructing large idempotent regions remains surpris-
ingly non-trivial. In principle, the problem should be as simple as
merely identifying and constructing regions that contain no seman-
tic clobber antidependences. However, this solution is circularly
dependent on itself: identifying semantic clobber antidependences
requires identification of region live-in variables, which in turn re-
quires identification of the regions. This circular dependence is il-
lustrated below:

depends on

clobber
antidependences

identification variables

K

Our solution to this problem is to transform the function so
that, with the exception of self-dependent pseudoregister antide-
pendences?, all antidependences are necessarily semantic clobber
antidependences. We then construct idempotent regions by identi-
fying regions that contain no antidependences. Antidependence in-
formation does not depend on region live-in information, and hence
the circular dependence chain is broken. During this process, self-
dependent pseudoregister antidependences are optimistically as-
sumed not to emerge as clobber antidependences; those that would
emerge as clobber antidependences after the region construction are
patched in a subsequent refinement step.

Considering only antidependence information, we show that the
problem of partitioning the program into idempotent regions is
equivalent to the problem of “cutting” the antidependences, such
that a cut before statement .S starts a new region at S. In this man-
ner, no single region contains both ends of an antidependence and
hence the regions are idempotent. To maximize the region sizes, we
cast the problem in terms of the NP-complete vertex multicut prob-
lem and use an approximation algorithm to find the minimum set of
cuts, which finds the minimum set of regions. This maximizes the
average static region size, and we then employ heuristics to maxi-
mize the sizes of regions as they occur dynamically at runtime. We
refer to the overall algorithm as our idempotent region construction
algorithm. In Section 4 we describe the algorithm in detail and in
Section 5 we discuss the specifics of our implementation.

region [ region live-in

2These are antidependences that occur across loop iterations and have
assignments of the form ¢t; = f(¢;)).

S S
[tz = mem([to, + 4] ] [tx:mem[to-# 8] ]

S N

[ ty = bty == t3 ] [ ts = @(to, mem[other list]) ]
Si A
; N Se
' S, te = mem([ts + 0]

........ TN dependence
R 10 cut

Figure 3. The data dependence graph in SSA form.

Figure 3 shows our algorithm applied to our running example.
The initial step in the process is the conversion of all pseudoreg-
ister assignments to static single assignment (SSA) form [8]. The
figure shows the dependence graph of Figure 1(c) simplified by
the SSA transformation. The code structure is the same as in Fig-
ure 1(b) except that an SSA ¢-node is placed at the head of Bs.
The ¢-node we label S5 and we fold the original S5 into it. Under
SSA, the artificial clobber antidependences disappear and the se-
mantic ones remain. Both semantic clobber antidependences write
to memory location mem[t5 + 4] in statement S1o, one with a
may-alias read in statement .S and the other with a must-alias read
in statement S7. In general, the problem of finding the best places
to cut the antidependences is NP-complete. However, for this sim-
ple example the solution is straightforward: it is possible to place
a single cut that cuts both antidependences. The cut can be placed
before Ss, Sg, or S1o. Regardless of where the cut is placed, the
function is ultimately divided into three idempotent regions in to-
tal: under our initial definition of a region as a linear instruction
sequence, depending on the outcome of the control decision inside
the function, two linear sequences exist up to the point of the cut,
and after the cut there is one additional sequence.

2.3 Using Idempotence for Recovery

In this section, we address how statically-identified idempotence
can be used to recover from dynamic execution failures. This is not
obvious because an execution failure may have side-effects that can
corrupt arbitrary state. For instance, as a result of microprocessor
branch misprediction or due to a hardware soft error, a region’s
inputs may be accidentally modified, or state that is outside the
scope of the current region may be modified (resulting in problems
for other regions).

Tolerating control flow errors. We first consider the possibility of
incorrect control flow, which can arise due to e.g. a branch mispre-
diction and can cause an incorrectly executed region to overwrite
an input of the correct region or its succeeding regions.

Fortunately, tolerating control flow errors is relatively straight-
forward with our method of placing region boundaries using cuts.
First, we observe that each control flow path from a given cut C' to
any subsequent cut constitutes an idempotent region, and hence any
incorrect execution belongs to an idempotent region with the same
entry point at C' as the region of the correct execution. Hence, by
compiling in such a way that the inputs of all regions starting at C'
are preserved between C' and all subsequent cut points, execution
can be made idempotent regardless of control flow.



Type of Clobber Antidependence | Storage Resources

Semantic clobber antidependence
Artifial clobber antidependence

Heap, global, non-local stack memory (“memory”)
Registers and local stack memory (“pseudoregisters’)

Table 2. Semantic and artificial clobber antidependences and the resources on which they operate.
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Figure 4. Average dynamic idempotent region sizes in the limit (y-axis is log-scale).

At this point, we rework our definition of idempotent region
to achieve this property. Our previous definition of a region as an
instruction sequence we now label more precisely as an idempotent
path, and we redefine an idempotent region as a collection of
idempotent paths that share the same entry point. (Thus, a region
is a subset of a program’s control flow graph with a single unique
entry point and multiple possible exit points, and a path is a trace
of instructions from such a region’s entry point to one of its exit
points.) An idempotent region preserves idempotence regardless of
control flow by considering as inputs the collective inputs of all
its containing paths. Unfortunately, however, it is now no longer
possible to say that an input is necessarily overwritten only after
the point of a read, as in the definition of idempotence in terms of
a clobber antidependences; with this definition of region, a live-in
may be written before it is read along an incorrect control flow path.
This forces a more conservative compiler analysis.

For registers and stack memory, the impact of this conserva-
tive analysis is manageable and the static analysis and compiler
implementation we describe in this paper preserves pseudoregis-
ter inputs regardless of control flow. However, for other types of
storage—namely, heap, global, and non-local stack memory—we
find the compiler’s limited control over these resources too con-
stricting. In particular, with the possibility for differing control flow
on re-execution, an idempotent region would not be able to contain
a store to a given address unless such a store occurred along all
paths through the region. Thus, for memory we assume that stores
are buffered and not released until control flow has been verified.
We propose to re-use the store buffer that already exists in modern
processors for this purpose. This allows us to reason about inputs
from non-local memory more optimistically in terms of clobber an-
tidependences, considering separately each path through an idem-
potent region. Considering our modified definition of a region, the
first two idempotent paths (formerly, “regions”) in the example of
Figure 1 merge as one idempotent region.

Tolerating arbitrary errors. While the situation with hardware
soft errors may appear much more dire, in practice techniques like
error-correcting codes (ECC) can effectively protect existing mem-
ory and register state, leaving instruction execution itself as the only
possible source of error. Since idempotence already precludes over-
writing input state, regardless of whether the value written is cor-
rupted or not, only three additional requirements are needed: (1)
instructions must write to the correct register destinations, (2) ex-
ecution must follow the program’s static control flow edges, and
(3) as with branch misprediction, stores must be buffered until they

are verified. Altogether, these four total mechanisms—ECC, reg-
ister destination verification, control flow verification, and store
verification—are widely assumed in prior work on error recovery in
software [6, 9, 21], and a variety of compatible hardware and soft-
ware techniques have been previously developed [5, 24, 29, 30].

Recovering non-idempotent instructions. Finally, we note that
some instructions such as certain memory-mapped 1/O operations
and some types of synchronization instructions are inherently non-
idempotent. In this work, we consider such non-idempotent instruc-
tions as single-instruction idempotent regions that either terminate
correctly or have no side-effects that make it unsafe for them to be
re-executed for recovery.

3. [Exploring the Potential: A Limit Study

To understand how much artificial clobber antidependences inhibit
idempotent region sizes, we performed a limit study to ascertain
the nature of the clobber dependences that emerge during program
execution. Our goal is to understand the extent to which it would
be possible to construct idempotent regions given perfect runtime
information.

Methodology. We used the gemS simulator [4] to measure the
lengths of the idempotent paths that dynamically execute through
a region across a range of benchmarks compiled for the ARMv7
instruction set. For each benchmark, we measured the distribution
of path lengths occurring over a 100 million instruction period
starting after the setup phase of the application. We evaluated two
benchmark suites: SPEC 2006 [35], a suite targeted at conventional
single-threaded workloads, and PARSEC [3], a suite targeted at
emerging multi-threaded workloads.

We use a conventional optimizing compiler to generate pro-
gram binaries, and measure idempotent path length optimistically
as the number of instructions between dynamic occurrences of
clobber antidependences. This optimistic (dynamic) measurement
is used in the absence of explicit (static) region markings in these
conventionally-generated binaries. We study idempotent regions
divided by three different categories of clobber antidependences:
(1) only semantic clobber antidependences, (2) only semantic clob-
ber antidependences with regions split at function call boundaries,
and (3) both semantic and artificial clobber antidependences with
regions split at function call boundaries.

We consider as artificial clobber antidependences all clobber
antidependences on registers and those with writes relative to the
stack pointer, which are universally register spills for our compiler.



These are the clobber antidependences that can generally be elim-
inated by renaming pseudoregisters and careful register and stack
slot allocation. We assume the remaining clobber antidependences
are all semantic. We consider separately regions divided by se-
mantic clobber antidependences that cross function call boundaries
to understand the potential improvements of an inter-procedural
compiler analysis over an intra-procedural one. To explore what
is achievable in the inter-procedural case, we optimistically assume
that call frames do not overwrite previous call frames. We also op-
timistically ignore antidependences that necessarily arise due to the
calling convention (e.g. overwriting the stack pointer) and assume
the calling convention can be redefined or very aggressive inlining
can be performed such that this obstacle is weakened or removed.

Results and conclusions. Our experimental results, shown in
Figure 4, identify three clear trends. First, we see that regions di-
vided by both artificial and semantic clobber antidependences are
much smaller than those divided by semantic clobber antidepen-
dences alone. The geometric mean path length considering both
types is 10.8 instructions, while the length considering just seman-
tic clobber antidependences is 110 instructions intra-procedurally
(a 10x gain) and 1300 inter-procedurally (a 120x gain).

The second trend is a substantial gain (more than 10x) from
allowing idempotent regions divided by semantic clobber antide-
pendences to cross function boundaries. However, the gains are not
reliably as large as the 10x gain achieved by removing the artifi-
cial clobber antidependences alone: the difference drops to only 4x
when we drop the two outliers dealll and blackscholes.

The third and final trend is that path lengths tend to be larger for
PARSEC and SPEC FP than for SPEC INT. PARSEC and SPEC FP
benchmarks tend to overwrite their inputs relatively infrequently
due to their memory streaming and compute-intensive nature.

Overall, we find that (1) there is a lot of opportunity to grow
idempotent region sizes by eliminating artificial clobber antidepen-
dences, (2) an intra-procedural static analysis is a good starting
point for constructing large idempotent regions, and (3) the great-
est opportunity appears to lie with streaming and compute-intensive
applications.

4. Region Construction Algorithm

In this section, we describe our idempotent region construction al-
gorithm. The algorithm is an intra-procedural compiler algorithm
that divides a function into idempotent regions. First, we describe
the transformations that allow us to cast the problem of constructing
idempotent regions in terms of cutting antidependences. Second,
we describe the core static analysis technique for cutting antide-
pendences, including optimizations for dynamic behavior. Finally,
we describe our register and stack slot allocation to preserve the
idempotence of our identified regions through code generation.

4.1 Program Transformation

Before we apply our static analysis, we first perform two code
transformations to maximize the efficacy of the analysis. The two
transformations are (1) the conversion of all pseudoregister assign-
ments to static single assignment (SSA) form, and (2) the elimina-
tion of all memory antidependences that are not clobber antidepen-
dences. The details on why and how are given below.

The first transformation converts all pseudoregister assignments
to SSA form. After this transformation, each pseudoregister is only
assigned once and all artificial clobber antidependences are ef-
fectively eliminated (self-dependent artificial clobber antidepen-
dences, which manifest in SSA through ¢-nodes at the head of
loops, still remain, but it is safe to ignore them for now). The intent
of this transformation is to expose primarily the semantic antide-
pendences to the compiler. Unfortunately, among these antidepen-

1. mem[x] = a 1. mem[x] = a

2. b = mem[x] 2. b =a

3. mem[x] = c 3. mem[x] = ¢
before after

Figure 5. Eliminating non-clobber memory antidependences.

dences we still do not know which are clobber antidependences and
which are not, since, as explained in Section 2.2, this determination
is circularly dependent on the region construction we are trying to
achieve. Without knowing which antidependences will emerge as
clobber antidependences, we do not know which antidependences
must be cut to form the regions. Hence, we attempt to refine things
further.

After the SSA transformation, it follows that the remaining an-
tidependences are either self-dependent antidependences on pseu-
doregisters or antidependences on memory locations. For those on
memory locations, we employ a transformation that resolves the
aforementioned ambiguity regarding clobber antidependences. The
transformation is a simple redundancy-elimination transformation
illustrated by Figure 5. The sequence on the left has an antidepen-
dence on memory location x that is not a clobber antidependence
because the antidependence is preceded by a flow dependence. Ob-
serve that in all such cases the antidependence is made redundant
by the flow dependence: assuming both the initial store and the load
of x “must alias” (if they only “may alias” we must conservatively
assume a clobber antidependence) then there is no reason to re-
load the stored value since there is an existing pseudoregister that
already holds the value. The redundant load is eliminated as shown
on the right of the figure: the use of memory location x is replaced
by the use of pseudoregister a and the antidependence disappears.

Unfortunately, there is no program transformation that resolves
the uncertainty for self-dependent pseudoregister antidependences.
In the following section, we initially assume that these antidepen-
dences can be register allocated such that they do not become clob-
ber antidependences (i.e. we can precede the antidependence with
a flow dependence on its assigned physical register or stack slot).
Hence, we construct regions around them, considering only the
known, memory-level clobber antidependences. After the construc-
tion is complete, we check to see if our assumption holds. If not,
we insert additional region cuts as necessary.

4.2 Static Analysis

After our program transformations, our static analysis constructs
idempotent regions by “cutting” all potential clobber antidepen-
dences in a function. The analysis consists of two parts. First,
we construct regions based on semantic antidependence infor-
mation by cutting memory-level antidependences and placing re-
gion boundaries at the site of the cuts. Second, we further divide
loop-level regions as needed to accommodate the remaining self-
dependent pseudoregister clobber antidependences.

4.2.1 Cutting Memory-Level Antidependences

To ensure that a memory-level antidependence is not contained
inside a region, it must be split across the boundaries between
regions. Our algorithm finds the set of splits, or “cuts”, that creates
the smallest number of these regions. In this section, we derive our
algorithm as follows:

1. We define our problem as a graph decomposition that must
satisfy certain conditions.

2. We reduce the problem of finding an optimal graph decomposi-
tion to the minimum vertex multicut problem.
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Figure 6. An example region decomposition.

3. To generate a solution, we formulate the problem in terms of
the hitting set problem.

4. We observe that a near-optimal hitting set can be found effi-
ciently using an approximation algorithm.

Problem definition. For a control flow graph G = (V, E) we
define a region as a sub-graph G; = (V;, Fs, h;) of G, where
h; € V; and all nodes in V; are reachable from h; through edges in
E;. We call h; the header node® of G;. A region decomposition of
the graph G is a set of sub-graphs {G1, - - - , Gy } that satisfies the
following conditions:

e cach node v € V is in at least one sub-graph G,

e the header nodes for the sub-graph are distinct (for ¢ # j,
hi 3& hj ), and

e no antidependence edge is contained in a sub-graph G; for
1<i<k?

Our problem is to decompose G into the smallest set of sub-
graphs {G1, - ,Gy}. Figure 6 gives an example. Figure 6(a)
shows a control flow graph G and 6(b) shows the set of antidepen-
dence edges in G. Figure 6(c) shows a possible region decomposi-
tion for GG. The shown region decomposition happens to be optimal;
that is, it contains the fewest possible number of regions.

Reduction to vertex multicut. We now reduce the problem of
finding an optimal region decomposition with the problem of find-
ing a minimum vertex multicut.

Definition 1. (Vertex multicut) Let G = (V, F) be a directed
graph with set of vertices V' and edges E. Assume that we are given
pairs of vertices A C V' x V. A subset of vertices H C V is called
avertex multicut for A if in the subgraph G’ of G where the vertices
from H are removed, for all ordered pairs (a, b) € A there does not
exist a path from a to bin G'.

Let G = (V,E) be our control flow graph, A the set of
antidependence edge pairs in G, and H a vertex multicut for A.
Each h; € H implicitly corresponds to a region G; as follows:

e The set of nodes V; of G; consists of all nodes v € V such
that there exists a path from h; to v that does not pass through
anode in H — {h;}.

e The set of edges E; is EN (V; x V;).

It follows that a minimum vertex multicut H = {h1,--- , hy} di-

rectly corresponds to an optimal region decomposition {G1, - -+ , Gy }

of G over the set of antidependence edge pairs A in G.

3 Note that, while we use the term header node, we do not require that a
header node h; dominates all nodes in V; as defined in other contexts [1].

4 This condition is stricter than necessary. In particular, an antidependence
edge in G; with no path connecting the edge nodes—implying that the the
antidependence is formed over a loop revisiting GG;—is safely contained
in GG;. However, determining the absence of such a path requires a path-
sensitive analysis. We limit our solution space to path-insensitive analyses.

Solution using hitting set. The vertex multicut problem is NP-
complete for general directed graphs [15]. To solve it, we reduce it
to the hitting set problem, which is also NP-complete, but for which
good approximation algorithms are known [7].

Definition 2. (Hitting set) Given a collection of sets C' =
{S1, -+, Sm}, a minimum hitting set for C' is the smallest set
H such that, forall S; € C, HN S; # 0.

Note that we seek a set H C V such that, for all (a;,b;) € A,
all paths 7 from a; to b; have a vertex in H (in other words, H is
a “hitting set” of IT = U4, »;)ca7i, Where 7; is the set of paths
from a; to b;). This formulation is not computationally tractable,
however, as the number of paths between any pair (a;, b;) can be
exponential in the size of the graph. Instead, for each (a;, b;) € A,
we associate a single set S; C V that consists of the set of nodes
that dominate b; but do not dominate a;. We then compute a hitting
set H over C' = {S;]S; for (a;,b;) € A}. Using Lemma 1 it is
easy to see that for all antidependence edges (ai, b;) € A, every
path from a; to b; passes through a vertex in H. Hence, H is both
a hitting set for C' and a vertex multicut for A.

We use a greedy approximation algorithm for the hitting set
problem that runs in time O(3_ 5 . |Si]). This algorithm chooses
at each stage the vertex that intersects the most sets not already
intersected. This simple greedy heuristic has a logarithmic approx-
imation ratio [7] and is known to produce good quality results.

Lemma 1. Let G = (V, E, s) be a directed graph with entry node
s € V and (a, b) be a pair of vertices. If z € V dominates b but
does not dominate a, then every path from a to b passes through x.

Proof: We assume that a pair of vertices (a, b) are both reachable
from the entry node s. Let the following conditions be true.

¢ Condition 1: There exists a path from (a, b) that does not pass
through the node x.

¢ Condition 2: There exists a path from s to a that does not pass
through x.

If conditions 1 and 2 are true, then there exists a path from s to
b that does not pass through x. This means x cannot dominate b. In
other words, conditions 1 and 2 imply that x cannot dominate b.

Given that x dominates b, one of the conditions 1 and 2 must
be false. If condition 1 is false, we are done. If condition 2 is false,
then x dominates a, which leads to a contradiction. [

4.2.2 Cutting Self-Dependent Pseudoregister
Antidependences

After memory antidependences have been cut, we have a prelimi-
nary region decomposition over the function. From here, we con-
sider the remaining category of clobber antidependences—the self-
dependent pseudoregister antidependences—and allocate them in
such a way that they do not emerge as clobber antidependences.

In SSA form, a self-dependent pseudoregister antidependence
manifests as a write occurring at the point of a ¢-node assignment,
with one of the ¢-node’s arguments data-dependent on the assigned
pseudoregister itself. Due to SSA’s dominance properties, such
self-dependent pseudoregister assignments alway occur at the head
of loops. Figure 7(a) provides a very simple example. Note that in
the example the self-dependent “antidependence” is actually two
antidependences, S1 — Sz and S — S7. We refer to it as only a
single antidependence for ease of explanation.

To prevent self-dependent pseudoregister antidependences from
emerging as clobber antidependences, the invariant we must en-
force is that a loop containing such an antidependence either con-
tains no cuts or contains at least two cuts along all paths through
the loop body. If either of these conditions is already true, no modi-
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Figure 7. Clobber-free allocation of self-dependent pseudoregister
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fication to the preliminary region decomposition is necessary. Oth-
erwise, we insert additional cuts such that the second condition be-
comes true. The details on why and how are provided below.

Case 1: A loop with no cuts. Consider the self-dependent antide-
pendence shown in Figure 7(a). For a loop that contains no cuts,
this antidependence can be trivially register allocated as shown in
Figure 7(b). In the figure, we define the register (which could also
be a stack slot if registers are scarce) of the antidependence out-
side the loop and hence across all loop iterations all instances of
the antidependence are preceded by a flow dependence.

Case 2: A loop with at least 2 cuts. A self-dependent antidepen-
dence for a loop that contains at least two cuts can also be trivially-
register allocated as shown in Figure 7(c). Here the antidependence
is manipulated into two antidependences, one on RO and one on
R1, and the antidependences are placed so that they straddle region
boundaries. Note that, for this to work, at least two cuts must ex-
ist along all paths through the loop body. This is obviously true in
Figure 7(c) but in the general case it may not be.

Case 3: Neither case 1 or 2. In the remaining case, the self-
dependent antidependence is in a loop that contains at least one
cut but there exist one or more paths through the loop body that
do not cross at least two cuts. In this case, we know of no way to
register allocate the antidependence such that it does not emerge as
a clobber antidependence. Hence, we resign ourselves to cutting
the antidependence so that we have at least two cuts along all
paths in the loop body, as in Case 2. This produces a final region
decomposition resembling Figure 7(c).

4.3 Optimizing for Dynamic Behavior

Our static analysis algorithm optimizes for static region sizes. How-
ever, when considering loops, we know that loops tend to execute
multiple times. We can harness this information to grow the sizes
of the dynamic paths that execute through our regions at runtime.

We account for loop information by incorporating a simple
heuristic into the hitting set algorithm from Section 4.2.1. In par-
ticular, we adjust the algorithm to greedily choose cuts at nodes
from the outermost loop nesting depth first. We then break ties by
choosing a node with the most sets not already intersected as nor-
mal. This improves the path lengths substantially in general, al-
though there are cases where it reduces them. A better heuristic
most likely weighs both loop nesting depth and intersecting set in-
formation more evenly, rather than unilaterally favoring one. Better
heuristics are a topic for future work.

4.4 Code Generation

With the idempotent regions constructed, the final challenge is to
code generate—specifically, register and stack allocate—the func-
tion so that artificial clobber antidependences are not re-introduced.

To do this, we constrain the register and stack memory alloca-
tors such that all pseudoregisters that are live-in to a region are also
live-out to the region. This ensures that all registers and stack slots

that contain input are not overwritten and hence no new clobber
antidependences emerge.

5. Compiler Implementation

We implemented the region construction algorithm of Section 4
using LLVM [20]. Each phase of the algorithm is implemented as
described below.

Code transformation. Of the two transformations described in
Section 4.1, the SSA code transformation is automatic as the LLVM
intermediate representation itself is in SSA form. We implement
the other transformation, which removes all non-clobber memory
antidependences, using an existing LLVM redundancy elimination
transformation pass.

Cutting memory-level antidependences. We gather memory an-
tidependence information using LLVM’s “basic” alias analysis in-
frastructure. The antidependence cutting is implemented exactly as
described in Section 4.2.1.

Cutting self-dependent pseudoregister antidependences. We
handle self-dependent register antidependences as in Section 4.2.2
with one small enhancement: before inserting cuts, we attempt to
unroll the containing loop once if possible. The reason is that insert-
ing cuts increases the number of idempotent regions and thereby
reduces the size of the loop regions. By unrolling the loop once, we
can place the second necessary cut in the unrolled iteration. This
effectively preserves region sizes on average. It also improves the
performance of the register allocator by not requiring the insertion
of extra copy operations between loop iterations (enabling a form
of double buffering).

Optimizations for dynamic behavior. We optimize for dynamic
behavior exactly as described in Section 4.3.

Code generation. We extend LLVM’s register allocation passes
to generate machine code as described in Section 4.4. To maintain
the calling convention, functions that contain only a single region
are split into two regions to allow parameter values to be overwrit-
ten by return values as necessary.

6. Evaluation

For evaluation, we first present the characteristics (region sizes and
runtime overhead) produced by our idempotent region construction
across a range of applications. We then present results evaluating
our technique for recovery from transient hardware faults.

6.1 Methodology

We evaluate benchmarks from the SPEC 2006 [35] and PAR-
SEC [3] benchmark suites. We compile each benchmark to two
different binary versions: an idempotent binary, compiled using
our idempotent region construction implemented in LLVM; and an
original binary, generated using the regular optimized LLVM com-
piler flow.

Our performance results are obtained for the ARMv7 instruc-
tion set simulating a modern two-issue processor using the gem5
simulator [4]. To account for the differences in instruction count
between the idempotent and original binary versions, simulation
length is measured in terms of the number of functions executed,
which is constant between the two versions. All benchmarks are
fast-forwarded the number of function calls needed to execute at
least 5 billion instructions on the original binary, and execution is
then simulated for the number of function calls needed to execute
100 million additional instructions on the original binary.
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Figure 9. Average idempotent path lengths.

6.2 Idempotent Region Characteristics

Region sizes and path lengths. An important characteristic of our
region construction is the size of the idempotent regions it statically
produces. More important, however, is the length of the paths that
dynamically execute through the idempotent regions at runtime. In
general, longer path lengths are better for two reasons. The first
has to do with runtime overhead: in the limit as path length ap-
proaches infinity, the relative cost to preserve a region’s live-in state
approaches zero. In the worst case, all live state must be pushed to
the stack before the region’s start, and this fixed maximum cost is
amortized over the region’s execution. The second reason has to
do with detection latencies: longer path lengths allow execution to
proceed speculatively for longer amounts of time while potential
(but presumably unlikely) execution failures remain undetected.

In practice, however, optimal path length (and hence, region
size) depends on a variety of factors. These factors include the ef-
fects of register pressure, aggravated by divergent control flow as
regions grow beyond a small set of basic blocks (for reasons relat-
ing to potentially incorrect control flow as described in Section 2.3).
Hence, larger regions are not always better. Additionally, while
longer path lengths better tolerate long detection latencies, mini-
mizing the recovery re-execution cost favors shorter path lengths.
This is important particularly when failures are relatively frequent,
as with e.g. branch prediction. In future work, we plan to explore
this optimization space in detail. For this work, we aim to produce
the longest possible paths, observing that path lengths are often
easily reduced as needed to suit application demands.

Figure 8 plots the cumulative distribution (weighted by execu-
tion time) of the dynamic path lengths executed through our idem-
potent regions across the SPEC and PARSEC benchmark suites (in
the interest of space, applications from the same suite are not indi-
vidually labeled). The figure shows, for instance, that most applica-
tions spend less than 20% of their execution time executing paths of
length 10 instructions or less. The figure also shows that path length
distributions are highly application dependent. Generally, the PAR-
SEC applications tend to have a wider, more heavy-tailed distri-
bution, while SPEC FP applications have a narrower, more regular
distribution. SPEC INT has applications in both categories.

Figure 9 shows the average length of our idempotent paths
compared to those measured as ideal in the limit study from Sec-
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Figure 10. Execution time and instruction count overheads.

tion 3 (the ideal measurement is for “semantic and calls”—intra-
procedural regions divided by dynamic semantic clobber antide-
pendences). Our geometric mean path length across all benchmarks
is roughly 4x less than the ideal (28.1 vs. 116). Two benchmarks,
hmmer and Ibm, have much longer path lengths in the ideal case.
This is due to limited aliasing information in the region construc-
tion algorithm; with small modifications to the source code that
improve aliasing knowledge, longer path lengths can be achieved.
If we ignore these two outliers, the difference narrows to roughly
1.5x (30.2 vs. 44.9; not shown).

Runtime overheads. Forcing the register allocator to preserve
input state across an idempotent region adds overhead because the
allocator may not re-use live-in register or stack memory resources.
Instead, it may need to allocate additional stack slots and spill more
registers than might otherwise be necessary.

Figure 10 shows the percentage execution time and dynamic in-
struction count overheads. Across the SPEC INT, SPEC FP, and
PARSEC benchmarks the geometric mean execution time over-
heads are 11.2%, 5.4%, and 2.7%, respectively (7.7% overall),
These overheads are closely tracked by the increase in the dynamic
instruction count: 8.7%, 8.2%, and 4.8% for SPEC INT, SPEC FP,
and PARSEQ, respectively (7.6% overall).

The one case where execution time overhead and instruction
count overhead are substantially different is for gobmk, which has
a26.7% execution time overhead but only a 5.9% instruction count
overhead. For this particular benchmark, some code sequences that
were previously efficiently expressed using ARM predicated exe-
cution transform to regular control flow due to liveness constraints,
resulting in more control flow sensitivity. Additionally, most of the
added instructions are load and store (spill and refill) instructions,
which have longer latency than regular move instructions.

For other applications, the differences mostly trend along the
nature of the fundamental data type—floating point or integer. In-
teger applications such as those from SPEC INT tend to have higher
execution time overheads because ARM has fewer general purpose
registers than floating point registers (16 vs. 32). Hence, these ap-
plications are more reliant on register spills and refills to preserve
liveness. In contrast, floating point benchmarks such as SPEC FP
and PARSEC have many more available registers. Additionally, the
comparatively long path lengths of PARSEC benchmarks tend to
allow better register re-use since the cost of pushing live-ins to the
stack is amortized over a longer period of time.

6.3 Idempotence-Based Recovery

Our compiler implementation and static analysis are general and
span entire programs, and hence they can be used in the context
of prior works using idempotence such as those presented in Ta-
ble 1. As a concrete example, however, we consider the case for
software-only recovery from transient hardware faults (soft errors).
We evaluate against two other compiler-based recovery techniques,
and for all techniques assume compiler-based error detection using
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Figure 11. Three software recovery techniques on top of instruction-level DMR. Changes over original load-add-store sequence in bold.
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Figure 12. Overhead of three software recovery techniques relative to the DMR baseline.

instruction-level dual-modular redundancy (DMR). The DMR uses
detection at load, store, and control flow boundaries, as previously
proposed by Reis et al. [29] and Oh et al. [26]. We assume regis-
ters and memory are protected by ECC; thus, errors arise through
instruction execution alone. Figure 11 illustrates the behavior of
each recovery alternative.

The first recovery technique, INSTRUCTION-TMR, implements
TMR at the instruction level. Our implementation attempts to repli-
cate the work of Chang et al. [6], which adds a third copy of each
non-memory instruction and use majority voting before load and
store instructions to detect and correct failures. We support the ma-
jority voting as a single-cycle operation.

The second technique, CHECKPOINT-AND-LOG, is an imple-
mentation of software logging similar to logging in software trans-
actional memory systems [17]. Before every store instruction, the
value to be overwritten is loaded and written to a log along with
the store address, and the pointer into the log (assigned a dedi-
cated register, 1p) is incremented. In our implementation, as the
log fills, the log is reset and a register checkpoint is taken, which
starts a new checkpointing interval. We assume a 16KB log size
(1K stores per checkpoint interval) with intelligent periodic polling
for log overflow using a technique similar to that proposed by Li
and Fuchs [22]. In our simulations, all log traffic writes through
the L1 cache, and we optimistically assume that both the register
checkpointing and periodic polling contribute no runtime overhead.

The final technique, IDEMPOTENCE, is our idempotence-based
recovery technique. Here, as each idempotent region boundary is
encountered, its address is written to the register rp. In the event
that a fault is detected, execution jumps to the address contained in
rp (the use of a register to hold the restart address is necessary to
handle potentially overlapping control flow between regions).

Results. Figure 12 presents results comparing the overhead of the
three techniques relative to performance of the underlying DMR.
Across all benchmarks, INSTRUCTION-TMR performs worst with
30.5% geometric mean performance overhead, CHECKPOINT-
AND-LOG has 24.0% overhead, and IDEMPOTENCE performs best
with only 8.2% overhead.

Compared to INSTRUCTION-TMR, CHECKPOINT-AND-LOG
performs worse for applications with frequent memory interac-
tions, such as several SPEC INT applications, but better for all other
applications where its per-instruction overheads are lower. Overall,
IDEMPOTENCE outperforms both techniques by a significant mar-
gin. It avoids the redundant operations added by INSTRUCTION-
TMR to correct values in-place, and avoids the overheads asso-
ciated with unnecessary logging in CHECKPOINT-AND-LOG. In
particular, when logging only the first memory value written to
a particular memory location is required to be logged. However,
under CHECKPOINT-AND-LOG the occurrence of the first write is
not statically known and cannot be efficiently computed at runtime.
IDEMPOTENCE also preserves local stack memory more efficiently
with its fully-integrated compile-time approach.

7. Related Work

The application of idempotence in compiler-based recovery has
been previously explored, primarily in the context of exceptions
and also hardware fault recovery. For exception recovery, Hamp-
ton and Asanovi¢ explore the use of idempotent regions for ex-
ception recovery in vector processors [16], De Kruijf and Sankar-
alingam use them for exception recovery in general purpose pro-
cessors [10], and Mahlke et al. propose restartable (idempotent)
instruction sequences under sentinel scheduling for exception re-
covery in VLIW processors [23]. For fault recovery, Feng et al.
and De Kruijf et al. both explore mechanisms to opportunistically



employ idempotence over code regions that together cover large
parts—but not all parts—of a program. While De Kruijf ez al. man-
ually identify idempotent regions, Feng et al. identify them using a
compiler interval analysis. We build upon this prior work and make
several additional contributions: we develop a compiler analysis to
uncover the minimal set of semantically idempotent regions across
entire programs, we describe the algorithmic challenges in com-
piling for these regions, and we explore how they can be used to
recover across a range of different types of execution failures.

In other related work, Shivers et al. [31] and Bershad [2] both
explore using idempotence to achieve atomicity on uniprocessors.
The work of Li ez al. on compiler-based multiple instruction retry is
also similar in that they breaks antidependences to create recover-
able code regions [21]. However, they do so over a sliding window
of the last NV instructions rather than over static program regions.
As such, they do not distinguish between clobber antidependences
and other antidependences; all antidependences must be considered
clobber antidependences over a sliding window since any flow de-
pendence preceding an antidependence will eventually lie outside
the window. Our use of static program regions allows for the con-
struction of large recoverable regions with low overheads.

More general work on compiler-based recovery includes the
work of Chang et al. on recovery of hardware transient faults
at the granularity of single instructions using TMR on top of
DMR [6]. Chang et al. also explore two partial recovery techniques
in addition to TMR. However, for full recovery functionality, the
overheads remain effectively the same as TMR, and our results
show that idempotence-based recovery has potentially better per-
formance than TMR. Finally, compilers have been proposed for
coarse-grained, checkpoint-based recovery as well. Li and Fuchs
study techniques for dynamic checkpoint insertion using a com-
piler [22]. To maintain the desired checkpoint interval, they peri-
odically poll a clock to decide if a checkpoint should be taken.

8. Conclusion

The capability for fast and efficient recovery has applications in
many domains, including microprocessor speculation, compiler
speculation, and hardware reliability. Unfortunately, most prior
software-based solutions typically have high performance over-
heads, particularly for fine-grained recovery, while hardware-based
solutions involve substantial power and complexity overheads.

In this paper, we identified idempotence as a basic program
property that can be used for general and efficient recovery in soft-
ware. While it is intuitive that idempotence can be used to recover
from execution failures with no visible side-effects (e.g. hardware
exceptions), we showed how failures resulting in only incorrect
control flow (e.g. branch misprediction) can also be supported in
a straightforward manner. Additionally, we described how failures
involving a wider range of side-effects (e.g. soft errors) can be re-
covered with a relatively small set of supporting mechanisms.

We demonstrated the potential for idempotence-based recovery
by building a compiler that partitions programs into idempotent re-
gions, enabling the paradigm of idempotent processing—execution
in sequences of idempotent regions. We presented a static analy-
sis that partitions applications into semantically idempotent regions
and showed a compiler that generates code preserving the idempo-
tence of these regions with low performance overhead (commonly
less than 10%). As an example, we showed how our analysis and
compiler can be used to recover from hardware transient faults ef-
ficiently, purely in software. However, our technique is general and
applies to many other uses of idempotence as well.

While we demonstrated idempotence as a powerful primitive
for program recovery, several questions remain for future research.
First, while we showed that idempotent regions can be large, lim-
ited program knowledge sometimes inhibits region sizes unneces-

sarily. Better programmer aliasing information and/or the use of
more declarative programming styles may allow the construction
of much larger idempotent regions. Second, while we constructed
these large regions in part as a first-order approximation towards
minimizing performance overheads, in practice optimal region size
depends on a variety of factors. An important topic of future work
is to characterize the performance overheads based on such fac-
tors. Finally, future work exploring the applicability of idempo-
tence with respect to specific failure scenarios will further help
in understanding its full potential. Regardless of the outcomes to
these questions, however, idempotent processing and the concept
of semantic idempotence are likely to remain as valuable building
blocks for use in future research on low-overhead software recov-
ery solutions.
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