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Abstract

Since the introduction of fully programmable vertex
shader hardware, GPU computing has made tremendous
advances. Exception support and speculative execution are
the next steps to expand the scope and improve the usabil-
ity of GPUs. However, traditional mechanisms to support
exceptions and speculative execution are highly intrusive to
GPU hardware design. This paper builds on two related in-
sights to provide a unified lightweight mechanism for sup-
porting exceptions and speculation on GPUs.

First, we observe that GPU programs can be broken into
code regions that contain little or no live register state at
their entry point. We then also recognize that it is simple to
generate these regions in such a way that they are idempo-
tent, allowing their entry points to function as program re-
covery points and enabling support for exception handling,
fast context switches, and speculation, all with very low
overhead. We call the architecture of GPUs executing these
idempotent regions the iGPU architecture. The hardware
extensions required are minimal and the construction of
idempotent code regions is fully transparent under the typ-
ical dynamic compilation framework of GPUs. We demon-
strate how iGPU exception support enables virtual memory
paging with very low overhead (1% to 4%), and how spec-
ulation support enables circuit-speculation techniques that
can provide over 25% reduction in energy.

1 Introduction
Since the introduction of fully programmable vertex

shader hardware [23], GPU computing has made enormous
strides. Modern GPUs incorporate sophisticated architec-
ture and microarchitecture techniques such as predication,
caching, and prefetching, while abstracting the details away
from programmers through their software stack and dy-
namic compilation approach. To improve the effectiveness
of GPUs as general-purpose computing devices, GPU pro-
gramming models and architectures continue to evolve, and
we foresee exception support and speculative execution as
the next key steps in their evolution. Below, we reflect on

the evolution of traditional CPUs to illuminate why this pro-
gression appears natural and imminent.

Just as CPU programmers were forced to explicitly man-
age CPU memories in the days before virtual memory, for
almost a decade, GPU programmers directly and explicitly
managed the GPU memory hierarchy. The recent release
of NVIDIA’s Fermi architecture and AMD’s Fusion archi-
tecture, however, has brought GPUs to an inflection point:
both architectures implement a unified address space that
eliminates the need for explicit memory movement to and
from GPU memory structures. Yet, without demand pag-
ing, something taken for granted in the CPU space, pro-
grammers must still explicitly reason about available mem-
ory. The drawbacks of exposing physical memory size to
programmers are well known. Other issues like debugging
and supporting arithmetic exceptions are likely to emerge as
problems for future GPUs as well. Exception support is a
fundamental pillar of modern CPUs and is used to provide
all of the above features. To make the leap to becoming
a truly general-purpose programming platform, we believe
future GPUs will require robust exception support to enable
virtual memory, and will significantly benefit from this sup-
port in other areas as well.

Modern GPUs are also positioned to benefit from spec-
ulation support in the near future. Shortly after the devel-
opment of exception support in CPUs, speculation was de-
veloped as a mechanism to transparently handle “difficult”
code, and a recent study claims that GPUs must similarly
begin incorporating techniques like speculation to expand
the domains they can target [6]. Speculation support has
also increasingly been proposed for handling recovery from
hardware reliability problems in CPUs [4, 17, 30]. Such
problems, which include variability, noise, and excessive
guard-banding, are also emerging problems for GPUs [7].
However, recent work on GPU solutions to overcome these
problems still has at least 40% overheads [35]. As with
CPUs, efficient speculation support in GPUs can serve as
a fundamental primitive that enables support for a more di-
verse range of application programs and handling of hard-
ware reliability issues.
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1.1 Key Challenges

Exception support and speculative execution can expand
the scope and improve the usability of GPUs. However,
implementing them efficiently on GPUs presents key chal-
lenges. Below, we discuss exception and speculation sup-
port in CPUs and why CPU mechanisms are problematic to
apply directly to GPUs. The three key challenges we iden-
tify are: consistent exception state, efficient context switch-
ing, and speculative writes.

For CPUs, the problem of exception support was solved
at a relatively early stage [36, 38]. This support was a key
enabler to their success, and instrumental in this success
was the definition of precise exception handling, where an
exception is handled precisely if, with respect to the except-
ing instruction, the exception is handled and the process re-
sumed at a point consistent with the sequential architectural
model [36]. With support for precise exceptions, all types of
exceptions could be handled using a universal mechanism
such as the re-order buffer. However, precise exception sup-
port has historically been difficult to implement for archi-
tectures that execute parallel SIMD or vector instructions,
where precise state with respect to an individual instruction
is not natural to the hardware. High fan-out control sig-
nals to maintain sequential ordering in a vector pipeline are
challenging to implement, and while buffering and register
renaming approaches have been proposed [14, 36], they are
costly in terms of power, area, and/or performance. Hence,
a key challenge is supporting consistent exception state:
exposing sequentially-ordered program state to an excep-
tion handler and also enabling program restart from a self-
consistent point in the program.

A second reason for the widespread adoption of precise
exception support in CPUs was that it enabled support for
demand paging in virtual memory systems: to overlap pro-
cessor execution with the long latency of paging I/O, the
state of a faulting process could be cleanly saved away
and another process restored in its place. Simply borrow-
ing techniques from the CPU space to implement context
switching on GPUs, however, is difficult. In particular, sav-
ing GPU state and then context switching to another process
while a page fault is handled imposes a monumental under-
taking: while on a conventional CPU core a context switch
requires little more than saving and restoring a few tens of
registers, for a GPU it can require saving and restoring hun-
dreds of thousands of registers. Thus, a second key chal-
lenge is supporting efficient context switching: minimizing
the amount of state that must be saved and restored to switch
among running processes.

Finally, speculation support in GPUs faces similar obsta-
cles to exception support. In fact, CPUs often implement
speculation recovery using the same mechanisms as for ex-
ception recovery. However, speculation has the additional
property that it generates state that may be incorrect with

respect to the program’s execution. On CPUs, this problem
is handled simply by incorporating large hardware check-
pointing or buffering structures to manage speculative state.
The MIPS R10K for example, implements checkpointing
by maintaining four copies of the register rename table [41].
However, the amount of register state on GPUs is simply too
vast to consider this option. Hence, a third key challenge
is supporting speculative writes: finding a way to manage
large amounts of speculative program state.

1.2 Paper Overview

In this paper, we develop a low-overhead technique to
support exceptions and speculative execution on GPUs.
Fundamentally, we observe that the three key challenges
of enabling precise exception and speculation recovery on
GPUs ultimately distill down to just two core problems: (i)
minimizing the amount of program state that needs to be
preserved and (ii) enabling restart from a consistent pro-
gram state. While previous work has explored optimiza-
tions to each of these pieces individually, the iGPU archi-
tecture developed in this work synergistically enables both.

In terms of preserving minimal program state, we ob-
serve that preserving live state alone is sufficient. Others
have made this observation as well [28, 29, 34]. However,
they have assumed either a checkpoint was available, or
restarting from the same program state as at the site of a
mis-speculation or exception was necessary. The architec-
tural state on CPUs is also typically small (tens of registers)
and hence the optimization of furthermore minimizing this
live state has historically been relatively insignificant. For
GPUs, however, minimizing the amount of state that must
be managed to handle context switching is valuable.

Second, in terms of restarting the program from a con-
sistent state, we observe that it is not always necessary to
restart the program from the site of an exception or mis-
speculation, even without checkpoints, and that restarting
from consistent live state, as opposed to architectural state,
is in most cases sufficient. Again, others have made this
observation as well [9, 18, 22]. However, they largely ig-
nore live-state minimization and/or do not provide general
exception and speculation support. Other shortcomings that
preclude their use for GPUs are discussed in Section 6.

This paper builds upon previous work and delivers a sim-
ple, elegant, and efficient solution to the problems of ex-
ception and speculation on GPUs. The iGPU architecture
leverages multiple synergistic properties of GPUs and their
workloads to preserve minimal program state and allow
restart from effectively arbitrary points in the program at
very low cost.

Figure 1 illustrates our approach using a stylized example
code sequence. First, as shown in Figure 1(a), we observe
that at each point in a program’s execution there are differ-
ing amounts of live state. We build upon the observation
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Figure 1: iGPU support for context switching, precise exceptions, and speculation recovery.

previously made that programs fully decompose into idem-
potent (re-executable) code sequences [9], and partition
GPU kernels into idempotent “regions” as shown in Fig-
ure 1(b), with the key property that the boundaries between
regions fall at locations that contain relatively little amounts
of live state. By their very nature, GPU application pro-
grams tend to have large regions of code that are idempotent
and hence these regions can be very large (see Section 5).
We call these regions sparse idempotent regions because
they are sparse both in terms of the amount of live input
(live-in) state, and in terms of their occurrence. They can
be used to service exceptions that require a context switch,
such as page faults, very rapidly due to the low amounts
of live-in state, and to service other infrequently occur-
ring exceptions as well. For mis-speculations, however,
these sparse idempotent regions tend to be unsuitably large.
Hence, as shown in Figure 1(c), we sub-divide these regions
into short idempotent sub-regions. These short idempotent
regions are small and can be re-executed quickly for recov-
ery. However, they are unsuitable for servicing exceptions
that require a context switch, because they may have large
amounts of live-state at their entry point.

Figure 1(d) shows how the sparse idempotent regions can
be used to recover from general exceptions. Suppose that an
arithmetic exception occurs executing region B2 and that
the architectural state at the point where it is detected is not
sequentially consistent with respect to the excepting instruc-
tion. The GPU recovers by re-executing the sparse region
precisely to the point of the exception, handles the excep-
tion, and then recovers by resuming execution from the im-
mediately following instruction. The precise re-execution
allows the exception handler to see a consistent live pro-
gram state with respect to the point of the exception, with
forward progress ensured when it is augmented with some

support for avoiding live-lock (see Section 4.1).
Figure 1(e) shows how the sparse regions can also be

used to efficiently recover from exception conditions requir-
ing a context switch, such as a page fault. Suppose that in
the midst of executing region B2 a page fault occurs. Sup-
pose also that the running program pushes and pops live
registers from the program stack at the boundary points be-
tween sparse idempotent regions. Then, the page fault can
be serviced and a context switch can occur effectively in-
stantaneously. After the fault has been serviced, the orig-
inal process can be switched back in at a convenient time,
restarting from region B1. In this scenario, the exception
handling need not be “precise” with respect to the faulting
instruction, and hence we can both handle it and perform
the context switch immediately without concern for the pro-
gram’s state at the point of the fault.

Finally, Figure 1(f) shows how the short idempotent sub-
regions can be used for speculation recovery. Speculative
execution writes speculative state directly to the architec-
tural state. When a mis-speculation is detected, recovery
occurs simply by re-executing from the start of the contain-
ing sub-region, which will regenerate a consistent program
state. Depending on the nature of the speculation, the side-
effects of a mis-speculation must be appropriately contained
to guarantee successful recovery by re-execution.

1.3 Paper Contributions

The key contribution of this paper is the development of
the iGPU architecture that leverages the property of idem-
potence to implement exception and speculation support for
GPUs. We present the design and implementation of iGPU
hardware and software mechanisms, and demonstrate how
sparse and short idempotent regions can be used to support
demand paged virtual memory and circuit-level techniques
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such as voltage speculation and timing speculation. Our re-
sults show that the iGPU architecture can provide demand
paging support with less than 4% performance overhead,
and that circuit-speculation techniques provide up to 30%
energy benefits.

The remainder of this paper is organized as follows: Sec-
tion 2 presents background on GPUs, Section 3 discusses
the iGPU architecture, Section 4 discusses how to support
exceptions, context switching and speculation on the iGPU
architecture, Section 5 presents our evaluation, Section 6
presents related work, and Section 7 concludes.

2 GPU Background
Before presenting the iGPU architecture, we first give

background on the memory and register architecture and the
state of exception support in current-generation GPUs.

Terminology. Table 1 shows the terms we use as well as
the equivalent NVIDIA and OpenCL terms. A GPU con-
sists of a number of SIMD processors that execute SIMD
instructions sequentially ordered into SIMD threads. A ver-
tical cut of a SIMD thread, which corresponds with one el-
ement of a SIMD lane, we call a SIMD thread lane. Finally,
identical SIMD threads that run on the same processor form
a SIMD thread group.

GPU Memory and Register Architecture. Figure 2
shows the high-level architecture of a modern GPU that sup-
ports virtual address translation. Each SIMD processor has
a hardware-managed L1 cache, we assume each processor
has a TLB, and all processors share an L2 cache. NVIDIA’s
most recent GPU architecture, Fermi, and AMD’s recent
Llano Fusion architecture both resemble this description [1,
2, 26]. The size characteristics for an integrated AMD GPU
part and a discrete NVIDIA GPU part are shown in a table.
The table shows that GPU register state is more than both
the L1 and L2 cache state combined (often much more).

GPU Exception Support. Current GPUs do not im-
plement general exception support, although Fermi sup-
ports timer interrupts used for application time-slicing [26].
While both Fermi and Llano support virtual addressing on
some level [1, 26], neither supports all the features of virtual
memory, such as demand paging and complete support for
execution of processes only partially resident in memory.

Term we use NVIDIA term OpenCL term

SIMD processor Streaming MP Compute Unit
SIMD instruction PTX instruction FSAIL (AMD)
SIMD thread Warp Wavefront
SIMD thread lane Thread Work item
SIMD thread group Thread block Work group

Table 1: GPU terms used in this paper (adapted from Hen-
nessy and Patterson [19]).

GPU architecture Memory and register state

AMD HD 6550D 128KB L2, 40KB L1, 1.28MB register
NVIDIA GTX 580 768KB L2, 1MB L1, 1.92MB register

Figure 2: The memory organization of a modern GPU that
supports virtual address translation and the size characteris-
tics of two commodity GPUs.

3 iGPU Architecture
In this section, we develop the iGPU architecture and or-

ganization. First, we define idempotence over a region of
code and present a code example demonstrating how idem-
potence manifests in GPU workloads. We then describe the
iGPU compiler, ISA, and hardware support.

3.1 Idempotence

A region of code, which we define as a subset of the
program control flow graph, is idempotent if it can execute
once or multiple times with the same effect. De Kruijf et al.
identify idempotence through the absence of clobber an-
tidependences, where a clobber antidependence is defined
as an antidependence (WAR dependence) with no prior flow
dependence (RAW dependence) on the same variable [10].
In other words, an idempotent region can contain an antide-
pendence as long as the antidependent variable is defined
before it is used. For example, a {read, write} sequence
over a variable x is not idempotent due to a clobber antide-
pendence on x. However, a {write, read, write} sequence is
idempotent due to the initial “protecting” write of x.

Figure 3 shows a simple GPU kernel written in C for
CUDA that is representative of the types of workloads typ-
ically run on GPUs—workloads that have a high degree of
data parallelism and have regular streaming memory inter-
actions. A common byproduct of these characteristics is
distinct read and write data sets, which implies a lack of an-
tidependences, which leads to the property of idempotence.

The kernel of Figure 3 computes the matrix multiplica-
tion of matrices A and B and accumulates the result onto
matrix C. It is the unoptimized version of the matrix mul-
tiplication kernel presented in the CUDA Programming
Guide [27] with the accumulation onto C added to make
it more interesting. The accumulation forms a clobber an-
tidependence (across lines 4→7) in the kernel and hence
the kernel is not idempotent. In the next section we show
how the iGPU compiler can sub-divide this kernel into two
idempotent sub-regions by “cutting” the clobber antidepen-
dence and placing a region boundary at the site of cut.
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CUDA source code Live variablesa

1 __global__ void MatrixMultiplyAccumulate(Matrix A, Matrix B, Matrix C) {
2 int row = blockIdx.y * blockDim.y + threadIdx.y; 0
3 int col = blockIdx.x * blockDim.x + threadIdx.x; 1
4 float Cvalue = C.data[row * C.width + col]; 2
5 for (int i = 0; i < A.width; ++i) 3
6 Cvalue += A.data[row * A.width + i] * B.data[i * B.width + col]; 8
7 C.data[row * C.width + col] = Cvalue; 5
8 }

aAlthough the A, B, and C matrix objects (with member variables width and data) are live on entry, along with built-in variables blockIdx,
blockDim, and threadIdx (derived from the kernel launch configuration), these are read-only kernel input variables that are backed in memory. They
are assumed to be loaded on first use inside a region and hence do not need to be saved on a context switch.

Figure 3: A simple matrix multiplication CUDA kernel annotated with live register information.

3.2 iGPU Compiler, ISA, and Hardware

Figure 5 shows the modifications the iGPU architecture
makes to a conventional GPU architecture. The compiler,
ISA, and hardware extensions are described in this section
and are marked in the figure using black boxes.

Compiler. The iGPU compiler makes modifications to
the device code generator of a traditional GPU as shown
at the top of Figure 5. The code generator generates de-
vice code from an intermediate representation (IR), and the
iGPU compiler identifies the sparse and short idempotent
regions in the IR and compiles them in such a way that they
remain idempotent through the code generation process. We
assume an SSA-like IR (e.g. NVIDIA’s PTX) with infi-
nite registers so that IR antidependences occur only among
non-local variables or across loop iterations. The compiler
identifies may-alias clobber antidependences and constructs
sparse idempotent regions by “cutting” them in the man-
ner described by De Kruijf et al. [10], with the key differ-
ence that it prefers to place cuts before instructions with the
minimum amount of live state. Placing sparse boundary in-
structions at these cuts forms the sparse idempotent regions.
The compiler then linearly scans each sparse region to parti-
tion it into short idempotent sub-regions, scanning up to the
point where some path through the sub-region would con-
tain more than the short region instruction limit (e.g. 32),
at which point it places a short idempotence boundary. This
process of placing idempotent region boundaries is the re-
gion formation phase of the iGPU compiler and is shown on
the left side of the Device Code Generator box of Figure 5.

After the regions are formed, the compiler enters a sec-
ond phase, the state preservation phase shown next to the
region formation phase in Figure 5. During this phase, the
compiler prevents new clobber antidependences from aris-
ing during register and stack memory allocation by allocat-
ing local variables in such a way that those variables live
at idempotence boundaries are not overwritten. Figure 4 il-
lustrates how this is done for the sparse idempotent regions
formed for the example kernel from Figure 3 using a styl-
ized device code representation. Recall that the kernel con-

Device code before:
... ($r0 holds (row * C.width + col))
add.u32 $r0, param[__C_data], $r0;
mov.f32 $r1, global[$r0];
mov.u32 $r2, 0x00000000;
LOOP:
...

Device code after:
... ($r0 holds (row * C.width + col))
add.u32 $r0, param[__C_data], $r0;
mov.f32 $r1, global[$r0];
idem.sparse.boundary;
mov.f32 $r3, $r1;
mov.u32 $r2, 0x00000000;
LOOP:
... (all uses of $r1 replaced by $r3)

Figure 4: Idempotent code generation.

tains one clobber antidependence. For sparse region forma-
tion, the clobber antidependence is cut at the point with the
least live state, which occurs immediately before the loop
entry at the initialization of loop variable i in register r2.
The idempotence boundary is placed as shown in the lower
half of Figure 4. To prevent overwriting, the compiler then
logically inserts a move instruction from register r1 to a
freshly allocated register, r3, after the boundary instruc-
tion. From that point on, it accumulates the CValue vari-
able onto r3 instead of r1, preserving the value in the live
register r1 at the expense of some additional register pres-
sure on the kernel. The other live variables at the idempo-
tence boundary are not subsequently overwritten and hence
require no action to be preserved. Although the example
shows sparse region state preservation only, short region
state is preserved similarly. Mechanisms utilizing the iGPU
architecture may further transform and optimize the code by
spilling registers, coalescing registers, etc.

ISA. We extend the ISA with a special instruction to mark
the boundaries between idempotent regions as in Figure 4,
This instruction holds a single bit which specifies whether it
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Figure 5: iGPU architecture with GPU modifications in black (not to scale).

starts a new sparse or a new short idempotent region. When
the boundary instruction is executed, the PC value associ-
ated with the immediately following instruction is saved
away in a special RPC (restart PC) register—either the
sparse-RPC or the short-RPC depending on the bit setting.
The boundary instruction also acts as an instruction barrier
such that a SIMD thread’s in-flight instructions must retire
before proceeding. This ensures that a region remains re-
coverable while an exception or a mis-speculation remains
undetected for the region’s in-flight instructions.

Hardware. To support the ISA extension and the execu-
tion model in the hardware, we add two RPC registers per
SIMD thread and some decode logic to process boundary
instructions. These two changes are illustrated on the right
side of Figure 5. NVIDIA’s Fermi architecture allows a
maximum of 48 SIMD threads per SIMD processor, so for
this case the RPC state would amount to a 386-byte reg-
ister file (assuming 4-byte RPC values) physically removed
from the hardware critical path. To support the possibility of
thread divergence causing thread lanes of the same thread to
enter different idempotent regions (for which multiple RPC
values would be required to maintain correct execution), we
assume thread splitting techniques such as the one proposed
by Meng et al. are employed when needed to maintain a
single RPC per thread [24]. This allows divergent paths to
be treated as separate logical SIMD threads, each maintain-
ing its own RPC value. Reconvergence of divergent SIMD
threads to saturate the available SIMD width is allowed as
well, with the additional restriction that thread reconver-
gence may occur only after encountering the first boundary
instruction following the path reconvergence point.

Overall, the hardware changes are small, especially
considering the many thousands of registers and tens of
functional units already resident on the SIMD processors
of modern GPUs. Alternative CPU-like mechanisms to
achieve both exception and speculation support would re-
quire much more hardware. Additionally, at the circuit
level, the timing of exception and mis-speculation control
signals can be relaxed compared to traditional hardware
pipeline-based approaches.

4 iGPU Exception and Speculation Support
The iGPU compiler, ISA, and hardware changes de-

scribed in the previous section are minor and are transparent
underneath the dynamic compilation environment of mod-
ern GPUs. In this section, we develop non-invasive mecha-
nisms that build upon the iGPU architecture to support ex-
ceptions, efficient context switching, and speculation.

4.1 General Exception Support

General exception support on iGPUs requires expos-
ing consistent exception state to an exception handler and
mechanisms to prevent exception live-lock. The problem of
supporting consistent state is that on a GPU multiple excep-
tions can occur executing a single SIMD instruction, and
determining in an exception handler which lanes of the in-
struction experience an exception can be difficult. The prob-
lem of exception live-lock is that multiple recurring excep-
tion conditions inside a single idempotent region can lead
to live-lock. Below, we describe software and hardware so-
lutions to both problems.

Consistent exception state. To service SIMD exceptions,
an exception handler must determine which lanes in a SIMD
instruction experience an exception. We initially propose
to achieve this without hardware modification as follows.
First, prior to re-execution, a software routine patches the
excepting instruction with a trap to an emulation routine,
similarly to the way a debugger inserts a breakpoint into a
running program. Upon re-execution, the emulation routine
then emulates the instruction in its entirety, servicing all ex-
ception conditions. It then “unpatches” the instruction and
resumes execution at the immediately following instruction,
as before. Other solutions that require hardware support,
such as adding exception status bits to record the excepting
lanes of an instruction and the associated circuitry, are also
possible. With this solution, the exception handler would
require that an excepting instruction execute all lanes of the
instruction to completion, updating all result registers ex-
cept those whose lanes experience an exception.

Exception live-lock. A potential live-lock condition is in-
dicated if, during re-execution, an instruction experiences
an exception and its PC value does not match the PC of
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Figure 6: Live-lock under multiple recurring exceptions.

the instruction that initiated the re-execution. Consider, for
instance, a region that experiences two arithmetic excep-
tions as shown in Figure 6. After the first exception is
handled, the second exception is encountered shortly after-
wards. However, upon subsequent re-execution, the first ex-
ception is encountered again, leading to live-lock.

One way to detect live-lock is to save the PC value of an
excepting instruction to a dedicated register for comparison
during re-execution. Live-lock is then detected as soon as
an exception recurs a second time, as shown in Figure 6.

To resolve the live-lock condition after it has been
detected, previous work has proposed single-stepped re-
execution for CPUs [9]. However, GPU single-stepped ex-
ecution must occur at the granularity of individual SIMD
lanes to allow precise servicing of individual exceptions.
GPUs do not natively support this type of execution and
adding it requires non-trivial modification to the hardware.
Instead, an alternative option is to leverage the virtualized
nature of modern GPU instruction sets and employ dynamic
re-compilation to prevent live-lock. Rather than the hard-
ware entering a single-stepping mode upon live-lock detec-
tion, a dynamic compiler instead recompiles the code such
that the two excepting instructions causing the live-lock
condition are placed in separate idempotent regions. After-
wards, idempotence-based re-execution can be retried, and
the re-compilation effort ensures forward progress. Alter-
natively, single-stepped lane execution can be implemented
in the hardware. Both solutions would be slow to exe-
cute; however, it is important to note that potential live-lock
should arise only in rare circumstances for the vast majority
of possible exception conditions.

4.2 Efficient Context Switching Support

The iGPU architecture can substantially reduce the over-
heads of context switching on GPUs. This is particu-
larly valuable to the implementation of demand paging, for
which a context switch would traditionally require saving
and restoring vast amounts of register state. Our key insight
is that, utilizing idempotence, context switch state need only
be saved and restored with respect to the boundaries be-
tween sparse idempotent regions, and that the locations of
these boundaries is moreover configurable. Hence, bound-
ary locations can be chosen such that this state is minimized,
enabling much more efficient context switching.

To minimize live state on context switches, we simply
construct sparse idempotent regions by cutting antidepen-

dences at instructions where there is the least amount of
live state, as demonstrated in Section 3.2. To illustrate how
this helps, suppose that a page fault occurs executing the
statement on line 6 of the kernel in Figure 3. Using tradi-
tional state-minimization techniques [28, 34], a minimum
of 8 live registers would need to be saved to memory. How-
ever, restarting from our idempotence boundary at the head
of the loop, only 3 live registers need to be saved. This is a
greater than two-fold reduction in context switch state.

To perform the actual context saving and restoring, we
propose two mechanisms. For the first mechanism, which
we call continuous spilling, the compiler simply pushes and
pops live registers to and from the program stack at each
sparse idempotent region boundary. This enables very fast
context switching at the expense of paying a small save and
restore penalty at each region boundary. For the second
mechanism, which we call just-in-time spilling, only when
an exception occurs does an exception handling routine save
and restore the live state at the containing sparse idempotent
region entry point. The advantage is that the save and re-
store cost is only paid when it is needed. The disadvantage,
however, is that it is necessary for the compiler to communi-
cate the live state at the region boundary points to the hard-
ware. One way to do this would be for the region bound-
ary instruction to encode as a mask which registers are live.
This information is then saved away in a special-purpose
hardware register for later recall by an exception handler.

4.3 Speculation Support

In traditional CPUs, speculation recovery support is used
for multiple purposes ranging from out-of-order execu-
tion [38] and branch prediction [42], to hardware fault re-
covery [30] and circuit-level speculation [17]. However,
modern GPUs implement simple, in-order cores to maxi-
mize throughput, and hence have little or no hardware sup-
port for speculative execution. Hence these techniques can-
not be utilized in GPU architectures.

To bring speculation to GPUs, we observe that, similar
to how the re-order buffer handles multiple responsibilities
synergistically in traditional CPUs, idempotence can do the
same with less hardware overhead for simpler processor de-
signs. While idempotence has potentially higher recovery
cost than a re-order buffer, we partition the sparse idem-
potent regions into the smaller short idempotent regions to
keep the re-execution penalty relatively low.

As a concrete example, this section focuses specifically
on the iGPU mechanisms to support speculative circuit-
level techniques, which have received much attention in re-
cent years [3, 8, 12, 16, 17, 31]. These circuit-level tech-
niques speculatively assume common-case timing and volt-
age conditions, with occasional recovery employed under
worst-case conditions. Timing and voltage speculation are
two broad classifications of such techniques.

7



Timing speculation typically operates only in the proces-
sor pipeline, augmenting critical path latches with special
shadow latches to detect timing errors [3, 8, 12]. Detection
of mis-speculations is fast, and for a CPU, microarchitec-
tural replay and flush support using a re-order buffer is often
proposed for recovery. This is overly complex for GPUs,
however, and idempotence-based re-execution provides an
efficient alternative way to support timing speculation.

In contrast to timing speculation, voltage speculation typ-
ically operates at a coarser scale. It allows for coarser and
simpler detection mechanisms, but requires more sophis-
ticated recovery support due to longer detection latencies.
We base the remainder of our discussion on a previous pro-
posal by Gupta et al. for CPUs [17]. They divide pro-
cessors into rollback protected and timing-margin protected
regions, using both a re-order buffer and store queue to re-
cover from voltage mis-speculation only in the rollback pro-
tected regions (pipeline regions). Since the timing-margin
protected regions—which include the register file, the PC
logic, the L1 write port, and the L2 cache—are less timing-
sensitive than the rollback protected regions, they argue that
this partitioning approach works well, although extra hard-
ware support, in the form of the store buffer, is still required.

Voltage speculation can be implemented for GPUs by
adapting their design to use iGPU mechanisms for efficient
recovery. Like Gupta et al., we propose to divide processors
into rollback protected and timing-margin protected regions
and propose a store queue to buffer stores to speculatively-
produced addresses, since these addresses must be verified
before a store can commit. However, this structure can be
relatively simpler on the GPU. In particular, not all stores
must use speculatively-produced addresses, and the GPU’s
device-independent IR enables a compiler to easily annotate
non-speculative stores and communicate them to the hard-
ware. Stores relative to the stack pointer (SP), for instance,
typically target a constant offset applied to the SP. If the
SP is not updated inside a region (as is typical) and SP-
relative address computations are timing-margin protected,
then these relatively common types of stores (register spills)
are non-speculative and need not be buffered.

5 Evaluation
Our experimental evaluation reports quantitative data on

idempotent region construction and on the efficiency of
iGPU exception and speculation support. We first present
the sparse idempotent region characteristics of region size
and the number of live registers at region entry points—two
fundamental characteristics motivating this work. We then
quantify the overheads of forming the sparse idempotent re-
gions, the overheads of spilling and reloading live register
state at the boundaries between these regions for context
switching, and the overheads of partitioning sparse regions
into short sub-regions for speculation recovery. Finally, we

show the performance of virtual memory support and the
energy benefits of voltage and timing speculation.

5.1 Methodology
The benchmarks we evaluate are those distributed with

GPGPU-Sim 2.1 and are described in detail by Bakhoda
et al. [5]. We assume a GPU configuration with 4 SIMD
processors, with each processor having a SIMD width of 32,
pipeline width of 8, 16K registers, and a 256KB L1 cache.

To evaluate the iGPU compiler overheads, we imple-
mented the region formation phase described in Section 3.2
using the Ocelot dynamic compilation framework [11],
which operates on NVIDIA PTX. For short idempotent re-
gion sizes, we performed a sensitivity study with 16-, 32-
and 64-instruction regions, and found that short regions
sized at 32 instructions allowed for fast recovery at the cost
of only a modest increase in execution time due to addi-
tional state preservation overheads.

To measure the overheads of the state preservation per-
formed by the compiler for both sparse and short regions,
we model a constrained register file in GPGPU-Sim and
preserve live state across idempotent region boundary in-
structions at runtime. We do this at runtime and not at
compile-time out of necessity, as there is no publicly avail-
able specification for actual GPU device code, and while
attempts have been made to reverse-engineer device code
executed by NVIDIA GPUs [40], the resulting tools and in-
formation are only useful for performance analysis and not
for binary analysis and modification. Hence, we carefully
account for the register spills that would be caused from re-
source constraints in our simulator. In particular, GPGPU-
Sim uses the information supplied by the PTX assembler
to schedule collections of thread blocks based on register
availability constraints. We extend GPGPU-Sim to model
detailed register state during execution, and account for the
runtime cost of additional register moves, spills, and loads
required to avoid register clobber antidependences.

5.2 Region Sizes and Live Register State
Figure 7 shows the median sparse idempotent region

sizes dynamically observed across all benchmarks, with the
25th to 75th percentile range shown using vertical error
bars. The figure shows that the median region size ranges
from roughly 200 instructions to over 3,500 instructions.
In contrast, for CPU benchmarks De Kruijf and Sankar-
alingam observed typical idempotent region sizes of only
20 to 40 instructions [9]. Figure 8 additionally shows the
median number of registers (per SIMD thread lane) live
at sparse idempotent region boundaries. A typical me-
dian value for the number of live registers is only 2 and
no sparse region has more than 4 live-in registers. These
results corroborate the observation from Section 3.1 that
SIMD kernels naturally decompose into large idempotent
regions that depend on little live state.
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Figure 7: Median sparse region size (y-axis is log-scale).
Error bars show 25th (lower) and 75th (upper) percentile.
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Figure 8: Median live-ins at sparse region boundaries. Error
bars show 25th (lower) and 75th (upper) percentile.

5.3 Compiler-Induced Runtime Overheads

Figure 9 shows the compiler-induced iGPU runtime over-
heads relative to a conventional GPU using a stacked bar
graph, where overhead is measured as the percentage addi-
tional cycles executed (which corresponds almost directly
with the percentage additional instructions introduced by
the compiler). The bottom stack shows the overhead in-
troduced by the register spills, reloads, and moves associ-
ated with state preservation for sparse idempotent regions1.
The middle stack shows the additional overhead to spill and
reload the live variables at the sparse region boundaries
using the continuous spilling approach described in Sec-
tion 4.2. Finally, the top stack shows the additional over-
heads from the added register pressure introduced by the
short sub-region state preservation. Overall, the total run-
time overheads are in all cases less than 4%. Typical over-
heads are just 2% to 3%.

5.4 Virtual Memory Paging Support

The accumulation of the bottom two stacks in Figure 9
represents the runtime overhead of the sparse region state
preservation and the continuous live-in spilling to support
virtual memory page faults. Across all benchmarks, the ge-
ometric mean overhead is roughly 2.5%. The only addi-
tional overheads associated with full paging support are the
page fault handling and re-execution overheads incurred to
service a page fault. However, we argue that even with a

1The compiler region formation is an IR-level analysis that does not
directly modify generated device code and hence incurs no overhead.
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Figure 9: Runtime overheads introduced by the iGPU com-
piler. (Sp = sparse region state preservation, CS = continu-
ous spilling, and Sh = short region state preservation.)

Speculation Technique Error Rate Vdd Reduction

DeCoR [17] 1% 10%
Emergency Prediction [31] 0.01% 10%
Razor [12] 1% 15%
Razor II [8] 0.1% 15%

Table 2: Circuit speculation techniques and their corre-
sponding error rate and Vdd reduction (approximate).

page fault every 1 million instructions (as is common for
CPU workloads [32]) this overhead should be negligible
(less than 1%). Thus, we claim that the virtual memory pag-
ing overheads are effectively limited to just the compiler-
related runtime overheads, which range from 1% to 4%.

5.5 Voltage and Timing Speculation Support

To evaluate iGPU speculation support using the
short idempotent regions, we evaluate voltage and timing
speculation considering a range of possible error rates—
1%, 0.1%, and 0.01%—and two possible voltage reduction
settings—10% and 15%—executing at those error rates.
The different combinations of error rate and voltage im-
provement can be matched with previously proposed volt-
age and timing speculation techniques. Table 2 shows the
error rates and corresponding Vdd reduction for four previ-
ously proposed techniques with differing levels of aggres-
siveness and complexity.

A detailed exploration of the interaction of the mis-
speculation detection mechanism with the iGPU architec-
ture is part of future work. In the evaluation presented here,
we assume first-order principles with the expectation that
stalls at idempotence boundaries to support detection de-
lays of the order of a few cycles can be hidden through mul-
tithreading on the SIMD processor.

Figure 10 shows the short region re-execution overheads
considering the error rates of 1%, 0.1%, and 0.01%. This
overhead includes the cumulative compiler-induced runtime
overheads from Figure 9. The figure shows that the total
runtime overhead ranges from 4% to 12% with a geometric
mean of 8% when tolerating a 1% error rate.
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Figure 10: Re-execution overheads for short idempotent re-
gions at three different error rates.
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Figure 11: Energy reduction at various error rates and levels
of Vdd reduction. Each pair of vertical bars evaluates a given
benchmark at a given error rate for the two different voltage
reduction points indicated by the arrows and labels on the
left of the graph.

Figure 11 shows energy reductions based on possible Vdd

reductions of 10% and 15% at each error rate. We con-
sider dynamic power alone and assume no savings in static
power. Dynamic power is proportional to the square of sup-
ply voltage and is further multiplied by the per-benchmark
execution time to obtain the projected energy consumption.
Percentage reductions are calculated with respect to a base-
line GPU architecture executing conventional code. All
benchmarks show significant energy reductions when toler-
ating 0.1% and 0.01% error rates. For the 1% error rate, en-
ergy reduction is more modest, but still over 10%. Overall,
we observe significant possible energy reductions of over
25% when Vdd reductions of 15% and beyond are possible.

5.6 Summary

Our results show that the iGPU architecture provides a
practical and low overhead way to implement exception
support in GPUs. Additionally, idempotence in combina-
tion with continuous spilling at region boundaries for con-
text switch state reduction supports virtual memory paging
with less than 4% runtime overhead. The iGPU architecture
is also able to provide significant energy reductions with ef-
ficient support for timing and voltage speculation.

Approach Weakness

Restart markers [18] Loop analysis; not generalizable
Idempotent processors [9] No liveness or SIMD analysis

Fast switch points [37, 43] External interrupts only
Compiler liveness bits [34] Forces exact context switch state
Hardware in-use bits [28] Forces exact context switch state

Buffering (ROB, etc.) [36] Duplicate vector/SIMD registers
Register renaming [14] H/W and performance overheads
State snapshotting [28] Exposes microarchitecture details

Table 3: Prior work on exception and speculation recovery.

6 Related Work
Both idempotence and liveness analysis have been previ-

ously proposed as techniques to support efficient recovery.
However, the two techniques have never before been com-
bined as they are in this work. Table 3 classifies prior work
into three sub-categories: idempotence-based exception re-
covery, context switch overhead reduction, and classical ap-
proaches to exception and speculation recovery.

Idempotence-based recovery. Hampton and Asanović
explore idempotence to implement virtual memory for
CPUs with tightly-coupled vector co-processors [18]. They
explore only simple compute kernels executed by a vector
co-processor, consider only loop regions, and do not de-
velop mechanisms to tolerate multiple recurring exceptions.
Their technique also does not support exceptions that re-
quire visibility to precise program state. Additionally, De
Kruijf and Sankaralingam explore idempotence-based ex-
ception support in the context of general-purpose proces-
sors [9]. They develop single-stepped re-execution as a
mechanism to tolerate multiple recurring exceptions and de-
scribe how applications can be fully decomposed into idem-
potent regions. However, they focus on the idempotence
property alone, irrespective of live state, and do not address
any SIMD-related complications. Compared to our work,
neither work ties the benefits of idempotence-based excep-
tion recovery with the benefits of the large idempotent re-
gions and the reduced live register state at region bound-
aries on GPU architectures. Our work also demonstrates
how idempotence provides a unified mechanism for specu-
lation and exception support.

Context switch overheads. Others have developed tech-
niques to reduce context switch overheads but have failed to
synergistically exploit the property of idempotence. Snyder
et al. describe a compiler technique where each instruction
is accompanied by a bit that indicates whether that instruc-
tion is a “fast context switch point” [37]. Zhou and Petrov
also demonstrate how to pick low-overhead context switch
points where there are few live registers [43]. Although both
approaches work well for servicing external interrupts, nei-
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ther approach can be used to service exception conditions
associated with a specific instruction such as page faults.

Saulsbury and Rice propose compiler annotations to
mark whether registers are live or dead [34], and the the
IBM System/370 vector facility similarly maintains “in-
use” and “changed” bits for vector registers to avoid unnec-
essary saves and restores on a context switch [28]. While
these two approaches can be used to reduce switching over-
heads for page faults, the swapped state must still be se-
quentially precise with respect to the faulting instruction.
Idempotence allows us to side-step this requirement.

Classical recovery approaches. For general-purpose
processors, Smith and Pleszkun describe the re-order buffer,
history buffer, and future file approaches for achieving pre-
cise exceptions [36]. They also discuss the complications of
precise exception support in vector processing, and suggest
duplicated vector register state to achieve it. They argue that
such duplicated state is preferable to the performance com-
plications arising from instead buffering completed results.
For a processor implementing short-width SIMD process-
ing capability, duplicated register state may be practical, but
for a GPU it is not.

Other classical approaches to exception support include
the use of a unified register file structure to hold specula-
tive state alongside register renaming hardware [25, 38].
This approach has been proposed for vector processors as
well [13, 14, 21]. However, compared to general-purpose
processors, the benefits to vector processors are less clear
as out-of-order execution (a side benefit of register renam-
ing) is typically not necessary to achieve high performance.
Hence, the additional hardware complexity, additional reg-
ister pressure, and resulting performance loss only to sup-
port precise exceptions are hard to justify for GPUs.

Finally, “imprecise” exception support mechanisms that
involve snapshotting some amount of microarchitectural
state have also been proposed. These include the “length
counter” technique of the IBM System/370 [28], the “invisi-
ble exchange package” of the CDC STAR-100 [36], the “in-
struction window” approach of Torng and Day [39], and the
“replay buffer” approach of Rudd [33]. While these mecha-
nisms provide full exception support, they expose microar-
chitectural details and are likely too complex for GPUs.

In closing, while no prior work has shown an effective
means to bring exception support to GPUs, the need has
definitely been recognized. In particular, id Software has
demonstrated a need to support multi-gigabyte textures
larger than can be resident on GPU physical memory, and
develop a technique called virtual texturing to stream tex-
ture pages from disk [20]. Unfortunately, the technique re-
quires careful scheduling effort on the part of the program-
mer. GPU virtual memory paging would simplify its im-
plementation and the implementation of similar techniques.
Gelado et al. recognize the GPU productivity issue and

explore asymmetric distributed shared memory (ADSM)
for heterogeneous computing architectures. ADSM allows
CPUs direct access to objects in GPU physical memory but
not vice-versa [15]. This improves programmability at low
hardware cost, but falls short of supporting a complete vir-
tual memory abstraction on the GPU.

7 Conclusion
Exception support and speculative execution are crucial

next steps in the evolution of the GPU as a general-purpose
computing platform. Unfortunately, traditional CPU mech-
anisms to support exceptions and speculative execution are
intrusive to GPU hardware design. In this paper, we pro-
posed the iGPU architecture and supporting mechanisms
to enable precise exceptions and speculative execution in
a simple manner, with very low overhead, and with effi-
cient context switching. Our technique requires only mod-
est compiler, ISA, and hardware modifications and can be
fully automated underneath the traditional software stack
of the GPU and its dynamic compilation environment. It
leverages the property that GPU kernel programs in partic-
ular have large regions of code that are idempotent, and that
these large idempotent regions can be constructed to con-
tain very little live register state at their entry point. The
property of idempotence is used to enable straightforward
exception and speculation recovery, while the minimal live
state provides straightforward low-overhead context swap-
ping support. Our results demonstrate that the iGPU archi-
tecture provides virtual memory support with less than 4%
overhead, and that circuit-speculation techniques can addi-
tionally provide up to 30% energy benefits.

Given recent trends—with NVIDIA’s Fermi architecture
and, more recently, AMD’s Fusion architecture both pro-
viding a unified GPU address space abstraction—GPUs are
on the cusp of implementing full virtual memory support.
The iGPU architecture provides an efficient way for demand
paged virtual memory in GPUs by providing both exception
and fast context switch support. With this exception sup-
port, GPUs could moreover support arithmetic exceptions,
debugger breakpoints, and other general exception condi-
tions as well. Additionally, by providing short code regions
that provide fast recovery, idempotence becomes a general
mechanism for speculation recovery. In addition to the use
cases we showed, this speculation support can allow GPUs
to expand the application domains they can target and pro-
vide a means to recover from a variety of hardware relia-
bility problems. Hence, the iGPU architecture is a com-
pelling platform for the continued evolution of the GPU as
a general-purpose computing device.
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