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Abstract—Reliability is emerging as an important constraint
for future microprocessors. Cooperative hardware and software
approaches for error tolerance can solve this hardware relia-
bility challenge. Cross-layer fault tolerance frameworks expose
hardware failures to upper-layers, like the compiler, to help
correct faults. Such cooperative approaches require less hardware
complexity than masking all faults at the hardware level and are
generally more energy efficient.

This paper provides a detailed design and an implementation
study of cross-layer fault tolerance for supercomputing. Since
supercomputers necessarily involve large component counts, they
have more frequent failures than consumer electronics and
small systems. Conventionally, these systems use redundancy and
checkpointing to achieve reliable computing. However, redun-
dancy increases acquisition as well as recurring energy costs.
This paper describes a simple language-level mechanism coupled
with complementary compilation and lightweight hardware error
detection that provides efficient reliability and cross-layer fault-
tolerance for supercomputers. Our evaluation focuses on strong
scaling problems for which we can trade computing power
for redundancy. Our results show a range of 1.07x to 2.5x
speedup when employing cross-layer error-tolerance compared to
conventional full dual modular redundancy (DMR) to contain all
errors within hardware. Further, we demonstrate the approach
can sustain 7% to 50% lower energy. The most important result
of this work is qualitative: we can use a simplified hardware
design with relaxed architectural correctness guarantees.

I. INTRODUCTION

Manufacturing and process scaling are providing significant
challenges in producing reliable transistors for future technolo-
gies. Many academic experts, industry consortia and research
panels have warned that future generations of silicon technol-
ogy are likely to be significantly less reliable [56]. A recent
exascale study [6] and the Computing Community Consortium
Visioning Study [1] conclude that handling reliability will
probably become a first-order constraint.

Currently, the prevalent approach to deal with reliability in
high performance computing (HPC) is software-based check-
pointing and roll-back recovery, as shown in Figure 1(a),
which addresses the massive but distributed parallel execution
and communication in HPC applications. Entering the exascale
era, this conventional system-level fault tolerance in HPC
systems faces significant challenges. Massive system scales
will lead to sharp drops in system availability even if nodes
are highly reliable. For example, when using double-bit ECC
memory, which has a mean time to failure of 170 years, a
100,000 memory-module system has a mean time to failure

(MTTF) of 20 hours [13]. Managing such frequent failures
in software only with system-level or application-level coarse
granularity checkpoints incurs high overhead.

DMR-based systems: Borrowing from the literature and tech-
niques on high-availability systems that preserve the soft-
ware’s abstraction of perfect hardware, dual-modular redun-
dancy (DMR) provides a viable solution. For example, the
HP NonStop Advanced Architecture uses redundant hardware
components to build the system [7]. This solution addresses
the availability problem and is widely used in domains like
database systems. Figure 1(b) shows an example system that
uses dual modular redundancy with hardware checkpoints.
Basically, every thread in the system is accompanied by
a shadow thread that runs on a different core. These two
cores are considered one node, and the shadow core is not
exposed to the system. Before the state is committed, the
hardware comparator checks if a fault has occurred, and
restarts from a hardware checkpoint if needed. An additional
hardware datapath is employed for fast comparison of results
and checkpointing of stateful hardware structures. This system
resolves failures before the software is exposed to them. The
DMR based system has nearly perfect coverage of failures,
and maintains high availability for each node in the system.

Other novel approaches: To overcome DMR overheads, many
have considered hardware fault detection [30], [35], [38],
[43], [52] and recovery [3], [11], [41], [53]. Researchers have
also explored architectural pruning [36] and timing specula-
tion [15], [20], [21] to mitigate chip design and manufacturing
constraints. We cannot directly apply these techniques in the
context of HPC systems for three reasons: i) The massive
number of nodes; ii) The significant modifications to the pro-
cessor that these hardware-based techniques require; and iii)
The lack of 100% coverage. The modifications are inconsistent
with the trend towards hardware simplification to increase
energy efficiency [4], [23] while Nomura et al. [40] show these
techniques trade-off fault coverage for overhead, or only apply
to single stuck-at-faults, and that practical use requires 100%
coverage. Thus, we are left with DMR as the only solution
if we want to maintain the perfect hardware abstraction for
software. Wells et al. in their mixed mode multicore [60] and
LaFrieda et al. [27] make a similar case and describe example
systems. Hence, we use DMR as our baseline of comparison.
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Fig. 1. Fault Tolerance in HPC

Cross-layer: To avoid DMR overheads, we require a cross-
layer approach that flexibly provides reliable hardware only
when necessary and efficient forms of detection and recovery,
breaking the perfect hardware paradigm. Examples include:
i) language-exposed techniques – EnerJ [48], Flicker [32],
Relax [12], M [55], Containment-Domains [57], and Horning’s
pioneering work [24]; ii) compiler transformations – code-
perforation [2], Onward [45], and Green [5]; and iii) architec-
tures – Relax [12], Truffle [16], stochastic processing stochas-
tic, Encore [19], Shoestring [18], and software-based error
correction codes [50]. Thus far, these techniques have not been
studied in the context of HPC or investigated in the context
that the final application is not “naturally” error-tolerant.

Cross-Layer Fault-Tolerance in HPC: In this paper, we evalu-
ate a cross-layer fault tolerance approach for HPC systems
to understand the tradeoffs. We use Relax, which allows
programmers to identify code regions that can tolerate low-
reliability explicitly and uses a simple extension to propagate
hardware error information to software. It detects failures in
hardware, but tolerates faults in software. Thus, it provides the
view of perfect hardware, while allowing an implementation
that uses inexpensive, low overhead hardware combined with
modest programmer effort. Further, recurring energy costs like
running redundant copies to handle reliability can also be
curtailed. Relax has conceptual similarities to other cross-layer
frameworks so our results should hold for them also.

Specifically, Relax provides a novel tradeoff in terms of
hardware costs and application execution time with a cross-
layer approach. We analyze four supercomputing applications
across a diverse parameter space in regions that cover between
40% to 90% of the application’s execution time. Using a novel
fault-injection methodology, we run these applications on real
problem sizes on a real HPC system. Quantitatively, we show
that the saving of hardware resources by employing Relax
provides 1.07x to 2.5x improvement in performance or 7% to
50% energy reduction compared to DMR.

The main contributions of this paper are the following:
• The first end-to-end study of cross-layer fault-tolerance

in a supercomputing deployment;
• Identification of key differences between supercomputing

and emerging applications for reliability management;
• A demonstration of explicit reliability management to re-

duce supercomputing hardware correctness requirements;
• An evaluation of how to apply the Relax language-level

constructs to HPC benchmarks;
• A quantification of the execution time, energy, and capital

cost benefits of Relax in a real supercomputer.
The remainder of this paper is organized as follows. Sec-

tion II shows the basic insights of exposing hardware faults to
applications and background on Relax. Section III describes
our Relaxed HPC system architecture and discusses design
tradeoffs and implications. Sections IV and V describe our
experimental methodology and quantitative results.

II. RELAX BACKGROUND

We briefly describe the background and software interface
of the previously proposed Relax framework [12]. As men-
tioned before other cross-layer frameworks, such as EnerJ,
Flicker, and M, have similar semantics.

In the Relax architectural framework, relax “blocks” mark
software regions (in source code) that are allowed to expe-
rience a hardware fault, and optional recover blocks specify
recovery code to execute if a fault occurs. Code Listing 1
shows a C function that returns the sum of absolute differences
over the array inputs left and right. We explain two
simple software-level recovery use cases based on this code
that is adapted from the x264 video encoding application.

Many large-scale scientific applications employ similar re-
duction computations throughout their execution as in our
x264 example. x264 uses a two-dimensional version of this
function to search for a predicted frame macroblock’s most
similar reference frame macroblock. The function measures
similarity by performing a pixel by pixel comparison over



Code Listing 1 The sum of absolute differences code exam-
ple that is the basis for all use cases.

int sad(int *left, int *right, int len) {
int sum = 0;
for (int i = 0; i < len; ++i)
sum += abs(left[i] - right[i]);

return sum;
}
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int sad(int *left, int *right, int len) {
relax (rate) {
int sum = 0;
for (int i = 0; i < len; ++i)

sum += abs(left[i] - right[i]);
} recover { retry; }
return sum;

}

Use Case 1 (CORE)
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int sad(int *left, int *right, int len) {
int sum = 0;
for (int i = 0; i < len; ++i)

relax (rate) {
sum += abs(left[i] - right[i]);

} recover { retry; }
return sum;

}

Use Case 2 (FIRE)

TABLE I
OUR USE CASES CLASSIFIED BY GRANULARITY AND RECOVERY

BEHAVIOR.

two macroblocks. A high similarity presents redundancy that
we can exploit to minimize the amount of information en-
coded. The overall process, motion estimation, supports higher
data compression rates. We consider two recovery behaviors:
coarse-grained (CORE) and fine-grained (FIRE) retry; we omit
the discard behavior [12] since many scientific applications
cannot use it. Table I illustrates the resulting taxonomy.

Use Case 1: Coarse-Grained Retry (CORE) We can implement
coarse-grained retry (CORE) through relax and recover blocks
as in the top half of Table I. We wrap all code except the return
statement in a relax block. We protect code susceptible to
failure by a relax block, where a hardware fault detected inside
the block constitutes failure. The variable rate specifies a
relax block’s probability of failure. If a failure occurs, control
transfers to the recover block, which in this case contains a
retry statement that leads to re-execution of the relax block.

The necessary insight for CORE is that the function in
Code Listing 1 has no memory side-effects and thus has
no state, beyond its input state, that we must recover if
a failure occurs inside the function. If one does, we can
simply jump back to the beginning of the function, with the
guarantee that the code has not clobbered the input registers.
The compiler transparently enforces this guarantee whenever
such a control path exists, thereby effectively implementing
a software checkpoint. However, the checkpoint is extremely
lightweight: the compiler only saves strictly required state.

Use Case 2: Fine-Grained Retry (FIRE) An alternative to
CORE is to retry at a finer granularity to minimize the amount
of wasted work on failure. We can simply move the relax block
into the loop to minimize the wasted work as in the bottom
half of Table I. We make each iteration a relax block in this
case. Since the block’s last instruction is the accumulation
into sum, we can immediately overwrite the old value of sum
when the block terminates and, thus, require no state saving.

III. RELAXING HIGH PERFORMANCE COMPUTING

First we provide the intuition of why one can employ
the Relax framework to improve the hardware-based fault
tolerance in an HPC system. We then describe our Relax-HPC
system and detail its architectural and programming benefits.
This section concludes with a broad discussion of relaxed HPC
systems and related design questions.

A. Intuition and Insight

For a strong scaling problem, the hardware-based approach
trades execution time for redundant hardware to provide fault
tolerance. Acquisition costs in terms of number of cores
required and recurring costs in terms of energy are two
straightforward metrics. We explore the emerging space of
the potential benefits of a cross-layer approach, Relax. In gen-
eral, the Relax framework can provide similar fault tolerance
while trading acquisition and energy costs for application re-
execution. The Relax framework relies on the programmer’s
wisdom to create Relax blocks that protect application regions.
In these regions, the hardware does not need to provide
any protection. Crossing the application layer, Relax reduces
processor design complexity significantly since designers do
not have to guarantee architectural correctness in relax blocks.

B. Relax-HPC System Architecture

Figure 2 shows a Relax-HPC system. With applications that
use relax blocks, the hardware does not require DMR’s archi-
tecturally correct execution guarantees. Instead the hardware
only must guarantee that faults are detected if they occur and
that execution past a relax region does not proceed until the
absence of faults is confirmed. Thus, a lightweight technique
to detect faults is sufficient. Depending on the fault model, we
can use several underlying detection techniques. For example,
we can detect hardware timing faults or intermittent faults with
canary circuits [10], timing detectors [58], or the Razor flip-
flop [15], and transient faults with the BISER latch [37]. The
exact detection technique is unimportant; we only assume that
it has low overhead. The key point is that recovery comes
through software re-execution with no hardware effort. While
we use the Relax framework, because of this decoupling, our
results apply to other approaches like Truffle/EnerJ [16], [48].

C. Architecture and Benefits

Compared to our DMR baseline, the main area and energy
savings come from requiring fewer execution resources. If
we consider strong scaling of HPC applications then we use
the additional resources to solve the problem faster while, if
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Fig. 2. Relax in HPC

we consider weak scaling, then we can solve larger problem
sizes. In this work’s evaluation, we focus on strong scaling
and examine the reduced execution time from more available
cores, and the improvement in energy that comes from Re-
lax+software recovery compared to DMR execution.

D. Programming for a Relax-HPC System

Relax’s language-level constructs are intuitive and its com-
pilation framework generates code that can automatically
recover from a fault. Other frameworks like Flicker [32] and
EnerJ [48] also are designed to be intuitive and easy to use.

We extend the Relax framework to handle interprocess
communication, which is implemented through MPI for all
applications that we consider. To simplify this study, we
carefully construct all relax regions so that no MPI operations
are active during them. This choice indirectly models the error
propagation, but effectively assumes faults never occur within
MPI calls. We essentially assume that some other mechanism,
such as FT-MPI [17], ensures fault tolerant MPI activity.

We leave automating the process of determining relax re-
gions as future work. The key challenge is to transfer program
control at the end of a region to some valid point from which
re-execution will produce the correct result if a fault occurs.
For now, we determine this point in a two-step process. First,
we use conventional performance profiling to determine hot
code regions. Second, we convert a subset of those regions into
relax blocks. Typically, this process is straightforward, and we
can easily relax applications with which we are unfamiliar.

E. Applications

Prior work has explicitly applied Relax to naturally error-
tolerant applications. While HPC applications have similari-
ties, they also exhibit important differences.

Similarities to naturally error tolerant applications: Error
tolerance is a useful property. However, non-error tolerant in-
structions are typically interspersed with error-tolerant compu-
tation instructions, which complicates exploiting them. Relax

leverages the ability to recover by discarding or re-executing
groups of instructions at a coarse granularity. We find that
this property holds for HPC applications, which are compute-
dominated, similarly to emerging applications.

Differences: We identify fundamental differences with respect
to the Relax language construct between HPC applications and
naturally error tolerant ones. First, the scale of parallelism in
these applications is large. In the PARSEC suite, which is
a representative benchmark suite for emerging applications,
typically 15% to 25% of the application is serial [8], [9].
HPC applications have much smaller serial phases. Second,
communication between tasks introduces error propagation
between cores and processes, which complicates the fault
recovery approach of reexecution within a process.

Showing that HPC applications do not require strict
instruction-granularity correctness is one of the important
contributions of this work.

F. Discussion

In this section, we discuss some natural questions that arise
for this unconventional system.

How to handle non-relaxed code regions? As described above
and quantified in Section V, our relax regions do not cover
some (small) application code regions. For these parts, the
hardware must guarantee architecturally correct execution.
We assume an execution model that is similar to the mixed
mode multicore [60] and DCC [27] approaches: the hardware
explicitly enters and leaves DMR mode. Alternatively, we can
use any of the following software-based approaches. Software
instruction-level DMR for these “critical” regions as developed
by Reis et al. can detect errors at load, store, and control
flow boundaries [42]. Depending on the need for recovery,
instruction-level TMR can add a third copy of each non-
memory instruction and uses majority voting before load and
store instructions to detect and to correct failures [11]. If
applied in the context of the Truffle/EnerJ [16], [48], the non-



relaxed code would always execute in the precise pipeline.
We leave the application of relax regions within an MPI
implementation for future work.

What about spontaneous bit-flips in memory or processor con-
trol signals? Any cross-layer technique must make assump-
tions about the faults that can occur. In our Relax-HPC system,
we assume the core has ECC for storage and “hardened” logic
for control-flow instructions thus making program control-flow
always correct. Thus we assume the Locally Corruptible Error
model [54], as do Encore [19], Shoestring [18], stochastic
processing [49], and architectural and language approaches for
approximate/precise computing [16], [48].

If you have fault-detection, why not immediately retry? Our
Relax-HPC system intentionally decouples fault detection
from fault recovery to model various possible recovery sce-
narios. This model has been assumed in various systems in-
cluding Relax [12], Encore [19], and ShoeString [18]. Further,
“immediate retry” in the processor may require the addition
of checkpoints, buffering structures and staging for temporary
results during detection. By decoupling, we assume a more
relaxed model that allows incorrect results to be written. With
algorithmic detection techniques [51], we have no natural
instruction-precise “immediate” retry so we must identify a
well defined point. Also, this decoupling allows our results to
consider techniques like Truffle [16], which steers instructions
into low-energy approximate or high-energy precise pipelines.
If applied to this model, all instructions in a relax block
would execute in the approximate pipeline. Finally, by creating
large blocks of code annotated with a fault-rate that they can
tolerate, we avoid re-execution for many instructions, whereas
immediate retry would re-execute each.

What if fault-detection is not 100%? Improved fault detection
techniques are an active area of research that is orthogonal to
our work. For this work we assume fault-detection is 100%,
which is reasonable in many situations. For permanent faults
and single stuck-at faults, techniques like Sampling-DMR
provide this guarantee. For transient faults, 100% detection
is possible for storage under certain fault assumptions (like
single-bit flip) by using ECC. For logic faults, fault detection
merely reduces FIT rates (Argus [34], or BISER [37] latch).

Why compare to DMR? As outlined in the introduction,
today’s HPC systems do not use DMR. However, given fault-
rates and projections for the scale of future HPC systems,
current approaches cannot sustain the required MTTF. Among
the approaches that do not expose hardware faults/errors to
applications, DMR is the only candidate that can handle future
project fault rates. Hence we pick DMR as the baseline,
similarly to evaluations of other researchers [27], [60].

How does this approach relate to checkpoint/restart?
Application-level checkpoint/restart will remain necessary in
future HPC systems to handle catastrophic failures that impact
multiple nodes. The frequency of checkpointing depends on
the failure probabilities. Without techniques to reduce the pro-

jected failure probabilities of individual nodes, checkpointing
frequency will imply prohibitive costs. Our Relax-HPC system
effectively reduces the failure probability of individual nodes,
thus reducing the required checkpoint frequency.

Novelty compared to prior work? No previous cross-layer
tolerance study has examined HPC workloads that require
strict correctness guarantees. Further, all prior work have been
simulation studies that do not employ real supercomputers.
Our demonstration that HPC workloads tolerate retry and
discard behavior is an important result. Further, our evaluation
shows how cross-layer fault tolerance can produce better
energy efficiency and support larger problem sizes, thus quan-
tifying its execution time, energy, and capital cost benefits on
a real supercomputer. Our work analyzes three real workloads
on a real supercomputer deployed at LLNL.

IV. METHODOLOGY

A. Overview
To evaluate the cross-layer fault tolerance approach, we

compare Relax recovery using lightweight fault detection with
checkpoint recovery using dual modular redundancy at the
core level. This baseline configuration represents a typical
approach for fast fault recovery with moderate architecture
modification. In contrast, the Relax hardware is simplified,
but requires programmers to define the application behavior
for when a fault happens.

In this study, we use Relax’s retry recovery behavior to
recover the faulty execution. This re-execution results in longer
execution times. However, compared to the baseline processor,
more cores are available for use by the application. If the
speedup from the extra cores exceeds the slow down from
re-execution, overall performance improves.

In this paper, we use a novel fault injection approach to
study a future faulty supercomputer system using today’s “per-
fect” hardware. We use a compiler-based instruction-level fault
injection tool to create binaries that emulate faulty behavior,
yet can be executed on actual hardware. We extend this LLVM
based infrastructure [12] for our supercomputing cluster. We
call instrumented binaries relaxed binaries to be compared
with original unmodified binaries. Both are x86 binaries, with
the only difference being that one is instrumented to emulate
fault behavior. We use a simple and conservative model
that weights execution time to reflect that only part of the
application is relaxed even in the relaxed binary because relax
regions do not cover 100% of the application. For this study,
we use the LLNL Hyperion cluster as our supercomputing
environment and perform studies on 128 to 1024 cores.

Fig. 3 shows the complete experimental flow. In the remain-
der of this section, we show how we choose our experimental
benchmarks and input sets. We then discuss the LLVM-based
fault injection tool and our evaluation platform and metrics.

B. Benchmarks and Experiments
We focus on application with strong scaling workloads

instead of MPI performance testing benchmarks such as In-
tel’s MPI benchmarks, since we are concerned with overall
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system performance. The LLVM instrumentation tool, which
only supports C/C++ benchmarks also limits our benchmark
selections. To show representative results, the benchmarks
should scale to 1,000 cores or more. In all, we choose
AMG (in which we use two different solvers) and IRS from
the Sequoia benchmark suite [28], and IS from the NPB
benchmark suite [39]. We fix problem sizes regardless of
configuration and scale the number of MPI processes to
show the performance improvement with scaling in reasonable
simulation time. For each benchmark, we experiment using
two different configurations, which are as follows:
• Sequoia AMG: PCG and GMRES Solvers (pre-

conditioner conjugate gradient solver and generalized
minimal residual solver): 250 × 250 × 250 grid points
and 500× 500× 500 grid points.

• Sequoia IRS: 5×5×5 domains and 10×10×10 domains.
• NPB IS : problem set C and problem set D.

To characterize our results, we compare to uninstrumented
fault-free executions to determine overhead and explore
speedup relative to the baseline processor. We also use mpiP
profiling [59] to examine the trend of time spent in MPI when
scaling the number of cores to provide additional insight into
scalability of the different options. These profiles reflect the
trend of the communication to computation ratio when scaling.

C. LLVM Compiler Instrumentation

To inject faults into our benchmarks, we use a modified
version of an existing LLVM instrumentation tool [12]. At
compile time, it instruments every LLVM instruction to inject
faults at runtime. During runtime, the instrumented code reads
a pre-defined failure rate file that specifies the probability of
hardware failures across all microprocessor chips in the cluster.

Whenever a fault occurs, execution jumps to the
programmer-defined recovery region, which initiates the retry
behavior. We use fine-grained retry behavior for all bench-
marks, where the largest Relax block contains less then 400
LLVM instructions (348 instructions in AMG). To find the
proper region for fault injection and recovery using Relax, we
use LLVM profiling to measure the most frequently executed
code regions. These code regions represent the computing
phase in the supercomputing applications. We measure the
overheads of instrumentation by comparing the execution
time of instrumented binary (i.e., the relaxed binary) to the

Benchmark AMG_PCG AMG_GMRES IRS IS
Coverage 55.14% 42.47% 52.84% 81.43%
Frequent matrix matrix matrix key

region multiply multiply multiply sort
# of lines ≈ 10 in ≈ 10 in ≈ 5 in ≈ 10 in
changed 1 region 1 region 1 region 2 regions

TABLE II
PERCENTAGE OF DYNAMIC INSTRUCTION COVERAGE

reference binary. Across the different benchmarks our LLVM
tool adds runtime overheads in the range of 3.4× to 6.2×.
This instrumentation overhead does not affect our execution
time measurements with fault-free runs or the accuracy of
our speedup results. The issue of instrumentation overhead
affecting our measurements only arises when communication
and computation overlap. Our work does not instrument the
MPI calls (because we did not recompile the MPI library).
Thus the overhead does not affect our measurements.

D. Evaluation Platform and Metrics

In this study, we ran experiments on the LLNL Hyperion
cluster, on which each node has a 2-socket Harpertown quad-
core Xeon 2.66GHz with 8GB DRAM and nodes are con-
nected by QDR Infiniband. We map one MPI process to one
physical core. The cluster uses the SLURM resource manager,
and we use Open MPI 1.4 with IB support to run the bench-
marks. We use execution time to measure system performance,
since it is the most crucial metric when considering solving
real problems on supercomputers. To measure execution time
of a Relax HPC cluster, we run the relaxed binary and measure
its execution time. To measure execution time of an application
on our baseline system, DMR HPC cluster, we run the relaxed
binary on our Hyperion cluster but assume no fault injection
(since DMR will mask all faults). Compared to the Relax HPC
cluster, we provide half the number of nodes, to account for
DMR execution. In our results we compare execution time
between Relax and the baseline and application speedup when
the number of cores changes.

V. EVALUATION

In this section, we first discuss how we determine where to
place the Relax block regions in supercomputing applications.
Next, we show the overhead of Relax recovery in terms
of execution time compared to fault-free execution and the
improvement compared to DMR execution when employing
Relax. Finally, we show the impact of scaling on the execu-
tion time under different fault rates, and discuss the energy
implications of Relax in supercomputing.

A. Relax Region

The Relax framework supports programmer-defined fault
recovery behavior. We use LLVM profiling to capture the most
frequently executed code regions, which guides selection of
relax regions. Table II shows the results for our benchmarks.
Rows 1-3 show the benchmark name, the percentage of
dynamic instructions covered by the Relax code regions, and
the name of the most frequently executed code region.
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As expected, we observe that these regions constitute
the computation phase of the applications. The cost of re-
execution is quite small due to the fine granularity. Fine-grain
retry provides substantial coverage: among all benchmarks, we
cover more than 40% of dynamic instructions. The coverage
is dependent on the regularity of the computation pattern
in the application. For example, the NAS IS benchmark
has the simplest kernel and thus the most coverage, with
mainly only the instructions of MPI calls not covered in the
instrumentation. Using Relax, cross-layer fault-tolerance can
be achieved at a coarser granularity than fine-grained regions.
However, when covering large code regions the re-execution
cost may be prohibitive in terms of execution time.

B. Overhead of Re-execution

Recovery using re-execution with Relax trades execution
time for hardware efficiency. We compare the fault-free execu-
tion of the relax binary to its execution time with varying fault
rates, all running on the same number of nodes to evaluate the
overhead of re-execution. Figure 4 shows this execution time
comparison for a 256 node system in terms of different system
failure rates for the of entire HPC cluster. The execution time
overhead varies from 8% to 16% for a failure rate of 10−6.
IRS and IS can tolerate the extremely high failure rate of 10−3.
In contrast, with such a high failure rate AMG cannot finish
within one week, so we omit those runs from the graph. This
behavior is related to the size of the implemented relax region.
As mentioned in section IV, AMG has the largest number of
instructions in one region. In terms of dynamic instruction
count, these regions account for thousands of instructions.

The cost of recovery increases with high failure rates. At
10−3 or 10−6 failure rate, the cost of coarse-grain recovery
methods such as system-level checkpointing is prohibitive
because of the total data volume of checkpoints. Cross-
layer fault tolerance would be beneficial when the hardware
efficiency gains can overcome the overhead of re-execution. In
the next section, we discuss the benefit of the Relax framework
by comparing it with the baseline system, which uses dual
modular redundancy to achieve fault-free execution.

C. Benefit of Hardware Efficiency

The baseline processor uses checkpointing with DMR to
provide the illusion of fault-free execution. Removing this
redundancy provides additional computation resources, which
can be used by the application. Figure 5 shows the im-
provement of execution time when considering a 256 node
Relax HPC system to the baseline DMR HPC system, which

effectively has 128 compute nodes in this case. The bars show
the speedup measured as a percentage.

In general, the Relax system becomes faster by providing
more nodes for strong scaling. This gain occurs despite the
additional overhead of re-execution. We observe 27% to 81%
improvement in execution time for system fault rates of
10−6. Intuitively, the improvement increases as the fault rate
decreases. Thus, we treat the result at a high fault rate of 10−6

as a lower bound benefit of the Relax framework.

D. Scalability Study

Figures 6 and 7 show the number of cores (x-axis) versus
the execution time (y-axis) for each benchmark at two different
problem sizes. Execution time at different failure rates is
shown using different markers. The gap between the baseline
and Relax execution time represents the potential speed up at a
given number of cores. We show an estimation of lower-bound
execution time as RelaxL in the figure, which represents the
execution time reduction that could be achieved if the entire
application was converted into relax regions.

For small problem sizes (Figure 6), the execution time
improves significantly with increasing core count. For large
problem sizes (Figure 7), the difference of execution time is
smaller at a given scale (256 to 1,024 nodes). The effect of a
changing failure rate also decreases. As with the small problem
sizes, the benchmarks tend to execute faster when using more
cores. However, the IRS and IS benchmarks have irregular
behavior at 729 and 1,024 nodes, respectively. For IRS, the
algorithm is not optimized for strong scaling experiments, and
it uses MPI process ranks to map problem domains to cores.
For IS, the overhead of MPI communication becomes too high
when using 1,024 cores.

The RelaxL configuration shows that the lower-bound ex-
ecution time of Relax, which can be achieved with more
programmer effort, is about a factor of 2 less than the baseline
DMR system. Figure 8 shows this best possible speedup across
different node sizes. We compare the RelaxL system with
various fault-rates to our DMR baseline (assuming no faults)
to get an estimate for best case speed up. The benefit from
adopting the Relax framework increases as the size of the
system increases, except for two anomalies in IRS and IS.
The speedup curve is superlinear because the working set is
too large at small system scales. In addition, the worst speedup
happens when failure rate is high and the system consists of
a small number of cores.

Finally, we quantitatively characterize the strong scaling
properties of the benchmarks. Figure 9 shows the MPI portion
of the execution time when increasing the core count. A
strong scaling problem should grow slowly in MPI percentage
and keep the communication to computation ratio small. For
example, the percent in MPI of AMG only increases by about
1% of total execution time when doubling the cores (increases
from 9% to 12% when scaled from 128 to 1,024 nodes). In
contrast, IS uses a predetermined problem size and all to all
data redistribution. Thus the communication overhead is large
(48% to 88%). IRS is not optimized for strong scaling, and
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the percent in MPI increases by about 10% of total execution
time when scaling the number of cores (17% to 62%).

E. Implications on Energy

To evaluate the power and energy benefit of the cross-
layer approach, we use a simple analytical model to calculate
the energy improvement. First, the power consumption of a
supercomputer can be divided into three parts: the power of the
microprocessor chip Pprocessor, the power of off chip memory

Pmemory , and the power of I/O, routers and other components
in the system Psystem. The total power of the Relax system
can be represented as:

PRelax = Pprocessor + Pmemory + Psystem

A typical power breakdown is 0.56, 0.33, and 0.11 for each
part of the system [6]. With dual modular redundancy, the
processor uses doubled cores, and each pair of cores shares
part of the on chip resources (e.g., caches). We model the
power of the DMR system as:

PDMR = Pprocessor ∗ (1 + fDMR) + Pmemory + Psystem

where fDMR is the fraction of power consumed by a redun-
dant DMR core compared to a full-function core. In Figure 10,
we show the energy improvement of the Relax framework at
different DMR power consumption fractions using:

Ereduction = 1− PRelax ×Relax execution time

PDMR ×DMR execution time

Here, the execution time is the geometric mean of the bench-
marks under a failure rate of 10−6. We use the McPAT [31]
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modeling tool to estimate fDMR for DMR pairs that share
L1 and L2 caches. As labeled, fDMR is 0.86 for Intel Xeon
clusters, and the energy improvement is around 25%. Overall,
the improvement in energy using the Relax framework is up
to 30%. When considering the best case energy improvement
for a completely relaxed application (RelaxL), we see energy
improvement varies from 30% to about 50%.

VI. RELATED WORK

In this section, we discuss the related work in fault tolerance
for commodity hardware and supercomputing systems. Related
cross-layers work was discussed in Section I.

Hardware/software layer: The SWAT system uses hardware
and software cooperation to detect hardware failures and
to recover faults using hardware checkpoints [30], [47]. It
uses symptom detection and checking for invariants to detect
faults. To guarantee 100% detection, Relax uses hardware fault
detection. If the invariants provide high quality fault coverage,
we could use this hardware and software cooperation, which
complements our approach, to lower processor complexity
even further. Relax recovery techniques require no hardware
cost and provide a scalable recovery solution, as our results
demonstrate. The scalability of pure hardware checkpointing
in supercomputers is an open question.

The Merrimac Streaming Supercomputer [14] uses
hardware-software co-design to provide fault tolerance. The
authors evaluate software-based fault detection (full-program
re-execution, instruction replication, and kernel re-execution)
for a supercomputer stream unit. Like SWAT, Merrimac uses
hardware checkpointing to restart the computation. In contrast
to these mandatory checkpointing frameworks, Relax allows
the programmer to define the state required for re-execution.
Thus, we can limit saved state to exactly that necessary for
re-execution, which the compiler saves automatically, often
through register allocation strategies.

Rinard addresses the problem of checkpointing overhead
by providing discard behavior at the task level [44]. However
this capability requires an explicit definition of the level of
correctness required from the program. Its applicability to su-
percomputing requires further investigation. The Jade language
addresses this problem by partitioning parallel applications
into tasks and discarding full tasks when a hardware failure
occurs [46]. The detection and recovery of this framework
happens in language/compiler/software layers. Relax is less

expansive in scope and as a result is just a simple language
extension so it is easier to adopt. Further, it provides freedom
to the program to select relax regions of any granularity. We
acknowledge that Relax requires programmer effort since it is
an application-based fault-recovery technique.

System layer: Self-aware HPC clusters migrate the execution
between nodes to provide adaptive self-healing from fail-
ures [29]. Fault detection and recovery happens purely at the
system level with no application-level interaction and it has
been employed on a commodity Linux cluster.

The Coordinated Infrastructure for Fault Tolerant Systems
(CIFTS) [22] provides a framework to handle fault handling
and notification. It supports uniform fault handling regardless
of the fault source (hardware, operating system, middleware,
libraries or application). We currently assume relax constructs
only apply to hardware faults. While additional work remains
to determine how to react to faults arising in some sources,
we could implement the Relax language construct to obtain
fault notifications from a system layer fault-tolerance scheme
such as CIFTS to tolerate a wider range of faults.

Other: Algorithm-based fault tolerance (ABFT) in general
applies application-specific mechanisms for error detection
and correction [25]. Kienzle presents an overview of software
fault tolerance approaches [26]. Recently, Maruyama et al.
presented a mechanisms for software fault tolerance to perform
reliable computing with GPUs [33].

VII. CONCLUSION

Reliability is an important constraint for future systems and
consensus is emerging around cross-layer error tolerance for
supercomputing applications. This paper provides a detailed
quantitative study of one such cross-layer approach: explicit
code regions that can be relaxed from architectural correctness.
The hardware must only guarantee detection, and recovery
is achieved through simple re-execution. We showed in this
paper that this simple approach is easy for programmers to
use and highly effective. Up to 2x performance improvement
was possible for strong-scaling applications with 50% energy
reduction. The main implication of this work is that explicit
reliability management of applications in supercomputing is
tractable and provides tangible benefits. Pushing the reliability
limits further through techniques such as overclocking, reduc-
ing voltage, and near-threshold operation could provide further
benefits by trading reliability for energy efficiency.
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