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Abstract

Accelerators and specialization in various forms are
emerging as a way to increase processor performance. Ex-
amples include Navigo, Conservation-Cores, BERET, and
DySER. While each of these employ different primitives and
principles to achieve specialization, they share some com-
mon concerns with regards to implementation. Two of these
concerns are: how to integrate them with a commercial pro-
cessor and how to develop their compiler toolchain. This
paper undertakes an implementation study of one design
point: integration of DySER into OpenSPARC, a design we
call OpenSPlySER. We report on our implementation ex-
ercise and quantitative results, and conclude with a set of
our lessons learned. We demonstrate that DySER delivers
on its goal of providing a non-intrusive accelerator design.
OpenSPlySERruns on an Virtex-5 FPGA, boots unmodified
Linux, and runs most of the SPECINT benchmarks with our
compiler. Due to physical design constraints, speedups on
full benchmarks are modest for the FPGA prototype. On
targeted microbenchmarks, OpenSPlySER delivers up to a
31-fold speedup over the baseline OpenSPARC. We con-
clude with some lessons learned from this somewhat unique
exercise of significantly modifying a commercial processor.
To the best of our knowledge, this work is one of the most
ambitious extensions of OpenSPARC.

1 Introduction
Accelerators and specialization techniques are emerg-

ing as an important means to increase processor perfor-
mance [10, 8, 4, 11, 18, 7, 9]. The primary motivation is
to remove the overheads of general purpose processing and
thus improve energy and power efficiency. These various
specialization efforts, which tightly integrate with a pro-
cessor’s pipeline, vary significantly in their primary design
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primitives. However, they all share complexities in both in-
tegrating with a general purpose processor and in their uti-
lization, either from the perspective of a compiler/runtime
system or programmers themselves. No study has investi-
gated implementation details with regards to how well these
techniques port to a commercial design and what practical
issues can hamper their integration into a processor.

In this paper, we report on a study of one particular ac-
celerator design, namely DySER [7], integrated into the
OpenSPARC processor pipeline, which we call OpenSPl-
ySER. DySER is a stateless accelerator comprising an ar-
ray of heterogeneous functional units interconnected with
a switched network. A co-designed compiler offloads a
portion of the computation onto DySER’s dynamically spe-
cialized datapath. This paper reports on the OpenSPlySER
system, which consists of a compiler toolchain built using
LLVM [12] that produces SPECINT benchmarks and an
FPGA mapping of the design that boots Ubuntu 7.10 Linux
for SPARC and runs these benchmarks to completion. This
paper makes three broad contributions:

Implementation and prototyping description: First, we
elucidate the implementation details in prototyping with a
commercial processor. We present a design description for
integrating DySER into OpenSPARC, spanning issues in
ISA design, microarchitecture, RTL implementation, FPGA
prototyping, and compiler development. We discuss refine-
ments to the originally proposed DySER design to make
it implementable in a prototype, including a discussion on
why some of the novel mechanisms from the “original”
DySER design proved too difficult to implement (Section
3). We then discuss its interface to the OpenSPARC proces-
sor and the changes required in OpenSPARC for DySER
integration (Section 4), and the modifications to the com-
piler toolchain (Section 5) for FPGA prototyping (Section
6).
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Demonstration that DySER is non-intrusive: Second,
we demonstrate that the previously proposed DySER ar-
chitecture can indeed non-intrusively integrate with a com-
mercial processor. An FPGA prototype of OpenSPlySER
runs unmodified Ubuntu Linux 7.10, and runs most of
the SPECINT benchmarks compiled through our toolchain.
This complete software stack was successfully developed in
only 10 months with a 5-person team. The details of imple-
mentation and the demonstration that integration is possible
with a commercial processor is a significant and interesting
contribution. Further, the fact that integration was possible
without requiring a whole host of additional complexities
and enhancements to DySER is a significant positive result
adding to the previously proposed DySER work.

Lessons learned: Finally, we discuss our lessons learned
through the implementation and prototyping process.

Our work is subtly different from the many implemen-
tation studies in the past [17, 13, 16, 15, 6] and more re-
cent FabScalar [5]. Unlike those previous designs, Open-
SPlySER is not a from-scratch design. DySER was pro-
posed with the goal of non-intrusively integrating with ex-
isting processors and non-intrusively enabling programmers
to utilize it. Thus, it is unique in requiring “easy” integra-
tion with an existing processor, and hence must address de-
sign and implementation decisions of a different kind. Sec-
ond, DySER builds upon a large body of work on the com-
piler side, and our rapid bringup of the software stack pro-
vides valuable lessons of interest to the community. Third,
unlike those previous efforts, the OpenSPlySER prototype
was mapped to a small off-the-shelf FPGA board and not
a custom ASIC. We describe some of these challenges and
demonstrate what is feasible.

The study by Solomatnikov et al. on rapid prototyping
is the closest in spirit to our work: a case study on build-
ing hardware prototypes for research [15]. They used a
Tensilica processor generator to create both their processor
and software stack. In our case, we start with commercial
RTL (for the hardware) and LLVM and its suite of analysis
passes (for the software) and implement the new processor:
OpenSPlySER. We feel that our approach is a good mid-
dle ground between configurable processor generation and
starting from scratch. With regards to OpenSPARC, without
enormous effort, one can develop a detailed understanding.
We show that it is feasible to prototype new architectures us-
ing existing hardware with far less effort than is commonly
thought. With regards to the compiler, LLVM was designed
with extensibility in mind and we found it an outstanding
vehicle for compiler work. The SPARC-based eco-system
of operating system, applications and libraries allowed easy
system-level studies.

The rest of the paper is organized as follows. Section 2

provides an overview of OpenSPARC and DySER. The
next four sections describe the implementation refinements
for DySER, integration of OpenSPARC and DySER, the
software stack, and verification/physical bringup on FPGA.
Section 7 presents performance results, Section 8 summa-
rizes our lessons learned, and Section 9 concludes.

2 Overview and Background

We first summarize our design process, goals, and nec-
essary background on OpenSPARC and DySER.

Our overarching goal was to determine the feasibility of
the claim that DySER is a practical and non-intrusive so-
lution that can be integrated with a commercial processor.
To this end, our primary implemenation goal was to take
the DySER design [7], which had been verified to some
extent as stand-alone Verilog, and produce an implementa-
tion of DySER integrated as an accelerator block into the
OpenSPARC processor. We call this OpenSPlySER. We
had the additional requirements that the prototype be able to
boot an unmodified operating system, and run real applica-
tions to completion. The ultimate goal of the software stack
was to compile existing source-code transparently and with-
out modification while using DySER efficiently. A five-
person team was involved in accomplishing these goals: a
three-person hardware design team to implement OpenSPl-
ySER and a two person team to develop the software stack.

OpenSPARC Background: OpenSPARC T1 is the open
source release of Sun’s UltraSPARC T1. Its pipeline con-
sists of six stages: fetch, thread select, decode, execute,
memory, and writeback. It is a simple RISC processor lack-
ing advanced architectural techniques such as staging and
aggressive bypassing found in other in-order processors [2].
We ignore its multi-threading capability.

DySER Background: The DySER architecture is built to
exploit the insight that applications execute in phases and
that a heterogeneous array of functional units can be config-
ured into a specialized datapath matching these phases. A
high-level design has been proposed and evaluated through
simulation [7]. DySER assumes a profile-guided compiler
that identifies these phases by determining common path-
trees of control-flow. It then slices these into a load-slice
and computation-slice. The computation-slice is devoid of
any accesses to memory and is thus a good candidate for
specialization. In the execution model of this accelera-
tor, the load-slice executes on a general purpose processor,
which communicates with DySER using a simple set of ISA
extensions. Figure 1 shows a high-level overview of DySER
integrated into the OpenSPARC pipeline. More details on
the architecture and program characterization on how well
this execution model works are provided in [7].



Dynamic Synthesized 
 Execution Resources

 D
yS

ER
 O

U
TPU

T IN
TER

FA
C
E

D
yS

ER
 IN

PU
T IN

TER
FA

C
E

Switches

Functional Unit

Static config path

ICache
DCache

Fetch DecodeThread Sel Execute Memory Writeback

Thread 
Select

Register
   File

Decode

Execution
 pipeline

FU FU

FUFU
FU

S S S

S

SSS

S
S

S

Figure 1. OpenSPlySER with DySER integrated in execute stage.

The DySER block is built from a two dimensional array
of functional units that support a heterogeneous mix of in-
structions. A switch array routes data between functional
units. An input and output bridge serve as an interface be-
tween the processor and DySER to buffer data. They have a
set of addressable ports that correspond to inputs or outputs
for switches along the edge of the switch array. The switch
and functional unit arrays are configured dynamically dur-
ing execution to form a specialized datapath that matches
the computation slice. Once configured, a DySER block
looks and acts like a pipelined long latency functional unit.
A 64 functional-unit DySER block with a mix of various
32-bit functional units occupy approximately the size of a
64KB SRAM. Two key features that differentiate DySER
from other specialization approaches are i) its easy integra-
tion into conventional processor pipelines, and ii) its capa-
bility for supporting control-flow and arbitrary memory ac-
cesses because the load-slice executes on the main proces-
sor.

3 DySER: Taking the Concept to a Practical
Implementation

To take the DySER architecture from design to a phys-
ical implementation, we had to undertake two steps. First,
we had to evaluate whether the design was practical enough
to implement and make a set of key refinements to the previ-
ously proposed DySER design. This design was well suited
for integration into a commercial processor, and specifi-
cally, the basic tile architecture and the input/output in-
terface required only small modifications. However, some
mechanisms were too complex for a “real” implementation.
These were related to DySER’s control flow execution, han-

dling of constants, output retrieval, and the issue of where
the configuration information would be stored and how it
would be read from memory and fed to DySER. Second,
we had to design and implement some mechanisms which
were previously conceptually ignored. These were related
to debugging DySER applications, page faults and excep-
tions. We discuss these issues in detail below. Henceforth,
we refer to the design from [7] as the “original design” to
distinguish from our implementation.

3.1 Refinements for implementation

Control-flow and switch design: To support control flow
inside the accelerator, DySER requires the implementation
of φ functions, which determine the correct data values at
merge points in the control flow. In the original design,
these operations were assumed to be supported using a sub-
set of the functional units. For our implementation, we
moved this functionality to the switches to better use the
FUs for computation. The switch design was modified to
be able to examine data from two different ports and decide
which to forward. This makes the switch more complex, but
proved useful.

Handling constants: The original design assumed that
instructions that contained constants were assumed to be
handled for “free”, without explicitly providing a mecha-
nism. For this implementation, we developed an elegant
solution that embeds the constant values as part of the con-
figuration information. To implement this functionality, we
allow the right operand of every FU to be configured to use
an 8-bit sign-extended constant value instead of an input di-
rection. These constants are sent once during configuration



and are always marked ready. This technique comes close
to realizing the constants are “free” assumption.

Configuration Path: In the original design, the config-
uration information would be stored consecutively in the
application binary’s code segment, and a configure instruc-
tion would cause the processor to stream all the informa-
tion to DySER. This design introduced various complexities
in implementation. First, such a long multi-cycle instruc-
tion is hard to implement into OpenSPARC’s RISC pipeline
tuned for single-cycle instructions. Second, where exactly
to place these bits, and how to make them interact with the
instruction cache, ITLB, etc. proved almost impossible to
implement and this design was ultimately abandoned. In-
stead, we implemented a far simpler and effective solution.
We designed the dyser init instruction as a single-cycle op-
eration that partially configures the DySER block and em-
beds in its encoding some bits of the DySER configuration.
A sequence of dyser init instructions fully configures the
DySER block.

The actual process of configuration was also radically
simplified. The “original design” had a sophisticated pro-
posal to form parallel scan-chains and configure the entire
block in 10 cycles or so. Ultimately, that design was aban-
doned because setting up the parallel paths required many
raw instructions or configuration bits from memory. With
a single dyser init and SPARC’s single issue design, only
21 bits are available every cycle. Hence, what we imple-
mented is as follows. When the dyser init instruction is
executed, these 21 bits are sent to the DySER block to be
shifted into the statically determined configuration path as
shown in Figure 1, effectively creating a large, distributed
shift register that shifts by 21 bits on each dyser init.

Output Retrieval: The original design included an in-
struction called dyser commit. This instruction indi-
cated that the current DySER invocation is over, and that
DySER’s output values should be written to the appropriate
registers or memory. Like the original dyser init instruc-
tion, the implementation of this instruction proved to be
too difficult due to the complexities of integrating a long
multi-cycle operation with OpenSPARC’s RISC pipeline.
We solved this problem by defining the dyser recv instruc-
tion, which receives only a single value from DySER. Sev-
eral of these instructions, along with dyser stores, are used
to retrieve all output values. This modification also alle-
viates the need for the configuration to contain destination
registers.

3.2 Additional mechanisms for implementation

Page-faults and Exceptions Our design choice for
dyser init solved many of the subtle practical issues for

DySER. Cache misses, page faults, exceptions, and inter-
rupts can all potentially disturb and interact with the con-
figuration process. For DySER, these represent a vari-
able length stall or unexpected termination of the con-
figuration. Since configuration occurs as a sequence of
dyser init instructions, any stall between two dyser init in-
structions is naturally handled. During the stall, the DySER
block pauses configuration and stops shifting the configu-
ration bits. Exceptions or other effects that cause an un-
expected termination during configuration will leave the
DySER block in an unknown, partially configured state.
The DySER block will be in some configuration, but no
data will be flowing through it. When execution resumes,
the configuration also resumes as expected. Exceptions, in-
terrupts, and context-switch of programs during DySER ex-
ecution need additional OS support. The OS must be modi-
fied to “wait” until the DySER block finishes executing be-
fore swapping out the process. This has not been imple-
mented and our prototype runs unmodified Ubuntu. In our
system, only one application uses DySER at a time, so we
can ignore this issue and still guarantee correct execution.

Code Debugging Debugging code targeted for DySER is
an important consideration for programmability. The com-
piler separates the code into two distinct sections: the load-
slice and computation-slice. Instructions that are part of
the load-slice execute on the SPARC processor using regu-
lar SPARC instructions, so existing debugging utilities like
gdb can be used with no changes. Instructions that are
part of the computation-slice are scheduled on the DySER
block for execution. The internal state of DySER cannot
currently be monitored from software. Debugging of the
computation-slice is limited to monitoring the viewable pro-
cessor state such as memory values and the register file.
As part of our compiler verification, we built a “debug-
ging” backend, that generates SPARC instructions for the
computation-slice. This approach can be used by program-
mers debugging DySER code in a production environment
as well.

4 OpenSPARC Integration

We now describe our extensions to the SPARC ISA
and modifications to the OpenSPARC T1 processor to in-
tegrate DySER. To simplify our efforts, we used the single-
threaded version.

4.1 SPARC ISA Modifications

Table 1 provides a stylized listing of the assembly in-
structions added for OpenSPlySER. Table 2 shows the
exact instruction encodings. dyser init, dyser send, and
dyser recv are encoded via the impdep2 instruction in the



Instruction Description
dyser init [config data] DySER block placed in config mode, and the config data shifted in.
dyser send RS1→ DI1 Reads data from the register file and sends the data to a DySER input port. 1 or 2 source
dyser send RS1→ DI1, RS2→ DI2 registers are sent to the specified DySER input ports.
dyser recv DO→ RD Write data from DySER output port DO to register RD.
dyser load [RS]→ DI Read from memory address in register RS and send result to DySER input port DI.
dyser store DO→ [RS] Writes data from DySER output port DO to memory using the address in register RS.
dyser commit Signals DySER to write all ready data back to the register file and/or memory, allowing

OOO execution. Unused in OpenSPARC.

Table 1. A stylized listing of the DySER instructions.

Instruction Instruction encoding
dyser init 10 config 110111 config 000 config

dyser send 10 DI1[4:0] 110111 RS1[4:0] DI2[4:0] V 001 RS2[4:0]
dyser recv 10 DO1[4:0] 110111 RD[4:0] unused 010 unused
dyser load 10 DI1[4:0] 000000 RS1[4:0] 0 1000000 000 RS2[4:0]
dyser store 10 DO1[4:0] 000100 RS1[4:0] 0 1000000 000 RS2[4:0]

Table 2. Design of the DySER instruction extensions for OpenSPARC.

SPARC ISA with bits [7:5] as the DySER instruction op-
code. dyser load and dyser store are encoded as SPARC
load/store type instructions. The instructions provide a
means for the processor and compiler to configure and in-
teract with the DySER block.

dyser init: Once a dyser init is decoded, DySER is sig-
naled to take the 21 configuration bits from the instruction
in the execute stage.

dyser send: A dyser send reads up to two values from
the register file, specified by RS1 and RS2, and pipelines
the data to the DySER input ports denoted by DI1 and DI2
respectively. Setting the ’V’ bit to zero sends only the first
value.

dyser recv: A dyser recv sends the results from a
DySER output port, specified by DO1, to a register file des-
tination, denoted by RD. It behaves no differently than a
normal SPARC arithmetic instruction by pipelining the data
and register destination from the execute stage to writeback.

dyser load: dyser load loads data from memory directly
into DySER, using the bits normally restricted for the reg-
ister destination as the DySER port destination. The source
address is specified by r[RS1] + r[RS2]. The dyser load is
identical in every way to a normal SPARC load instruction
except for bits [10:5], which are reserved for loading from
alternate space. If no alternate memory is specified (as is
the default case for OpenSPARC), then anything non-zero
will throw an illegal instruction exception. We take advan-
tage of this behavior by reserving the most significant alter-
nate space bit as a one for dyser loads and dyser stores and
remove them from being trapped by the illegal instruction
logic. The difference between a load and a dyser load is
that when the data comes back, it is forwarded to DySER
instead of the register file. It is important to note that in nei-

ther the dyser load nor dyser store are we allowed to use
immediate bits instead of a register operand. Loads with
immediate values do not have the reserved bits for alternate
space, making it very difficult to decode in our scheme.

dyser store: As with dyser loads, dyser stores also
take advantage of the alternate space bits for decoding.
dyser stores behave similar to dyser recvs in that the data
coming out of DySER is stored, but in memory. It is also
similar to SPARC stores in that the ALU calculates the
memory address destination.

4.2 OpenSPARC Pipeline Modifications

DySER is designed to be placed alongside the ALU in
the execute stage of the SPARC pipeline (Figure 1), con-
suming operands from memory and the register file like an
ALU, and producing data for memory or the register file.
Careful modification was required to the decode, execute,
and memory stages to ensure proper DySER functionality
as well as normal pipeline behavior. The fetch, thread se-
lect, and writeback stages required no modification. Much
effort was required to understand OpenSPARC through re-
verse engineering the Verilog RTL before making modifi-
cations. Details on the exact modifications are elaborated
in a related technical report [3]. Table 3 summarizes all the
changes showing the files modified, number of lines, and
state added. Before arriving at this final implementation,
1000s of lines were modified and reverted. Of course, lines
modified is not always a direct reflection of complexity or
design effort. From our design experience, integrating with
OpenSPARC’s MMU and implementing the dyser load and
dyser send instructions were the hardest tasks. Our lessons
learned section elaborates further.



File Description Lines
Modified

Decode RTL files
sparc ifu dec Instruction Decode 205
sparc ifu fcl Fetch Control 4
sparc ifu swl Thread Switch 15
sparc ifu swpla Long Latency Instruction

Control
5

sparc ifu thrcmpl Thread Completion Control 4
sparc ifu ifu Fetch Thread Select De-

code Unit’s Top Level
42

Execute RTL files
sparc exu byp Bypass Mux Module 13
sparc exu ecl Execute Control 15
sparc exu ecl wb Bypass Control 10
sparc exu Top Level Execute Module

(18 flip-flops added)
178

Load Store Unit RTL files
lsu stb rwdp Store Buffer Datapath 9
lsu dctldp Store Buffer Control 14

Table 3. OpenSPARC RTL modifications. All
changes except to sparc exu add no state.

An input and output interface supports the interaction be-
tween the OpenSPARC T1 pipeline and the DySER block.
A DySER block has separate addressable input ports and
output ports. Each input or output port contains a FIFO
queue that buffers data taken in at the port specified by the
dyser load or dyser send instruction. If a destination in-
put queue is full or an output queue is empty, the processor
stalls until space frees up or the data arrives, respectively.
The final interface consisted of only 11 signals in the RTL as
shown in Table 4. The relatively “small” changes and sim-
ple interface show that DySER integration is non-intrusive.

5 Software Stack

Tools: The approach we use for our software stack dif-
fers from prior DySER work [7] which performed program
transformations at the binary level. In this work, we instead
chose to operate on a compiler’s intermediate representation
(IR), which was beneficial both in the short-term and long-
term. In the short term, we were able to use existing analysis
and compilation tools, and also leverage source level infor-
mation that would be lost in the final binary. Using the IR
also provides the long term advantage of being able to target
multiple ISAs with little to no changes to our infrastructure.
We chose the LLVM compiler framework and its associated
IR primarily because of its ease of development.
Compilation Flow: Figure 2 shows the compilation flow,
from source to binary. First, we perform profiling to deter-
mine frequently executed code regions. During the slicing

stage, we use these profiles to decide what code to special-
ize, and how. Then, instructions marked for DySER are
scheduled onto particular DySER functional units. Finally,
a configuration is generated from these schedules, and the
final binary is created.
Profiling: To find frequently executed regions of code, we
use known code profiling techniques. Not only does this
provide us with execution frequency information, but we
also use this stage to build what we call “path-trees”. These
are single entry, multiple exit regions of code which do not
cross function call boundaries. The profile information as-
sociated with each path-tree is referred to as a path-tree pro-
file. These regions are the target for specialization in our
compilation framework.
Slicing: The first step in our slicing stage is to make all
path-trees completely independent of each other. This in-
volves duplicating a small amount of code, and making
some control flow modifications. Each path-tree is then
considered for slicing. The basic premise of the slicing al-
gorithm is simple: load instructions, and other instructions
on which these loads depend, are to be executed only on the
processor pipeline. The remaining instructions are “pure
computation” and are suitable for execution on DySER. The
portion of the path-tree which can be executed in DySER is
termed the “computation-slice” and the portion of the path-
tree which is executed on the host processor is termed the
“load-slice”. In our previous DySER work we showed that
the computation-slice accounts for 59% to 95% of execution
time. Since this entire work is on the compiler IR, it reduced
our implementation time, eliminated spurious memory ac-
cesses due to register spills, simplified the slicing and the
PDG-to-DySER mapping steps, and allows easy back-end
retargetting.
Scheduling: After determining the computation-slice, we
have to map these LLVM IR instructions to DySER func-
tional units. Also, we need to create a routing for all
communication between instructions. To accomplish this
cleanly, we use another intermediate form called the Pro-
gram Dependence Graph (PDG). Here, both control and
data dependences are represented as edges between instruc-
tions. Each node in the PDG will be mapped to a DySER
node, and each edge in the PDG will be mapped as a se-
ries of routes though DySER’s switches. Program control-
flow, which is represented with φ functions, is implemented
by assigning them to switches and mapping paths for in-
put values for the φ function into the switch. The goal
of the scheduler is to achieve efficient schedules in terms
of critical path length (speed) and overall switch utiliza-
tion (power). Our current scheduling algorithm traverses
the PDG in topological order, attempting many locations for
each node, and greedily selects the location with the most
efficient routes. Routing is accomplished through a simple
but optimal breadth first search algorithm. It is possible that,



Signal Name Description
Inputs

dyser config enable Signals DySER to take incoming configuration data. Enabled on a dyser init
dyser send enable0(1) Signals DySER to receive data incoming from register file specified by RS1(2)
dyser receive enable0(1) Signals DySER to send results from DySER ports specified by dyser receiveport0(1) to register

specified by dyser reg dest. High on dyser recv
dyser sendport0(1)[4:0] Address that specifies DySER input ports where data from register file goes. dyser sendport1 is

only used when two register sources are specified by dyser send instruction
dyser receiveport0(1)[4:0] Address that specifies port on DySER that writes to the register file
dyser commit Signals DySER block to commit. Enabled on dyser commit instruction
dyser write Register file write enable for dyser recv instructions. Enabled on dyser recv instruction
dyser mux select Selects DySER output signals from muxes in execute stage, which include dyser write,

dyser data out and dyser reg dest
dyser reg dest[4:0] Register destination for dyser data out on a dyser receive
send data r0(1)[63:0] Data from the register file sent to DySER on a dyser send

Outputs
dyser data out0(1)[63:0] Output data from DySER block to be written into memory or a register. dyser data out1 can be

used as the address where dyser data out0 is stored in memory

Table 4. The microarchitectural interface between DySER and OpenSPARC with signal descriptions.

during scheduling, some nodes cannot be scheduled due to
resource or routing limitations. The instructions associated
with these nodes are returned to the load-slice, which we
call computation-slice spilling. Again, LLVM’s design and
API made this straight-forward to implement.
Binary Generation: In this stage, the program is altered to
complete the slicing process. First, configuration bits gener-
ated using the schedules from the previous stage are inserted
at the start of the path-tree. A path-tree with self loops
will branch to a point just after the configuration so that
configuration time can be amortized. Computation-slice in-
structions are removed from the load-slice, and communi-
cation instructions (dyser send, dyser load, dyser recv) are
inserted into the load-slice.

Our simulation infrastructure is able to handle many
of the SPECCPU2006 benchmarks. Specifically, six
SPECINT benchmarks, bzip2, gobmk, h264ref, hmmer,
libquantum and mcf, compile and run to completion on the
prototype. The remaining benchmarks suffer from system
call problems. We did not include floating point units in this
implementation and hence cannot run the SPECFP bench-
marks.

6 FPGA Prototype Implementation

Verification: We verified the RTL using a fairly straight-
forward bottom-up approach before FPGA mapping. We
concentrated on ensuring the new DySER-based function-
ality performed as desired, while always checking that the
pre-packaged SPARC regression tests (which do not use
DySER) never failed. Collectively, our verification efforts
consisted of unit-level testing of the DySER module, RTL

simulations of the modified OpenSPlySER pipeline, and
FPGA emulation of the full-system running applications
under the Ubuntu 7.10 operating system. We further ran
specific targeted tests to verify exceptions and ITLB behav-
ior for the DySER instructions. We used Synopsys VCS for
verification and the Xilinx suite for FPGA mapping and ver-
ification. For FPGA bring-up and simulation, we followed
instructions from the OpenSPARC design guide.

FPGA Prototyping: The OpenSPARC processor in-
cluded the processor core and other modules around it
for I/O etc. All of our changes were restricted to the
OpenSPARC core; we were able to leverage the pre-
packaged support for memory controllers, Ethernet con-
trollers etc. OpenSolaris proved problematic, so we used
Ubuntu 7.10 for our operating system. We used a Virtex-
5 board with a XC5VLX110T FPGA for prototyping. Ul-
timately, we did not have to expend significant effort for
physical design. We knew from the start that the 64 func-
tional unit DySER would not fit on the board (more elabora-
tion in Section 8). Due to switch and routing congestion on
the FPGA, LUT utilization increases quadratically with the
number of FUs in DySER. For this reason and for sensitiv-
ity studies, the DySER module, how it integrated with the
processor, and the software-stack was parameterizable for
DySER “size” which includes number of functional units
and datapath width. Ultimately, we could fit a 2x2 DySER
with 32-bit functional units, a 4x4 DySER with 8-bit func-
tional units, or an 8x8 DySER with 2-bit functional units.
We synthesized and mapped each of these, and their utiliza-
tion characteristics are shown in Table 5. We emphasize
that this is an FPGA prototyping limitation and does not
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Figure 2. Compiler Implementation.

reflect that DySER is prohibitively expensive compared to
OpenSPARC. Based on synthesis on a standard-cell library,
8x8 32-bit DySER occupies area similar to a 64KB SRAM.

Our first result is that the prototype works, boots unmod-
ified Linux, and runs several SPECINT benchmarks com-
piled through our toolchain correctly and to completion.

As a further demonstration of DySER’s lack of in-
trusiveness, the critical timing path remained within the
OpenSPARC pipeline regardless of which DySER config-
uration was used. The OpenSPARC design had a critical
path of 10.1ns. With DySER integration, OpenSPlySER
had a critical timing path of 12.7ns. The critical path (start-
point signal to end-point signal) of the processor remains
the same between OpenSPARC and OpenSPlySER, i.e. nei-
ther the blocks in DySER or blocks/paths added to inter-
face with OpenSPARC are on the critical path. The rea-
son for the numerical difference of 10.1ns to 12.7ns is that
with OpenSPlySER about 40% of the FPGA is devoted to
DySER and it introduces additional routing delays. Hence,
although the logical path is the same, its numerical delay is
different.

Due to the FPGA size limitations, the largest 32-bit dat-
apath DySER block we could integrate for FPGA execu-
tion of OpenSPlySER was 2x2. On this configuration, lit-
tle speedup is possible: the sends and receives introduce
overheads, and many path-trees in real applications require
more than four computation instructions. Thus, our proto-
type is of limited value in performance evaluation of com-
plete applications. This paper’s primary goal and contribu-
tion though is not performance evaluation, but a demonstra-
tion that DySER is practically implementable. An 8x8 or
4x4 DySER is required to provide meaningful performance
improvements. We are considering three FPGA-specific de-
sign optimizations in the future as part of a prototype per-
formance evaluation: building a virtual 32-bit datapath out
of a 2-bit datapath, but consuming 16 cycles across every
link, multi-board simulation, and implementing a stateful
DySER that can emulate a larger stateless DySER.

7 Performance Evaluation

We now discuss performance results of hand-optimized
kernels and briefly discuss application results.

Microbenchmark Results: We developed microbench-
marks to highlight individual features in DySER and iso-
late application characteristics that perform well and that
perform poorly on a processor containing DySER. We re-
port results for the 2x2 32-bit DySER which represents a
usable 32-bit datapath but with only 4 FUs and the 8x8 2-bit
DySER which represents a realistic design point of 64 FUs,
but with only a 2-bit datapath. This configuration allows
us to understand the interface issues and design integration
issues of a practical DySER unit, and obviously the 2-bit
datapath provides little usable functionality on real appli-
cations or benchmarks. The execution times are measured
(in terms of clock cycles) from FPGA execution, exclud-
ing loader time etc. We report speedups compared to the
OpenSPARC and note that both designs operate at 50Mhz.

Table 6 describes the characteristics of the microbench-
marks. Because of the different number of FUs in the
2x2 and 8x8 DySER, the microbenchmarks are different.
Figure 3 shows speedup for four microbenchmarks run on
OpenSPlySER with a 2x2 DySER block and 8x8 DySER
block. In general, we see that well tuned microbenchmarks
are able to sustain the close-to peak performance of DySER.
For the in-order machine, the sends and receives are the pri-
mary bottleneck. The maximum speedup for OpenSPlySER
is given by the number of functional units in DySER divided
by the time to send and receive all the inputs and outputs.
Thus in best case, it is 32 for 8x8 DySER.

We also ran these same microbenchmarks on our simu-
lator to validate its accuracy. Our simulator was built on top
of M5-SPARC and adjustments were made to make it cy-
cle accurate with OpenSPlySER. The grey bars in Figure 3
shows its predicted speedup. Errors ranged between ≤ 1%
to 5%. The main source of error is the difference in the
modeling of the memory system.



Available OpenSPARC OpenSPlySER
2x2 32bit DySER 4x4 8bit DySER 8x8 2bit DySER

# Slice Registers 69120 19634 36404 37027 38579
# Slice LUTs 69120 31010 58288 55706 63032
# Logic LUT 29187 55130 52540 59865
# Memory LUT 17920 1823 3159 3166 3167

Table 5. OpenSPlySER FPGA utilization with different DySER blocks.
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Figure 3. Normalized speed-up of microbenchmarks on OpenSPlySER with 2x2 32-bit DySER and
8x8 2-bit DySER blocks. Results from FPGA-prototype and our M5 Simulator are shown.

Complete Application Results: Since our FPGA proto-
type for a 32-bit datapath allows only a 2x2 DySER block,
performance speedups on complete applications are practi-
cally insignificant. We briefly present performance analysis
from our validated prototype simulator which has an accu-
racy of 5% and can support various DySER configurations.
We present results for OpenSPlySER with an 8x8 DySER
and also contrast with the performance results in the orig-
inal DySER work [7]. Table 7 compares speedup to the
baseline processor considering a representative sample of
100 million instructions.

The speedups are not very significant for two reasons.
First, additional compiler work is required to improve the
size of the path-trees. Second, and more importantly,
SPARC’s single issue, in-order instruction retirement limits
path-tree scheduling and thus performance. Because of its
instruction retire semantics, we could not overlap multiple
DySER invocations, unless software pipelining was possi-
ble with simple loops.

These speedups are also much lower than previous
DySER results, which demonstrated speedups for DySER
integration with a single-issue core as shown in the col-
umn labeled [7] in Table 7. Our prototype’s results are
lower for the three following reasons. i) The main reason
is the OpenSPARC’s implementation of the load instruc-
tion. On OpenSPARC every load introduces at least a 3-
cycle bubble in the pipeline. In our original design evalu-
ated in [7], we assumed a sophisticated in-order processor

which allows other independent instructions to proceed be-
hind the load (thus allowing overlap of sends with loads,
etc.) and assumed the FIFOs in the output interface could
decouple this retirement problem. ii) A secondary source
for lower performance is the compiler. Previously, we used
gcc-produced binaries transformed for DySER. For the pro-
totype, we use LLVM and compile from source. LLVM-
produced code remains sub-optimal to gcc code — loop
unrolling, for example, is done only when the loop-bound
is static, and hence the path-trees are smaller. iii) A final
source for the differences is that with our LLVM infras-
tructure, some control-flow instructions are replicated in the
load-slice.

To summarize, the performance results on microbench-
marks show that “well-behaved” programs can extract good
performance. On more irregular programs, the base-
line processor must have some latency hiding techniques
else speedup from DySER is limited. Without modifying
the OpenSPARC pipeline, adding some form of software
pipelining can improve performance on loops that are ex-
ecuted many times. A detailed performance evaluation,
which requires further compiler tuning and FPGA-specific
optimizations, is on-going work.

8 Lessons Learned

We conclude with lessons learned under three categories:
hardware, software stack, and FPGA implementation.



Name dyser send dyser recv Pipelined? Notes Equivalent SPARC
inst.

Microbenchmarks for OpenSPlySER with 2x2 DySER
K1 1 1 Yes Best case example 4
K2 2 5 Yes “Regular” kernel; many inputs and outputs 7
K3 2 5 No Same as K2 but no s/w pipelining 7
K4 1 1 No Reconfigured every invocation 4

Microbenchmarks for OpenSPlySER with 8x8 DySER
K5 1 1 Yes Best case example 64
K6 1 1 Some Less s/w pipelining compared to K5 64
K7 4 8 Yes Moderate number of sends and receives 64
K8 8 8 Yes Large number of sends and receives 64

Table 6. Description of the microbenchmark kernels.

Benchmark Proto [7] Benchmark Proto [7]
bzip2 8% 50% gobmk 7% 20%

hmmer 9% 130% libquantum 1% 9%
h264ref 11% 36% mcf 0.2% 30%

Table 7. Speedup over baseline processor.

8.1 Hardware Design and Implementation

ISA extensions: Fitting the additional DySER instruc-
tions in the SPARC ISA proved to be far less problem-
atic than we initially had thought. Early on we noticed
that there is very little room for new instructions in the
SPARC ISA due to how compact it is in the first place.
However, the SPARC ISA does include some flexibility
in the form of two implementation dependant instructions.
Fortunately, one of these was available and was adequate
for all of our needs. Because the dyser init, dyser send,
dyser recv, and dyser commit instructions are similar to a
typical SPARC arithmetic instruction, we encoded them
in the same fashion. The source registers from the reg-
ister file for a dyser send (and the register destination of
a dyser recv) are encoded into the same bits as any other
SPARC arithmetic instruction. This allows the pipeline to
be ignorant of the additional instructions and carry on as
it normally does. Most SPARC arithmetic instructions do
not use bits [12:5], so we used bits [7:5] for the DySER
opcode. In the end, we purposefully modeled our non-
memory DySER instructions after the SPARC arithmetic in-
structions closely, so that built-in mechanisms like forward-
ing and register data fetching needed little modification.

Don’t reinvent the wheel: A simple way we found to cut
down additional hardware (along with additional verifica-
tion) was to find ways of reusing the SPARC provisions or
our own pre-existing hardware, similar to the way we took
advantage of SPARC ISA conventions. As we developed
the nature of how the DySER instructions interact with the
pipeline, we noticed that on a fundamental level, dyser send
and dyser load behaved nearly identically, as did dyser recv

and dyser store. Since they only differ in whether data is
coming from or being written to a register or memory ad-
dress, no additional DySER-SPARC interface signals for
dyser load and dyser store were needed. Hardware over-
head in the decode stage for adding DySER memory in-
structions only required adding one extra bit for whether or
not a DySER operation uses the register file or memory.

Co-designing OpenSPlySER and the compiler: The co-
designing or co-refinement of the DySER hardware with
the software compiler was an important contributing fac-
tor to the success of the project. Primary examples of the
importance of co-designing the hardware and compiler for
DySER were the embedded constant values and control
flow execution. Performance is improved by sending the
constants to DySER once only during configuration rather
than on every invocation. While control flow execution in
DySER is also not needed for correctness, designing the
hardware to support control flow execution efficiently gives
the compiler more flexibility in scheduling.

DySER’s design is indeed simple: DySER was designed
to be non-intrusive. This implementation confirms that it
indeed is. The simple modular design of DySER made it
easy to integrate into OpenSPARC. The interface between
DySER and the processor is simple, entailing only 4 basic
operations. The processor can configure, write data to, read
data from, and send a commit signal to DySER.

The process of configuration was also chosen primarily
because it was a simple design. Each 32-bit dyser init in-
struction encodes 21 bits of configuration information that
is shifted into the DySER block. Interrupts, stalls, and ex-
ceptions are handled naturally by the processor. These ben-
efits were a significant contributing factor to get a config-
urable DySER block running in the OpenSPARC processor.
The configuration interface specifies that configuration oc-
curs in 21-bit increments with no other restrictions. This
means the bit ordering and number of configuration bits per
DySER component has no effect on how configuration oc-



curs. This separation makes it easy to change or extend the
internal configuration. An example is when embedded con-
stants were added to the functional units.

Understand the implementation (not just the design):
We found that learning the idiosyncracies at the RTL level
took the longest time among the design, implementation,
and verification stages. Understanding the behavior goes
a long way when debugging changes, especially when the
design exhibits unexpected behavior. For example, while
providing DySER the ability to stall the processor pipeline,
we realized that our idea of stalling the processor’s pipeline
was different from what OpenSPARC actually does.

Another important reason to study the RTL is that it pro-
vides a better idea of design decisions made by the orig-
inal team and perhaps the reasoning behind them. This
can then provide key insights about design modifications.
For example, SPARC decodes register operand information
in the thread select stage, not the decode stage. SPARC
also has its own methodology of where to put pipeline
latches in the code. Understanding these and the myriad of
other decisions helped our team to correctly interface with
OpenSPARC.

Must understand every detail: The unifying lesson that
we learned modifying a commercial CPU is that it is equally
important to understand the big picture as well as the
bottom-most level of detail. The best way to accomplish
this is to spend time thinking about modifications long be-
fore a single line of code is written. The time spent coming
up with better solutions is time saved undoing invasive and
undesirable changes that may break functionality. The more
invasive a change is, the more likely it may unknowingly
break other functionality.

8.2 Compiler Design and Implementation

LLVM’s IR is extremely powerful: In several ways we
found LLVM’s IR and modular design extremely useful. It
does not have a steep learning curve as GCC does, and is
easily retargetable to different back-ends. However, its gen-
erated code quality, as of LLVM 2.8 for SPARC is worse
than GCC 4.4.0, however.

GCC-level translator impossible to maintain: We had
initially started with a translator of GCC’s generated code.
In many ways this was impossible to analyze, extend, and
use to support various ISAs. So we moved the analysis
into LLVM’s IR. This allowed us to trivially generate code
targeting x86, SPARC, and ARM. Further, our entire com-
piler was split into multiple LLVM passes instead of being
one large pass. Thus, we could run these in different or-
der or multiple times if necessary. This proved crucial in
implementing spilling - that is folding instructions from the
computation-slice back to the load-slice when parts cannot

be scheduled. Similarly, we realized a typed dyser send for
integer and floating point datatypes provided several perfor-
mance benefits - this was trivial to achieve.

Comparison to other compiler efforts: We summarize
with some thoughts on our compiler bring-up in relation to
three previous compilers: Multiscalar [19], IMPACT [1],
and TRIPS [14]. We went from nothing to a full-fledged
compiler pass that provides retargetable code to different
ISA in about 5 months, with two full time graduate students.
In some ways, the path-profiling, slicing, spilling, and
scheduling are more sophisticated and place more restric-
tions on our compiler, than compilers for Multiscalar, IM-
PACT, or TRIPS. While those projects were from a different
decade, their initial bring-up time (not time for optimized
code) varied from 36 person-months to 96-person months.
Significant effort had been expended in parsing, developing
data-analysis passes and back-end code-generation. From
day one, our effort was spent toward analysis passes need
for DySER and not in basic infrastructure. In our opinion,
LLVM’s sophistication gives researchers more freedom in
contemplating compiler-heavy projects.

8.3 FPGA Prototyping

Overall, FPGA prototyping turned out to be problem-
atic in several ways. The initial OpenSPARC bringup
proved more tedious than we expected as many things in
the documentation did not quite work. Bring up of the final
OpenSPlySER was straight-forward after we had succeeded
with OpenSPARC. Ultimately, our ideal goal of fitting a
64 function-unit (8x8) DySER block remain unfulfilled,
due to insufficient FPGA density. To fit this large design,
we will need a larger board than the Virtex-7 (due to the
quadratic growth mentioned before). Building a parameter-
izable DySER block allowed us to build a 4x4 DySER with
internal 8-bit datapath. While we could not run full bench-
marks, this allowed us to run several microbenchmarks. A
straight-forward set of tools for multi-board FPGA simula-
tion would have helped significantly.

9 Concluding Thoughts

The DySER architecture was previously proposed for
non-intrusively adding dynamic specialization capability to
a conventional processor. This work demonstrates the fea-
sibility of integrating the DySER design into a commer-
cial processor by implementing an FPGA prototype based
on the OpenSPARC T1 processor. The complete software
stack of a compiler that builds the path-trees needed for
specialization was also constructed. The prototype shows
that it delivers on the goal of non-intrusive integration. The
question of what we learned from the prototype that we



did not know from simulation poses a unique perspective
for DySER. Non-intrusive integration was a primary goal
which cannot be demonstarted without an actual implemen-
tation. While our initial work developed standalone DySER
RTL as proof-of-concept, this prototype building exercise
confirms it delivers on its goal of non-intrusive integration
and confirms the design assumptions we made were largely
valid. Several of the system integration issues which we
abstracted away had to be designed first and then imple-
mented. They all proved tractable without introducing sig-
nificant complexity. Much compiler work and detailed per-
formance evaluation is required to confirm if it delivers on
its goal of performance improvement when integrated into
a real processor.

Our design serves as a good starting point to converge
toward what an “accelerator” framework should be when
integrating into a known core. Based on our experience, the
following three principles seem most important: i) a sim-
ple set of mechanisms to interact with the processor core
pipeline, perferrably accessing only register state; ii) a well
defined interface for accessing memory or avoiding direct
memory access; and iii) some mechanism to handle issues
like precise exceptions and debugging.

More broadly, such prototype implementation is required
to understand subtle design and integration issues that can-
not be uncovered until implementation time. Ultimately the
significant advances in CAD tools, LLVM compiler tech-
nology, and pre-packaged FPGA development suites prove
that small design teams can effectively build prototypes
around OpenSPARC. Our work demonstrates this as a vi-
able route for researchers.
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