
Appears in the 19th International Conference on Parallel Architectures and Compilation Techniques (PACT ’10)

Design and Implementation of the PLUG Architecture
for Programmable and Efficient Network Lookups

Amit Kumar† Lorenzo De Carli† Sung Jin Kim† Marc de Kruijf†
Karthikeyan Sankaralingam† Cristian Estan‡ Somesh Jha†

†University of Wisconsin-Madison ‡NetLogic Microsystems
{akumar,lorenzo,sung,dekruijf}@cs.wisc.edu estan@netlogicmicro.com

{karu,jha}@cs.wisc.edu

Abstract

This paper proposes a new architecture called Pipelined LookUp
Grid (PLUG) that can perform data structure lookups in net-
work processing. PLUGs are programmable and through sim-
plicity achieve power efficiency. We draw upon the insights that
data structure lookups have natural structure that can be stat-
ically determined and exploited. The PLUG execution model
transforms data-structure lookups into pipelined stages of com-
putation and associates small code-blocks with data. The PLUG
architecture is a tiled architecture with each tile consisting pre-
dominantly of SRAMs, a lightweight no-buffering router, and an
array of lightweight computation cores. Using a principle of fixed
delays in the execution model, the architecture is contention-free
and completely statically scheduled thus achieving high energy
efficiency. The architecture enables rapid deployment of new net-
work protocols and generalizes as a data-structure accelerator.

This paper describes the PLUG architecture, the compiler, and
evaluates our RTL prototype PLUG chip synthesized on a 55nm
technology library. We evaluate six diverse high-end network pro-
cessing workloads including IPv4, IPv6, and Ethernet forwarding.
We show that at a 55nm technology, a 16-tile PLUG occupies
58mm2, provides 4MB on-chip storage, and sustains a clock fre-
quency of 1 GHz. This translates to 1 billion lookups per second,
a latency of 18ns to 219ns, and average power less than 1 watt.

Categories and Subject Descriptors
B.4.1 [Data Communication Devices]: Processors; C.1
[Computer Systems Organization]: Processor Architec-
tures

General Terms
Design, Performance

1. INTRODUCTION
Devices that make up the Internet infrastructure are get-

ting increasingly sophisticated due to several reasons. Line
rates, data-set sizes, converged network traffic, aggregating
voice, video, mobile, Internet traffic, and data-center usage
are all growing. In addition new services like scalable Ether-
net forwarding [16], protocols to reduce data center costs [3]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

and simplify enterprise management [8] are emerging that
require flexibility and programmability. To allow rapid de-
ployment and upgrades, programmability and performance
are becoming first order requirements for internet infras-
tructure. Figure 1 provides a conceptual overview of this in-
frastructure. The Internet backbone consists of core routers
(Figure 1a,b) through which all traffic flows and they run
routing protocols. Line cards are their critical components
(Figure 1c), which in addition to basic functionality such as
buffering packets, perform two processing-intensive tasks: a)
lookups into large data structures to determine what to do
with a network packet and b) infrequent book-keeping on
this data structure.

Conventional designs are either overly general purpose
or overly specialized. In the general purpose case, pro-
grammable network processors perform both tasks, resulting
in several trips between processor and on-chip memory. It
is highly energy inefficient and the processor organization is
ill-suited for this type of processing. Specialization is often
favored, where custom hardware modules are built for each
data structure (shown by the three blocks in Figure 1c). Ex-
amples from the literature include specialized architectures
for IP lookup [5, 15, 17, 24], packet classification [14, 32]
and signature matching for application identification or in-
trusion prevention [11, 18, 30]. Ternary CAMs potentially
provide richer capability as they can perform associative
searches, but face potentially severe power challenges (one
18 Mbit TCAM alone consumes 15 watts) [2]. The general
purpose approach is not energy efficient and the customized
approach lacks the flexibility, programmability, and deploy-
ment “speed” required for emerging services.

This paper presents the design of a flexible yet energy ef-
ficient general lookup module called PLUG: pipelined lookup
grid. PLUGs are meant to replace both SRAMs and TCAMs
and augment network processors as shown in Figure 1d.
Conceptually, in the PLUG model, the inherent structure
in the lookup data-structure is exploited by physically map-
ping the data structure to on-chip tiled storage as shown
in Figure 2. Large “logical pages” are constructed repre-
senting parts of a data-structure that belong to one logical
level (like nodes at one level of a tree). Small blocks of
code – code-blocks – are associated with each such logical-
page. They operate without any global information, perform
reads or writes to their logical-page, and determine the next
logical-page to be looked up by producing a network mes-
sage. Code-block execution is triggered by arrival of such a
network message and is terminated upon sending a message
for the receiver. Logical pages are partitioned into explicit



DRAM

SRAMInterface

TCAM ASIC

v v

v v

Processor

Line card

SRAM

Routers

uC
or

es

v v

v v

Processor        PLUG

      
Router

Internet Provider

Internet 

Mobile
Voice ATM

a) Internet infrastructure       b) High-end router                     c) Line card                            d) PLUG-based line card                       e) PLUG Tile

Line card

Control

Router

DRAM

Interface

Line card

Figure 1: Conceptual overview

physical-pages that match the storage space available on a
given tile. Data-structure lookups are thus transformed into
a structured pipeline of computation and memory access.
De Carli et al. [9] introduce this model and showed how core
network processing algorithms are amenable to this model.
This paper describes the architecture and full system mak-
ing the following contributions1:

1. A description of the PLUG architecture and its buffer-
less, contention-free on-chip network (Section 2).

2. The construction of the PLUG compiler(Section 3).

3. Description of synthesized RTL and of implementation
lessons learned from the design experience (Section 4).

4. Evaluation showing that PLUGs can sustain a bil-
lion lookups per second at under 1 watt for diverse
workloads, and they closely match or exceed the per-
formance and power efficiency of specialized solutions
(Section 5).

2. ARCHITECTURE
After a brief background on the programming model, this

section presents a design space study of lookup modules. We
then describe the PLUG architecture including its ISA and
detailed microarchitecture.
PLUG Overview: The basic concept of the PLUG pro-
gramming model is to transform all lookup operations into
pipeline of small stateless computations on regions of mem-
ory[9]. It assumes an abstracted view of the hardware as
a set of memory+compute units (tiles) logically connected
through an all-to-all broadcast network, thus simplifying
programming. As shown in Figure 2b the program is ex-
pressed as a dataflow graph of logical pages with code-blocks
associated with each page. A full application is shown in
Figure 5.

2.1 Design space
Figure 3 presents a design space of architectures to build

lookup modules deconstructing them in terms of computing,
memory, and interconnection. The graph above shows flexi-
bility, performance, and hardware efficiency of these designs.
They all interface to the rest of the system in the same way,
by accepting a lookup request and generating a reply. We
assume system software can map our programming model
or some other representation of the data structure to the
memory resources. Throughput is the primary constraint

1(1) supplements and expands material in [9]. (2), (3), and
(4) are entirely new contributions

and we assume a model where a new lookup request arrives
every cycle.

At the left extreme, is the fully centralized design which
provides most flexibility but is highly inefficient. Computa-
tion nodes can be mapped to any available core and data
can be laid out across the memory. The crossbar allows all
cores to get to all memory, but is impractical to build for
more than a handful of cores. The latency of crossbar will
become too high resulting in very poor performance. On
the right extreme is the completely distributed design that
creates a tile with one router, one memory, and one core.
The design is highly inflexible because the memory nodes
are now limited to the size of one memory. Second, it has
very poor performance, because throughput is limited to the
rate of 1 every X cycles, where X is the slowest codeblock’s
latency. Figure 3c shows an intermediate design point that
increases throughput by providing N cores in every tile and
increasing the size of the memories. This provides a new
core for lookup operations arriving in successive cycles and
can thus provide high throughput. However, this forces even
small memory nodes into utilizing an entire tile resulting in
reduced scheduling flexibility. Figure 3b shows the “best”
design point which aggregates together an arbitrary number
of memories, cores, and routers. These are then exposed to
the ISA as many virtual tiles and the compiler can assign a
subset of resources to each dataflow graph node. This allows
almost as much flexibility of the fully centralized design and
achieves the simplicity and efficiency of the fully distributed
design.

Conventional network processors (for e.g. chips like EZchip,
Netronome/IXP and Freescale) resemble Figure 3a and fur-
ther render themselves inefficient for lookups because the
processors are overdesigned for this task and constantly burn
energy waiting for replies from SRAM. They typically in-
clude specialized modules or instructions for handling tasks
such as packet parsing and queuing/scheduling that are not
addressed by PLUG. With respect to lookup processing,
NPUs typically use a small lookup processing unit (LPU)
on-chip connecting to off-chip DRAM / SRAM / TCAM
holding the forwarding tables the lookups are performed
in. SRAM or DRAM based solutions require multiple mem-
ory accesses for each packet. At line speeds of 40Gbps and
higher, the cost of providing the required off-chip memory
bandwidth becomes problematic. We see PLUG as a re-
placement for TCAMs or the DRAM/SRAM-based lookup
unit. In PLUGs, a single request internally triggers multi-
ple memory accesses and processing as needed for complet-
ing the lookups required by one packet. In our quantitative
comparisons in Section 5 we compare performance to spe-
cialized lookup modules.



p = 
get_pkt_from_interface();
x = tree0.lookup(p.proto);
y = tree1.lookup(p.hdr);
if (x < y) {
......
}
z = htable0.lookup(p.key);
....
send_pkt_to_interface();

d) PLUG scheduled object:  physical 
pages with code-blocks

Pg 2.2

Pg 0.0

Pg 1.0 Pg 1.1

Pg 2.0 Pg 2.1

e) Pages mapped to tiles

0.0    1.0     2.2

1.1    2.0     2.1

a) Application pseudo-code

O
ffl

oa
de

d 
to

 P
LU

G

 64K  Pg 0

128K Pg 1  

170K Pg  2  

c) PLUG program/lookup object
with codeblock and logical pages

a) Application pseudo-codea) Application pseudo-code b) Lookup 
data-structure

Code-blocksp.proto

x

p.proto

x

Figure 2: PLUG software overview. The bold outline indicates pages/tiles accessed for an example lookup.

Figure 3: Architecture Design Space

Chips like Tilera resemble Figure 3d and are inefficient
because of the lack of scheduling flexibility of the data struc-
ture, their computation capability is again over-designed for
lookup, and provide an interconnection network that is over-
designed for this task and hence inefficient. Since PLUGs are
specialized for lookups, their processing elements are far sim-
pler and the architecture can devote most of the resources to
storage. By using the guarantees provided by the program-
ming model, we simplify the routers and avoid the need for
any buffer or flow-control while still providing the abstrac-
tion of a fully connected network with static deterministic
delays. PLUGs and Tilera/RAW differ radically in compu-
tation/storage ratio. PLUGs are are typically targeted for
lower-layer network processing (layer 2-4) operating in the
sub 2-watt regime. Tilera/RAW is designed for higher-level
(layer 4-7) network processing operating in the 10-20 watt
regime. Comparing IP Lookup on RAW [22], PLUGs can
provide 512 Gb/sec lookup-throughput on 64-byte packets,
RAW provides 15 Gb/sec throughput performing full router-
processing. Normalizing for the technology improvements,
PLUGs at 90nm provide 300 Gb/sec throughput.

2.2 PLUG Architecture
Figure 4a shows the high level overview of the PLUG ar-

chitecture showing 4 tiles with six networks (denoted by dif-
ferent colors). Our overriding principle is to use simplicity
to achieve design and energy efficiency and devote maximum
area to the SRAMs. It is a tiled multi-core multi-threaded
architecture with a very simple on-chip network connecting
neighboring tiles only. One of the input ports on the top-
left tile and output ports on the bottom-right tiles serve as

canonical external interfaces. Execution of the programs is
data-flow driven by messages sent from tile to tile. Fur-
thermore the computation in each core is stateless and the
message carries any state required.

The interconnection network creates a logical abstraction
of all tiles connected to all other tiles and by enforcing re-
strictions on when messages can be sent, it creates a conflict-
free network. The reason for providing six networks is to
allow multiple out edges in the dataflow graph. With re-
strictions on the ordering of memory instructions (Rule 2 in
Section 3), the memories effectively provide an abstraction
of a fine-grained global lock for any loads and stores thus
providing serialization of all lookups.
PLUG ISA: The PLUG ISA closely resembles a conven-
tional RISC ISA, but with two key specializations. It in-
cludes additional formats to specify bit manipulation opera-
tions and simple on-chip network communication capability.
Table 1 outlines the different ISA formats for our 24-bit in-
structions with a 16-bit datapath (which was sufficient for
our workloads). The register space is quite small: one 16-bit
program counter per thread, and thirty-two 16-bit registers
per thread. The ISA provides variable length loads to match
data-block sizes and amortize the cost of one SRAM access.
Sizes 2, 3, 4, 6, 8, 10, 12, 14, and 16 bytes are supported
and are written to consecutive registers.

2.3 Microarchitecture: Tile
A tile consists of a core cluster, memory cluster, and

router cluster as shown in Figure 4b-d. The figure shows
32 cores, 4 memories, and 6 routers - referred to as the
32Cx4Mx6R configuration. Multiple cores allow a new packet



Core 1

R1

M1 M2 M3 M4

R2 R3 R4 R5 R6

Core 32

Virtual Tile 0 Virtual Tile 1 Virtual Tile 2

Register
File

V
al

id
 b

its

PC I-Mem
uCore

64

16 16

64

to router

from router

to SRAM

from
SRAM

North South East West Local

Arb

North South East West Local

Arb
. . .

Input
ports

Output
ports

c) uCore 

b) Tile d) Router 

Addr
Gen16

128

e) Memorya) PLUG 4 Tile Organization

Figure 4: PLUG Chip and Tile Organization: 32Cx4Mx6R

Format name Purpose Instruction Fields Pipeline
6-bit 5-bit 5-bit 5-bit 3-bits

R-format Manipulate registers Opcode Rsrc0 Rsrc1 Rdst F D E W
M-format Access memory Opcode Rsrc0 Rdst Imm0 F D E M1 M2 M3 W
I-format On-chip n/w commu-

nication, bit manipu-
lation

Opcode Rsrc0 Rsrc1 Imm0 Imm1 Imm2 F D E W

C-format Control flow Opcode Rsrc0 Imm0 F D E/Branch
N-format Create n/w msgs Opcode Rsrc0 Imm0 Imm1 Imm2 Imm3 F D S Wremote

Table 1: PLUG ISA. The immediate field describes network number or values to extract bit fields. Last
column shows pipeline stages for each type. S is a network send stage.

to be processed every cycle (which we refer to as a thread
context) by providing a new core. These resources are ex-
posed as virtual tiles which can be configured to consist of a
subset of these resources. Thus, a single virtual tile cannot
have more than one logical page. Figure 4b shows a PLUG
tile configured as three virtual tiles, with two, one, and one
memory per virtual tile respectively. The abstraction of vir-
tual tiles provides three key benefits: a) logical pages with
different types of memory, computation, and router require-
ments can be mapped on a single physical tile, b) efficient
sharing of resources, and c) control of scheduling losses en-
forced by the propagation discipline (Section 3.2).

Providing arbitrary connection between N cores, M mem-
ories, and R routers can result in high wiring overhead and
hardware complexity. However, we exploit the simplifica-
tions provided by the programming model. In a cycle:
• A message on a network needs to be delivered to only
one core. Hence one input bus per network with all cores
reading from it is sufficient without any arbitration.
• No more than one core will access memory. Hence one
memory bus per memory is sufficient.
• No more than one core will send a message on a network.
Hence one output bus connecting the core cluster to the
router cluster per network is sufficient.

These simplifications result in a simple set of four buses
driven by tri-state drivers between router cluster, core clus-
ter, and memory cluster.

2.4 Microarchitecture: On-chip Network
Each tile also includes a simple router that implements a

lightweight on-chip network (OCN). Compared to conven-

tional OCNs [13], this network requires no buffering or flow
control as the OCN traffic is guaranteed to be conflict-free.
The router’s high level schematic is shown in Figure 4d. The
routers implement simple ordered routing and the arbiters
apply a fixed priority scheme. They examine which of the
input ports have valid data, and need to be routed to that
output port. On arrival of messages at the local input port,
the data gets written directly into the register file.

Because of code-generation rules (Section 3) contention-
free routing with static delays is possible. The routers also
efficiently support dataflow edges that semantically multi-
cast to multiple nodes. Encoding and routing to multiple
arbitrary targets is inefficient. Instead we support a re-
stricted multicast, which delivers messages to all interme-
diate nodes along the way to the final destination. Since
the routing algorithm is exposed to the compiler, it can
schedule multiple targets of a node such that they all fall
on intermediate tiles en-route. To implement discard edges,
when there are multiple requestors, a fixed priority scheme
(North > West > South > East in our implementation)
determines which of the ports gets selected and data from
other ports are dropped.

Our design provides six networks N1 through N6 with the
network message consisting of 80 bits (16-bits header and
64-bits data). Registers R0 through R5 are reserved for
headers. Registers R8 through R31 get data. The header
information contains five fields: destination encoded as a
4-bit tile number, a 2-bit field to encode the virtual tile
number, a 4-bit type field to encode 16 possible code-block
ids, and a multicast bit.



2.5 Microarchitecture: µCores
The µcores shown in Figure 4c each executes one thread

and they all share the SRAM and routers. Each µcore is
a simple 16-bit single-issue, in-order processor with only in-
teger computation support, simple control-flow support (no
branch prediction), and simple instruction memory (256 en-
tries per µcore). The register file is small and partitioned
to provide four consecutive entries on the read/write ports
to feed the router. They can output requests to memory or
to the router every cycle, and static instruction scheduling
guarantees that exactly one thread and hence one µcore will
make such a request. The result of the SRAM access is
broadcast to all the µcores and predictable SRAM access
delays ensure that only the correct µcore uses up the data.
The same OCN is used to deliver instructions to the in-
struction memory, which is typically done once at startup
(or infrequently).

2.6 Memory cluster
The design of the cores and routers was straight-forward.

The design of each memory proved to be a challenging prob-
lem. Since the main goal of the PLUG architecture is flex-
ibility, we wanted to support different word sizes to access
the memory. While implementing different applications, we
found this to be important. We elucidate a few below. IPv4
has six different word sizes when implemented with the Lulea
algorithm, namely 12, 8, 14, 2, 6, 9 bytes. SEATTLE (pro-
tocol for large enterprises) has 4 word sizes: 9 byte host-
locations, 16-byte hashes in a DHT-ring, and 8 byte destina-
tions. Since PLUGs are lookup engines memory utilization
is key and hence this support.

So the ISA views and addresses the memory in terms of
the logical word size which is configured for each PLUG tile.
The hardware is responsible for translating this to a physical
line address. Our application analysis revealed that 16 bytes
is the largest word required. Supporting all word sizes from 1
to 16 would mean a divider prior to SRAM access to compute
the line address - which adds both delay and area. Instead
we decided to provide a set of most common word sizes and
the application writer rounds up to the larger word size.
The tradeoff is that once a physical line size of N bytes is
picked, then depending on the word sizes that are supported
a divider that can divide by some numbers may be needed,
and some bytes will be wasted on each line. For example
with a physical line size of 16 bytes and a logical word size
of 11 bytes, 5 bytes in every line are wasted (31.25% line
wastages). But no divider is needed because logical line
address is the same as the physical line address. Supporting
a word size of 3 bytes will mean a divider by 5 (five 3-byte
words on a line) and 6.25% line wastage. On the other hand,
with a logical line size of 256 bytes and supporting all word
sizes 1 to 16, in the worst case 9 bytes are wasted for a logical
word size of 13, which is a wastage of only 3.5%. However,
for this design a divider that can divide by 3, 5, 11, 7, and
14 is required. Second, with a 256 byte line, the SRAM has
only 256 lines, and would require further sub-banking and
many bit-line segments internally. The additional physical
area required for such a divider is about 20% the size of a
64KB SRAM 2. Based on a design search, we arrived at 48
bytes to be the optimal physical line size and supporting
the following word sizes 3, 6, 7, 10, 11, 12, 14 in addition

2We implemented and synthesized these specialized dividers.

to powers of 2. For intermediate word sizes the application
writer rounds up. For this design, we only need a divide-by-
3 unit (equivalent in size to an 8KB SRAM). Furthermore,
the worst case wastage is 16% for a word size of 10 bytes.
For a 64KB memory we use three 21KB SRAM arrays with
16 byte line size.

2.7 Beyond network processing
While the PLUG system is designed for network process-

ing, the principles and the architecture are potentially ap-
plicable in other domains as well. Digital signal processing
and many types of stream computing have a similar parti-
tion of control-plane and data-plane that network process-
ing has and can map well to PLUGs. Architectures like the
Cell processor which use software programmed memories,
can use the PLUG programming model and scheduler for
implementing irregular data structures.

More generally, PLUGs can be used for explicit distri-
bution of computation on an explicitly partitioned memory
hierarchy like on-chip SRAM banks that make up lower-
level caches. Recursive data-structures can be mapped and
“looked-up” by the processor, instead of traditional pointer-
chasing with the processor. This approach is elegant and can
significantly reduce energy spent in processor-cache round-
trips. Applications such as ray tracing, graph traversal in
several EDA problems, Markov-chain traversal for AI algo-
rithms spend significant processing time on such data struc-
ture queries.

Specifically, consider a kd-tree which is used in ray-tracing
to determine light-ray/object intersections and contains many
levels (up to 20) and is several megabytes in size with poor
level-1 cache locality. Using the PLUG model the kd-tree
can be spatially laid out in memory, and the processor ini-
tiates a single lookup, which triggers traversals within the
memory with associated code-block executions, resulting in
a final message back to the processor with the intersecting
leaf node. While the PLUG is traversing, the processor sim-
ply idles or continues processing a different thread. With 3-
D stacking and large L3-caches becoming practical, PLUGs
can be integrated as another type of cache.

3. COMPILER
This section first presents background: a description of

the primitives of a PLUG program and an example. We
then present the design, implementation and principles for
generating contention-free code in the compiler.

3.1 Interface and PLUG Programs
To the rest of the chip, the PLUG is one or more pipelines,

each storing a lookup object: a data structure that can be
accessed only through small number of routines. As shown
in Figure 2a, routines are offloaded to the PLUG. Invoking a
routine results in submitting a message (whose content is the
parameters passed from the routine) at the input interface of
the pipeline and if the routine produces results they appear
after a fixed number of cycles in a message at the output
interface of the pipeline as shown in Figure 2e.

In our development environment, a PLUG object is a
C++ object, and logical pages are typically lists of data-
blocks. Code-blocks are methods in the object, and messages
are arguments to a codeblock and return values. In addition
to memory access, typically codeblocks perform bit manip-
ulations for parsing data structures, compare values, and



compute offsets, addresses, and tile targets. The dataflow
graph is explicitly specified by marking source and destina-
tion logical pages.
An Example: Figure 5b shows the dataflow graph, code-
block source code (5c), and assembly code(5d) for an appli-
cation – IPv4 lookup. The data structure is an adaptation
from literature [10]. It is a compressed three-level multi-
bit trie with strides of 16, 8 and 8. Each level of the trie
is implemented by two logical pages and uses bitmap com-
pression (a variant of run-length encoding) and list compres-
sion (explicitly specifying non-zero indices). Data blocks are
bitmaps (16-byte), lists (16 bytes), and entries (2 bytes).

3.2 PLUG Compiler
The PLUG compiler takes as input the C++ implementa-

tion and must perform the following functions: a) generate
assembly code for code-blocks, b) partition the logical pages
into smaller physical pages c) schedule them to specific tiles,
and d) assign dataflow graph edges to networks on chip.

Simple features of the architecture are exposed to the com-
piler to support the typical communication patterns shown
in Figure 5a. Multiple networks support the delivery of mul-
tiple messages from one source to one destination (divide
and combine pattern). Multicast messages implement the
spread pattern to send one message to multiple targets. Fi-
nally, static arbitration priority in the network decides which
message gets discarded on a conflict for the discard pattern.
Code-block compilation: PLUG source code is a sub-
set of C++ with a few PLUG assembly language intrinsics.
Built using the LLVM compiler infrastructure [19] our back-
end converts LLVM bytecode into PLUG assembly code.
The code generation presents some interesting challenges be-
cause of PLUGs support for variable word sizes (section 2),
and bit manipulation instructions (for example copying n
bits from bit-position i to bit-position j). Details are omit-
ted in the interest of space.
Partitioning pages: The first step is to create physical
pages that are each small enough to fit within a single mem-
ory. For most applications, the logical page is a list of data-
blocks, in which case the scheduler simply creates equal sized
chunks. For a few applications like IP Lookup, there is a
word-level dataflow graph, connecting words between log-
ical pages. To minimize, the number of out-edges from a
physical page, the scheduler implements a graph clustering
algorithm at the word-level.
Scheduling: Second, this physical dataflow graph is sched-
uled to the PLUG chip. We use a greedy algorithm which
ranks all the tiles based on distance from the top-right hand
corner, considers the nodes of the dataflow graph in breadth-
first order (with some tweaks for multicast edges) and as-
signs them to tiles. The algorithm ensures the following: a)
enough cores are available in a tile (hence code generation is
done first), b) the tile is reachable from all its source tiles, c)
enough networks are available to deliver the input messages.
Since the PLUG provides a mesh interconnect, every page is
guaranteed to be reachable from every other page. However,
to guarantee no network conflicts occur, additional schedul-
ing rules must be enforced. We discuss these in the next
section.
Network assignment: Each edge in the dataflow graph
is assigned to networks on chip, specified in the ISA us-
ing an immediate operand of the snd instructions. Naively,
the number of networks required is equal to the maximum

number of outgoing edges from any node. However, this
network assignment is effectively a graph coloring problem
and we currently use a greedy heuristic. For applications
like ETHANE which has nine 64-bit inputs, as shown in
Figure 7f, five networks are sufficient using graph-coloring.

3.3 Contention-Free Code
For simple integration to the network processor, lookup

modules must produce results with fixed delays. Traditional
tiled architectures cannot guarantee such regularity as mes-
sages can get delayed due to network conflicts and memory
contention. One of our key innovations is the PLUG code
generation rules that ensure fixed delays required by the sim-
ple architecture. The four rules are:
Rule 1) Code blocks perform at most one memory access.
Rule 2) All of them perform the memory access the same
number of cycles after the start of the code block.
Rule 3) All code-blocks that send messages, do so the same
number of cycles after they are started.
Rule 4) For a physical page with multiple sources, the
global scheduler ensures that all incoming paths at a given
internal tile have the same latency from their respective
sources.

The first three rules guarantee conflict-free execution within
a tile, and the fourth guarantees a conflict-free network.
Propagation disciplines: If the hardware performs adap-
tive routing, it is impossible for a software scheduler to en-
force Rule 4. The PLUG network implements deterministic
dimension-order routing and on such a network, the rule
translates to forcing all traffic into one of four patterns (re-
ferred to as propagation disciplines): a) right and down, b)
left and down, c) right and up, and d) left and up. If pri-
mary external inputs arrive at the top left hand corner, the
right and down is the only propagation allowed. Implying
that, for two logical pages a → b, all physical pages for page
b, must be mapped to the right and below all physical pages
of a. While this results in scheduling losses, the principle
provides several benefits:
Conflict-free execution: we can avoid all conflicts for re-
sources thus simplifying the lightweight cores and on-chip
routers. Specifically, we utilize a stall-free core pipeline and
an on-chip network without buffering and flow-control.
Atomicity for complex modifications that require multiple
updates routines, because the fixed delays ensures that at
every tile, the memory operations occur in exactly the same
order in which the respective routines entered the pipeline.
Global synchronization can be achieved by scheduling.
Results of different computations performed in parallel can
be combined by having them arrive at a tile in the same
cycle.

While the programming rules appear hard at first glance,
recall they are enforced by the compiler. The PLUG pro-
grammer works at the level of logical-pages (linked together
in a data-flow graph). PLUG programs are written in C++
using the PLUG API. The PLUG compiler generates as-
sembly code enforcing the programming-rules and maps the
pages to as many tiles as needed. In our experience, PLUG
programs were easy to write.

4. PROTOTYPE IMPLEMENTATION
We have implemented in Verilog, verified, and synthesized

a PLUG chip in foundry-provided 55nm technology library.
This section first describes our early estimation methodol-



IP 0-15 
bitmaps, 
chunk 
indices

IP 0-15 
pointers, 
results

IP 16-23 
pointers, 
results

IP 24-31 
results

IP 16-23 
bitmaps, 

chunk indices, 
lists

IP 24-31 
bitmaps, 
chunk 

indices, lists
outputinput

b) Data flow graph for “Lulea” algorithm  – multibit trie with strides 16-8-8 with compression of trie nodes

ld112 R12-R18 [R11]; read memory
mvp 5, R19,0,R2,12 ; last 5 bits
sub R20,R19,16     ; of ip-address
cut R15,R19,0      ; count bitmap
cut R11,R19,12
add R15, R15, R11
je R20, loop2   ; count 2nd bitmap?
   cut R18,R19,0
   cut R14,R19,12
   add R15, R15, R14
   j loop3
loop2:
   Nops         ; pad with nops
loop3:
add R1,R15,R13 ; add base index 
add R4,R14,R12 ; 
snd R0-R4 N1   ; send message

mvp macro is 
expanded into more instructions

void l_work(plug_logical_message *msg) {
  int ip_part = msg->get_data(0);
  int addr = msg->get_data(3);
  p_word<15> block = get_l_data_word(addr);
  r_ret = block[0];   // base index
  // count bitmap
  for(int i = 0;i<=(ip_part&0x1F);i++) {
    if (block[i+1]) ++r_ret;
  if (block(ip_part & 0x1F)+34) {
    c_ret = block[33];
    ..... // more code here
  } else c_ret = -1;
  omsg.dest_code_blk_num = 0;
  omsg.dest_page(4);
  omsg.data.set_word(0, r_ret–1);
  omsg.data.set_word(1, msg->get_data(1) );
  omsg.data.set_word(2, msg->get_data(2) );
  omsg.data.set_word(3, c_ret );
  send(o_msg);
}

c) Codeblock source code d) Codeblock assembly code

X

     Divide/combine                                Spread                              Discard
a) Common Communication patterns

Figure 5: Communication patterns and IP lookup example.

ogy, our implementation, contrasts results with our early
estimates and concludes with lessons learned.

4.1 Early Estimates: are PLUGs buildable?
To understand the feasibility of the architecture, we con-

structed a simple delay, area, and power model using existing
processor datasheets and CACTI [29]. Our target frequency
is 1 GHz to sustain one billion lookups per second, area tar-
get is 1 mm2 per tile to limit local wire delays, and technol-
ogy node is 55nm. To match application needs, we require 32
cores, four 64KB banks, and 6 networks in a tile. For model-
ing the µcore cluster, we used the Tensilica Xtensa LX2 [28]
as a baseline for one µcore. This processor is a simple 32-bit,
5-stage in-order processor and occupies 0.206mm2 built at
90nm. Simplifying to a 16-bit data path and scaling for tech-
nology, our model projects area of a µcore to be 0.028mm2.
We conservatively assumed the interconnect’s area is 10%
of processor area, similar to reported results [13]. Based on
this model, a single PLUG tile’s area is 2.34 mm2.
Power modeling: Using CACTI we estimate worst case
power by assuming the SRAM is accessed every cycle and
uses low standby power transistors (LSTP) cells. We used
Xtensa LX2 processor data-sheet to derive the power con-
sumption of our 32 µcore cluster. We model interconnect
power per tile as 15% of processor [31]. The worst case
power estimate for a tile is 489 milliwatts. We then built
a simple analytical model for chip power for full applica-
tions. Dynamic chip power can be derived by considering
the (maximum) number of tiles that will be activated dur-
ing the execution of a routine (activity number A). Thus,
worst case power can be modeled as A tiles executing in-
structions in all µcores and one memory access every cycle.

The final chip power = [ (leakage power per tile) * (total
number of tiles) ] + [ (dynamic power per tile) * (activity
number) ]. Given an application with L logical pages, and
code blocks of length ci associated with each, the activity
number is

PL−1
i=0 ci/C, where C is the number of cores in a

tile. These early models suggested a PLUG chip would be
practical and drove early design decisions.

4.2 Prototype implementation
Design: We designed the tiles hierarchically, with cores,
routers, and memories combined to create a core cluster,
memory cluster and router cluster. The chip is simply in-
stantiation of multiple tiles. The design was implemented
using Verilog, simulated with Synopsys VCS and verified
against our reference PLUG simulator (details in Section 5.1).
We synthesized the design using the Synopsys Design Com-
piler with a foundry-provided 55nm technology library.
Synthesis results: One PLUG tile with 32 cores, four
memories 64KB each and 6 routers is 3.57mm2. This was
the best configuration derived from application analysis. Ta-
ble 2 summarizes our synthesis results. The second col-
umn shows our ASIC-synthesis results, and the third column
shows model estimates. Delay and timing optimizations can
improve these results, since we did not perform any physical-
design optimizations. Overall we exceeded our 1 GHz goal
and are well within the 5 watt target.

4.3 Lessons learned
The co-designed approach of the PLUG system involved

algorithmic design, formalizing the programming model, and
software-stack implementation. With respect to the hard-
ware, we built early models that estimated the area, fre-



Area (mm2)
55nm ASIC Early estimates

Core cluster 1.13 0.89
Router cluster 0.38 0.21
Memory cluster 2.06 1.24
Tile 3.57 2.34
Frequency 1.1 GHz 1 GHz
Power 56 milliwatts 489 milliwatts

Table 2: PLUG Implementation

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 10.0 20.0 30.0 40.0 50.0
Memory (MB)

1-VT
1-VT-L
4-VT

Po
w

er
 (w

at
ts

)

Figure 6: PLUG early design space exploration. Die
sizes of 21, 64, 128, and 200 mm2.

quency, and power of the cores using existing processor data-
sheets and we used CACTI for memory estimates. This ini-
tial high-level design drove our design choice in algorithms,
what sizes pages should be, how complex code could be,
what target throughput to sustain, and architectural explo-
ration. We now have a full hardware design and complete
software stack which provide accurate projections.
Early Modeling/Estimates: Our initial area, frequency,
and power estimates for the core cluster ended up being
highly conservative. Even though we picked a relatively ag-
gressive processor, even our unoptimized design was 10%
faster in frequency. We were surprised by the comparison
to our early estimates. Our area estimates were overly op-
timistic by 34% with the most divergence in the memory
cluster estimates. Our early estimates assumed a single 64
KB SRAM bank. Our implementation uses three 22 KB
sub-banks and divider in each bank. Our power estimates
were surprisingly off by an order of magnitude in spite of
projections we made to account for LSTP devices.
Design time and Optimizations: The largest portion
of the hardware design-time was devoted to developing the
architecture, refining the idea of virtual tiles until it could
be implemented. The design of the memory cluster was the
hardest since we simply did not know what the most frequent
type of word sizes are early in the design. After designing
and evaluating several approaches, we decided on the multi-
banked approach. Since the cores are quite simple and the
memories dominate the design, the Verilog entry and synthe-
sis was done in 6 person months. We did almost no timing
and area optimization since our initial design exceeded the
1 GHz clock frequency.
Design space exploration: We discuss a design space
exploration of different PLUG configurations which shows
sensitivity to different parameters and guided our early de-
sign considerations. We examine different die sizes (21mm2,
64mm2, 128mm2, and 200 mm2), different PLUG configu-
rations, and use a single tile’s area to determine how many
tiles fit on a die. For power estimates we consider our most

power-hungry application IPv6 (Activity number = 14.9).
The 21mm2 die sizes gives us 16 tiles in the 4-VT config-
uration and sufficient memory (6.3MB) for all applications
except IPv6 (for which we scaled down the data-set). The
configurations we consider are described below and all have
32 cores and 6 routers:
• 1-VT: One virtual tile per physical tile. (32Cx1Mx6R)
• 1-VT-L: Same as above with a larger memory: 256KB.
• 4-VT: Four virtual tiles per physical tile, 64KB memory
banks. (32Cx4Mx6R)

For our current design, the results show that the 1-VT
configuration is the most energy efficient and all configura-
tions are under 1 watt. With our initial models due to incor-
rect power estimation, we thought the 1-VT configuration
was not efficient because it devotes lots of area to the cores.
Figure 6 shows a scatter plot of memory versus power based
on our early “incorrect”model. For small memory sizes (4 to
8MB), all configurations are under 3 watts. As the amount
of memory increases, the 1-VT configurations become inef-
ficient because they devote more area to the cores which are
less power efficient than the memories. The 1-VT-L is the
most power efficient and the 4-VT is almost as good. How-
ever, the 1-VT-L configuration requires larger area due to
scheduling losses as shown in the next Section. The power
efficiency problem of the 1-VT configuration suggested by
our models turned out to not be true. This power efficiency
problem was a secondary motivation for virtual tiles.
Compiler and software stack: The software stack proved
harder and took longer to implement than the hardware. We
developed two versions of our development framework, be-
fore arriving at the final abstraction of C++ objects with
logical pages represented as a first class object. With our
current framework, a single code base can be developed and
debugged running on an x86/gcc backed with the PLUG
runtime. The same codebase is passed to our PLUG com-
piler which generates PLUG assembly code. The run-time
development and compiler development together was 18 per-
son months. Implementing the applications took another 18
person months with several developers involved.
Scheduling flexibility: After we built our software stack,
scheduling algorithms, and code generation we were able to
simulate full applications and analyze different schedules.
The detailed tools we developed showed that we could sig-
nificantly relax our scheduling constraints. Since the PLUG
network is statically scheduled, we proposed the use of pro-
pogation disciplines to force all child nodes to the right and
below parent nodes. Using a compiler peep-hole optimiza-
tion (hand-optimized now), we can relax this constraint and
place nodes anywhere as long as we can slow down code-
blocks at different tiles by different amounts so there is still
no conflict.

5. EVALUATION
Evaluation is a challenge because few comparable designs

exist that provide the flexibility of the PLUG. So we present
sensitivity studies between the different configurations and a
comparison to best-of-breed implementations for each net-
work task. We examine throughput, area, power, and la-
tency. Our results show PLUGs sustain 1 billion decisions
per second, at 58 mm2, consuming typically less than 1 watt,
with latencies from 18ns to 219ns across a diverse workload
set. We demonstrate that PLUGs are competitive with best-
of-breed implementations and can exceed their performance.



1

3

2

4

     Output

1 1
11

1 1
11

2 2
22

3 3
33

3 3
33

2 2
22

4 4
44

4 4
44

0

1

2

3

4

5

6

7

8 9

10

0 0
10

1 2
21

2 3
33

4 4
54

5 6
65

6 7
77

8 9 9
99

9 10
1010

10 10
1010

10

1

2

3

4

5

6

7

8

      Output

3 3
33

4 4
44

7 7
77

2 2
22

5 5
55

6 6
66

8 8
88

1 1
11

0 1

2
Output

0 0
11

2 2
22

2 2
22

2 2
22

2 2
22

2 2
22

2 2
22

2 2
22

2 2
22

2 2
22

2 2
22

2 2
2

a) Ethernet Forwarding

4 4
4

4
4 4
4

0 1
2

3 3
33

3 3
33

3 4
43

4 4

5 6
7

0 1 2 3 4

5 6 7

b) IPv4 Lookup d) Signature Matching (DFA) e) SEATTLE f) ETHANE

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15
16
17
18

20 21
22
23
24

25 26 27 28 29

30 31
32
33
34

35

c) IPv6 Lookup
Optimized hashtable to
implement a forwarding
table with dleft hashing.

Compressed multibit trie [10] Two parallel pipelines for prefix
up to 48 and one for 49 to 128.
Includes two hashtables.

DFA matching on byte streams
for intrusion detection. We 
implement D2FA compression[18]

Datacenterrelated: Compute 
shortest path between pairs of 
switches [16]

Datacenterrelated: Controller
hosts build tables of all switches[8]

Figure 7: Dataflow graphs and schedules (colors show network assignment). IPv6 page details omitted.

Protocol Mem. Lines of code Logical page characterisitcs
(MB) PLUG Ref (word size, # words, code-block length)

Ethernet 2 243 51 4 x (16, 32768, 10)
IPv4 1.4 450 330 (12,1K,10) (2,17K,6) (2, 13K, 9) (14,445K,20) (2,350K,6) (2, 3584, 9) (9, 4K, 16) (2,

13K, 6)
IPv6 7.2 16900 18012 (12,2K,10) (2,0,10) (4,7,10) (16,54,20) (2,188,12) (4,1027,17) (16, 7K, 20) (2, 4K, 11) (4,

22K, 11) (16, 43K, 20) (2, 49K, 12) (4, 125K, 14) (8, 3K, 12) (11, 125K, 7) (2, 392K, 7)
2 x (4, 8K, 16) 8 x (8, 8K, 13) (16, 9K, 20) (11, 48K, 10) (14, 49K, 13) (2, 181K, 13) (4,
68K, 17) (11, 67K, 10) (14, 824, 13) (2, 194K, 13) 4 x (14, 1K, 22)

DFA 2.9 470 270 (8, 12800, 9) (16, 6400, 11) (2, 1.6M, 8)
Seattle 2 390 347 8 x (9, 16384, 14) (16, 4096, 20) (16, 20480, 20) (8, 65536, 9)
Ethane 2 1120 200 2 x (16, 16384, 21) 4 x (16, 16384, 10) 2 x (16, 16384, 10)
Ethernet forwarding uses as input short packet traces captured during peak and off-peak traffic hours on the department network
at our university. The table uses 100K random addresses. For IPv4 and IPv6 we constructed traces from sampled packet headers
using similar techniques to those employed in the literature [7]. The routing table is constructed from 256K prefixes. For signature
matching(DFA), we use a set of standard signatures from Cisco for FTP, HTTP, and SMTP protocols combined [1] (64K to 16M
states). Seattle is dimensioned to support 60K switches, and for Ethane we build a flow table that can hold 16K entries using
techniques proposed by its authors.

Table 3: Characteristics of the lookup objects

5.1 Methodology
As part of our prototype hardware and compiler imple-

mentation, we developed a full-chip simulator that models
cores, routers, and memories. Because the architecture is
statically scheduled and stall-free, the simulator is far sim-
pler than typical microprocessor simulators. We use this
simulator for the performance results and latency measure-
ments for code-blocks, and use our tile activity-based model
combined with our synthesis power estimates.
Configurations: We evaluate performance on the three dif-
ferent PLUG configurations - 1-VT, 1-VT-L, and 4-VT-L.
Our application analysis and projection for future growth
suggests 4MB on-chip storage is reasonable. A 58mm2 die
size for all configurations provide 37, 18, and 16 tiles re-
spectively and storage of 2.3MB, 4.5MB, and 4MB3. IPv6’s
dataset is 7.2MB and we use a larger die size to fit the data-
set.
Applications: We study a diverse set of six network tasks
described in Table 3. Descriptions are in their respective
references. We have implemented their respective lookup

3Due to scheduling losses, the 1-VT and 1-VT-L configura-
tions required scaling down the dataset for this die size.

objects, and compiled them using the PLUG compiler with
different chip configurations as inputs. We verified them
against reference implementations by running on the PLUG
simulator and directly compiling the C++ objects on Lin-
ux/x86. Figure 7a-f shows their dataflow graphs along with
the schedules that are generated by our toolchain for the 4-
VT configuration. The schedules show which logical page is
mapped to each virtual tile. The dataflow edges and the cor-
responding network assigned is denoted by the same color.

5.2 Results
Performance: Throughput is one lookup per cycle and is
thus 1000 million decisions per second (MDPS) always. The
columns in Table 4, show the total latency, activity, power,
and a minimum die size for the different PLUG configura-
tions. The total latency varies only by a few cycles from one
configuration to another. This is because, the codeblock la-
tencies are identical for all configurations and only the rout-
ing latencies vary. Overall the latencies are around 70ns with
IPv6 having the largest latency because of the many logical
pages. Power does not vary significantly between the config-
urations and power consumption is under 1 watt in all cases
except IPv6.



Protocol Latency (ns) A Power(watts) Min. Area (mm2)
1-VT 1-VT-L 4-VT 1-VT 1-VT-L 4-VT 1-VT 1-VT-L 4-VT

Ethernet 26 20 18 1.25 0.24 0.27 0.23 57 30 30
IPv4 98 92 90 2.5 0.36 0.44 0.35 84 72 30
IPv6 232 220 219 14.9 2.4 2.4 2.3 486 384 240
DFA 45 39 37 0.9 0.27 0.43 0.27 96 57 45
Seattle 65 59 57 5 0.66 0.66 0.63 111 57 45
Ethane 47 41 39 3.2 0.42 0.45 0.41 57 30 30

Table 4: Performance on 58mm2 PLUG.

Why virtual tiles? Multiple virtual tiles, while more com-
plex, provide more usable storage and hence smaller chips.
The last set of columns in Table 4 shows the minimum die
size required to map an application. The 1-VT configura-
tion devotes too much area to cores (50%) and hence re-
quires larger dies ranging from 30 to 484 mm2. The 1-VT-
L addresses this imbalance, but it suffers from scheduling
losses to enforce static scheduling. The 4-VT configuration
provides the smallest die sizes because it allows maximum
scheduling flexibility. On average it requires a 27% less area
than 1-VT-L and for applications with many pages like IPv6,
it’s area is up to 37% smaller.
Result: The 4-VT configuration effectively utilizes the PLUG
and generates compact schedules
Comparison to specialized design: We compare PLUG’s
performance against best of breed specialized implementa-
tions. Ethernet forwarding requires < 40 million decisions
per second, and the PLUG’s 1000 MDPS performance is
unnecessary. Seattle and Ethane are recently proposed aca-
demic protocols and do not yet have specialized implemen-
tations. We show comparisons for IPv4, IPv6, and signa-
ture matching (DFA). For IPv4, Netlogic’s 55nm NLA9000
processor sustains 300 million decisions per second (MDPS)
4, which is about 3X worse than the PLUG, at 3.5X more
power. Their IPv6 performance is only slightly lower but
supports a smaller table than our implementation (250K en-
tries), For IPv6, PLUG provides 2X better performance at
about 30% extra power. For signature matching we com-
pare to Tarari’s T10 [26] which performs 1250 MDPS at
5W, outperforming PLUGs by 25% while consuming almost
10X power5. The details of this chip are not public, but the
power overhead suggests it is TCAM-based.
Result: PLUGs are competitive with specialized designs and
more power efficient for some.

We now compare to performance results in the litera-
ture, scaling our prototype to the corresponding technology.
Baboescu et al. [6] describe a memory architecture that can
provide unequal memories at each pipeline stage and lim-
ited programmability to provide IP lookup, VPN forward-
ing and packet classification. They report performance of
166 million decisions per second (MDPS) on 90nm technol-
ogy. PLUGs at 90nm, will sustain 440 MDPS. Hasan and
Vijaykumar [15] propose a specialized highly scalable solu-
tion for IP lookup alone. We believe the most meaningful
comparison is to their performance of 500 MDPS at 22 watts
with a 1000 mm2 chip (22MB of SRAM) at 100nm technol-
ogy. A 22MB PLUG chip at 100nm will be 862 mm2, sustain
400 MDPS, and consume 11.2 watts. Kumar et al. [17] pro-
pose an IP lookup engine based on FIFOs and memories
sustaining 500 MDPS at 7 watts with 90nm technology. To

4Netlogic provides these estimates on request without NDA
5One“decision”on the T10 is different from one“decision”on
the PLUG because of different representation of signatures.

support a similar 4MB table, PLUGs require a 156 mm2

chip, and will consume 4.9 watts. To summarize, the flexi-
ble PLUG design can match the performance of specialized
designs because the simplicity provides efficiency.

6. RELATED WORK
PLUGs are inspired by recently proposed tiled architec-

tures [27, 21, 23, 25]. PLUGs address key limitations that
make these existing designs ill-suited as a lookup module.
TRIPS and Wavescalar support memory disambiguation,
block-level register renaming, and dynamic code scheduling
but are ill-suited for intense load/store processing and de-
vote too little area to storage. RAW/Tilera’s design, while
simpler, does not support sufficient throughput as discussed
in Section 2. Each tile is a like a VLIW core and includes
a router with flow-control, buffering, and explicit programs.
Multicore processors like Cavium Octeon are similar.

Similar to historical data-flow machines [4] the PLUG ar-
chitecture implements dataflow execution but in a coarse
granularity of code-blocks and network messages. The PLUG
programming model is inspired by the SDF model [20] and
has similarities to StreamIT [12]. It is more general than
SDF but less general than StreamIt: specifically, stateless
code-blocks and the static guarantees to provide a contention-
free network. Unlike StreamIT’s fission and fusion phases,
the PLUG compiler breaks the larger logical pages into fixed
size physical pages and maps them to regular memories.
Code-generation because of multi-granular memory and use
of intrinsics for bit-manipulation instructions is another large
difference to the Streamit compiler. These specializations al-
lowed us to simplify the architecture. Our performance com-
parison covered related specialized network architectures.

7. CONCLUSIONS
In this paper, we propose pipelined lookup grids (PLUGs)

as a new hybrid storage and computation model and archi-
tecture for large data structures used for lookups in net-
work processing. PLUGs exploit the inherent structure in
the lookup data-structure by physically mapping the data
structure to on-chip tiled storage and associating some code-
blocks with these tiles.

Our results show that PLUGs are able to perform critical
network processing tasks at high speeds (1 billion lookups
per second with a latency of 18ns to 219ns) with limited
power budgets (under 1 watt for all tasks except IPv6 for
a 58 mm2 chip at 55nm). PLUGs are competitive with the
best existing custom hardware designs, and provide more
flexibility and programmability. We showed that the soft-
ware toolchain effectively provides programmability without
sacrificing performance.

Implementing the ASIC chip and running live traffic will
add more insight on the design and bottlenecks. While
PLUGs are designed for network processing, they can po-



tentially be integrated as part of the memory hierarchy to
manage irregular data structures efficiently.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers, the Vertical group,

Daniel Luchaup, and Matt Fredrikson for comments and
the Wisconsin Condor project and UW CSL for their as-
sistance. Many thanks to Mark Hill for several discussions
that helped refine this work. Support for this research was
provided by the National Science Foundation under the fol-
lowing grants: CCF-0845751, CCF-0917238, CNS-0917213
and the Wisconsin Alumni Research Foundataion.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of NSF or other institu-
tions.

9. REFERENCES
[1] Cisco intrusion prevention system.

http://www.cisco.com/en/US/products/sw/secursw/

ps2113/index.html.

[2] B. Agrawal and T. Sherwood. Modeling tcam power
for next generation network devices. In ISPASS, pages
120–129, 2006.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In
SIGCOMM ’08, pages 63–74.

[4] Arvind and D. E. Culler. Dataflow Architectures.
Annual Review of Computer Science, 1:225–253, 1986.

[5] F. Baboescu, S. Rajgopal, N. Richardson, and L.-B.
Huang. A scalable ip lookup low-power
implementation for oc-768 links. In Workshop for
Application Specific Processors(WASP (2004).

[6] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh. A
tree based router search engine architecture with single
port memories. In ISCA ’05, pages 123–133, 2005.

[7] F. Baboescu and G. Varghese. Scalable packet
classification. In SIGCOMM, pages 199–210, 2001.

[8] M. Casado, M. J. Freedman, J. Pettit, J. anying Luo,
N. McKeown, and S. Shenker. Ethane: taking control
of the enterprise. In SIGCOMM, Aug. 2007.

[9] L. De Carli, Y. Pan, A. Kumar, C. Estan, and
K. Sankaralingam. Plug: Flexible lookup modules for
rapid deployment of new protocols in high-speed
routers. In SIGCOMM ’09.

[10] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink.
Small forwarding tables for fast routing lookups. In
SIGCOMM, pages 3–14, Oct. 1997.

[11] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Deep packet inspection using parallel
bloom filters. In IEEE Micro, pages 44–51, 2003.

[12] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S.
Meli, C. Leger, A. A. Lamb, J. Wong, H. Hoffman,
D. Z. Maze, and S. Amarasinghe. A Stream Compiler
for Communication-Exposed Architectures. In
ASPLOS-X, pages 291–303, October 2002.

[13] P. Gratz, K. Sankaralingam, H. Hanson,
P. Shivakumar, R. McDonald, S. Keckler, and
D. Burger. Implementation and Evaluation of a
Dynamically Routed Processor Operand Network. In
NOCS, May 2007.

[14] P. Gupta and N. Mckeown. Packet classification using
hierarchical intelligent cuttings. In Hot Interconnects
VII, pages 34–41, 1999.

[15] J. Hasan and T. N. Vijaykumar. Dynamic pipelining:
Making IP truly scalable. In SIGCOMM ’05, pages
205–216, 2005.

[16] C. Kim, M. Caesar, and J. Rexford. Floodless in
SEATTLE: A scalable ethernet architecture for large
enterprises. In Proceedings of the ACM SIGCOMM,
Aug. 2008.

[17] S. Kumar, M. Becchi, P. Crowley, and J. Turner.
CAMP: fast and efficient IP lookup architecture. In
ANCS, pages 51–60, 2006.

[18] S. Kumar, J. Turner, and J. Williams. Advanced
algorithms for fast and scalable deep packet
inspection. In ANCS 2006, pages 81–92.

[19] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In CGO ’04, Mar 2004.

[20] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE, 75(9):1235–1245, 1987.

[21] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally,
and M. Horowitz. Smart Memories: A modular
reconfigurable architecture. In ISCA ’00, pages
161–171, June 2000.

[22] U. Saif, J. Anderson, A. Degangi, and A. Agarwal.
Gigabit routing on a software-exposed
tiled-microprocessor. In ANCS 2005, pages 51–60.

[23] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,
J. Huh, S. W. Keckler, D. Burger, and C. R. Moore.
Exploiting ILP, TLP and DLP with the Polymorphous
TRIPS Architecture. In ISCA ’03, pages 422–433.

[24] T. Sherwood, G. Varghese, and B. Calder. A pipelined
memory architecture for high throughput network
processors. In ISCA, pages 288–299, 2003.

[25] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.
Wavescalar. In MICRO 36, pages 291–302, Dec. 2003.

[26] Tarari t10 product sheet, http://www.tarari.com/t10.

[27] M. B. Taylor, J. Kim, J. Miller, D. W. laff,
F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson,
W. L. Jae-Wook Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal. The RAW
Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs. IEEE Micro,
22(2):25–35, March 2002.

[28] Xtensa lx2: The fastest processor core ever,
http://www.tensilica.com/products/xtensa/lx.htm.

[29] S. Thoziyoor, N. Muralimanohar, and N. Jouppi.
Cacti 5.0. Technical Report HPL-2007-167, HP
Research Labs, 2007.

[30] N. Tuck, T. Sherwood, B. Calder, and G. Varghese.
Deterministic memory-efficient string matching
algorithms for intrusion detection. In IEEE Infocom,
pages 333–340, 2004.

[31] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a
power-performance simulator for interconnection
networks. In MICRO 35, pages 294–305, 2002.

[32] T. Y. C. Woo. A modular approach to packet
classification: Algorithms and results. In IEEE
Infocom, pages 1213–1222, 2000.


