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Abstract 

This paper proposes a novel path-delay fault emulation 

technique called Replay. We specifically show it allows 

FPGA emulation of digital ICs that adopt timing-

speculation techniques.  For each flip-flop, Replay builds 

a timing-error predictor based on timing-speculation’s 

aggressive clock period. We use a heuristic which 

replicates the combination logic and uses path delays to 

determine which paths will be excited based on the 

aggressive clock period. The timing-error prediction 

accuracy is more than 99% for a set of real workloads on 

the OpenRISC processor and the FPGA emulation speed 

shows practically no slowdown.  We also demonstrate that 

Replay can evaluate the impact of voltage-drop timing-

faults. This fast and accurate timing-error prediction 

enables practical emulation of timing-speculation and 

quantitative analysis early in the design-cycle. 

1. Introduction 

Due to non-ideal technology scaling and aging effects 

VLSI circuits and systems designers must embed 

considerable design guardband to prevent any timing 

failure for future microprocessor designs.  To minimize 

this design guardband, timing-speculation (TS) techniques 

have been recently proposed [1]-[5].  They draw on the 

insight that signal arrival time to timing elements (flip-

flops) strongly depends on input patterns applied to circuits 

and worst-case conditions rarely occur.  Thus, they allow 

aggressive adaptive voltage and frequency scaling 

optimized for the common-case execution and use a 

mechanism that can detect/correct rare timing errors that 

occur during worst-case conditions. 

To understand the usefulness and quantify the impact of TS 

in real processors, a practical metholodgy is required for 

emulating TS at design-time. For a given design and its 
representative workload, we must estimate how often the 

worst-case condition occurs and how effectively TS 

operates the circuit in the common-case condition. 

Considering a digitial circuit as made up of individual flip-

flops and combinational logic, we require: 

A technique that predicts on a cycle-by-cycle basis, 

whether TS results in an error on any flip-flop. 

However, conventional static timing analysis (STA) 

techniques do not support such analysis.  Statistical static 

timing analysis (SSTA) techniques are more accurate and 

estimate the distribution of the worst-case timing across 

different manufactured chips.  They cannot evaluate TS 

techniques, since they do not consider the input data 

dependency of signal arrival time. Finally, functional 

simulation and emulation is not aware of timing 

information and delay-aware annotated functional 

simulation is very slow. 

Thus, we need a different framework that allows analysis 

for common-case behavior to evaluate the effectiveness of 

TS for various input patterns and environmental parameters 

like supply voltage and temperature.  Such a technique 

must satisfy the following three criteria. 

1) Accuracy: It must be accurate in estimating the 

potential timing errors due to TS.  Under- or over-

estimation of TS errors will result in inaccurate 

assessment of the performance and power cost 

associated with TS. 

2) Speed: It must allow fast analysis for various input 

patterns and environmental parameters. 

3) Flexibility: It must be flexibile and allow varying of 

the TS boundary (aggressive clock period) to quantify 

the impact of how aggressively timing-speculation can 

be applied. 

FPGA emulation is fast and allows representative 

workloads to be analyzed for large designs.  It is already 

used for different types of fault analysis including gate-

level modeling for single event upsets, stuck-at faults, and 

transition faults.  Stuck-at faults, for example, can be 

emulated by simply fixing a node to VDD or VSS, and the 

area complexity is acceptable for full-design emulation [6].  

To make TS practial, our approach is to develop support 

for TS evaluation in FPGA emulation.  We call this 

technique Replay and it satisfies the three criteria described 

above. 

Our basic idea is to create a representative logic block (a 

predictor) that captures and emulates the timing behavior 

of the original logic when running at an aggressive TS 

clock period.  Our technique employs a prediction heuristic 

derived from the following observations.  First, every input 

node of a gate can be considered to hold the value from the 

previous cycle until new inputs arrive in a cycle resulting 
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in computation.  Here, a predictor must essentially 

determine when to use a previous or new value to 

propagate it to the subsequent logic stages.  If all path-

delays[7] through an input node are below the TS 

boundary, then it will evaluate to the correct new value.  

Else, it will hold on to its previous value (In the interest of 

simplicity, we have described the node as “holding” the 

previous value.  In reality, the node triggers computation 

based on the previous value).  In our Replay algorithm, we 

attach the correct value for such non-violated input nodes 

of logic gates, while others are computed from the last 

cycle’s start-point values. 

Replay improves upon techniques that have been proposed 

to provide high accuracy and speed.  Compared to 

startpoint-based approximation [8], which ignores all 

internal circuits, Replay is an order of magnitude more 

accurate.  Compared to path-excitation detection [9], it is 

several orders of magnitude lower in area complexity. 

While the focus is on making the analysis for TS practical, 

our Replay approach provides a general mechanism for 

emulating path delays with combinational logic in FPGA.  

It can be used for studying timing-errors caused by 

voltage-drop, wear-out etc. as well. 

In this paper, we present the algorithm, describe its 

integration into the CAD tool-flow, and show results from 

our prototype implementation of the technique.  Our results 

show that Replay provides more than 99% accuracy in 

predicting timing errors in TS for a set of real workloads 

running on the OpenRISC processor.  Meanwhile, that of 

the conventional startpoint-based approximation is about 

40%.  Replay also allows fast FPGA emulation of timing-

fault behavior; it is 300,000× faster than delay-annotated 

gate-level simulation. 

The remainder of this paper is organized as follows. 

Section 2 reviews the fundamentals of TS and Section 3 

describes TS emulation.  Section 4 presents our Replay 

techniques, Section 5 compares to previous approaches, 

and Section 6 presents quantitative evaluation.  Section 7 

shows extensions beyond fine-grained TS, and Section 8 

concludes. 

2. Primer on Timing-Speculation 

The motivation of TS is to remove or reduce design 

guardband required for conservative design using the 

worst-case conditions in determining the clock period.  

Static techniques like frequency binning and per-die 

voltage assignment and control can eliminate the margin 

when the maximum frequency is not necessary.  However, 

they cannot eliminate safety guardband, and cannot exploit 

arrival time dependency on data, environmental parameters, 

and aging effects, which are growing in importance. 

Figure 1(a) shows the basic concept of TS.  It uses an 

aggressive clock period namely TS boundary, which is 

shorter than worst-case arrival time.  In the common case, 

the arrival time is shorter than TS boundary, and it does not 

cause any timing errors.  In case the arrival time is longer 

than the TS boundary for a given input, an error detection 

mechanism detects the timing-error, and the recover phase 

re-executes it with a longer clock-period.  

The Razor flip-flop implements TS at fine-grain [1] while 

the Paceline architecture implements a similar idea at 

coarse-grained processor level [4]. 

Figure 1(b) shows how to determine the TS boundary.  

There is an optimal point in terms of energy consumption.  

If the TS boundary is too long, it cannot eliminate design 

guardband.  If it is too short, the error rate is high, and the 

performance and power overhead associated with recovery 

becomes high.  In TS techniques, some feedback scheme 

(hardware only or with software help) observes the error 

rate and adjusts the TS boundary to set the operation point 

at the optimal error rate.  

However, a fundamental problem is that the TS boundary 

corresponding to the optimal error-rate depends on the 

circuit and applications.  Thus far, researchers have 

estimated this for individual datapath elements like adders 

and multipliers.  Others have built prototype systems that 

show 50% power reduction [2] or 20% frequency increase 

[3] can be achieved.  These quantitative results are specific 

to prototype designs and provide no guidance on how the 

benefit translates to other designs. 

Figure 2(a) shows the state-of-art in the CAD tool-flow in 

how designers can evaluate and use TS.  Only after 

manufacture is it possible to quantitatively evaluate 

improvements from TS.  Estimating TS error rates on a 

HDL design or netlist can guide designers early in the 
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design cycle.  We propose a tool-flow shown in Figure 2(b).  

Here, TS emulation is done on a netlist and designers can 

iterate to improve its benefit or continually understand its 

benefits with design changes.  Note that, TS emulation 

logic is never part of the manufacturing or physical design 

flow.  The TS emulation logic is similar to verification 

assertions but is inserted automatically.  The ability to 

estimate these benefits before manufacturing can greatly 

aid in the practical deployment of TS. 

3. Emulation of Timing-Speculation 

Figure 3 shows an overview of our TS emulation (TSE) 

framework that can simulate TS at RTL level.  The two 

high-level inputs to such a framework are the RTL of the 

design and a clock-frequency that represents the aggressive 

TS clock.  The output is simulation of the circuit and 

cycle-by-cycle trace of when errors occur due to TS.  In 

the figure, a digital circuit is abstracted as a set of flip-

flops with combinational logic.  Consider a single 

startpoint (S), endpoint (E), and the logic in between (C).  

One way to implement TSE is to develop a sparse 

representation of C, say C' such that for all inputs, the 

output of C' matches the logical value that would be 

available when the circuit C operates at the aggressive TS 

clock.  We call this block the TS emulation block (or TSE 

block).  In the figure, we show a detector unit that 

compares C' to C every cycle and reports when a TS error 

has occurred.  When this reports true, a TS error has 

occurred, when it reports false, no TS error has occurred.  

The emulator combined with this simple comparator gives 

us the TS predictor. 

The goal of this paper is to develop an algorithm that can 

produce such representative circuits given the RTL and TS 

clock as input.  In a TSE framework, the three important 

criteria are accuracy, speed, and flexibility.  Accuracy 

measures how closely to real TS behavior the TS predictor 

behaves.  In evaluating a TSE framework, we have four 

cases to consider: true positives, true negatives, false 

positives and false negatives.  These can be determined by 

comparing the TSE framework to a reference TS timing 

detector (either using a post-manufacture prototype or 

detailed delay-aware simulation). True positive and true 

negatives are cases when the TS predictor reports true (or 

false) and the reference TS timing-error detector reports 

true (or false) respectively.  False positives are defined as 

cases when the TS predictor reports a timing error (true) 

while in the reference TS hardware no timing error occurs 

(false).  False negatives occur when the TS predictor 

misses a timing error and reports false, while TS hardware 

detects this error with a true.  The goal of a TS predictor is 

to minimize both false positives and false negatives. 

To build effective TS predictors, we draw inspiration from 

prior approaches from path-delay testing and path-delay 

emulation [10][11].  In path-delay testing, the circuit is 

analyzed with timing information, and the goal is to 

develop inputs to the circuit that sensitize different timing 

paths, such that functional correctness is violated if there is 

a timing error.  For TS prediction, we use this same insight, 

but create a single representative circuit that captures the 

behavior of the circuit up to the aggressive TS clock 

boundary instead of creating a set of test inputs.  This is 

more complex than path-delay analysis alone because to 

develop an effective predictor we need to keep track of 

values from the “previous” cycle to correctly emulate a 

race behavior between the arrival times of values and the 

fast TS clock. 

4. Replay Framework 

This section describes our Replay algorithm and how it can 

be implemented in a logic synthesis, static timing analysis, 

and FPGA emulation framework. 

4.1. Algorithm 

Figure 4 shows an abstract circuit and its corresponding 

Replay generated TSE block to illustrate our basic insight.  

Our key insight is that the longest path-delay represents the 

delay of all paths through an input-node of a gate and an 

endpoint.  We explain the algorithm by describing how it 

constructs the TSE block. 
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Figure 2.  Design flow of timing-speculation. 
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1) We perform STA on the original gate-net to determine 

path delays for different endpoints. 

2) For each endpoint, the original combinational logic is 

replicated to form the logic part of the TSE block. 

3) The startpoint signals of the logic part of TSE block 

are the previous cycle’s startpoint signals, resulting in 

a logically redundant module that is one cycle behind 

the original. 

4) Based on the provided TS boundary and the path-

delay analysis, we modify the input nodes of some 

gates in the TSE block.  If the arrival times of all paths 

through an input node and the endpoint are earlier 

than the given TS boundary, the node is tied to the 

original.  Here, the endpoint value of the TSE block is 

the predicted speculation value. 

Figure 5(a) shows an example circuit with the delay of 

each gate and the maximum path delay of each input node 

of the gates.  This path delay is the sum of delays of gates 

that feed into this input and delays of gates driven by that 

gate.  Figure 5(b) shows the circuit with the TSE block 

when the TS boundary is 32ps.  Here, input nodes of three 

gates (P, Q, and R) are replaced because their maximum 

delays are less than 32ps, and the replaced gates emulate 

logical masking behavior for the prediction of the endpoint 

value, in contrast to the startpoint-based approximation 

approach as shown in later. 

The core advantage of this algorithm is that it can represent 

cumulative mask probability.  For the example in Figure 5, 

the probability that the endpoint is not masked by met 

paths is the product of non-mask probability in gate Q and 

that in gate R.  Replay simulates this behavior accurately as 

the actual circuit works, and this lowers false-positive rate, 

which is important for TS emulation as described above. 

Note that most gates are common among TSE blocks, and 

a logic synthesis for FPGA emulation often removes the 

redundant circuits although the number of TSE blocks is 

the same as that of endpoints.  Thus, our technique results 

in only a small growth in logic complexity as shown in 

Section 6.5. 

Replay was motivated by designing an emulation 

framework for TS. What we developed in the end is a 

general and universal technique for timing-aware emulation 

with combinational logic. 

4.2. Implementation 

Figure 6 shows how our Replay algorithm can be 

integrated with a standard CAD tool flow.  Logic synthesis 

generates the gate-net on which we run a timing analysis 

step to determine the maximum arrival times for every 

combination of endpoints and input nodes of logic-gates.  

These delays are input to the Replay TSE Generator, which 

outputs an RTL that predicts the endpoint value based on 

the given TS boundary.  For each gate, it compares the 

path delay on each port and TS boundary to decide if that 
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port must be connected to the original circuit or left as is. 

The delay analysis through STA and the generation of the 

predictor logic modules are performed only once for a 

given TS boundary.  In a typical CAD flow, we expect this 

generator to be embedded in an STA tool. 

During functional emulation, the violation of the TS 

boundary will be determined only through the logical value 

of the TSE block for applied input patterns.  No individual 

gate delay calculations are required during emulation. 

Flexibility: Replay can generate prediction RTL for any 

arbitrary TS boundary without any restrictions. Hence, it 

can satisfy one of the three required criteria of flexibility 

shown in Section 1.  

4.3. Computational Complexity of STA 

We discuss below the computational complexity of 

embedding this technique into an STA tool.  Here we are 

considering the complexity of generating the TSE block. 

The actual logic simulation or emulation of the netlist with 

the TSE block shows practically no slowdowns.  Consider 

a circuit with e endpoints.  For every endpoint, the fan-in 

tree (n nodes) can be represented as a directed acyclic 

graph rooted at start-points.  We consider the reverse 

topological sorted list of nodes of this graph which will 

start with the end-point (which can be constructed with 

O(n) time complexity).  This list is serially traversed, and 

for each node we increment the path-delay of all nodes in 

its transitive fan-out by the node’s gate-delay.  This phase 

is also O(n) time complexity.  This gives the required path 

delays.  The total time complexity is O(n*e). 

5. Comparison with Past Approaches 

Figure 7 shows the startpoint-based approximation [8], 

which is the only other proposed solution that can realize 

full-design path-delay fault emulation on FPGA.  The main 

idea of this technique is that timing errors occur at an 

endpoint only when the value of at least one violated 

startpoint changes (the violated startpoint means the 

startpoint that contains at least one timing-violated path to 

the endpoint).  It implements value change detector for 

every violated startpoint, and the endpoint holds last 

cycle’s value when any of startpoint values change.  The 

complexity is low enough for full-design emulation 

because the number of violated startpoints and endpoints 

only affects the complexity. 

However, the accuracy of the startpoint-based 

approximation is low because of two reasons.  First, the 

error injection scheme on endpoint of holding last cycle’s 

value is a rough approximation.  This scheme only works 

when there is no value change at an endpoint before TS 

boundary, and it is too optimistic because general 

waveform at an endpoint contains many value changes 

before TS boundary like Figure 1(a).  The second reason is 

that it ignores the internal path structure.  Generally, the 

timing-error rate significantly depends on how frequently 

the timing-violated paths are logically masked by timing-

met paths.  In contrast to our Replay technique, the 

startpoint-based approximation cannot take this mask effect 

into account.  For the example of Figure 5, since the 

maximum path delays of both startpoints are more than TS 

boundary of 32ps (35ps for startpoint A and 40ps for 

startpoint B), the value changes of startpoint “A” cannot 

propagate to the predicted endpoint in one cycle.  As a 

result, the prediction accuracy is not practical for TS 

emulation because it contains a lot of false-positives as 

shown in our evaluation results in Section 6. 

Figure 8 shows the other approach of path-excitation 

detection [9], which was originally proposed for evaluating 

delay-testing coverage.  It prepares path excitation 

condition detectors in RTL for violated paths, and realizes 

very high accuracy. 

However, the implementation area on FPGA is unrealistic 

for full-design emulation because it is proportional to the 

number of paths to be detected.  The experimental results 

in [9] shows that the emulation of 200 paths requires 2× 

and that of 400 paths requires 3× area resources compared 

to the original.  This limitation is acceptable for the 

grading of delay-test because it only needs to analyze some 

longest paths.  In contrast, for the emulation of TS, it is 

necessary to emulate the timing-fault behavior of all paths 

whose arrival time is later than the given TS boundary, 

which can be even 0.5× of the worst-case arrival time.  

Generally, the number of such paths is exponential.  In our 
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experiment, a 16-bit multiplier has 175 billions of paths.  

Therefore, this approach becomes impractical for circuit 

analysis employing TS techniques. 

Meanwhile, the worst-case area of the Replay TSE block is 

less than 6× of the original as shown in the evaluation 

results in Section 6.5.  Thus, it is acceptable for the FPGA-

based fault-emulation purpose.  Note that the TSE block 

does not introduce any area penalty to the design since it is 

never synthesized into manufactured hardware. 

6. Evaluation 

In this section, we evaluate Replay on two of the three 

required criteria of accuracy and speed.  Section 4.2 

discussed flexibility.  Speed is evaluated in Section 6.5, 

and other sections are for accuracy evaluation.  Section 6.1 

describes the experimental framework and metrics.  

Section 6.2 evaluates the basic characteristics of the 

Replay algorithm using the ISCAS85 benchmark circuits.  

In Section 6.3, we evaluate with OpenRISC running full 

applications.  In Section 6.4, we describe a detailed 

performance characterization of Replay. 

6.1. Experimental Framework 

Figure 9(a) shows our experimental prototype framework.  

In addition to the emulator RTL, we perform detailed back-

annotated gate delay simulation to determine accurately 

when timing-errors occur.  We check the timing-error 

signal from the original gate-net with back-annotated delay 

and that from the emulator RTL.  The actual timing-error 

signal asserts when the arrival time of a cycle is later than 

the given TS boundary.  The emulated timing-error signal 

asserts if a predicted value of TSE block is different from 

the correct value of original logic.  We evaluated every 

endpoint for which the worst-case arrival time is later than 

the given TS boundary. 

Figure 9(b) shows the metrics related to accuracy, which 

are evaluated for each timing-violated endpoint.  Error rate 

is the ratio of cycles for which the error signal of original 

gate-net asserts.  Accuracy means the ratio of cycles for 

which the emulated error signal is the same as the actual 

error signal.  We also show false positive and false 

negative separately.  To study flexibility, we look at many 

circuits and different TS boundaries. 

Experimental setup: We used the Synopsys 90nm 

technology library, Synopsys Design Compiler for the 

synthesis and the static timing analysis, and Synopsys VCS 

for simulation.  The delay information for the gate-net 

simulation (.sdf file) was generated by Design Compiler.  

The timing constraint was tight enough to synthesize all 

circuits at their maximum operating frequency. 

The processing resources for evaluating the OpenRISC 

design are measured on a 2GHz CPU and 64bit Linux.  

The processing time of the TSE RTL generator itself is 

very short (about 7sec).  Since this experiment used 

report_timing command, the STA and report analysis 

consumed about 5 hours.  An STA tool implementing the 

algorithm should consume less time as described in Section 

4.3.  The maximum memory usage is about 500MB. 

6.2 ISCAS85 Benchmark Circuits 

We evaluate the basic characteristics of Replay compared 

to startpoint-based approximation for the ISCAS85 

benchmark circuits [12].  To study aggressive and 

conservative TS, we show the results for TS boundary set 

to 0.8× and 0.9× of the worst-case arrival time.  The input 

data are random for every startpoint, and the length of the 

test vector is 64Kcycles.  We evaluate the average of the 

metrics for all endpoints of each benchmark circuit, and we 

evaluate the geometrical mean of the metrics for the 

endpoints of overall benchmark circuits in each timing-

error rate range (the metric value of 0 is excluded for the 

calculation of geometrical mean). 

Table 1 shows the evaluation results for each benchmark 

circuit.  Here we report error rate for each end-point. 

Compared to the conventional startpoint-based 

approximation, Replay shows significant improvements on 

the accuracy (about 2×) and the false-positive rate (about 

10×) for most benchmark circuits.  The accuracy is 

relatively low in the c3540 and c6288 benchmarks, which 

are binary-coded decimal arithmetic ALU and a 16-bit 

multiplier, respectively; both are complex data-path 

circuits, in which Replay prediction likely misses because 

of its approximation as described in Section 6.4.  Even in 

these cases, Replay outperforms startpoint-based 

approximation. 

Table 2 shows a summary across all endpoints classified 

according to error-rate.  The results for this table are 

obtained by running experiments with 0.8× and 0.9× TS 

boundaries.  Very high error rates are not important 

because a real system would not operate at this point.  The 

range of less than 1% is the typical operating point.  In this 
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Figure 9.  Evaluation overview. 
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range, accuracy is almost 2× better, the false-positive rate 

is 60× better, and false negative rate is 2× better than 

startpoint-based. 

6.3. OpenRISC with Full Application 

To study Replay’s effectiveness in a full design, we applied 

it to the OpenRISC processor: a 32bit MIPS-like, 5-stage 

RISC processor [13], which contains 4345 startpoints and 

2745 endpoints.  We ran three full applications namely: 

H.264 video decoding, G.721 speech decoding, and JPEG 

image decoding.  For the emulation of TS, we evaluate the 

cycle-based metrics of OpenRISC when the TS boundary is 

changed from 0.5× to 0.9× of the worst-case arrival time.  

For the cycle-based metrics, if timing-error occurs at any 

one endpoint, the timing-error occurs at the cycle.  

Therefore, the false-positive detections of each individual 

endpoint can cause serious degradation of cycle-based 

error detection accuracy. 

Table 3 shows Replay's accuracy results for this design.  

We do not show false-negative rate because most of them 

are nearly 0.  For the TS boundary range of 0.6× to 0.9×, 

where error-rates are 1%-3%, which is the practical range 

for TS, Replay performs at more than 99% accuracy 

Our evaluation of the ISCAS85 circuits was a stress test of 

the technique, since we varied inputs randomly every cycle. 

Hence, the accuracy of Replay was lower for those circuits 

than the full OpenRISC design, even though the latter is 

more complex. 

6.4. Source of Misprediction 

We now look at Replay's behavior in detail for one 

application to understand how well our heuristic works. 

Figure 10(a) shows the actual and estimated error rate of 

H.264 decoder when TS boundary is changed from 0.1× to 

0.9×.  Replay clearly outperforms startpoint-based 

estimation and is very close to the real error rate for 0.1× 

to 0.7×.  However, for the TS boundary of 0.8× and 0.9×, 

Replay's estimated error rate is much higher than the actual 

error rate.  This is because of false-positives in the 32-bit 

multiplier.  To confirm this, we exclude 64 endpoints of 

the 32bit multiplier for the evaluation of cycle-based 

metrics.  Figure 10(b) shows the result when these false-

positive problems are removed. 

Table 3.  OpenRISC evaluation results (cycle-based). 

Accuracy (%) False-Positive 

Rate (%) 

App. TS 

Bound

ary 

Error 

Rate 

(%) Rep [8] Rep [8] 

0.5× 10.3 81.4 42.9 17.9 57.1 

0.6× 2.2 99.8 46.9 0.2 53.1 

0.7× 1.5 99.9 47.8 0.1 52.2 

0.8× 0.0 98.9 54.0 1.1 46.0 

0.9× 0 98.9 77.6 1.1 22.4 

H.264 

Dec. 

(28M 

cycles) 

g.m. of 0.6-0.9 99.4 55.4 0.4 41.1 

0.5× 17.0 87.8 28.7 10.8 71.3 

0.6× 2.3 99.8 18.2 0.1 81.8 

0.7× 1.5 99.6 17.4 0.4 82.6 

0.8× 0 98.8 22.3 1.2 77.7 

0.9× 0 98.8 59.3 1.2 40.7 

G.721 

Dec. 

(3M 

cycles) 

g.m. of 0.6-0.9 99.3 25.4 0.5 68.0 

0.5× 15.9 83.2 38.0 16.0 62.0 

0.6× 2.6 99.6 34.7 0.4 65.3 

0.7× 1.6 99.5 33.8 0.5 66.2 

0.8× 0.0 98.9 37.9 1.1 62.1 

0.9× 0 98.9 71.3 1.1 28.7 

JPEG 

Dec. 

(6M 

cycles) 

g.m. of 0.6-0.9 99.2 42.2 0.7 52.7 

 

Table 2.  Results for each timing-error rate range 

(geometrical mean of endpoints). 

Accuracy 

(%) 

False-Pos. 

(%) 

False-Neg. 

(%) 

Range of  

Timing-Error 

Rate (x) (%) Rep [8] Rep [8] Rep [8] 

10 < x <= 100 64.8 53.7 15.7 29.1 8.69 12.6 

1 < x <= 10 87.3 54.7 5.04 41.0 0.71 1.82 

0.1 < x <= 1 97.0 52.2 0.84 46.6 0.06 0.18 

0.01 < x <= 0.1 98.7 52.4 0.84 43.9 0.01 0.02 

0 < x <= 0.01 98.6 53.0 0.70 46.1 0.00 0.00 

x = 0 97.9 61.2 0.37 30.8 - - 

ALL Range 92.4 54.1 1.33 40.7 0.11 0.20 

TS Important 

Range (x <= 1) 

97.8 54.0 0.71 42.3 0.03 0.05 

 

Table 1.  Evaluation results with ISCAS85 benchmark circuits (average of endpoints). 

Accuracy (%) False-Positive Rate(%) False-Negative Rate(%) Benchmark Timing- 

Error 

Rate (%) 

Replay Startpoint-

based [8] 

Replay Startpoint-

based [8] 

Replay Startpoint-

based [8] 

TS boundary 0.8× 0.9× 0.8× 0.9× 0.8× 0.9× 0.8× 0.9× 0.8× 0.9× 0.8× 0.9× 0.8× 0.9× 

c432     6.4 4.5 94.6 99.2 53.7 56.5 4.1 0.7 42.2 40.4 1.3 0.1 4.1 3.1 

c499     0.3 0.0 99.3 99.0 50.0 50.0 0.7 1.0 49.8 50.0 0.1 0.0 0.2 0.0 

c880     9.9 3.1 90.9 94.8 59.9 57.0 8.1 5.1 36.6 41.8 1.0 0.1 3.5 1.3 

c1355   0.4 0.0 99.4 99.1 50.0 50.0 0.5 0.9 49.8 49.9 0.1 0.0 0.2 0.0 

c1908   0.2 0.0 99.5 99.1 51.2 52.8 0.4 0.9 48.7 47.2 0.1 0.0 0.1 0.0 

c2670   3.2 0.8 89.5 86.1 74.3 66.9 9.9 13.7 24.3 32.7 0.6 0.2 1.3 0.4 

c3540   15.9 2.6 75.0 77.0 61.8 55.2 17.7 21.8 30.5 43.6 7.4 1.2 7.7 1.2 

c5315   1.0 0.2 96.9 94.4 60.4 58.9 2.8 5.5 39.2 41.0 0.3 0.1 0.5 0.1 

c6288   33.6 4.7 70.3 80.6 51.9 52.3 11.6 16.6 31.3 45.4 18.1 2.9 16.8 2.3 

c7552   6.2 1.1 90.5 92.6 55.9 57.1 7.5 6.9 41.0 42.4 2.0 0.5 3.0 0.6 
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We now describe why the multiplier results in high false 

positives.  The prediction miss is due to the approximate 

heuristic assumption that the longest path-delay represents 

the delay of all paths through an input-node of a gate and 

an endpoint.  If the arrival times of such paths are widely 

distributed as shown in complex circuits like multiplier, the 

assumption can likely be false. 

Figure 11 shows an example circuit and the worst-case 

arrival time for each input nodes of gates.  Replay does not 

replace any nodes when TS boundary is 25ps, and no 

signal change of startpoints can propagate to endpoint in 

one cycle.  However, if the signal (A, B, C, D) changes 

from (1, 1, 1, 1) to (0, 1, 1, 1), the node X changes from 1 

to 0 at 10ps and the endpoint changes from 1 to 0 at 20ps.  

Therefore, in this case, the change of startpoint A can 

propagate to endpoint in one cycle, and the prediction of 

Replay is not correct. 

In future work, we will address heuristics to reduce these 

miss rates further.  A solution that does not use worst-case 

delay but uses typical-case delay as a representative of 

path-delay through an input-node of gates and the endpoint 

is promising.  For the example of Figure 11, the average 

delay from startpoints to node X for every possible value 

change patterns of startpoint A, B, and C is about 14ps.  If 

Replay uses this value for the representative path-delay of 

node X instead of the worst-case delay of 20ps, the 

replacement occurs because 14ps+10ps is less than the TS 

boundary, and the prediction works correctly in the above 

example case. 

6.5. Logic Complexity and Speed 

Table 4 shows the re-synthesized area of TSE block RTL 

(including the original logic) relative to the original RTL.  

The area is less than 6× for all benchmarks.  For logic 

simulation, this resulted in practically no slowdowns and it 

is practical for FPGA emulation. 

Table 5 shows the characteristics of our FPGA 

implementation of the OpenRISC processor with TSE at a 

TS boundary of 0.75×.  The operating frequency of Replay 

TS emulator is 30MHz, while that of the original design is 

40MHz, resulting in 25% emulation slowdown.  It is 

300,000× faster than gate-level simulation with back-

annotated delay, which executes at 100Hz. 

7. Beyond Fine-Grained TS 

In this section, we discuss some examples of how Replay 

can be used for purposes beyond fine-grained TS.  We 

discuss two coarse-grained TS techniques, their emulation 

requirements, and how they can be modeled using the 

Replay framework. 

Error Rate[%]

0.01

0.1

1

10

100

0.1× 0.2× 0.3× 0.4× 0.5× 0.6× 0.7× 0.8× 0.9×
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Replay

Startpoint-based [8]

Timing-Speculation Boundary  
(a) Overall 

Error Rate[%]

0.01

0.1

1

10

100

0.1× 0.2× 0.3× 0.4× 0.5× 0.6× 0.7× 0.8× 0.9×

Actual

Replay

Startpoint-based [8]

Timing-Speculation Boundary  
(b) Exclude 64 endpoints of 32bit multiplier 

Figure 10.  Actual and emulated timing-error rate 

Table 5.  Summary of FPGA implementation. 

FPGA Xilinx Virtex-5 XC5VLX110T-1 

Design Tool Xilinx Platform Studio EDK 10.1.03 

Design  

Components 

OpenRISC (predictor RTL), UART, 

microblaze, PLB, DRAM controller 

Area 13,471 out of 17,280 (occupied slices) 

Operating 

Frequency 

30MHz (predictor RTL) 

120MHz (microblaze, PLB) 

 

Table 4.  Area of predictor (relative to the original). 

TS Boundary Benchmark 

 0.5× 0.6× 0.7× 0.8× 0.9× 

c432     2.3 2.3 2.8 2.6 1.8 

c499     1.7 1.7 1.7 2.0 2.3 

c880     1.2 1.6 1.5 1.4 1.4 

c1355   1.7 1.7 1.8 2.4 2.8 

c1908   1.8 2.1 2.9 2.7 2.2 

c2670   2.1 2.0 2.1 2.1 1.8 

c3540   2.6 2.6 2.6 2.6 2.1 

c5315   1.8 1.8 1.8 1.8 1.6 

c6288   2.5 3.1 3.8 4.2 4.1 

c7552   2.0 2.1 2.3 2.3 2.2 

OpenRISC  3.1 3.6 4.0 4.9 5.5 
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Figure 11.  Source of misprediction (example). 
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7.1. Emulation of Coarse-Grained TS 

Architecture-level TS [4][5]:  This type of TS does not 

detect timing-errors on individual flip-flops.  Instead, 

architecture-level techniques are used to detect timing-

errors.  Hence, in contrast to cycle-level TS [1]-[3], the 

emulation needs to propagate timing-errors that occur at 

the circuit-level to successive pipeline stages in the circuit. 

Error-tolerant TS:  Some class of applications such as 

video decoding, image processing, and graphics do not 

necessarily need 100% correctness in the application 

output.  For such applications, relaxed fault-tolerance 

allowing acceptable errors has been proposed [14]-[16].  

We study the effect of timing errors on such applications 

hence we refer to this study as error-tolerant TS.  We need 

an emulator that can analyze the impact of such errors on 

application quality such as PSNR of degraded images. 

These TS techniques can be studied using the Replay 

framework as their needs are mostly similar to fine-grained 

TS.  They need fast simulation speed and the capability to 

emulate a number of timing-error patterns.  While fine-

grained TS requires a per-cycle timing error trace, here we 

need to propagate timing-errors in the circuit to understand 

the long-term impact on the program.  With a simple 

modification to how the Replay TSE block is used, we can 

model such fault propagation. 

7.2. Fault Modeling 

For this case study, we consider voltage-drop faults.  The 

behavior of voltage-drop fault changes along the time-

domain.  It causes global delay increase only when the 

supply voltage drops because of effects such as rush-

current or noise. 

Replay can emulate this type of fault by selectively 

injecting faults.  Figure 12(a) shows the modeling of 

timing faults due to external voltage drop.  This is modeled 

by setting an aggressive TS boundary in voltage drop 

periods.  In our analysis, to emulate the impact of the 

voltage drop on the path delays, the TS boundary is set to 

0.75× of the worst-case arrival time in the drop period.  

This is a simple model which we use for our case study, 

more sophisticated models can be incorporated into our 

framework.  

Figure 12(b) shows the block diagram of the fault 

implementation.  The combinational logic of the predictor 

RTL code outputs the correct values of endpoints for the 

interval period and the predicted values for the drop period.  

The external voltage-drop flag signal selects which 

endpoint values are used for the output ports and the input 

nodes of F/Fs.  This final selection multiplexer is the only 

difference to our previous fine-grained TS system shown in 

Figure 3.  It replaces the comparator, which outputs a 

timing-error signal. 

7.3. FPGA Experiment 

For evaluation, we consider our H.264 decoder executing 

on the OpenRISC processor when voltage-drop fault is 

injected, and we analyzed how the output image is 

degraded compared to the original. 

Figure 13 shows the experimental results when the drop 

period and the interval period are changed.  The vertical 

axis is the length of interval period, and the horizontal axis 

is the length of drop period.  Each point in the graph 

represents one full execution of the program (QCIF 

3frames), demonstrating the speed of our framework.  

Each point is labeled Pass, Correct, Ignorable, Acceptable, 

Fail, or Crash.  

Emulating the architecture mask effect, Replay shows the 

impact on architecture-level TS systems.  Figure 13 

contains a lot of “correct” points.  For such patterns, 

timing-errors are masked and not shown in the application-

level output and represent how an architecture-level TS 

system will behave. 

For the emulation of error-tolerant TS, Replay can analyze 

the impact of timing-errors on application-level quality.  In 

Figure 13, there are a number of “ignorable” and 
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Time

drop

period

interval

period

 
(a) Voltage-drop fault model 
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(b) Implementation 

Figure 12.  Fault implementation. 
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Figure 13.  FPGA Experiment results. 
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“acceptable” points, for which PSNR of the output image 

is more than 50dB and more than 40dB of the original 

output, respectively.  These outputs are of acceptable 

application quality. 

These results show that the Replay is flexible and can be 

generalized to other timing fault modeling needs.  Replay 

can also emulate wear-out faults by adjusting delay of each 

gate before STA.  For example, the delay increase caused 

by hot-carrier injection (HCI) is proportional to how many 

times the input signal has switched, and it can be estimated 

by gate-level simulation of typical workload in advance. 

8. Conclusion 

We have developed a novel path-delay fault emulation 

framework called Replay. We have specifically applied it 

for evaluating the effectiveness of timing-speculation 

techniques.  The generated endpoint-value predictor RTL 

code acts as a functional simulator of circuits employing 

timing-speculation techniques.  Replay satisfies the 

following three required criteria. 

1) Accuracy: Replay is more than 99% accurate for the 

timing-error prediction of a set of real workloads on 

the OpenRISC processor, while conventional 

startpoint-based approximation is about 40% accurate. 

2) Speed: Replay algorithm produces a simple timing 

emulation logic block which is amenable to FPGA 

emulation.   As a result, with FPGA acceleration 

Replay is 300,000× faster than gate-level simulation 

with back-annotated delay. 

3) Flexibility: Replay framework can generate predictor 

RTL for arbitrary TS boundaries. 

Moreover, for the analysis of coarse-grained timing-

speculation techniques, Replay can emulate how timing-

errors caused by path-delay faults propagate circuits and 

result in failures in system-level.  In addition, Replay can 

emulate any type of timing-faults that can be represented 

as change in gate delay. 

The accurate, fast, and flexible path-delay fault emulation 

framework enables practical evaluation of the effectiveness 

of timing-speculation techniques. 
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