
Paper 21.3 INTERNATIONAL TEST CONFERENCE 1

978-1-4244-4867-8/09/$25.00 ©2010 IEEE

A Fast and Highly Accurate Path Delay Emulation Framework

for Logic-Emulation of Timing Speculation

Shuou Nomura, Karthikeyan Sankaralingam, Ranganathan Sankaralingam1

University of Wisconsin-Madison, Madison, USA
1Cadence Design Systems Inc., San Jose, USA

Email: {nomura, karu}@cs.wisc.edu, srangana@cadence.com

Abstract

This paper proposes a novel path-delay fault emulation

technique called Replay. We specifically show it allows

FPGA emulation of digital ICs that adopt timing-

speculation techniques. For each flip-flop, Replay builds

a timing-error predictor based on timing-speculation’s

aggressive clock period. We use a heuristic which

replicates the combination logic and uses path delays to

determine which paths will be excited based on the

aggressive clock period. The timing-error prediction

accuracy is more than 99% for a set of real workloads on

the OpenRISC processor and the FPGA emulation speed

shows practically no slowdown. We also demonstrate that

Replay can evaluate the impact of voltage-drop timing-

faults. This fast and accurate timing-error prediction

enables practical emulation of timing-speculation and

quantitative analysis early in the design-cycle.

1. Introduction

Due to non-ideal technology scaling and aging effects

VLSI circuits and systems designers must embed

considerable design guardband to prevent any timing

failure for future microprocessor designs. To minimize

this design guardband, timing-speculation (TS) techniques

have been recently proposed [1]-[5]. They draw on the

insight that signal arrival time to timing elements (flip-

flops) strongly depends on input patterns applied to circuits

and worst-case conditions rarely occur. Thus, they allow

aggressive adaptive voltage and frequency scaling

optimized for the common-case execution and use a

mechanism that can detect/correct rare timing errors that

occur during worst-case conditions.

To understand the usefulness and quantify the impact of TS

in real processors, a practical metholodgy is required for

emulating TS at design-time. For a given design and its
representative workload, we must estimate how often the

worst-case condition occurs and how effectively TS

operates the circuit in the common-case condition.

Considering a digitial circuit as made up of individual flip-

flops and combinational logic, we require:

A technique that predicts on a cycle-by-cycle basis,

whether TS results in an error on any flip-flop.

However, conventional static timing analysis (STA)

techniques do not support such analysis. Statistical static

timing analysis (SSTA) techniques are more accurate and

estimate the distribution of the worst-case timing across

different manufactured chips. They cannot evaluate TS

techniques, since they do not consider the input data

dependency of signal arrival time. Finally, functional

simulation and emulation is not aware of timing

information and delay-aware annotated functional

simulation is very slow.

Thus, we need a different framework that allows analysis

for common-case behavior to evaluate the effectiveness of

TS for various input patterns and environmental parameters

like supply voltage and temperature. Such a technique

must satisfy the following three criteria.

1) Accuracy: It must be accurate in estimating the

potential timing errors due to TS. Under- or over-

estimation of TS errors will result in inaccurate

assessment of the performance and power cost

associated with TS.

2) Speed: It must allow fast analysis for various input

patterns and environmental parameters.

3) Flexibility: It must be flexibile and allow varying of

the TS boundary (aggressive clock period) to quantify

the impact of how aggressively timing-speculation can

be applied.

FPGA emulation is fast and allows representative

workloads to be analyzed for large designs. It is already

used for different types of fault analysis including gate-

level modeling for single event upsets, stuck-at faults, and

transition faults. Stuck-at faults, for example, can be

emulated by simply fixing a node to VDD or VSS, and the

area complexity is acceptable for full-design emulation [6].

To make TS practial, our approach is to develop support

for TS evaluation in FPGA emulation. We call this

technique Replay and it satisfies the three criteria described

above.

Our basic idea is to create a representative logic block (a

predictor) that captures and emulates the timing behavior

of the original logic when running at an aggressive TS

clock period. Our technique employs a prediction heuristic

derived from the following observations. First, every input

node of a gate can be considered to hold the value from the

previous cycle until new inputs arrive in a cycle resulting

Paper 21.3 INTERNATIONAL TEST CONFERENCE 2

in computation. Here, a predictor must essentially

determine when to use a previous or new value to

propagate it to the subsequent logic stages. If all path-

delays[7] through an input node are below the TS

boundary, then it will evaluate to the correct new value.

Else, it will hold on to its previous value (In the interest of

simplicity, we have described the node as “holding” the

previous value. In reality, the node triggers computation

based on the previous value). In our Replay algorithm, we

attach the correct value for such non-violated input nodes

of logic gates, while others are computed from the last

cycle’s start-point values.

Replay improves upon techniques that have been proposed

to provide high accuracy and speed. Compared to

startpoint-based approximation [8], which ignores all

internal circuits, Replay is an order of magnitude more

accurate. Compared to path-excitation detection [9], it is

several orders of magnitude lower in area complexity.

While the focus is on making the analysis for TS practical,

our Replay approach provides a general mechanism for

emulating path delays with combinational logic in FPGA.

It can be used for studying timing-errors caused by

voltage-drop, wear-out etc. as well.

In this paper, we present the algorithm, describe its

integration into the CAD tool-flow, and show results from

our prototype implementation of the technique. Our results

show that Replay provides more than 99% accuracy in

predicting timing errors in TS for a set of real workloads

running on the OpenRISC processor. Meanwhile, that of

the conventional startpoint-based approximation is about

40%. Replay also allows fast FPGA emulation of timing-

fault behavior; it is 300,000× faster than delay-annotated

gate-level simulation.

The remainder of this paper is organized as follows.

Section 2 reviews the fundamentals of TS and Section 3

describes TS emulation. Section 4 presents our Replay

techniques, Section 5 compares to previous approaches,

and Section 6 presents quantitative evaluation. Section 7

shows extensions beyond fine-grained TS, and Section 8

concludes.

2. Primer on Timing-Speculation

The motivation of TS is to remove or reduce design

guardband required for conservative design using the

worst-case conditions in determining the clock period.

Static techniques like frequency binning and per-die

voltage assignment and control can eliminate the margin

when the maximum frequency is not necessary. However,

they cannot eliminate safety guardband, and cannot exploit

arrival time dependency on data, environmental parameters,

and aging effects, which are growing in importance.

Figure 1(a) shows the basic concept of TS. It uses an

aggressive clock period namely TS boundary, which is

shorter than worst-case arrival time. In the common case,

the arrival time is shorter than TS boundary, and it does not

cause any timing errors. In case the arrival time is longer

than the TS boundary for a given input, an error detection

mechanism detects the timing-error, and the recover phase

re-executes it with a longer clock-period.

The Razor flip-flop implements TS at fine-grain [1] while

the Paceline architecture implements a similar idea at

coarse-grained processor level [4].

Figure 1(b) shows how to determine the TS boundary.

There is an optimal point in terms of energy consumption.

If the TS boundary is too long, it cannot eliminate design

guardband. If it is too short, the error rate is high, and the

performance and power overhead associated with recovery

becomes high. In TS techniques, some feedback scheme

(hardware only or with software help) observes the error

rate and adjusts the TS boundary to set the operation point

at the optimal error rate.

However, a fundamental problem is that the TS boundary

corresponding to the optimal error-rate depends on the

circuit and applications. Thus far, researchers have

estimated this for individual datapath elements like adders

and multipliers. Others have built prototype systems that

show 50% power reduction [2] or 20% frequency increase

[3] can be achieved. These quantitative results are specific

to prototype designs and provide no guidance on how the

benefit translates to other designs.

Figure 2(a) shows the state-of-art in the CAD tool-flow in

how designers can evaluate and use TS. Only after

manufacture is it possible to quantitatively evaluate

improvements from TS. Estimating TS error rates on a

HDL design or netlist can guide designers early in the

Aggressive Clock

Endpoint Value

(Common Case)

Worst-Case

Arrival Time

Timing-Speculation

Boundary

Endpoint Value

(Worst Case)

Timing-Error

(a) Waveform

error rate

timing

speculation

boundaryenergy optimal point

(around 1% error rate) operation range

operation

point

worst-case

arrival time

(b) Operation

Figure 1. Concept of timing speculation.

Paper 21.3 INTERNATIONAL TEST CONFERENCE 3

design cycle. We propose a tool-flow shown in Figure 2(b).

Here, TS emulation is done on a netlist and designers can

iterate to improve its benefit or continually understand its

benefits with design changes. Note that, TS emulation

logic is never part of the manufacturing or physical design

flow. The TS emulation logic is similar to verification

assertions but is inserted automatically. The ability to

estimate these benefits before manufacturing can greatly

aid in the practical deployment of TS.

3. Emulation of Timing-Speculation

Figure 3 shows an overview of our TS emulation (TSE)

framework that can simulate TS at RTL level. The two

high-level inputs to such a framework are the RTL of the

design and a clock-frequency that represents the aggressive

TS clock. The output is simulation of the circuit and

cycle-by-cycle trace of when errors occur due to TS. In

the figure, a digital circuit is abstracted as a set of flip-

flops with combinational logic. Consider a single

startpoint (S), endpoint (E), and the logic in between (C).

One way to implement TSE is to develop a sparse

representation of C, say C' such that for all inputs, the

output of C' matches the logical value that would be

available when the circuit C operates at the aggressive TS

clock. We call this block the TS emulation block (or TSE

block). In the figure, we show a detector unit that

compares C' to C every cycle and reports when a TS error

has occurred. When this reports true, a TS error has

occurred, when it reports false, no TS error has occurred.

The emulator combined with this simple comparator gives

us the TS predictor.

The goal of this paper is to develop an algorithm that can

produce such representative circuits given the RTL and TS

clock as input. In a TSE framework, the three important

criteria are accuracy, speed, and flexibility. Accuracy

measures how closely to real TS behavior the TS predictor

behaves. In evaluating a TSE framework, we have four

cases to consider: true positives, true negatives, false

positives and false negatives. These can be determined by

comparing the TSE framework to a reference TS timing

detector (either using a post-manufacture prototype or

detailed delay-aware simulation). True positive and true

negatives are cases when the TS predictor reports true (or

false) and the reference TS timing-error detector reports

true (or false) respectively. False positives are defined as

cases when the TS predictor reports a timing error (true)

while in the reference TS hardware no timing error occurs

(false). False negatives occur when the TS predictor

misses a timing error and reports false, while TS hardware

detects this error with a true. The goal of a TS predictor is

to minimize both false positives and false negatives.

To build effective TS predictors, we draw inspiration from

prior approaches from path-delay testing and path-delay

emulation [10][11]. In path-delay testing, the circuit is

analyzed with timing information, and the goal is to

develop inputs to the circuit that sensitize different timing

paths, such that functional correctness is violated if there is

a timing error. For TS prediction, we use this same insight,

but create a single representative circuit that captures the

behavior of the circuit up to the aggressive TS clock

boundary instead of creating a set of test inputs. This is

more complex than path-delay analysis alone because to

develop an effective predictor we need to keep track of

values from the “previous” cycle to correctly emulate a

race behavior between the arrival times of values and the

fast TS clock.

4. Replay Framework

This section describes our Replay algorithm and how it can

be implemented in a logic synthesis, static timing analysis,

and FPGA emulation framework.

4.1. Algorithm

Figure 4 shows an abstract circuit and its corresponding

Replay generated TSE block to illustrate our basic insight.

Our key insight is that the longest path-delay represents the

delay of all paths through an input-node of a gate and an

endpoint. We explain the algorithm by describing how it

constructs the TSE block.

Physical Implementation

Physical

Parameter
Logic Simulation

RTL Design

Manufacturing

Physical

Parameter

RTL Design

a) netlist

b) STA result

Replay

Framework

Physical Implementation

TS emulation RTL

Logic Simulation

TS Evaluation

TS Evaluation

Manufacturing

 (a) conventional (b) proposed

Figure 2. Design flow of timing-speculation.

Original

Combinational

Circuit (C)

TS Emulation

Block (C’)

Startpoints

(S)

Compare

(!=)

Timing

Error

Signal

Correct

Endpoint Value

Predicted

Endpoint Value

Endpoint

(E)

Original Digital IC

Combi-

national

Circuit

Combi-

national

Circuit

for each F/F endpoint (and startpoints connected to it)

Emulation Circuit

Figure 3. Emulation of timing-speculation.

Paper 21.3 INTERNATIONAL TEST CONFERENCE 4

1) We perform STA on the original gate-net to determine

path delays for different endpoints.

2) For each endpoint, the original combinational logic is

replicated to form the logic part of the TSE block.

3) The startpoint signals of the logic part of TSE block

are the previous cycle’s startpoint signals, resulting in

a logically redundant module that is one cycle behind

the original.

4) Based on the provided TS boundary and the path-

delay analysis, we modify the input nodes of some

gates in the TSE block. If the arrival times of all paths

through an input node and the endpoint are earlier

than the given TS boundary, the node is tied to the

original. Here, the endpoint value of the TSE block is

the predicted speculation value.

Figure 5(a) shows an example circuit with the delay of

each gate and the maximum path delay of each input node

of the gates. This path delay is the sum of delays of gates

that feed into this input and delays of gates driven by that

gate. Figure 5(b) shows the circuit with the TSE block

when the TS boundary is 32ps. Here, input nodes of three

gates (P, Q, and R) are replaced because their maximum

delays are less than 32ps, and the replaced gates emulate

logical masking behavior for the prediction of the endpoint

value, in contrast to the startpoint-based approximation

approach as shown in later.

The core advantage of this algorithm is that it can represent

cumulative mask probability. For the example in Figure 5,

the probability that the endpoint is not masked by met

paths is the product of non-mask probability in gate Q and

that in gate R. Replay simulates this behavior accurately as

the actual circuit works, and this lowers false-positive rate,

which is important for TS emulation as described above.

Note that most gates are common among TSE blocks, and

a logic synthesis for FPGA emulation often removes the

redundant circuits although the number of TSE blocks is

the same as that of endpoints. Thus, our technique results

in only a small growth in logic complexity as shown in

Section 6.5.

Replay was motivated by designing an emulation

framework for TS. What we developed in the end is a

general and universal technique for timing-aware emulation

with combinational logic.

4.2. Implementation

Figure 6 shows how our Replay algorithm can be

integrated with a standard CAD tool flow. Logic synthesis

generates the gate-net on which we run a timing analysis

step to determine the maximum arrival times for every

combination of endpoints and input nodes of logic-gates.

These delays are input to the Replay TSE Generator, which

outputs an RTL that predicts the endpoint value based on

the given TS boundary. For each gate, it compares the

path delay on each port and TS boundary to decide if that

10ps
5ps10ps

10ps
5ps

35

4040
40

30

30

15

40 40

5ps
Startpoint A

Startpoint B

Endpoint

(functionally incorrect for simplicity)

arrival time of longest path through this input-node

=10+5+10(toward endpoint) + 10+5(toward startpoint)

(a) Original gate-net with timing information

R
Q

P
FF

FF

Original

Endpoint

Predicted

Endpoint

TSE Block

Original Logic

(b) Prediction circuit when timing-speculation boundary is 32ps

Figure 5. Example of Replay algorithm.

Original Logic

TS Emulation Block

Endpoint

Endpoint

(predicted)

Startpoints

Met Input-Node

Replacement

met

paths

FF

FF

FF (one endpoint is shown

for simplicity)

Figure 4. Replay algorithm

Logic Synthesis / P&R

Replay TSE Generator

(This Work)

TS Boundary

Original RTL

STA ResultsGate Net

TS Emulator Block RTL

Logic Simulation / FPGA

Functional output Timing-error trace

Figure 6. Tool flow of Replay framework.

Paper 21.3 INTERNATIONAL TEST CONFERENCE 5

port must be connected to the original circuit or left as is.

The delay analysis through STA and the generation of the

predictor logic modules are performed only once for a

given TS boundary. In a typical CAD flow, we expect this

generator to be embedded in an STA tool.

During functional emulation, the violation of the TS

boundary will be determined only through the logical value

of the TSE block for applied input patterns. No individual

gate delay calculations are required during emulation.

Flexibility: Replay can generate prediction RTL for any

arbitrary TS boundary without any restrictions. Hence, it

can satisfy one of the three required criteria of flexibility

shown in Section 1.

4.3. Computational Complexity of STA

We discuss below the computational complexity of

embedding this technique into an STA tool. Here we are

considering the complexity of generating the TSE block.

The actual logic simulation or emulation of the netlist with

the TSE block shows practically no slowdowns. Consider

a circuit with e endpoints. For every endpoint, the fan-in

tree (n nodes) can be represented as a directed acyclic

graph rooted at start-points. We consider the reverse

topological sorted list of nodes of this graph which will

start with the end-point (which can be constructed with

O(n) time complexity). This list is serially traversed, and

for each node we increment the path-delay of all nodes in

its transitive fan-out by the node’s gate-delay. This phase

is also O(n) time complexity. This gives the required path

delays. The total time complexity is O(n*e).

5. Comparison with Past Approaches

Figure 7 shows the startpoint-based approximation [8],

which is the only other proposed solution that can realize

full-design path-delay fault emulation on FPGA. The main

idea of this technique is that timing errors occur at an

endpoint only when the value of at least one violated

startpoint changes (the violated startpoint means the

startpoint that contains at least one timing-violated path to

the endpoint). It implements value change detector for

every violated startpoint, and the endpoint holds last

cycle’s value when any of startpoint values change. The

complexity is low enough for full-design emulation

because the number of violated startpoints and endpoints

only affects the complexity.

However, the accuracy of the startpoint-based

approximation is low because of two reasons. First, the

error injection scheme on endpoint of holding last cycle’s

value is a rough approximation. This scheme only works

when there is no value change at an endpoint before TS

boundary, and it is too optimistic because general

waveform at an endpoint contains many value changes

before TS boundary like Figure 1(a). The second reason is

that it ignores the internal path structure. Generally, the

timing-error rate significantly depends on how frequently

the timing-violated paths are logically masked by timing-

met paths. In contrast to our Replay technique, the

startpoint-based approximation cannot take this mask effect

into account. For the example of Figure 5, since the

maximum path delays of both startpoints are more than TS

boundary of 32ps (35ps for startpoint A and 40ps for

startpoint B), the value changes of startpoint “A” cannot

propagate to the predicted endpoint in one cycle. As a

result, the prediction accuracy is not practical for TS

emulation because it contains a lot of false-positives as

shown in our evaluation results in Section 6.

Figure 8 shows the other approach of path-excitation

detection [9], which was originally proposed for evaluating

delay-testing coverage. It prepares path excitation

condition detectors in RTL for violated paths, and realizes

very high accuracy.

However, the implementation area on FPGA is unrealistic

for full-design emulation because it is proportional to the

number of paths to be detected. The experimental results

in [9] shows that the emulation of 200 paths requires 2×

and that of 400 paths requires 3× area resources compared

to the original. This limitation is acceptable for the

grading of delay-test because it only needs to analyze some

longest paths. In contrast, for the emulation of TS, it is

necessary to emulate the timing-fault behavior of all paths

whose arrival time is later than the given TS boundary,

which can be even 0.5× of the worst-case arrival time.

Generally, the number of such paths is exponential. In our
Original Logic

Startpoints

Endpoint

(predicted)

met paths

violated paths

0

1

FF

FF

FF

Figure 7. Startpoint-based approximation [8].

Original Logic

Endpoint

(predicted)

FF

FF

0

1

Figure 8. Path-excitation detection [9].

Paper 21.3 INTERNATIONAL TEST CONFERENCE 6

experiment, a 16-bit multiplier has 175 billions of paths.

Therefore, this approach becomes impractical for circuit

analysis employing TS techniques.

Meanwhile, the worst-case area of the Replay TSE block is

less than 6× of the original as shown in the evaluation

results in Section 6.5. Thus, it is acceptable for the FPGA-

based fault-emulation purpose. Note that the TSE block

does not introduce any area penalty to the design since it is

never synthesized into manufactured hardware.

6. Evaluation

In this section, we evaluate Replay on two of the three

required criteria of accuracy and speed. Section 4.2

discussed flexibility. Speed is evaluated in Section 6.5,

and other sections are for accuracy evaluation. Section 6.1

describes the experimental framework and metrics.

Section 6.2 evaluates the basic characteristics of the

Replay algorithm using the ISCAS85 benchmark circuits.

In Section 6.3, we evaluate with OpenRISC running full

applications. In Section 6.4, we describe a detailed

performance characterization of Replay.

6.1. Experimental Framework

Figure 9(a) shows our experimental prototype framework.

In addition to the emulator RTL, we perform detailed back-

annotated gate delay simulation to determine accurately

when timing-errors occur. We check the timing-error

signal from the original gate-net with back-annotated delay

and that from the emulator RTL. The actual timing-error

signal asserts when the arrival time of a cycle is later than

the given TS boundary. The emulated timing-error signal

asserts if a predicted value of TSE block is different from

the correct value of original logic. We evaluated every

endpoint for which the worst-case arrival time is later than

the given TS boundary.

Figure 9(b) shows the metrics related to accuracy, which

are evaluated for each timing-violated endpoint. Error rate

is the ratio of cycles for which the error signal of original

gate-net asserts. Accuracy means the ratio of cycles for

which the emulated error signal is the same as the actual

error signal. We also show false positive and false

negative separately. To study flexibility, we look at many

circuits and different TS boundaries.

Experimental setup: We used the Synopsys 90nm

technology library, Synopsys Design Compiler for the

synthesis and the static timing analysis, and Synopsys VCS

for simulation. The delay information for the gate-net

simulation (.sdf file) was generated by Design Compiler.

The timing constraint was tight enough to synthesize all

circuits at their maximum operating frequency.

The processing resources for evaluating the OpenRISC

design are measured on a 2GHz CPU and 64bit Linux.

The processing time of the TSE RTL generator itself is

very short (about 7sec). Since this experiment used

report_timing command, the STA and report analysis

consumed about 5 hours. An STA tool implementing the

algorithm should consume less time as described in Section

4.3. The maximum memory usage is about 500MB.

6.2 ISCAS85 Benchmark Circuits

We evaluate the basic characteristics of Replay compared

to startpoint-based approximation for the ISCAS85

benchmark circuits [12]. To study aggressive and

conservative TS, we show the results for TS boundary set

to 0.8× and 0.9× of the worst-case arrival time. The input

data are random for every startpoint, and the length of the

test vector is 64Kcycles. We evaluate the average of the

metrics for all endpoints of each benchmark circuit, and we

evaluate the geometrical mean of the metrics for the

endpoints of overall benchmark circuits in each timing-

error rate range (the metric value of 0 is excluded for the

calculation of geometrical mean).

Table 1 shows the evaluation results for each benchmark

circuit. Here we report error rate for each end-point.

Compared to the conventional startpoint-based

approximation, Replay shows significant improvements on

the accuracy (about 2×) and the false-positive rate (about

10×) for most benchmark circuits. The accuracy is

relatively low in the c3540 and c6288 benchmarks, which

are binary-coded decimal arithmetic ALU and a 16-bit

multiplier, respectively; both are complex data-path

circuits, in which Replay prediction likely misses because

of its approximation as described in Section 6.4. Even in

these cases, Replay outperforms startpoint-based

approximation.

Table 2 shows a summary across all endpoints classified

according to error-rate. The results for this table are

obtained by running experiments with 0.8× and 0.9× TS

boundaries. Very high error rates are not important

because a real system would not operate at this point. The

range of less than 1% is the typical operating point. In this

Original Gate-Net with

Back-annotated Delay

Actual

Timing-Error

Original Logic

Compare

and

Count

Test

bench

Emulator RTL

TSE Block
!=

Emulated

Timing-Error

(a) Validation block diagram.

 Emulated Error Emulated Not Error

Actual Error A B

Actual Not Error C D

 Actual Timing Error Rate = (A + B) / (A + B + C + D)

 Accuracy = (A + D) / (A + B + C + D)

 False Positive Rate = C / (A + B + C + D)

 False Negative Rate = B / (A + B + C + D)

 (b) Metrics definition.

Figure 9. Evaluation overview.

Paper 21.3 INTERNATIONAL TEST CONFERENCE 7

range, accuracy is almost 2× better, the false-positive rate

is 60× better, and false negative rate is 2× better than

startpoint-based.

6.3. OpenRISC with Full Application

To study Replay’s effectiveness in a full design, we applied

it to the OpenRISC processor: a 32bit MIPS-like, 5-stage

RISC processor [13], which contains 4345 startpoints and

2745 endpoints. We ran three full applications namely:

H.264 video decoding, G.721 speech decoding, and JPEG

image decoding. For the emulation of TS, we evaluate the

cycle-based metrics of OpenRISC when the TS boundary is

changed from 0.5× to 0.9× of the worst-case arrival time.

For the cycle-based metrics, if timing-error occurs at any

one endpoint, the timing-error occurs at the cycle.

Therefore, the false-positive detections of each individual

endpoint can cause serious degradation of cycle-based

error detection accuracy.

Table 3 shows Replay's accuracy results for this design.

We do not show false-negative rate because most of them

are nearly 0. For the TS boundary range of 0.6× to 0.9×,

where error-rates are 1%-3%, which is the practical range

for TS, Replay performs at more than 99% accuracy

Our evaluation of the ISCAS85 circuits was a stress test of

the technique, since we varied inputs randomly every cycle.

Hence, the accuracy of Replay was lower for those circuits

than the full OpenRISC design, even though the latter is

more complex.

6.4. Source of Misprediction

We now look at Replay's behavior in detail for one

application to understand how well our heuristic works.

Figure 10(a) shows the actual and estimated error rate of

H.264 decoder when TS boundary is changed from 0.1× to

0.9×. Replay clearly outperforms startpoint-based

estimation and is very close to the real error rate for 0.1×

to 0.7×. However, for the TS boundary of 0.8× and 0.9×,

Replay's estimated error rate is much higher than the actual

error rate. This is because of false-positives in the 32-bit

multiplier. To confirm this, we exclude 64 endpoints of

the 32bit multiplier for the evaluation of cycle-based

metrics. Figure 10(b) shows the result when these false-

positive problems are removed.

Table 3. OpenRISC evaluation results (cycle-based).

Accuracy (%) False-Positive

Rate (%)

App. TS

Bound

ary

Error

Rate

(%) Rep [8] Rep [8]

0.5× 10.3 81.4 42.9 17.9 57.1

0.6× 2.2 99.8 46.9 0.2 53.1

0.7× 1.5 99.9 47.8 0.1 52.2

0.8× 0.0 98.9 54.0 1.1 46.0

0.9× 0 98.9 77.6 1.1 22.4

H.264

Dec.

(28M

cycles)

g.m. of 0.6-0.9 99.4 55.4 0.4 41.1

0.5× 17.0 87.8 28.7 10.8 71.3

0.6× 2.3 99.8 18.2 0.1 81.8

0.7× 1.5 99.6 17.4 0.4 82.6

0.8× 0 98.8 22.3 1.2 77.7

0.9× 0 98.8 59.3 1.2 40.7

G.721

Dec.

(3M

cycles)

g.m. of 0.6-0.9 99.3 25.4 0.5 68.0

0.5× 15.9 83.2 38.0 16.0 62.0

0.6× 2.6 99.6 34.7 0.4 65.3

0.7× 1.6 99.5 33.8 0.5 66.2

0.8× 0.0 98.9 37.9 1.1 62.1

0.9× 0 98.9 71.3 1.1 28.7

JPEG

Dec.

(6M

cycles)

g.m. of 0.6-0.9 99.2 42.2 0.7 52.7

Table 2. Results for each timing-error rate range

(geometrical mean of endpoints).

Accuracy

(%)

False-Pos.

(%)

False-Neg.

(%)

Range of

Timing-Error

Rate (x) (%) Rep [8] Rep [8] Rep [8]

10 < x <= 100 64.8 53.7 15.7 29.1 8.69 12.6

1 < x <= 10 87.3 54.7 5.04 41.0 0.71 1.82

0.1 < x <= 1 97.0 52.2 0.84 46.6 0.06 0.18

0.01 < x <= 0.1 98.7 52.4 0.84 43.9 0.01 0.02

0 < x <= 0.01 98.6 53.0 0.70 46.1 0.00 0.00

x = 0 97.9 61.2 0.37 30.8 - -

ALL Range 92.4 54.1 1.33 40.7 0.11 0.20

TS Important

Range (x <= 1)

97.8 54.0 0.71 42.3 0.03 0.05

Table 1. Evaluation results with ISCAS85 benchmark circuits (average of endpoints).

Accuracy (%) False-Positive Rate(%) False-Negative Rate(%) Benchmark Timing-

Error

Rate (%)

Replay Startpoint-

based [8]

Replay Startpoint-

based [8]

Replay Startpoint-

based [8]

TS boundary 0.8× 0.9× 0.8× 0.9× 0.8× 0.9× 0.8× 0.9× 0.8× 0.9× 0.8× 0.9× 0.8× 0.9×

c432 6.4 4.5 94.6 99.2 53.7 56.5 4.1 0.7 42.2 40.4 1.3 0.1 4.1 3.1

c499 0.3 0.0 99.3 99.0 50.0 50.0 0.7 1.0 49.8 50.0 0.1 0.0 0.2 0.0

c880 9.9 3.1 90.9 94.8 59.9 57.0 8.1 5.1 36.6 41.8 1.0 0.1 3.5 1.3

c1355 0.4 0.0 99.4 99.1 50.0 50.0 0.5 0.9 49.8 49.9 0.1 0.0 0.2 0.0

c1908 0.2 0.0 99.5 99.1 51.2 52.8 0.4 0.9 48.7 47.2 0.1 0.0 0.1 0.0

c2670 3.2 0.8 89.5 86.1 74.3 66.9 9.9 13.7 24.3 32.7 0.6 0.2 1.3 0.4

c3540 15.9 2.6 75.0 77.0 61.8 55.2 17.7 21.8 30.5 43.6 7.4 1.2 7.7 1.2

c5315 1.0 0.2 96.9 94.4 60.4 58.9 2.8 5.5 39.2 41.0 0.3 0.1 0.5 0.1

c6288 33.6 4.7 70.3 80.6 51.9 52.3 11.6 16.6 31.3 45.4 18.1 2.9 16.8 2.3

c7552 6.2 1.1 90.5 92.6 55.9 57.1 7.5 6.9 41.0 42.4 2.0 0.5 3.0 0.6

Paper 21.3 INTERNATIONAL TEST CONFERENCE 8

We now describe why the multiplier results in high false

positives. The prediction miss is due to the approximate

heuristic assumption that the longest path-delay represents

the delay of all paths through an input-node of a gate and

an endpoint. If the arrival times of such paths are widely

distributed as shown in complex circuits like multiplier, the

assumption can likely be false.

Figure 11 shows an example circuit and the worst-case

arrival time for each input nodes of gates. Replay does not

replace any nodes when TS boundary is 25ps, and no

signal change of startpoints can propagate to endpoint in

one cycle. However, if the signal (A, B, C, D) changes

from (1, 1, 1, 1) to (0, 1, 1, 1), the node X changes from 1

to 0 at 10ps and the endpoint changes from 1 to 0 at 20ps.

Therefore, in this case, the change of startpoint A can

propagate to endpoint in one cycle, and the prediction of

Replay is not correct.

In future work, we will address heuristics to reduce these

miss rates further. A solution that does not use worst-case

delay but uses typical-case delay as a representative of

path-delay through an input-node of gates and the endpoint

is promising. For the example of Figure 11, the average

delay from startpoints to node X for every possible value

change patterns of startpoint A, B, and C is about 14ps. If

Replay uses this value for the representative path-delay of

node X instead of the worst-case delay of 20ps, the

replacement occurs because 14ps+10ps is less than the TS

boundary, and the prediction works correctly in the above

example case.

6.5. Logic Complexity and Speed

Table 4 shows the re-synthesized area of TSE block RTL

(including the original logic) relative to the original RTL.

The area is less than 6× for all benchmarks. For logic

simulation, this resulted in practically no slowdowns and it

is practical for FPGA emulation.

Table 5 shows the characteristics of our FPGA

implementation of the OpenRISC processor with TSE at a

TS boundary of 0.75×. The operating frequency of Replay

TS emulator is 30MHz, while that of the original design is

40MHz, resulting in 25% emulation slowdown. It is

300,000× faster than gate-level simulation with back-

annotated delay, which executes at 100Hz.

7. Beyond Fine-Grained TS

In this section, we discuss some examples of how Replay

can be used for purposes beyond fine-grained TS. We

discuss two coarse-grained TS techniques, their emulation

requirements, and how they can be modeled using the

Replay framework.

Error Rate[%]

0.01

0.1

1

10

100

0.1× 0.2× 0.3× 0.4× 0.5× 0.6× 0.7× 0.8× 0.9×

Actual

Replay

Startpoint-based [8]

Timing-Speculation Boundary
(a) Overall

Error Rate[%]

0.01

0.1

1

10

100

0.1× 0.2× 0.3× 0.4× 0.5× 0.6× 0.7× 0.8× 0.9×

Actual

Replay

Startpoint-based [8]

Timing-Speculation Boundary
(b) Exclude 64 endpoints of 32bit multiplier

Figure 10. Actual and emulated timing-error rate

Table 5. Summary of FPGA implementation.

FPGA Xilinx Virtex-5 XC5VLX110T-1

Design Tool Xilinx Platform Studio EDK 10.1.03

Design

Components

OpenRISC (predictor RTL), UART,

microblaze, PLB, DRAM controller

Area 13,471 out of 17,280 (occupied slices)

Operating

Frequency

30MHz (predictor RTL)

120MHz (microblaze, PLB)

Table 4. Area of predictor (relative to the original).

TS Boundary Benchmark

 0.5× 0.6× 0.7× 0.8× 0.9×

c432 2.3 2.3 2.8 2.6 1.8

c499 1.7 1.7 1.7 2.0 2.3

c880 1.2 1.6 1.5 1.4 1.4

c1355 1.7 1.7 1.8 2.4 2.8

c1908 1.8 2.1 2.9 2.7 2.2

c2670 2.1 2.0 2.1 2.1 1.8

c3540 2.6 2.6 2.6 2.6 2.1

c5315 1.8 1.8 1.8 1.8 1.6

c6288 2.5 3.1 3.8 4.2 4.1

c7552 2.0 2.1 2.3 2.3 2.2

OpenRISC 3.1 3.6 4.0 4.9 5.5

30

40
40

Startpoint A

Startpoint B
Endpoint

Startpoint D
10ps

30

Node X

(miss-prediction source)

timing-speculation boundary = 25ps

10ps

30

40
40

30

10ps
10ps

10ps
40

Startpoint C

Figure 11. Source of misprediction (example).

Paper 21.3 INTERNATIONAL TEST CONFERENCE 9

7.1. Emulation of Coarse-Grained TS

Architecture-level TS [4][5]: This type of TS does not

detect timing-errors on individual flip-flops. Instead,

architecture-level techniques are used to detect timing-

errors. Hence, in contrast to cycle-level TS [1]-[3], the

emulation needs to propagate timing-errors that occur at

the circuit-level to successive pipeline stages in the circuit.

Error-tolerant TS: Some class of applications such as

video decoding, image processing, and graphics do not

necessarily need 100% correctness in the application

output. For such applications, relaxed fault-tolerance

allowing acceptable errors has been proposed [14]-[16].

We study the effect of timing errors on such applications

hence we refer to this study as error-tolerant TS. We need

an emulator that can analyze the impact of such errors on

application quality such as PSNR of degraded images.

These TS techniques can be studied using the Replay

framework as their needs are mostly similar to fine-grained

TS. They need fast simulation speed and the capability to

emulate a number of timing-error patterns. While fine-

grained TS requires a per-cycle timing error trace, here we

need to propagate timing-errors in the circuit to understand

the long-term impact on the program. With a simple

modification to how the Replay TSE block is used, we can

model such fault propagation.

7.2. Fault Modeling

For this case study, we consider voltage-drop faults. The

behavior of voltage-drop fault changes along the time-

domain. It causes global delay increase only when the

supply voltage drops because of effects such as rush-

current or noise.

Replay can emulate this type of fault by selectively

injecting faults. Figure 12(a) shows the modeling of

timing faults due to external voltage drop. This is modeled

by setting an aggressive TS boundary in voltage drop

periods. In our analysis, to emulate the impact of the

voltage drop on the path delays, the TS boundary is set to

0.75× of the worst-case arrival time in the drop period.

This is a simple model which we use for our case study,

more sophisticated models can be incorporated into our

framework.

Figure 12(b) shows the block diagram of the fault

implementation. The combinational logic of the predictor

RTL code outputs the correct values of endpoints for the

interval period and the predicted values for the drop period.

The external voltage-drop flag signal selects which

endpoint values are used for the output ports and the input

nodes of F/Fs. This final selection multiplexer is the only

difference to our previous fine-grained TS system shown in

Figure 3. It replaces the comparator, which outputs a

timing-error signal.

7.3. FPGA Experiment

For evaluation, we consider our H.264 decoder executing

on the OpenRISC processor when voltage-drop fault is

injected, and we analyzed how the output image is

degraded compared to the original.

Figure 13 shows the experimental results when the drop

period and the interval period are changed. The vertical

axis is the length of interval period, and the horizontal axis

is the length of drop period. Each point in the graph

represents one full execution of the program (QCIF

3frames), demonstrating the speed of our framework.

Each point is labeled Pass, Correct, Ignorable, Acceptable,

Fail, or Crash.

Emulating the architecture mask effect, Replay shows the

impact on architecture-level TS systems. Figure 13

contains a lot of “correct” points. For such patterns,

timing-errors are masked and not shown in the application-

level output and represent how an architecture-level TS

system will behave.

For the emulation of error-tolerant TS, Replay can analyze

the impact of timing-errors on application-level quality. In

Figure 13, there are a number of “ignorable” and

Voltage

Time

drop

period

interval

period

(a) Voltage-drop fault model

FFs

0

1

0

1

Predicted

Endpoints

Correct

Endpoints

Voltage Drop Flag

Input

Ports Output

Ports

Startpoints

Original

Logic

TS Emulation

Block

(b) Implementation

Figure 12. Fault implementation.

100M

Interval Period [cycles]

10M

1M

100K

10K
1 10 100 1K 10K 100K

Drop Period [cycles]

Pass (no timing error)

Correct (no difference)

Ignorable (PSNR > 50dB)

Acceptable (PSNR > 40dB)

Fail (PSNR < 40dB)

Crash (timeout)

ALL Pass

ALL Failure

Figure 13. FPGA Experiment results.

Paper 21.3 INTERNATIONAL TEST CONFERENCE 10

“acceptable” points, for which PSNR of the output image

is more than 50dB and more than 40dB of the original

output, respectively. These outputs are of acceptable

application quality.

These results show that the Replay is flexible and can be

generalized to other timing fault modeling needs. Replay

can also emulate wear-out faults by adjusting delay of each

gate before STA. For example, the delay increase caused

by hot-carrier injection (HCI) is proportional to how many

times the input signal has switched, and it can be estimated

by gate-level simulation of typical workload in advance.

8. Conclusion

We have developed a novel path-delay fault emulation

framework called Replay. We have specifically applied it

for evaluating the effectiveness of timing-speculation

techniques. The generated endpoint-value predictor RTL

code acts as a functional simulator of circuits employing

timing-speculation techniques. Replay satisfies the

following three required criteria.

1) Accuracy: Replay is more than 99% accurate for the

timing-error prediction of a set of real workloads on

the OpenRISC processor, while conventional

startpoint-based approximation is about 40% accurate.

2) Speed: Replay algorithm produces a simple timing

emulation logic block which is amenable to FPGA

emulation. As a result, with FPGA acceleration

Replay is 300,000× faster than gate-level simulation

with back-annotated delay.

3) Flexibility: Replay framework can generate predictor

RTL for arbitrary TS boundaries.

Moreover, for the analysis of coarse-grained timing-

speculation techniques, Replay can emulate how timing-

errors caused by path-delay faults propagate circuits and

result in failures in system-level. In addition, Replay can

emulate any type of timing-faults that can be represented

as change in gate delay.

The accurate, fast, and flexible path-delay fault emulation

framework enables practical evaluation of the effectiveness

of timing-speculation techniques.

Acknowledgement

We thank the anonymous reviewers and the Vertical group

for comments and UW CSL for their assistance. Many

thanks to Nam Sung Kim and Kewal K. Saluja for several

discussions that helped refine this work. Support for this

research was provided by NSF CAREER award CCF-

0845751 and Toshiba Corporation.

9. Reference

[1] D. Ernst, et al. “Razor: A Low-Power Pipeline Based

on Circuit-Level Timing Speculation,” Annual

International Symposium on Microarchitecture, Dec.

2003.

[2] D. Bull, et al. “A Power-Efficient 32b ARM ISA

Processor Using Timing-error Detection and

Correction for Transient-error Tolerance and

Adaptation to PVT Variation, ” International Solid-

State Circuit Conference, Feb. 2010.

[3] J. W. Tschanz, et al. “A 45nm Resilient and Adaptive

Microprocessor Core for Dynamic Variation

Tolerance,” International Solid-State Circuit

Conference, Feb. 2010.

[4] B. Greskamp and J. Torrellas, “Paceline: Improving

Single-Thread Performance in Nanoscale CMPs

through Core Overclocking,” International

Conference on Parallel Architecture and Compilation

Techniques, Sep. 2007.

[5] K. Sundaramoorthy, et al., “Slipstream processors:

Improving both performance and fault tolerance,”

International Conference on Architectural Support for

Programming Languages and Operating Systems,

Nov. 2000.

[6] S. Hwang, et al., “Sequential Circuit Fault Simulation

Using Logic Emulation,” IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, vol.

17, no. 8, pp. 724-736, August 1998.

[7] G. Smith, “Model for Delay Faults based upon

Paths,” IEEE International Test Conference, Oct.

1985.

[8] A. Pellegrini, et al., “CrashTest: A Fast High-Fidelity

FPGA-Based Resiliency Analysis Framework,” IEEE

Custom Integrated Circuit Conference, Sep. 2008.

[9] P. Bernardi, et al., “Hardware-Accelerated Path-Delay

Fault Grading of Functional Test Programs for

Processor-based Systems,” GLSVLSI, Mar. 2007.

[10] L. Wang, et al, “System on Chip Test Architectures,”

Morgan Kaufmann Publishers, 2007.

[11] M. Bushnell and V. Agrawal, "Essentials of Electronic

Testing for Digital, Memory, and Mixed-Signal VLSI

Circuits," Kluwer Academic Publishers, 2000.

[12] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10

Combinatorial Benchmark Circuits and a Target

translator in Fortran,” International Symposium on

Circuits and Systems, Special Session on ATPG and

Fault Simulation, Jun. 1985

[13] “OpenRISC”, http://www.opencores.org/

[14] X. Li, et al., “Application-Level Correctness and Its

Impact on Fault Tolerance,” International Symposium

of High Performance Computer Architecture, Jan.

2007.

[15] L. Leem, et al., “ERSA: Error Resilient System

Architecture for Probabilistic Applications,” Design,

Automation and Test In Europe, Mar. 2010.

[16] M. Kruijf, et al., “Relax: An Architectural Framework

for Software Recovery of Hardware Faults,”

International Symposium on Computer Architecture,

Jun. 2010.

