
Appears in the 40th International Conference on Dependable Systems and Networks (DSN ’10)

A Unified Model for Timing Speculation: Evaluating the Impact of Technology
Scaling, CMOS Design Style, and Fault Recovery Mechanism

Marc de Kruijf, Shuou Nomura, Karthikeyan Sankaralingam

Vertical Research Group
University of Wisconsin – Madison

{dekruijf, nomura, karu}@cs.wisc.edu

Abstract

Due to fundamental device properties, energy efficiency
from CMOS scaling is showing diminishing improvements.
To overcome the energy efficiency challenges, timing specu-
lation has been proposed to optimize for common-case tim-
ing conditions, with errors occurring under worst-case con-
ditions detected and corrected in hardware. Although var-
ious timing speculation techniques have been proposed, no
general framework exists for reasoning about the trade-offs
and high-level design considerations of timing speculation.

This paper develops two models to study the end-to-end
behavior of timing speculation: a hardware-level efficiency
model that considers the effects of process variations on
path delays, and a complementary system-level recovery
model. When combined, the models are used to assess the
impact of technology scaling, CMOS design style, and fault
recovery mechanism on the efficiency of timing specula-
tion. Our results show that (1) efficiency gains from timing
speculation do not improve as technology scales, (2) ultra-
low power (sub-threshold) CMOS designs benefit most from
timing speculation – we report a 47% potential energy-
delay reduction, and (3) fine-grained fault recovery is key
to significant energy improvements. The combined model
uses only high-level inputs to derive quantitative energy ef-
ficiency benefits without any need for detailed simulation,
making it a potentially useful tool for hardware developers.

1. Introduction

Due to fundamental limitations in reducing threshold
voltage and gate capacitance, technology scaling in the
CMOS roadmap is increasingly driven by materials inno-
vation at each technology node [1]. Furthermore, increas-
ing process, voltage, and temperature (PVT) variations and
aging effects require circuits and systems designers to em-
bed considerable design guardband to prevent any failure,
diminishing the benefit of technology scaling. As a result,
energy efficiency from CMOS scaling is showing diminish-

ing or practically no improvements. Energy efficiency gains
from scaling have been a fundamental driver of VLSI sys-
tems. Hence, diminishing energy efficiency gains has dis-
ruptive implications for the design of computing systems.

Timing speculation has been proposed to help overcome
this energy efficiency limitation [3, 5]. Under timing spec-
ulation, circuits are designed to operate correctly under
common-case timing conditions but are allowed to fail un-
der dynamically worst-case conditions. Classical scaling
benefits can still be obtained for the common-case behav-
ior, while the system provides some mechanism for error
detection and correction to recover from infrequent failures.
While individual microarchitecture, CAD, and device-level
approaches have been proposed to analyze timing specula-
tion, no framework exists to analyze timing speculation at
the level of the overall system.

In this paper, we propose such a general, system-level
framework for the analysis of timing speculation. We de-
velop a unique end-to-end model that considers (1) CMOS
technology scaling, (2) CMOS design style (i.e. high per-
formance vs. low power), and (3) the fault recovery system.
The following paragraph describes our approach.

First, we develop a hardware model for timing specu-
lation that maps error rate to energy efficiency gains, ac-
counting for process variation. By varying circuit operation
parameters, we apply this model to a spectrum of CMOS
design styles and project to different technology node sizes
using the ITRS roadmap [1]. Second, we develop a system-
level recovery model to derive the overheads of recovery in
the event of an error and apply it to a spectrum of recovery
systems. We finally combine this model with our hardware
model to yield a system-level model that provides realistic
upper-bounds on achievable energy efficiencies.

We report three key findings using this model: (1) timing
speculation is largely unaffected by future technology scal-
ing, (2) timing speculation is most beneficial when applied
to ultra low-power hardware designs, and (3) coarse-grained
recovery systems show only limited energy efficiency im-



Hardware
Efficiency
Model

System
Recovery
Model

x System
Efficiency
Model=

Figure 1. Our system-level model breakdown.

provements. In addition, our modeling framework is a con-
tribution in its own right. It is the first unified model that
covers technology scaling, device-level behavior, and archi-
tecture organization to evaluate the impact of timing spec-
ulation. Moreover, the model takes only four high-level in-
puts. It thus provides designers with a system evaluation
tool that can be used for rapid analysis of timing speculation
without detailed circuit or microarchitecture simulation.

2. Overview

Figure 1 gives an overview of the two models we develop
in this paper and how they are combined. We first develop a
hardware efficiency model that derives the relationship be-
tween error rate and hardware energy efficiency given two
input parameters: (1) a hardware path delay distribution,
and (2) the effect of process variation on path delay for a
given hardware design and technology process.

The model is described in Section 3, and in Section 4
we use projections from the ITRS roadmap [1] to derive
the parameter that models the effects of process variation
for different hardware design styles and technology pro-
cesses. We consider three design styles, which we refer to as
high performance CMOS, low power CMOS, andultra-low
power CMOS, and explore both 45nm and 11nm technol-
ogy processes, where 11nm represents the end of the CMOS
roadmap according to ITRS projections.

Next, we develop a separate system recovery model that
statistically derives the overheads of error recovery. The
model is generally applicable to allbackward error recov-
ery (checkpoint-based) systems. These systems are in con-
trast toforward error recoverysystems, such as systems us-
ing triple modular redundancy (TMR), which typically have
much higher resource overheads and hence we do not study
them here. Our model determines overheads using two in-
put parameters: (1) the time between checkpoints and (2)
the checkpoint restoration cost. We present the model in
Section 5 and in Section 6 we describe a spectrum of recov-
ery systems and derive the input parameters for each.

Finally, in Section 7 we present results applying our
hardware efficiency model to each CMOS design style and

technology node, and our recovery model to each recovery
system. We also describe how the models are combined
to produce our aggregate model for system efficiency, and
present the results matching up the hardware and recovery
designs we study. The final model has the following four
inputs:

1. A hardware path delay distribution.
2. The effect of process variation on path delay, which

can be derived from ITRS projections for:
• a given CMOS design style.
• a given CMOS process technology.

3. The time between recovery checkpoints.
4. The time to restore a checkpoint.

In Section 8, we present the limitations of the model and
the limitations of our results. Section 9 discusses related
work and finally Section 10 concludes.

3. Hardware efficiency model

Timing speculation relaxes technology scaling con-
straints and addresses conservative guardbands required to
combat PVT variations. It also allows hardware to exe-
cute at higher frequency or lower voltage than in the worst
case. This reduction in voltage and/or increase in clock
frequency improves energy efficiency at the expense of in-
troducing errors into the system. We assume that the effi-
ciency goal is to minimizeenergy-delay, measured by the
energy-delay product, which we abbreviate asEDP . Since
energy = power × delay:

EDP = energy × delay = power × delay2 (1)

In this section, we derive a function,EDPhw, to encap-
sulate our hardware efficiency model for timing speculation.
EDPhw captures the efficiency of the hardware by mapping
hardware error rate to hardwareEDP , relative to a baseline
without timing speculation. The model can be trivially ex-
tended to other metrics such as energy-delay squared.

Before we proceed, however, we first highlight the two
factors that allow the basic concept of timing speculation.
First, combinational logic delays (and hence arrival times
for the clocked elements like flip-flops) vary due to the ap-
plication and input data. Timing speculation allows the
clock period to be lower than the worst-case arrival time
assumed during design. Second, PVT variations introduce
variability in gate delays, and hardware designed using tim-
ing speculation need not account for worst-case variability.
In this paper, we refer to these two factors as theApplication
Factor and theVariability Factor, respectively.

To deriveEDPhw, we measure the Application Factor
using an empirically measured path delay distribution that
represents logic-level and application-level sources of vari-
ability. For the Variability Factor, we specifically model



0 1 2 3 4 5
Path delay

0

2

4

6

8

10

12

N
u
m

b
e
r 

o
f 

a
ct

iv
e
 p

a
th

s

(a) Sample distribution

0 1 2 3 4 5
Clock period (t)

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

P
E

(b) PE, σpath_delay=0

0 1 2 3 4 5
Clock period (t)

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

P
E

(c) PE, σpath_delay=0.05µ

0 1 2 3 4 5
Clock period (t)

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

P
E

(d) Average PE

σpath_delay=0

σpath_delay=0.05µ

Figure 2. Effect of process variation on the relationship between clock period and error probability.

processvariability, and measure how process variations af-
fect timing speculation. Although we consider only process
variations, the model is extendable to other forms of PVT
variation as well. In summary, our model takes the follow-
ing two input parameters:

1. A representative processor path delay distribution.

2. A valueσpath delay that represents the effect of pro-
cess variation on path delay for a given hardware de-
sign and technology process. Path delay variations
due to process variation are modeled as normally dis-
tributed [14], whereσpath delay is the standard devia-
tion of the normal distribution. It can be derived from
gate-delay equations, CAD tools, or other simulation
techniques.

With these parameters, we deriveEDPhw in three steps.
First, we use our representative path delay distribution and
σpath delay to derive a functionPE that maps a clock pe-
riod to a per-cycle error rate. Second, we derive a function
convert that converts a relative clock period to a relative
EDP . Finally, givenP−1

E , the inverse function ofPE , we
computeEDPhw using the following equation:

EDPhw(rate) = convert(
P−1

E (rate)
P−1

E (ratebase)
) (2)

The variableratebase represents the baseline error rate
for a system without timing speculation. In this paper, we
assume a baseline of3.8 × 10−16, which corresponds with
roughly one timing error every 30 days on a single 1GHz
processor core1.

Step 1: The derivation of PE . To measure path de-
lay distributions for a representative processor design, we
used delay-aware simulation of the OpenRISC processor
with Synopsys VCS and the Synopsys 90nm technology li-
brary. Although we gathered these data for several micro-
benchmarks, we found little variability since paths were
heavily re-used across all of the benchmarks. Our ultimate

1Although a baseline with no faults is ideal, our mathematical frame-
work uses continuous distributions with zero fault probability appearing in
the limit only.

conclusion was that the choice of micro-benchmark was of
limited relevance for our simple OpenRISC processor core.
Therefore, in this paper we use the path delay distribution
for only a single representative micro-benchmark, H.264
decoding, which was derived originally from the PARSEC
benchmark suite. For this application, Figure 2(a) shows a
path delay distribution for a single representative cycle.

The PE mapping of clock period to error rate for the
single-cycle distribution from Figure 2(a) is shown in Fig-
ure 2(b). It assumes no process variation. The optimal clock
period for this cycle is exactly the latency of the worst path
delay, in this case 3.71 nanoseconds. This clock period has
error probabilityPE(3.71) = 0. Any shorter clock period
produces an error with probability 1,e.g. PE(3.70) = 1.
When path delay distributions are considered for multiple
cycles – each cycle with a different optimal clock period –
thenPE for all cycles becomes a monotonically decreasing
function as the probability is averaged across all cycles, as
shown by the solid curve in Figure 2(d). This monotonically
decreasing function is illustrative of the Application Factor
described earlier in this section, and represents the opportu-
nity for timing speculation in the absence of variations.

Process variations introduce device-level variability and
further opportunity for timing speculation. We develop a
model that incorporates path delay variations, modeled us-
ing the input parameterσpath delay, into the derivation of
PE . The model is derived as follows. First, we observe
that path delay is composed of wire delay and gate delay.
Let w (with σw) denote wire delay andg (with σg) gate de-
lay. Also, letpath delayp denote the path delay of pathp,
with path delayp = wp + gp. Sincepath delay is nor-

mally distributed,σpath delay =
√

σ2
w + σ2

g , applying the

standard result for the sum of normal distributions. We let
wires account for 35% of path delay and make them im-
mune to process variations [14], so thatσw = 0 and hence
σg = σpath delay.

We now derivePEc for a given cyclec. Intuitively,
the probability ofno error occurring while executing path
p at clock periodt is the sum of the probabilities where
path delayp is less thant. Mathematically, this probability
is given byF (t−wp, gp, σg), whereF (x, µ, σ) is theCDF



of a normal distribution with parametersµ andσ. It follows
that the probability of error across all pathsp in P is:

PEc(t) = 1−
P∏
p

F (t− wp, gp, σg)

This function produces the step we expect for
σpath delay = 0 (no variation) att = 3.9 shown in Fig-
ure 2(b), and Figure 2(c) shows the resulting graph for
σpath delay = 0.05µ. To get our finalPE , we average across
all cycles to derive the following equation, which is plotted
in Figure 2(d) forσpath delay = 0 andσpath delay = 0.05µ:

PE(t) =
∑C

c=1 PEc(t)
C

Step 2: The derivation ofconvert. Clock period reduc-
tion corresponds directly to frequency improvement, or it
can be traded off to relax timing constraints on the hardware
and allowVdd reduction as well. For simplicity, we choose
to convert all clock reduction to either frequency improve-
ment orVdd reduction. Optimizing for both frequency and
voltage adds a level of complexity that we wish to avoid,
while our experiments show that it generally has minimal
impact for modern process technologies.

For conversion to frequency increase, recall from Equa-
tion 1 thatEDP = power × delay2. Frequency increase
translates to the inverse of clock period reduction. Con-
sideringdynamic power = CV 2f , frequency is linearly
proportional topower. However, frequency increase also
linearly decreasesdelay. Sincedelay is squared, it follows
thatEDP decrease is linearly proportional to the frequency
increase. Hence, reduction inEDP simply corresponds di-
rectly to reduction in clock period.

For conversion toVdd reduction, we compute a mapping
between clock period andVdd by integrating over quadrati-
cally interpolatedkvolt-factors – approximately the deriva-
tive of gate delay with respect toVdd – from the Synopsis
90nm cell library. Empirically, our generated numbers are
similar to voltage scaling numbers reported for the Pentium
M processor [7]. Consideringdynamic power = CV 2f
andEDP = power × delay2, with delay held constant,
EDP decreases with the square of the decrease in voltage.

Step 3: The derivation ofEDPhw. Figure 3 shows the
results of applying Equation 2 to computeEDPhw. We
useconvert for frequency scaling (Figure 3(a)) and volt-
age scaling (Figure 3(b)) and use the samePE data as in
Figure 2. The resulting function maps error rate to energy
efficiency improvement.

Recall that the only input parameters are a representa-
tive path delay distribution and the variation in path delay
caused by process variation, represented by the input pa-
rameterσpath delay. In the following section, we derive
σpath delay for different CMOS design styles and technol-
ogy process nodes based on gate-delay equations.

10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

E
D
P
h
w

(b) Voltage scaling

σpath_delay=0

σpath_delay=0.05µ

10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

E
D
P
h
w

(a) Frequency scaling

σpath_delay=0

σpath_delay=0.05µ

Figure 3. EDPhw curves using convert for fre-
quency scaling (a) and voltage scaling (b).

4. CMOS design styles

In this section, we describe three different CMOS design
styles that cover a spectrum of energy efficiency targets. We
consider high performance CMOS, low power CMOS, and
ultra-low power CMOS design. Using technology projec-
tions from the ITRS roadmap, we deriveσpath delay, the
hardware-specific input to our hardware efficiency model.
For high performance and low power CMOS, we determine
this parameter for both 45nm and 11nm technology. For
ultra-low power, we consider only 45nm technology.

Normal distributions approximate the impact of pro-
cess variation due tosystematiceffects (from lithographic
aberrations) andrandomeffects (from dopant fluctuations)
[14]. We use the VARIUS model [14] and apply this ob-
servation to derive path delay variations due to system-
atic effects,σpath sys, separately from path delay varia-
tions due to random effects,σpath rand. Their combined
effect, σpath delay, is also normally distributed, and hence

σpath delay =
√

σ2
path sys + σ2

path rand.

The derivation of σpath rand and σpath sys. For each
design style, our approach to derivingσpath rand and
σpath sys is as follows.

First, we obtain technology-specific values forVdd from
the 2008 ITRS roadmap [1]. We also obtain the normal dis-
tribution parameters forVth variations due to process vari-
ations,µVth

andσVth
from the ITRS and Rabaey [13]. The

ITRS roadmap provides values forµVth
, and forσVth

we
use data from Rabaey that showσVth

= 32mV at 45nm
technology. Although trends are upward sloping, in the ab-
sence of 11nm data for exact variation inVth we conserva-
tively apply this same value for 11nm technology.

Second, we present a function to map variations inVth

to variations in the gate delay of individual transistors. As
suggested in the VARIUS model, we assume random ef-
fects and system effects contribute equally to overallVth

variation, such that their individual effects are normally dis-
tributed withσ = σVth

/
√

2. Hence, we compute gate delay
variations due to random effects,σgate rand, and systematic
effects,σgate sys, such that they are equal to each other.



Third, we deriveσpath rand from σgate rand. We model
a path asn FO4 gates and the delay variation over the
path as the sum of the individual gate variations. We as-
sumen = 12, which models an aggressively pipelined de-
sign [18]. Since the gate delay distributions are normally
distributed, the sum is normally distributed as well with
σpath rand =

√
n× σgate rand.

Fourth, we deriveσpath sys from σgate sys. We assume
the same four-core chip layout as VARIUS and the recom-
mended range value ofφ = 0.5 to model the correlation
effects of systematic variations. In the VARIUS paper, the
authors find that variations across pipeline stages are much
larger than within stages. Hence, we assume a hardware
design with fine-grain body biasing [19] applied to each
pipeline stage to mitigate the effects. To deriveσpath sys

fromσgate sys, we observe that variations in path delay vary
linearly with variations in gate delay, since changes in vari-
ation do not affect the correlation effects. We determine
the scaling constant by using the results for intrastage varia-
tions from VARIUS, and measure it as approximately 0.114.
Hence, in this paper we useσpath sys = 0.114× σgate sys.

Finally, σpath delay =
√

σ2
path sys + σ2

path rand as de-

scribed earlier. For each CMOS design style and technology
node, the values we derive forVdd, µVth

, σVth
, σgate rand,

σpath rand, σpath sys, andσpath delay are shown in Table 1.
The final valueσpath delay is fed as input to our hardware
efficiency model from Section 3.

4.1. High performance CMOS

For our high performance CMOS design style, we as-
sume a high performance hardware design using lowVth

transistors for maximum performance under a high power
budget. For the purposes of this study, we ignore the effect
of increased leakage power with lowVth transistors.

45nm. The ITRS roadmap presentsµVth
= 103mV and

Vdd = 1.0V for high performance transistors at the 45nm
technology node. From Rabaey we haveσVth

= 32mV,
which is σVth

= 0.311µ relative to the mean. To convert
variation in threshold voltage to variation in gate delay, we
consider the equation for delay of an inverter at normalVdd:

gate delay ∝
Vdd(1 + Vth

µVth
)

(Vdd − Vth)α
(3)

We find that the relationship is close to linear with re-
spect toVth for typical α = 1.3. Assuming a linear re-
lationship and withVth normally distributed, gate delay
is also normally distributed. Using Equation 3, we find
σgate rand = σgate sys = 0.149µ. We compute path de-
lay variations due to random effectsσpath rand =

√
12 ×

σgate rand ≈ 0.043µ. For systematic effects, we compute
σpath sys ≈ 0.017µ. Finally, the systematic and random
effects combined yieldσpath delay ≈ 0.046µ.

11nm. Scaling from 45nm to 11nm impacts high perfor-
mance transistors by reducingVdd to 0.65V, whileVth re-
mains relatively constant, According to ITRS scaling pro-
jections, µVth

= 118mV. With σVth
= 32mV, σVth

=
0.271µ, which is slightly lower than at 45nm. However,
since the difference betweenVdd andVth reduces at 11nm,
it follows from Equation 3 that the impact ofσVth

on
gate delay is greater than with 45nm. Applying Equa-
tion 3, σgate rand = σgate sys = 0.163µ. It follows that
σpath rand ≈ 0.047µ andσpath sys ≈ 0.019µ. The com-
bined effect isσpath delay ≈ 0.051µ.

4.2. Low power CMOS

Our low power CMOS design style assumes typical high
Vth transistors that consume low power.

45nm. For low power transistors at 45nm technology,
the ITRS roadmap shows mean threshold voltageµVth

=
535mV andVdd = 1.0V. From Rabaey,σVth

= 32mV =
0.060µ, We use the same equation as with high performance
CMOS to convertVth variation to gate delay variation, and
find σgate rand = σgate sys = 0.092µ. With these values
we computeσpath rand ≈ 0.027µ andσpath sys ≈ 0.011µ.
The combined effect isσpath delay ≈ 0.029µ.

11nm. Technology scaling impacts low power CMOS de-
signs by reducing both supply voltage and threshold volt-
age. From the ITRS roadmap,µVth

= 376mV andVdd =
0.7V at 11nm. From Rabaey,σVth

= 32mV = 0.085µ. Ap-
plying Equation 3,σgate rand = σgate sys = 0.136µ. From
there, we deriveσpath rand ≈ 0.039µ and σpath sys ≈
0.016µ. The combined effect isσpath delay ≈ 0.042µ.

4.3. Ultra-low power CMOS

As an extreme design point of energy efficiency, we con-
sider sub-threshold operation. In sub-threshold operation,
the operating voltageVdd is lower thanVth, which mini-
mizes power and energy. However, the devices themselves
are very slow. In theory successful operation is possible as
long asVdd exceeds the thermal voltage value,φt. In our
models, we consider low power transistors from the ITRS
roadmap for ultra low power CMOS.

45nm. The delay equations for sub-threshold gates are
different than for high performance and low power CMOS.
The delay of a characteristic inverter at sub-thresholdVdd

is:

gate delay =
CVdd

Ise
Vdd−Vth

nφt

In this equation,n is the sub-threshold slope factor for
φt, the thermal voltage.Is is a device-dependent current
parameter andC is capacitance. Details on sub-threshold
operation are covered in the literature [21]. HoldingVdd

constant and eliminating constants, the modeling equation
of interest is:



Hardware Design Style Node Vdd µVth
σVth

σgate rand σpath rand σpath sys σpath delay

& σgate sys

High performance CMOS 45nm 1.0V 103mV 0.311µ 0.149µ 0.043µ 0.017µ 0.046µ
11nm 0.65V 118mV 0.271µ 0.163µ 0.047µ 0.019µ 0.051µ

Low power CMOS 45nm 1.0V 535mV 0.060µ 0.092µ 0.027µ 0.011µ 0.029µ
11nm 0.70V 376mV 0.085µ 0.136µ 0.039µ 0.016µ 0.042µ

Ultra-low power CMOS 45nm 0.25V 535mV 0.060µ 0.633µ 0.183µ 0.072µ 0.196µ

Table 1. Values for σpath delay (final column) and the values used to derive it.

gate delay ∝ e
−Vth
nφt

Since gate delay is exponentially related to the normally
distributedVth, gate delay islog-normallydistributed, with:

σgate delay =
√

(eσ2 − 1)e2µ+σ2 , where σ =
σVth

nφt
(4)

The thermal voltageφt is 26mV, andn = 1.5 is a typical
operating point. Again assumingσVth

= 32mV, with equal
contribution by random and systematic effects, we derive
σgate rand = σgate sys = 0.633µ.

To find σpath rand, recall that the delay distribution for
the whole path is the sum of the individual gate delay dis-
tributions. With high performance and low power CMOS
these distributions were normal distributions. However, for
ultra-low power (sub-threshold) CMOS, gate delay is log-
normally distributed. We apply the central limit theorem
of probability theory, which states that the sum of a suffi-
ciently large number of independent random variables can
be approximated by a normal distribution. Withn = 12 the
approximation is reasonably strong. Applying the central
limit theorem and usingσpath rand =

√
n × σgate rand as

before, we deriveσpath rand ≈ 0.183µ.
We deriveσpath sys from σgate sys in the same man-

ner as with high performance and low power CMOS and
computeσpath sys ≈ 0.072µ. For simplicity, we combine
σpath rand (from a normal distribution) andσpath sys (from
a log-normal distribution), by approximating their sum as
normally distributed. This approximation is largely justi-
fied by the fact thatσpath rand is much larger thanσpath sys.
The combined effect isσpath delay ≈ 0.196µ.

11nm. According to the ITRS roadmap,Vth changes by
approximately 200mV from 45nm through 11nm. However,
with Equation 4 the value ofσgate delay is relative to the ab-
solute value ofσVth

and notµVth
. Furthermore,σgate delay

is independent ofVdd. With the absoluteσVth
predicted to

remain constant from 45nm to 11nm, technology scaling
has essentially no impact on the effects of process varia-
tions for sub-threshold operation, and hence, our hardware
energy efficiency calculations do not change. For this rea-
son, we do not present analysis of the 11nm node for the
ultra-low power CMOS design.

5. System recovery efficiency model

In this section, we describe a mathematical model for
determining the execution time overheads of recovery for
systems that use speculative execution and allow errors to
occur. The model is specific to backward error recovery,
which is the most commonly proposed approach to recov-
ery [17]. Independent of the underlying hardware imple-
mentation, two high-level parameters can be used to char-
acterize any backward error recovery system: the number of
cycles between checkpoints (cycles) and the number of cy-
cles to restore the most recent checkpoint (restore). With
these two parameters, it is possible to probabilistically de-
rive the execution time overhead for a given recovery sys-
tem at a specific error rate. While we present this model
for use with timing speculation, the model can be general-
ized for other uses and is not exclusive to timing errors. The
model does not require any simulation to derive its inputs.

The two inputs to the model arecycles andrestore. Let
cycles denote the execution time in cycles between check-
points and letrestore denote the cost in cycles of restor-
ing the checkpoint and initiating re-execution. To derive an
equation for the overhead of recovery, we define two func-
tions: letfailures denote the number of failed attempts to
execute over a checkpoint (i.e. the next checkpoint was not
reached), and letwaste denote the number of wasted exe-
cution cycles that must be discarded when an error occurs.
Both functions take as input an error rate,rate. With these
two functions, the overhead in cycles of recovery is:

overhead(rate)
= failures(rate)× (waste(rate) + restore)

First, we expandfailures as follows. Let the ran-
dom variableX denote the number of cycles executed be-
fore an error occurs.X has a geometric distribution with
P (X = k) = (1 − rate)k−1rate. Finally, let psucc

denote the probability of a successful (error-free) execu-
tion between checkpoints.psucc = P (X > cycles) =
(1 − rate)cycles. It follows that the number of attempts
to execute over the checkpoint before success, denoted by
the random variableY , has a geometric distribution with
P (Y = k) = (1− psucc)k−1psucc and expected number of
executionsE(Y ) = 1

psucc
. However,Y includes the last,



successful execution, which is not included byfailures.
Hence,failures = E(Y )− 1:

failures(rate) =
1

(1− rate)cycles
− 1

Second, we expandwaste as follows. Let the ran-
dom variableZ denote and the number of wasted execu-
tion cycles that must be discarded when a fault occurs.
Z is distributed withP (Z = k) = P (X=k)

P (X<=cycles) , k =
1, 2, . . . , cycles, and with expected number of cycles

E(Z) =
Pcycles

k=1 kP (X=k)

P (X<=cycles) . Hence,waste = E(Z):

waste(rate) =
∑cycles

k=1 k(1− rate)k−1rate

1− (1− rate)cycles

This completes the derivation ofoverhead in terms of
restore, rate, andcycles. With restore andcycles both
constant,rate is the only remaining free variable and,
hence,rate can be used to directly computeoverhead. The
relative execution time in cycles with recovery versus exe-
cution without errors is expressed as:

exec time(rate) =
cycles + overhead(rate)

cycles
(5)

6. Recovery systems

In this section, we describe three error-recovery systems.
We cover fine-grained checkpointing at the instruction gran-
ularity to coarse-grained checkpointing at the granularity of
a thousand instructions. For each system, we determine the
values forrestore andcycles.

Razor. Razor [3] augments critical path pipeline latches
with ashadow latchthat is placed with a slight delay behind
the main latch and always receives the correct value. These
latches are compared every cycle to detect faults, and thus,
cycles is just 1. Using their proposedcounterflow pipelin-
ing technique, therestore cost is roughly 5 cycles.

Reunion. Reunion [16] uses loosely-coupled redundant
execution on two cores to detect errors. We estimatecycles
as the sum of thefingerprint intervaland thecomparison
intervalat roughly 100 cycles. The cost of restoring check-
pointed state,restore, we estimate at 100 cycles as well.

Paceline. Similar to Reunion, Paceline [5] uses redundant
execution on paired cores for error detection. However,
Paceline is designed specifically for timing speculation and
uses speculative core overclocking to achieve performance
gains. The cost is an additional recovery penalty in flushing
the L1 caches. Using the numbers from the Paceline paper,
we approximatecycles at 100 andrestore at 1000 cycles.

Reunion and Paceline benefit fromarchitectural mask-
ing of hardware faults, where the error rate of the system is

less than the hardware fault rate by a factor called thear-
chitectural vulnerability factor(AVF) [9]. This is because,
unlike Razor, Reunion and Paceline detect at instruction re-
tirement rather than at individual pipeline stages. Hence,
error in logic that does not impact a retiring instruction can
be safely ignored. In our evaluation, we estimate an AVF of
0.25 for a simple in-order core, and account for it with Re-
union and Paceline by effectively multiplyingrate by 0.25
before applying it to Equation 5.

7. Results

This section presents quantitative results derived from
our models. First, we show energy efficiency results apply-
ing our hardware efficiency model from Section 3 to each
of the CMOS design styles from Section 4. We discuss
the quantitative implications of technology scaling by com-
paring the 45nm and the 11nm technology node. Second,
we show execution time overheads applying our recovery
model from Section 5 to each of the recovery systems de-
scribed in Section 6. Finally, we combine our system re-
covery execution time overheads with the energy efficiency
results for the three hardware design styles to determine the
system-level trade-off between error rate and energy effi-
ciency for each combination.

7.1. CMOS design styles

Figure 4 shows the curves produced applying our hard-
ware energy efficiency equation (Equation 2) to each of the
three CMOS design styles. For high performance and low
power CMOS, we useconvert to translate clock period re-
duction into both frequency increase (frequency scaling; top
row) and voltage reduction (voltage scaling; bottom row).
For sub-threshold CMOS, we consider only frequency scal-
ing, sinceVdd is already very low. Error rate is shown on
thex-axis and they-axis showsEDP normalized toEDP
at a nominal error rate of3.8 × 10−16. For high perfor-
mance and low power CMOS, the figure shows curves for
both 45nm and 11nm process technologies.

Effectiveness. Timing speculation provides energy effi-
ciency improvements across all design styles. At modest
error rates of10−5 to 10−4 it provides reasonableEDP re-
ductions of of 10% to 30%. Improvements of 40% or larger
are feasible at very high error rates, although our results
combining system recovery costs in Section 7.3 question
the practicality of such high error rates.

In all cases, there is a sudden dip at an error rate around
4× 10−3. This error rate is marked by the dash-dotted gray
curve. Below this error rate, all theEDP reduction is due
to timing speculation for process variability alone, which
corresponds directly with the Variability Factor described
in Section 3. Above this rate is where the Application Fac-
tor kicks in – where some combinational logic delays areby
designlower than the clock period.



10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

E
D
P
h
w

Voltage
scaling

High performance CMOS

45nm

11nm

10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

E
D
P
h
w

Low power CMOS

45nm

11nm

10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

E
D
P
h
w

N/A

Ultra-low power CMOS

10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

E
D
P
h
w

Frequency
scaling 45nm

11nm

10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

E
D
P
h
w

45nm

11nm

10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

E
D
P
h
w

45nm

Figure 4. EDPhw curves considering each design style, process technology, and scaling technique.

Sensitivity to CMOS design style. Figure 4 shows that
timing speculation provides the greatest potential gains for
ultra-low power CMOS, withEDP reduced by up to 40%
at manageably high error rates. The figure also shows that
there is essentially no difference between theEDP curves
for high performance and low power CMOS.

For sub-threshold CMOS, even though gate delay vari-
ations are exponentially proportional toVth variations and
σpath delay is more than 4 times greater than for the other
two design styles at 45nm,EDP improvement is only bet-
ter by a factor of approximately 3 at low error rates. At
high error rates above4 × 10−3 the difference is even
smaller. Note that we are comparing improvements from
timing speculation and not the absolute energy efficiency of
sub-threshold operation compared to the other two design
styles.

Frequency versus voltage scaling. Figure 4 shows that
the choice between frequency and voltage scaling has little
impact on the relationship between error rate andEDP . Al-
though voltage change affectsEDP quadratically, the cost
of trading off frequency forVdd reduction increases asVdd

is reduced with each technology generation. At 11nm there
is essentially no difference between the choice of frequency
scaling or voltage scaling.

Effect of technology scaling. Figure 4 shows that, simi-
larly to the difference between frequency and voltage scal-
ing, the process technology has only minor impact on the
relationship between error rate andEDP . While 11nm has
slightly higher variability, the effect is insubstantial, and the
potential to better harness variability at 11nm through tim-
ing speculation is largely undone by the diminished effec-
tiveness of voltage scaling at the lowerVdd.

10-6 10-5 10-4 10-3 10-2 10-1

rate

0.9

1.0

1.1

1.2

1.3

1.4

ex
ec
_
ti
m
e

Razor

Reunion

Paceline

Figure 5. Equation 5 modeled using parame-
ters for Razor, Reunion, and Paceline.

7.2. Recovery systems

Figure 5 shows the normalized execution time for each
of the three recovery systems. The execution time (y-axis)
is determined from the error rate (x-axis) using Equation 5.
The figure shows that error rates of10−5 have negligible
overheads for all three techniques. For analysis, let us as-
sume 10% overhead is the ceiling for acceptability for a
system. With this assumption, fine-grained techniques that
have a lowrestore cost, like Razor, can tolerate one to
two orders of magnitude higher error rates. However, if
the complexities of such a technique are prohibitive, sim-
pler systems like Reunion or Paceline provide acceptable
performance at error rates of up to10−4.

7.3. Hardware and recovery combined

We now discuss overall system energy efficiency by ap-
plying the energy efficiency gains of different design styles
to the recovery systems we consider. We combine the en-
ergy efficiency (EDPhw) from Equation 2 with the execu-
tion time overhead (exec time) from Equation 5 using the
equationEDP = power · delay2. EDPhw is proportional



10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
D
P
sy
s

High performance CMOS

Razor

Reunion

Paceline

10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
D
P
sy
s

Low power CMOS

Razor

Reunion

Paceline

10010-510-1010-15

rate

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
D
P
sy
s

Ultra-low power CMOS

Razor

Reunion

Paceline

Figure 6. The curves from Figure 4 and Figure 5 combined to compute overall EDP .

to overallEDP andexec time is proportional to the de-
lay of the system. Hence, theEDP of the whole system is
EDPsys(rate) = EDPhw(rate) · exec time(rate)2.

Figure 6 shows graphs for each recovery system matched
with each CMOS design style. For the CMOS design styles,
we show only one technology point since the results from
Section 7.1 showed that, for each design style, the curves
were very similar irrespective of process technology and
whether frequency or voltage scaling was applied. Hence,
we show only results for 45nm using frequency scaling.

Figure 6 shows that timing speculation provides, at best,
a 23% reduction inEDPsys for high performance and low
power CMOS and a 47% reduction inEDPsys for ultra-
low power CMOS operating at sub-thresholdVdd. In all
cases, the optimal error rate is around2 × 10−2 errors per
cycle. This high error rate can only be sustained with a fine-
grained system like Razor. With checkpoint-based recovery,
optimal error rates are around10−4 with at most 13% en-
ergy efficiency improvement for high performance and low
power CMOS, and 32% energy efficiency improvement for
ultra-low power CMOS. Our conclusion is that large energy
efficiency gains are only possible for extreme low-power
designs, such as sub-threshold CMOS, irrespective of fu-
ture technology process generation.

8. Limitations

While our model is end-to-end in covering hardware de-
signs and system organization, it has limitations because it
abstracts away some details.

Hardware efficiency model. First, to avoid complexi-
ties of considering area, which is required for leakage en-
ergy, we consider only dynamic energy in our hardware
efficiency model. At today’s technologies, leakage power
presents an optimization problem in the choice of using
low-leakage and high-leakage gates. The choice gives the
designer freedom to determine at design time what fraction
of total power is leakage power. Hence, our results for dy-

namic energy can be adapted assuming leakage power can
be fixed to a certain percentage of total power. Second,
our quantitative results are driven by path distributions from
only one processor design. We believe this distribution is
typical, but even so our model is easily applied to other de-
signs as the path distribution is an input to the model.

System recovery model. First, we assume that the cost of
checkpoint restoration is fixed and that execution of an ap-
plication region does not perturb the microarchitecture suf-
ficiently to change the number of cycles to re-execute the
region. Second, for simplicity, we assumed execution time
is linearly proportional to frequency, which is an optimistic
assumption because of fixed memory delays. Third, as with
other timing speculation proposals, we assume that detec-
tion coverage is perfect, detection latencies are short, and
the recovery itself does not fail. Relaxing these assump-
tions may reduce the potential gains of timing speculation.

Combining the models. When determining optimal error
rates and overall system energy efficiency, we assume all
errors are detectable at all frequencies and error rates. How-
ever, certain systems like Razor place a bound on the range
of timing speculation, and below a certain clock period they
no longer work. Hence, our results present an upper-bound
on timing-speculation improvements.

Other variations. In addition to process variation, there
are other sources of dynamic variation such as voltage and
temperature variation. The sources of voltage variations in-
clude voltage regulator variations, IR drops along supply
rails, anddi/dt noise. These effects could also be modelled
as distributions affecting path delay. Our framework can be
easily extended if the distributions are known.

9. Related work
Patel proposes the Critical Operating Point hypothesis

for large CMOS circuits [12]. The hypothesis states that
the ability to trade-off reliability for energy efficiency is
extremely limited for high-performance processors. Our



model confirms the hypothesis for a simple processor model
and shows that recovery overheads make very high error
rates impractical.

Regarding models for PVT variations, individual circuit-
level models have been previously proposed. Among them,
Mukhopadhyay et al. model the failure probabilities of
SRAM cells due to process-parameter variations [10], and
Memik et al. develop a model for error probability in a reg-
ister files at a given clock frequency [8]. For timing specu-
lation specifically, circuit and architecture techniques have
been proposed to achieve additional gains [4, 15, 20]. The
models developed in this paper have been extended for use
with the Relax framework for software recovery as well [2].

Finally, a variety of work exists in producing measure-
ments for different technologies for use by models such as
ours. Pang and Nikolic measure and analyze process vari-
ability on a 45nm test chip [11]. A detailed characteriza-
tions of the Intel 45nm High-K/metal-gate process is also
presented by Kuhn et al. [6].

10. Conclusion

Due to fundamental device properties, energy efficiency
from CMOS scaling is showing diminishing or practically
no improvements. Timing speculation provides the oppor-
tunity to speculatively ignore worst-case circuit timing con-
ditions and optimize systems for common-case behavior,
thus providing energy efficient execution.

In this paper, we built a hardware-level model to capture
hardware-level efficiencies extracted from timing specula-
tion. We also built a general system-level model for back-
ward error recovery. The models were combined to yield
an end-to-end model for timing speculation. The model en-
ables a high-level analysis of timing speculation without the
need for detailed architectural simulation, and we used the
model to explore technology projections for CMOS scaling
down to the 11nm technology node, a spectrum of CMOS
design styles, and a spectrum of error recovery systems.

Our results showed that the improvements remain essen-
tially fixed as technology scales. We also found that ultra-
low power designs operating in sub-threshold region are
able to obtain substantial improvements due to the exponen-
tial impact of process variations on gate delays. Finally, we
found that very fine-grained recovery systems can provide
significantly better energy efficiency for timing speculation
than checkpoint-based recovery systems.

11. Acknowledgments

We thank the anonymous reviewers, the Vertical group,
and Nam Sung Kim for comments, and the Wisconsin Con-
dor project and UW CSL for their assistance. Support
for this research was provided by NSF CAREER award
#0845751 and Toshiba corporation.

References
[1] Process integration, devices, and structures. InInterna-

tional Technology Roadmap for Semiconductors. 2008 edi-
tion, 2008.

[2] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An
architectural framework for software recovery of hardware
faults. InISCA ’10.

[3] D. Ernst et al. Razor: A low-power pipeline based on circuit-
level timing speculation. InMICRO ’03, pages 7–18.

[4] B. Greskamp et al. Blueshift: Designing processors for tim-
ing speculation from the ground up. InHPCA ’09, pages
213–224.

[5] B. Greskamp and J. Torrellas. Paceline: Improving single-
thread performance in nanoscale CMPs through core over-
clocking. InPACT ’07, pages 213–224.

[6] J. Hicks et al. 45nm Transistor Reliability.Intel Technology
Journal, 12, 2008.

[7] Intel. Enhanced Intel speedstep technology for the Intel Pen-
tium M processor.White Paper, 2004.

[8] G. Memik and A. Mallik. Engineering over-clocking:
Reliability-performance trade-offs for high-performance
register files. InDSN ’05, pages 770–779.

[9] S. S. Mukherjee et al. A systematic methodology to
compute the architectural vulnerability factors for a high-
performance microprocessor. InMICRO ’03.

[10] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of
failure probability and statistical design of SRAM array for
yield enhancement in nanoscaled CMOS.IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, 24(12):1859–1880, 2005.

[11] L.-T. Pang and B. Nikolic. Measurement and analysis of
variability in 45nm strained-Si CMOS technology. InCICC
’08, pages 129–132.

[12] J. Patel. CMOS process variations: A critical operation point
hypothesis.Online Presentation, 2008.

[13] J. Rabaey. Low Power Design Essentials, chapter 2.
Springer, 2009.

[14] S. Sarangi et al. VARIUS: A model of process variation and
resulting timing errors for microarchitects.IEEE Transac-
tions on Semiconductor Manufacturing, 21(1):3–13, 2008.

[15] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas. EVAL:
Utilizing processors with variation-induced timing errors. In
MICRO ’08, pages 423–434.

[16] J. C. Smolens et al. Reunion: Complexity-effective multi-
core redundancy. InMICRO ’06, pages 223–234.

[17] D. Sorin. Fault Tolerant Computer Architecture. Morgan &
Claypool, 2009.

[18] E. Sprangle and D. Carmean. Increasing processor per-
formance by implementing deeper pipelines. InISCA ’02,
pages 25–34.

[19] J. Tschanz et al. Adaptive body bias for reducing impacts of
die-to-die and within-die parameter variations on micropro-
cessor frequency and leakage.IEEE Journal of Solid-State
Circuits, 37(11):1396–1402, 2002.

[20] L. Wan and D. Chan. Dynatune: Circuit-level optimization
for timing speculation considering dynamic path behavior.
In ICCAD ’09, pages 172–179, 2009.

[21] A. Wang, B. H. Calhoun, and A. P. Chandrakasan.Sub-
threshold Design for Ultra Low-Power Systems. Springer,
2006.


