
Appears in the 2009 IEEE International Symposium on Performance Analysis of Systems and Software

Evaluating GPUs for Network Packet Signature Matching

Randy Smith Neelam Goyal Justin Ormont Karthikeyan Sankaralingam Cristian Estan
University of Wisconsin–Madison

{smithr,goyal,ormont,karu,estan}@cs.wisc.edu

Abstract

Modern network devices employ deep packet inspection to
enable sophisticated services such as intrusion detection, traf-
fic shaping, and load balancing. At the heart of such services
is a signature matching engine that must match packet pay-
loads to multiple signatures at line rates. However, the re-
cent transition to complex regular-expression based signatures
coupled with ever-increasing network speeds has rapidly in-
creased the performance requirements of signature matching.
Solutions to meet these requirements range from hardware-
centric ASIC/FPGA implementations to software implementa-
tions using high-performance microprocessors.

In this paper, we propose a programmable signature match-
ing system prototyped on an Nvidia G80 GPU. We first present
a detailed architectural and microarchitectural analysis, show-
ing that signature matching is well suited for SIMD processing
because of regular control flow and parallelism available at
the packet level. Next, we examine two approaches for match-
ing signatures: standard deterministic finite automata (DFAs)
and extended finite automata (XFAs), which use far less mem-
ory than DFAs but require specialized auxiliary memory and
small amounts of computation in most states. We implement a
fully functional prototype on the SIMD-based G80 GPU. This
system out-performs a Pentium4 by up to 9X and a Niagara-
based 32-threaded system by up to 2.3X and shows that GPUs
are a promising candidate for signature matching.

1. Introduction

Network devices are increasingly employing deep packet
inspection to enable sophisticated services such as intrusion de-
tection, traffic shaping, and quality of service. Signaturematch-
ing is at the heart of deep packet inspection and involves match-
ing pre-supplied signatures to network payloads at line rates.
While there are other necessary facets such as flow reassembly,
stateful analysis, and other preprocessing, it is widely observed
that signature matching is the most processing-intensive com-
ponent and the bottleneck to increased performance. For exam-
ple, Cabreraet al. [7] reported in 2004 that signature matching
alone accounts for approximately 60% of the processing time
in the Snort Intrusion Prevention System (IPS). Since that time,
the number of signatures has more than tripled.

Table 1 shows a qualitative comparison of different archi-
tectures used and proposed for signature matching. On one

hand, ASICs provide high area/energy efficiency and perfor-
mance, but they have poor flexibility and high system design
cost. At slightly lower speeds FPGAs become a viable alter-
native if flexibility is valued, but they consume significantly
more power than ASICs. At the other end of the spectrum, gen-
eral purpose microprocessor-based systems are very flexible
and have low non-recurring and design cost but cannot match
the performance of specialized hardware and have high per-unit
costs. They rank lowest in performance, but best in cost, flexi-
bility and time to market.

Between these extreme points are network processors such
as the Intel IXP, IBM PowerNP, and Cisco QuantumFlow.
These specialize a superscalar architecture with networking-
specific functionality to increase efficiency without sacrificing
programmability or design cost, and minimize non-recurring
expenses. They all utilize extensive multi-threading to exploit
the data-level parallelism found at packet granularity to hide
memory latencies. This threading abstraction providesinde-
pendentcontrol-flow and temporary data management for each
thread. But, this independent control flow yields inefficiencies,
since the same set of instructions are repeatedly and indepen-
dently executed on many packets simultaneously. Custom solu-
tions have also been proposed for regular-expression matching
(which can be used for signature matching) and XML process-
ing both in industry [29] and academia [5].

Opportunity: In light of these alternatives, for deep packet in-
spection we observe that often the same processing is applied
to each packet, suggesting that the Single Instruction Multi-
ple Data (SIMD) paradigm is ideal for this type of workload.
A single instruction can simultaneously perform operations for
many packets providing large savings in power and area over-
heads. SIMD processing can achieve area/performance effi-
ciencies much higher than superscalar processors (Table 1,Sec-
tion 2.2). Further, they are abundantly available as GPUs and
hence have low design costs. Their simple structure yields per-
formance superior to network- and general-purpose processors,
yet they retain flexibility absent in ASICs.

Challenges: GPUs provide a highly simplistic memory model
that assumes mostly regular access to memory; applications
with recursive data structures or irregular memory accesses
may perform poorly. However, the data access patterns associ-
ated with packet inspection primarily involve (recursive)graph
traversal and are a challenge to SIMD architectures. Thus, to

Parameters ASIC FPGA GPU/SIMD
Network General purpose

processors microprocessors
Physical constraints

Cost Highest Medium Low Medium-Low Low
Power Efficiency Highest Low-Medium High Medium Lowest
Area Efficiency Highest Worst High Medium Low

System design
Flexibility Worst Medium ? Medium Best
Design time Highest Medium ? Low Lowest

Performance
Peak performance Highest Medium Medium Medium Lowest
Application Performance Highest Medium ? Medium Lowest

Table 1. Implementation alternatives for signature matching. Ques tion marks indicate investigation in this paper.

assess the suitability of GPUs for signature matching, we seek
to answer the following two key questions:

• Do GPU/SIMD architectures have the flexibility needed to
support typical signature matching operations?

• Does the process of mapping these operations to SIMD ar-
chitectures negate potential performance gains?

Contributions: In this paper, we examine the viability of
SIMD-based architectures for signature matching. Overall, we
show that GPUs (and the SIMD paradigm in general) can sup-
port signature matching and provide higher performance at a
cost similar to general purpose processors. In support of this re-
sult, our work makes the following additional contributions:

• we present a characterization of signature matching for
IPSes in terms of the control-flow, memory accesses, and
available concurrency;

• we provide a fully-functional prototype implementation of
signature matching on an Nvidia G80 GPU;

• we conduct a performance comparison to multithreaded out-
of-order and in-order architectures, including a Niagara sys-
tem and an Intel Core2 system.

We focus on signature matching but note that the overall
approach and conclusions generalize to other applicationssuch
as virus scanning and XML processing, which are also domi-
nated by similar regular expression matching. We give further
details about signature matching and conduct a detailed anal-
ysis in Section 2. Section 3 shows a SIMD design for signa-
ture matching and describes our prototype GPU implementa-
tion, and Section 4 discusses performance results. Section5
gives the related work and Section 6 concludes.

2. Signature Matching Analysis

In this section we first present the techniques and data struc-
tures employed in signature matching in detail. We then per-
form a detailed analysis of the memory usage, control flow,
and concurrency properties with respect to the requirements
and properties of SIMD architectures.

2.1. Application description

The core operation in signature matching is determining
whether a given packet payload matches any of the signa-

tures corresponding to the packet’s protocol (HTTP, SMTP,
etc). Currently, regular expressions are thede factostandard
for expressingsignatures due to their ability to succinctly cap-
ture entire classes of vulnerabilities rather than just specific ex-
ploits [6], as is the problem with strings. On the flip side, finite
automata–or state machines–are used formatchingsignatures
to input. In this work, we evaluate two such matching mecha-
nisms, standard Deterministic Finite Automata (DFAs), which
recognize exactly the class of regular expressions, and there-
cent Extended Finite Automata (XFAs) [25, 26], which signifi-
cantly reduce the memory requirements of DFAs.

2.1.1. DFAs for Matching Regular ExpressionsA DFA is
an augmented directed graph(S, Σ, δ, s, F) with states (nodes)
S, a designated start states ∈ S, a set of accepting states
F ⊆ S, and an alphabetΣ whose symbols are attached to
edges. For each statet ∈ S and eachσ ∈ Σ, there is exactly
one edge fromt to t′ ∈ S labeled withσ. Altogether, these sets
of edges constitute thetransition tableδ. During matching the
DFA is traversed, beginning at the start state, by followingcor-
responding labeled transitions from state to state as each byte
in the input is read. If an accepting state is reached, the DFAad-
ditionally signals acceptance at that state before following the
next transition. Figure 1a shows the DFA corresponding to the
regular expression/. * \na[ˆ \n] {200}/ , which is simpli-
fied but characteristic of buffer overflow signatures.

This simple model has two advantages. First, matching is
straightforward and fast, requiring just a single table lookup
or pointer dereference per input byte. Second, DFAs are com-
posable, meaning that a set of DFAs (one per signature) can
be composed into a single composite DFA so that in princi-
ple it is possible to match all signatures in a single pass over
the input. Unfortunately, DFAs often do not interact well when
combined, yielding a composite DFA whose size may be ex-
ponential in the input and often exceeds available memory re-
sources. To reduce the memory footprint, Yuet al. [32] pro-
posed the creation of multiple composite DFAs. In this paper,
we employ this technique with a memory budget of 64 MB per
signature set, which produces between one and seven compos-
ite DFAs per signature set.

2.1.2. XFAs for Matching Regular ExpressionsWith
DFAs, many distinct states must be created in order to si-

2

 -\n -\n …

 -\n

\n

aA B C D Z

 -\n-a

 -\n

\n
\n

\n
\n

(a) DFA

ctr1++;

if (ctr1==200)

alert(sig1);

 -\n

\n a

\n

\n

 -\n-a

 -\n

ctr1=invalid; ctr1=0;

A B C

(b) equivalent XFA

OffsetList_Add(200,1,”alert(sig1);”);

 -\n \n a

\n

\n

 -\n-a

 -\n

OffsetList_Remove(1);

A B C

(c) equivalent XFA with offset counter

Figure 1. DFA and equivalent XFAs that recognize the signature /. * \na[ˆ \n] {200}/ . The XFA in (c) uses offset coun-
ters to reduce the overall number of instructions executed a s compared to the XFA in (b).

multaneously track the matching progress of distinct, com-
plex signatures. In the DFA model, the subsequent blow-up
in memory usage occurs because there is no difference be-
tween the computation state and explicit DFA states. The XFA
model [25, 26] addresses this problem by separating the com-
putation state from explicit states in a manner that retainsthe
advantages of the DFA model while simultaneously avoid-
ing a memory blow-up. Specifically, XFAs extend DFAs with
an auxiliary “scratch” memory used to store variables such as
bits and counters which are used with states to track match-
ing progress (computation state) more compactly than explicit
states alone can do. Small programs attached to states up-
date variables in scratch memory when reached. Acceptance
occurs when an accepting state is reached and scratch mem-
ory variables have specific, accepting values. Figure 1b shows
an XFA with a counter that is equivalent to the DFA in Fig-
ure 1a but requires just 3 instead of 203 states.

The XFA model retains the composability inherent to
DFAs, but per-byte processing is more complex since pro-
grams attached to states must be executed whenever such states
are reached. This cost is offset by the reduced memory foot-
print so that in practice, XFAs are typically smallerand faster
than groups of DFAs. For each signature set in our evalua-
tion, we needed only one composite XFA which required less
than 3 MB of memory total (compared to up to 7 compos-
ite DFAs using 64 MB total).

XFAs do introduce challenges for SIMD architec-
tures, though. Most variable updates involve simple operations
such as setting, clearing, and testing bits, or setting, increment-
ing, and testing counters. However, these operations decrease
the regularity of the application and introduce the need to ac-
cess and manipulate additional memory in a manner that is
distinct from the access patterns for traversing states. Inaddi-
tion, some XFAs use so-calledoffset counters, which are func-
tionally equivalent to standard counters but store the counter
implicitly in an offset list, also stored in scratch memory. Fig-
ure 1c shows the counter in Figure 1b expressed as an offset
counter. Such counters eliminate explicit increment instruc-
tions but require additional work at each byte read (see
Figure 2 below). They reduce the overall number of exe-
cuted instructions at the expense of decreasing the regularity

even further. Altogether, XFAs can impose a significant per-
formance penalty on SIMD architectures.

2.2. Application analysis

Figure 2 outlines the basic code executed to perform signa-
ture matching. Each packet is extracted and passed to a match-
ing routine which implements a DFA or XFA to detect in-
trusions. We show a single routine that can be used for both
DFAs and XFAs. For a DFA, lines marked “no effect for
DFA” are not executed. In this section, we analyze the basic
properties of this code and its effect on the microarchitecture
by running it on an Intel Core2 processor and examining per-
formance counters. For the quantitative results presentedin this
section, we used representative traces and signatures whose de-
tails we describe in Section 4.

The four main components of the signature matching mod-
ule are (1) a state machine for the set of patterns to be detected,
(2) auxiliary data maintained for each packet as it is processed,
(3) a packet buffer that contains the packet data, and (4) an in-
terpreter that reads packet input, walks through the state ma-
chine, and updates the auxiliary data. The interpreter codeis
compiled to generate a sequential instruction stream or a wide-
SIMD instruction stream where a packet is processed on each
processing element of the SIMD architecture.

2.2.1. Memory

Analysis: The main data structures are the packet buffer, the
state machine data structure, instructions and temporary data
associated with each packet as it is processed, and the offset
list (last two not present for DFAs). The packet buffer is typi-
cally several megabytes and depending on the implementation,
some form of DMA or IO access is used to copy contents in
a batched fashion from the network link into the processor’s
memory space. Accesses to the packet buffer are regular.

In the state machine structure, each state contains a 256-
entry transition table (indexed by byte value and containing a
pointer to the next state) and other housekeeping data, sum-
ming to slightly more than 1024 bytes per state. This data struc-
ture can be several gigabytes in size for DFAs depending on
the number of signatures that are to be matched. For XFAs, the
state machine data structure is typically a few megabytes and
in our measurements always less than 3MB. Accesses to this

3

Figure 2. DFA and XFA processing pseudo code

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 a

c
ti
v
it
y

Percentage states

cisco_ftp
cisco_http

cisco_smtp

(a) DFA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 a

c
ti
v
it
y

Percentage states

cisco_ftp
cisco_http

cisco_smtp

(b) XFA

Figure 3. Frequency distribution of states visited

state machine data structure are irregular and uncorrelated as
they are driven by packet data input. The instructions are local
to a state, and the temporaries and the offset list are local to a
packet and less than a kilobyte in size. Accesses to these struc-
tures is also typically irregular. Since the state machine is the
largest data structure, it contributes most to memory access la-
tencies.

Quantitative results: To study the memory access behavior
we instrumented our implementation to measure how many
times every state is visited while processing a network stream.
Figure 3 shows the frequency at which each state is visited,

Measured on Core2 SIMD
Protocol Prediction accuracy ILP Divergence

DFA XFA DFA XFA % Ave.
FTP 97.5 97.6 1.52 1.52 2.3% 2

HTTP 99.2 99.3 1.83 1.80 0.3% 2
SMTP 98.3 98.2 1.45 1.46 61% 2.21

Table 2. Control flow behavior and parallelism

sorted from high to low. For both DFAs and XFAs, for most
sets, less than 10% of the states contribute to more than 90% of
the visits. Hence, this working set size consisting of only hun-
dreds of states can fit in the cache of a high performance mi-
croprocessor. Note the distinct behavior of the FTP distribution.
Unlike other protocol signatures, most FTP signatures lookfor
valid commands with arguments that are too long. As a result,a
significantly larger number of distinct states are traversed (cor-
responding to valid command sequences) to confirm the pres-
ence or absence of a match.

2.2.2. Control-flow

Analysis: Signature matching has control-flow at three granu-
larities. First, at the coarse-grain theapply function is repeat-
edly called for each packet in the trace. Second, this function
loops over every character in a given packet. For a DFA, the
loop body is a single large basic block. For XFAs, a third level
of control-flow exists: for each state the interpreter must loop
over every instruction for that state and then loop over the en-
tries in the offset list. While processing the instructions(the
exec instr function) many conditional branches arise.

This type of regular control at the lower two levels is well
suited for a SIMD architecture. In the first level, each process-
ing element handles a packet. At the second level, a singlein-
terpreter instruction then processes data for each packet ex-
ploiting predictability. When packet sizes vary, control-flow at
this level will diverge, as some packets will complete process-
ing before others. As described in detail in Section 3 we sort
packets to minimize divergence of control flow at this level.
Thus, DFAs have almost no divergence, since they have only
these two levels of control flow.

The third level of control flow, which exists only for XFAs,
will inevitably diverge. Within each state, a large case state-
ment in the interpreter decides what functionality must be per-
formed based on the XFA instruction. Depending on the XFA
state that a packet is in, its instruction could be differentand
hence it could take different branches in the control flow graph.
The key question is then, for real signatures and real network
traffic, what is common case behavior and how often does di-
vergence occur?

Quantitative results: To understand the effects of control flow
we measured branch prediction rates (using performance coun-
ters) on a Core2 system and instrumented our interpreter to
measure the divergence. Table 2 shows the branch prediction
accuracy in the2nd and3rd columns for different protocols for
both DFAs and XFAs. The high prediction accuracies demon-
strate that control flow patterns are repeated.

4

Our analysis is based on the notion of divergence, which
we define as follows: if theith character of a packet in any pro-
cessing element (PE) takes a conditional branch different from
any other PEs, then that SIMD instruction is said to have di-
verged and has a divergence value of 1. Divergence percent-
age is the percentage of such instructions compared to the to-
tal number of SIMD instructions executed. Columns 6 and 7
show divergences in the control flow for the protocols. We cal-
culate divergence percentage for groups of 32 packets, because
32 is the SIMD width of our prototype implementation. The
last column has the average divergence among the instructions
that diverge. If two packets take different directions thenthe
divergence is 2. First we see that the percentage of SIMD in-
structions that diverge is small for FTP and HTTP, but more
than 50% for SMTP. Packet size distributions for SMTP pack-
ets have more variability and provide less group-of-32 equal-
sized packets, which leads to the increased divergence. How-
ever, when there is a divergence, the average divergence is only
2 implying that on average 30 PEs still execute the same in-
structions. As a result, SIMD with low overhead branching sup-
port can perform well even for behavior like SMTP.

Traditional SIMD designs do not have support for such
types of control flow within a SIMD instruction, but such sup-
port can be added at some performance cost. For example, the
Nvidia G80 architecture supports such types of control flow at a
penalty of 31 cycles. Further, Funget al.evaluate several tech-
niques such as dynamic warp formation [14].

2.2.3. Concurrency Signature matching is heavily data-
parallel since each packet can be processed independently.
Within a packet’s processing, though, the level of con-
currency is limited since per-byte transitions are serially
dependent on each other. For XFAs, the interpreter that ex-
ecutes XFA instructions also has only limited amount
of instruction-level parallelism. Columns 4 and 5 in Ta-
ble 2 show the measured ILP using performance counters
on a Core2 processor. We also examined the branch predic-
tion accuracies and the cache hit rates and found them to
be greater than 95%. Hence, for this application ILP is sim-
ply limited by inherent dependencies and not by control-flow
or memory latencies.

2.2.4. Summary and IPS RequirementsTo summarize, sig-
nature matching requires memories that can support efficient
regular accesses, some fast accesses to a small memory, and ca-
pabilities to hide the latency of irregular accesses. The control-
flow is largely predictable and a classical SIMD architecture
can efficiently support DFA processing. However, XFAs can
exhibit data-dependent branching since the management of the
local variables (counters and bits) is dependent on the packet
data. Such data-dependent branching cannot be efficiently sup-
ported with a classical SIMD organization using predication.
Fortunately, such branching is infrequent and hence some form
of escape mechanism that temporarily deviates from SIMD
processing will suffice.

Our characterization shows that GPUs are a viable target for

(a) (b)

Figure 4. High-level GPU architecture and code ex-
ample

signature matching. GPU architectures have recently incorpo-
rated several features including wide-SIMD, extensive multi-
threading to hide memory latency, and support for fast regular
memory access in the form of texture memories. Further, sup-
port for data-dependent branching (as needed for XFA work-
loads) is emerging. DirectX 10-compliant GPUs include sup-
port for predication and data dependent branching [12], andthe
Nvidia G80 GPU, for example, is implemented as a SIMD ar-
ray with extensions for data-dependent branching [19].

3. Architecture and Prototype Implementation

To evaluate how well the SIMD paradigm is suited for sig-
nature matching, we built a prototype using the Nvidida G80
GPU. In this section, we briefly describe the organization of
the G80 processor and our software implementation.

3.1. Prototype GPU implementation

G80 Organization: For the scope of this paper, we focus only
on the programmable components of the G80 chip. As depicted
in Figure 4a, the G80 is organized as a 16-core SIMD machine,
with each SIMD core being logically 32-wide. The Compute
Unified Device Architecture (CUDA) [20] defines the GPU ar-
chitecture, and a set of software drivers interface to it. The pro-
cessor has four types of memories: a small local memory of
8KB per core that can be accessed in 1 cycle, 16KB of “shared
memory” for localized synchronization of all threads within a
core, cacheable texture memory of 128MB with an 8KB cache,
and uncached memory (or global memory) of 768 MB that
can take 400 to 600 cycles to access. A threading unit exists
to schedule threads and hide memory latencies. The clock fre-
quency of the SIMD core is 1.35GHz.

The processor uses a streaming programming model, with
a kernel of instructionsthe level of abstraction visible to the
processor. The kernel consists of a set of 32-wide SIMD in-
structions and the threading unit (based on programmer speci-
fications) creates a number of threads using the kernel’s code.

5

These are distinct from typical processor threads in that they
are simply logical copies of the kernel. The different threads
execute asynchronously and need not be in lock-step or have
same types of control flow, and each gets a partition of the lo-
cal memory.

The programming model for the CUDA architecture is
shown in Figure 4b. Any code that must execute on the GPU
is referred to as akerneland is defined as a C or C++ func-
tion augmented with special directives. The main code
executes on the CPU and the GPU acts as a co-processor. Spe-
cial function calls copy data to/from the GPU memory and
CPU memory. For example, thefoo <<< # threads
>>> (arg0, arg1, arg2) , which gets translated into a
set of system calls to the GPU device driver, triggers the exe-
cution of the kernelfoo on the GPU.

Software implementation: We implemented a fully func-
tional signature matching system on the G80 GPU. We de-
veloped a DFA/XFA signature matcher using the above
streaming model that has two main components (or ker-
nels): fa build and trace apply . fa build builds the
state machine structure for DFAs or XFAs on the GPU and ex-
ecutes prior to matching. This kernel is completely sequential
and executes as a single thread utilizing one processing ele-
ment on the chip. DFAs and XFAs are recursive data structures
and cannot simply be copied from CPU memory to GPU mem-
ory (pointers will be different in each address space). Thus,
each state is copied and transitions are rebuilt.

The other kernel,trace apply , processes packets and
performs matching. In our implementation, we pass a large
trace of 65,536 packets to the GPU and initiate processing. A
sorting engine creates groups of 32 packets which are largely
similar in size. Every SIMD processor is assigned one such
group of packets. Finding 32 packets with identical size canin-
troduce large latencies, whereas having unequal sized packets
introduces wasted work, as every packet will take as many cy-
cles to process as the largest packet in the group. In our imple-
mentation we found that a window of 2048 packets provides
groups with little variance in the packet size. Once the pro-
cessing of all packets is complete, a bit-vector is passed back
to the CPU indicating which signatures matched which pack-
ets. This batch processing is an artifact of our prototype im-
plementation and the PCI-Express-based interfaces that mod-
ern PC-based system use. We envision real systems would uti-
lize some form of shared memory to address this.

3.2. Optimizations

Long-word access to memory.We started with a strawman
implementation that maintained the state machine and packet
buffer in global memory and accessed the packet buffer one
byte at a time. Our performance analysis showed that using tex-
ture memory and accessing larger words can provide significant
performance improvements. We modified our implementation
to fetch 8 bytes at a time from the packet buffer, which resulted
in approximately 2× improvement compared to single-byte ac-
cesses.

Register pressure.The number of registers in a kernel is a
critical resource, since the physical register file of 256 registers
is shared between threads. For example, for a kernel with 32
registers, at most 8 threads can execute concurrently in a single
core. To increase concurrency, we limited the number of regis-
ters used to eight, thus creating spills to local memory as nec-
essary.

Branching. We found the data-dependent branching support
in the G80 to be adequate, since the average divergence we
see is quite small (between 1 and 2). We developed a micro-
benchmark that measured the level of branching in a SIMD
group. As more and more PEs of a SIMD group diverge, the
additional cycles required was approximately linear - indicat-
ing that the overheads in addition to serialization were small.

4. Results

We now report the performance evaluation of our prototype
GPU-based signature matching system. Our prototype system
is a Nvidia G8800 GTX card plugged into a Pentium4 system
running at 3GHz. Our baseline for comparison is a software
implementation running on this Pentium4 system. We also ex-
amine performance on an Intel Core2 system (Clovertown In-
tel Xeon E5345 2.33GHz)1. Optimizing for MMX/SSE can
improve the performance of these implementations which we
will investigate in future work. In addition, we developed a
pthreads-based multithreaded implementation and measureits
performance on a Sun Niagara (SunFire T2000). We first de-
scribe the data-sets and machine configurations. We then show
performance potential and performance on representative net-
work traces and signature sets. We conclude the section witha
discussion of optimizations.

4.1. Datasets, system configuration, and Metrics

Our study uses signatures for three common protocols –
FTP, SMTP, and HTTP – taken from both Cisco Systems [9]
and Snort [22]. We found the Snort-based measurements to be
qualitatively similar to those for Cisco signatures and hence
show only the results for the Cisco sets. We first converted in-
dividual signatures to distinct DFAs and XFAs. We then created
composite DFAs [32] with memory limited to 64 MB per sig-
nature set. Table 3 describes the details of the three signature
sets. When summed across all protocols and features, total sig-
natures can number in the thousands, but during runtime only
those signatures that correspond to a packet’s protocol must be
matched. There are no fundamental limitations to our systemto
simply run all protocols and scale up. For input data our exper-
iments follow standard practice. We use a 10GB network trace
collected on the edge of a large academic network that is re-
played through our prototypes.

We implemented the XFA and DFA matching routines in
C++ for our baseline Pentium4 system. Our multi-threaded im-

1 Clovertown’s inter-core communication is structured so that its parallel
scalability is quite poor; we report only single thread performance for this
platform.

6

 0.1

 1

 10

 100

 10000

 0 1 2 3 4 5 6 7 8 9

n
s
/b

y
te

Number of threads (1000s)

G80
G80 Ideal Memory

Pentium4
Core2

Niagara (32 threads)

 0

 2

 4

 6

 8

 10

ftp(DFA) ftp(XFA) http(DFA) http(XFA) smtp(XFA) smtp(DFA)

S
p

e
e

d
u

p

Protocols

GPU Core2 Niagara(8T) Niagara(32)

(a) Best-case DFA (logscale on y axis) (b) Benchmark signatures

Figure 5. Performance comparison to baseline Pentium4 system

plementation minimizes synchronization overheads and uses
a single packet-pointer queue which contains pointers to the
packet buffer. Reads to this packet queue are protected with
a fine-grained lock, and all other accesses are contention-free.
We also implemented a lock-free version that uses more mem-
ory and indexes the packet buffer with the thread number, but
this provided less than 2% improvement and shows our lock
implementation is quite efficient.

We measure speedup in terms of total execution time. For
our multi-threaded experiments, we measure execution cycles
only for packet processing and exclude the time taken to set up
the packet-pointer buffer. We ran single-threaded, 8-way and
32-way multithreaded experiments on our Niagara machine.

4.2. Performance Potential

Figure 5a compares the ideal performance of the G80 to
our baseline (Pentium4). We measure this ideal performance
by constructing a simple DFA with just one state that remains
in this state irrespective of input. The x-axis gives the num-
ber of threads and the y-axis shows execution time measured
in nanoseconds per byte. With only one thread, we are compar-
ing the performance of one processing element to the Pentium4
processor and it is about four orders of magnitude worse. Each
byte in the packet requires two memory accesses amounting
to 800 cycles of memory delay, resulting in this performance
difference. As we increase the number of threads, the multi-
threading capability of the G80 is effective at hiding memory
latency, with performance leveling-off at 6.4ns/byte using 8192
threads. Thus, the G80 out-performs the Pentium4 running the
same DFA (80 ns/byte) by about 12×. The speedup on this
simple DFA places an upper-bound for what the G80 imple-
mentation can achieve on real traces. The Core2, which runs
at a slightly lower frequency than the Pentium4 but can ex-
tract much more ILP, is about twice as fast as the Pentium4.
With 32 threads, the Niagara is about 3.2× better than the Pen-
tium4.

Considering peak GOPS, the G80 is capable of approxi-
mately 36× better performance than the Pentium4. This lost

Protocol # Sigs # States Speedup
(XFAs) G80 80% hits Perfect

DFA XFA DFA XFA DFA XFA
FTP 31 323 8.6 7.2 10.5 8.5 11.1 8.9

HTTP 52 1759 9.2 5.6 11.1 6.0 11.7 6.3
SMTP 96 2673 8.1 7.8 9.9 9.3 10.4 9.7

Table 3. Description of signatures and performance
comparison to Pentium4. Columns 6-9 are estimates.

performance potential is primarily due to memory through-
put and latency. The dashed line shows performance when the
memory system is idealized for the G80. We create this ideal-
ized memory configuration by replacing the accesses to global
memory with dummy loads to local memory. Comparing to
the real system, we see that after 2048 threads bandwidth be-
comes a constraint for the real system and performance levels
off, whereas the ideal system scales further as it also has in-
finite bandwidth. Comparing these two systems, we estimate
that the effective memory access latency for the real systemis
16 cycles, computed by subtracting the difference in execution
cycles and dividing by the total number of memory loads.

4.3. Overall Performance

We now present performance results for full traces and sig-
nature sets. Table 3 shows the speedup compared to the Pen-
tium4 baseline for the three protocols. For DFAs, the three pro-
tocols exhibit similar speedups, averaging 8.6×. This is to be
expected because DFAs have regular control flow and all these
DFAs have a large number of states. XFAs on the other hand
have more divergent behavior, performing about 6.7× better
on the G80 overall. HTTP shows the least performance im-
provement because it executes more XFA instructions on aver-
age than the other protocols. The Core2 out-performs our Pen-
tium4 baseline by 2× because it can extract more ILP in the
matching routine.

The Niagara platform serves as an evaluation point that is
similar to modern network processors, as it can execute 32
threads on a single chip. Figure 5b compares performance of

7

the G80 and Niagara implementations to our baseline. The
GPU bars reflect values identical to those in Table 3. The Ni-
agara can effectively use thread-level parallelism acrossdiffer-
ent packets; with 32 threads it is about 4× better than Pentium4
baseline. However, the G80 still outperforms Niagara by 2.3×.
We observe that across the different protocols and traces, rela-
tive performance is quite similar.

Note that the GPU execution includes separate time to
transfer data to the GPU, execution time of the kernel, and
time to transfer data back. With the HTTP protocol, for ex-
ample, the breakdown of the times for processing 16K pack-
ets is as follows: 34ms(transfer), 212ms(compute), and 0.18ms
(transfer-back). In general, transfer time is quite small.Double-
buffering, which is expected to arrive in next-generation GPUs,
can effectively hide this delay. Also, the state machine data
structure must be created during initialization. By far, this takes
the largest amount of time as it executes on a single process-
ing element and must recursively build the state machine data
structure and take 15 minutes for the HTTP XFAs. Signature
database update time will be dictated by this.

Overall the G80 implementation performs significantly bet-
ter than the Pentium4 implementation, achieving on average
8.6× and 6.7× speedups for DFAs and XFAs, respectively.
However, the speedup is still far below the ideal 36× differ-
ence in peak performance between the two systems. Further,
based on a comparison of peak performance and achieved per-
formance, we estimate the G80 sustains only 10% of its peak.
Below, we discuss potential optimizations to move closer tothe
ideal.

4.4. Discussion

Hardware caching - Texture memory. The G80 includes a
large hardware managed texture cache that can exploit local-
ity. To simplify hardware, this cache can only be read from
the GPU, and its contents are effectively pre-loaded by the
CPU.2 We developed a microbenchmark to isolate the bene-
fits of texture caching and noticed that on the G80, regular ac-
cesses to texture memory were typically twice as fast as reg-
ular accesses to global memory. As shown in our performance
analysis, memory latencies are not completely hidden by multi-
threading and caching can help hide this delay.

Two large data structures — the packet buffer and state ma-
chine data structure — contribute the most to memory space us-
age and can potentially benefit. However, accesses to the packet
buffer are far fewer than to the state machine data. For every64
bits of packet data (e.g.2 memory reads), 8 state machine ac-
cesses are generated. Thus, state machine accesses dominate
and mapping the packet buffer to texture memory did not pro-
vide substantial improvements.

On the other hand, the state machine data is an ideal candi-
date for caching, since the working set is quite small and hard-
ware can capture these “hot” states. However, we cannot map

2 In reality the CPU marks a region of memory as texture cacheable and at
run-time the cache is populated by the GPU. Explicit writes to this region
of memory from the GPU are forbidden.

this to the texture memory because it is a recursive data struc-
ture. Hence it cannot be created on the CPU side and simply
copied over to the GPU since the CPU address space and GPU
address spaces are different. The GPU cannot directly writeto
the texture memory either.

Caching recursive data structures such as a state machine
can yield significant performance improvements. This can be
achieved by simply allowing a special mode where a single
thread executes and writes to the texture cache to build this
data structure. Alternatively, the GPU address space can beex-
posed to the CPU in some fashion to build such data structures
on the CPU and copy them over.

We can estimate the benefits of such caching using a sim-
ple model of memory accesses. From our performance poten-
tial experiment we estimate that the average memory access la-
tency is 16 cycles. Thus we can derive the execution time of
non-memory instructions for each trace. We can then add in
memory access time for different cache scenarios. If the en-
tire working set size fits in the cache, memory access latencies
will be the latency to the texture cache. Columns 6-9 in Ta-
ble 3 show the benefits of such caching with a hit rate of 80%
and 100%, for a latency of 4 cycles.

Software-managed memory.Software-managed caching can
also help hide memory access latencies. The signature sets and
traces can be profiled to determine the set of hot states and these
states can be saved in fast software-managed memory with
only misses being sent to the global uncached memory. Several
processors include such software managed memories: Imag-
ine [18] has a stream register file, and the IBM Cell processor
has 256 KB of software managed storage at each core [17]. The
G80 includes such software managed memory called “shared
memory” which is 16KB of storage space shared between all
the processing elements of a core that can be accessed in four
cycles. This is further organized into 16 banks of 1KB each
and is specialized for regular accesses that each go to a differ-
ent bank. We considered the use of this memory for caching the
hot states, but our estimates show the space is too small to be
useful. With 16KB, only 16 states can be cached. Furthermore,
unless each PE accesses a different state, bank conflicts domi-
nate and reduce the benefits of this memory. Thus,large stor-
age is required to be effective.The caching results in Table 3,
Columns 6-9 suggest a large software managed cache can per-
form well for this application.

Resettable local memories.Local memory state must be
cleared before each packet is processed. A hardware exten-
sion that clears it automatically could reduce the instruction
count for XFAs.

4.5. Limitations and Future Work

The limitations of our prototype are as follows. First, we
process packets in batches because of the interface limitations
between GPU and CPU. Based on our measurements, we con-
servatively estimate that a buffer of 2048 packets completely
minimizes overheads of data-dependent branching. Second,we

8

are performing only signature matching, which is just one com-
ponent (albeit compute-intensive) of an IPS. In particular, we
do not perform reassembly, normalization, or other common
pre-processing tasks. Third, our use of sorting to better exam-
ine the potential for SIMD architectures will need further study.

In future work we will examine other functions and explore
a full system design, but this architecture does not have any
fundamental limitation in realizing a full IPS. For example,
stream reassembly can be performed by maintaining per-flow
state in memory and loading it up just prior to packet process-
ing. Further, a head-to-head performance comparison against
network processors should provide interesting efficiency and
cost/performance comparisons.

5. Related Work

The work most closely related to ours can be grouped in
terms of application analysis and implementation of signature
matching, analysis and extensions of SIMD architectures, and
applications on GPUs.

To the best of our knowledge, our work is the first to present
a detailed analysis of signature matching for network process-
ing. Many FPGA and ASIC implementations for high-speed in-
trusion detection have been recently explored [3, 8, 15, 11,27].
Tuck et al. [31] describe pattern matching optimizations for
ASIC as well as software implementations targeted at general
purpose programmable processors. Brodieet al. [5] describe a
pipelined implementation of regular-expression pattern match-
ing that can map to an ASIC or FPGA. Alicherryet al. [1]
examine a novel Ternary CAM based approach. Tan and Sher-
wood [28] describe a specialized hardware implementation that
performs several pattern matches in parallel where each pattern
is a simple state machine. LSI Logic’s Tarari 8000 [29] series
of content processors boards support efficient regular expres-
sion processing. Performance of over 1 million RegEx rules
processed simultaneously at deterministic speeds has beenre-
ported with their proprietary NFA processing on a specialized
regular expression processor [30]. Software-based techniques
to improve IPSes and algorithmic improvements are unrelated
to our work.

Erezet al.[13] describe irregular computation on SIMD ar-
chitectures, focusing on irregular memory access patternsand
software transformations. They examine scientific workloads
and focus on locality and parallelization optimizations. For sci-
entific applications they conclude control-flow flexibilitypro-
vides at best 30% performance improvements. In our work-
loads, the parallelization is straightforward and the locality can
be easily determined through profiling. Our results show that
the benefits of control-flow flexibility can be quite dramaticfor
signature matching. Baderet al. [2] examine irregular applica-
tions and a mathematical model for the Cell processor, a multi-
core 4-wide SIMD architecture.

Jacob and Brodley [16] demonstrate a version of the open
source IPS Snort that uses the NVidia 6800 GT graphics card to
performsimple string matching. This work bears some superfi-
cial resemblance to ours, but there are a number of fundamental

distinctions. First, Snort uses string matching to pre-filter traf-
fic, but for many packets it must also perform the more com-
plex regular expression matching for all signatures not ruled
out by the pre-filter. This makes Snort vulnerable to attacksin
which packets are crafted to pass the pre-filter and cause ex-
pensive regular expression processing for many signatures. Our
own measurements show that such attacks can slow Snort down
by more than 100× on a general purpose processor. The mag-
nitude of these attacks is only increased if the string matching
pre-filter is run on a fast GPU and regular expression match-
ing is run on a slower general-purpose CPU. Second, our use
of more powerful signature matching algorithms that can eval-
uate multiple complex signatures in a single pass is more rep-
resentative of current trends in signature matching systemde-
sign [4, 6, 9, 25, 26, 32]. Finally, our evaluation on a more flex-
ible newer-generation GPU is better suited for judging the suit-
ability of present and future GPUs for such workloads. Our re-
sults are much more promising with respect to the potential of
GPUs to support higher throughput.

Lastly, for bio-informatics workloads, Cmatch and
MuMerGPU [23], provide techniques for exact and approx-
imate string matching, but these do not generalize to reg-
ular expressions. Seamans and Alexander [24, 10] discuss
ways to map a special type of regular expressions used for an-
tivirus scanning from the open source ClamAV toolkit to a
GPU. But, these do not generalize to IPS signatures. Our tech-
nique and XFAs can be used to support ClamAV type sig-
natures, but less efficiently. Pharr and Fernando [21] pro-
vide a good overview of several high performance applications
mapped to GPUs.

6. Conclusion

In this paper, we examined the feasibility of using SIMD
architectures for performing signature matching, the most
processing-intensive operation for network intrusion preven-
tion systems. This paper is the first to perform a detailed
application analysis examining the basic memory, con-
trol flow, and concurrency properties of signature matching.
Our study examined both DFAs and XFAs for matching sig-
natures to payloads. DFAs require simple processing for each
input byte with high memory requirements, whereas XFAs re-
duce memory and achieve better performance but require more
complex and less uniform per-byte processing, which can im-
pact SIMD performance.

To the best of our knowledge, this work is the first to quan-
tify SIMD processing for this application. We implemented sig-
nature matching on an Nvidia G80 GPU and observed 6× to
9× better performance than on a Pentium4 system. Our proof-
of-concept implementation shows that network devices can of-
fload signature matching to a SIMD engine to achieve cost-
effective performance improvements. More generally, regular
expression matching is central to many other applications such
as network traffic policing, XML processing, and virus scan-
ning; analyses similar to ours may also help such applications
benefit from the performance potential of SIMD engines.

9

References
[1] M. Alicherry, M. Muthuprasanna, and V. Kumar. High Speed

Pattern Matching for Network IDS/IPS. InICNP ’06. Proceed-
ings of the 2006 14th IEEE International Conference on Network
Protocols, pages 187–196, November 2006.

[2] D. Bader, V. Agarwal, and K. Madduri. On the Design and Anal-
ysis of Irregular Algorithms on the Cell Processor: A Case Study
of List Ranking. InParallel and Distributed Processing Sympo-
sium, 2007. IPDPS 2007, pages 26–30, March 2007.

[3] Z. Baker and V. Prasanna. Automatic Synthesis of Efficient In-
trusion Detection Systems on FPGAs.IEEE Transactions on
Dependable and Secure Computing, 3:289–300, October 2006.

[4] M. Becchi and P. Crowley. An improved algorithm to accelerate
regular expression evaluation. InANCS, December 2007.

[5] B. C. Brodie, D. E. Taylor, and R. K. Cytron. A scalable archi-
tecture for high-throughput regular-expression pattern matching.
In ISCA 2006, pages 191–202, 2006.

[6] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. To-
wards automatic generation of vulnerability-based signatures. In
IEEE Symposium on Security and Privacy, Oakland, California,
May 2006.

[7] J. B. Cabrera, J. Gosar, W. Lee, and R. K. Mehra. On the statis-
tical distribution of processing times in network intrusion detec-
tion. In 43rd IEEE Conference on Decision and Control, Dec.
2004.

[8] Y. H. Cho and W. H. Mangione-Smith. Deep Packet Filter with
Dedicated Logic and Read Only Memories. In12th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’04), pages 125–134, 2004.

[9] Cisco intusion prevention system (Cisco IPS).
http://www.cisco.com/en/US/products/ps6634/
products ios protocol group home.html .

[10] Clamav: Clam antivirus. Available at
http://www.clamav.net/doc/latest/
signatures.pdf .

[11] C. Clark and D. Schimmel. Scalable Parallel Pattern Match-
ing on High Speed Networks,. InProc. 12th Ann. IEEE Symp.
Field Programmable Custom Computing Machines (FCCM ’04),
pages 249–257, 2004.

[12] Shader Model 4 (DirectX High Level Shading Lan-
guage) Available at http://msdn.microsoft.com/
en-us/library/bb509635(VS.85).aspx .

[13] M. Erez, J. H. Ahn, J. Gummaraju, M. Rosenblum, and W. J.
Dally. Executing irregular scientific applications on stream ar-
chitectures. InICS 2007, pages 93–104.

[14] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic
warp formation and scheduling for efficient gpu control flow.In
Proceedings of the 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 407–420, 2007.

[15] B. Hutchings, R. Franklin, , and D. Carver. Assisting Network
Intrusion Detection with Reconfigurable Hardware. In10th An-
nual IEEE Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM’02), pages 111–120, 2002.

[16] N. Jacob and C. Brodley. Offloading IDS computation to the
GPU. InACSAC, Dec. 2006.

[17] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D.Shippy. Introduction to the cell multiprocessor.IBM Jour-
nal of Research and Development, 49(4):589–604, July 2005.

[18] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Mattson,
J. Namkoong, J. D. Owens, B. Towles, and A. Chang. Imag-
ine: Media processing with streams.IEEE Micro, 21(2):35–46,
March/April 2001.

[19] NVIDIA corporation. Technical Brief: NVIDIA GeForce 8800
GPU Architecture Overview, 2006.

[20] NVIDIA corporation. NVIDIA CUDA Programming Guide,
2007. Available athttp://developer.nvidia.com .

[21] M. Pharr and R. Fernando.GPU Gems 2: Programming Tech-
niques for High-Perf. Graphics and General-Purpose Computa-
tion. Addison-Wesley.

[22] M. Roesch. Snort - lightweight intrusion detection fornetworks.
In 13th Systems Administration Conference. USENIX, 1999.

[23] M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney. High-
throughput sequence alignment using graphics processing units.
BMC Bioinformatics 8:474.

[24] E. Seamans and T. Alexander.Chapter 35: Fast Virus Signa-
ture Matching on the GPU, Gems 3. Editor: Hubert Nguyen.
Addison-Wesley Professional.

[25] R. Smith, C. Estan, and S. Jha. XFA: Faster signature matching
with extended automata. InIEEE Symposium on Security and
Privacy, May 2008. Oakland.

[26] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the Big Bang:
fast and scalable deep packet inspection with extended finite au-
tomata. InSIGCOMM, Aug. 2008.

[27] H. Song and J. W. Lockwood. Efficient packet classification
for network intrusion detection using fpga. InFPGA ’05: Pro-
ceedings of the 2005 ACM/SIGDA 13th international symposium
on Field-programmable gate arrays, pages 238–245, New York,
NY, USA, 2005. ACM Press.

[28] L. Tan and T. Sherwood. A high throughput string matching ar-
chitecture for intrusion detection and prevention. InISCA 2005,
pages 112–122, 2005.

[29] Tarari 8000. Online http://www.lsi.com/DistributionSystem/
AssetDocument/documentation/networking
/tarari contentprocessors/LSIPB 2pg GP8000up.pdf.

[30] Tarari T10 Technology. Online http://www.lsi.com/
DistributionSystem/AssetDocument/LSI-
PB 2pg T10 Silicon0923.pdf.

[31] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Determinis-
tic Memory-Efficient String Matching Algorithms for Intrusion
Detection. InINFOCOM 2004, pages 2628–2639, March 2004.

[32] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz.
Fast and memory-efficient regular expression matching for deep
packet inspection. InANCS 2006, pages 93–102, 2006.

10

