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Abstract
Specialization and accelerators are being proposed as an

effective way to address the slowdown of Dennard scaling.
DySER is one such accelerator, which dynamically synthesizes
large compound functional units to match program regions,
using a co-designed compiler and microarchitecture. We have
completed a full prototype implementation of DySER inte-
grated into the OpenSPARC processor (called SPARC-DySER),
a co-designed compiler in LLVM, and a detailed performance
evaluation on an FPGA system, which runs an Ubuntu Linux
distribution and full applications. Through the prototype, this
paper evaluates the fundamental principles of DySER acceler-
ation, namely: exploiting specializable regions, dynamically
specializing hardware, and tight processor integration. To this
end, we explore the accelerator’s performance, power, and
area, and consider comparisons to state-of-the-art micropro-
cessors using energy/performance frontier analysis of both the
prototype and simulated DySER-accelerated cores.

Among many positive findings, two key ones are: i) the
DySER execution model and microarchitecture provides en-
ergy efficient speedups and it does not introduce overheads
due to its internal microarchitecture management structures –
overall, DySER’s performance improvement to OpenSPARC
is 6×, consuming only 200mW ; ii) on the compiler side, the
DySER compiler is effective on computationally intensive reg-
ular and irregular code. However, some challenges restrict
DySER’s domain of effectiveness: i) Some corner cases curtail
the compiler’s effectiveness for arbitrarily organized code like
the SPEC benchmarks; ii) It is possible that OpenSPARC’s
limited performance masks the challenges and bottlenecks of
integration with higher performance cores.

1. Introduction
For building the next generation of processors, accelerators
are becoming a primary approach for boosting performance
and energy efficiency [12, 16, 29, 15, 2, 14, 10]. Accelera-
tors are designed to push their baseline architectures across
the established energy and performance frontier, a trend we
have depicted in Figure 1. Accelerators, which are shown
as vectors (arrows), move the baseline processor to a new
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Figure 1: Energy/Performance Frontier & Accelerators

point on the graph that has a better performance and/or en-
ergy tradeoff. Many coarse-grain reconfigurable accelerators
have been proposed to achieve this goal, each exploiting dif-
ferent program properties, and each designed with their own
fundamental principles [14, 29, 15, 10, 18]. These principles
ultimately decide the magnitude and direction of the benefit
vector components. This metric intuitively quantifies acceler-
ator effectiveness. While early stage results from simulation
and modeling provide good estimates, performance prototyp-
ing on a physical implementation uncovers the fundamental
sources of improvement and bottlenecks.

This paper undertakes such a prototype evaluation of the
DySER accelerator which is based on three principles:
1. To exploit frequently executed, specializable code regions
2. To dynamically configure accelerator hardware for particu-

lar regions
3. To integrate the accelerator tightly, but non-intrusively, to

a processor pipeline
Prior work has presented DySER’s architecture and early

stage results [12, 11], ISA design and proof-of-concept integra-
tion into OpenSPARC [6], compiler [13] and scheduler [19].
In this paper, we use a performance-capable FPGA-based pro-
totype, its compiler, meaningful workloads and undertake an
end-to-end evaluation of what we call the SPARC-DySER
system. Like any full system prototype evaluation, our end
goal is to elucidate the merit of the underlying principles using
detailed quantitative measurements and analysis of a physical
prototype. To that end, we have organized measurements and
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analysis as shown in Figure 2. The three principles outlined
above are evaluated with appropriate metrics. Each metric
itself is broken into distinct analysis components, and for each
we name the corresponding section of the paper. Analysis com-
ponents are either quantitative or are proven by construction
(marked with a C on the Figure).

The analysis and data is organized in parallel structure
across the different metrics as detailed next. The first DySER
principle is evaluated primarily with compiler analysis in
terms of the feasibility of finding specializable regions and
the ability of the compiler to use these regions to generate
high-performance code. Feasibility is shown both by the char-
acteristics of applications, and by construction through prior
work. The compiler performance is demonstrated through the
analysis components of effectiveness, bottlenecks which limit
effectiveness, and generality to all types of code. The second
two DySER principles, dynamically formed hardware and
tight processor integration, are closely intertwined, and are
therefore jointly evaluated. The feasibility of both principles
has been shown constructively in prior work and reviewed
in Sections 2 and 3. The metrics of performance, area, and
power are each evaluated through three analysis components:
i) the raw metric itself; ii) the bottlenecks which limit the
metric; and iii) and the sensitivity of the metric to the baseline
processor. Figure 2 includes a table summarizing key findings.

A complex aspect of the study is the sensitivity of the perfor-
mance and energy metrics to the baseline processor. Since it re-

quires simulation, we defer it to a section of its own (Section 9)
to avoid intermingling simulator data with prototype measure-
ments. We use energy frontier curves and the benefit vector
concept for this analysis — we form the DySER benefit vector,
and analyze the position of DySER-accelerated processors
in the energy/performance frontier. This captures DySER’s
benefits in a nut-shell — Figure 3(a) shows the performance
of DySER accelerated cores and the performance component
of the benefit vector in IPS (instructions per second). Fig-
ure 3(b) shows the energy of DySER accelerated cores and
the energy component of the benefit vector. Figure 3(c) shows
the energy/performance frontier for all processors considered
in this study. The overall finding is the following: A DySER
accelerator provides more performance and energy benefits
as the baseline processor improves. However, the speedup
and energy improvement ratio will degrade because a better
baseline processor is more difficult to accelerate. The energy
improvement ratio would be close to the speedup ratio for a
simple and power efficient implementation.

Our paper is organized as follows. Sections 2 and 3 cover
the feasibility metric. Section 4 presents methodology for
the quantitative measurements. Sections 5-9 cover the com-
piler, performance, area, power/energy, and frontier analysis
respectively. Section 10 concludes with lessons learned.
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Figure 4: Overview of the DySER Architecture

2. DySER Design
DySER’s microarchitecture and compiler concepts have been
reported in previous publications. This includes the architec-
ture description [12, 11], detailed compiler description [13],
scheduler [19], and a proof-of-concept integration [6]. This
material, which we summarize below, demonstrates the feasi-
bility of the three DySER principles.

DySER & Execution Model DySER (Dynamically Spe-
cialized Execution Resources), offers a reconfigurable way to
build efficient specialized datapaths to offload work from the
energy-hungry processor pipeline.

Figure 4 shows an overview of the DySER architecture.
First, the original code is processed by the DySER compiler,
a process we term "DySERizing." DySERization splits the
original code into two components; one is the computation
component that is suitable for DySER acceleration, and the
other is the memory access component, which consists of
loads, stores and supporting instructions. Communication be-
tween the memory access component (on the main processor)
and the computation component (on DySER) occurs with ISA
extensions, through which the processor pipeline can send data
to or retrieve data from the DySER hardware. One example
of a DySER instruction is the DySER vector load, shown as
dld_vec in Figure 4. Further ISA details are in [6, 11].

The computation component is shown in the blue circle of
Figure 4. The configuration is mapped onto DySER through
the dcon�g DySER instruction, which sets up the functional
units and switches prior to the region of code which uses
the particular configuration. The functional units perform
computations, and the switches construct a light-weight circuit-
switched network for the data values.

The processor-DySER interface is shown in Figure 4 as the
striped boxes between D$ and DySER (described in [11]). The
interface allows a vector operation to communicate either to a
single DySER port (deep communication), or across multiple
ports (wide communication). To explain the utility of this
feature, we introduce the term invocation, which means one
instance of the computation for a particular configuration.
Each input data of an invocation forms a wavefront across
each logical input FIFO. A deep vector operation transmits
the same input of the computation across multiple DySER

invocations, while a wide vector operation transmits different
data elements for the same invocation. This flexibility allows
DySER to vectorize loops which are intractable for traditional
SIMD techniques[13].

DySER Compiler The DySER approach relies on the com-
piler to identify and transform regions of programs that can
be accelerated by DySER. In brief, the compiler creates the
mentioned computation component and memory access com-
ponent, and represents them with the Access Execute Program
Dependence Graph (AEPDG) [13]. The DySER compiler
performs transformations on the AEPDG to vectorize the exe-
cution, and outperforms ICC for SSE and AVX by 1.8×.

DySER Proof-of-Concept OpenSPLySER is an integration
of DySER and OpenSPARC [6], built to demonstrate that
non-intrusive integration is possible. It includes many simpli-
fications, including modified switch microarchitecture, flow-
control, DySER configuration, output retrieving mechanisms,
and DySER size. The largest DySER configuration possible
was a 2×2 configuration, or an 8×8 configuration with only
2-bit datapath. Hence, only peak performance was quantified
with simple microbenchmarks.

3. From Prototype to Performance Evaluation
Though the original prototype, OpenSPLySER, provides sup-
port for the claim that DySER is a non-intrusive approach, it
is not a feasible platform for performance evaluation because:
1) simplifications in integration break the precise state of the
processor; 2) it lacks the performance critical vector interface,
and other optimizations; and 3) it has limited resources for
DySER, due to FPGA size constraints.

We overcome these hurdles, and achieve a performance-
capable prototype by: 1) replacing the integration between
OpenSPARC and DySER with a stall-able design; 2) enhanc-
ing the prototype with a vector interface and optimizing the
microarchitectural and physical implementation; and 3) cop-
ing with the FPGA resource limitations by removing unused
functional units and switches in DySER for each benchmark.
Figure 5 summarizes these three approaches, and we describe
them in more detail below.
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3.1. Retire Buffer and Stall-able Design
To simplify the implementation, the OpenSPLySER prototype
does not consider OpenSPARC T1 traps and exceptions. As a
result, when moving from microbenchmarks to real workloads,
it sometimes corrupts the architectural state. We solve this by
modifying existing rollback mechanisms to be consistent with
DySER’s view of the architectural state.

However, this is not a full solution for handling DySER re-
ceive instructions, as they update the interface FIFOs (part of
the architectural state) before the writeback stage. This means
that a re-executed receive, because of some exception at write-
back, may not find the data in the interface FIFO. Therefore,
we add a three-entry retire buffer at the DySER output, which
is shown in Figure 5(a). The retire buffer discards DySER
outputs only after all exceptions are resolved.

3.2. Enhancements for performance
A vector interface for DySER-processor communication, al-
lowing multiple values injected per input port, dramatically
improves performance [11]. Since OpenSPLySER was not
designed for performance evaluation it did not include this
interface. Integrating this to OpenSPARC’s memory pipeline
is quite complex. To achieve a performance-accurate design
and implementation without significantly increasing design
complexity, we implemented a simplified vector interface de-
sign, as shown in Figure 5(b). Essentially, the vector load is
emulated by performing a scalar load, and duplicating the data
for each appropriate DySER input FIFO. This mechanism is
performance-equivalent to wide or deep loads, and we verify
that we do not affect the benchmark’s execution path.

In addition to the vector interface, other minor optimiza-
tions are made to further increase the performance and area of
DySER. These include an improved switch flow control proto-
col implementation and FPGA physical optimization passes,
such as register retiming.

3.3. Coping with FPGA limitation
As previously mentioned, the OpenSPLySER prototype can
only fit a small (2X2) DySER or a DySER with a 2-bit dat-
apath. The previously mentioned optimizations reduce the
area required for DySER, but are still insufficient to fit a full
DySER prototype on the Virtex-5 evaluation board. To mit-
igate this problem and achieve a performance capable sys-
tem, our strategy is to remove the unused functional units

and switches in DySER for each configuration, and perform
FPGA synthesis for each configuration. By removing the un-
used devices, we are able to synthesize and map all critical
configurations found in our benchmarks. Though this means
that the prototype does not retain reconfigurability, it is still
performance-equivalent and emulates the generic 8x8 DySER.
This is because we keep the specialized datapath intact, and
we continue to issue dcon�g instructions, even though they
do not actually reconfigure DySER.

4. Evaluation Methodology
The previous sections demonstrated the feasibility of the three
DySER principles, and we now begin the discussion of quan-
titative metrics. This section describes our methodology for
measurements and analysis, shown by Figure 6. Beginning
with annotating and DySERizing the benchmarks, we run the
binaries on VCS, the FPGA, and GEM5-based cycle accu-
rate simulator to acquire performance metrics. We also run
the non-DySERized binaries on other native platforms for
comparison analysis. On the hardware side, we enhance the
SPARC-DySER as mentioned, using VCS to generate archi-
tectural events, and use the Synopsys Design Compiler and
IC Compiler, to acquire the power, area and layout metrics.
The analysis metrics, measurements and benchmarks used are
summarized in Table 1.

The most meaningful workloads for this study should have
sufficient computation and be representative of emerging areas.
To avoid selection bias, our goal was to pick existing suites -
the Parboil [21] suite and throughput kernels from [23] meet
both needs. While they are complex and challenging, they
are small enough that they allow detailed understanding to
extract out bottlenecks and insights. Time-constraints limited
us to only two throughput kernels - convolution and radar. The
Parboil and throughput kernels are the primary benchmarks
considered across all metrics. It is also important to understand
effectiveness on “code in the wild” or legacy code. To that
end, we also examined the SPEC benchmarks.

In addition to raw performance, we compare DySER’s effec-
tiveness to state-of-the-art processors, and study the sensitivity
to the baseline processor for integration. We make a best
effort for fair and rigorous comparisons as described below.
We choose three representative “architecture types” for com-
parison. First, ARM’s Cortex A8, A9 and A15 architectures
represent low-power microprocessors. Second, Intel’s x86 Ivy
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Benchmarks Parboil [21], two throughput kernels, and SPECINT [24].
Metrics Performance, energy and area.
Performance
Measurements Dynamic instruction counts, cycle counts, and µarch. events.

Energy
Measurements

VLSI-based Power (55nm standard-cell library) from Synop-
sys Power Compiler, annotated with SAIF file.
Watts from Watts-up meter for native platforms.

Area
Measurements

Area from Synopsys Design Compiler and IC Compiler in
32nm standard-cell library1

Table 1: Metrics and Measurements

Cortex-A8 Cortex-A9 Cortex-A15 Ivy Bridge GPU(Tesla)
Proc. OMAP4430 OMAP3530 Exynos 5 i7-3770k NVS 295
Freq. 0.6GHz 1GHz 1.7GHz 3.5GHz 540MHz
Board Begalboard Pandaboard Arndaleboard Desktop Desktop

Table 2: Summary of the Native Platforms

Bridge architecture, with SSE and AVX support, represent
a high-performance general purpose microprocessor with a
SIMD accelerator. We use GCC to compile our scalar version,
and use its auto-vectorizer to generate SIMD accelerated bi-
naries. Last, we chose NVIDIA’s SIMT architecture, as the
accelerator principles are very different. We use a one SM
GPU as our native GPU platform to keep the SIMD width and
accelerator area in a roughly comparable to other accelerators.
Detailed specification of native platforms are listed in Table 2.

Limitations We believe that the main limitation of our
methodology comes from area and power measurements.
SPARC-DySER’s measurements are from layout and anno-
tated power simulation. However, the native platforms’ power
are measured with a Watts up meter (more accurate than sim-
ulating native platforms with McPAT etc.). We did our best
effort to eliminate errors here.

Organization Across the next four sections, we begin with
a guiding question, present analysis, and summarize with
inferences. In all results, the term DyVec refers to vectorized
DySER code and the term DySER refers to unvectorized code.

5. Compiler Analysis
The DySER compiler relies on the architecture’s fundamental
principle that there exists code regions which are specializable.
In this section, we show that the DySER compiler can find
and target these regions. To this end, we first present how
much computation in the frequently executed regions we can
offload to DySER. Second, we present the speedup of the com-
piled DySER code over the scalar code. Third, we describe

Benchmark Scalar DyAccess DyOps DyVec DyVec
Access Ops

�t 58 48 10 17 20
kmeans 43 33 12 24 24
mm 13 13 2 5 16
mriq 24 21 10 14 20
spmv 45 37 8 37 8
stencil 34 27 7 5 14
tpacf 40 30 29 23 29
conv 133 150 16 68 16
radar 20 18 6 8 24
Average 45.6 41.9 11.1 22.3 19

Scalar - # instr. in region, DyAccess- # instr. in access component
DyOps - # ops. in DySER, DyVec Access - # instr. after vectorized
DyVec Ops - # operations in DySER after vectorized

Table 3: Characterization of Top Regions

the compiler effectiveness quantitatively by comparing the
performance of hand DySERized binary to that of compiler
generated binary. We first focus on the emerging workloads
and conclude this section describing generality of the current
compiler implementation by compiling SPECINT for DySER.

5.1. Benchmark Characterization
Q: Do the applications have specializable regions?

Table 3 shows the characterization of the most frequently
executing regions as determined by the compiler: on average,
specialization regions are of length 45 instructions. Of those,
the compiler can offload 11 instructions to DySER with an
average of 8 overhead instructions, which are required for
DySER-processor communication. With vectorization, these
communication instructions are amortized and on average
48% of code is off-loaded to DySER. Note that the code on
the processor is now different and as we will show in Section
6, effectively both the off-loaded code and processor’s code
are speeded up.

Observation: The DySER compiler can extract frequently
executed specializable regions.

5.2. Compiler Performance
Q: What is the performance of compiler DySERized code?

Figure 7 shows the speedup of the automatically DySERized
benchmarks over the scalar version of the code. On average,
compiler generated code performs 1.9× faster than the scalar
version. When DySERized regions have data-level parallelism,
the compiler utilizes the vector interface to DySER and re-
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Benchmark Characteristics Auto-Vectorized?
�t Strided memory, variable loop count Yes
kmeans Regular memory Yes
mm Regular memory after blocking Yes†
mriq Regular memory Yes†
spmv Indirect memory access No
stencil Regular memory Yes†
tpacf Regular control, irregular mem Partial
conv Regular memory and control Yes
radar Regular memory and control Yes†

Table 4: Bench. Characteristics (†vectorized with scalar registers)

duces the number of DySER loads and DySER stores. With
vectorization, the geometric mean speedup of the DySERized
code is 3× over the scalar code.

Table 4 lists the characteristics of the benchmarks, which
can lead to performance gain with DySER. The compiler
exploits the regular memory access and regular control to
generate code that can effectively utilize DySER’s functional
units. When the DySER compiler vectorizes the application
automatically (Column 3), it uses the vector-memory interface
to further improve performance. Although vectorization helps,
certain optimizations are limited because of the lack of wide
vector registers in the SPARC core. Where vector registers
are needed, the compiler uses multiple scalar registers to em-
ulate a vector register, which requires more instructions and
increases the register pressure. A prior work compares the
DySER compiler to ICC on x86 (where a vector register file is
available), and shows that DySER vectorization outperforms
ICC vectorization for SSE & AVX by 1.8× [13].

Observation: The DySER compiler exploits benchmark
characteristics well and generates optimized binaries which
are 3× faster than the scalar version.

5.3. Compiler Effectiveness
Q: How effective is compiler at generating DySER code?

We compare the speedup of compiler generated DySERized
code to the hand DySERized code, as shown in Figure 7. In �t,
mm, stencil and tpacf, the hand DySERized code performs
significantly better than the compiler generated code because
of benchmark specific optimizations. For instance, in the hand
DySERized version of mm, a clever blocking strategy is used
to attain high performance, whereas the compiler uses naive
blocking, which does not perform well. For conv, the com-
piler generated code actually performs better than the manual
version because the hand DySERized code inadvertently cre-
ated register pressure, causing more registers to be spilled to

stack than necessary.
Observation: On average, compiler generated code per-

forms within 50% of the hand optimized code and reduces the
number of dynamic instructions with vectorization.

5.4. Compiler Bottlenecks
Q: Why does the DySER compiler generate suboptimal code?

First, hand-optimized code uses software pipelining to over-
lap execution of multiple iterations of the kernel inside DySER,
but our current compiler lacks this optimization. Second, pro-
grammers may modify the algorithm to achieve high perfor-
mance in the DySER accelerator. For example, in tpacf, the
DySER version of the algorithm trades off some redundant
computation for improved instruction level parallelism. Fi-
nally, hand optimized code schedules the DySER carefully
and tries to reduce unnecessary computations in DySER that
decrease the performance. For instance, it is better to sched-
ule the reduction processing inside DySER as this does not
require (unavailable) wide vector registers. However, for re-
duction processing, the DySER compiler greedily performs
scalar replacement [11], which requires wide vector registers.
This improves the utilization of DySER, but overlooks the
unavailability of wide vector registers.

Observation: There is some algorithmic and implementa-
tion work to further enhance the compiler.

5.5. Compiler Generality
Q: Can we compile arbitrary applications with the current
implementation of the compiler and expect speedups?

To understand DySER’s effectiveness on legacy codes we
analyzed the SPECINT benchmarks compiled by our compiler.
On a positive note, our compiler produces correct code for all
benchmarks and most times finds large specializable regions.
However, all of them report slowdowns. We discuss the rea-
sons here. Table 5 shows code characteristics produced by our
compiler (this data is for the dominant function in the bench-
mark and is representative of overall behavior). For most cases,
the candidate regions are quite large. However, the problem is
that the compiler is unable to off-load much to DySER - the
DyOps are in single digits, and when large, the communication
instructions inserted end up creating slowdowns.

The summary from detailed analysis of each benchmark
is that these legacy codes have significantly more irregular
control-flow graph shapes interacting with memory accesses
that are not amenable to our current compiler’s heuristics.
Another reason is an artifact of how LLVM operates—it some-
times creates internal arbitrary precision integers and uses
structures directly. This requires sophisticated analysis to be
correctly lowered into DySER, which we have not yet imple-
mented. Figure 8 shows the shapes of control flow that are the
source of problems and Table 5 assigns them to benchmarks.

Control dependent memory ops and multiple exits: The
current implementation of the compiler schedules all the con-
trol instructions, for which there are dependent loads, stores
or region exit branches, into the main processor pipeline along

6



Benchmark Scalar DyAccess DyOps CFG shape
400.perlbench 55 54 5 Small-loop, Mult-exit
401.bzip2 21 19 9 Mult-exit
429.mcf 56 61 10 Ctrl-dep-mem
445.gobmk 128 140 29 Mult-exit
456.hmmer 106 110 7 Ctrl-dep-mem
458.sjeng 8 8 0 Small-loop
462.libquantum 16 19 5 Ctrl-dep-mem
464.h264ref 9 9 0 Mult-exit
473.astar 224 224 0 Mult-exit

Table 5: SPECINT: Acceleratable Region size

(a) Control dependent
memory operations

ld

st

(b) Multiple unique exit
blocks for loops

(c) Multiple small
inner loops

Figure 8: Compiler on irregular benchmarks

with their backward slices. This causes problems on the two
control flow graph shapes shown in Figure 8(a) and 8(b), the
control-dependent memory operations and the exit branches.
These two cases limits the number of DySERizable instruc-
tions in the regions. One solution is the finer-granularity con-
trol heuristics that schedule the computation of control instruc-
tions to DySER, and only schedule the first branch instruction
before the memory operations in the main processor.

Multiple small loops: When a region has multiple small
inner loops as shown in Figure 8(c), our compiler treats each
loop as a region. To eliminate the need to switch configura-
tions between the loops, it could either schedule computation
from multiple small loops to the same configuration, or it could
coalesce the inner loops, creating a larger computation region
for DySER. Currently the compiler lacks the loop coalescing
optimizations and does not DySERize multiple loops simulta-
neously because the compiler does not have loop dependence
analysis that spans across multiple loops.

Observation: The DySER compiler finds acceleratable re-
gions even on highly irregular legacy codes. More heuristics
and software engineering in code-generation is required for
accelerating them and producing efficient code.

6. Performance Analysis
We now describe a performance analysis which demonstrates
the efficacy of the second and third principles. The ability
of the microarchitecture to be dynamically specialized for a
computation, combined with the tight integration of the accel-
erator to the processor pipeline, are the principles which define
the DySER accelerator’s performance. We begin our analysis
with a qualitative study on the FPGA evaluation platform to
understand certain FPGA performance artifacts. We then com-
pare the performance of SPARC-DySER to state-of-the-art
processors. We then describe the source of bottlenecks in per-
formance. To eliminate compiler effects, in this section, and
all remaining sections, we use hand DySERized benchmarks.
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Figure 9: SPARC-DySER FPGA Performance

bench. fft km mm mriq spmv stencil tpacf conv radar gm
Scalar 0.08 0.08 0.05 0.06 0.09 0.07 0.16 0.06 0.07 0.08

DySER 0.37 0.26 0.18 0.12 0.11 0.24 0.39 0.38 0.29 0.24
DyVec 0.37 0.93 0.28 0.19 0.11 0.67 0.68 0.78 0.55 0.42

Table 6: SPARC-DySER Effective IPC

6.1. Overall performance
Q: What is SPARC-DySER’s performance on the FPGA and in
VLSI? What are the FPGA artifacts which affect performance?

FPGA Performance To understand the performance anal-
ysis, we first explain the main differences between the
FPGA and VLSI implementation of the baseline processor,
OpenSPARC T1. In the OpenSPARC FPGA evaluation plat-
form, certain modules are emulated in software that run on the
Xilinx MicroBlaze microprocessor [8]. The software emulated
modules include the floating point unit and L2 cache, meaning
all floating point instructions and level-1 I and D cache misses
incur additional overhead. The software emulation of these in-
structions takes much longer than the corresponding hardware
execution, and moreover, the emulation latency is not fixed.

The performance of the SPARC-DySER architecture on the
FPGA is shown in Figure 9, normalized to the scalar version
of each benchmark. Overall, the geometric mean speedup is
6.2× and 8.2× for DySER and DyVec on the Virtex-5 FPGA.

FPGA vs. VLSI Performance The FPGA speedup is sig-
nificantly higher than the VCS results, previously shown in
Figure 7. For conv, the speedup is even higher because the
DySERized floating point instructions can eschew issues with
the MicroBlaze. For the DyVec results, fewer instructions and
data cache misses further increase the performance gap.

Since some of the FPGA performance gain is due to arti-
facts in the evaluation platform, the remainder of the paper
uses VLSI-based VCS results. Here we show the VLSI-based
performance in a different metric, IPC, in Table 6. The instruc-
tions per cycle reflects the effective issue width of the SPARC-
DySER architecture. For the scalar version, the OpenSPARC
pipeline can only achieve a mean IPC close to 0.1. This can be
explained by the fact that the OpenSPARC T1 is in-order, and
has no mechanism for hiding L1 access and miss latencies.

The IPC of DySER and DyVec is the number of scalar
instructions divided by the execution cycles of DySER and
DyVec, respectively. Compared to the scalar baseline, SPARC-
DySER can increase the average IPC to 0.42, which is more
than 5× better. In the best case, kmeans, the SPARC-DySER
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Figure 10: Architecture Comparison: Performance in cycles

can effectively issue close to one SPARC instruction per cycle.

Observation: The DySER accelerated performance is 8.2×
and 6.2× better than the scalar version, for the FPGA and
VLSI respectively. SPARC-DySER has an average IPC of 0.42.

6.2. Performance Comparison

Q: How does SPARC-DySER’s performance compare to the
state-of-the-art? Can a simple OpenSPARC core be acceler-
ated to match high-performance x86/ARM processors?

Figure 10 shows the overall speedup over the baseline
(OpenSPARC T1) in terms of cycle counts. We classify the
processors into two categories: low-power processors and
high performance processors. Among low-power processors,
SPARC-DySER is slightly behind the Cortex A9, but outper-
forms the Cortex A8 on average. This is an important result,
as the A8 is a sophisticated, dual issue in-order processor.
SPARC-DySER and other low-power processors are far be-
hind (more than 10×) the performance of high-performance
processors. GPU acceleration exhibits extraordinary perfor-
mance in certain benchmarks because the scalar version and
the accelerator version use very different algorithms to exploit
GPU memory. It is shown for reference and we did not further
analyze and modify the GPU programs.

T1 DySER DyVec A8 A9 A15 i7 SSE AVX
0.08 0.24 0.42 0.21 0.63 0.86 2.47 2.47 2.55

Table 7: Architecture Comparison: IPC

Table 7 shows the performance with IPC, which helps us
understand the instruction-level parallelism that a processor
can exploit. Note that this table shows the effective IPC(all
architectures uses the scalar instruction counts of the program).
Overall, DyVec has 2× better IPC than A8, but 1.5× worse
IPC than A9 using the harmonic mean over all benchmarks.
Moreover, high-performance processors can always achieve
an IPC above 1, and on average have IPCs more than 2, which
is never attained by SPARC-DySER. Also, observe that while
DySER shows significant speedup over its baseline, SSE and
AVX achieve very little speedup.

Observation: SPARC-DySER has the performance between
the ARM Cortex-A8 and Cortex-A9, but is behind the state-of-
the-art x86 microprocessors, with and without accelerators.

6.3. Performance Sources & Bottlenecks
Q: What are the sources of speedup and what are the perfor-
mance bottlenecks of SPARC-DySER?
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Version fft km mm mriq spmv stencil tpacf conv radar
DySER 4 5 3 3 2 1 3 3 5
DyVec 10 16 12 9 2 8 6 8 8
Total 10 23 15 11 14 14 20 22 16

Maximum Concurrent Active FUs during Execution
Figure 11: Distribution of Concurrent Active FUs

The primary source of performance improvement comes
from DySER being able to concurrently execute many oper-
ations as shown in Figure 11. The x-axis is the event that N
number of functional units are computing in parallel, and the
y-axis is the total percentage of such a event during the com-
putation. The results shows that around 2 functional units are
activated in parallel while using DySER and with the vector
interface, typically 3 functional units.

The table in Figure 11 shows the best case of parallel FU
activation during execution and the total number of FUs in
the configuration. This result shows how far we are behind
the ideal case, wherein we can fetch data continuously and
keep all DySER functional units computing. Overall, we are
only able to achieve max functional unit activity in �t within
a small percentage of total computation. This leads us to the
next stage of the analysis: While we have shown that DySER
can provide significant parallel execution, the performance
may be limited in practice by a number of issues, which we
address below.
Potential Bottleneck: DySER Active Ratio Figure 12
shows the percentage of time that DySER is active, which
means that there is data in the DySER fabric. On average,
DySER is active for 40% of the total execution time. Vector-
ization reduces both the time that DySER is active (because
it is fed faster), and the total execution time. Depending on
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which is reduced more, vectorization will either increase or
decrease the active ratio. Benchmarks can show a higher ac-
tive ratio for two reasons: First, the use of software pipelining
(in mriq, stencil, radar) with vectorization, where we over-
lap sends and receives of different invocations, will prolong
DySER activation. Second, the lack of DySERized vector
store can mean that address calculation can delay the receiving
of data, causing DySER to be active longer (in �t).

Potential Bottleneck: DySER Internal Utilization Fig-
ure 13 describes DySER’s internal utilization by showing the
breakdown of DySER functional unit states. We categorize the
state of DySER functional unit into: i) Wait-Processor, which
means the functional unit is stalling because at least one of its
input data is not fetched by processor pipeline, ii) Wait-Fabric,
which means the functional unit is waiting for switches to pass
the input data, and iii) Compute, which means it is computing.
The first bar shows unvectorized DySER code, and the sec-
ond bar shows vectorized DySER code. From the results, we
observed that while the processor is a major bottleneck, func-
tional units are more often waiting on data in the flow-control
network than performing computation. This is because, in the
current implementation, the latency of one functional unit is
relatively small compared to the delay through the network
from input to the functional unit itself. The degree of this
effect depends on the routing in the configuration, and we
achieve a best case utilization of 50% for �t. To summarize,
while the OpenSPARC processor is the bottleneck in fetching
data, the switch fabric, flow-control protocol, and the schedule
of fetching data could also be improved.

Potential Bottleneck: Stalls caused by DySER The last
potential bottleneck comes from the interaction between
DySER and processor pipeline. Table 8 shows the stall statis-
tics of SPARC-DySER pipeline. The second and third row

benchmarks fft km mm mriq spmv stencil tpacf conv radar
Stall % 0.16 0.00 0.07 0.19 0.00 0.37 0.05 0.10 0.12

Stall w/ Vec 0.08 0.06 0.14 0.00 0.00 0.15 0.10 0.35 0.00

Table 8: Percentage of stalls attributable to DySER

shows the stalling ratio in execution. We list the reasons for
stalling behavior below:
• If the DySER code uses deep vectorization (where mul-
tiple instances become pipelined), less stalling is expected
because the pipeline stalls due to DySER computation latency
are amortized across multiple invocations. �t, mriq, stencil,
radar belong to this category.
• If the DySER code uses wide vectorization (where each
instance is not pipelined), the computation time cannot be hid-
den by the long and not-pipelined load latency in OpenSPARC.
The processor pipeline now perceives a higher DySER latency,
which results in higher stalling time. kmeans, mm, tpacf,
conv belong to this category.

Overall, the first type of stalling behavior shows that the
stalls can be reduced by pipelining the invocations, and the
second type of stalling behavior shows that improving the
interface will improve the performance, but may also increase
the processor pipeline stall time.

Observation: DySER speedup comes from concurrently
activating more FUs. The main bottleneck is the processor
pipeline, which cannot feed data fast enough. The switch
fabric and DySER induced stalls are secondary bottlenecks.

7. Area Analysis
In this section, we compare the area of SPARC-DySER to
commercial processors. The area, like the performance, is dic-
tated by the second and third DySER principles. The dynamic
specialization principle defines the area of DySER itself, and
the tight integration principle allows the DySER accelerator
to use the main processor’s area as a memory access engine.
We elaborate below.

Q: Is SPARC-DySER area-efficient? How large is SPARC-
DySER compared to state-of-the-art commercial processors?

Figure 14 shows the hierarchy view of the SPARC-DySER
layout with the Synopsys 32nm generic library. The SPARC-
DySER core occupies 7.56mm2 in 32 nm, where the total
cell area (the standard cell area without wiring) is 4.5 mm2.
Most of area is occupied by L1 data and instruction cache,
and DySER occupies around 10% of total area. The internal
breakdown is 70% functional units and switch fabric, and 15%
each for input and output interface.

We show the comparison of core areas in Figure 15. From
die photos [1], Intel Atom Bonnell core occupies around 9mm2

at 45 nm, AMD Bobcat core occupies 5mm2 at 40nm, and
ARM Cortex A9 occupies 3.25mm2 and 2.45mm2 for speed
and power optimized versions at 40nm. The comparison shows
that the SPARC-DySER is relatively larger in area, and this
because of i) the physical implementation is under-optimized,
ii) the logical implementation is aimed at FPGA synthesis
instead of a low-power VLSI chip, and iii) our functional-unit
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Figure 16: Energy Improvement

modules are inefficient. For DySER itself, the simple vector
interface can also be improved for lower area.

Observation: A SPARC-DySER core occupies 7.56mm2 in
32nm, and DySER itself occupies around 10% of the total area.
SPARC-DySER and DySER itself can be further improved by
physical-design optimizations in size.

8. Power and Energy Analysis
The power and energy analysis, performed here, also demon-
strates the impact of the second and third DySER principles.
Dynamic specialization allows the execution of frequent re-
gions to be highly efficient, and tight accelerator integration
requires the processor pipeline to perform high-energy opera-
tions. We elucidate on the tradeoffs below.

8.1. Overall Power and Energy
Q: What is the overall power/energy improvement?

Figure 16 shows the normalized energy of SPARC-DySER
over OpenSPARC baseline, per benchmark, based on cycle
counts and the Synopsys power report. On average, DySER
offers 2× better energy consumption and DyVec can achieve
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Figure 17: SPARC-DySER Power Breakdown
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Figure 18: SPARC-DySER Power Breakdown in 1 Invocation

4× energy improvement. Figure 17 shows the per-benchmark
power consumption. While the scalar code consumes 4 Watts
on average, SPARC-DySER accelerated code consumes be-
tween 5 and 6 watts. DySER itself contributes 200mW.

Observation: The energy consumption of SPARC-DySER
is 4× better compared to OpenSPARC baseline, but requires
25%-50% more power.

8.2. Energy/Power Sources & Bottlenecks
Q:What are the sources/bottlenecks for energy improvement?

Figure 17 also shows the breakdown of power sources,
where the components are: ifu (instruction fetch unit includ-
ing I$), lsu (load-store unit including D$), other (remainder
of pipeline, including execution units), and dyser (DySER
accelerator power). The three bars for each benchmark are
the original code, unvectorized DySER code, and vectorized
DySER code. From the breakdown, we can observe that
DySER (which consumes around 200 mW) is not the ma-
jor source of power consumption compared to other compo-
nents. Most of power comes from memory accesses in the
lsu and ifu, though this might be partly attributable to the
under-optimization of these units in our synthesis tool. This
lsu and ifu power increases can be explained by examining the
actual IPC in Table 9 (the real instructions issued per cycle,
in contrast to effective IPC based on scalar instructions). If
we are issuing more instructions per cycle, we naturally con-
sume more power in the instruction fetch and load store units.
Also, since we need more DySER instructions to communicate
data in the non-vectorized versions, we observe higher power
consumption for DySER compared to DyVec.

To eliminate the power effect of non-DySERized instruc-
tions in each program region, we also present the invocation
power breakdown in Figure 18. Each invocation “lasts” be-
tween its first dsend and final drecv. Here, we observed less
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bench. fft km mm mriq spmv stencil tpacf conv radar gm
DySER 0.31 0.20 0.25 0.15 0.10 0.26 0.41 0.46 0.19 0.23
DyVec 0.18 0.12 0.09 0.11 0.09 0.24 0.23 0.50 0.12 0.16

Table 9: SPARC-DySER Actual IPC

ifu power increase between baseline and SPARC-DySER, as
expected (the power consumption of other instructions is not
inflated, because of the restricted measurement window). The
benchmark �t is an outlier because there are many necessary
address calculation instructions. Overall, SPARC-DySER only
introduced 6% more power within one invocation.

Observation: The major source of energy improvement is
the speedup. SPARC-DySER consumes more power because it
executes more instructions in a shorter time period. DySER
itself is not a major factor in the power consumption.

9. Frontier Analysis
Using the analysis of SPARC-DySER’s performance, energy,
and area, we summarize the impact of DySER’s fundamental
principles with performance/energy frontier analysis [4].

9.1. Exploring the Energy/Performance Frontier
Q: What is the position of SPARC-DySER in the en-
ergy/performance frontier? How does the integration of
DySER move the position of OpenSPARC T1?

To compare and visualize the energy/performance impact of
DySER integration, we show the energy/performance frontier
in Figure 19(a). In this comparison, we take the frequency and
the technology node of each processor into account, showing
the energy in millijoules and instructions per second (DySER
and DyVEC use scalar instruction count). The DyVec point
represents SPARC-DySER with the vector interface, and the
accelerator benefit vector of DySER is shown in dotted lines
that connect T1 and DyVec. From the figure, DySER success-
fully brings down the energy cost and improves the perfor-
mance of the OpenSPARC core. The DySER benefit vector
tuple in (IPS,mJ) is (0.34,13.3).

In our Synopsys tools, the OpenSPARC T1 consumes much
more power than an ARM-processor. This may be because
of the technology library we used, and also our physical im-
plementation is not optimized. As as result, we show two
model-based points: T1-opt and DyVec-opt. These two points
represent the projected energy (the performance remains the
same) of T1 and SPARC-DySER if the OpenSPARC core con-
sumes the same power as A9. Recall A9 is out-of-order, so this
is a conservative projection, and this provides a conservative
view of SPARC-DySER’s energy/performance behavior. In all,
the energy of DyVEC is above both A8 and A9 even though
the performance of DyVEC is in-between. If we look at the
projected points DyVEC-opt, we can observe that SPARC-
DySER can achieve slightly lower energy than A9, with lower
performance.

Figure 19(b) gives us the architectural view of the en-
ergy/performance tradeoff. In this figure, we i) scale the
frequency of each processor to the same point, ii) find out
the corresponding power at each such frequency using the

0.0 0.4 0.8 1.2 1.6
(a) IPS

0

1

2

3

4

5

6

7

En
er

gy
 (m

J)

T1(0.1,17.3)

DyVec

a8

a9

a15

i7i7-SSE
i7-AVX

nvs295

T1-opt

DyVec-opt

0.0 0.3 0.6 0.9
(b) Scaled IPS

0

1

2

3

4

5

6

7

Sc
al

ed
 E

ne
rg

y 
(m

J)

T1(0.1,17.3)

DyVec

a8

a9 a15

i7i7-SSE
i7-AVX

nvs295

T1-opt

DyVec-opt

Figure 19: Energy/Performance Frontier

Figure 20: Energy/Performance Frontier with OoO Proc.

DVFS trend line in [5], and iii) further scale the power to the
same technology node. As a result, all architectures are now
compared at same frequency and technology. From the graph,
we observe that ARM processors have increasingly better
performance/energy behavior between generations. DySER
moves OpenSPARC toward a similar direction, providing both
energy and performance benefits.

Observation: DySER integration is one approach that can
increase energy efficiency and performance, and could be con-
sidered when developing the next generation of an architecture.
If the physical implementation of OpenSPARC is improved,
SPARC-DySER has the potential to provide similar energy
consumption and performance to the ARM Cortex-A9.

9.2. Sensitivity to Baseline Processor
Q: What is the performance of DySER accelerated cores with
various baseline processors?

From the microarchitecture evaluation, we have observed
that the OpenSPARC processor pipeline is the major perfor-
mance bottleneck. To understand DySER’s suitability for next
generation processors, we show DySER’s benefit vector with
out-of-order processors on the energy/performance frontier in
Figure 20. We use the GEM5 simulator to simulate DySER
with 2-wide and 4-wide out-of-order processors. The graph
elicits three observations: First, the 4-wide OOO processor
has around 2× better performance and 25% lower energy than
the 2-wide. Second, DySER improves the performance and en-
ergy of the 4-wide processor than the 2-wide, because DySER
is more effective when it can be fed data faster.

Here we revisit the performance and energy component of
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Work Quantitative results Demonstrated
insights

DySER

Early-stage: 2.1 × AVG on workloads [12]
Prototype: improvement on irregular work-
loads requires further compiler work, 3× com-
piler, 6.2× hand,on data-parallel workloads

Dynamic
specialization?

TRIPS ◦ 1 IPC in most SPEC benchmarks
◦ best case 6.51 [9]

Dataflow
efficiency

RAW ◦ up to 10× on ILP workloads
◦ up to 100× on stream workloads [26]

Tiled
architecture

Wave
Scalar

◦ 0.8 to 1.6 AIPC on SPEC
◦ 10 to 120 AIPC with mutli-threading [22]

Dataflow
efficiency

Imagine IPC from 17 to 40, GFLOPS from 1.3 to 7.3 [3] Streaming

Table 10: Summary of the Performance Evaluation Works

the DySER benefit vector in Figure 3(a)(b) from the introduc-
tion. In addition to the magnitude shown on axes, the speedup
and the energy reduction factor (in ratios) is annotated with
gray boxes. As the baseline processor performance improves,
although the magnitude of the performance increased and the
energy decreased are larger with better baseline processor,
the speedup and energy reduction ratio decreases because the
baseline processor’s performance is better.

Observation: The performance component of the DySER
benefit vector increases in magnitude, with better baseline
processor performance.

10. Lessons Learned
The findings of some other prototype evaluations are summa-
rized in Table 10. Although quantitative results have some-
times been lower in early stage results because of features
eliminated from the prototype compared to design proposals,
the studies have lasting impact by establishing the fundamen-
tal merit of their underlying principles. For DySER, the early
results showed 2.1× speedup across workloads and 10% to
50% on SPECINT. Our current prototyping results show com-
pilation for SPECINT is quite challenging, but establish 6×
manually-optimized and 3× compiler-optimized performance
improvements on emerging workloads represented by Parboil.
Qualitatively, the key features between the early-stage design
that proved overly complex for the SPARC-DySER prototype
are: i) performing speculative loads and stores, and ii) address
aliasing within DySER. To some extent, the simple design of
OpenSPARC eliminate the potential benefit of these features.

Most prototyping tasks, including RTL implementation,
verification, FPGA mapping, compiler implementation, and
hand-DySERing code are proved manageable, except for de-
bugging the full system FPGA which was excessively tedious.
Although done by design and simulation, we could not demon-
strate by construction that DySER can be non-intrusively in-
tegrated into high performance processors. Reflecting on our
experiences, we believe two main things would help future
accelerator prototype work:
• High-performance Open-source Processor: It would be
advantageous to have open-source implementations of high-
performance baseline processors reflecting state-of-art designs.
Among what is available, OpenRISC [20] and Fabscalar [7]
have low performance (OpenRISC’s average IPC is 0.2) —

and this could impede the prototyping of accelerators.
• Compiler Transformation Framework: Though it was rela-
tively straightforward to design compiler transformations and
heuristics, the most time consuming part was in implementa-
tion. A tool that took a declarative specification of compiler
optimizations and manifested actual compiler transformations
could be useful. From almost two decades ago, Sharlit [27]
and the Gospel [28] systems provided ideas along these lines.
More recently Rhodium and works inspired by it [17, 25] dis-
cuss declarative specifications and creating optimizations from
code examples — approaches to reduce implementation time.
Such frameworks, in a readily usable form, in a production
compiler like LLVM or GCC, would be immensely useful for
future prototyping works.

In this work, we observed that the most limiting compo-
nent of the DySER execution model is the reliance on the
processor pipeline for providing data. This is true for both
performance and power. Therefore, future developments must
be for DySER’s data fetching and retrieval engine. The con-
ventional processor has many sophisticated mechanisms to
perform memory access. Specializing these mechanisms for
DySER would bring further improvement on performance
and energy. If a specialized memory access engine can be
built, when integrated with a high-performance processor or a
power-critical platform, we can turn off most of the processor
core and use only a portion of hardware for DySER tasks. In
all, we think specialization is a promising solution to break
the energy/performance frontier.
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