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Abstract This paper proposes a new real-time voxelization
algorithm using newly available GPU functionalities. Our
voxelization algorithm is efficient and able to real-time trans-
form a highly complex surface-represented scene into a set
of high-resolution voxels in only one GPU pass using the
newly available geometry shader. The usage of 3D texture
allows our algorithm to record the existence, color and nor-
mal information in a voxel directly without specific encod-
ing and decoding mechanism. This allows us to adjust the
voxel resolution according to hardware limitation and the
need of applications without strenuous modifications to the
encoding and decoding scheme. At the same time extra sur-
facial and volumetric information also allows us to render
more realistic lighting effects. This paper demonstrates the
usage of our voxelization results in rendering transparent
shadow, transmittance and refraction. The results show that
our algorithm can voxelize deformable models and render
those complex lighting effects in real time without any pre-
processing step.

Keywords voxelization · hardware voxelization · transpar-
ent shadow · volume ray-tracing

1 Introduction

Volumetric representation receives more and more research
interest due to the increasing request in representing and
processing 3D medical data (e.g. scanned results from com-
puted tomography (CT) or magnetic resonance imaging (MRI))
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and the requirement in newly available volumetric applica-
tions such as model simplification and repair [18], visibil-
ity determination [19], shadow rendering [15] and collision
detection [7, 16, 8]. Because surface-boundary representa-
tion is the dominant force in Computer Graphics, a vox-
elization algorithm which transforms a surface-represented
model to a volumetric representation is needed before ap-
plying volumetric applications and algorithms. Kaufman et
al. [14] are the first to propose a voxelization algorithm.
Generally, volumetric data stores properties of an object in
a set of regular 3D grids. The smallest unit used to rep-
resent the 3D volumetric space is called a voxel which is
similar to a pixel in 2D image space. Voxelization strate-
gies can be classified based on how to describe the existence
of a model as surface voxelization [22, 11, 12] which uses
the existence of a voxel to describe the boundary and solid
voxelization [21, 9, 4] which both describes the existence
of the boundary and interior of the entire model. Another
common classification is based on how the existence of a
voxel is represented and can be described as binary [5, 2, 3]
and non-binary [24, 21, 5, 10, 11, 20, 23] voxelization ap-
proaches. The latter can be further divided into filtered vox-
elization [24, 21], multivalued voxelization [5, 10], object
identification voxelization [11] and distance transform [20,
23]. Because of extreme computation requirement in vox-
elization, a large number of existing algorithms are mainly
used in a pre-processing step by assuming a static scene. A
major drawback of this paradigm is its limited support for
dynamic scenes and interactive applications. Because sur-
face representations are generally more convenient, accurate
and cost-effective in applying modeling, animation and in-
teraction techniques, the voxelization process needs to be
done on-the-fly after each change to the surface-represented
model for volume rendering and other volume-related ap-
plications such as layered manufacturing and finite element
analysis. In addition, real-time voxelization also allows the
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intermixed usage of both geometric and volumetric repre-
sentations to have scanned volume data working with the
geometric models. For example, a surgical simulation sys-
tem needs to combine medical scanning data sets, surgical
tools and synthetic models (e.g. artificial organs) in one op-
erational procedure in order to perform interactive surgical
operations with both surface and volume representations.
Thus, more and more research focuses on developing a real-
time voxelization algorithm for interactive manipulation.

Thanks to the advance in graphics processing unit (GPU).
With its powerful flexibility and programmability, real-time
GPU voxelization becomes possible. Chen et al. [1] pre-
sented a slicing-based voxelization algorithm to slice the
underlying model in the frame buffer by setting appropri-
ate clipping planes in each pass and extracting each slice of
the model to form volumetric representation. The method
was extended and published later in [5]. Ignacio et al. [17]
extended the same idea by setting 3D volume texture as the
render target. Karabassi et al. [13] and Dong et al. [2] pro-
posed two-pass algorithms by first projecting the triangle to
a set of intermediate sheets and then reading back to gen-
erate the voxel set. These slicing-based algorithms suffer a
serious limitation in computational efficiency because of the
requirement in multiple GPU passes. As a result Eisemman
et al. [3] presented an extension to the slicing-based algo-
rithm by examining the intersection of each primitive with
each voxel grid only once with a special encoding mecha-
nism. They encoded the existence of a voxel into a 32-bit
RGBA color and used multiple render target (MRT) to re-
duce the required number of GPU passes for finishing the
slicing process. Forest et al. [6] overcame the limitation of
possible holes existing in the boundary representation. Al-
though the encoding algorithm can be really efficient, un-
fortunately the algorithm is limited to use triangles as the
represented primitive and the performance is influenced by
a dynamic update of the sorted triangles required for vox-
elizing deformable objects. The encoding methods [13, 2, 3]
generally use projection to determine whether a voxel is in-
side a model or not and the projection induces errors and ar-
tifacts in voxelization results. Additionally these grid encod-
ing methods have two other limitations: first, the encoding
method must determine the resolution of voxelization and
design the encoding mechanism accordingly and this makes
the process to change resolution highly strenuous; second,
the surfacial and volumetric properties of a model are hard
to directly encoding into the representation. In addition the
number of GPU passes for a high-resolution representation
still has chance to be more than one. Thus, this paper seeks
an voxelization algorithm which can overcome these limita-
tions.

Our algorithm is also a GPU-based voxelization algo-
rithm which slices the geometry models using the clipping
plane algorithm [5]. Zhang et al. [26] prove that this choice

can avoid the projection artifacts existing in encoding algo-
rithms [13, 2, 3]. In addition, our algorithm is also designed
to overcome several limitations existing in previous slicing-
based voxelization methods. First is the inefficiency in vox-
elization due to the requirement of a large number of passes
when slicing the model independently. Second is the modi-
fication complexity due to the requirement of a special grid
encoding mechanism when slicing the model in one or sev-
eral GPU passes. Third is the difficulties in encoding other
surfacial and volumetric data with the existence in a voxel
for grid encoding methods. Our algorithm achieves these
by taking advantage of the newly available functionalities
in GPU. These functionalities include the geometry shader
and the ability to use 3D volume texture as the render tar-
get. The geometry shader is used to duplicate the triangles
or quadrilaterals for each possibly intercepted slice in or-
der to voxelize a scene in only one GPU pass. The usage
of the geometry shader relieves the need of multiple passes
in original slicing-based algorithms and enhances the vox-
elization efficiency. Then, the adjustable 3D volume texture
is used to store the slicing result with other surfacial and
volumetric information. Since the size of the 3D texture can
be easily adjusted according to the need of application and
the limitation of graphics hardware, this can ease the bur-
den of changing encoding and decoding mechanism when
adjusting the voxel resolution for a general encoding vox-
elization method. In addition our algorithm also has the abil-
ity to store extra surfacial and volumetric information such
as color, transparency and normal with the volumetric data.
This ability allows our algorithm to render more interest-
ing effects such as rendering fantastic refraction effect of a
glass artifact with different interior colors for different parts
of that artifact. Since the voxelized results are stored in a 3D
volume texture and ready for GPU applications, we demon-
strated the strengths of our voxelization algorithm in ren-
dering the transparent shadow, transmittance and refraction
effects in real-time applications. Results show that our algo-
rithm can gain improvement in voxelization efficiency and
render all three different lighting effects in real time for a
high-resolution voxelization process. The result is also visu-
ally realistic and nice.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the main steps of our voxelization algorithm.
Section 3 demonstrates the usage of the voxelization results
with extra voxel information in rendering highly realistic
transparent shadow, transmittance, and refraction effects. Sec-
tion 4 gives the performance measurement of voxelizing dif-
ferent surface-represented models and using the voxeliza-
tion in different rendering applications. Finally, Section 5
describes the conclusion of our algorithm and a few exten-
sions to the current work.
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2 Voxelization

Our algorithm is a slicing-based method using newly avail-
able GPU functionalities. In addition to transform a surface-
represented model into a volumetric representation, our vox-
elization algorithm also computes and stores certain surfa-
cial and volumetric information such as normal, color and
transmittance. Although our algorithm assumes that the surface-
boundary model uses triangles as the fundamental primi-
tives, it is intuitive to extend our slicing-based algorithm to
handle quadrilaterals without any major modification. Thus,
the voxelization steps are described as follows: First, the
vertices of a triangle is sent to the vertex shader and their
positions in camera coordinate are computed. Then, the ge-
ometry shader determines which slices along the z-axis di-
rection have chance to intersect the rasterized triangle. The
geometry shader is perfect for this task because it handles
the assembly and construction of the triangle and can dupli-
cate the triangle for rasterization in the pixel shader accord-
ing to the need in the voxelization process. This duplication
mechanism is the core of our algorithm and the detail will be
given in Section 2.2. Finally, the pixel shader rasterizes the
triangle by setting proper clipping planes to fill in bound-
ary voxels. At the same time the shader also computes and
stores extra surfacial and volumetric voxel information for
the rasterized pixel. Extra solid voxelization step described
in Section 2.3 may be applied to compute the interior vox-
els of the model if necessary. The voxelization results are
transferred and saved to the disk for later usage or ready for
other applications such as rendering transmittance, transpar-
ent shadow and refraction effects.

2.1 Voxel Storage

Before developing our voxelization algorithm we must de-
cide how to store the volumetric representation of a model.
A volumetric representation uses a uniform-sized voxel struc-
ture which is schematically similar to a 3D volume texture.
Thus, using a texel in a 3D volume texture is the simplest
way to store the volumetric data in a voxel. There are mainly
two advantages of using a 3D volume texture for storing the
voxelization result:

– The voxelization result can be used directly in later hard-
ware application since the result is already in GPU mem-
ory.

– The newly available hardware feature of setting the 3D
volume texture as the rendering target allows applica-
tions to use the 3D volume texture as the canvas for the
geometric information. In addition, any slice in the 3D
volume texture can be specified as the render target for
our slicing-based voxelization algorithm.

Figure 1(a). shows an example of voxel index scheme for a
simple 3D volume texture and the computation of voxel cen-
ter location. Additionally, the memory size of a texel is ad-
justable in current version of graphics hardware. Therefore,
the adjustable texel memory space also gives us the flexibil-
ity of adding extra surfacial and volumetric information such
as transmittance, normal and color to generate more realistic
lighting effect as described in Section 3.

2.2 Surface Boundary Voxelization

Detecting the voxels intersected with triangle

1 For each triangle, Tri
2 z0 = Z(Tri.V 0), z1 = Z(Tri.V 1),z2 = Z(Tri.V 2)
3 maxslice = max(z0,z1,z2)/thickness
4 minslice = min(z0,z1,z2)/thickness
5 For i = minslice to maxslice
6 Planenear = i∗ thickness
7 Plane f ar = Planenear + thickness
8 Set Planenear and Plane f ar to projection matrix
9 If (Intersect(Tri))
10 Rasterize Tri into the slice

Fig. 2 This is the pseudo code for computing the boundary voxels of a
triangle, Tri. V denotes a vertex of a triangle, thickness is the voxel size
which is a user specified value, Z() is a function to extract the depth
value of a vertex after transforming the position of the vertex into the
camera coordinate, max() / min() computes the maximum/minimum
value among the set of input values and Intersect() is a function to test
whether the triangle is valid after being culled by the clipping planes.

The pseudo code of slicing a triangle is shown in Fig. 2.
Generally, a surface-represented triangle is stored as 3 ver-
tices with their position, normal and other information. When
vertices of a triangle are queued into the graphics pipeline,
the position of a vertex is first transformed into the cam-
era coordinate. Our voxelization algorithm computes which
slices from the 3D volume texture have the chance to inter-
sect the triangle. The range of slices which possibly intersect
the triangle can be calculated with the depth of all three ver-
tices using step 3 and 4 listed in Fig. 2. The geometry shader
duplicates the triangle according to the number of slices in
the possible range. At the end of the process the slicing algo-
rithm sets up the far and near clipping plane according to the
index of the destined slice in order to correctly compute the
boundary voxels for the triangle. Fig. 1.(b) shows a simple
example of the searching process.
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Fig. 1 (a). This shows a simple example of the voxel index scheme for a 5× 5× 4 3D volume texture. In this example the origin of the texture
coordinate is set at the top left corner. A texel of the texture corresponds to a voxel of the volumetric representation. The center location of each
voxel in camera coordinate is easily computed by one transformation of the texture coordinate. Therefore, the voxel indices of two voxels pointed
by the arrows are (1,1,0) and (4,3,2) and their corresponding center positions in camera coordinate are (0.75,0.75,0.25) and (2.25,1.75,1.25)
when the voxel physical size is 0.5×0.5×0.5. Later the center location of voxel in the world coordinate can be computed using the camerat-to-
world matrix in the graphics pipeline.
(b). In this example the triangle may intersect four possible slices during the voxelization process. Therefore, the voxelization algorithm must slice
the triangle four times by setting proper clipping planes. Thus, the geometry shader must duplicate the triangle four times for the corresponding
slicing process

Computing thickness

1 T hickSum = 0, Sur f aceCount = 0, Inside = f alse
2 For each slice i
3 If( Voxel(x,y, i) is boundary voxel)
4 Inside = not(Inside)
5 Sur f aceCount++

6 If(Inside)
7 T hickSum+= thickness/cosθ
8 If (Sur f aceCount >= 2&& SurfaceCount is even)
9 T hickness = T hickSum and marked the pixel as O.K.
10 Else 11 Marked the pixel as Questionable

Fig. 3 This is pseudo code used to compute the thickness of ray traver-
sal through an object. T hickSum is the accumulated thickness in the
increasing z direction, Sur f aceCount counts the boundary voxel num-
ber, Inside is a flag to indicate whether the current voxel is inside the
mesh or not, (x,y) is the texture coordinate of a texel in the volume
texture slice, Voxel() grabs the voxel information at index (x,y, i), not
is the not operation, θ is the angle between the view and the slice index
increasing direction and thickness is the thickness of each slice.

2.3 Solid Voxelization

After the surface voxelization step described in the previous
section, only boundary voxels are defined for the volumetric
representation. However, the voxels existing inside the inte-
rior of the mesh is still not computed. Thus, our voxelization
algorithm provides two strategies to fill in the interior voxels
and their corresponding information.

– The first strategy immediately uses the boundary voxels
from the previous step to compute the interior voxels and
their information. The process applies XOR operation to

all slices in sequential order as proposed in [5]. However,
holes or discontinuities may exist in the boundary due to
the slice resolution limit. Generally, an extra pass may
be applied to fill those holes by using the neighborhood
information.

– The second strategy is to fill in the interior voxels and
their data on the fly when they are needed. This can be
more efficient because most applications use only part of
but not all the volumetric data. In addition they require
to traverse through the voxels no matter whether the in-
terior voxels are filled or not. The late-filling evaluation
can be conducted based on the following observation:
Since the surface representation is water-tight, the num-
ber of intersections with a model should be an even num-
ber; in other words when traversing along the increasing
slice index direction, an entrance to the object and an
exit is expected sequentially. Therefore, when applying
the voxelization result to compute the lighting effects,
the rendering camera is aligned to traverse the slices in
the increasing z direction. When encountering a bound-
ary voxel in one slice, the late-filing evaluation sets a
flag and then marks all voxels below as interior voxels
until seeing another boundary surface voxel. However,
the hole problem may still happen due to the slice reso-
lution limit. A view ray will be marked as questionable if
there is an odd number of boundary voxel encountering
during the traversal and later the questionable ray will
be corrected using information from its neighborhood.
Fig. 3 shows an example to compute the thickness of an
object along the view ray traversal using implicit interior
evaluation. In this example a low-pass filter is applied to
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Fig. 4 Rendering the shadow of a surface-represented tree model using
ray tracing is too time consuming and thus transparent shadow map is
a better choice. The left is a tree rendered with the same absorption
coefficient for the entire tree. The right is a tree rendered with two
different absorption coefficients for the trunk and leaves and the trunk
shadow is darker even with a short passing length.

correct thickness of the questionable ray by using aver-
aging thickness of its neighborhood.

All our applications described in Section 3 can use the im-
plicit interior filling method to enhance the voxelization and
rendering efficiency.

3 Applications

Volumetric representation has different applications such as
visibility determination [19] and collision detection [7, 16,
8] in Computer Graphics. In this section three applications
are used to demonstrate that our voxelization algorithm is
efficient enough to real-time voxelize a complex surface-
represented scene and the voxelization results with the com-
puted surfacial and volumetric information can be used to
generate realistic lighting effects including transparent shadow,
transmittance and refraction.

3.1 Transparent Shadow Map

Shadow gives the sense of existence and is an important cue
for human perception. Traditional shadow map is a simple
method to render shadow when all objects in the scene are
opaque. When there are transparent objects in the scene,
the partial occlusion of a light ray passing through these
transparent objects makes the situation more complex. The
degree of occlusion is affected by the distance of a light
ray passing through the object and the absorption along the
traversal path. Eisemann et al. [3] used the voxelization re-
sult to estimate the passing distance for rendering transpar-
ent shadow but their method did not take the absorption into
account. Therefore, our algorithm can compute the shadow
according to the passing length and the absorption along the
traversal path using the following steps:

1. The voxelization camera is set at the position of the light
source and aligned with the light direction.

2. Our algorithm voxelizes the scene and computes and
stores the absorption of each voxel.

3. During the rendering process, the voxel position, (x,y,s),
of the first intersection point from the view is computed.

4. The amount of occlusion can be computed using the fol-
lowing equation:

s

∑
i=0

α(x,y, i)×E(x,y, i) (1)

where α() describes the light absorption in this voxel
and E() is an occupation flag which 1 represents that the
voxel is occupied by some object.

A tree rendered with its transparent shadow is shown in
Fig. 4. The trunk is opaque and the leaves are partially trans-
parent with low absorption. As a result the trunk shadow
which has a short traversal path is darker than the leaf shadow
which has a long traversal path.

3.2 Refraction

Refraction is the change in propagation direction of a light
ray when it transport from one medium to another and the
light propagation direction change can be described by the
Snell’s Law. But single refraction is not enough to describe
the light transport through a transparent object because gen-
erally a light ray enters and exits an object in a pair and it is
a multiple refraction phenomenon.

3.2.1 Two-surface refraction

Computing refraction

1 For each pixel
2 T1 = ref(I,Voxel(P1).N)
3 d = FindThickness(Voxel(P1),I)
4 P2 = P1 +d ∗T1
5 N2 = Voxel(P2).N
7 T2 = ref(T1,N2)

Fig. 5 I is the incident light direction, Voxel() is a function to locate
the voxel with the location, P1 is the position of the rendering point, d is
the transmittance distance, P2 is the second refraction position, T1 and
T2 are the first and second refraction directions, FindThickness() esti-
mates the thickness with position and ray direction and ref() calculate
the refraction direction according to the Snell’s Law.

Wyman et al. [25] proposed that multiple refraction may
be simplified to a two-surface-refraction effect: one happens
when light enters the object and the other happens when
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light exits. The first refraction can use the normal of the in-
tersection point and the incident direction to compute the
first refraction direction, T1. If the traversal distance, d, be-
tween the first and the second refraction point can be esti-
mated, the second refraction position can be estimated with
the following equation:

P2 = P1 +dT1 (2)

where P1 and P2 are the first and second refraction position,
and T1 is the refraction direction after the first refraction.
Wyman et al. [25] proposed an image-based method to esti-
mate d without considering the first refraction direction. We
realized that our voxelization result can find a better estimate
of d and our two-surface refraction algorithm can estimate
T2 in the following steps:

1. The voxelization camera is aligned with the rendering
camera.

2. Our algorithm voxelizes the scene and computes and
stores the surface normals and refraction indices.

3. After voxelization, T1 is computed with the view direc-
tion, position, surface normal and refraction index at the
first scene intersection point of the view ray.

4. The voxelization result is used to estimate the transmit-
tance distance, d, with a similar manner described in
Fig 3.

5. P2 can be computed using Eqn. 2 and projected into the
voxel space to extract the surface normal, N2 and refrac-
tion index.

6. The second refraction direction, T2, can be computed
with T1, N2 and refraction index.

Fig. 5 lists the pseudo code for the two-surface-refraction
algorithm.

3.2.2 Multiple-surface refraction

The two-surface-refraction method cannot render all trans-
mittance lighting effects when light hits a transparent ob-
ject in a scene. In addition it also has some limit in the al-
lowable models and transmittance. Thus, a multiple-surface-
refraction algorithm is proposed to simulate the refractions
and reflections inside a scene. The same voxelization pro-
cess described in the two-surface-refraction method is used.
When rendering the scene, the view initiates a view ray pass-
ing through the center of a pixel. Then, the ray is propagated
inside the voxel space and every time when the ray hits a
boundary voxel, the ray is refracted according to the Snell’s
law as shown in Fig. 6. In order to properly locate the bound-
ary voxel for refraction, the propagating distance must be set
properly to prevent missing the boundary voxel during the
traversal procedure and wasting efforts in extra propagation.
Our implementation chooses the physical distance to propa-
gate through a voxel as the propagation step distance. Then,

Fig. 6 This schematic diagram shows a view ray passing through the
object inside the voxel space. The view path is represented by the green
line segments. T1 is the direction of the initial view ray, T2 is the first
refracted direction and T3 is the second refracted direction. The blue
squares denote the boundary voxels and the red dot denotes the camera
center which is the starting point of the view ray.

the position where the next refraction event happens can be
computed as follows:

Pi = Pi−1 + thickness×Tvoxel(Ti)/cosθ (3)

where Pi−1 is the current position, thickness represents the
physical size of the voxel, Ti−1 is the current ray propaga-
tion direction, Tvoxel() is a function to transform the ray into
the voxel coordinate for locating the voxel which records
the normal and transmittance information and θ is the an-
gle between the ray and the dominant component axis of the
ray. The next step computes the refracted view ray direction
according to the following equation:

Ti =

{
re f (Ti−1,Nv(Pi),Tv(Pi)) i f (E(Pi)) = 1

Ti−1 otherwise
(4)

where re f () computes the new ray direction according to the
Snell’s law, E(Pi) is a flag which indicates whether the voxel
at Pi is a boundary voxel or not, Nv(Pi) extracts the normal
stored in the voxel at Pi and Tv(Pi) extracts the refraction
index stored in the voxel at Pi. The process continues to find
the intersection and refracted ray direction until the ray hit
the boundary of the volume.

However, when applying the multiple-surface-refraction
algorithm described in previous paragraph, several situations
may happen to induce serious artifacts into the rendering re-
sult. The one happens most frequently is multiple boundary
voxels along the traversal path which is shown in Fig 7(a).
This happens because the boundary voxels will occupy a
certain volume in the voxel space. Therefore, even when
the ray passes through the voxel without really intersecting
the surface, our algorithm will misjudge the hitting of the
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Fig. 8 These are the result using multiple-refraction rendering with
our voxelization algorithm. The refraction index is set to be 1.14 for
the models used in (a), (b), (c) and (d) and 1.3 in (e) and (f).

boundary voxel by the ray and initiate the refraction com-
putation. This leads to unwanted artifacts. Our algorithm
uses the surface locality information to relieve this issue.
We observed that when the angle between the normals of
surfaces where the consecutive refractions happens is small,
the possibility of misjudge is high. Thus, our algorithm uses
a threshold to determine whether the refraction mechanism
initiates or not and this can reduce a large amount of artifact
in this type.

When tracing the view ray, there is another condition
as shown in Fig 7(b). which may cause the failure of re-
fraction computation. This missing boundary voxel problem
happens because the voxelization resolution limit induces
a hole on the water-tight boundary surface and the ray may
pass through the corner and edge of the boundary voxels and
miss the hit when tracing the ray through the voxel space.
This problem is similar to the hole problem mentioned in
Section 2.3. Generally a low pass filter should be able to re-
duce this problem. In addition, the filter technique can also
reduce the multiple intersecting voxel issues described pre-
viously. Our algorithm proposed another relief to this miss-
ing voxel issue based on the observation that a missing voxel
issue is much harder to handle properly than a multiple inter-
sected voxel issue. Thus, when slicing the scenes, our vox-
elization algorithm extends the clipping region of the slice to
make the extent of a voxel overlap with others’ to increase
the chance of multiple intersected voxel situations and re-
duce the chance of missing voxel situations. Then the angle
threshold discussed in the previous paragraph can be used to
get a good rendering result.

The multiple-surface-refraction algorithm can simulate
the multiple refraction effects to generate realistic refraction
in real time. It is generally more efficient than traditional

Fig. 9 These demonstrate the transmittance rendering of different
models. When the traversal length of the view ray through the model
becomes larger, the rendering of the ray becomes opaque i.e. the
amount of blending with background is less. For example, the tier part
in (c) is dark green and blends with no background component because
the view ray cannot see through the model. All these examples use a
homogeneous material and thus the thickness of the view path is the
only affecting factor.

ray-tracing. This is because a fixed number of voxels can be
used to represent a complex surface model. Thus, the traver-
sal cost can be limited in a controllable amount and so is the
efficiency of rendering. When comparing the shark anima-
tion rendered with our multiple-surface-refraction algorithm
with the animation rendered with the two-surface-refraction
algorithm, our result has less aliasing artifact. Both anima-
tions are provided in the supplement material with our sub-
mitted paper. This is because our algorithm can get a more
precise simulation to the real condition of light refracted in-
side the transparent object than the two-surface-refraction
method and Wymman’s image-based refraction method. Our
method also overcomes the limitation of convex models and
possible transmittance values existing in the two-surface-
refraction and image-based refraction methods. Fig. 8 shows
the rendering results using this multiple-surface-refraction
method.

3.3 Transmittance

When light passes through a medium, the amount of energy
passing through will decrease and this phenomenon can be
described by transmittance. The simplest method [3] to es-
timate transmittance uses a parameter, transparency, which
depends on the traversal length of the light ray through the
transparent object. Then, the transmittance is used to deter-
mine the amount of transparent blending between the object
and the background. However, the method [3] is limited to
an object with homogeneous material. Our voxelization re-
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Fig. 7 (a). This demonstrates the problematic scheme during the ray traversal. The green line segments demonstrate the correct view path and the
brown line segments show the possibly problematic view path. The reason of this is because T2 intersects with multiple boundary voxels and the
closest one is not the desired one along the traversal path.
(b). Because of the hole in the voxelization result, the first surface information will be neglected and thus the refraction path cannot be currently
tracing which is similar to the problemable ray marking.

Fig. 10 This demonstrates the strength of recording surface normal
and transmittance. Our algorithm can render an object with multiple
different materials.

sult contains the surface normal information, the transmit-
tance coefficient and refraction index. This allows our ren-
dering method to compute transmittance with higher preci-
sion by both considering the length and the different trans-
parent attenuation of the traversal voxels along the path. The
traversal distance between refraction points can be estimated
using ∥ thickness×Tvoxel(Ti)/cosθ ∥ which is a byproduct
of Eqn. 3. Then the transparent attenuation can be computed
by the following equation:

transparency =
N

∏
i=0

esigma(di) (5)

where N is the total number of refraction points along the
traversal path and σ() calculates the transparent attenuation
of the object [3].

Fig. 9 shows the results rendered with refraction and
transmittance effects with a uniform transmittance coeffi-
cient and refraction index for the entire model. As the dis-
cussion in Section 3.2, the multiple-surface refraction can
trace all possible refraction and compute the transparent at-
tenuation along the traversal path and thus, it is very easy for
our application to render an object that contains parts with
different transparent materials as shown in Fig. 10 while
other algorithms such as [3, 25] can only render the refrac-
tion of the ball without considering the refraction effect of
the angel.

4 Results

All the results in this paper are rendered and measured us-
ing a computer with ATI HD5850, Intel Core 2 duo E6750
and 2 GB main memory. Our voxelization algorithm is im-
plemented with DirectX 11 but the same program is also
compatible to DirectX 10. The vertex, geometry and pixel
shaders are written using HLSL 4.0. The 3D volume texture
is implemented with the format of 2D texture array which
is a set of 2D textures with the same format in each pixel
and the same resolution for each texture. The array provides
the required properties to totally support the need of our al-
gorithm and gives our algorithm more freedom in setting
the format of each pixel during the implementation process.
And a 32-bit RGBA floating point format is chosen to record
the voxel information in our current implementation.

Additionally, each graphics hardware device has a dif-
ferent limitation in the allowable voxelization resolution and
the limitation depends on the available GPU memory space.
For example a resolution of 256×256×256 with 32-bit in-
formation per voxel requires a memory space of 128MB to
store the data. According to the graphics card used in the
test, our voxelization algorithm are tested on voxelizing dif-
ferent models with various triangle counts under three dif-
ferent resolution settings which are 128×128×128, 256×
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Name Alg. # Tris 1283 2563 5123

Torus Ours 800 1.66 3.73 10.91
Grid 2.67 7.29 641.03

Venusm Ours 43357 3.19 5.04 12.41
Grid 12.41 73.02 746.27

Horse Ours 96966 4.28 7.65 15.09
Grid 15.09 156.99 925.93

Hand Ours 654666 11.5 20.00 27.68
Grid 27.68 632.91 2500

Dragon Ours 871414 16.54 23.85 31.06
Grid 31.06 1282.05 3448.28

Happy Ours 1087716 16.36 24.71 31.58
Grid 31.58 1724.14 4347.82

Table 1 This shows the time needed to voxelize models with different
triangle counts with different resolution settings using our voxelization
algorithm marked with Ours and the voxelization algorithm proposed
by Ignacio [17] et al. marked with Grid. The performance is measure
in ms.

256× 256 and 512× 512× 512. The results are shown in
Table 1. In addition the time required to voxelize the same
set of models under these three resolutions using the algo-
rithm proposed by Ignacio et al. [17] is also shown in Ta-
ble 1. The main reason to compare against their algorithm
is due to being the derivative of slicing-based algorithm and
the same usage of 3D texture to store the voxelization result.
However, their algorithm processes the primitives in a model
once per slice. Thus, the amount of computation increases
with the increase in the voxelization resolution as shown in
Table 1. Obviously, our algorithm can get much better effi-
ciency when voxelizing models in higher resolution. How-
ever, because their algorithm can process the slices in se-
quential order to set up proper stencil buffer in voxelization
process, their algorithm can get interior information with
higher precision for relieving aliasing artifact when using
the results.

Table 1 demonstrates that the main factor of efficiency is
the triangle count of the model and the voxelization resolu-
tion. In addition our algorithm is also affected by the size of
the model and the viewing angle of the voxelization process.
When analyzing the contribution of these other factors, we
found that the difference between the best and worst perfor-
mance is roughly 10ms. In addition to the cost factors from
the voxelization process there are other cost factors when
applying the voxelization result to render the lighting ef-
fects proposed in Section 3. The main factor which affects
the efficiency of rendering is the amount of voxel accessed
through the process. Because the rendering process has to
run through a set of slices, when the number of processing
slices increases, the amount of texture access will also in-
crease. It is even worse that the cost to access the texture
data in the GPU memory space is much higher than the cost
to access CPU memory . Thus, general practice is to reduce
the number of slices with the increase in the slice resolution

to reduce the number of processed slices with acceptable
rendering quality.

5 Conclusion

New general-purpose GPU algorithms are developed to take
advantage of efficient and highly-parallel computation abil-
ities of GPU in order to enhance the efficiency of problem
solving. In this paper a real-time algorithm is proposed to
voxelize the surface-represented scene based on two newly
available functionalities, the geometry shader and 3D vol-
ume texture. The geometry shader duplicates the triangle
during the voxelization process to reduce the GPU rendering
pass down to one time. Although the price paid is the extra
triangles drawn per voxelized triangle, the voxelization effi-
ciency is still improved. The usage of 3D volume texture as
the render target give us the flexibility of adjusting the voxel
resolution according to the hardware capability and the re-
quirement of applications without the strenuous modifica-
tion in the encoding and decoding process required by the
grid encoding voxelization algorithms. In addition 3D vol-
ume texture also allows applications to compute and store
more information in a voxel. The information includes the
normal, color and transparency to generate more realistic
lighting effects. We have demonstrated this ability in render-
ing more realistic transparent shadow, transparency, and re-
fraction effects in real-time applications. However, there are
still several future research directions to take advantage of
our efficient and flexible voxelization algorithm. First, since
different surface and volume information can be recorded in
each voxel, it would be interesting to design a user interface
to specify and edit the material of each individual voxel in
order to give glass artists the ability to simulate the fantastic
color of a glass artifact. In addition the voxelization result
should be used to incorporate with global illumination algo-
rithms such as ray-marching and photon mapping to gener-
ate other realistic lighting effects such as caustics. In our ap-
plication the maximum resolution is set to 512×512×512.
However, there may be some situation required even higher
resolution and the required resolution may be over the limit
of the hardware capability. There are several ways to reduce
the memory requirement when increasing the resolution:

– The usage of less bits to record the voxel information
can reduce the memory requirement but this will reduce
the precision of information in each voxel.

– A multiple pass method can be used to resolve the mem-
ory limitation. However, the trade-off is the efficiency of
the program because each model has to be drawn multi-
ple times and data transfer between CPU and GPU mem-
ory increases.

In addition a proper recording scheme should be sought to
optimizing the processing time and stored memory size. Fi-
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nally, the results presented in this paper demonstrate that our
voxelization algorithm is efficient and flexible for real-time
voxelization and applications.
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