

Computer
Sciences
Department

WALi: Nested-Word Automata

Evan Driscoll
Aditya Thakur
Amanda Burton
Thomas Reps

Technical Report #1675

September 2011 (revision)
(original date – June 2010)

WALi: Nested-Word Automata ∗

Evan Driscoll1 Aditya Thakur1 Amanda Burton1 Thomas Reps1,2

1University of Wisconsin — Madison
Computer Sciences Department

{driscoll,adi,burtona,reps}@cs.wisc.edu

2GrammaTech, Inc.

Abstract

WALi-NWA is a C++ library for constructing, querying, and operating on
nested-word automata. It is a portion of the WALi library, which provides types
and operations for weighted automata. While the NWA portions of WALi are
mostly logically separate from the rest of WALi, it does use facilities provided by
WALi and inter-operates with WALi’s weighted pushdown system (WPDS) code.

Contents

1 Library Overview 3
1.1 NWA core classes . 3
1.2 NWA non-member functions . 3
1.3 Generic WALi . 4
1.4 Simple example use of the library . 5

2 The NestedWord class 8

3 The NWA class 9
3.1 Construction, copying, assignment, and clearing 9
3.2 Simple manipulations . 9
3.3 Client Information . 10

4 The wali::nwa::query namespace 11
4.1 Querying information about an automaton’s transitions 11
4.2 Querying other structural aspects of an automaton 11
4.3 Querying properties of an automaton’s language 11

5 NWA serialization 13
5.1 Parser . 13
5.2 Examples . 14
5.3 NWA description format . 14

∗Supported by NSF under grants CCF-{0540955, 0810053, 0904371}, by ONR under grants N00014-{09-1-
0510, 10-M-0251}, by ARL under grant W911NF-09-1-0413, and by AFRL under grants FA9550-09-1-0279 and
FA8650-10-C-7088. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the sponsoring agencies.

1

6 Building NWAs from other NWAs (namespace wali::nwa::construct) 18
6.1 Union . 19
6.2 Intersection . 20
6.3 Concatenation . 22
6.4 Kleene star . 23
6.5 Reverse . 27
6.6 Determinize . 27
6.7 Complement . 29

7 Conversions beween WPDSs and NWAs (namespace
wali::nwa::nwa pds) 32
7.1 WPDS to NWA . 33
7.2 NWA to WPDS . 34

7.2.1 Forwards flow stacking calls . 36
7.2.2 Backwards flow stacking calls . 36
7.2.3 Forwards flow stacking returns . 37
7.2.4 Backwards flow stacking returns 38

A Nested-Word Automata 40

B Determinize 42

C Tables 44

The WALi library is available from http://www.cs.wisc.edu/wpis/wpds/

download.php. This document describes the NWA portion of version 4.0. Building
instructions can be found in README.txt in the root directory of the distribution.

We assume the reader is familiar with nested words and nested-word automata; if
not, App. A provides the definition we use and Alur et al. [2, 3] describe them in detail.
Our implementation corresponds to the definition from the DLT 2006 paper [2]; relative
to follow-up work [3], this definition removes the distinction between the machine’s lin-
ear and hierarchical states, and on a call transition always stacks the source state. In
addition, we only require that the final linear state be accepting for an NWA to accept
a word. (Following [3], this specific variant is a “weakly-hierarchical, linearly-accepting”
NWA.)

The terminology used in the interface of the package is geared toward program anal-
ysis, so we use terms such as “call site” and “return site” to refer to states of the NWA
even though they take on different meanings in different contexts.

In contrast to the standard definitions, we allow internal ε transitions (but not call or
return ε transitions). We also allow “wild” transitions, which match any single symbol.
(Wilds can appear on calls and returns.)

2

http://www.cs.wisc.edu/wpis/wpds/download.php
http://www.cs.wisc.edu/wpis/wpds/download.php

1 Library Overview

The core of the NWA library is in the namespace wali::nwa. It includes the classes
NestedWord, NWA, and others.

There are a large number of non-member functions that operate on NWAs. These
are divided into three sub-namespaces: wali::nwa::query, wali::nwa::construct,
and wali::nwa::nwa pds. There is also an experimental parser in wali::nwa.

Finally, there are some operations and classes provided by WALi that the NWA
portion of the library uses. This mostly consists of the key-handling code, but can also
include the WPDS portions of the library.

Throughout this document, include paths are relative to the Source directory from
the WALi distribution.

Section 1.4 illustrates a simple sample use of the library.

1.1 NWA core classes

These types live in namespace wali::nwa:

NestedWord

Implements a single nested word. Currently the only operation that can be per-
formed using one is checking whether a NestedWord is a member of an NWA’s lan-
guage. Defined in wali/nwa/NestedWord.hpp. See §2.

NWA

Implements a nested-word automaton. Defined in wali/nwa/NWA.hpp with a for-
ward declaration in wali/nwa/NWAFwd.hpp. See §3. (§5 also discusses member
functions related to serializing an NWA.)

NWARefPtr

NWARefPtr is a typedef of ref ptr<NWA> (see below). This is defined in
wali/nwa/NWAFwd.hpp.

State and Symbol

These are both typedefs of wali::Key (see below). Both are defined in
wali/nwa/NWAFwd.hpp. Note: the use of keys for both states and symbols means
that they can be confused from a types perspective, so use caution that this does
not happen.

StateSet and SymbolSet

These are typedefs of std::sets of the corresponding type. (Client code should
not rely on this fact; it could change to be an unordered map or other similar
container.) Both are defined in wali/nwa/NWAFwd.hpp.

ClientInfo

This class holds client-specific information that is associated with a state. Client
code can subclass ClientInfo and use functions of the NWA class to attach instances
to states. To use, include wali/nwa/ClientInfo.hpp. See §3.3.

WeightGen

This abstract class describes how to assign weights to transitions of the NWA, and
is used both when converting an NWA to a PDS and when doing prestar/poststar
queries on the NWA directly. To use, include wali/nwa/WeightGen.hpp. See §7.2.

1.2 NWA non-member functions

The library provides a large number of non-member functions for operating on NWAs.
These are partitioned into the following namespaces:

wali::nwa::query

This namespace provides functions for querying an automaton. The kinds of func-
tions in this namespace are:

3

• Functions that query transitions of the NWA, returning information about
one of the states or the symbol in transitions that meet some criteria. (For
example, “give me all states that appear as the target state of an internal
transition with this source state.”) See §4.1.

• Determining whether two NWAs have any states in common. See §4.2.
• Determining whether an NWA is deterministic. See §4.2.
• Determining whether a NestedWord is a member of the language of an NWA.

See §4.3.
• Determining whether the language of an NWA is empty. See §4.3.
• Determining whether the languages of two NWAs are equal, or if one is a

subset of the other. See §4.3.
• prestar and poststar operations on an NWA. See §4.3.

wali::nwa::construct

This namespace provides functions for constructing an NWA. Functions in this
namespace are standard, automata-theoretic operations such as intersection, union,
concatenation, Kleene star, and reversal. See §6.

wali::nwa::nwa pds

This namespace provides functions for converting between NWAs and PDSs, and
related functions. (Note that construction of an NWA from a PDS is in this
namespace, not in construct.) See §7.

wali::nwa

This namespace, in addition to the items already discussed, provides an experi-
mental parser for a serialization format of NWAs. See §5.

1.3 Generic WALi

The NWA library uses these portions of the standard WALi library. Unless otherwise
specified, they are in namespace wali. See [5].

ref ptr<T>
This is a reference-counted, intrusive smart-pointer template. (“Intrusive” means
that the pointed-to type must be modified to include a count field used by the
pointer. This is most conveniently done by subclassing wali::Countable.) Defined
in wali/ref ptr.hpp.

Key

A Key is a unique identifier naming states and symbols in an NWA or NestedWord.
It is actually a typedef of an integer, though client code should not rely on this
precise type. Declared in wali/Key.hpp.

Key getKey(...)

This function produces a key from some input. If the input has not been seen
before, it returns a new key; if it has, then it returns the same key as before. (One
can think of this as translating whatever unique identifier is known by the client
code to the Key needed by WALi.) Overloads of this function are provided for the
following types:
• std::string const &

• char *

• int

• std::set<Key> const &

• Key, Key (this is a two-argument version of getKey)
• key src t

The final overload, for key src t, is a ref ptr to a KeySource object. KeySource
is an abstract class that client code can subclass to provide a translation to Keys
for arbitrary types.
All overloads are declared in wali/Key.hpp.

4

std::string key2str(Key k)

key2str is an “inverse” of getKey, except that it always returns a string repre-
sentation. If the key was created with getKey(std::string const &) in the first
place, this returns a copy of the original string.1 Declared in wali/Key.hpp.

wali::wfa::WFA

This is a weighted finite automaton. It is used in NWA poststar and prestar queries
in much the same manner as in WPDS poststar and prestar queries. Defined in
wali/wfa/WFA.hpp.

wali::wpds::WPDS

This is a weighted pushdown system. NWAs use WPDSs behind the scenes when
doing poststar and prestar queries, and the library provides conversion routines
between the two automata types. Defined in wali/wpds/WPDS.hpp.

1.4 Simple example use of the library

The following is an illustration of basic operations of the library. The full code is available
in the file Doc/NWA tex/Example/example.cpp in the WALi distribution.

// This program will walk through creating the NWA shown in Figure 4 of the

// associated documentation, and reverse it (to get the result of Figure 12).

// We then make a NestedWord of the one word in Figure 4’s language and

// another NestedWord of the one word in Figure 12’s language, then test that

// each is a member of just the appropriate NWA.

#include <iostream>

using std::cout;

#include "wali/nwa/NWA.hpp"

#include "wali/nwa/NestedWord.hpp"

#include "wali/nwa/construct/reverse.hpp"

#include "wali/nwa/query/language.hpp"

using wali::getKey;

using namespace wali::nwa;

using wali::nwa::construct::reverse;

using wali::nwa::query::languageContains;

// These symbols are used in the NWA and both words

Symbol const sym_a = getKey("a");

Symbol const sym_b = getKey("b");

Symbol const sym_call = getKey("call");

Symbol const sym_ret = getKey("ret");

/// Creates the NWA shown in Figure 4 of the Wali NWA documentation

NWA

create_figure_4()

{

NWA out;

// Translate the names of the states then symbols to Wali identifiers

State start = getKey("Start");

State call = getKey("Call");

1For ints, it is the textual representation of the original number. For a set<Key>, it is the set printed
in standard set notation. For a pair of keys, it is the pair printed as an ordered pair. In general, it is
the result of calling key src t::print. See the print function in each of the files wali/*Source.cpp.

5

State entry = getKey("Entry");

State state = getKey("State");

State exit = getKey("Exit");

State return_ = getKey("Return");

State finish = getKey("Finish");

// Add the transitions

out.addInternalTrans(start, sym_a, call);

out.addCallTrans(call, sym_call, entry);

out.addInternalTrans(entry, sym_b, state);

out.addInternalTrans(state, sym_b, exit);

out.addReturnTrans(exit, call, sym_ret, return_);

out.addInternalTrans(return_, sym_a, finish);

// Set the initial and final states

out.addInitialState(start);

out.addFinalState(finish);

return out;

}

/// Creates a (the one) word in the language of Figure 4’s NWA

NestedWord

create_forwards_word()

{

NestedWord out;

out.appendInternal(sym_a);

out.appendCall(sym_call);

out.appendInternal(sym_b);

out.appendInternal(sym_b);

out.appendReturn(sym_ret);

out.appendInternal(sym_a);

return out;

}

/// Creates a (the one) word in the language of the reverse of Figure 4’s NWA

NestedWord create_backwards_word() { ... }

int main()

{

// Create the NWA and reversed NWA

NWA fig4 = create_figure_4();

NWARefPtr fig4_reversed = reverse(fig4);

// These are the words we are testing

NestedWord forwards_word = create_forwards_word();

NestedWord backwards_word = create_backwards_word();

// Now do the tests

cout << "fig4 contains:\n"

<< " forwards_word [expect 1] : "

6

<< languageContains(fig4, forwards_word) << "\n"

<< " backwards_word [expect 0] : "

<< languageContains(fig4, backwards_word) << "\n"

<< "fig4_reversed contains:\n"

<< " forwards_word [expect 0] : "

<< languageContains(*fig4_reversed, forwards_word) << "\n"

<< " backwards_word [expect 1] : "

<< languageContains(*fig4_reversed, backwards_word) << "\n";

}

7

2 The NestedWord class

The class wali::nwa::NestedWord provides support for building and iterating over
nested words; currently there is no support for modifying them (other than append-
ing).

The representation used by this class is closer to that of a word in a visibly-pushdown
language [3]. It holds the linear contents of a word, but does not store the nesting relation
explicitly. Instead, each position in the word is annotated with whether it is an internal,
call, or return position. The nesting relation is induced by the matchings between calls
and returns.

A position in a word is represented by the (nested) structure NestedWord::Position.
Position itself declares an enumeration Type, which has the possible values CallType,
InternalType, or ReturnType. A Position object has two (public) fields: Symbol

symbol and Position::Type type; these hold the symbol at that position and the type
of the position.

The NestedWord class has just seven functions:

void NestedWord::appendInternal(Symbol s)

void NestedWord::appendCall(Symbol s)

void NestedWord::appendReturn(Symbol s)

These append the symbol s to the linear word, and annotate that position as an
internal, call, or return position, respectively.

void NestedWord::append(Position p)

Appends p to the word.

size t NestedWord::size() const

Returns the length of the word.

NestedWord::const iterator NestedWord::begin() const

NestedWord::const iterator NestedWord::end() const

These return an iterator to the start or end of the nested word. The type returned
by dereferencing these iterators is a Position object. (There is no non-const
version of these functions.)

The only operation the library currently supports on NestedWords, besides
building them, is checking whether a nested word is in an NWA’s language.
This is done by the function wali::nwa::query::languageContains(NWA const &,

NestedWord const &); see §4.3.

8

3 The NWA class

3.1 Construction, copying, assignment, and clearing

The NWA provides two constructors: the default constructor and the copy constructor.
The default constructor creates an empty NWA. Thereafter, client code can add or
remove states, add or remove symbols, add or remove transitions, and set the status of
certain states as initial or final.

The following functions are basic NWA operations:

NWA::NWA()

Constructs an empty NWA.

NWA::NWA(NWA const & other)

Copies other; the automata will not share structure. Any client information that
is present is cloned.

NWA& NWA::operator=(NWA const & other)

Assigns other to this; the automata will not share structure. Client information
is cloned.

bool NWA::operator==(NWA const & other)

Determines whether the two automata are structurally equal — that is, they con-
tain exactly the same set of states (including initial and final states), symbols,
and transitions — and returns the result. (To test language equality, use the
languageEquals function covered in§4.)

void NWA::clear()

Removes all states, symbols, and transitions from the NWA.

3.2 Simple manipulations

An NWA object tracks the set of states, symbols, and transitions in the automaton.
It also tracks the set of initial and accepting states. Counting each kind of transition
separately, this gives 7 kinds of “entities” that client code may need to manipulate.

For each kind of entity, there are NWA member functions to add and remove a single
entity, check whether a particular entity is in the automaton, count the number of entities
of a particular type, remove all entities of a particular type, and retrieve the set of
entities in the NWA. In addition, there are member functions for counting and clearing
all transitions, regardless of the type.

The names of these functions are very regular, but Tab. 1 (App. C) gives a list.
The only potential difficulties are in the interactions between the functions. Naturally,

removing a state or a symbol also removes all transitions involving it; likewise, clearing
all states or clearing all symbols also clears all transitions. (Calling removeInitialState

or removeFinalState does not cause ripple effects.)
Adding a transition implicitly adds the states and symbol involved in that transition

if they are not already present; hence it is not necessary to explicitly add all states
and symbols before adding transitions. (It is quite reasonable to build an NWA by just
adding initial states, final states, and transitions.)

The system supports two meta-symbols: wali::WALI EPSILON (ε) and
wali::WALI WILD (@). WALI EPSILON is the standard ε from automata theory; it
denotes that a transition can be traversed without matching and consuming an input
symbol. Epsilon symbols cannot label call or return transitions. WALI WILD is the ‘any’
symbol; it matches any single symbol. Because the NWA alphabet is not fixed, the
actual symbols that WALI WILD stands for is fluid. Note: WALI EPSILON and WALI WILD

are not explicit elements of Σ; see Tab. 1, footnote 5.

9

3.3 Client Information

Each state in the NWA can be associated with some client-specific information. To
utilize this functionality, client code must subclass ClientInfo and override ClientInfo
* clone() const.

Once done, client information can be attached or retrieved using the following two
functions (both members of NWA):

ref ptr<ClientInfo> NWA::getClientInfo(Key st) const

Returns the client-specific information associated with the given state, st.

void NWA::setClientInfo(Key st, ref ptr<ClientInfo> ci)

Sets the client-specific information, ci, associated with the given state, st.

Client information is tracked through the use of ref ptrs, so the programmer must con-
sider the standard aliasing and lifetime considerations imposed by using smart pointers.
(ClientInfo supplies the count field needed by ref ptr.) Operations such as copying
an NWA that clone client information can also result in changes in aliasing: if the client
information for states p and q are aliased in NWA N that is then copied to NWA N ′,
the “copies” of p and q in N ′ will have separate copies of the client information.

In addition, you may wish to subclass NWA itself. There are several virtual helper
functions that are called during intersection and determinization to compute the client
info for the resulting automaton; these can be overriden to customize the behavior. (This
design is an instance of the “template method” design pattern.)

The list of these helper methods is:
• intersectClientInfoInternal

• intersectClientInfoCall

• intersectClientInfoReturn

• mergeClientInfo

• mergeClientInfoInternal

• mergeClientInfoCall

• mergeClientInfoReturn

(The first three are used by intersection and the remaining four by determinization.) In
addition, stateIntersect and transitionIntersect can further customize the behav-
ior of intersection, including computation of client information. §6.2 and §6.6 have more
information on intersection and determinization, and discuss these functions further.

10

4 The wali::nwa::query namespace

The wali::nwa::query namespace provides functions related to querying both the struc-
ture and language of an automaton.

In this section, we first discuss how to retrieve information from an automaton’s
transitions (§4.1) then move on to other queries about an automaton proper. Following
that, we discuss queries about the language of an automaton (§4.3).

4.1 Querying information about an automaton’s transitions

The wali::nwa::query namespace provides a large number of functions for retrieving
information about an NWA’s transitions. The questions answered by these functions are
of the form, e.g., “what are all symbols that appear on a return transition where the call
predecessor state is s1 and the return site state is s1?”

Functions return information either about all transitions or about transitions of a
particular type (internal, call, or return). The names of these functions have regular
patterns based on the information that is known and desired, but the rules for producing
the names are perhaps not as simple as they could be. Because of this, Tabs. 2–5 in
App. C provide a quick reference for the functions.

The tables do not have all the information one needs to know in order to call them,
and the entries use some shorthands; but they provide enough information for specifics
to be looked up in the corresponding header or Doxygen documentation. The caption of
each table gives the header that contains the functions listed. In the interest of space, the
types of the function arguments are omitted, but they are likely to be what you expect.
(The number of arguments is also always sufficient to uniquely identify the function
because all types are just wali::Keys anyway.) Almost all functions return a StateSet,
SymbolSet, or a std::set of pairs of a state and a symbol. (Those that return a set of
pairs are marked specially.)

4.2 Querying other structural aspects of an automaton

The NWA library has two additional functions for querying attributes of NWAs them-
selves. One computes whether an NWA is deterministic, and the other computes whether
two automata have any states in common.

These functions are declared in the header wali/nwa/query/automaton.hpp (and,
of course, defined in the namespace wali::nwa::query).

bool isDeterministic(NWA const & nwa)

Computes whether the given NWA is deterministic and returns the result. Warn-
ing: The result is not cached in the NWA, and as presently-implemented, this
function is very inefficient. Improvements to this will come in a later version of the
library.

bool statesOverlap(NWA const & a, NWA const & b)

Computes whether the two NWAs share any states and returns the result.

4.3 Querying properties of an automaton’s language

The NWA library has several functions for querying properties of the language of an
NWA (or how the languages of two NWAs relate), and it also supports the poststar and
prestar queries used in program analysis.

The following functions perform standard language-theoretic queries.
They are located in namespace wali::nwa::query and are declared in
wali/nwa/query/language.hpp. They are:

11

bool languageContains(NWA const & nwa, Nested Word const & word)

Computes whether word is a member of nwa’s language, and returns the result. (It
simulates the NWA in a nondeterministic fashion; the NWA is not determinized
to answer this query.) To a first approximation, the worst-case running time is
O(|word| · w logw · log n), where w is the “width” of the nondeterminism of the
NWA (i.e. the maximum number of simultaneous configurations that are possible
when reading word) and n is the number of states in the NWA.

bool languageIsEmpty(NWA const & nwa)

Computes whether the NWA’s language is empty, and returns the result.

ref ptr<NestedWord> getSomeAcceptedWord(NWA const & nwa)

If nwa’s language is empty, returns NULL. Otherwise returns an arbitrary word in
L(nwa). (If nwa accepts unbalanced words, the return value may be unbalanced.)

bool languageSubsetEq(NWA const & left, NWA const & right)

Computes whether L(left) ⊆ L(right) and returns the result. Since this proce-

dure must determinize right, the worst-case running time is O(2n
2

n2m) where n
is the number of states in right and m is the number of states in left.

bool languageEquals(NWA const & left, NWA const & right)

Equivalent to languageSubsetEq(left, right) && languageSubsetEq(right,

left). This determinizes both machines; the running time is

There are also functions for performing a poststar and prestar query on an NWA.
These work by converting the NWA to a WPDS (see §7 and, in particular, §7.2) using
the function NWAtoPDScalls then running the query on the PDS.

Conceptually, the transition system queried by prestar and poststar is the space of
configurations of the NWA. A configuration is a pair 〈q, s〉, where q is the current state
and s is the stack of unmatched call sites. (More exactly, it is the stack of states the
machine was in before reading a symbol in a call position that has not yet been matched.)
In reality, the transition system is the configuration space of the WPDS resulting from
calling NwaToWpdsCalls (see §7 and §7.2.1); that space is 〈p, t〉, where p is a WPDS state
and t is the stack of unmatched call sites with the NWA’s “current” state q added on
top.

There are two variants of each function. One returns the WFA that results from
the query, and the other stores the WFA in an output parameter. The WFA type is
wali::wfa::WFA.

The functions that perform poststar and prestar are in the namespace
wali::nwa::query and are declared in the header wali/nwa/query/weighted.hpp.
They are:

WFA prestar(NWA const & nwa, WFA const & input, WeightGen & wg)

void prestar(NWA const & nwa, WFA const & input, WFA & output, WeightGen & wg)

Computes the prestar of the configurations specified by input, using the weights
generated by wg. Either returns the result or stores it in the parameter output.

WFA poststar(NWA const & nwa, WFA const & input, WeightGen & wg)

void poststar(NWA const & nwa, WFA const & input, WFA & output, WeightGen & wg)

Computes the poststar of the configurations specified by input, using the weights
generated by wg. Either returns the result or stores it in the parameter output.

12

5 NWA serialization

It is possible to serialize an NWA in two different supported formats.
The first is a description language of our own creation, described in most of the rest of

this section. We also provide a parser for this format, with minor caveats. The grammar
that the parser uses is defined formally in §5.3.

The second is output in Graphviz Dot format. The output is natural. The color of
an edge denotes the type of a transition: black edges are internal transitions, green edges
are call transitions, and red edges are sets of return transitions with the same exit site,
return site, and symbol. Return transitions are labeled with the symbol for its transitions
and the list of call predecessors. Because it is possible to wind up with extremely long
key names (especially in a determinized NWA) that can essentially destroy the ability
of Dot to render useful output, by default any state names longer than 20 characters
are replaced by the numerical value of the key. A call to print dot can specify different
behavior, however. All figures later in the document have been created via the Dot
output (with minimal post-processing in some cases).

There is a member function to produce each type of output:

std::ostream& NWA::print(std::ostream & stream) const

Writes the custom output described in this section to stream, returning stream.
(This method is inherited from the wali::Printable abstract class.)

std::ostream& NWA::print dot(ostream & os, std::string const & n,

bool abbrev = true) const

Outputs a Dot description of the NWA to the stream os, returning os. The name
of the graph (digraph "n" {...}) is given by n. Finally, if abbrev is set to
false, the aforementioned abbreviation step above for state names is not done.
Use this freedom at your peril.

5.1 Parser

The NWA library contains a semi-experimental parser for descriptions of NWAs. The
format is described below, and matches the result of calling NWA::print(std::ostream

&), provided that the result of calling key2str on the state and symbol keys produces
strings that match the description of 〈actual-names〉 in this grammar.

Note: This is experimental code; in particular, the error-handling in it is basically
non-existent. We detect when the input does not match the grammar, but we sometimes
signal such input failures with assertion violations. In a future version of the library, we
will report errors more gracefully, almost certainly through exceptions.

There are two functions that parse NWA descriptions, both declared in
wali/nwa/NWAParser.hpp in namespace wali::nwa:

NWARefPtr read nwa(std::istream & is, std::string * name = NULL)

Reads a description of a single NWA from is and returns it. The serialization
format allows an optional name for an NWA; if one is specified and name is non-
null, then the name is stored in the string pointed to by name.

std::map<std::string, NWARefPtr> read nwa proc set(std::istream &)

Reads the entire input stream, returning a map from the name of each automaton
description to the parsed NWA. (This form was originally created to read NWAs
for an entire program formatted with each procedure in a separate NWA. The
name of each NWA was the name of the procedure in the original program.) The
return type is typedefed to the name ProcedureMap, defined in the same header
and namespace.

13

Q0: Start

Qf: Finish

Delta_i: (Start, a, Call)

Delta_i: (Entry, b, State)

Delta_i: (State, b, Exit)

Delta_i: (Return, a, Finish)

Delta_c: (Call, call, Entry)

Delta_r: (Exit, Call, ret, Return)

Figure 1: Serialized form of the NWA depicted in Fig. 3.

5.2 Examples

Figs. 1 and 2 show examples of the NWA serialization format, illustrating both the
general form and some of the flexibilities in what precise format is accepted.

5.3 NWA description format

This section describes the grammar of the file format.
Note: Some characteristics in the description below have the following phrase as part

of their description: “you should not rely on this.” In such cases, we reserve the right to
change this behavior in future versions.

The grammar for an NWA is as follows. In order to accept a couple of slightly
different output formats we have used in the past, there are some choices in whether
braces are present and other aspects.

A single input stream can contain either a single NWA (just a series of blocks) or
multiple NWAs. If you would like to describe multiple NWAs, each individual starts
with the literal nwa.

〈nwa-description〉 ::= (‘nwa’ 〈name〉? ‘:’?)? ‘{’? 〈block〉+ ‘}’?

Braces are required if “nwa” is present and the name is absent in order to distinguish
the first block header (Q:, Q0:, or Qf:) from the name of the NWA.

An NWA is a sequence of blocks; each block specifies one or more states, symbols, or
transitions.

〈block〉 ::= 〈state-block〉
| 〈sigma-block〉
| 〈delta-block〉

There can be more than one block of a given type; e.g. it is perfectly fine to specify
all transitions in one block (as in Fig. 2), one block per transition (as in Fig. 1), or
any mixture. The “block header” specifies what kind of block it is, and the body is a
comma-separated list of whatever entity the block header specifies (e.g., states). The
body may be surrounded by curly braces, but they are not required unless the body is
empty.

State blocks can specify states, initial states, or accepting states; these are denoted
by the block headers Q:, Q0:, and Qf:, respectively.

14

Q: {

Begin (=2),

End (=3),

Entry (=4),

Exit (=6),

(Begin , prime) (=10),

(End , prime) (=11),

(Entry , prime) (=12),

(Exit , prime) (=13)}

Q0: {

Begin (=2),

(Begin , prime) (=10)}

Qf: {

End (=3),

(Begin , prime) (=10)}

Sigma: {

call,

a,

ret}

Delta_c: {

(Begin (=2) , call, Entry (=4)),

((Begin , prime) (=10) , call, Entry (=4))

}

Delta_i: {

(Entry (=4) , a, Exit (=6)),

((Entry , prime) (=12) , a, (Exit , prime) (=13))

}

Delta_r: {

(Exit (=6) , Begin (=2) , ret, End (=3)),

(Exit (=6) , Begin (=2) , ret, (Begin , prime) (=10)),

(Exit (=6) , (Begin , prime) (=10) , ret, (Begin , prime) (=10)),

(Exit (=6) , (Begin , prime) (=10) , ret, (End , prime) (=11)),

((Exit , prime) (=13) , Begin (=2) , ret, (Begin , prime) (=10)),

((Exit , prime) (=13) , Begin (=2) , ret, (End , prime) (=11)),

((Exit , prime) (=13) , End (=3) , ret, (Begin , prime) (=10)),

((Exit , prime) (=13) , End (=3) , ret, (End , prime) (=11)),

((Exit , prime) (=13) , Entry (=4) , ret, (Begin , prime) (=10)),

((Exit , prime) (=13) , Entry (=4) , ret, (End , prime) (=11)),

((Exit , prime) (=13) , Exit (=6) , ret, (Begin , prime) (=10)),

((Exit , prime) (=13) , Exit (=6) , ret, (End , prime) (=11)),

((Exit , prime) (=13) , (Begin , prime) (=10) , ret, (Begin , prime) (=10)),

((Exit , prime) (=13) , (Begin , prime) (=10) , ret, (End , prime) (=11)),

((Exit , prime) (=13) , (End , prime) (=11) , ret, (Begin , prime) (=10)),

((Exit , prime) (=13) , (End , prime) (=11) , ret, (End , prime) (=11)),

((Exit , prime) (=13) , (Entry , prime) (=12) , ret, (Begin , prime) (=10)),

((Exit , prime) (=13) , (Entry , prime) (=12) , ret, (End , prime) (=11)),

((Exit , prime) (=13) , (Exit , prime) (=13) , ret, (Begin , prime) (=10)),

((Exit , prime) (=13) , (Exit , prime) (=13) , ret, (End , prime) (=11))

}

Figure 2: Serialized form of the NWA depicted in Fig. 14.

15

〈state-block〉 ::= ‘Q:’ 〈name-list〉
| ‘Q0:’ 〈name-list〉
| ‘Qf:’ 〈name-list〉

(It is not necessary to explicitly list all states; if a state is listed in a transition, it
is implicitly added to the machine as needed. Thus, it is quite reasonable to have a
machine description with no Q: blocks.)

A name-list is simply a comma-separate list of names of states.

〈name-list〉 ::= ‘{’? (〈name〉 (‘,’ 〈name〉)∗)? ‘}’?

Recall that if the list is empty, it must be followed by a } (or EOF) to distinguish
the next block header from the name of a state.

The grammar for 〈name〉 will be specified below.
Symbol blocks are just like name blocks, except that they specify symbol names. The

block header is simply ’sigma’.

〈sigma-block〉 ::= ‘sigma:’ 〈name-list〉

A transition block can list internal, call, or return transitions, denoted by the block
headers Delta i, Delta c, and Delta r, respectively.

〈delta-block〉 ::= ‘Delta i:’ 〈triple-list〉
| ‘Delta c:’ 〈triple-list〉
| ‘Delta r:’ 〈quad-list〉

The bodies in each case are simply a comma-separated list of triples or quads (like
〈name-list〉, if these are empty, they must be followed by ‘}’):

〈triple-list〉 ::= ‘{’? (〈triple〉 (‘,’ 〈triple〉)∗)? ‘}’?
〈quad-list〉 ::= ‘{’? (〈quad〉 (‘,’ 〈quad〉)∗)? ‘}’?

and each triple (resp., quad) is a 3-tuple (4-tuple) of names:

〈triple〉 ::= ‘(’ 〈name〉 ‘,’ 〈name〉 ‘,’ 〈name〉 ‘)’
〈quad〉 ::= ‘(’ 〈name〉 ‘,’ 〈name〉 ‘,’ 〈name〉 ‘,’ 〈name〉 ‘)’

All that remains is to define the grammar for ‘name’. Because the format grew
organically and we wished to keep compatibility with existing log files (which could
previously not be automatically parsed), the ‘name’ terminal is a bit convoluted.

The name consists of the actual name of the state or symbol in question, followed by
an optional parenthesis-delimited token that is ignored. (In the output of print(), the
〈name〉 is the result of key2str and the optional token is the actual numeric value of
the key.)

Before we discuss the grammar of 〈name〉, the following shows some examples of
strings that are names:

123 xyz a2y

123 (=4) xyz (=42) a2y (=o3oth)

(a,b)(x,y) (a, b) (=32) <1, 2>

and strings which are not names:

hello world hello world (=32) (unmatched

16

The actual grammar is:

〈name〉 ::= 〈actual-name〉 〈dummy-token〉?
〈dummy-token〉 ::= ‘(’ (¬{‘(’}) ∗ ‘)’

The 〈actual-name〉 portion generally behaves like a standard programming-language
identifier, but with one important difference: it can contain balanced parentheses, and
any characters are allowed within a set of parentheses. (We actually allow a larger set
of characters than is typical, but you should not rely on this. Surround your names with
parentheses if you use “special” characters.)

We can now define the grammar of ‘actual-name’.

〈actual-name〉 ::= 〈unit〉+

〈unit〉 ::= 〈normal-char〉
| 〈paren-group〉

〈normal-char〉 ::= character other than whitespace, ‘,’, or a paren

(std::isspace is used to determine whether a character is whitespace.)

〈left-paren〉 ::= ‘(’ | ‘{’ | ‘[’ | ‘<’
〈right-paren〉 ::= ‘)’ | ‘}’ | ‘]’ | ‘>’
〈non-paren〉 ::= a character other than any of the above

〈paren-group〉 ::= 〈left-paren〉 (〈non-paren〉 | 〈paren-group〉) ∗ 〈right-paren〉

(Finally, we do not currently demand that the types of parens match up: e.g., (1,
2, 3] is a valid name. You should not rely on this feature.)

17

6 Building NWAs from other NWAs (namespace
wali::nwa::construct)

The library provides functions for performing automata-theoretic operations upon
NWAs. The supported operations are union, intersection, concatenation, reversal, Kleene
star, complement, and determinization.

The library supports two interfaces to each of these operations. In one, the operation
allocates an NWA with new, performs the construction, and returns a NWARefPtr to the
result. In the other, the operation takes a reference to an NWA, clears it, and constructs
the result in-place. The first form is usually more convenient to use, and creates a mini
language for set expressions; the second form makes it possible to store the result of an
operation in a subclass of NWA.

Each of these functions is in the namespace wali::nwa::construct:

NWARefPtr unionNWA(NWA const & a, NWA const & b)

void unionNWA(NWA & out, NWA const & a, NWA const & b)

Computes the union of the NWAs a and b, either returning the result or storing
it in out. See Section 6.1. (This function is called unionNWA instead of union

because the latter is a C++ keyword.) The two NWAs must not have any states
in common, and the output will be nondeterministic even if both input NWAs are
deterministic. The running time2 is O(|Qa|+ |Qb|+ |δa|+ |δb|).

NWARefPtr intersect(NWA const & a, NWA const & b)

void intersect(NWA & out, NWA const & a, NWA const & b)

Computes the intersection of the NWAs a and b, either returning the result or
storing it in out. See Section 6.2. If both input NWAs are deterministic, the output
will be deterministic. The worst-case running time is O(|Qa||Qb|dadb), where da
is the maximum out-degree of a state in a and db is the maximum out-degree of a
state in b.

NWARefPtr concat(NWA const & left, NWA const & right)

void concat(NWA & out, NWA const & left, NWA const & right)

Computes the concatenation of the NWAs left and right, either returning the
result or storing it in out. See Section 6.3. The output automaton will be nonde-
terministic. The running time is O(|Qa|+ |Qb|+ |δa|+ |δb|+ |Qa||δbr|).

NWARefPtr star(NWA const & orig)

void star(NWA & out, NWA const & orig)

Computes the Kleene star of the NWA orig, either returning the result or storing
it in out. See Section 6.4. The output automaton will be nondeterministic. The
running time is O(|Q|+ |δ|+ |Q0||Qf ||δc|).

NWARefPtr reverse(NWA const & orig)

void reverse(NWA & out, NWA const & orig)

Computes the NWA that accepts the reverse of each nested word accepted by the
NWA orig, either returning the result or storing it in out. See Section 6.5. The
running time is O(|Q|+ |δ|).

NWARefPtr determinize(NWA const & orig)

NWARefPtr determinize(NWA & out, NWA const & orig)

Computes a determinization of orig, either returning the result or storing it in
out. See Section 6.6. The worst-case running time for this algorithm is at least
O(|Q|3 · 2|Q|2).

2We count state lookups, additions, etc. as constant time even though they are actually logarithmic,
and occasionally linear.

18

call

b

a

a

ret: Call,

b

Finish

Return

Exit

Start

State

Call

Entry

Figure 3: An example
NWA.

a

b

b

a

Begin

End

State3

State2

State4

Figure 4: A second exam-
ple NWA.

a

call

b

a

b

a

b

ret: Call,

b

a

Begin

Finish

End

Exit

State2

Return

State3

Start

State

Call

State4
Entry

Figure 5: The NWA re-
sulting from the union of
the NWA in Figure 3 and
the NWA in Figure 4.
Note that there are two
initial states.

NWARefPtr complement(NWA const & orig)

void complement(NWA & out, NWA const & orig)

Computes the complement of the determinization of orig, either returning the
result or storing it in out. See Section 6.7. complement() determinizes orig, so

its worst-case running time is also at least O(|Q|3 · 2|Q|2).

As mentioned above, these functions create a small language of set expressions. For
instance, to compute an automaton M whose language is A ∪ (B ∩ C)∗ (where A, B, and C

are NWARefPtrs), one can write

NWARefPtr M = unionNWA(*A, *star(*intersect(*B, *C)))

6.1 Union

The union of two NWAs is constructed by taking the union of each of the components of
the NWAs. (In particular, it does not do a cross-product construction, and will always
produce a nondeterministic automaton as a result as long as both machines have at least
one initial state.)

Formally, the union of NWAs N = (QN ,ΣN , Q0,N , δN , FN) and M = (QM ,ΣM ,
Q0,M , δM , FM) is N ∪M = (QN ∪QM ,ΣN ∪ ΣM , Q0,N ∪Q0,M , δN ∪ δM , FN ∪ FM).

As an example, Fig. 5 illustrates the union of Fig. 3 and Fig. 4.

19

call

b

a

a

ret: Call,

Finish

Return

Exit

Start

Call

Entry

Figure 6: Simple NWA to intersect with
the NWA in Figure 3.

a

call

b

(key#2,2)

(key#4,4)

(key#6,9)

(key#8,8)

Figure 7: The NWA resulting from the
intersection of the NWA in Figure 3 and
the NWA in Figure 6. Note that because
each of the input NWAs only accepts a
single word and those words are different,
the language of the intersection is empty.
The NWA built up by intersect() got as
far as it could. (key#2,3) is the pair of
states (start,start) from the two input
automata.

The state sets of the NWAs must not overlap, i.e., Q1 ∩Q2 = ∅. Client code should
not rely on this condition being checked or any particular behavior occurring if it does
not hold.

Client information is copied directly from the original NWAs using
ClientInfo::clone().

6.2 Intersection

The intersection of two NWAs is computed in the standard cross-product fashion, using
a worklist algorithm to only compute those states that are reachable.

The algorithm traverses the original NWAs starting at the initial states and incremen-
tally adds transitions for each pair of “intersectable” transitions that are encountered.
By default, transitions are intersectable when the transitions are the same kind (internal,
call, or return) and the symbols on the edge are identical or one is wild.

For example, Fig. 6 shows the intersection of Fig. 3 and Fig. 6, and Fig. 9 shows the
intersection of the two NWAs in Fig. 8.

It is possible to customize what symbols are considered equivalent, or other-
wise impose constraints on what transitions can be intersected, by overriding the
transitionIntersect function in a subclass of NWA. In addition, it is possible to impose
additional constraints on what states can be combined by overriding stateIntersect.
Both functions also produce the result of the intersection: transitionIntersect pro-
duces the symbol that will be used on the resulting edge, and stateIntersect produces
the state that will be used as the target.

20

a

ret: Call 2,

call

a

b

b

b

call

a

ret: Call 1,

b

a

Finish

Return 2

Start

Return 1

Entry 2

Exit 2

Entry 1

State 1

Call 2

Call 1

State 2

Exit 1

call

a

b

a

b

ret: Call,

a

Finish

Return

Exit

Start

State

Call

Dead End

Entry

Figure 8: Two complex NWAs to intersect.

b

b

a

ret: (key#11,19),

a

call

a

(key#3,3)

(key#12,20)

(key#15,23)

(key#11,19)

(key#14,22)

(key#4,18)

(key#2,2)

(key#13,21)

Figure 9: The NWA resulting from the intersection of the NWAs in Figure 8.

21

The default behavior of transitionIntersect is that two transitions are inter-
sectable if neither symbol is epsilon and either the symbols are the same or at least
one of the symbols is a wild. (Epsilon transitions are dealt with in intersect() itself.
If you override transitionIntersect, it should return false if either input is epsilon.)

The default behavior of stateIntersect is that any two states can be combined,
the resulting state is labeled with a Key that is uniquely generated from the pair of the
Keys of the two states under consideration, and the client information associated with
the resulting state is null.

Client information is initially generated by the helper method stateIntersect, but
can be altered through the use of the helper methods intersectClientInfoInternal,
intersectClientInfoCall, and intersectClientInfoReturn, which are invoked by
intersect() as transitions of the three different kinds involving the associated state
are added. The default behavior of these three functions is to perform no changes to
the ClientInfo. These methods can be overridden in subclasses to specify alternative
behaviors.

The following operations are virtual functions in class NWA and are intended to be
overridden to customize behavior:

bool stateIntersect(NWA const & first, Key state1,

NWA const & second, Key state2,

Key& resSt, ref ptr<ClientInfo>& resCI)

Determines whether the given states can be combined and, if so, creates the
combined state. If the two states are incompatable, returns false. If the two
states are compatable, it computes the key of the combined state (storing it in
resSt and the client information (storing it in resCI), then returns true.

bool transitionIntersect(NWA const & first, Key sym1,

NWA const & second, Key sym2,

Key& resSym)

Determines whether the given symbols are considered to be equivalent for the
purposes of intersection. If so, it computes the symbol that should be associated
with the combined transition (storing it in resSym) and returns true. If not,
returns false.

void intersectClientInfoInternal(NWA const & first, Key src1, Key tgt1,

NWA const & second, Key src2, Key tgt2,

Key resSym, Key resSt)

void intersectClientInfoCall(NWA const & first ,Key call1, Key entry1,

NWA const & second, Key call2, Key entry2,

Key resSym, Key resSt)

void intersectClientInfoReturn(NWA const & first, Key exit1, Key call1, Key ret1,

NWA const & second, Key exit2, Key call2, Key ret2,

Key resSym, Key resSt)

Called after a transition of the corresponding type is added to the automaton. It
is intended to be used to alter the client information associated with resSt given
the endpoints of the new transition.

6.3 Concatenation

The concatenation of two NWAs is constructed by taking the union of all states and
transitions of the two automata, and adding internal epsilon transitions from each final
state of the first NWA to each initial state of the second NWA. In the resulting NWA,
the initial states are the initial states from the first NWA, and the final states are the
final states of the second NWA.

22

However, the concatenation construction is a bit more complicated than just this,
because we need to address the issue of an unbalanced-left word being concatenated
with an unbalanced-right word. (Recall the definition of what happens when an NWA
reads a pending return: it is allowed to take a return transition where the call predecessor
is an initial state of the automaton.)

To deal properly with the case where the first operand generates strings with pending
calls and the second operand generates strings with pending returns, the transitions
from the second automaton are augmented in the following manner. When computing
the concatenation of left and right, for each transition (q, p0, a, q

′) ∈ δrightr where
p0 ∈ Qright

0 (these are transitions that right can take when reading a pending return)
and each p ∈ Qleft, we add (q, p, a, q′) to δr of the result. (It is actually only necessary
to add such a transition for states p that either appear in the call position of a call
transition in left or are in Qleft

0 .)
The state sets of the NWAs must not overlap, i.e., Q1 ∩Q2 = ∅. Client code should

not rely on this condition being checked.
Client information is copied directly from the original NWAs using

ClientInfo::clone().
Fig. 12 shows the result of concatenating Fig. 3 and Fig. 10.

6.4 Kleene star

Like concatenation, Kleene-star is complicated in the case of NWAs because of the ability
to have unbalanced words in the automaton’s language. Relative to standard FAs, in the
concatenation construction we only needed to add extra transitions; in this construction,
we must add additional states as well.

The NWA resulting from performing Kleene-Star on the NWA shown in Fig. 13 is
shown in Fig. 14.

The construction presented in [3] has an error. The error is analogous to not adding
a distinguished start state in the traditional Thompson construction,3 and in fact can
be exhibited using the same example (it is not necessary to use NWA calls or returns).
Alur confirmed that our interpretation of the construction in [3] is correct [1]. Below,
we present a version that uses ε-transitions, and thus it looks a bit different from the
version in [3].

When computing R = A∗ for some NWA A, the resulting NWA has two “copies” of
A. These are denoted by primed and unprimed version of states from A in the definition
below.

Suppose that R is reading a word w = w1w2 · · ·wn, where each wi ∈ L(A). R begins
in a start state of A′. Henceforth it maintains the following invariant on the state that
R is in with respect to the portion of w read so far: if the next symbol σ is in a return
position, then that symbol is a pending return in the current wi iff R is in the A′ portion,
i.e., if the current state is primed. (Note that this return only needs to be pending in
the current wi. In the full string w, σ may match a call in an earlier wj , or it may be
pending in the whole string.)

Internal transitions thus keep R in the same copy of A, and call transitions always
take R to the unprimed copy of A (because if it then reads a return, the return will
match that call). Return transitions can target either copy of A: if the call predecessor
is unprimed, then the target will be unprimed; if the call predecessor is primed, then the
target will be primed.

The description above describes R’s operation under “normal” conditions. If R is in
a final state (either primed or unprimed) of the automaton A, it is also allowed to guess

3The initial state of the automaton A∗ must accept, because ε is in L∗; and because of this property
it is incorrect to merely add epsilon transitions from the old final states to the old initial states. If you
do this and there is a cycle from the initial state back to itself (for example, a self-loop on the initial
state), the word corresponding to that path would be accepted even though it should not be.

23

a
b

State2Begin

End

Figure 10: Simple NWA to concatenate onto
the NWA in Figure 3.

b

a

call: Return,

b

ret

a

Finish

Return

Start

State

Call

Entry

Exit

Figure 11: The NWA resulting
from performing reverse on the
NWA in Figure 3.

*

call

b

a

a

a

ret: Call,

b

b

Begin

Finish

End

Exit

State2

Return

Start

State

Call

Entry

Figure 12: The NWA resulting from the
concatenation of the NWA in Figure 3 with
the NWA in Figure 10.

24

ret: Begin,

a

call

Entry

Begin

End

Exit

Figure 13: An NWA on which to perform Kleene-Star.

call

call

ret: (Begin , prime),

ret: (any)

a

ret: (any)

ret: Begin, (Begin , prime)

ret: Begin,

a

Begin End

(Exit , prime)

(Entry , prime)

(Begin , prime)

Exit
Entry

(End , prime)

Figure 14: The NWA resulting from performing Kleene-Star on the NWA in Figure 13.

25

that it should “restart” by taking an epsilon transition to a distinguished start and final
state q0. This guess is correct if it just read the last character in wi (making the next
character the first one in wi+1). Note that q0 only has transitions to the A′ portion of
R, maintaining the invariant.

The reason for the two copies of A comes into play when R reads a return σ while
in the A′ portion. By the invariant, σ is pending in the current wi. In the original
automaton A, the transitions that the machine can use are return transitions (q, r, σ, p)
where the call predecessor r is in Q0. We need to make sure that R can take those same
transitions. There are two cases we need to consider:

1. For the cases where σ is pending in the whole string w, we need to have a version of
the return transition with q0 in the call-predecessor position, so we add (q′, q0, σ, p

′).
2. For the cases where σ is matched with a call in some earlier wj , it does not matter

what state the machine was in before that call; thus we add (q′, s, σ, p′) for each
state s in Q ∪Q′.

“Normal” operation corresponds to the transitions introduced by the Internal,
Call, and Locally-Matched-Return inference rules given below. The source states
of both transitions added by Locally-Matched-Return are unprimed, because if the
current symbol is a return that matches a call in the same wi, R will be in the A portion
by the invariant. The Restart rule allows R to restart, and the Start rule allows R to
get from q0 to the A′ portion; these transitions target the A′ portion because there have
been no calls read in the current wi, and thus a return symbol would be pending. The
Globally-Pending-Return rule addresses the situation where the current symbol is
a return that is pending in the whole string w. (This is the first case in the previous
paragraph.) The Locally-Pending-Return rule addresses the situation where the
current symbol is a return that is pending in the current wi but matches a call from a
previous wj .

Formally, if the original NWA is (Q,Σ, Q0, δ, Qf), then the result of performing
Kleene-Star on that NWA is (Q∗,Σ, Q∗0, δ

∗, Q∗f). The sets of states are defined by
Q∗ = Q ∪ Q′ ∪ {q0} (with Q′ = {q′ | q ∈ Q} and q0 6∈ Q), and Q∗0 = Q∗f = {q0}.
The transitions in δ∗ are defined by the following rules:

Internal
(q, σ, p) ∈ δi

(q, σ, p) ∈ δ∗i (q′, σ, p′) ∈ δ∗i

(q, σ, p) ∈ δc
(q, σ, p) ∈ δ∗c (q′, σ, p) ∈ δ∗c

Call

Locally-Matched-Return
(q, r, σ, p) ∈ δr

(q, r, σ, p) ∈ δ∗r (q, r′, σ, p′) ∈ δ∗r

Start
q ∈ Q0

(q0, ε, q
′) ∈ δ∗i

q ∈ Qf
(q, ε, q0) ∈ δ∗i (q′, ε, q0) ∈ δ∗i

Retart

Globally-Pending-Return
(q, r, σ, p) ∈ δr r ∈ Q0

(q′, q0, σ, p
′) ∈ δ∗r

Locally-Pending-Return
(q, r, σ, p) ∈ δr r ∈ Q0 s ∈ Q ∪Q′

(q′, s, σ, p′) ∈ δ∗r

Client information is copied directly from the original NWA (using
ClientInfo::clone()) such that for each q ∈ Q, q and q′ have (different copies
of) the same client information.

Note: The key for state q′ is generated from the key for state q using the expression
getKey(q, getKey("prime")). The input automaton to the Kleene star function must
not already contain both q and q′ for any q.

26

6.5 Reverse

A nested word n = (w,) is reversed by reversing the linear word w and exchanging calls
and returns. Formally, nrev = (wrev, {(|w|+1−r, |w|+1−c)|(c, r) ∈ }). (Pending calls
and returns are handled by defining |w|+ 1− (+∞) = −∞ and |w|+ 1− (−∞) = +∞.)
Roughly speaking, call transitions in A correspond to return transitions in Arev and vice
versa, and we reverse the direction of all transitions as in the standard FA construction.
We describe the construction from the perspective of Arev — that is, a “call transition”
is a call transition in Arev, and a “call” is a call in the reversed string.

Perhaps unsurprisingly, pending returns pose a problem because the role of initial
and final states are exchanged. Because of this complication, the algorithm for reversing
an NWA has a similar flavor to that of the Kleene-star procedure. The automaton Arev

has two “copies” of A (primed and unprimed), and maintains the same invariant as the
Kleene-star construction: if the next symbol σ is in a return position, then that symbol
is a pending return iff Arev is in the A′ portion. (For those familiar with the construction
in [3], ours is more complicated because the version in [3] will not work as stated with a
weakly-hierarchical NWA.)

If the original NWA is (Q,Σ, Q0, δ, Qf), then the result of reversing that NWA is
(Q ∪Q′,Σ, Q′f , δrev, Q0) obtained using the following rules:

Internal
(p, σ, q) ∈ δi

(q, σ, p) ∈ δrevi (q′, σ, p′) ∈ δrevi

Call-Return
(qc, σc, qe) ∈ δc (qx, , σr, qr) ∈ δr

(qr, σr, qx), (q′r, σr, qx) ∈ δrevc (qe, qr, σc, qc), (qe, q
′
r, σc, q

′
c) ∈ δrevc

Pending-Return
(qc, σ, qe) ∈ δc qf ∈ Qf

(q′e, qf , σ, q
′
c) ∈ δrevR

The NWA resulting from performing reverse on the NWA shown in Figure 3 is shown
in Figure 11.

Client information is copied directly from the original NWA using
ClientInfo::clone().

6.6 Determinize

Definition. An NWA, (Q,Σ, Q0, δ, Qf), is deterministic iff

1. |Q0| ≤ 1,
2. For all q ∈ Q, there is never a choice between reading σ and following a
σ transition or following a wild (@) transition:
• if (q,@, q′) ∈ δi then |{q′|(q, σ, q′) ∈ δi, σ 6= @}| = 0;

otherwise, for all σ ∈ Σ− {@}, |{q′|(q, σ, q′) ∈ δi}| ≤ 1,
• if (q,@, q′) ∈ δc then |{q′|(q, σ, q′) ∈ δc, σ 6= @}| = 0;

otherwise, for all σ ∈ Σ− {@}, |{q′|(q, σ, q′) ∈ δc}| ≤ 1, and
• for q′ ∈ Q, if (q, q′,@, q′′) ∈ δr then |{q′′|(q, q′, σ, q′′) ∈ δr, σ 6= @}| = 0;

otherwise, for all σ ∈ Σ− {@}, |{q′′|(q, q′, σ, q′′) ∈ δr}| ≤ 1,
3. There are no ε transitions:

• for all (q, σ, q′) ∈ δi, σ 6= ε,
• for all (q, σ, q′) ∈ δc, σ 6= ε, and
• for all (q, q′, σ, q′′) ∈ δr, σ 6= ε.

If an NWA is not deterministic, then it is non-deterministic.

27

Determinizing an NWA operates like a generalization of the classical subset con-
struction. Instead of the states in the determinized NWA being subsets of states
in the original NWA, states of the determinized NWA are sets of state pairs (i.e.,
binary relations on states) [3]. To support determinization, the library provides a
typedef of std::set<pair<State, State>> as NWA::BinaryRelation. See also
wali/nwa/RelationOps.hpp.

We present the algorithm we use for determinization in App. B.
The result of determinizing the automaton in Fig. 15 is shown in Fig. 16.
Client information is generated through the use of the helper method

mergeClientInfo, but can be altered through the use of the helper meth-
ods mergeClientInfoInternal, mergeClientInfoCall, and mergeClientInfoReturn,
which are invoked by determinize as transitions of the three kinds involving the
associated state are added. The default behavior of mergeClientInfo is that the
ClientInfo associated with the resulting state is null. The default behavior of
mergeClientInfoInternal, mergeClientInfoCall, and mergeClientInfoReturn is
to make no changes to the the ClientInfo. These methods can be overridden to
specify alternative behaviors. As determinization is performed, mergeClientInfo

is called each time a new state is created. Then, as each transition is added,
mergeClientInfoInternal, mergeClientInfoCall, or mergeClientInfoReturn is
called (depending on the type of transition being added) to update the ClientInfo

associated with the target state of the transition being added.
The following functions can be overridden in a subclass of NWA to customize the

behavior of determinization:

void mergeClientInfo(NWA const & nondet, BinaryRelation const& binRel,

St resSt, ref ptr<ClientInfo>& resCI)

Callback that gets called when a new state resSt (representing the binary
relation binRel) is added to the determinized automaton. Intended to provide
a hook for computing the client information that should be associated with the
new state; the client information should be set in the output parameter resCI

(i.e., setClientInfo should not be called directly). nondet is the NWA being
determinized.

void mergeClientInfoInternal(NWA const & nondet,

BinaryRelation const& binRelSource,

BinaryRelation const& binRelTarget,

Key sourceSt, Key resSym, Key resSt,

ref ptr<ClientInfo>& resCI)

void mergeClientInfoCall(NWA const & nondet,

BinaryRelation const& binRelCall,

BinaryRelation const& binRelEntry,

Key callSt, Key resSym, Key resSt,

ref ptr<ClientInfo>& resCI)

void mergeClientInfoReturn(NWA const & nondet,

BinaryRelation const& binRelExit,

BinaryRelation const& binRelCall,

BinaryRelation const& binRelReturn,

Key exitSt, Key callSt, Key resSym,

Key resSt, ref ptr<ClientInfo>& resCI)

Callbacks that get called when a new transition is added to the given automaton.
The endpoints and their associated binary relations are given. Alters the client
information associated with resSt given information about the transition being
added to the determinized automaton.

28

6.7 Complement

Complementing an NWA is performed by determinizing the automaton and then com-
plementing the set of final states. In our implementation, an extra flag to complement

controls whether the determinization step is to be performed, so it can be bypassed if
you have a priori knowledge that the input NWA must already be deterministic. The
result of complementing the NWA shown in Figure 15 is shown in Figure 17.

Client information is copied directly from the determinization of the original NWA
using ClientInfo::clone().

29

ret: Call,

call

a
ret: Call,

b

a

call

a

b

a

Entry2

Finish

Exit1

State2

Exit2

Start

State1

Entry1

Call

Return

Figure 15: Simple nondeterministic NWA.

call

a

call

call

call

call

ret: (2,4)call

call

ret: (2,4)

b

a call

a

a

b

call

(2,2)

(4,8)(4,11)

(2,3)

(4,6)

(2,4)

(4,10)

(4,9)

(4,12)

(2,13)

Figure 16: The NWA resulting from determinizing the NWA in Figure 15. As mentioned
in the text, states in the determinized NWA are relations on the states in the original
NWA. The state ∅ has been removed from this diagram.

30

call

a

call

call

call

call

ret: (2,4)

call

call

ret: (2,4)

b

a

call

a

a

b

call

(2,2)

(4,8)(4,11)

(2,3)

(4,6)

(2,4)

(4,10)

(4,9)

(4,12)

{}

(2,13)

Figure 17: The complement of the NWA in Figure 15 (the determinization of which
is shown in Figure 16). We omit transitions to the state {}; any action that does not
appear in the diagram goes to the state {}.

31

7 Conversions beween WPDSs and NWAs (names-
pace wali::nwa::nwa pds)

It is possible to convert a WALi WPDS to an NWA and vice versa. However, the
construction of an NWA from a WPDS is not the inverse of constructing a WPDS from
an NWA, i.e., one cannot perform the two conversions in sequence and obtain the identity
conversion.

At a high level, the WPDS to NWA conversion works by making the NWA encode
both the state of the WPDS and its top-of-stack symbol. A WPDS rule of the form
〈p, q1〉 ↪→ 〈p, q2〉 leaves the stack height unchanged, and is thus associated with an internal
NWA transition; in this case, that transition goes from the state (p, q1) to (p, q2). The
symbol of a transition is associated with the top-of-stack symbol of the source state, so in
this example, the symbol labeling that transition would be q1. In other words, the WPDS
rule 〈p, q1〉 ↪→ 〈p, q2〉 is translated to the NWA internal transition ((p, q1), q1, (p, q2)).
WPDS push rules correspond to NWA call transitions, and WPDS pop rules correspond
to NWA return transitions.4

The conversion in the other direction creates a WPDS with one primary state and
one “helper” state for each NWA state that appears in the exit position of a return
transition. The NWA’s state is encoded by the symbol at the top of the WPDS’s stack
– essentially the inverse of the encoding described in the previous paragraph. A slight
complication arises in the case of return transitions. The NWA is able to look at both
the exit node and the call predecessor. In the WPDS this would correspond to looking
at the top two stack symbols – but the WPDS is only allowed to look at the top one.
Hence each NWA return transition becomes two WPDS rules: the first pops the top
symbol (which corresponds to the current NWA state) and remembers what it was using
the helper state; the second rule looks at the call predecessor and the helper state to
dispatch to the corresponding return site.

The library also offers two kinds of variants of this conversion. First, there is a
backwards variant that can be used for backwards dataflow-analysis problems. Second,
the resulting WPDS can stack either calls or returns. The “stacking-calls” version turns
a call transition (c, σ, e) into a WPDS rule 〈p, c〉 ↪→ 〈p, ec〉 – leaving the call predecessor
c on the stack. (This is the translation described in the previous paragraph.) The
“stacking-returns” version has, in general, several WPDS push rules for each NWA call
transition. Each push rule leaves a potential return site on the stack. (For example, if
there is a call transition (c, σ, e) and a return transition (x, c, σ′, r), then the WPDS will
have a rule 〈p, c〉 ↪→ 〈p, er〉).

The following functions are in the namespace wali::nwa::nwa pds and, except for
plusWpds(), are declared in the header wali/nwa/nwa pds/conversions.hpp:

void WpdsToNwa(NWA & out, const WPDS& pds)

NWARefPtr WpdsToNwa(const WPDS& pds)

Converts pds to an NWA, either storing the result in nwa or returning it.

4 This encoding is motivated by our uses of both WPDSs and NWAs in program analysis. It is
common for WPDSs to have just one state, p, and to use the top-of-stack symbol to encode the “current”
program point. Pushing something onto the stack corresponds to a call, and popping corresponds to a
return. For NWAs, we use the states themselves to encode the current program point. (The function
that converts a WPDS into an NWA supports multi-state WPDSs, however; a WPDS rule of the form
〈p1, q1〉 ↪→ 〈p2, q2〉 is translated to the NWA internal transition ((p1, q1), q1, (p2, q2)).)

32

WPDS NwaToWpdsCalls(NWA const & nwa, WeightGen const & wg)

WPDS NwaToWpdsCalls(NWA const & nwa, WeightGen const & wg,

ref ptr<Wrapper> wr)

WPDS NwaToBackwardsWpdsCalls(NWA const & nwa, WeightGen const & wg)

WPDS NwaToWpdsReturns(NWA const & nwa, WeightGen const & wg)

WPDS NwaToBackwardsWpdsReturn(NWA const & nwa, WeightGen const & wg)

These functions each construct a WPDS that is equivalent to nwa using the appro-
priate method (backwards or forwards flow, and stacking calls or stacking returns),
returning the result. Uses wg to determine weights for the WPDS’s transitions.
The second variant of NwaToWpdsCalls takes a wali::wpds::Wrapper reference
wr, and the WPDS is constructed by passing wr to the constructor. This feature
can be used, for instance, if you would like the resulting WPDS to support witness
tracing. (If wr is NULL, then the second version is equivalent to the first.)

State getProgramControlLocation()

Returns the program state p used as the primary WPDS state in the result of the
NwaToWpds* variants.

State getControlLocation(State exit, State call, State return)

Returns the WPDS state pqx or pq3 used as a “helper” state for return transitions
from exit to return with call as a predecessor.

WPDS plusWpds(NWA const & nwa, const WPDS& base)

This function returns a WPDS that is the product of the NWA nwa and WPDS
base, as described in the “Explicit NWA plus PDS” construction from [4, §6]. This
function is declared in the header wali/nwa/nwa pds/plusWpds.hpp.

7.1 WPDS to NWA

The WpdsToNwa functions convert a WPDS into an NWA in a manner faithful to the
encoding sketched out in the introduction to this section.

Assume that we have a WPDS (P,Γ,∆) where ∆ = (∆0,∆1,∆2). This WPDS is
converted into an NWA (Q,Σ, {}, δ, {}) using the following rules:

States
p ∈ P q ∈ Γ

(p, q) ∈ Q
Alphabet

q ∈ Γ

q ∈ Σ

Internal
〈p, q〉 ↪→ 〈p′, q′〉 ∈ ∆1

((p, q), q, (p′, q′)) ∈ δi
Call

〈p, qc〉 ↪→ 〈p′, qe qr〉 ∈ ∆2

((p, qc), qc, (p
′, qe)) ∈ δc

Return
〈p′′, qx〉 ↪→ 〈p′′′, ε〉 ∈ ∆0 〈p, qc〉 ↪→ 〈p′, qe qr〉 ∈ ∆2

((p′′, qx), (p, qc), qx, (p
′′′, qr)) ∈ δr

Note that these rules generate an NWA return transition for each pair of WPDS pop
and push rules; there is no constraint between the two rules. This is because, with the
exception of the “revealed” stack symbol qr, everything that the push rule talks about
concerns the call predecessor (p, qc) and entry node (q′, qe); nothing that the pop rule
talks about — p′′, qx, or p′′′ — has any relation to those. (A consequence is that the
number of NWA transitions may be quadratic in the number of WPDS rules.)

In the resulting NWA, Q0 and Qf are empty; client code must set the initial and
final states as appropriate (with addInitialState(State) and addFinalState(State).
The keys that are generated for the names of the NWA states are part of the interface
of this function; they are generated by getKey(p, q) where p and q are the keys of the
WPDS state and stack symbol being converted.

33

• 〈p,main〉 ↪→ 〈p, q1〉
• 〈p, q1〉 ↪→ 〈p, c1〉
• 〈p, c1〉 ↪→ 〈p, e r1〉
• 〈p, e〉 ↪→ 〈p, q2〉
• 〈p, q2〉 ↪→ 〈p, q3〉
• 〈p, q3〉 ↪→ 〈p, x〉
• 〈p, x〉 ↪→ 〈p, ε〉
• 〈p, r1〉 ↪→ 〈p, q4〉
• 〈p, q4〉 ↪→ 〈p, q5〉
• 〈p, q5〉 ↪→ 〈p, c2〉
• 〈p, c2〉 ↪→ 〈p, e r2〉
• 〈p, r2〉 ↪→ 〈p, q6〉
• 〈p, q6〉 ↪→ 〈p, exit〉

Figure 18: An example WPDS.

c2

c1

q4

x: (p,c2),

r1

q5

e

x: (p,c1),

q3

main

q2

q6r2
q1

(p,x)

(p,c2)

(p,e)

(p,r2)(p,c1)

(p,q1)

(p,exit)

(p,q2) (p,q3)

(p,q4)

(p,main)

(p,q5)

(p,q6)

(p,r1)

Figure 19: The NWA resulting from converting the WPDS in Fig. 18 into an NWA.

All weights on WPDS rules are ignored, and do not survive in any way in the resulting
NWA. The client information for all states in the resulting NWA are set to null.

For example, the NWA created from the WPDS shown in Fig. 18 is shown in Fig. 19.

7.2 NWA to WPDS

An NWA can also be converted into a WPDS. Weights for the rules of the resulting
WPDS are provided using a mechanism described below. In this way it is possible to
use the WPDS reachability queries that are a part of the main WALi library on NWAs.
As mentioned in the introduction to §7, there are four variations on the NWA-to-WPDS
conversion: forward flow with call states on the stack, backward flow with call states on
the stack, forward flow with return states on the stack, and backward flow with return
states on the stack. All four variations use WeightGen to determine weights for WPDS
rules.

WeightGen is an abstract class that client code must subclass to calculate the weights
of the rules in the generated WPDS. It allows the underlying NWA to be decoupled from
the weight domain used in the WPDS. See [5, §4-§5] for details about weight domains.

There is a trivial weight domain (containing 1 and 0 only) implemented in the
class Reach, defined in wali/Reach.hpp. A WeightGen subclass that returns ele-
ments from this reachability domain is provided as the ReachGen class, defined in
wali/nwa/WeightGen.hpp. ReachGen returns 1 for all transitions.

34

main
q6

q2

r2
q1

c2
x: c1,

x: c2,

q4

q3

q5

c1

e

r1

q1

q3q2

e

q4

r2

q6

r1

exit

x

c2

c1

main

q5

Figure 20: An example NWA.

• 〈p,main〉 ↪→ 〈p, q1〉
• 〈p, q1〉 ↪→ 〈p, c1〉
• 〈p, e〉 ↪→ 〈p, q2〉
• 〈p, q2〉 ↪→ 〈p, q3〉
• 〈p, q3〉 ↪→ 〈p, x〉
• 〈p, r1〉 ↪→ 〈p, q4〉
• 〈p, q4〉 ↪→ 〈p, q5〉
• 〈p, q5〉 ↪→ 〈p, c2〉
• 〈p, r2〉 ↪→ 〈p, q6〉
• 〈p, q6〉 ↪→ 〈p, exit〉
• 〈p, c1〉 ↪→ 〈p, e c1〉
• 〈p, c2〉 ↪→ 〈p, e c2〉
• 〈p, x〉 ↪→ 〈px, ε〉
• 〈px, c1〉 ↪→ 〈p, r1〉
• 〈p, x〉 ↪→ 〈px, ε〉
• 〈px, c2〉 ↪→ 〈p, r2〉

Figure 21: The WPDS resulting from
calling NwaToWpdsCalls on Fig. 20

• 〈p, q1〉 ↪→ 〈p,main〉
• 〈p, c1〉 ↪→ 〈p, q1〉
• 〈p, q2〉 ↪→ 〈p, e〉
• 〈p, q3〉 ↪→ 〈p, q2〉
• 〈p, x〉 ↪→ 〈p, q3〉
• 〈p, q4〉 ↪→ 〈p, r1〉
• 〈p, q5〉 ↪→ 〈p, q4〉
• 〈p, c2〉 ↪→ 〈p, q5〉
• 〈p, q6〉 ↪→ 〈p, r2〉
• 〈p, exit〉 ↪→ 〈p, q6〉
• 〈p, r1〉 ↪→ 〈p, x r1〉
• 〈p, r2〉 ↪→ 〈p, x r2〉
• 〈p, e〉 ↪→ 〈pe, ε〉
• 〈pe, r1〉 ↪→ 〈p, c1〉
• 〈p, e〉 ↪→ 〈pe, ε〉
• 〈pe, r2〉 ↪→ 〈p, c2〉

Figure 22: The result of call-
ing NwaToBackwardsWpdsCalls on
Fig. 20

• 〈p,main〉 ↪→ 〈p, q1〉
• 〈p, q1〉 ↪→ 〈p, c1〉
• 〈p, e〉 ↪→ 〈p, q2〉
• 〈p, q2〉 ↪→ 〈p, q3〉
• 〈p, q3〉 ↪→ 〈p, x〉
• 〈p, r1〉 ↪→ 〈p, q4〉
• 〈p, q4〉 ↪→ 〈p, q5〉
• 〈p, q5〉 ↪→ 〈p, c2〉
• 〈p, r2〉 ↪→ 〈p, q6〉
• 〈p, q6〉 ↪→ 〈p, exit〉
• 〈p, c1〉 ↪→ 〈p, e r1〉
• 〈p, c2〉 ↪→ 〈p, e r2〉
• 〈p, x〉 ↪→ 〈px, ε〉
• 〈px, r1〉 ↪→ 〈p, r1〉
• 〈p, x〉 ↪→ 〈px, ε〉
• 〈px, r2〉 ↪→ 〈p, r2〉

Figure 23: The WPDS resulting from
calling NwaToWpdsReturns on Fig. 20

• 〈p, q1〉 ↪→ 〈p,main〉
• 〈p, c1〉 ↪→ 〈p, q1〉
• 〈p, q2〉 ↪→ 〈p, e〉
• 〈p, q3〉 ↪→ 〈p, q2〉
• 〈p, x〉 ↪→ 〈p, q3〉
• 〈p, q4〉 ↪→ 〈p, r1〉
• 〈p, q5〉 ↪→ 〈p, q4〉
• 〈p, c2〉 ↪→ 〈p, q5〉
• 〈p, q6〉 ↪→ 〈p, r2〉
• 〈p, exit〉 ↪→ 〈p, q6〉
• 〈p, r1〉 ↪→ 〈p, x c1〉
• 〈p, r2〉 ↪→ 〈p, x c2〉
• 〈p, e〉 ↪→ 〈pe, ε〉
• 〈pe, c1〉 ↪→ 〈p, c1〉
• 〈p, e〉 ↪→ 〈pe, ε〉
• 〈pe, c2〉 ↪→ 〈p, c2〉

Figure 24: The result of calling Nwa-

ToBackwardsWpdsReturns on Fig. 20

35

The following operations are virtual methods of WeightGen intended to be overridden:

sem elem t WeightGen::getOne() const = 0

Returns an instance of the 1̄ element of the weight domain.

sem elem t getWeight(State source, ClientInfoRefPtr sourceInfo,

Symbol symbol, Kind k,

State target, ClientInfoRefPtr targetInfo) const

Computes and returns the weight for the rule corresponding to the transition from
source to target (of kind k) labeled with symbol symbol. By default, returns
getOne().

sem elem t getWildWeight(State source, ClientInfoRefPtr sourceInfo,

State target, ClientInfoRefPtr targetInfo) const

Computes and returns the weight for the WPDS rule corresponding to the
transition from source to target labeled with the meta-symbol @. By default,
returns getOne().

sem elem t getExitWeight(State src, ClientInfoRefPtr srcInfo) const

This method computes the weight (in the desired semiring) for the return rule of
the WPDS corresponding to the exit src. Note: the value is generally the same as
getOne(), which is what the default implementation returns.

7.2.1 Forwards flow stacking calls

The conversion is performed by:

p ∈ P
(qx, qc, σ, qr) ∈ δr

pqx ∈ P
q ∈ Q
q ∈ Γ

(q, σ, q′) ∈ δi
〈p, q〉 w1

↪→ 〈p, q′〉 ∈ ∆1

(qc, σ, qe) ∈ δc
〈p, qc〉

w2
↪→ 〈p, qe qc〉 ∈ ∆2

(qx, qc, σ, qr) ∈ δr
〈p, qx〉

w0
↪→ 〈pqx , ε〉 ∈ ∆0 〈pqx , qc〉

w3
↪→ 〈p, qr〉 ∈ ∆1

where w0 =

wg.getOne(), if σ = ε

wg.getWildWeight(q, CIq, q
′, CIq′), if σ = @

wg.getWeight(qx, CIqx , σ, EXIT TO RET, qr, CIqr), otherwise

w1 =

wg.getOne(), if σ = ε

wg.getWildWeight(q, CIq, q
′, CIq′), if σ = @

wg.getWeight(q, CIq, σ, INTRA, q
′, CIq′), otherwise

w2 =

wg.getOne(), if σ = ε

wg.getWildWeight(q, CIq, q
′, CIq′), if σ = @

wg.getWeight(qc, CIqc , σ, CALL TO ENTRY, qe, CIqe), otherwise

w3 = wg.getOne()

For example, the WPDS resulting from converting the NWA shown in Fig. 20 into a
WPDS is shown in Fig. 21.

7.2.2 Backwards flow stacking calls

The backwards-flow conversions are equivalent to calling wali::nwa::construct::-

reverse and then the corresponding forwards flow version. When reversing, call tran-
sitions become return transitions (and vice versa), and so call sites become return sites

36

(and vice versa). Return sites in the original automaton behave as call sites in the re-
versed automaton, and thus this version of the NWA-to-WPDS conversion stacks return
states. (In other words, the Calls and Returns part of NwaToBackwardsWpdsCalls

and NwaToBackwardsWpdsReturns refer to the behavior of the states in the reversed
automaton, not the role they play in the original.)

For example, the result of converting the NWA in Fig. 20 into a backwards flow
WPDS is shown in Fig. 22.

Formally, the conversion is performed by:

p ∈ P
(qc, σ, qe) ∈ δc

pqe ∈ P
q ∈ Q
q ∈ Γ

(q, σ, q′) ∈ δi
〈p, q′〉 w1

↪→ 〈p, q〉 ∈ ∆1

(qc, σ, qe) ∈ δc (qx, qc, γ, qr) ∈ δr
〈p, qe〉

w0
↪→ 〈pqe , ε〉 ∈ ∆0 〈pqe , qr〉

w3
↪→ 〈p, qc〉 ∈ ∆1

(qx, qc, σ, qr) ∈ δr
〈p, qr〉

w2
↪→ 〈p, qx qr〉 ∈ ∆2

where w0 =

wg.getOne(), if σ = ε

wg.getWildWeight(qc, CIqc , qe, CIqe), if σ = @

wg.getWeight(qc, CIqc , σ, CALL TO ENTRY, qe, CIqe), otherwise

w1 =

wg.getOne(), if σ = ε

wg.getWildWeight(q, CIq, q
′, CIq′), if σ = @

wg.getWeight(q, CIq, σ, INTRA, q
′, CIq′), otherwise

w2 =

wg.getOne(), if σ = ε

wg.getWildWeight(qx, CIqx , qr, CIqr), if σ = @

wg.getWeight(qx, CIqx , σ, EXIT TO RET, qr, CIqr), otherwise

w3 = wg.getOne()

7.2.3 Forwards flow stacking returns

As an example, converting the NWA in Fig. 20 into a WPDS results in the WPDS
shown in Fig. 23.

The conversion is performed by:

p ∈ P
(qx, qc, σ, qr) ∈ δr

pqx ∈ P
q ∈ Q
q ∈ Γ

(q, σ, q′) ∈ δi
〈p, q〉 w1

↪→ 〈p, q′〉 ∈ ∆1

(qc, σ, qe) ∈ δc (qx, qc, γ, qr) ∈ δr
〈p, qc〉

w2
↪→ 〈p, qe qr〉 ∈ ∆2

(qx, qc, σ, qr) ∈ δr
〈p, qx〉

w0
↪→ 〈pqx , ε〉 ∈ ∆0 〈pqx , qr〉

w3
↪→ 〈p, qr〉 ∈ ∆1

37

where w0 = wg.getOne()

w1 =

wg.getOne(), if σ = ε

wg.getWildWeight(q, CIq, q
′, CIq′), if σ = @

wg.getWeight(q, CIq, σ, INTRA, q
′, CIq′), otherwise

w2 =

wg.getOne(), if σ = ε

wg.getWildWeight(qc, CIqc , qe, CIqe), if σ = @

wg.getWeight(qc, CIqc , σ, CALL TO ENTRY, qe, CIqe), otherwise

w3 =

wg.getOne(), if σ = ε

wg.getWildWeight(qx, CIqx , qr, CIqr), if σ = @

wg.getWeight(qx, CIqx , σ, EXIT TO RET, qr, CIqr), otherwise

7.2.4 Backwards flow stacking returns

As an example, converting the NWA in Fig. 20 into a backwards flow WPDS results in
the WPDS shown in Fig. 24.

The conversion is performed by:

States
p ∈ P

(qc, σ, qe) ∈ δc
pqe ∈ P

q ∈ Q
q ∈ Γ

(q, σ, q′) ∈ δi
〈p, q′〉 w1

↪→ 〈p, q〉 ∈ ∆1

(qc, σ, qe) ∈ δc
〈p, qe〉

w0
↪→ 〈pqe , ε〉 ∈ ∆0 〈pqe , qc〉

w3
↪→ 〈p, qc〉 ∈ ∆1

(qx, qc, σ, qr) ∈ δr
〈p, qr〉

w2
↪→ 〈p, qx qc〉 ∈ ∆2

where w0 = wg.getOne()

w1 =

wg.getOne(), if σ = ε

wg.getWildWeight(q, CIq, q
′, CIq′), if σ = @

wg.getWeight(q, CIq, σ, INTRA, q
′, CIq′), otherwise

w2 =

wg.getOne(), if σ = ε

wg.getWildWeight(qx, CIqx , qr, CIqr), if σ = @

wg.getWeight(qx, CIqx , σ, EXIT TO RET, qr, CIqr), otherwise

w3 =

wg.getOne(), if σ = ε

wg.getWildWeight(qc, CIqc , qe, CIqe), if σ = @

wg.getWeight(qc, CIqc , σ, CALL TO ENTRY, qe, CIqe), otherwise

38

References

[1] R. Alur. Personal Communication, August 2011.
[2] R. Alur and P. Madhusudan. Adding nesting structure to words. In Developments

in Lang. Theory, 2006.
[3] R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3),

May 2009.
[4] N. Kidd, A. Lal, and T. Reps. Advanced querying for property checking. Technical

Report TR-1624, University of Wisconsin, Madison, Oct 2007.
[5] N. Kidd, A. Lal, and T. Reps. WALi: The Weighted Automaton Library, 2007.

www.cs.wisc.edu/wpis/wpds/download.php.

39

A Nested-Word Automata

Nested-word automata (NWAs) [2, 3] are a generalization of finite-state automata that
can capture the matched-parenthesis structure that is exhibited by, for example, open-
ing and closing tags in XML and the call/return structure in execution traces in multi-
procedure programs. Their languages represent somewhat of a middle-ground between
standard regular languages and context-free languages. They are strictly more powerful
than finite automata (FAs), but can also accept some languages that are context-free
once the nesting structure (call/return, etc.) is dropped. (For instance, there is an NWA
that accepts exactly the language of properly-balanced parentheses, with the associated
matching structure.) Importantly, nested-word languages also retain all the closure prop-
erties that makes standard regular languages attractive; in particular, they are closed
under complementation and intersection. However, they are not directly comparable to
languages of linear words, because the nesting structure is an explicit part of each nested
word.

Definition. A nested word (w,) over alphabet Σ is an ordinary (linear)
word w ∈ Σ∗ together with a nesting relation .

The relation is a collection of edges (over the positions in w) that do not
cross. Formally, ⊆ {−∞, 1, 2, . . . , |w|} × {1, 2, . . . , |w|,+∞} such that:

• Nesting edges only go forward: if i j then i < j.
• No two edges share a position unless one is ±∞: for 1 ≤ i ≤ |w|, either
i = ±∞, j = ±∞, or there is at most one j such that i j or j i.

• Edges do not cross: if i j and i′ j′, then one cannot have i < i′ ≤
j < j′.

A nested-word language is any set of nested words; such a language is a regular
nested-word language if it is accepted by an NWA as defined below.

When i j holds, for 1 ≤ i ≤ |w|, i is called a call position. If i +∞, then i is a
pending call ; otherwise i is a matched call, and the (unique) position j such that i j
is called its return successor. (Note that these terms refer to positions within w and
not the to symbol itself, which is what you may expect if you are familiar with visibly
pushdown languages [3].)

Similarly, when i j holds, for 1 ≤ j ≤ |w|, j is a return position. If −∞ j, then
j is a pending return, otherwise j is a matched return, and the (unique) position i such
that i j is called its call predecessor.

A position 1 ≤ i ≤ |w| that is neither a call nor a return is an internal position.
A nested word is balanced if it has no pending calls or returns. A nested word is

unbalanced-left (or a nested-word prefix) if it has only pending calls, and it is unbalanced-
right (or a nested-word suffix) if it has only pending returns.

Definition. A nested-word automaton (NWA) A is a 5-tuple (Q,Σ, Q0, δ, F),
where Q is a finite set of states, Σ is a finite alphabet, Q0 ⊆ Q is the initial
state, F ⊆ Q is a set of final states, and δ is a transition relation. The
transition relation δ consists of three components, (δc, δi, δr), where:

• δi : (Q × Σ) × Q is the transition relation for internal positions of the
input word.

• δc : (Q× Σ)×Q is the transition relation for call positions.
• δr : (Q×Q× Σ)×Q is the transition relation for return positions.

Starting from a state in Q0, an NWA A reads a nested word (w,) from left
to right, and performs transitions according to the current input symbol and
 . If A is in state q when reading input symbol σ at position i in w, and i
is an internal (resp, call) position in , A makes a transition to a state q′ (if

40

one is available) such that (q, σ, q′) ∈ δi (resp, (q, σ, q′) ∈ δc). If i is a return
position, let k be the call predecessor of i (so k i) and qc be the state A
was in just before the transition it made on the kth symbol; A changes to a
state q′ such that (q, qc, σ, q

′) ∈ δr. If there is a computation of A on input
(w,) that terminates in a state q ∈ F , then A accepts (w,).

NWAs can be either deterministic or nondeterministic, and these variations
have equivalent power.

We extend the above definition to allow two meta-symbols, ε and @ (wild). Call and
return transitions are prohibited from being labeled with ε, but allowing εs on internal
transitions can be done in an analogous fashion to standard FAs. The wild symbol, @,
can label any transition, and it matches any input symbol. For example, the internal
rule from the definition would be reworded as follows:

If A is in state q when reading input symbol σ at position i in w, and i is an
internal position, A makes a transition to a state q′ (if one is available) such
that either (q, σ, q′) ∈ δi or (q,@, q′) ∈ δi.

The other rules are modified similarly.
To distinguish among the different roles for states in an internal transition (q, σ, q′),

we say that q is the source and q′ is the target. Similarly, to distinguish among the roles
for states in a call transition (qc, σ, qe), we say that qc is the call state and qe is the entry
state. To distinguish among the roles for states in a return transition (qx, qc, σ, qr), we
say that qx is the exit state, qc is the call state (or call predecessor), and qr is the return
state.

41

B Determinize

We found the explanations of how to determinize NWAs that are given in [2, 3] to be
confusing (and contradictory between the two accounts), and so we reformulated it using
relational operations.

We use the following notation in the determinize algorithm:

(Q,Σ, δ, Q0, Qf) The components of the input automaton nwa

δi|σ The binary relation {(p, q)|(p, σ, q) ∈ δi}
δc|σ The binary relation {(p, q)|(p, σ, q) ∈ δc}
δr|σ The binary relation {(p, q)|∃c.(p, c, σ, q) ∈ δr}
R ◦ S Relational composition of the binary relations R and S
R∗ Transitive closure of the binary relation R
Qnew, δnew Components of the determinized NWA

We use the following auxiliary function to compute the target of a return transition:

Merge(Rexit, Rcall, δ) = {(q, q′) | ∃q1, q2. (q, q1) ∈ Rcall

and (q1, q2) ∈ Rexit

and (q2, q1, q
′) ∈ δ}

Each state R in the determinized automaton is a binary relation on states in the
original. In a standard determinized FA, a state {q0, q1, · · · , qn} means the automaton
can be in state q0 of the original FA, or in state q1 of the original, etc. For NWAs, a state
{(p0, q0), (p1, q1), · · · , (pn, qn)} means that the NWA is one of the states {q0, q1, · · · , qn},
but the relation carries around extra meaning.

If a state in the determinized automaton contains a pair (p, q), then this means
the input automaton can begin in the state p, immediately perform a call transition,
follow a path with balanced calls and returns, and finally arrive in state q. In such a
configuration, if the input automaton then reads a return symbol, q is the exit site and p
is the call predecessor. These two pieces of information are exactly what the automaton
needs to decide what return transitions it can take. The call predecessor p needs to be
stored explicitly because it is possible to arrive at the same state q with different call
predecessors.

At the start of the run, and any time the automaton has not read any pending calls,
the first component of each pair in the current state will be some q ∈ Q0; this is because
the initial states act as call predecessors in that situation.

42

determinize(NWA nwa)
Close = (δi|ε)∗
R0 = Q0 ×Q0 ◦ Close
Qnew = {R0}
Insert R0 in WL
while WL 6= ∅ do

select and remove a relation R from WL
// Note that R is a state in Qnew

mark R
for σ ∈ Σ do

// Compute internal transitions

Ri = R ◦ δi|σ ◦ Close
Qnew = Qnew ∪ {Ri}
Insert R

σ→ Ri into δnewi

if Ri unmarked then
WL = WL ∪ {Ri}

// Compute call transitions

Rc = Close ◦ δc|σ ◦ Close
Qnew = Qnew ∪ {Rc}
Insert R

σ→ Rc into δnewc

if Rc unmarked then
WL = WL ∪ {Rc}

// Compute return transitions where R appears as the exit

node

for Rcall ∈ Qnew do
Rr = Merge(R,Rcall, δr|σ) ◦ Close
Qnew = Qnew ∪ {Rr}
Insert (R,Rcall, σ, Rr) into δnewr

if Rr unmarked then
WL = WL ∪ {Rr}

// Compute return transitions with R as the call

predecessor

for Rexit ∈ Qnew do
Rr = Merge(Rexit, R, δr|σ) ◦ Close
Qnew = Qnew ∪ {Rr}
Insert (Rexit, R, σ,Rr) into δnewr

if Rr unmarked then
WL = WL ∪ {Rr}

// end worklist while loop

Qnewf = {R ∈ Qnew| there is (p, q) ∈ R with q ∈ Qf}
return (Qnew,Σ, δnew, {R0}, Qnewf)

43

C Tables

This section provides a number of quick-reference tables.
The tables do not have all the information one needs to know in order to call the

functions, and the entries use some shorthands; but they provide enough information for
specifics to be looked up in the corresponding header or Doxygen documentation. The
caption of each table gives the header that contains the functions listed. In the interest
of space, the types of the function arguments are sometimes omitted, but they are likely
to be what you expect.

List of Tables

1 Accessors and mutators of NWA components 45
2 Query functions for all transition types . 46
3 Query functions for internal transitions. 47
4 Query functions for call transitions . 48
5 Query functions for return transitions. 49

44

T
ab

le
1:

A
ccesso

rs
a
n
d
m
u
ta
to
rs

o
f
N
W
A

co
m
p
o
n
en

ts.
A

ll
fu

n
ction

s
are

m
em

b
ers

of
th

e
N
W
A

class,
an

d
th

u
s

d
eclared

in
w
a
l
i
/
n
w
a
/
N
W
A
.
h
p
p

.

a
d

d
1

rem
o

ve
1

ch
eck

m
em

b
ersh

ip
2

co
u

n
t

clear
g

et
3

sta
tes

a
d

d
S

ta
te(S

ta
te

st)
rem

o
veS

ta
te(S

ta
te

st)
4

isS
ta

te(S
ta

te
st)

sizeS
ta

tes()
clearS

ta
tes()

4
g

etS
ta

tes()
or

{
b

eg
in

,en
d}

S
ta

tes()

in
itia

l
sta

tes
a

d
d

In
itia

lS
ta

te(S
ta

te
st)

rem
o

veIn
itia

lS
ta

te(S
ta

te
st)

isIn
itia

lS
ta

te(S
ta

te
st)

sizeIn
itia

lS
ta

tes()
clearIn

itia
lS

ta
tes()

g
etIn

itia
lS

ta
tes()

or
{

b
eg

in
,en

d}
In

itia
lS

ta
tes()

fi
n

a
l

sta
tes

a
d

d
F

in
a

lS
ta

te(S
ta

te
st)

rem
o

veF
in

a
lS

ta
te(S

ta
te

st)
isF

in
a

lS
ta

te(S
ta

te)
sizeF

in
a

lS
ta

tes()
clearF

in
a

lS
ta

tes()
g

etF
in

a
lS

ta
tes()

or
{

b
eg

in
,en

d}
F

in
a

lS
ta

tes()

sym
b

o
ls

5
a

d
d

S
ym

b
o

l(S
ym

b
o

l
sym

)
rem

o
veS

ym
b

o
l(S

ym
b

o
l

sym
)

4
isS

ym
b

o
l(S

ym
b

o
l

sym
)

sizeS
ym

b
o

ls()
clearS

ym
b

o
ls()

g
etS

ym
b

o
ls()

or
{

b
eg

in
,en

d}
S

ym
b

o
ls()

a
ll

tra
n

sitio
n

s
—

fi
n

d
T

ra
n

s(S
ta

te
s1

,
S

ym
b

o
l

sym
,

S
ta

te
s2

)
—

sizeT
ra

n
s()

clearT
ra

n
s()

—

in
tern

a
l

tra
n

sitio
n

s
a

d
d

In
tern

a
lT

ra
n

s(
... 6

)
rem

o
veIn

tern
a

lT
ra

n
s(

... 6
)

—
sizeIn

tern
a

lT
ra

n
s()

—
{

b
eg

in
,en

d}
in

tern
a

lT
ra

n
s()

ca
ll

tra
n

sitio
n

s
a

d
d

C
a

llT
ra

n
s(

... 6
)

rem
o

veC
a

llT
ra

n
s(

... 6
)

—
sizeC

a
llT

ra
n

s()
—

{
b

eg
in

,en
d}

ca
llT

ra
n

s()

retu
rn

tra
n

sitio
n

s
a

d
d

R
etu

rn
T

ra
n

s(
... 6

)
rem

o
veR

etu
rn

T
ra

n
s(

... 6
)

—
sizeR

etu
rn

T
ra

n
s()

—
{

b
eg

in
,en

d}
retu

rn
T

ra
n

s()

1
T

h
ese

fu
n

ctio
n

s
retu

rn
a
b
o
o
l

in
d

ica
tin

g
w

h
eth

er
th

e
item

w
a

s
a

d
d

ed
/

rem
o

ved
.

A
d

d
in

g
a

tra
n

sitio
n

im
p

licitly
a

d
d

s
a

ll
sta

tes
a

n
d

sym
b

o
ls

in
th

a
t

tra
n

sitio
n

if
th

ey
are

n
o

t
a

lrea
d

y
p

resen
t.

R
em

o
vin

g
a

sta
te

or
sym

b
o

l
rem

o
ves

a
ll

tra
n

sitio
n

s
th

e
rem

o
ved

item
w

a
s

a
p

art
o

f.
2

T
h

ese
fu

n
ctio

n
s

retu
rn

a
b
o
o
l

w
ith

th
e

n
a

tu
ra

l
in

terp
reta

tio
n

.
3

T
h

e
en

tries
o

f
th

e
form

,
e.g

.,
“{

b
eg

in
,en

d}
S

ta
tes()”

d
en

o
te

a
p

a
ir

o
f

fu
n

ctio
n

s,
ea

ch
o

f
w

h
ich

retu
rn

s
a

n
itera

tor.
T

h
e

typ
e

o
f

th
a

t
itera

tor
is

eith
er

a
N
W
A
:
:
S
t
a
t
e
I
t
e
r
a
t
o
r

,
N
W
A
:
:
S
y
m
b
o
l
I
t
e
r
a
t
o
r

,
N
W
A
:
:
C
a
l
l
I
t
e
r
a
t
o
r

,
N
W
A
:
:
I
n
t
e
r
n
a
l
I
t
e
r
a
t
o
r

,
or

N
W
A
:
:
R
e
t
u
r
n
I
t
e
r
a
t
o
r

,
a

s
a

p
p

ro
p

ria
te;

a
ll

o
f

th
ese

are
a

ctu
a

lly
co

n
st

itera
tors.

T
h

e
o

th
er

fu
n

ctio
n

s
(“

g
etK

in
d

()”
)

retu
rn

a
S
t
a
t
e
S
e
t

or
S
y
m
b
o
l
S
e
t

a
s

a
p

p
ro

p
ria

te.
4

R
em

o
vin

g
a

sta
te

or
a

sym
b

o
l

a
lso

rem
o

ves
a

ll
tra

n
sitio

n
s

in
vo

lvin
g

it.
(H

en
ce

clearin
g

a
ll

sta
tes

or
clearin

g
a

ll
sym

b
o

ls
a

lso
clears

a
ll

tra
n

sitio
n

s.)
5
W
A
L
I
E
P
S
I
L
O
N

a
n

d
W
A
L
I
W
I
L
D

are
n

o
t

exp
licit

m
em

b
ers

o
f

th
e

sym
b

o
l

set.
T

h
is

h
a

s
th

e
fo

llow
in

g
co

n
seq

u
en

ces
(for

s
a

s
ep

silo
n

or
w

ild
):

a
d
d
S
y
m
b
o
l
(
s
)

a
n

d
r
e
m
o
v
e
S
y
m
b
o
l
(
s
)

are
b

o
th

n
o

-o
p

s
a

n
d

retu
rn

f
a
l
s
e

,
i
s
S
y
m
b
o
l
(
s
)

retu
rn

s
fa

lse,
s
i
z
e
S
y
m
b
o
l
s
(
)

d
o

es
n

o
t

co
u

n
t

ep
silo

n
or

w
ild

,
a

n
d

n
eith

er
th

e
set

retu
rn

ed
b

y
g
e
t
S
y
m
b
o
l
s
(
)

n
or

th
e

itera
tor

ra
n

g
e

{
b
e
g
i
n
,
e
n
d}

S
y
m
b
o
l
s
(
)

w
ill

co
n

ta
in

ep
silo

n
or

w
ild

.
6

T
h

ere
are

tw
o

o
verlo

a
d

s
o

f
ea

ch
o

f
th

ese
fu

n
ctio

n
s.

T
h

e
fi

rst
ta

kes
ea

ch
elem

en
t

o
f

th
e

tra
n

sitio
n

tu
p

le
in

d
ivid

u
a

lly,
e.g

.,
a
d
d
C
a
l
l
T
r
a
n
s
(
S
t
a
t
e

s
r
c
,

S
t
a
t
e

s
y
m
,

S
t
a
t
e

t
g
t
)

.
T

h
e

seco
n

d
ta

kes
a

(co
n

sta
n

t
referen

ce
to

a
n

)
N
W
A
:
:
I
n
t
e
r
n
a
l

,
N
W
A
:
:
C
a
l
l

,
or

N
W
A
:
:
R
e
t
u
r
n

o
b

ject
(a

s
a

p
p

ro
p

ria
te).

(T
h

ese
are

typ
ed

efs
o

f
a
T
r
i
p
l
e

or
Q
u
a
d

o
f

th
e

a
p

p
ro

p
ria

te
typ

e.)

45

T
ab

le
2:

Q
u
ery

fu
n
ctio

n
s

fo
r

a
ll

tra
n
sitio

n
typ

es.
T

h
ese

fu
n

ction
s

are
in

th
e

n
am

esp
ace

w
a
l
i
:
:
n
w
a
:
:
q
u
e
r
y

;
in

clu
d

e
th

e
fi

le
w
a
l
i
/
n
w
a
/
q
u
e
r
y
/
t
r
a
n
s
i
t
i
o
n
s
.
h
p
p

.
F

or
retu

rn
tran

sition
s,

th
e

“sou
rce”

is
th

e
fi

rst
com

p
on

en
t

of
th

e
tran

sition
;

n
oth

in
g

in
volvin

g
call

pred
ecessors

(th
e

secon
d

com
p

on
en

t
of

retu
rn

tran
sition

s)
ap

p
ears

in
th

is
tab

le.
A

tab
le

en
try

of
“—

”
m

ean
s

th
at

th
e

com
b

in
ation

of
argu

m
en

ts
d

o
es

n
ot

m
ake

sen
se.

W
h
at

you
kn

ow
W
h
at

you
w
an
t

th
is...

...
an

d
th

is
sou

rces
sym

b
ols

targets

sou
rce

(n
oth

in
g)

—
(n

on
e)

getS
u

ccessors(n
w

a,
src)

sym
b

ol
—

—
getS

u
ccessors(n

w
a,

src,
sym

)

target
—

getS
ym

b
ol(n

w
a,

src,
tgt,

&
sym

)
—

sym
b

ol
(n

oth
in

g)
—

—
(n

on
e)

target
getP

red
ecessors(n

w
a,

sym
,

tgt)
—

—

target
(n

oth
in

g)
getP

red
ecessors(n

w
a,

tgt)
(n

on
e)

—

46

T
ab

le
3:

Q
u
ery

fu
n
ctio

n
s

fo
r

in
tern

a
l

tra
n
sitio

n
s..

T
h

ese
fu

n
ction

s
are

in
th

e
n

am
esp

ace
w
a
l
i
:
:
n
w
a
:
:
q
u
e
r
y

;
in

clu
d

e
th

e
fi

le
w
a
l
i
/
n
w
a
/
q
u
e
r
y
/
i
n
t
e
r
n
a
l
s
.
h
p
p

.
A

tab
le

en
try

of
“—

”
m

ean
s

th
at

com
b

in
ation

s
of

argu
m

en
ts

d
o

es
n

ot
m

ake
sen

se.

W
h
at

you
kn

ow
W
h
at

you
w
an
t

th
is...

...
an

d
th

is
sou

rces
sym

b
ols

targets

(n
oth

in
g)

(n
oth

in
g)

getS
ou

rces(n
w

a)
getIn

tern
alS

ym
(n

w
a)

getT
argets(n

w
a)

sou
rce

(n
oth

in
g)

—
getIn

tern
alS

ym
S

ou
rce(n

w
a,

src)
or

getT
argets(n

w
a,

src)
1

getT
argets(n

w
a,

src)
1

sym
b

ol
—

—
getT

argets(n
w

a,
src,

sym
)

target
—

getIn
tern

alS
ym

(n
w

a,
src,

tgt)
—

sym
b

ol
(n

oth
in

g)
getS

ou
rces

S
ym

(n
w

a,
sym

)
—

getT
argets

S
ym

(n
w

a,
sym

)

target
getS

ou
rces(n

w
a,

sym
,

tgt)
—

—

target
(n

oth
in

g)
getS

ou
rces(n

w
a,

tgt)
1

getIn
tern

alS
ym

T
arget(n

w
a,

tgt)
or

getS
ou

rces(n
w

a,
tgt)

1
—

1
R

etu
rn

s
a

set
of

p
airs

(eith
er

sou
rce/sym

b
ol

or
sym

b
ol/target).

47

T
ab

le
4:

Q
u
ery

fu
n
ctio

n
s
fo
r
ca

ll
tra

n
sitio

n
s.

T
h

ese
fu

n
ction

s
are

in
th

e
n

am
esp

ace
w
a
l
i
:
:
n
w
a
:
:
q
u
e
r
y

;
in

clu
d

e
th

e
fi

le
w
a
l
i
/
n
w
a
/
q
u
e
r
y
/
c
a
l
l
s
.
h
p
p

.
T

h
e

“call
site”

is
th

e
sou

rce
of

th
e

tran
sition

(an
d

u
ses

th
e

argu
m

en
t

n
am

e
c
a
l
l

),
an

d
th

e
“en

try”
of

th
e

tran
sition

is
th

e
target

(an
d

u
ses

th
e

argu
m

en
t

n
am

e
e
n
t

).

W
h
at

you
kn

ow
W
h
at

you
w
an
t

th
is...

...
an

d
th

is
call

sites
sym

b
ols

en
tries

(n
oth

in
g)

(n
oth

in
g)

getC
allS

ites(n
w

a)
getC

allS
ym

(n
w

a)
getE

n
tries(n

w
a)

call
site

(n
oth

in
g)

—
getC

allS
ym

C
all(n

w
a,

call)
or

getE
n

tries(n
w

a,
call)

1
getE

n
tries(n

w
a,

call)
1

sym
b

ol
—

—
getE

n
tries(n

w
a,

call,
sym

)

target
—

getC
allS

ym
(n

w
a,

call,
en

t)
—

sym
b

ol
(n

oth
in

g)
getC

allS
ites

S
ym

(n
w

a,
sym

)
—

getE
n

tries
S

ym
(n

w
a,

sym
)

target
getC

allS
ites(n

w
a,

sym
,

en
t)

—
—

en
try

(n
oth

in
g)

getC
allS

ites(n
w

a,
en

t)
1

getC
allS

ym
E

n
try(n

w
a,

en
t)

or
getC

allS
ites(n

w
a,

en
t)

1
—

1
R

etu
rn

s
a

set
of

p
airs

(eith
er

call
site/sym

b
ol

or
sym

b
ol/en

try).

48

T
ab

le
5:

Q
u
ery

fu
n
ctio

n
s
fo
r
retu

rn
tra

n
sitio

n
s..

T
h

ese
fu

n
ction

s
are

in
th

e
n

am
esp

ace
w
a
l
i
:
:
n
w
a
:
:
q
u
e
r
y

;
in

clu
d

e
th

e
fi

le
w
a
l
i
/
n
w
a
/
q
u
e
r
y
/
r
e
t
u
r
n
s
.
h
p
p

.
T

h
e

“exit
site”

is
th

e
sou

rce
of

th
e

tran
sition

(th
e

fi
rst

com
p

on
en

t)
an

d
u

ses
th

e
argu

m
en

t
n

am
e
e
x
i
t

in
th

is
tab

le;
th

e
“call

pred
ecessor”

is
th

e
secon

d
com

p
on

en
t

an
d

u
ses

th
e

argu
m

en
t

n
am

e
c
a
l
l

;
th

e
sym

b
ol

is
th

e
th

ird
com

p
on

en
t

an
d

u
ses

th
e

argu
m

en
t

n
am

e
s
y
m

;
th

e
“retu

rn
site”

is
th

e
fou

rth
com

p
on

en
t

an
d

u
ses

th
e

argu
m

en
t

n
am

e
r
e
t

.

W
h
a
t
yo
u
k
n
ow

W
h
a
t
yo
u
w
a
n
t

th
is...

a
n

d
th

is
...

a
n

d
th

is
exit

sites
ca

ll
p

red
ecessors

sym
b

o
ls

retu
rn

sites

(n
o

th
in

g
)

(n
o

th
in

g
)

(n
o

th
in

g
)

g
etE

xits(n
w

a
)

g
etC

a
lls(n

w
a

)
g

etR
etu

rn
S

ym
(n

w
a

)
g

etR
etu

rn
s(n

w
a

)

exit
site

(n
o

th
in

g
)

(n
o

th
in

g
)

—
g

etC
a

lls
E

xit(n
w

a
,

exit)
1

g
etR

etu
rn

S
ym

E
xit(n

w
a

,
exit)

or
g

etR
etu

rn
s

E
xit(n

w
a

,
exit)

1

or
g

etC
a

lls
E

xit(n
w

a
,

exit)
1

g
etR

etu
rn

s
E

xit(n
w

a
,

exit)
1

ca
ll

p
red

(n
o

th
in

g
)

—
—

g
etR

etu
rn

S
ym

E
xitC

a
ll(n

w
a

,
exit,

ca
ll)

or
g

etR
etu

rn
s(n

w
a

,
exit,

ca
ll)

1

g
etR

etu
rn

s(n
w

a
,

exit,
ca

ll)
1

sym
b

o
l

—
—

—
g

etR
etu

rn
s(n

w
a

,
exit,

ca
ll,

sym
)

retu
rn

—
—

g
etR

etu
rn

S
ym

(n
w

a
,

exit,
ca

ll,
ret)

—

sym
b

o
l

(n
o

th
in

g
)

—
g

etC
a

lls
E

xit(n
w

a
,

exit,
sym

)
—

g
etR

etu
rn

s
E

xit(n
w

a
,

exit,
sym

)

retu
rn

—
g

etC
a

lls(n
w

a
,

exit,
sym

,
ret)

—
g

etE
n

tries(n
w

a
,

ca
ll,

sym
,

ret)

retu
rn

site
(n

o
th

in
g

)
—

g
etC

a
lls(n

w
a

,
exit,

ret)
1

g
etR

etu
rn

S
ym

E
xitR

et(n
w

a
,

exit,
ret)

or
g

etC
a

lls(n
w

a
,

exit,
ret)

1

—

ca
ll

p
red

(n
o

th
in

g
)

(n
o

th
in

g
)

g
etE

xits
C

a
ll(n

w
a

,
ca

ll)
1

—
g

etR
etu

rn
S

ym
C

a
ll(n

w
a

,
ca

ll)
or

g
etR

etu
rn

s
C

a
ll(n

w
a

,
ca

ll)
1

or
g

etE
xits

C
a

ll(n
w

a
,

ca
ll)

1

g
etR

etu
rn

S
ites(n

w
a

,
ca

ll)
or

g
etC

a
llS

u
ccessors(n

w
a

,
ca

ll)
or

g
etR

etu
rn

s
C

a
ll(n

w
a

,
ca

ll)
1

sym
b

o
l

(n
o

th
in

g
)

g
etE

xits
C

a
ll(n

w
a

,
ca

ll,
sym

)
—

—
g

etC
a

llS
u

ccessors(n
w

a
,

ca
ll,

sym
)

or
g

etR
etu

rn
s

C
a

ll(n
w

a
,

ca
ll,

sym
)

retu
rn

g
etE

xits(n
w

a
,

ca
ll,

sym
,

ret)
—

—
—

retu
rn

site
(n

o
th

in
g

)
g

etE
xits(n

w
a

,
ca

ll,
ret)

1
—

g
etR

etu
rn

S
ym

C
a

llR
et(n

w
a

,
ca

ll,
ret)

or
g

etE
xits(n

w
a

,
ca

ll,
ret)

1

—

sym
b

o
l

(n
o

th
in

g
)

(n
o

th
in

g
)

g
etE

xits
S

ym
(n

w
a

,
c)

g
etC

a
lls

S
ym

(n
w

a
,

c)
—

g
etR

etu
rn

s
S

ym
(n

w
a

,
sym

)

retu
rn

site
(n

o
th

in
g

)
g

etE
xits

R
et(n

w
a

,
ca

ll,
ret)

g
etC

a
llP

red
ecessors(n

w
a

,
sym

,
ret)

or
g

etC
a

lls
R

et(n
w

a
,

sym
,

c)
—

—

retu
rn

site
(n

o
th

in
g

)
(n

o
th

in
g

)
g

etE
xits

R
et(n

w
a

,
ret)

g
etC

a
llP

red
ecessors(n

w
a

,
ret)

or
g

etC
a

lls
R

et(n
w

a
,

ret)
1

g
etR

etu
rn

S
ym

R
et(n

w
a

,
ret)

or
g

etC
a

lls
R

et(n
w

a
,

ret)
1

—

1
R

etu
rn

s
a

set
o

f
p

a
irs

(a
sym

b
o

l
w

ith
o

n
e

o
f

th
e

sta
tes,

in
th

e
ord

er
o

f
th

e
raw

tra
n

sitio
n

).

49

	TECHCOVER.NEW1675.pdf
	1675
	Library Overview
	NWA core classes
	NWA non-member functions
	Generic WALi
	Simple example use of the library

	The NestedWord class
	The NWA class
	Construction, copying, assignment, and clearing
	Simple manipulations
	Client Information

	The wali::nwa::query namespace
	Querying information about an automaton's transitions
	Querying other structural aspects of an automaton
	Querying properties of an automaton's language

	NWA serialization
	Parser
	Examples
	NWA description format

	Building NWAs from other NWAs (namespace wali::nwa::construct)
	Union
	Intersection
	Concatenation
	Kleene star
	Reverse
	Determinize
	Complement

	Conversions beween WPDSs and NWAs (namespace wali::nwa::nwa_pds)
	WPDS to NWA
	NWA to WPDS
	Forwards flow stacking calls
	Backwards flow stacking calls
	Forwards flow stacking returns
	Backwards flow stacking returns

	Nested-Word Automata
	Determinize
	Tables

