Computer
Sciences
Department

Design and Evaluation of Dynamically Specialized Datapaths with
the DySER Architecture

Venkatraman Govindaraju

Chen-Han Ho
Karthikeyan Sankaralingam

Technical Report #1683

November 2010

Design and Evaluation of Dynamically Specialized Datapaths with the DySER
Architecture

Venkatraman Govindaraju Chen-Han Ho Karthikeyan Sankaralingam
Vertical Research Group
University of Wisconsin-Madison
{venkatra,chen-han karu} @cs.wisc.edu

Abstract

Due to limits in technology scaling, energy efficiency of logic
devices is decreasing in successive generations. To provide con-
tinued performance improvements without increasing power, re-
gardless of the sequential or parallel nature of the application, mi-
croarchitectural energy efficiency must improve. We propose Dy-
namically Specialized Execution to improve the energy efficiency
of general purpose programmable processors. The key insights of
this work are the following. First, applications execute in phases
and these phases can be determined by creating a path-tree of
basic-blocks rooted at the inner-most loop. Second, specialized
datapaths corresponding to these path-trees can be constructed by
interconnecting a set of heterogeneous computation units with a
circuit-switched network, which we refer to as DySER blocks.
These blocks can be easily integrated with a conventional proces-
SOr.

A synthesized RTL implementation using an industry 55nm
technology library shows a 64-functional-unit DySER block occu-
pies approximately the same area as a 64 KB single-ported SRAM
and can execute at 2 GHz. Using the GCC compiler, we identify
path-trees and evaluate the PARSEC, SPEC and Parboil bench-
marks suites, using our extensions for mapping code to DySER.
Our results show that in most cases two DySER blocks can achieve
the same performance (within 5%) as having a specialized block
for each path-tree. A 64-FU DySER block can cover 12% to 100%
of the dynamically executed instruction stream. When integrated
with a dual-issue out-of-order processor, two DySER blocks pro-
vide geometric mean speedup of 2.1X (1.15X to 10X), and geo-
metric mean energy reduction of 40% (up to 70%), and 60% en-
ergy reduction if no performance improvement is required.

1 Introduction

Materials and device-driven technology challenges are
ushering an era of non-classical scaling. While the num-
ber of devices is expected to double every generation, the
power efficiency of devices is growing slowly. The main
reason behind this trend is that classical voltage scaling
has effectively ended and capacitance of transistors is re-
ducing slowly from one generation to another [1]. While
the number of transistors increases sixteen-fold from now
through 2020, capacitance only reduces by 3X. Even as-
suming the optimistic material scaling projected in the ITRS
roadmap materializes, power remains a limiting factor to

performance. Based on ITRS scaling factors, if we con-
sider sequential performance improvement from frequency
scaling alone, performance will increase by 5X in 10 years
with practically no reduction in power. If we instead, as-
sume conservative scaling of 5% reduction in voltage per
generation and no reduction in gate capacitance in future
technology nodes, power increases by 3.4X. Architectural
techniques are required to improve performance while be-
ing energy efficient as highlighted by others as well [16, 14]

While there is consensus that hardware specializa-
tion can energy-efficiently improve performance, the pro-
grammability and implementation tradeoffs are daunting.
This paper explores hardware specialization using a co-
designed hardware-compiler approach that avoids disrup-
tive hardware or software changes. The basic idea is to dy-
namically specialize hardware to match application phases.
We call the execution model, Dynamically Specialized
Execution (DySE). Our co-designed compiler slices appli-
cations into phases and maps them to the hardware substrate
— Dynamically Specialized Execution Resource (DySER)
blocks.

The DySER block is integrated like a functional unit
into a processor’s pipeline. It is a heterogeneous array
of bare computation units interconnected with a circuit-
switched mesh network, without any storage or other over-
head resources. The key insight is to leave only the compu-
tation units on the commonly executed hardware path. The
circuit-switched network design provides energy efficiency.
By providing support for flow-control in this network, we
can pipeline invocations, multiple loads/stores, and com-
plex control-flow in code-regions. As part of the compiler,
we develop a novel path-profiling flow that develops trees of
paths ranging hundreds of instructions that capture the most
commonly executed code. These trees are then mapped to
DySER blocks and run-time configuration creates special-
ized datapaths.

DySER integrates a very general purpose and flexi-
ble accelerator into a processor pipeline and with its co-
designed compiler, the same hardware can target “any” ap-
plication and diverse domains through dynamic specializa-
tion. This specialization can help address energy efficiency

challenges of technology scaling. Judiciously exploiting
technology and architecture capability, DySER overcomes
the complexity, domain-specialization, program-scope and
language restrictions, and scalability restrictions of previ-
ous efforts.

We have implemented the DySER module in Verilog
and synthesized it on an 55nm technology library and we
have built a compiler-pass in GCC to identify path-trees
and create mappings. Our results show: i) A 64-functional-
unit DySER datapath occupies the same area as a 64KB
single-ported SRAM and can cover 12% to 100% of ap-
plications’ dynamically executed instruction stream. ii) In
most cases two DySER blocks can achieve the same perfor-
mance (within 5%) as having a specialized block for each
path-tree. iii) When coupled to a single-issue processor, two
DySER blocks provide geometric mean speedup of 2.1X
(1.1X to 10X), and geometric mean energy reduction of
40% (up to 70%) and geometric-mean energy-delay product
reduction of 2.7X. iv) With a dual-issue and 4-issue OOO
machine we see similar performance improvements.

The remainder of this paper is organized as follows.
Section 2 provides rationale and overview for the DySE ex-
ecution model. Section 3 describes the architecture, Sec-
tion 4 describes the compiler and Section 5 presents results.
Section 6 discusses related work and Section 7 concludes.

2 A Case for Dynamically Specialized Execu-
tion

Figure 1 shows a spectrum of hardware specialization
increasing in granularity. On the left is implicit microar-
chitecture specialization. An example is macro-op fusion
where the microarchitecture fuses sequences of instructions
to amortize per-instruction overheads like decoding, register
reads, renaming etc. In the middle is instruction-set special-
ization which is visible to the compiler. Examples include
encryption accelerators in Niagara [11], media extensions
like SSE [34], and GPU instruction sets. Their key prob-
lems are that they do not generalize outside the specific do-
main and can be hard to program.

Dynamically Specialized Execution: DySE uses in-
sights from domain-driven accelerators to dynamically spe-
cialize datapaths to capture application phases. Our moti-
vation came from building application-specific accelerators
for a few PARSEC benchmarks [4], which we sketch in Fig-
ure 2a-b. This exercise and VLSI area-analysis led to the
following insights: i) A heterogeneous array of functional
units can cover many applications. Figure 2¢ shows such an
array and Figure 2d,e show how different applications can
map to same array. ii) Datapath wires must be statically-
routed to minimize overheads. iii) VLSI area densities pro-
vide the freedom to consider tens to hundreds of functional
units.

In the DySE model, the application is abstracted as a se-
quence of ultra-wide “instructions” each representing an ap-
plication phase. These phases communicate with each other
through memory. The hardware for executing these in-
structions are dynamically specialized execution resources
(DySER). The high-level design is shown in the right ex-
treme of Figure 1. The wide instructions encode the physi-
cal routes on the substrate and inputs are injected from the
processor’s datapath. The model hinges on the assumption
that only a few such “wide instructions” are active during
a phase of an application. Thus, setting up the static routes
once, amortizes the execution of the DySER unit over many
invocations. The potential benefits are:

e Energy efficiency: Datapath specialization removes
overheads in programmable processors.

e Area efficiency and Programmability: Dynamically
specializing these datapaths instead of designing ac-
celerators for each phase provides area efficiency and
programmability.

e Design complexity: The implementation lends itself
to easy integration with the processor pipeline.

e Flexible execution model: The execution-model of
ultra-wide instructions with dynamically specialized
hardware implementation unifies different special-
ization techniques like SIMD-execution, instruction-
specialization, and loop-accelerators with potentially
little efficiency loss.

We discuss below the key challenges in realizing the po-
tential benefits of the approach.

Can phases be converted into ultra-wide instructions?
First, while it is accepted that applications execute in phases
and loops, for the DySE approach to work, we must be able
to determine these phases. Second, applications must re-
execute such an “instruction” many times to amortize the
cost of dynamically synthesizing a datapath. We develop
a novel path-tree based representation of programs (Sec-
tion 4) and show that applications spend hundreds to thou-
sands of cycles in two to three path-trees. Thus, path-trees
serve as a good candidate for ultra-wide instructions. Ta-
ble 3 shows quantitative data for a diverse application suite.

Isn’t hardware mix highly application dependent?
Since the path-trees are themselves large, a law of large
numbers phenomenon showed that instruction mix across
applications was similar. We observed a distinct floating-
point and integer based distribution, but little divergence
with these domains. Thus, it is possible to build a common-
case array of heterogeneous units.

Aren’t data-flow routes data-dependent? Data-flow be-
comes data-dependent if buffers are used to share a func-
tional unit between many operations. If instead, we take the
radical approach of providing a single computational unit

nstruction-set
F TEX HI) SpeCIallzatlon f 1
' DP3X H1.xyZ; orWANCE; |

1 MULX HO.w, HO.w, LUMINANCE.w; 1

Application

Streaming|
processor
decoder
Pipeline
cmpjne eax, [mem?2] targ I
Streaming
| processor

Appilcation
Path-tree
Profile
(U o [
n =
_{}— Compiler V'
Load
Streaming Slices
processor
Core
Streaming DySER
processor

Figure 1. Specialization Spectrum

a) Blackscholes

b) Streamcluster

H H BN
c) 3x2 DySER d) Blackscholes

e) Streamcluster

Figure 2. Application-specific datapaths and generalization

for each primitive operation in our DySE instruction, rout-
ing values is no longer data-dependent thus providing an
opportunity for circuit-switched static routing. VLSI area
constraints support a case for such a decision. The area of
an on-chip router with its buffering and control-logic can
exceed the size of a 32-bit adder. Multiported register-files
can be much larger than a 32-bit adder for example. Thus, if
the execution model supports it, a circuit-switched network
is more efficient.

What about load-stores and control flow? Related work
on such specialization has found irregular memory accesses
to be a problem. They sidestep the problem by restricting
their domains to where memory accesses are regular [8],
or restrict the program scope [8, 40, 15], or by enforcing
specialized languages [13, 12]. The resulting architectures
are unscalable and/or highly domain-specialized.

We exploit a simple insight, which some may feel is
counter-intuitive — use a general purpose processor. Driven
by sophisticated advances in memory disambiguation [35],
prefetching [17], and streaming [23], general-purpose pro-
cessors with short physical paths to hardware managed
caches provide effective low-latency access to memory.
Quantitatively, the PARSEC benchmarks typically have L1
data-cache miss-rates less than 2% [3] and the SPECCPU
benchmarks typically have 30 data-cache misses per thou-

sand instructions [18]. Hence, our solution is to utilize
general-purpose processors as a load/store engine to feed a
specialized datapath. This provides sufficient support to ex-
plore practical computation specialization without disrupt-
ing the hardware/software stack.

In the DySE execution model, a program is explicitly
partitioned by the compiler into a load back-slice which in-
cludes all computation of memory addresses and a com-
putation slice which consumes values, performs computa-
tion, and sends store values/addresses back to the proces-
sor. This insight provides the generality and freedom to
investigate large application phases for specialization and
a hardware block simple enough to integrate with proces-
sors like a functional unit. A place-holder instruction in the
load back-slice ensures load-store ordering and allows the
processor’s memory disambiguation optimizations to pro-
ceed unhindered. Control-flow in the DySER block is im-
plemented with a hardware selection node exposed to the
compiler.

3 Architecture

Execution Model and Overview: Dynamically special-
ized datapaths are meant to be integrated as functional
units into a pipelined processor as shown in Figure 3.
The compiler and processor view the DySER block as a
block of computational units that consume inputs (memory

words and named registers) and produce outputs (memory
word/address pairs and register value/name pairs). Figure 3
show a logical FIFO-based processor interface.

Execution with DySER datapaths proceeds as follows.
When the program reaches a region that can be executed
on the DySER array, the hardware configures the DySER
block and the main processor starts injecting register values
and memory-values into the FIFOs. After configuration, the
DySER block pops values from the FIFOs and execution
proceeds in data-flow fashion with values routed between
functional units through a circuit-switched network. Out-
puts are delivered to the output interface and written back
to the processor registers or memory. While this approach
adds configuration overheads, it works because: i) the pro-
cessor executes multiple instances of an “instruction” be-
fore a new configuration is required and ii) large program
regions can be converted into “wide instructions” (quantita-
tive measurements in Section 5).

To create these “instructions” that represent large pro-
gram regions, our compiler first creates path-trees (see Sec-
tion 4) and for each path-tree it creates a separate load back-
slice and computation slice . The load back-slice executes
on the processor and the computation slice becomes a state-
less piece of code ideally suited for hardware specializa-
tion. Table 1 shows a real code snippet, its stylized as-
sembly code, load back-slice and computation slice. To in-
terface with DySER , we introduce these ISA extensions:
i) dyser_init: an instruction to configure the DySER
unit, ii) dyser_send: an instruction to send register val-
ues to the DySER unit, iii) dyser_load: an instruction
that reads from the memory (caches) and sends the value
into the DySER unit, iv) dyser_store: a place-holder
instruction used by the main processor for tracking load-
store ordering v) dyser_commit : an instruction to com-
mit output values. We now describe the DySER array, net-
work, processor interface and integration into a processor’s
pipeline.

3.1 DySER Block

The DySER array consists of functional units (FU) and
switches. The functional units form the basic computation
fabric as shown in Figure 3a. Each functional unit is con-
nected to four neighboring switches from where it gets in-
put values and injects outputs. Each functional unit also
includes a configuration register that specifies which func-
tion to perform. Figure 3b shows the details of one func-
tional unit. For example, an integer-ALU functional unit
can perform addition, subtraction, and a few logical opera-
tions. Each functional unit also includes one data register
and one status register for each input switch. The status
registers indicate whether values in the data registers are
valid or not. The data registers match the word-size of the
machine. The simplest DySER implementation is an array

with homogeneous functional units, with each unit capa-
ble of primitive operations like addition, multiplication, and
logic operations. However, this would take too much area
and leave resources idle in many units. Instead, we use a
heterogeneous array based on benchmark profiling and in-
struction mix analysis.

The switches in the DySER array allows datapaths to
be dynamically specialized (black squares in Figure 3a).
They form a circuit-switched network that creates explicit
hardware paths from inputs to the functional units, between
functional units, and from functional units to outputs. Fig-
ure 3c shows the basic switch with the dotted lines repre-
senting the possible connections of one port to all possible
output ports. This forms the crux of DySER’s capability to
dynamically specialize computation units. Alongwith data
and status registers, each switch includes a configuration
register which specifies the input to output port mappings.
Switches in DySER have 8 outputs to 8 directions, 4 inputs
from neighbor switches, and 1 input from functional units.

The basic execution inside a DySER block is data-flow
driven by values arriving at a functional unit. When the
valid bits for both left and right operands are set, the func-
tional unit consumes this input, and a fixed number of cycles
later produces output writing into the data and status regis-
ter of the switch. Figure 6d(page 9) shows the computation
slice mapped on a DySER array.

A DySER array is configured by writing into configura-
tion registers at each functional unit and switch. We use a
novel way of reusing the data network to also transmit con-
figuration information as shown in Figure 4. Every switch
includes a small 3-bit decoder and a path from the switch’s
inputs to its configuration register. The data in a network
message is interpreted as a 3-bit target and 29-bit payload
data when in configuration mode. The switch uses the de-
coder to check if the message is meant for the current node
(by examining the target field) and if so the value is written
into the configuration registers. In addition, all configura-
tion messages are forwarded to the next switch. To set up
multiple configuration “streams”, all switches forward the
input from east port to west port and input from north port to
south port. With this design, DySER blocks are configured
using the datapath wires without any dedicated configura-
tion wires. Compared to repeatedly fetching and executing,
DySER blocks are configured once and re-used many times.

Multiple DySER Blocks: The execution model allows
multiple DySER blocks where each block is configured dif-
ferently. With multiple DySER blocks, we can predict the
next block and configure it before its inputs are produced by
the processor. The large granularity allows easy predictabil-
ity and we observed more than 99% prediction accuracy
with a 1K-bit two-level history table.

| | | |

Fetch l Decode l Execute l Memory l Writeback

Execution

ICache |—} Decode
pipeline

Register
File DCache
Switches
Functional Unit
== Switch

Credit

RO

Lfi_'—\ —8

(a) DySER (b) Functional Unit (c) Switch (d) Credit signal path (e) Network

Decoder

Figure 3. Processor Pipeline with DySER Datapath and DySER Elements

entry:
LD reg->size => Rl
cMP R1, 0 entry:
BLE exit LD reg->size => Rl
; bbl: cMP R1, 0
void .
s MOV cntrll => R2 BLE exit
quantum_toffoli (int cntrll,
: MOV cntrl2 => R3 bbl:
int cntrl2,) .
: MOV 1 => R4 MOV controll => R2
int trgt, o 2
antum reg SLL R4, trgt => R4 MOV control2 => R3
quan o LD reg->node => R5 MOV 1 => R4
. *reg bb2: SLL R4, target => R4 COMPSLICE:
int i, size - rec-seises LD [RS+offset (state)] => R6 LD reg->node => RS SRL DMO, DI1 => T1
ir size = regosize; SRL R6, R2 => R7 DYSER_INIT [COMPSLICE] aNDCC T1, 1 = p1
for (i 0; i < size; ++i)
Te (reqonodels) ctate ANDCC R7, 1 => RO ; Send inputs to DySER SRL:P1 DMO, DI2 => T2
. ?1<<cncr11;) BE bb5 DYSER_SEND R2 => DI1 aNDCC T2, 1 = P2
£ (reg omodeli) ;tate bb3: DYSER_SEND R3 => DI2 XOR:P2 DM0, DI3 => DOL
. (13<cntrl2>i X SRL R6, R3 => R7 DYSER_SEND R4 => DI3 AND P1, P2 => DO2
regomade (i1 state = ANDCC R7, 1 => RO ob2:
g ectranys BE bb5 DYSER_LOAD [R5+offset (state)] => DMO
, gL bba: DYSER_STORE:DO2 DO1, [R5+offset (state)]
, XOR R6, R4, R7 DYSER_COMMIT
, ST R7, [RS+offset (state)] ADD RS, sizeof(node), RS
bb5: ADDCC R1, -1, Rl
ADD RS, sizeof(node), RS BNE bb2
apbpcc R1, -1, R1 exit:
BNE bb2
exit:

(a) C-code (b) Assembly (c) Load-slice (d) Computation-slice

Table 1. DySER code : load-slice and computation-slice

Input
Interface:

. A Control

: Signals
Configure » 32519
Data —» —=
' ast
\ or

Figure 4. Configuration path: switch and functional unit’s configuration registers combined.

ontro
logic,

& Invocation
counter

Dota Lo Lo

. g <
byseR_creie

Port#

Commit Commit info A
Counter[] EEngé$ Processor
configuration Bus

e T

from
OPcode

W
i
Js
X
H a HlS
i A A
) A
. T
g '
g '
'
g I
r
N '
. 1
/ I
- '
'
'

(a) Input interface

— B

FU

Port# Tag :
01, r3 M

CICIAL Commit Queue ME(B)

E:% I
T

(b) Output interface

Figure 5. DySER'’s Processor Interface

Pipelining: Like pipelining long-latency functional units,
DySER datapaths can be pipelined with multiple invo-
cations executing simultaneously. The following execu-
tion semantics of the DySER instruction extensions allow
pipelining. dyser_init which configures a new phase,
waits and stalls until all prior invocations are complete.
dyser_send, dyser_load, dyser_receive, and dyser_store are
all either data-dependent on values or resources in the pro-
cessor. dyser_commit’s start a new invocation and allow the
pipelining of multiple invocations. Since the DySER block
receives inputs asynchronously at arbitrary times from the
FIFO interfaces, some flow-control is required in the net-
work to prevent values from a new invocation clobbering
values from a previous invocation. We implement a credit-
based flow-control simplified for our statically-switched
network, by adding one backward signal called the credit
signal (Figure 3d,e). Physically, the credit-signal is routed
in the opposite direction of the data signal. Any stage (FU
or switch) needs one credit to send data, and after sending
the data it sends a credit signal to its predecessor. If a stage
is processing or delayed waiting for data, the valid bit is
cleared and credit is not passed to the previous stage.

3.2 Processor Interface

All the inputs to a DySER block are fed through a log-
ical FIFO, which delivers register inputs and memory val-
ues. Each entry specifies a switch and port which effectively
decides where the value will be delivered in the array, be-
cause DySER uses circuit-switched routing. Outputs follow
a similar procedure. Each port in the output switches corre-
sponds to one possible DySER output. Since for each out-
put port, the DySER produces outputs in order, no FIFOs
are required on the output side. When values arrive at the
output ports, an output interface writes them to the register
file or memory.

Input Interface: The logical FIFO which receives values
from the processor, is physically partitioned into a bank for
each row of the array and each bank is implemented as a
circular buffer to support multiple invocations. We use this
circular buffer for squashing and roll-back. Each buffer also
includes a port number ID and a decoder which is used to
obtain values from the data bus. Figure 5a shows our im-
plementation. Since each switch has two inputs, a total of
2% (2N — 1) inputs can be injected into an N x N array.

Each buffer entry consists of 2 state bits and data. The
four possible states of a buffer entry are: i) ready indicates
input data is ready for DySER to consume, ii) invalid-but-
ready indicates the data is invalid, but ready to be consumed
— it will be discarded either by DySER itself or at the out-
put interface, iii) busy indicates the input is issued in the
processor, but delayed by a cache miss and hence cannot be
consumed and iv) empty indicates no data. Switches check
this status bit and consume data.

Output Interface: Logically, output values from DySER
are held at output ports until a dyser_commit is issued
for that invocation or a dyser_store. The network flow-
control guarantees that they will not be overwritten by val-
ues from successive invocations. Our implementation of the
DySER Output Interface is shown in Figure 5b. The out-
put interface consists of a commit counter, which counts
the values committed for current invocation, and some con-
trol logic per port. Each output control logic consists of a
configuration register and a queue that maintains the status
of the output port for each invocation. The configuration
register specifies a target register name or marks the out-
put port as a store address or store value. There are three
possible values for the status: i) commit denotes the out-
put is not yet consumed, ii) abort denotes the output value
is ready but must be removed from the port and ignored,
and iii) done denotes the port has been processed. When

dyser_commit is issued in the main processor, all out-
put ports for that invocation are marked commit. The local
control logic then takes care of waiting for values and send-
ing them to the processor. For stores, a dyser_store ex-
ecuted in the main processor allows the store to write to
memory and changes its status to done. As part of the com-
piler section, we discuss how the dyser_store instruc-
tion helps implement memory ordering and allows the pro-
cessor to use existing memory disambiguation mechanisms
unmodified. When the commit counter reaches the number
of outputs for current invocation, the input circular buffer is
advanced.

For some output ports, configuration register does not
specify a target. For these output ports, the main pro-
cessor needs to explicitly issue a dyser_receive or a
dyser_store instruction to fetch the value. These in-
structions will stall if no valid output is available at the out-
put port. When dyser_receive or dyser_store is is-
sued and the head of the queue is “commit”, the data is send
to register file or memory and change the status to “done”.
If the queue is empty and a valid output is available, output
logic inserts “fetched” to the queue and sends the value to
register file or memory. When dyser_commit executes, it
changes status from “fetched” to““done” instead of enqueu-
ing “commit” to the commit status queue.

When all outputs are arrived and consumed, it dequeues
the head from all commit status queues. If the current invo-
cation is not squashed, then output control also increments
the global commit counter.

Integration with pipeline: DySER can be relatively eas-
ily integrated into conventional in-order and out-of-order
pipelines and with architectures like Intel Larrabbee [31]
as an accelerator. With an in-order pipeline the integra-
tion is relatively simple and the DySER block interfaces
with the instruction fetch stage for obtaining the configura-
tion bits, the register file stage and the memory stage of the
pipeline. A state machine must be added to the instruction
cache to read configurations bits for a block and send them
to the input interface. DySER integration with an OOO-
pipeline requires more careful design. The processor views
DySER as a functional unit but the input ports are exposed
to the issue logic to ensure two dyser_send’s to a port
are not executed out-of-order. Since loads can cause cache
misses, when a dyser_load executes in the main proces-
sor, the corresponding input port is marked as busy in the
input buffers. When the data arrives from the cache, the
input port is marked as ready. This prevents a subsequent
dyser_load’s value from entering the DySER block ear-
lier.

Squashes, Page Faults, Context-switches, and Debug-
ging: When a branch is mispredicted in the load back-
slice, the values computed in DySER must be squashed.

This is implemented by first marking the status of all input
buffer entries to be invalid-but-ready. This ensures that all
inputs are available for DySER to compute and produce out-
puts for the current invocations. Second, we abort the output
of the invocations by changing commit entries in commit
status queue “abort” and hence the outputs for the misspec-
ulated invocation will be ignored. Finally, we restart the
invocation using the values in the input buffer and injecting
new, correct values.

Since page-faults can only be raised by the load back-
slice, almost no changes are required to the processors’ ex-
isting mechanisms. The processor services the page-fault
and resumes execution from the memory instruction that
caused the fault. We assume that the OS routine to han-
dle page-faults does not use the DySER block. To handle
context-switches, the processor waits until all DySER invo-
cations are complete before allowing the operating-system
to swap in a new process. These techniques describe the
mechanisms but further detailed exploration and implemen-
tation of such code in a real operating system is required and
is part of future work.

From a program developer perspective of debugging,
our current software environment generates processor code
for the computation slice as well. We anticipate the pro-
grammer will debug this version using conventional de-
buggers as part of the software development process and
DySER execution is turned on as a performance optimiza-
tion. Debugging the DySER instructions, single-stepping
DySER code (which can help in further performance opti-
mizations of DySER code) is likely necessary only rarely
and mechanisms to support this are future work.

3.3 Implementation and Physical design

We have implemented and verified the DySER array in
Verilog and synthesized using an 55nm standard cell library
with Synopsys Design Compiler. Our results show DySER
blocks are simple and area/energy efficient.

For the floating-point and integer execution units, we
synthesized the implementations available from OpenSparc
T1 for a 2 GHz clock frequency. The input and output inter-
faces and switches were implemented with our own Verilog.
Table 2 shows the area of the different units. As described in

Functional unit | area(um?)
int alu 2481
multiply 16401
div 5278
fp add/sub 14533
fp mul 24297
fp divide 5924

Table 2. Area estimates

Section 5, we used application profiling analysis to arrive at
an instruction mix of what functional units to use. Based on
this analysis, 60% integer ALU, 10% integer multiply, 30%
floating point units provided the best mix. A 64-functional-
unit DySER block with the aforementioned mix, has an area
of 0.92 mm?. It occupies the same area as a 64KB SRAM
estimated from CACTI [38]. Comparing to area of other
structures in modern processors, one DySER block is less
area than the Atom L1 data cache (including its data and
tag array): area estimated as 1.00 mm? from CACTI and
1.32 mm? from the die photo scaled to 55nm. Synopsys
Power Compiler estimates DySER’s power as 1.9 Watts at
2.0 GHz based on its default activity factors assumptions for
datapath. The simple design and quantitative results show
that the DySER architecture is practical.

4 Compiler

In this section, we describe our compilation flow, shown
in Figure 6a, which identifies application phases and spe-
cializes the DySER datapaths. We develop a program rep-
resentation called a path-tree that represents application
phases. The compiler then slices path-trees to make them
amenable for DySER datapaths. The co-designed compiler
pass is instrumental for the DySE model, but explaining the
compiler issues in detail is beyond the scope of this paper.
This section briefly describes the compiler phases.

4.1 Path-Trees

A path is an acyclic execution trace of basic blocks. A
Path-tree is a rooted tree with basic blocks as its vertices
and represents a collection of paths starting at the root of
the path-tree. Using appropriate root nodes such as the head
of an inner loop, the program can be represented with small
number of path-trees. Based on profiling for each path in
a path-tree, the most frequently executed paths are mapped
to DySER . Figure 6b shows how a control flow graph is
represented as a path-tree (this corresponds to the function
shown in Table 1). We define a dynamic execution flow
graph called a Path-Tree-Flow-Graph (PTFG). The vertices
of a PTFG are the path-trees. The edges of a PTFG rep-
resent control-flow between path-trees. Application execu-
tion can be thought of as a traversal through the edges of a
PTFG.

Observations: We end this subsection with claims and
observations about Path-Trees that enable the DySER exe-
cution model. Quantitative evidence for the claims are pre-
sented in section 5. 1) The number of path-trees in many
applications is small enough to create specialized units for
each path-tree. 2) Applications remain in a few path-trees
for many invocations before entering a different path tree.
3) Dynamically predicting the next path-tree can be easily
learned with few bits of history and a small table.

4.2 Slicing the Path-Tree

A path-tree itself cannot be mapped to a DySER block
because memory access instructions in a path-tree create
two-way communication to the memory system and data
edges that leave the path-tree and re-enter. To be suitable
for DySER, these memory edges must be converted into sin-
gle in-edges, which we do by creating a load back-slice and
computation slice . The load back-slice is defined as a se-
quence of instructions in the path-tree that affect any load in
the path-tree: it includes all instructions that affect the ad-
dress computation for all load instructions in the path-tree.
The computation slice of a path-tree is all instructions ex-
cept the load back-slice . This computation slice in Static
single assignment form (SSA) [10] is our intermediate com-
piler representation for DySER code.

4.3 DySER Scheduling and Code-Generation

The conversion from this intermediate representation
to specialized DySER datapaths is done in three steps by
the scheduler pass of our compiler. The final output is
the DySER configuration information for each switch and
functional unit. First, it sets up the communication be-
tween the load back-slice and computation slice by insert-
ing dyser_send, dyser_load, and dyser_store
instructions in the load back-slice . The destination tar-
gets for these instructions are symbolic names which after
scheduling are changed to named DySER ports. The start
of every path-tree includes a dyser_init instruction in
the load back-slice . Second, the compiler maps each in-
struction in the computation slice to a node in the DySER
datapath. Third, it configures the switches to create phys-
ical paths corresponding to data-flow edges. Figures 6¢,d
show the example computation slice for our code-snippet
from Table 1 and its corresponding synthesis to DySER de-
noting the mapping and the paths created. Since the DySER
network is circuit-switched, we must map data-flow edges
to hardware paths making the scheduling problem funda-
mentally different from tiled architectures like TRIPS [5],
WaveScalar [36], and RAW [37].

This DySER mapping process has similarities to ASIC
and FPGA place-and-route problem. The general place-
and-route problem is NP-hard and has robustness issues that
routing may not be feasible for a given placement, thus re-
quiring multiple iterations. DySER mapping however in-
cludes three key simplifications. First, the number of ports
on the switches is small. A switch in an FPGA fabric can
have as many as 12 to 16 total ports [39]. Second, the num-
ber of nodes to consider is in the range of a few hundreds
and not thousands like an FPGA. Third, resource limitations
can be overcome by off-loading nodes to the processor.

Mapping algorithm: We implemented a greedy algo-
rithm for computation slice scheduling that ensures a route

l Source code

Compiler +
Instrumentation

Instrumented binary

Execute & Profiling bb2

Path-tree profile

bb1

Optimized code

Id & comp back-slice

Scheduler

Optimized code to DySER exit

bb5

(a) Compiler flow

(b) CFG and Path-tree graph

DI1+

DI2

DI3—

DO1V DO2V

(c) Computation slice (d) DySER mapping

Figure 6. Compiling for DySER using the Slice compiler

is available between inputs to the functional units at every
step. First, we build the dataflow graph of the computa-
tion slice and augment it with control dependence edges.
Second, we assign the nodes in topological sort order of
the dataflow graph to a functional unit in DySER that has
least cost. We define the cost to assign a node to a DySER
functional-unit (FU) as the sum of switches that the in-
put data traverses before reaching that FU. If the node is
incompatible with the FU or no route exists from a pro-
ducer, the cost is set to infinity. We schedule as much of
the computation-slice as possible, with the rest of it folded
back into the load-slice'.

Control-flow: Since, our intermediate representation is in
SSA form, ¢-functions represent control flow in the compu-
tation slice . During scheduling, we map these nodes to a
functional unit that forwards the valid input to the output.
The control dependence edges which are inputs to this node
are mapped to DySER using predication. We minimize the
number of control dependence edges by predicating on ei-
ther the inputs or the output of basic blocks.

Load/Store Ordering: In our execution model, the main
processor executes loads as part of load backslice. If the
DySER block sends values directly to the memory system,
load/store ordering may be violated. We solve this mem-
ory disambiguation problem with the dyser_store in-
struction which executes as part of the load backslice and
is inserted immediately after the nearest load in the original
code. The dyser_store instruction specifies a DySER
output port as an input operand, corresponding to the val-
ue/address for that store. It logically fetches the address
and/or value from DySER output ports and sends the value
and address to the load-store queue or write-buffer. Since
dyser_store executes as part of the load backslice in the
main processor, the memory dependency between loads and

I'This phase of the compiler is not complete and the folding behavior is
handled in our simulation infrastructure.

stores can be resolved using the processor’s memory disam-
biguation mechanisms. Several LSQ optimizations can be
considered, [35] for example. This decoupling is a key sim-
plification that allows DySER blocks to generalize for many
application domains.

4.4 Implementation

We have developed extensions to the GCC toolchain for
preliminary evaluation of the DySER architecture. Detailed
compiler design, formalism of the path-tree and optimiza-
tions are future work and are outlined in Section 7.

Our GCC-based framework which operates on the
SPARC backend (to match our simulation framework) is
used for path-profiling, code-generation and simulation. It
first generates path-tree profiles, then embeds DySER en-
codings in the SPARC binary, and schedules the computa-
tion slice. This final scheduling step involves generation of
the configuration information for each path-tree. The en-
coding is a 10-bit value for each functional unit indicating
which of inputs are used and what is the primitive opera-
tion, a 19-bit value (5 x 2-bits + 3 x 3-bits) to configure
each switch specifying which of five directions provide in-
puts for 8 departing port, and 16-bits per output port. For a
64-functional-unit DySER block, this is a total of 327 bytes.

5 Evaluation

Benchmarks: We evaluate applications from the SPEC
CPU2006 [33], Parboil [30], and the PARSEC [4] bench-
mark suite to cover traditional workloads, GPU workloads,
and emerging workloads respectively?. We consider several
benchmark suites to demonstrate the architecture’s perfor-
mance across a diverse suite.

Modeling and Simulation: We modified the Multifacet
GEMS [27] OPAL cycle-accurate simulator to support

2Some of the applications in the PARSEC and SPEC suites do not work
with our compiler passes yet and those are not reported (Fortran-code,
library-issues, and input-file endianness problems).

DySER datapaths. Functional unit delays, path delays (one
cycle per hop), and the input/output interface are modeled
for DySER blocks. We include a 128-entry 2-bit predic-
tor with 4-bits history to predict the next path-tree to hide
configuration delays. We model a configuration delay of 64
cycles, but it is often hidden by double-buffering. Binaries
that have been modified by our GCC-toolchain are used by
the simulator. If a path-tree deviates from the mapped paths,
we ignore the outputs from the DySER block and simulate
the load-slice to completion. We then branch to the original
code and execute on the main processor. For all applica-
tions, we simulate multiple sample points of path-trees that
account for 90% of the application. Each sample point, fast-
forwards to the start of a different path tree and simulates
100 million instructions. We simulate a clock frequency of
2GHz since this is the fastest clock speed for our functional
units. For workload analysis, we use an LLVM [21] based
tool since its bitcode is easier to work with.

We used the Wattch-based power model in GEMS. We
extended it for DySER and refined it using the ITRS 2008
projections and CACTI-6 area and power models. We as-
sume both clock-gating and power-gating is implemented
for DySER. To model this, we removed the leakage power
consumption of unused units in simulation. Power gating
or MT-CMOS (Multi-Threshold CMOS [26]) can be imple-
mented in a straight-forward way for DySER by turning off
the unused functional units and switches. Moreover, the
wake-up cost is less because each DySER block is executed
many times before changing configuration.

We study DySER datapaths integrated with simple
single-issue processors, dual-issue out-of-order processors,
and aggressive 4-issue out-of-order processors. The DySER
blocks are pipelined with support for eight concurrent invo-
cations. Such a block has the same area as a 64KB single-
ported SRAM.

5.1 Characterization

Coverage: Table 3 shows the characteristics of the differ-
ent applications. Column three through seven are measure-
ments for the entire application’s execution using LLVM-
based profiling. In most cases, a very small number of path-
trees contribute to 90% of the application’s dynamically ex-
ecuted instructions. For example, for bzip2, 33 special-
ized accelerators can cover 90% of the application. The
fourth column shows the average number of paths within
these path trees and the fifth column shows the total num-
ber of static instructions in these trees. As shown, numer-
ous instructions are required for 100% coverage within a
tree, making the design of a datapath intractable. The sixth
column (Top-5 paths # Ins) shows the number of static in-
structions in the five most frequent paths. The seventh col-
umn (Cvg %), shows the application coverage that can be
obtained when only the five most frequent paths are con-

10

sidered in each path tree. For most GPU-like (Parboil) and
emerging applications (PARSEC), close to 100% of the ap-
plication can be covered by a few path trees and for the more
irregular SpecINT applications, 60% to 99% are covered.

The eighth column of the table shows the percentage
of the path-tree which is the computation slice. The ninth
column shows the expanded computation slice with a peep-
hole optimization to coalesce loads with consecutive ad-
dress into a single load. This is a safe conservative analysis
requiring static dis-ambiguation. For most applications, the
computation slice accounts for 59% to 95% of the execution
time.

Phase Behavior: The dynamic path tree trace can provide
the working set of path-trees in a time-window. We want to
determine the smallest number of DySER blocks that can
capture these sets of trees. In terms of cache terminology,
we have an N-entry fully associative cache of blocks, each
entry in the trace is an access and we want to determine
the number of accesses between misses. Table 4 shows
the number of available blocks and the average number of
dynamic tree invocations before a miss. With two blocks,
the number of invocations between misses varies from 4 to
266 million, corresponding to 400 to several million cycles.
Hence, two DySER blocks are sufficient to capture signifi-
cant amount of phase behavior.

Mapping: The last two columns of Table 3 show quan-
titative mapping data to make the case for the DySER ap-
proach. It shows the percentage of the program that has
been mapped to a 64-functional-unit DySER block and a
256-FU DySER block. On average, 70% of the program can
be mapped to a 64-FU DySER block. With further compiler
work, applications with large path-trees can be partitioned.

5.2 Quantitative Evaluation

Performance: Figure 7a shows performance improve-
ment with 1, 2, and infinite number of DySER blocks inte-
grated with a single-issue in-order processor. In all cases,
the load back-slice becomes the bottleneck. Geometric
mean performance improves by 2.1X with a range of 1.1X
to 9X. In cases where the performance improvement is low
(like freqmine, perlbench), it is because the computation
slice contributes 10% to 25% the program. The “irregu-
lar” SpecINT programs also benefit and show 1.1X to 2.2X
speedups.

Figure 7b shows performance improvement with
DySER blocks integrated with a dual-issue out-of-order
(O0O0) processor. We see consistent improvements for
DySER + dual issue OOO processor, with geometric mean
of 2.2X. With the OOO processor, effectively we have a bet-
ter memory system engine which can feed the DySER array
better. For both processors, two DySER blocks come close
to the performance of infinite blocks. For facesim and

(a) DySER + 1-issue in-order

Col-1 Col-2 Col-3 Col-4 Col-5 Col-6 Col-7 Col-8 Col-9 Col-10 Col-11
Suite Benchmarks #PathTree(90%) | #Paths | #StaticIns | Top-5paths | Cvg.% | CS% | Opt.CS % 64 FU % 256 FU %
Ins
Parboil cp 6(1) 4 187 187 100 78 98 49 100
pns 7(1) 3 131 131 100 75 96 82 100
rpes 12(1) 62 516 270 83 54 75 28 82
sad 23(2) 34 400 266 89 49 55 12 60
PARSEC blackscholes 9(3) 2 51 51 100 57 78 100 100
bodytrack 322(9) 5 264 255 100 61 75 42 83
canneal 89(12) 5 73 71 100 38 38 98 100
facesim 906 (22) 3 124 123 99 53 65 75 93
fluidanimate 33(2) 14 149 123 94 51 63 35 100
freqmine 151(31) 6 62 54 929 21 21 95 100
streamcluster 61 (1) 6 108 62 100 22 43 100 100
swaptions 36(6) 6 87 72 99 57 63 97 100
SPEC perlbench 1729 (250) 22 246 80 89 13 13 74 88
INT bzip2 252 (33) 8 235 164 98 47 53 72 89
gee 10018 (1048) 15 99 58 94 39 41 88 94
mcf 46 (10) 10 110 67 99 55 59 96 96
hmmer 113(3) 39 123 95 90 55 66 31 97
h264ref 650 (29) 3 149 144 99 39 54 81 84
astar 132(6) 1003 139 82 60 55 62 53 57
SPEC namd 236 (28) 7 509 345 100 63 79 31 54
FP soplex 731 (105) 5 80 68 99 27 30 91 96
Ibm 18(1) 4 393 393 100 76 91 21 75
sphinx3 496 (15) 5 98 97 99 53 63 96 97
Cvg%: Top 5 path runtime coverage, CS:computation slice , 64 FU (256 FU) %: percent inst. schedulable in 8x8 tiles (16x16 tiles)
Table 3. Application Characterization
DySER Blocks cp pns rpes sad bs bt | canneal | facesim fa | fm sc | swaptions
1 1.3M 87K 16M 27 5 45 12 12 | 169 1 30K 20
2 266M 95K | 160K 37 || 204 | 111 14 14 | 337 1 | 380K 546
4 266M | 338M | 160K | 7,835 8M | 245 16 17 | 337 1 | 380K 546
DySER Blocks || perlbench | bzip2 | gcc | mef | hmmer | h264ref | astar || namd | soplex Ibm | sphinx3
1 5 9 4 20 32 2 8 18 12 | 163K 20
2 6 16 5 32 53 4 23 445 22 M 26
4 6 29 6 | 490 3,265 8 354 821 32 M 29
bs: blacksholes, bt: bodytrack, fa: fluidanimate, fm: freqmine. M = million; K = 1000s
Table 4. Number of tree invocations captured by N DySER blocks.
‘I:‘I Pipe‘-l ‘I:‘I P\;Jex-l
parboll| PARSEC SpeciNT s = g:ﬁzfnf 10 Parboil PARSEC SpecINT 0 = :zzfnf
b N b SpecFP
3 4 SpecFPf‘1 N 8 8 P
3 , 3
12 R 2
4 12 1 4 1
2
2 2
1 1 - 1 1 1! 1! - 1
&Q& & ‘;bb \'>\°o°° S x&c;@ & Q« > Q‘(’b&é ‘»oi“\& {@‘@b & Qfo@(,oq &£ & & Q(\e & L?b 9\0006 S O L;ﬁ@ o Qé @Qé&é ﬁé‘& .\\o&b & Q'o&(,OQ &£ &

(b) DySER + 2-issue OOO.

Benchmark key: PARBOIL (cp: cp, pns: pns, rpe: rpes, sad: sad), PARSEC (bla: blackscholes, bod: bodytrack, can: canneal, fac: facesim
, flu: fluidanimate, fre: freqmine, swa: swaptions, str: streamcluster), SPECINT (per: 400.perlbench, bzi: 401.bzip2, gcc: 403.gcc, mcf:
429.mcf, gob: 445.gobmk, hmm: 456.hmmer, lib: 462.libquantum, 464: 464.h264ref, ast: 473.astar), SPECFP (nam: 444.namd, sop:
450.soplex, Ibm: 470.1bm, sph: 482.sphinx3)

Figure 7. Performance normalized to each baseline.

11

gcc, the working set of path-trees is large and the number
of DySER blocks is the bottleneck.

The source of improvements: A 4-wide OOO processor
with 2 DySER blocks, essentially provides a better load-
store engine and we saw similar improvements, but still bot-
telnecked by the load-slice. As an extreme, we integrated
DySER blocks with a 4-issue OOO processor with a per-
fect cache. We now observed that DySER blocks become
the bottleneck as the load-slice typically completes first. As
shown in Figure 9a, we still see performance improvements
resulting from DySER’s additional computation resources.
Less of the configuration delays are hidden and geometric
mean speedups are 2.8X. We also simulated a hypothetical
machine with 128 each of every functional unit with single-
cycle full bypass which allows complete specialization of
all Path-trees. DySER is essentially an implementable re-
alization of this machine. The 4-issue OOO + two DySER
blocks perform within 26% to 95% of per-phase dedicated
datapaths, and on average 68%. This shows the DySER im-
plementation provides an efficient dynamically specialized
datapath.

Energy: Figure 8 (first two stacks) shows energy reduc-
tion provided by DySER. Geometric mean energy reduc-
tion is 40% and slightly more for the in-order case. Energy-
delay improvements ranged from 1.5X to 12X with an av-
erage reduction of 2.7X. Some applications like gobmk
show worse energy consumption because of too much diver-
gence in the path trees. For these cases, the DySER blocks
shouldn’t be used.

In energy-constrained mobile environments the DySE
approach can trade-off performance improvement to exploit
DVFS and provide energy efficiency. We use the detailed
DVFES data from the Intel SCC [2] processor for these esti-
mates. Figure 8 (3rd and 4th stack) shows the improvement
in energy when frequency (and correspondingly voltage) is
reduced to equal the performance of the baseline. We see
5% to 90% reductions with a geometric mean of 60%.

Sensitivity Studies: Our evaluation used one implemen-
tation of the functional units. Due to area or other con-
straints, only longer latency or lower frequency functional
units may be feasible for a real chip implementation. To
understand performance sensitivity to our implementation,
we ran experiments simulating DySER at % %th, and éth
frequency of the processor. We continue seeing perfor-
mance improvements. For the 2-issue OOO processor,
with DySER at half the frequency, speedups are 0.99X to
9.9X (GM 1.84X), at ith frequency, speedups are 0.63X to
9.52X (GM 1.65X), at éth frequency, speedups are 0.38X
to 8.72X (GM 1.41X, only 16 of 26 show speedup). Pipelin-
ing with multiple invocations effectively hides the func-
tional unit latencies.

12

3 Pipe-1

Parboil 4 PARSEC SpecINT [[Pipe-2
16 I Pipe-Inf

1
o L
(‘QQQ & ébb ~o\'°°°°(,’0°@(’ @ q‘{b &

Figure 9. DySER with OO0 + perfect cache

6 Related work

The closest work to DySER is the Burroughs Scientific
Processor (BSP) [20]. BSP uses arithmetic elements imple-
mented with pipelining to accelerate vectorized FORTRAN
code. Evolution of three important insights from BSP lead
to the DySER architecture. First, to achieve the generality,
both BSP and DySER utilize compiler support to generate
mappings to execute on the execution component. DySER
further expands the flexibility and efficiency by introduc-
ing a circuit-switch network in the execution array. This
improvement needs several new supporting designs such as
the configuration path and flow-control. Second, both BSP
and DySER identify the critical role of intermediate value
storage. The arithmetic elements in the BSP have dedi-
cated register files which are not part of the architecture
state. Such a “centralized” design is not scalable at today’s
technologies and DySER provides distributed storage in its
network using pipeline registers. Third, to generate useful
code BSP exploits vector forms, while DySER uses a co-
designed compiler than can generate regions of code. A
final difference is in the implementation. While the BSP
spends much effort on building a fast storage system (regis-
ter, I/O, special memory), DySER uses a conventional core
for efficient data management to achieve same goal.

From the recent literature, the CCA and VEAL archi-
tectures [8, 28, 6, 9, 7] are related. The key differences are:
VEAL is limited to inner-most loops that must be modulo-
schedulable, CCA has limited branching support®, they do
not support a diverse application domain like DySE , and
have memory access limitations (CCA does not allow a
code-region to span across load/stores). Their implementa-
tions have limited scalability, supporting only a small num-
ber of functional units. VEAL exploits the loop’s modulo-
schedulability for a novel design which is limited to a small
number of functional units - 2 INT, 2 FP and one compound
unit, while CCA uses a feed-forward cross-bar network con-
necting consecutive rows which can limit scalability and
thus generality to many domains. The circuit-switched in-

3Simple branches are moved out of CCA and cleanup-code executes
if wrong-path taken. Merge points (PHI-functions) and branching that is
dependent on CCA-computed values are not supported.

100 3 Inorder
— ‘ Parboil PARSEC SpecINT SpecFP ;gSst
Q -in
é 80, qd 4 F —H Il DVFS-000|
c
0
S 60 5 1tk i
=]
°
Q
< 40 m 4+ m
>
2
2 20 R {F |
w

cP pf\s (peS

53?4 \eS ack S\ (ate nine

S el
C!
Y\ o

a\ e LoNS, kel N 02 gcC f el wumeacef cral d et CLANRAVE)
P Pody e racedani™frea aplirmci Certoe™ N> 9 oD T Rart 2641 257 naMeople” \oZgaie

Figure 8. Energy reduction (%) compared to baseline processor using 2 DySER blocks

terconnection network and pipelining are the profoundly
powerful features in DySER.

DySER blocks are similar to tiled architectures like
RAW [37], Wavescalar [36], and TRIPS [5]. DySER is
a pure computation fabric and thus has no buffering, in-
struction storage, or data-memory storage in the tiles. Sec-
ond, DySER implements circuit-switched static routing of
values, thus making the network far more energy efficient
than the dynamically arbitrated networks. While these ar-
chitectures distribute design complexity to different tiles,
DySER blocks do not add complexity. The slicing of appli-
cations provides several simplifications and DySER blocks
need only perform computation. The Tartan architecture
and compiler memory analysis explores spatial comput-
ing at fine granularity with entire applications laid out on-
chip [29]. The DySE execution model is far less disruptive
and achieves efficiency by dynamically reconfiguring the
DySER datapaths as the application changes phase. Com-
pared to these architectures, DySER achieves similar or su-
perior performance without massive ISA changes and at
significantly smaller area and design complexity (compared
to these full-chip solutions, DySER’s area is the same as
a 64KB SRAM). It lacks their intellectual purity, since we
relegate load/store processing to the processor - which we
argue (and show) is a judicious decision.

Other reconfigurable architectures include the follow-
ing: Garp uses an FPGA-like substrate for tight-inner
loops but suffers when loop iterations are small [15]. Chi-
maera maps instruction sequences to a reconfigurable sub-
strate [40]. Ambric [12] and Mathstar [13] explore domain-
specific specialization. Table 5 classifies the related work
in terms of software capability, hardware constraints, and a
description of their basic mechanisms. The Figure depicts
tradeoffs in terms of overall complexity®, scalability, and
generality. DySER achieves all three with a co-designed
compiler and simplified computational units.

The path-tree construction is similar to hyper-
blocks [25], but our representation is rooted at the inner-

4We are referring to how easily these systems can co-exist with con-
ventional processors and how disruptive a change they require in hardware
and software development

13

most block and captures all paths. Our slicing approach
is similar to early efforts of decoupled access/execute ma-
chines [32] but we map one of the slices to hardware. Pro-
gram slicing has been used in other contexts for improving
hardware efficiency [41, 19]. Static scheduling has been
explored in VLIW processors and RAW [22] but at the fine-
granularity of a few instructions. DySE expands the granu-
larity to several hundred instructions and does path schedul-
ing as well. The mapping problem is related to VLSI place-
and-route problems [24] but at a significantly smaller scale
of hundreds of nodes.

7 Future Work and Conclusions

This paper introduced the DySE execution model of dy-
namically synthesizing datapaths, presented the DySER ar-
chitecture for hardware specialization, and evalauted it. The
basic hardware organization of DySER is a circuit-switched
tiled array of heterogeneous computation units which are
dynamically specialized by a compiler that uses profiling
to map application phases to these blocks. DySER effec-
tively adds very general purpose accelerators into a proces-
sor pipeline and with its co-designed compiler, the same
hardware can target diverse application domains. Results
from a diverse application suite consisting of the SPEC,
PARSEC, and Parboil benchmark suites show impressive
results. When integrated with a single-issue processor, two
DySER blocks, which each occupies approximately the area
of a 64KB SRAM, show 1.1X to 10X performance im-
provements, with up to 70% reduction in energy. Further-
more, the approach scalably provides energy-efficient per-
formance as the baseline processor improves.

Further work is required to understand the effectiveness
of the DySE execution model and the DySER architecture.
First, a detailed compiler design and implementation that
builds path-trees in the compiler’s intermediate representa-
tion (instead of modifying generated code as is currently
done) can help generate larger path trees and is required for
a practical implementation. Further optimizations to con-
sider the impact of loop unrolling, function inlining and
techniques to reduce control-flow graph disruptions as a re-
sult of slicing are required. Our current scheduler imple-
ments a simple greedy heuristic and looking at better tech-

DySER VEAL Tiled Tartan Ambric
Software I IRIPSRAN
Scope Complete Inner-loop Complete | Complete | Complete |high ;" Tartan
Generality General- Domain- General- General- Domain-
purpose specifict purpose purpose specific :
Hardware % +VEAL S.pecialized FU .
Integration In-core In-Core Dedicated | Dedicated | Dedicated % wgh\ Mathatar
Compute High High Medium Medium High °
Eft.
Scalability Yes Limited Yes Yes Yes low
Area Small Small Large Large Large Design complexity i
Mechanisms
ISA Extension | Co-designed New New New
VM
Compute FU & FU & Cores, RF | RF pages Simple
elements switch Complex-FU buffers Piperench cores
Network Circuit Circuit Packet Packet Packet
Switch Switch Switch Switch Switch

Table 5. Design space and related work

niques are likely to help. Finally, we have currently exam-
ined the SPARC ISA alone. While the ISA impact should
be small, further investigation on the x86 ISA which has
few general purpose registers is required.

The execution model with the DySER block provides
a practical way to implement instruction-set specialization,
SIMD specialization, and domain-driven accelerators using
one substrate. This work focuses on the architecture and
microarchitecture of DySER. Further work is required to
compare how general the execution model and DySER’s
dynamic specialization really is. A fundamental question
to quantitatively investigate is how this approach compares
to “static” specialization like instruction extensions, SIMD
execution and GPUs.

Finally, we are investigating a detailed prototype im-
plementation of the DySER block integrated with a real
processor. This implementation can answer questions on
design complexity, area, and power trade-offs accurately.
Such a prototype implementation can also answer the ques-
tion of how close to a truly specialized design does DySER
come to. The execution model can be implemented with
other architectures including application-specific accelera-
tors where computation-slices are compiled to silicon and
an FPGA substrate. Direct compilation to silicon suffers
from design-time freezing of the accelerator. The area den-
sity and potential frequency from an FPGA substrate will
be less than DySER. However, the FPGA can provide capa-
bility for synthesizing compound computational blocks and
probably better diversity. This FPGA approach requires fur-
ther advancements in the synthesis of the computation slices
and introduces scope for novel solutions in that space. De-

14

tailed analysis is required for a definitive answer.

In general, architectural techniques like DySER are nec-
essary in the future to improve performance without degrad-
ing energy efficiency due to slowing device-level energy im-
provements.

8 Acknowledgments

We thank the anonymous reviewers, the Vertical group,
and Gagan Gupta for comments and the Wisconsin Condor
project and UW CSL for their assistance. Many thanks to
Guri Sohi, Mark Hill for discussions that helped refine this
work. Thanks to Kevin Moore from Oracle Labs for de-
tailed comments on the paper and discussions that helped
refine the work. Support for this research was provided
by NSF under the following grants: CCF-0845751, CCF-
0917238, and CNS-0917213. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NSF or other institutions.

References

[1] Semiconductor Industry Association (SIA), Process Integration, De-
vices, and Structures, International Roadmap for Semiconductors,
20009 edition. .

[2] M. Baron. The single-chip cloud computer. Microprocessor Report,
April 2010.

[3] M. Bhadauria, V. M. Weaver, and S. A. McKee. Understanding PAR-
SEC performance on contemporary CMPs. In IISWC, 2009, pages
98-107, Austin, TX.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark
suite: Characterization and architectural implications. In PACT "08.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and the
TRIPS Team. Scaling to the end of silicon with EDGE architectures.
IEEE Computer, 37(7):44-55, July 2004.

S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris,
M. Schuette, and A. Saidi. The reconfigurable streaming vector pro-
cessor (rsvptm). In MICRO 36, page 141, 2003.

N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An
architecture framework for transparent instruction set customization
in embedded processors. In ISCA 05, pages 272-283, 2005.

N. Clark, A. Hormati, and S. Mahlke. Veal: Virtualized execution
accelerator for loops. In ISCA ’08, pages 389-400, 2008.

N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner.
Application-specific processing on a general-purpose core via trans-
parent instruction set customization. In MICRO 37, pages 3040,
2004.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form and the
control dependence graph. ACM TOPLAS, 13(4):451-490, Oct 1991.
G. Grohoski. Niagara-2: A highly threaded server-on-a-chip. In /8th
Hot Chips Symposium, 2006.

T. R. Halfhill. Ambric’S New Parallel Processor - Globally Asyn-
chronous Architecture Eases Parallel Programming. Microprocessor
Report, October 2006.

T. R. Halfill. MathStar Challenges FPGAs. Microprocessor Report,
20(7):29-35, July 2006.

R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In ISCA, pages 37—
47, 2010.

J. R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. In Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines, pages 16—18,
April 1997.

M. Hempstead, G.-Y. Wei, and D. Brooks. Navigo: An early-stage
model to study power-constrained architectures and specialization.
In Workshop on Modeling, Benchmarking, and Simulation, 2009.

I. Hur and C. Lin. Memory prefetching using adaptive stream detec-
tion. In MICRO 39, pages 397—408.

A. Kejariwal, A. V. Veidenbaum, A. Nicolau, X. Tian, M. Girkar,
H. Saito, and U. Banerjee. Comparative architectural characteriza-
tion of SPEC CPU2000 and CPU2006 benchmarks on the intel core2
duo processor. In International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation, pages 132—141.
D. Kim and D. Yeung. Design and evaluation of compiler algorithms
for pre-execution. SIGPLAN Not., 37(10):159-170, 2002.

D. J. Kuck and R. A. Stokes. The burroughs scientific processor
(bsp). IEEE Trans. Comput., 31:363-376, May 1982.

C. Lattner and V. Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In CGO ’04, pages 75-88.
W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe. Space-time scheduling of instruction-level paral-
lelism on a RAW machine. In ASPLOX XIII, pages 4657, 1998.

J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,
M. Horowitz, and C. Kozyrakis. Comparing memory systems for
chip multiprocessors. In ISCA 07, pages 358-368.

J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and
J. Rose. VPR 5.0: FPGA CAD and architecture exploration tools
with single-driver routing, heterogeneity and process scaling. In
FPGA 09, pages 133-142.

S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann. Effective
compiler support for predicated execution using the hyperblock. In
ISCA 92, pages 45-54.

H. Makino, Y. Tujihashi, K. Nii, C. Morishima, and Y. Hayakawa. An
auto-backgate-controlled MT-CMOS circuit. In Proceedings Sympo-
sium on VLSI Circuits, pages 42—43, 1998.

M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A.R. Alameldeen, K. E. Moore, M. D. Hill, , and D. A. Wood. Multi-
facet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset. Computer Architecture News (CAN), 2005.

B. Mathew and A. Davis. A loop accelerator for low power embed-
ded vliw processors. In CODES+ISSS ’04, pages 6—-11.

M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Gold-
stein, and M. Budiu. Tartan: evaluating spatial computation for
whole program execution. In ASPLOS-XII, pages 163—174.

Parboil benchmark suite, http://impact.crhc.illinois.edu/parboil.php.

15

(31]

[32]

(33]
[34]

[35]
[36]
[37]

[38]

[39]

[40]

[41]

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Gro-
chowski, T. Juan, and P. Hanrahan. Larrabee: a many-core x86 ar-
chitecture for visual computing. In ACM SIGGRAPH 2008, pages
18:1-18:15.

J. E. Smith. Decoupled access/execute computer architectures. In
ISCA ’82, pages 112-119, 1982.

SPEC CPU2006, Standard Performance Evaluation Corporation.
Intel streaming simd extensions 4 (ssed),
http://www.intel.com/technology/architecture-silicon/sse4-
instructions/index.htm.

S. Subramaniam and G. H. Loh. Fire-and-forget: Load/store schedul-
ing with no store queue at all. In MICRO 39, pages 273-284, 2006.
S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. Wavescalar.
In ISCA "03, pages 291-302.

M. B. Taylor et al. The RAW Microprocessor: A Computational Fab-
ric for Software Circuits and General-Purpose Programs, IEEE Mi-
cro, 22(2):25-35, March, 2002.

S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. Cacti
5.1. Technical Report HPL-2008-20, HP Labs.

D. E. W. Yao-Wen Chang and C. K. Wong. Universal switch blocks
for fpga design. In ACM Transactions Design Automation of Elec-
tronic Systems, pages 80—101, 1996.

Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. Chimaera: a
high-performance architecture with a tightly-coupled reconfigurable
functional unit. In ISCA ’00, pages 225-235.

C. B. Zilles and G. S. Sohi. Understanding the backward slices of
performance degrading instructions. In ISCA "00, pages 172—181.

	TECHCOVER.NEW1683
	1683.pdf

