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Abstract
Recent research in deterministic record-replay

seeks to ease debugging, security, and fault tolerance on 
otherwise nondeterministic multicore systems. The 
important challenge of handling shared memory races 
(that can occur on any memory reference) can be made 
more efficient with hardware support. Recent proposals 
record how long threads run in isolation on top of snoop-
ing coherence (IMRR), implicit transactions (DeLorean), 
or directory coherence (Rerun). As core counts scale, 
Rerun’s directory-based parallel record gets more attrac-
tive, but its nearly sequential replay becomes unaccept-
ably slow.

This paper proposes Karma for both scalable 
recording and replay. Karma builds episodic memory 
race recorder using a conventional directory protocol and 
records order of the episodes as a directed acyclic graph. 
Karma also enables extension of episodes even after 
some conflicts. During replay, Karma uses wakeup mes-
sages to trigger a partially ordered parallel episode replay. 
Results with several commercial workloads on a 16-core 
system show that Karma can achieve replay speed (a) 
within 19%-28% of native execution speed without 
record-replay and (b) four times faster than even an ideal-
ized Rerun replay. Additional results explore tradeoffs 
between log size and replay speed.

1  Introduction 

Today's shared-memory multiprocessors are not deterministic. 
The lack of repeatability makes it more difficult to do debugging 
(because bugs do not faithfully reappear on re-execution) [43], 
security analysis (attacks cannot be exactly replayed) [10], and 
fault tolerance (where a secondary set of threads attempts to 
mimic a primary set to detect faults) [24]. Moreover, dealing 
with multiprocessor nondeterminism—heretofore limited to a 
few experts—is now a concern of many programmers, as multi-
core chips become the norm in systems ranging from servers to 
clients to phones and the number of cores scales from a few to 
several to sometimes many. 

To this end, researchers have explored software and hardware 
approaches for a two-phase deterministic record-replay system 
[10, 17, 22, 27, 30, 34, 41, 42]. In the first phase, these systems 
record selective execution events into a log to enable the second 
phase to deterministically replay the recorded execution.  
A great challenge for record-replay is handling shared memory  

 
races that can potentially occur on any memory reference, while 
other events, such as context switches and I/O can easily be han 
dled by software [10, 22, 28]. Early hardware proposals for han-
dling memory races [41, 42] record when threads do interact, but 
require substantial hardware state to make log sizes smaller. 

Three recent hardware race recorders reduce this state by instead 
recording when threads don't interact: Rerun [17], DeLorean
[27] and Intel Memory Race Recorder (IMRR) [34]. Let an epi-
sode (or chunk) be a series of dynamic instructions from a single 
thread that executes without conflicting with any other thread. 
All three recorders use Bloom filters [5] to track coherence 
events to determine when to end episodes. 

These recorders assume different coherence protocols that affect 
their scalability to many-core chips and complexity of imple-
mentation: 

• IMRR assumes broadcast snooping coherence and proposes 
globally synchronized chunk termination among the cores 
for better replay speed. IMRR reliance on broadcast and 
globally synchronized operation limits its scalability.

•DeLorean relies on BulkSC/Bulk’s [6, 7] non-traditional 
broadcast of signatures to commit/abort implicit transac-
tions and a centralized arbiter to record and replay chunk 
order. Thus DeLorean demands completely new coherence 
protocol and support for implicit transactions to make its 
scheme for deterministic record-replay feasible.

•Rerun operates with relatively minor changes to more con-
ventional point-to-point directory protocol that allows scal-
able recording while demands minimal hardware extension.

Thus, going forward, Rerun’s approach seems most promising as 
it is scalable to chips with many cores and to systems with multi-
ple sockets, while requires moderate changes to conventional 
hardware. During replay, however, Rerun does not scale, because 
its replay is nearly sequential due to its use of Lamport scalar 
clocks [19]. Fast, parallel replay can expand the applicability of 
deterministic record/replay systems, which in turn, can further 
justify deploying them. Fast replay is valuable for scenarios that 
include:

• In security analysis, fast replay can help quick analysis of an 
attack and allow urgent fix to critical security flaws. A quick 
replay, even when the attack is underway, can help to trace 
the attacker [10].

• In fault tolerance, where one might wish to maintain avail-
ability of a critical primary server in presence of faults, a 
secondary server following the primary, needs to quickly 
replay primary’s execution to provide hot backup[24].

1.  Work performed while at University of Wisconsin-Madison
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• For classic use of debugging, deterministic record/replay’s 
utility will decline if scaling to 16, 32 or more cores, requires 
a sequential replay that is at least 16X, 32X or more slower. 
Replaying for small intervals of time may be acceptable, but 
the situation quickly worsens if replay for longer intervals 
and/or large number of cores are needed. 

This paper proposes Karma for both scalable recording and replay, 
that minimally extends conventional directory coherence protocol. 
Karma’s proposed novel episodic memory race recorder/replayer 
records the order of episodes as a directed acyclic graph (DAG). 
Karma also extends lengths of episodes that conflict during 
recording by ensuring that they do not conflict during replay. Dur-
ing Karma’s replay, special wakeup messages (like coherence 
acknowledgment messages) trigger parallel replay of independent 
episodes.We also show how to extend Karma from sequential con-
sistency to TSO, sufficient to implement the x86 memory model.

We evaluate Karma on a 16-core system and find that: (1) Karma 
can achieve replay speed within 19-28% of native execution with 
no-record-replay and about 4 times faster than even idealized
Rerun’s replay. (2) Karma’s log size is similar to Rerun’s, but (3) 
can be made smaller for uses that can tolerate slower replay. 

The following sections review related work, especially Rerun 
(Section 2), provide the insights behind Karma (Section 3), 
describe a Karma hardware implementation (Section 4), review 
evaluation methods (Section 5), present experimental results 
(Section 6) and conclude (Section 7).

2  Related Work and Rerun Review

2.1  Related Work
Classic all-software solutions to deterministic multiprocessor 
replay exist [11, 22], but results show that they do not perform 

well on workloads that interact frequently. Three recent, promis-
ing approaches seek to reduce recording overhead, but conse-
quently make replay more difficult. Park et al. [33] record partial 
information and retry replay until successful, while Altekar and 
Stoica [2] seek only to replicate a bug, not an exact replay. Lee et 
al. [23] seeks to log minimal information but uses online replay on 
spare cores to validate whether logged information is sufficient to 
guarantee output deterministic replay.

Architecture researchers have focused on solutions that use hard-
ware, at least for memory race detection. Bacon and Goldstein [3] 
recorded all snooping coherence transactions, which produced a 
serial and voluminous log. Xu et al.’s Flight Data Recorder (FDR) 
[41, 42] created a distributed log of a subset of memory races, not 
implied by other races, but required substantial state with each 
core. Bugnet [31] shows how to enable record-replay by recording 
input values rather than memory race order. Strata [30] uses global 
strata to reduce this state, but does not scale well to many cores 
[17]. ReEnact [35] allowed deterministic reproduction of a recent 
buggy execution with Thread Level Speculation (TLS) support. As 
previously discussed, DeLorean, Rerun, and IMMR largely elimi-
nate FDR’s filtering state by focusing on when cores operate inde-
pendently. More recently, Timetraveller [39] improved upon 
Rerun to reduce its log size further by delaying ending of episodes 
in Rerun. Herein we propose Karma to improve Rerun’s replay 
speed, and we expect that Karma’s improvements will apply to 
Timetraveller as well.

Importantly, Capo [28] discusses how to virtualize hardware deter-
ministic replayers—including FDR, Rerun, and DeLorean—so 
that different parts of a machine can be in different modes: 
recorder, replay, or none. Fortunately, Karma, can also be virtual-
ized with Capo.
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Figure 1. Rerun’s Record and idealized Replay

While (a) Rerun recording is fast, (b) Rerun 
replay is nearly serialized by timestamps. 
KEY:
Ci: Core i
Eij: Core i’s episode j
REFS: dynamic memory reference count
TS: timestamp
(dashed arrow): actual memory conflict
(shaded box): per episode log
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Finally, there have been several recent efforts on obtaining deter-
ministic execution, wherein a multithreaded program with a fixed 
input always executes the same way [4, 9, 32]. Somewhat related is 
Yu et al.’s work [44] to constrain production software runs to the set 
of interleaving observed during testing. While promising, these 
approaches are not (yet) generally adopted. 

2.2  Rerun Review
We review Rerun here to better enable Section 3 to show how 
Karma supersedes it, even as both modestly extend conventional 
directory cache coherence protocols.

Record. Rerun dynamically breaks each core’s execution into epi-
sodes during which a core does not interact with other cores. Rerun 
ends an episode when memory references of an episode conflicts 
with a concurrent episode on another core. It can ends episodes 
early, e.g., due to false conflicts, L1 cache evictions, or context 
switches. Rerun orders episodes with the timestamps based on a 
Lamport scalar clock [19]. Rerun’s global log is a distributed collec-
tion of per-core logs. Each per-core log captures a core’s sequence 
of episodes with each episode’s size in dynamic memory references 
(REFS) and Lamport scalar clock timestamp (TS). Figure 1(a) illus-
trates a Rerun recording, after threads at each core executed for 
some time initially. In Figure 1(a), when during episode E10, core 
C1 tries to read memory block A, a coherence intervention message 
is sent to core C0, which had written the same address as part of epi-
sode E00. This prompts C0 to end episode E00, as it detects a con-
flict and attaches its own timestamp in the coherence reply (dotted 
directed edge in Figure 1(a)). After receiving the coherence reply, 
core C1 adjusts the timestamp of episode E10 accordingly to cap-
ture the fact that E10 must be ordered after E00 during replay.The 
proposed Rerun implementation uses per-core read and write Bloom 
filters to detect when to end episodes and piggybacks timestamps on 
coherence response messages to capture the causal ordering among 
the episodes.

Replay. Rerun advocates software-based fully sequential replay of 
episodes in increasing order of their timestamps. In theory, however, 
scalar timestamps allow some parallelism, where episodes with the 
same timestamp can be replayed concurrently. We illustrate this ide-
alized Rerun replay (non-sequential) in Figure 1(b). On one hand, it 

allows episodes E21 and E31 to be replayed concurrently. One the 
other hand, Lamport scalar clocks unnecessarily orders many inde-
pendent episodes (e.g., E20 with episodes from cores C0 and C1). 

3  Karma Insights: Replaying Episodes in Parallel 

As multi-threaded programs scale to more cores, replay must be 
parallelized otherwise it can become arbitrarily slow, limiting the 
utility of record-replay for online uses (e.g., fault tolerance, security 
analysis) and eventually debugging. To this end, this section intro-
duces insights into Karma’s parallel replay with both (a) ordering 
episodes with DAG and (b) extending episodes. While we present 
how Karma orders the execution in the cores, Karma—like FDR, 
Rerun, and DeLorean—can be virtualized by Capo [28]. 

3.1  Key Idea 1: Using a Directed Acyclic Graph to Order 
Episodes During Replay
The first key idea behind Karma is simple: Use a directed acyclic 
graph (DAG) rather than scalar timestamps to partially order epi-
sodes during replay. DAGs are well known to allow much greater 
parallelism than scalar timestamps and have been used in an offline 
analysis of replay speed potentials of deterministic recording 
schemes [34]. For ease of exposition, we first show the value of 
using a DAG by pretending that Karma’s recording breaks the exe-
cution into exact same episodes as Rerun did in Figure 1, and then, 
in Section 3.2, present a second innovation that allows Karma to 
have longer episodes than Rerun permits. 

To this end, Figure 2(a) illustrates how Karma can record memory 
dependencies among cores by triggering episode formation with 
DAG edges to successor episode(s). Karma’s distributed log resem-
bles Rerun’s log with timestamps replaced by DAG edges (repre-
sented as PRED/SUCC sets explained below).

Figure 2(b) illustrates the parallelism of Karma’s replay wherein 
successor episodes execute after their predecessors without other 
artificial ordering constraints. Importantly, this enables a parallel 
replay that is much faster than even Rerun’s idealized replay. For 
example, while Rerun ordered episode E20 with independent epi-
sodes of cores C0 and C1 (Figure 1(b)), Karma’s replay leaves epi-
sode E20 unordered with respect to the episodes of cores C0 and C1 
(Figure 2(b)), facilitating more replay parallelism. 

C0 C1 C2 C3C0 C1 C2 C3

2:A=1

E00 E20

E21

E30

E31

1:r1=B

2:r2=E

9:r3=A
10:G=1

E10

41:D=1

E11

11:r2=F

3:r2=C

4:E=1

9:B=2

E01

1:D=1

2:r2=E

9:r3=A
10:G=1

E10 E20

E21

41:D=1

E11

E30

E31

11:r2=F

3:r2=C

4:E=1

9:B=2

E01
REFS=7
PRED=C1

SUCC=..

REFS=10

PRED=C0

SUCC=C0

REFS=31

SUCC=..

REFS=11

REFS=23

PRED=C3 PRED=C2

SUCC=.. SUCC=..

REFS=28

SUCC=C2

PRED=..

REFS=19 PRED=..

REFS=2

SUCC=..

REFS=7

PRED=C1

SUCC=..

PRED=..

REFS=31

REFS=23

SUCC=C3
PRED=..
REFS=11

SUCC=C2

PRED=..

REFS=19

SUCC=..

PRED=C2

REFS=28

PRED=..

PRED=C0
REFS=10

(a) Recording (b) Replay

SUCC=C3
PRED=..

SUCC=..

2:A=1

1:r1=B

PRED=..

SUCC=C1

REFS=2

E00

SUCC=C1

SUCC=C0

PRED=C3

1:D=1

Ti
m

e

Figure 2. Karma’s DAG-based Record and Replay with Rerun’s Episodes

Karma replay via DAG is much faster than 
Rerun’s. See KEY of Figure 1 and following 
KEY:
PRED: predecessor set
SUCC: successor set
(solid arrow):: wakeup messages
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While the idea of using a DAG is simple, it is less simple to deter-
mine how to represent DAG edges to successor episode(s). For fast-
est replay, the DAG edge representation should facilitate an episode 
waking up the successor episode(s) quickly. Moreover, for low 
recording overhead, it should be fast to create during recording and 
compact to log. Using integer episode identifiers, as in a software 
representation of DAG edges, is a poor representation, as we see no 
way for replay to avoid indirecting through memory to determine 
the successor(s). Using these episode identifiers would also have 
severe negative impact on log size. 

As discussed more fully in Section 4.3, to efficiently record the 
DAG edges, Karma actually represents DAG edges with predeces-
sor (PRED) and successor (SUCC) sets that name the cores of the 
predecessor and successor episodes respectively. During recording, 
these sets are populated from coherence traffic and then logged. 
During replay, a core awaits a wakeup message from each predeces-
sor before beginning an episode and sends a wakeup message to 
each successor after completing an episode. 

3.2  Key Idea 2: Extending Rerun’s Episode
The second key idea behind Karma is subtle: Concurrent episodes 
must not conflict during replay, but may conflict during recording.
In contrast, Rerun, DeLorean and IMRR always ends episodes when 
they conflict during recording. For example in Figure 1(a) for 
Rerun, core C0 ends episode E00 when it gives block A to core C1 
for episode E10. In Figure 2(a), we show Karma behaving similarly, 
but this is not necessary. More recently, Timetraveller [ref] which 
improves upon Rerun’s log size uses post-dating of scalar times-
tamps to also allow growing episodes even after some conflicts.

In contrast, as shown in Figure 3(a), Karma continue recording in 
episode E00 even as it conflicts with episode E10, as long as it 
orders E00 before E10 in the log. During replay, conflicting epi-
sodes E00 and E10 will not be concurrent, because the log entries 
will ensure that the end of E00 precedes the beginning of E10. In 
similar fashion, core C1 can cover its execution of 41 references 
with one episode E10 (Figure 3(a)), rather than two episodes E10 
and E11 (Figure 2(a)). Beside the restriction discussed below, a core 
is not required to end a episode when either it (a) provides a block to 
another core or (b) obtains a block from another core. 

On one hand, this optimization seems too good to be true. Perhaps 
the authors of Rerun and DeLorean missed it, because they appear 
to be inspired by transactional memory systems [15, 21] that usually 
abort when concurrent transactions conflict in an execution (as there 
is no distinction between recording and replay). Fortunately in 
Dependence Aware TM, Ramadan et al. [36] showed that conflicting 
concurrent transactions can all commit, provided that they are prop-
erly ordered. For example, they allow core C0’s transaction T to 
pass a value to core C1’s concurrent transaction U (and both com-
mit) as long as T is ordered before U. Karma exploits a similar idea 
for episodes. Both are inspired by the greater freedom of conflict 
serializability over two-phase locking [12] and value forwarding 
among “episodes” in some thread-level-speculation systems (e.g., 
[13, 37]). 

On the other hand, full exploitation of the optimization is too good 
to be true. As depicted in Figure 3(a), a problem occurs when the 
core C0 later attempts to order E00 after core C1’s episode E10 
because of conflict in block E (memory reference 4 of core C0), but 
E00 was previously ordered before E10 due to block A (or con-
versely a core seeks to order an episode before another episode pre-
viously ordered after). Karma cannot do this without adding a cycle 
to the DAG, which is not allowed, as it would make ordering replay 
impossible. Instead, Karma always ends episode E00, begins epi-
sode E01 (with memory reference 4 as its first reference), and orders 
E01 after E10 of core C1.

Karma detects the possibility of cycle formation in the recorded 
DAG using Lamport scalar clock based timestamps [19] (but never 
logs them). Karma ends an episode when it receives a timestamp 
greater than the timestamp of the current episode. This ensures that 
the order of episodes is acyclic and can be replayed properly. Since 
Karma does not log timestamps, they can not serialize replay and 
the sole purpose of this timestamp is to dynamically detect possibil-
ity of cycles while recording.

Finally, Karma enables a tradeoff between log size and replay paral-
lelism, similar to one found in other record-replay systems [27,42]. 
Growing longer episodes has two effects. First, larger episodes 
mean fewer episodes to cover an execution. This makes log size 
smaller. Second, longer episodes make replay less parallel and 
slower. This is because during replay the end of a predecessor epi-
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Figure 3. Karma’s Record and Replay with Extended Episodes

Karma can extend episodes to reduce log 
size.
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sode happens before the beginning of a successor episode. For 
example, earlier we saw that Karma could cover core C1’s execution 
of 41 memory references with one episode (Figure 3(a)) rather than 
two (E10 and E11 in Figure 2(a)). In Figure 3(b), we however 
observe that during replay, this means that episode E01 can only 
start execution after the merged bigger episode E10 completes its 
execution. For this reason, as we will find in Section 6, there is 
value in bounding the maximum episode size to balance log size and 
replay parallelism.

3.3  A Sketch of Karma Operation
This section sketches Karma’s basic operation for recording and 
replay, but leaves details for Section 4.

Record Sketch. During recording, Karma, grows episodes and 
passes timestamps on coherence response messages. Each core 
grows its episode until it receives a timestamp greater than its cur-
rent timestamp (or a maximum size is reached, etc.). This indicates 
possibility of cycle in the DAG. At this point, it ends its episode, 
saves the corresponding predecessor/successor set for logging, and 
begins a new episode. When responding with a timestamp, a core 
sends its current timestamp for a block that matches in its read/write 
filter or its previous timestamp otherwise. For implementation rea-
sons discussed later, a Karma core keeps the timestamp and prede-
cessor/successor sets for both its immediately previous and current 
episodes. When an episode ends at a core, it logs the memory refer-
ence count, predecessor and successor set of the immediately previ-
ous episode, but never logs the timestamp.

Replay Sketch. During replay, a Karma core repeats four steps. (1) 
Read the predecessor/successor (PRED/SUCC) sets and reference 
count REFS for its next episode. (2) Wait for wake-up messages 
from each core in the episode’s predecessor set. (3) Execute instruc-
tions for REFS memory references. (4) Send a wakeup message to 
each core in the successor set.

Online Replay? While we present the record and replay phases as 
separate, applications like fault tolerance may wish to “pipe” the log 
from recording to a concurrent replay. Karma’s faster parallel replay 
makes this online replay more promising, but we leave detailed 
design issues to future work.

4  Implementing Karma 

While the previous section presented the ideas behind Karma, this 
section presents a concrete hardware implementation and addresses 
additional issues. 

4.1  Example Base System 
We assume a base system as illustrated in Figure 4 with parameter 
values from Table 1. It is a multicore chip with private writeback L1 
caches, shared multibanked L2 and a MESI directory protocol. 

4.2  Karma Hardware
As Figure 4 depicts, Karma adds eight registers (148 bytes) to each 
core: 128-byte address filter (FLT) (combining Rerun’s read/write 
filters), 4-byte reference count (REFS), and for both the previous 
and current episodes, there are predecessor sets (PRED0 and 
PRED1), successor sets (SUCC0 and SUCC1) and 4-byte times-
tamps (TS0 and TS1). For 16 cores, all sets can be represented with 
2-byte bit vectors, while more scalable representations are possible 
as many episodes have one or two predecessor or successor.

Karma assumes L2 cache blocks include a directory that tracks 
where a block is cached in the L1s, L1 cache shared replacements 
are silent, and L1 writebacks continue to remember the previous 
owner. Section 4.6 will discuss additional issues due to L1 and L2 
caches being finite. Karma passes timestamps on coherence 
response messages. Karma adds a single bit called previouslyOr-
dered in coherence response message, to be explained in 
Section 4.3. For supporting replay, Karma adds wakeup messages 
whose only payload is a source core identifier. 

4.3  Predecessor and Successor Sets 
This subsec-
tion dis-
cusses some 
subtle issues 
for how and 
why Karma 
represents 
DAG edges 
between epi-
sodes as pre-
decessor and 
successor sets 
between 
cores. We implement each set with a 2-byte bit vector, but larger 
systems can use other encodings since most of these sets have just 
one or a few elements. 

Since predecessor and successor sets can only record a single edge 
from/to each other core, we take special care to avoid recording a 
second edge between the same two cores (Figure 5). When sending 
a message that would constitute a second outgoing edge from an 
episode to the same other core, we set the previouslyOrdered bit in 
the coherence reply message to indicate that this message does not 
represent an edge, as depicted in Figure 5(a) and (b). It is correct to 
elide this edge, as it is redundant because of the previous edge to 
this core. On receiving a message that would be the second incom-
ing edge from another core, we end the receiving core’s episode, 
start a new episode, and add the edge to the otherwise empty new 
predecessor set (Figure 5(c)). This is correct, since cores can always 
end episodes early. On receiving a request message from a core 

Table 1: Base System Configuration
Cores 16, in-order, 3GHz

L1 Caches Split I&D, Private, 32K 4-way set associative, 
write-back, 64B lines, LRU replacement, 3 cycle 
hit

L2 Cache Unified, Shared, Inclusive, 16M 8-way set 
associative, write-back, 16 banks, LRU 
replacement, 21 cycle hit

Directory Full bit vector in the L2

Memory 4G DRAM, 300 cycle access

Coherence MESI Directory, silent replacements

Consistenc
y Model

Sequential Consistency (SC)
(with extension to TSO in Section 4.7)

L2 

Bank 0
Data

Array
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Core 0 Core 1 Core 15
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Figure 4. Base System Configuration with Karma’s State per Core
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already ordered after this core’s current episode, this core responds 
with the previouslyOrdered bit set so that this message is also not a 
DAG edge, as depicted in Figure 5(d). This action is correct because 
the missing edge is implied by transitivity [41].

Karma’s approach for representing DAG edges leads to a convenient 
invariant during replay (Section 4.5): when a core receives a wakeup 
message from core req, the message pertains to the receiving core’s 
next episode whose predecessor set includes core req. This allows 
the wakeup message to physically name a core and yet have the 
edge be applied to a specific episode as in Figure 3(b).

4.4  Karma Recording 
As depicted in Figure 6, the key to Karma recording is what actions 
Karma takes when a core/L1 sends a data response or acknowledge-
ment (left side) and receives data or an acknowledgement in 
response to a coherence request it has made (right side). The top of 
Figure 6 repeats the Karma state from Figure 4.

During recording, each core sometimes sends a coherence reply 
(data and acknowledgement) in response to coherence request from 

another core req. The core first tests whether core req is already an 
element of SUCC1. If it is, the outgoing message’s previouslyOr-
dered bit is set, so that the message does not create an edge in the 
DAG (Section 4.3) and no other actions are needed.

Otherwise, the core examines whether its address filter contains the 
message address (or a false positive). If so, then the core associates 
the outgoing edge with its current episode. It sets the message’s 
timestamp to TS1 and previouslyOrdered bit to false. It then adds 
core req to SUCC1. If the filter does not match, the core associates 
the message with its previous episode and takes corresponding 
actions using TS0 and SUCC0. This is correct, because if a block is 
not touched by the current episode it was touched no later than the 
previous episode at that core.

During recording, a core executes instructions, which sometimes 
generate cache misses and coherence requests. Upon receiving a 
coherence response message (data or acknowledgement) from core 
src, a core may or may not take any actions for recording 
(Figure 6(b)). In particular, if the incoming message’s previouslyOr-
dered bit is set, no action is needed, because the message comes 

C1C0 C0 C1 C0 C1 C0 C1
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REFS=..

E1j

PRED=C0
REFS=..
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SUCC=..
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REFS=..
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Figure 5.  Subtle Implementation Issues Regarding Predecessor and Successor Sets

REFS1=0
TS1 = max(i_msg.TS+1,TS0+1)

} else {
/* Update the current episode */

TS1 = max(i_msg.TS+1, TS1)
PRED1.set(i_msg.src)

}

}

State per core

FILTER: Address filter 
for current episode

for previous  episode
REFS1: Memory Reference count

Coherence Message Structure
src/req: Source or Requestor core id Addr: Addressdst: Destination
previouslyOrdered: need an Edge in DAG? TS: Timestamp Payload: Data etc.

Action on sending data/Ack reply: Action on receiving data/Ack i_msg:

if(i_msg.previouslyOrdered == true) {

}else{

if((SUCC1 not empty
|| PRED1 contains i_msg.src){

&& i_msg.TS>=TS1)

/* Do nothing */

receive_request_message(i_msg)

REFS0: Memory Reference count

REFS0=REFS1
PRED0=PRED1
SUCC0=SUCC1
/* Set up new episode */

TS0=TS1

write_to_log(REFS0,PRED0,SUCC0)

Clear PRED1,SUCC1 and FILTER

/* Log previous episode */

/* Move current episode to previous*/

       o_msg.previouslyOrdered = true
/* No new edge in DAG neded */

} else {
      if(FLT contains i_msg.Addr){

/* Current episode*/

          o_msg.previouslyOrdered = false

 to coherence protocol */

     } else {

          o_msg.TS = TS1
          o_msg.previouslyOrdered = false

SUCC1.set(i_msg.req)

} else {

if(SUCC0 contains i_msg.req) {
/* Previous episode */

}
}

o_msg.TS = TS0

/* Fill in other fields in o_msg according

       o_msg.previouslyOrdered = true

send_response_message(o_msg)

/* No new edge required */

/* End episode */

TS0: Timestamp of previous Episode

SUCC0: Successor set of previous Episode
PRED0: Predecessor set of previous Episode

SUCC1: Successor set of current Episode
PRED1: Predecessor set of current Episode

TS1: Timestamp of current Episode

(a) (b)

if(SUCC1 contains i_msg.req) {

SUCC0.set(i_msg.req)

}

PRED1.set(i_msg.src)

Figure 6. Karma’s Recording Algorithm (at each core)
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from a core whose current or previous episode was already ordered 
with respect to this core’s earlier or current episode.

If episode ordering is required, the incoming message may cause 
the current episode to end for two reasons. First, the episode ends if 
SUCC1 is not empty and the message’s timestamp is greater than 
the current episode’s timestamp. This is done to prevent cycles in 
the DAG. Second, the episode ends on incoming message from core 
src that is already in the current episode’s PRED1.

To end an episode, a core logs the previous episode’s memory refer-
ence count and the predecessor/successor sets, copies the current 
episode’s information to the previous one’s, and then initializes the 
new current episode’s values. In particular, the timestamp update 
follows Lamport scalar clock rules, the filter is cleared, the succes-
sor set made empty, and predecessor set made to contain only the 
message source (core src). The timestamp is not logged and thus 
has no role in replay.

4.5  Karma Replay 
During replay, a Karma core repeat four steps, depicted in Figure 7. 

(1) When a core is ready to start a new episode, it reads the prede-
cessor/successor (PRED1/SUCC1) sets and reference count REFS1 
for the next episode from its per-core log. These values are stored in 
the same special registers as used in recording. Replay on this core 
is complete when its log is empty.

(2) The core waits for wakeup messages from each core in the epi-
sode’s predecessor set PRED1. When the core has received a mes-
sage for all cores originally in PRED1, it moves to the next step.

(3) The core executes instructions of the episode, decrementing 
REFS1 on each dynamic memory references, and stops execution 
when the episode REFS1 is zero and the episode is complete. 

(4) The core sends a wakeup message to each core in its successor 
set SUCC1. When complete, the core goes back to step (1).

Karma’s replay algorithm counts architectural memory references, 
but never micro-architectural events, such as cache misses. Thus, 

Karma replay does not require the same caches or cache state as 
was present during Karma recording.

The description above acts as if the wakeup messages arrive only 
during step (2), whereas they can actually arrive at any time. We 
implement a simple replayer that just buffers early messages. A 
more complex replayer could “pipeline” episodes by reading the 
next log entry early and gathering wakeup messages for the next 
episode while the current episode is still executing.

More subtly, wakeup messages for future episodes can arrive earlier 
than ones needed for the next episode(s), theoretically filling up any 
fixed sized message buffer. Fortunately, since the only information 
that must be remembered about a wakeup message is its source core 
identifier, a core can remember up to 8 wakeup messages per core 
(128 total) using a three-bit counter for each of 16 cores (6 bytes 
total). Moreover, these buffer counts can be made unbounded using 
known “limitless” techniques [8] that maintain rare overflow counts 
in software.

4.6  Effect of Finite Caches 
Heretofore we assumed infinite L1 and L2 caches, but real systems 
have finite caches. Here we extend Karma to handle L1 and L2 
cache replacements (from ‘Shared’ and ‘Exclusive’) and writebacks 
(from ‘Modified’) [38]. Many solutions are possible (and could be 
an entire paper). Assume that a block is evicted by core C0 at epi-
sode E00 and next used by core C1 in episode E19. In all cases, epi-
sode E00 must be ordered before episode E19.

L1 Evictions. Karma handles L1 replacements and writebacks 
mostly like FDR [41]. There are three possible cases during L1 
eviction that require attention. First, a shared replacement by C0 is 
silent. A subsequent miss by C1 will send an invalidation to C0 
whose acknowledgement message will order episode E19 after C0’s 
current episode which is (long) after episode E00. Second, a write-
back by C0 does not reset the block owner field at the L2, much like 
LogTM’s sticky states [29] and FDR [41]. As in the first case, a 
subsequent miss by C1 will send an message to C0 whose acknowl-
edgement message will order episode E19 after C0’s current epi-
sode which is after episode E00. Third, C0 could have written back 
the block and one or more other cores read it. Here Karma, extends 
the L2 directory by 4 bits (< 1% of a 64-byte cache block) to keep 
core identifier of the last writer to a block, so that reads can con-
tinue to get ordered after C0’s current episode that is after E00. This 
is the same state that a MOESI coherence protocol needs to remem-
ber for an owner among sharers. 

L2 Evictions. Karma seeks a different solution for L2 evictions, 
because (a) they are much less common and (b) we wish to add lit-
tle or no state to main memory. The key idea is to compute a proxy 
core to order the eviction before any subsequent use. For example, 
the proxy core for victim block 100 with 16 cores might be 100 
modulo 16 = C4. When the L2 seeks to evict block 100 last written 
by core C0, it will first order the current episode of C0 before the 
current episode of C4. (Much) later when C1 misses to memory for 
block 100, the L2 can recompute the proxy C4 and order the current 
episode of core C4 before the current episode of core C1 which is 
E19. By transitivity, episode E00 is ordered before E19. Optionally, 
memory can use a single bit to remember whether a block was ever 
cached, as we assume in our simulations. Many other solutions are 
possible, including broadcasting on L2 misses in small systems or 
augmenting main memory to remember the previous writer if met-
abits are available. 

PRED1: Predecessor set of current episode (executing/waiting)
SUCC1: Successor set of current episode (executing/waiting)
REFS1: Count of residual memory references of current episode

src: Source dest: Destination
Wakeup message structure:

State per core:

/* (2) Wait until all required wakeup messages arrive */
  when receive_wakeup_message(i_msg) {

PRED1.unSet(i_msg.src)

/* (3) Execute  the new episode */

Before the start of a new episode:
/* (1) Get next log entry */
read_from_log(REFS1,PRED1,SUCC1)

while(REFS1 != 0) {

Execute instructions

REFS1 = REFS1 − 1

/* (4) Send out wakeup messages */

o_msg.src = own_core_id 
For each element P in SUCC1 {

} }
}

} /* Finished episode execution*/
}

}
send_wakeup_message(o_msg)
o_msg.dest = P

while(PRED1 not empty) {

if(PRED1 contains i_msg.src) { 

if(memory reference) {

Figure 7. Karma’s Replay algorithm (at each core)
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4.7  Extending Karma to Support TSO (and x86)
Hitherto, Karma implicitly assumed the sequential consistency (SC) 
memory consistency model [20], but now we show how to extend 
Karma to total store ordering (TSO) [14, 40]. Unlike SC, TSO 
exposes (an abstraction of) write buffer for committed writes. More-
over, TSO provides a correct implementation of the x86 memory 
model [18] that exploits most of the flexibility that x86 allows. We 
extend Karma by adapting Xu et al.’s TSO solution from the depen-
dence-based RTR [32]. 

TSO presents challenges as it allows a processor to commit a write 
(store) before a subsequent read (load) (in program order) and yet 
order the write (at logical shared memory) after the read. In prac-
tice, this relaxation of write-read ordering is leveraged using a first-
in-first-out write buffer to hold writes that are committed but yet not 
ordered. Xu et al. [32] showed that such write buffers can cause 
their RTR system to record a cycle of dependences and deadlock the 
replay. To break these cycles, they propose a order-value hybrid
recorder that detects a problematic read (or load) and reacts by 
recording the value read and not recording the write-after-read 
dependency that made the read problematic. Specifically, a prob-
lematic read is a read that gets its value V from the cache, while one 
or more earlier committed writes (in program order) are in the write 
buffer and cache block containing V is invalidated before all earlier 
writes are ordered. The execution is replayed following the now-
acyclic dependencies and “bypassing” values to reads from the log 
whenever present. 

We found that Karma’s replayer can also run into a similar situation 
for the same reasons, but fortunately, Xu et al.’s solution can be 
extended to episodic record/replay of Karma. Figure 8 illustrates 
how we can change Karma to allow order-value hybrid recording in 
the presence of problematic reads in a TSO execution. Assume that 
the writes from both the cores are ordered after the subsequent 
reads, so that both reads return the value 0. Both reads will be 
detected as problematic (with Xu et al.’s detection mechanism), 
cause the new recorder to simply log the value of each read (as 
shown in the Figure 8) and to not modify the predecessor or succes-
sor set to effectively omit logging the dependency (following Xu et 
al.). Figure 8 shows how logs for both episodes E00 and E11 could 
include entries that each episode’s second instruction (offset 1) 
obtained value 0. Thus, Karma records a TSO execution that is not 
an SC execution.

5  Evaluation Methods

We evaluate Karma using the multicore hardware presented in 
Section 4, except that we study scaling by varying core count: 4, 8, 
and 16 cores. When doing this, we keep the shared L2 cache size 

per core constant at 1MB, so the total L2 cache size is 4MB for 4 
cores, 8MB for 8 cores, and 16MB for 16 cores.

For comparison purposes, we also evaluated Rerun [17] in the same 
setup, as it is the closest cousin to Karma, using the code from 
Rerun’s recorder provided to us by Wisconsin. More specifically, 
we compare against an idealized Rerun replayer (non-sequential)
that (a) replays episodes with the same timestamp in parallel (as in 
Figure 1(b)) and (b) appears to wakeup episode(s) with the next 
timestamp after the last episode with the current timestamp com-
pletes. A practical implementation of Rerun replay would, of 
course, be slower than this idealized one.

We use the Wisconsin GEMS [26] full system simulation infrastruc-
ture, which models an enterprise-level SPARC server running on 
unmodified Solaris 9 operating system. This simulator uses the 
Simics [25] full system simulator as front end for the functional part 
of the simulation and uses the Ruby memory timing model to simu-
late different hardware platforms. In this work we concentrate on 
memory race recording and replaying and assumes support for han-
dling DMA, I/O, and external interrupts much like FDR [41] and 
software layer support much like Capo [28]. To approximate this, 
we dilate Simics’s time to make sure interrupts arrive between the 
same dynamic instructions during both recording and replay. 

We use the Wisconsin Commercial Workload suite [1] to drive eval-
uation. This workload suite consists of a task-parallel web server 
(Apache), a java middleware application (Jbb), a TPC-C like online 
transaction processing (Oltp) workload on DB2, and a pipelined 
web server (Zeus). We stress-tested Karma implementation with 
memory race ordering sensitive microbenchmark racey[16].

6  Experimental Results

This section will ask three basic questions and provide the answers 
summarized here:

Question #1: Does Karma speedup replay? Yes, Karma replay 
can be 1.4X-7.1X faster than idealized Rerun replay. This translates 
to a modest 19%-28% slowdown for the replay over the base system 
without any record/replay in a 16 core system. With fewer cores the 
slowdown is even less.

Question #2: How can Karma trade off log size and replay 
speed? By loosening the bound on maximum episode size, Karma 
can achieve smaller log sizes (e.g., 47%) for situations when slower 
replay is tolerable (e.g., 21% slower). This presents an effective 
control knob to trade off the log size versus replay speed, depending 
upon the requirement of a particular use of deterministic replay.

Question #3: How does Karma’s log size compare to Rerun’s? 
Karma and Rerun log sizes are comparable with a 256-memory-ref-
erence maximum episode size. As we increase episode size, Karma 
achieves substantial log size reduction (up to 43%) over Rerun and 
still replays much faster than Rerun.

6.1  Big Picture: Much Faster Replay While Retaining Fast 
Recording 
Figure 9 displays the most important histograms in this paper. Each 
histogram provides results for a different benchmark. Each cluster 
of bars within a histogram represents a different configuration of the 
CMP. The configuration here is characterized by the number of 
cores (4, 8, and 16) and total L2 cache size (4MB, 8MB, and 
16MB). All histogram heights depict the speedup normalized to the 
native execution at corresponding CMP configuration with no 
recording or replay (Base). For example, bars clustered around x-
axis point for 16core-16MB configuration are speedup normalized 

[ 1: ordered here]

1: A=1 
2: %r1 = B 2: %r2 = A 

1: B=1 

E00

[ 1: ordered here]

      C0      C1
Initial value A=B=0

Offset=1
Value=0

E10

SUCC=..
PRED=..
REFS =..

Offset=1
Value=0

SUCC=..
PRED=..
REFS =..

Figure 8. Karma’s handling of TSO execution 
through hybrid order-valu recording.
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to execution for 16core-16MB L2 cache CMP configuration without 
any record/replay (Base). 

Each cluster of bars in a histogram has three bars representing exe-
cution with no record/replay (Base), idealized Rerun replay and
Karma replay. Not shown are Rerun and Karma recording, as they 
are mostly very close to Base. All results in this section assume a 
maximum episode size of 256 memory references, which, as we 
will see later, produces a log size similar to Rerun’s. By showing 
performance comparison of our system for different configuration 
points for CMP, we tried to demonstrate scalability and applicability 
of our proposed system under varying CMP configurations. 

Question #1: Does Karma speedup replay? Yes, Karma replay 
can be 1.4-7.1X faster than idealized Rerun replay depending upon 
the number of cores and the application. For Apache with 4, 8, and 
16 cores, for example, Karma replay is 1.4X, 2X, and 3X faster than 
Rerun replay. This is not surprising, since even our idealized Rerun 
replay still does not expose enough parallelism due to scalar clock 
based ordering of episodes. Results for Oltp and Zeus are similar, 
while for Jbb, Karma replay speed is 7.1X of Rerun’s. For the 16-
core system, Karma replay is only 19%, 28%, 22% and 25% slower 
than the Base execute (without record/replay) for Apache, Jbb, Oltp 
and Zeus, respectively. For fewer cores, this slowdown is much less.

Recording. Karma’s recording (not shown in the figure) is usually 
negligibly different from doing no recording/replay (i.e., Base), just 
like Rerun’s recording. We observed for Apache, Jbb and Zeus, 
Karma recording runs nearly identically (<1% slowdown) with 
doing no recording (Base). Karma recording also works similarly 
well for OLTP with 4 and 8 cores, but adds a bit more overhead 
(~10%) to 16-core OLTP. More importantly, Karma recording scales 
well when applications scale well. 

Bandwidth. Karma sends around 2% more traffic over the intercon-
nect while recording than compared to Rerun. This is because of 
extending few coherence messages (previouslyOrdered bit, etc.) and 
sometimes because of extra messages. This modest extra bandwidth 
could affect execution time substantially if the interconnect was 

near saturation (which it should not be). One would note that Rerun 
adds around 10% bandwidth overhead on the interconnect over a 
system with no record/replay.

Sensitivity Analysis. The results above showed that Karma gains 
are robust with varying core count (4, 8 and 16) and shared L2 cache 
sizes (4, 8, 16 MB). Additional sensitivity analysis (not shown), 
confirms that results qualitatively hold during variations, e.g., dou-
bling L1 size, doubling L2 size, and halving memory latency. 

6.2  Obtaining Smaller Logs but Slower Replay 
Above we showed that Karma replay performance is much better 
than Rerun’s (1.4X-7.1X) for what will turn out to be a comparable 
log size. Some uses of record/replay, e.g., debugging, may wish to 
reduce rate of log size growth further, so that, for fixed log size, one 
can record a longer execution. Karma facilitates this for determinis-
tic record/replay uses that can tolerate somewhat slower replay. This 
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Figure 9. Comparison of Rerun’s and Karma’s Replay Speed (normalized to Base, 256-reference max. episodes)
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By varying maximum episode size across 128 (right end of each appli-
cation’s lines), 256, 512, ... 8K, and unbounded number of memory ref-
erences, allow one tradeoff smaller log with some replay slowdown. 
Displayed results use 16 cores.
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might be a good tradeoff when recording is much more common 
(e.g., always on) than replay (e.g., to investigate a crash).

Figure 9 illustrates Karma log size and replay speed for each of our 
four applications. The x-axis gives uncompressed log size growth in 
bytes per thousand instructions. The y-axis gives replay speed nor-
malized to recording speed. For each application, each point on its 
lines, beginning from the right, provides the tradeoff with maximum 
episode sizes with memory reference counts: 128, 256 (the value 
used in Section 6.1), 512, ..., 8K, and unbounded. 

Question #2: How can Karma trade off log size and replay 
speed? By loosening the bound on maximum episode size, Karma 
achieves smaller log sizes but slower replay. For example, increas-
ing the maximum episode size from 256 to 2K references has the 
following effects: Apache generates 54% smaller log for 23% 
slower replay, Jbb generates 71% smaller log for 87% slower replay, 
OLTP generates 60% smaller log for 21% slower replay, and Zeus 
generates 47% smaller log for 33% slower replay. Three of four 
benchmarks pay a modest replay slowdown, while Jbb is more sen-
sitive. 

Question #3: How does Karma log size compare to Rerun’s?
Karma and Rerun log sizes are comparable with a 256-memory-ref-
erence maximum episode size. Figure 10 displays Karma’s uncom-
pressed log size normalized to Rerun’s uncompressed log size on a 
16 core system. The x-axis varies both Karma and Rerun’s maxi-
mum episode sizes (in memory references) for 128, 256, ..., 8K, and 
unbounded. For the default of 256 memory references, Karma’s log 
sizes versus Rerun’s varies from 10% smaller for Zeus to 17% 
larger for OLTP. As episodes grow larger, Karma’s log size 
decreases faster than Rerun’s. For maximum episode sizes of 1K 
references and greater, Karma’s log is always smaller than Rerun’s. 
With a maximum episode size of 8K references), Karma log size is 
smaller than Rerun’s by 33%, 43%, 17% and 35% for Apache, Jbb, 
Oltp and Zeus, respectively.

If small logs are more important than faster replay, then it is reason-
able to set the maximum episode size to 2K references. To this end 
we found out that with maximum episode size 2K references, 
Karma retains substantial replay speedups with respect to Rerun 
(e.g. 1.3X-4.8X) but they are smaller than with 256-reference epi-
sodes. Moreover, Figure 10 showed that Karma’s log size is 8-35% 
smaller than Rerun’s log size, when the maximum episode size is 
limited to 2K memory references in both systems.

7  Conclusions 

This paper proposes Karma for both scalable recording and replay. 
Karma builds episode-based memory race recorder/replayer using a 
directory coherence protocol, without requiring any global commu-
nication. During recording, Karma records the order of episodes 
with a directed acyclic graph and extends episodes even after some 
conflicts. During replay, Karma uses wakeup messages to trigger 
parallel replay of independent episodes. Results with several com-
mercial workloads on a 16-core multicore system show that Karma 
can achieve replay speed within 19%-28% of execution speed with-
out record-replay and four times better than idealized Rerun replay. 
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