

Computer
Sciences
Department

Karma: Scalable Deterministic Record-Replay

Arkaprava Basu
Jayaram Bobba
Mark D. Hill

Technical Report #1680

October 2010

Karma: Scalable Deterministic Record-Replay

Arkaprava Basu$, Jayaram Bobba*1 and Mark D. Hill$

basu@cs.wisc.edu, jayaram.bobba@intel.com, markhill@cs.wisc.edu

$ Dept. of Computer Sciences

University of Wisconsin-Madison

Abstract
Recent research in deterministic record-replay

seeks to ease debugging, security, and fault tolerance on
otherwise nondeterministic multicore systems. The
important challenge of handling shared memory races
(that can occur on any memory reference) can be made
more efficient with hardware support. Recent proposals
record how long threads run in isolation on top of snoop-
ing coherence (IMRR), implicit transactions (DeLorean),
or directory coherence (Rerun). As core counts scale,
Rerun’s directory-based parallel record gets more attrac-
tive, but its nearly sequential replay becomes unaccept-
ably slow.

This paper proposes Karma for both scalable
recording and replay. Karma builds episodic memory
race recorder using a conventional directory protocol and
records order of the episodes as a directed acyclic graph.
Karma also enables extension of episodes even after
some conflicts. During replay, Karma uses wakeup mes-
sages to trigger a partially ordered parallel episode replay.
Results with several commercial workloads on a 16-core
system show that Karma can achieve replay speed (a)
within 19%-28% of native execution speed without
record-replay and (b) four times faster than even an ideal-
ized Rerun replay. Additional results explore tradeoffs
between log size and replay speed.

1 Introduction

Today's shared-memory multiprocessors are not deterministic.
The lack of repeatability makes it more difficult to do debugging
(because bugs do not faithfully reappear on re-execution) [43],
security analysis (attacks cannot be exactly replayed) [10], and
fault tolerance (where a secondary set of threads attempts to
mimic a primary set to detect faults) [24]. Moreover, dealing
with multiprocessor nondeterminism—heretofore limited to a
few experts—is now a concern of many programmers, as multi-
core chips become the norm in systems ranging from servers to
clients to phones and the number of cores scales from a few to
several to sometimes many.

To this end, researchers have explored software and hardware
approaches for a two-phase deterministic record-replay system
[10, 17, 22, 27, 30, 34, 41, 42]. In the first phase, these systems
record selective execution events into a log to enable the second
phase to deterministically replay the recorded execution.
A great challenge for record-replay is handling shared memory

races that can potentially occur on any memory reference, while
other events, such as context switches and I/O can easily be han
dled by software [10, 22, 28]. Early hardware proposals for han-
dling memory races [41, 42] record when threads do interact, but
require substantial hardware state to make log sizes smaller.

Three recent hardware race recorders reduce this state by instead
recording when threads don't interact: Rerun [17], DeLorean
[27] and Intel Memory Race Recorder (IMRR) [34]. Let an epi-
sode (or chunk) be a series of dynamic instructions from a single
thread that executes without conflicting with any other thread.
All three recorders use Bloom filters [5] to track coherence
events to determine when to end episodes.

These recorders assume different coherence protocols that affect
their scalability to many-core chips and complexity of imple-
mentation:

• IMRR assumes broadcast snooping coherence and proposes
globally synchronized chunk termination among the cores
for better replay speed. IMRR reliance on broadcast and
globally synchronized operation limits its scalability.

•DeLorean relies on BulkSC/Bulk’s [6, 7] non-traditional
broadcast of signatures to commit/abort implicit transac-
tions and a centralized arbiter to record and replay chunk
order. Thus DeLorean demands completely new coherence
protocol and support for implicit transactions to make its
scheme for deterministic record-replay feasible.

•Rerun operates with relatively minor changes to more con-
ventional point-to-point directory protocol that allows scal-
able recording while demands minimal hardware extension.

Thus, going forward, Rerun’s approach seems most promising as
it is scalable to chips with many cores and to systems with multi-
ple sockets, while requires moderate changes to conventional
hardware. During replay, however, Rerun does not scale, because
its replay is nearly sequential due to its use of Lamport scalar
clocks [19]. Fast, parallel replay can expand the applicability of
deterministic record/replay systems, which in turn, can further
justify deploying them. Fast replay is valuable for scenarios that
include:

• In security analysis, fast replay can help quick analysis of an
attack and allow urgent fix to critical security flaws. A quick
replay, even when the attack is underway, can help to trace
the attacker [10].

• In fault tolerance, where one might wish to maintain avail-
ability of a critical primary server in presence of faults, a
secondary server following the primary, needs to quickly
replay primary’s execution to provide hot backup[24].

1. Work performed while at University of Wisconsin-Madison

* Intel Corporation
1

• For classic use of debugging, deterministic record/replay’s
utility will decline if scaling to 16, 32 or more cores, requires
a sequential replay that is at least 16X, 32X or more slower.
Replaying for small intervals of time may be acceptable, but
the situation quickly worsens if replay for longer intervals
and/or large number of cores are needed.

This paper proposes Karma for both scalable recording and replay,
that minimally extends conventional directory coherence protocol.
Karma’s proposed novel episodic memory race recorder/replayer
records the order of episodes as a directed acyclic graph (DAG).
Karma also extends lengths of episodes that conflict during
recording by ensuring that they do not conflict during replay. Dur-
ing Karma’s replay, special wakeup messages (like coherence
acknowledgment messages) trigger parallel replay of independent
episodes.We also show how to extend Karma from sequential con-
sistency to TSO, sufficient to implement the x86 memory model.

We evaluate Karma on a 16-core system and find that: (1) Karma
can achieve replay speed within 19-28% of native execution with
no-record-replay and about 4 times faster than even idealized
Rerun’s replay. (2) Karma’s log size is similar to Rerun’s, but (3)
can be made smaller for uses that can tolerate slower replay.

The following sections review related work, especially Rerun
(Section 2), provide the insights behind Karma (Section 3),
describe a Karma hardware implementation (Section 4), review
evaluation methods (Section 5), present experimental results
(Section 6) and conclude (Section 7).

2 Related Work and Rerun Review

2.1 Related Work
Classic all-software solutions to deterministic multiprocessor
replay exist [11, 22], but results show that they do not perform

well on workloads that interact frequently. Three recent, promis-
ing approaches seek to reduce recording overhead, but conse-
quently make replay more difficult. Park et al. [33] record partial
information and retry replay until successful, while Altekar and
Stoica [2] seek only to replicate a bug, not an exact replay. Lee et
al. [23] seeks to log minimal information but uses online replay on
spare cores to validate whether logged information is sufficient to
guarantee output deterministic replay.

Architecture researchers have focused on solutions that use hard-
ware, at least for memory race detection. Bacon and Goldstein [3]
recorded all snooping coherence transactions, which produced a
serial and voluminous log. Xu et al.’s Flight Data Recorder (FDR)
[41, 42] created a distributed log of a subset of memory races, not
implied by other races, but required substantial state with each
core. Bugnet [31] shows how to enable record-replay by recording
input values rather than memory race order. Strata [30] uses global
strata to reduce this state, but does not scale well to many cores
[17]. ReEnact [35] allowed deterministic reproduction of a recent
buggy execution with Thread Level Speculation (TLS) support. As
previously discussed, DeLorean, Rerun, and IMMR largely elimi-
nate FDR’s filtering state by focusing on when cores operate inde-
pendently. More recently, Timetraveller [39] improved upon
Rerun to reduce its log size further by delaying ending of episodes
in Rerun. Herein we propose Karma to improve Rerun’s replay
speed, and we expect that Karma’s improvements will apply to
Timetraveller as well.

Importantly, Capo [28] discusses how to virtualize hardware deter-
ministic replayers—including FDR, Rerun, and DeLorean—so
that different parts of a machine can be in different modes:
recorder, replay, or none. Fortunately, Karma, can also be virtual-
ized with Capo.

C0 C1 C2 C3 C0 C1 C2 C3

REFS=19

E30

TS= 8

3:r2=C
4:E=1

9:B=2

E01

REFS=7
TS= 12

REFS=23
TS= 13

E21

REFS=28
TS= 13

E31

REFS=31

11:r2=F

41:D=1

TS= 15

E11

1:r1=B

REFS=2
TS= 10

E00

1:r1=B
2:A=1

REFS=2

4:E=1

9:B=2

E01

REFS=7
TS= 12

1:D=1
2:r2=E

9:r3=A
10:G=1

REFS=10
TS= 11

E10

TS= 12
REFS=11

E20

REFS=23
TS= 13

E21

11:r2=F

41:D=1

REFS=31
TS= 15

E11

REFS=19

E30

REFS=28
TS= 13

E31

1:D=1
2:r2=E

9:r3=A

REFS=10
TS= 11

E10

2:A=1

3:r2=C

10:G=1

TS= 8

E00

TS= 12
REFS=11

E20

(b) Replay(a) Recording

TS= 10

TS=11

Ti
m

e

TS=10

TS=8

TS=12

TS=13

TS=15

Figure 1. Rerun’s Record and idealized Replay

While (a) Rerun recording is fast, (b) Rerun
replay is nearly serialized by timestamps.
KEY:
Ci: Core i
Eij: Core i’s episode j
REFS: dynamic memory reference count
TS: timestamp
(dashed arrow): actual memory conflict
(shaded box): per episode log
2

Finally, there have been several recent efforts on obtaining deter-
ministic execution, wherein a multithreaded program with a fixed
input always executes the same way [4, 9, 32]. Somewhat related is
Yu et al.’s work [44] to constrain production software runs to the set
of interleaving observed during testing. While promising, these
approaches are not (yet) generally adopted.

2.2 Rerun Review
We review Rerun here to better enable Section 3 to show how
Karma supersedes it, even as both modestly extend conventional
directory cache coherence protocols.

Record. Rerun dynamically breaks each core’s execution into epi-
sodes during which a core does not interact with other cores. Rerun
ends an episode when memory references of an episode conflicts
with a concurrent episode on another core. It can ends episodes
early, e.g., due to false conflicts, L1 cache evictions, or context
switches. Rerun orders episodes with the timestamps based on a
Lamport scalar clock [19]. Rerun’s global log is a distributed collec-
tion of per-core logs. Each per-core log captures a core’s sequence
of episodes with each episode’s size in dynamic memory references
(REFS) and Lamport scalar clock timestamp (TS). Figure 1(a) illus-
trates a Rerun recording, after threads at each core executed for
some time initially. In Figure 1(a), when during episode E10, core
C1 tries to read memory block A, a coherence intervention message
is sent to core C0, which had written the same address as part of epi-
sode E00. This prompts C0 to end episode E00, as it detects a con-
flict and attaches its own timestamp in the coherence reply (dotted
directed edge in Figure 1(a)). After receiving the coherence reply,
core C1 adjusts the timestamp of episode E10 accordingly to cap-
ture the fact that E10 must be ordered after E00 during replay.The
proposed Rerun implementation uses per-core read and write Bloom
filters to detect when to end episodes and piggybacks timestamps on
coherence response messages to capture the causal ordering among
the episodes.

Replay. Rerun advocates software-based fully sequential replay of
episodes in increasing order of their timestamps. In theory, however,
scalar timestamps allow some parallelism, where episodes with the
same timestamp can be replayed concurrently. We illustrate this ide-
alized Rerun replay (non-sequential) in Figure 1(b). On one hand, it

allows episodes E21 and E31 to be replayed concurrently. One the
other hand, Lamport scalar clocks unnecessarily orders many inde-
pendent episodes (e.g., E20 with episodes from cores C0 and C1).

3 Karma Insights: Replaying Episodes in Parallel

As multi-threaded programs scale to more cores, replay must be
parallelized otherwise it can become arbitrarily slow, limiting the
utility of record-replay for online uses (e.g., fault tolerance, security
analysis) and eventually debugging. To this end, this section intro-
duces insights into Karma’s parallel replay with both (a) ordering
episodes with DAG and (b) extending episodes. While we present
how Karma orders the execution in the cores, Karma—like FDR,
Rerun, and DeLorean—can be virtualized by Capo [28].

3.1 Key Idea 1: Using a Directed Acyclic Graph to Order
Episodes During Replay
The first key idea behind Karma is simple: Use a directed acyclic
graph (DAG) rather than scalar timestamps to partially order epi-
sodes during replay. DAGs are well known to allow much greater
parallelism than scalar timestamps and have been used in an offline
analysis of replay speed potentials of deterministic recording
schemes [34]. For ease of exposition, we first show the value of
using a DAG by pretending that Karma’s recording breaks the exe-
cution into exact same episodes as Rerun did in Figure 1, and then,
in Section 3.2, present a second innovation that allows Karma to
have longer episodes than Rerun permits.

To this end, Figure 2(a) illustrates how Karma can record memory
dependencies among cores by triggering episode formation with
DAG edges to successor episode(s). Karma’s distributed log resem-
bles Rerun’s log with timestamps replaced by DAG edges (repre-
sented as PRED/SUCC sets explained below).

Figure 2(b) illustrates the parallelism of Karma’s replay wherein
successor episodes execute after their predecessors without other
artificial ordering constraints. Importantly, this enables a parallel
replay that is much faster than even Rerun’s idealized replay. For
example, while Rerun ordered episode E20 with independent epi-
sodes of cores C0 and C1 (Figure 1(b)), Karma’s replay leaves epi-
sode E20 unordered with respect to the episodes of cores C0 and C1
(Figure 2(b)), facilitating more replay parallelism.

C0 C1 C2 C3C0 C1 C2 C3

2:A=1

E00 E20

E21

E30

E31

1:r1=B

2:r2=E

9:r3=A
10:G=1

E10

41:D=1

E11

11:r2=F

3:r2=C

4:E=1

9:B=2

E01

1:D=1

2:r2=E

9:r3=A
10:G=1

E10 E20

E21

41:D=1

E11

E30

E31

11:r2=F

3:r2=C

4:E=1

9:B=2

E01
REFS=7
PRED=C1

SUCC=..

REFS=10

PRED=C0

SUCC=C0

REFS=31

SUCC=..

REFS=11

REFS=23

PRED=C3 PRED=C2

SUCC=.. SUCC=..

REFS=28

SUCC=C2

PRED=..

REFS=19 PRED=..

REFS=2

SUCC=..

REFS=7

PRED=C1

SUCC=..

PRED=..

REFS=31

REFS=23

SUCC=C3
PRED=..
REFS=11

SUCC=C2

PRED=..

REFS=19

SUCC=..

PRED=C2

REFS=28

PRED=..

PRED=C0
REFS=10

(a) Recording (b) Replay

SUCC=C3
PRED=..

SUCC=..

2:A=1

1:r1=B

PRED=..

SUCC=C1

REFS=2

E00

SUCC=C1

SUCC=C0

PRED=C3

1:D=1

Ti
m

e

Figure 2. Karma’s DAG-based Record and Replay with Rerun’s Episodes

Karma replay via DAG is much faster than
Rerun’s. See KEY of Figure 1 and following
KEY:
PRED: predecessor set
SUCC: successor set
(solid arrow):: wakeup messages
3

While the idea of using a DAG is simple, it is less simple to deter-
mine how to represent DAG edges to successor episode(s). For fast-
est replay, the DAG edge representation should facilitate an episode
waking up the successor episode(s) quickly. Moreover, for low
recording overhead, it should be fast to create during recording and
compact to log. Using integer episode identifiers, as in a software
representation of DAG edges, is a poor representation, as we see no
way for replay to avoid indirecting through memory to determine
the successor(s). Using these episode identifiers would also have
severe negative impact on log size.

As discussed more fully in Section 4.3, to efficiently record the
DAG edges, Karma actually represents DAG edges with predeces-
sor (PRED) and successor (SUCC) sets that name the cores of the
predecessor and successor episodes respectively. During recording,
these sets are populated from coherence traffic and then logged.
During replay, a core awaits a wakeup message from each predeces-
sor before beginning an episode and sends a wakeup message to
each successor after completing an episode.

3.2 Key Idea 2: Extending Rerun’s Episode
The second key idea behind Karma is subtle: Concurrent episodes
must not conflict during replay, but may conflict during recording.
In contrast, Rerun, DeLorean and IMRR always ends episodes when
they conflict during recording. For example in Figure 1(a) for
Rerun, core C0 ends episode E00 when it gives block A to core C1
for episode E10. In Figure 2(a), we show Karma behaving similarly,
but this is not necessary. More recently, Timetraveller [ref] which
improves upon Rerun’s log size uses post-dating of scalar times-
tamps to also allow growing episodes even after some conflicts.

In contrast, as shown in Figure 3(a), Karma continue recording in
episode E00 even as it conflicts with episode E10, as long as it
orders E00 before E10 in the log. During replay, conflicting epi-
sodes E00 and E10 will not be concurrent, because the log entries
will ensure that the end of E00 precedes the beginning of E10. In
similar fashion, core C1 can cover its execution of 41 references
with one episode E10 (Figure 3(a)), rather than two episodes E10
and E11 (Figure 2(a)). Beside the restriction discussed below, a core
is not required to end a episode when either it (a) provides a block to
another core or (b) obtains a block from another core.

On one hand, this optimization seems too good to be true. Perhaps
the authors of Rerun and DeLorean missed it, because they appear
to be inspired by transactional memory systems [15, 21] that usually
abort when concurrent transactions conflict in an execution (as there
is no distinction between recording and replay). Fortunately in
Dependence Aware TM, Ramadan et al. [36] showed that conflicting
concurrent transactions can all commit, provided that they are prop-
erly ordered. For example, they allow core C0’s transaction T to
pass a value to core C1’s concurrent transaction U (and both com-
mit) as long as T is ordered before U. Karma exploits a similar idea
for episodes. Both are inspired by the greater freedom of conflict
serializability over two-phase locking [12] and value forwarding
among “episodes” in some thread-level-speculation systems (e.g.,
[13, 37]).

On the other hand, full exploitation of the optimization is too good
to be true. As depicted in Figure 3(a), a problem occurs when the
core C0 later attempts to order E00 after core C1’s episode E10
because of conflict in block E (memory reference 4 of core C0), but
E00 was previously ordered before E10 due to block A (or con-
versely a core seeks to order an episode before another episode pre-
viously ordered after). Karma cannot do this without adding a cycle
to the DAG, which is not allowed, as it would make ordering replay
impossible. Instead, Karma always ends episode E00, begins epi-
sode E01 (with memory reference 4 as its first reference), and orders
E01 after E10 of core C1.

Karma detects the possibility of cycle formation in the recorded
DAG using Lamport scalar clock based timestamps [19] (but never
logs them). Karma ends an episode when it receives a timestamp
greater than the timestamp of the current episode. This ensures that
the order of episodes is acyclic and can be replayed properly. Since
Karma does not log timestamps, they can not serialize replay and
the sole purpose of this timestamp is to dynamically detect possibil-
ity of cycles while recording.

Finally, Karma enables a tradeoff between log size and replay paral-
lelism, similar to one found in other record-replay systems [27,42].
Growing longer episodes has two effects. First, larger episodes
mean fewer episodes to cover an execution. This makes log size
smaller. Second, longer episodes make replay less parallel and
slower. This is because during replay the end of a predecessor epi-

C0 C1 C2 C3C0 C1 C2 C3

E00 E20

E21

E30

E31

SUCC=..
PRED=C2

1:r1=B

REFS=11
REFS=19
PRED=..

REFS=28

2:A=1

E00 E20

E21

E30

E31

SUCC=..
PRED=C2

1:r1=B

REFS=6
PRED=C1
SUCC=..

REFS=11

REFS=23
PRED=C3
SUCC=..

REFS=19

REFS=28

1:D=1
2:r2=E

9:r3=A
10:G=1

E10

11:r2=F

PRED=C0
REFS=41

(a) Recording (b) Replay

SUCC=C2
SUCC=C3

REFS=6
PRED=C1
SUCC=..

PRED=C3

REFS=23

3:r2=C

E01

1:r2=C
2:A=1

E01

REFS=3
PRED=..
REFS=3

SUCC=C1

SUCC=C0

PRED=..

SUCC=C1
PRED=..

1:D=1
2:r2=E

9:r3=A
10:G=1

E10

11:r2=F

41:D=1
REFS=41
PRED=C0
SUCC=C0

PRED=..
SUCC=C3

SUCC=C2

PRED=..

SUCC=..

41:D=1

9:B=2

9:B=2

4:E=1

4:E=1

Ti
m

e

Figure 3. Karma’s Record and Replay with Extended Episodes

Karma can extend episodes to reduce log
size.
4

sode happens before the beginning of a successor episode. For
example, earlier we saw that Karma could cover core C1’s execution
of 41 memory references with one episode (Figure 3(a)) rather than
two (E10 and E11 in Figure 2(a)). In Figure 3(b), we however
observe that during replay, this means that episode E01 can only
start execution after the merged bigger episode E10 completes its
execution. For this reason, as we will find in Section 6, there is
value in bounding the maximum episode size to balance log size and
replay parallelism.

3.3 A Sketch of Karma Operation
This section sketches Karma’s basic operation for recording and
replay, but leaves details for Section 4.

Record Sketch. During recording, Karma, grows episodes and
passes timestamps on coherence response messages. Each core
grows its episode until it receives a timestamp greater than its cur-
rent timestamp (or a maximum size is reached, etc.). This indicates
possibility of cycle in the DAG. At this point, it ends its episode,
saves the corresponding predecessor/successor set for logging, and
begins a new episode. When responding with a timestamp, a core
sends its current timestamp for a block that matches in its read/write
filter or its previous timestamp otherwise. For implementation rea-
sons discussed later, a Karma core keeps the timestamp and prede-
cessor/successor sets for both its immediately previous and current
episodes. When an episode ends at a core, it logs the memory refer-
ence count, predecessor and successor set of the immediately previ-
ous episode, but never logs the timestamp.

Replay Sketch. During replay, a Karma core repeats four steps. (1)
Read the predecessor/successor (PRED/SUCC) sets and reference
count REFS for its next episode. (2) Wait for wake-up messages
from each core in the episode’s predecessor set. (3) Execute instruc-
tions for REFS memory references. (4) Send a wakeup message to
each core in the successor set.

Online Replay? While we present the record and replay phases as
separate, applications like fault tolerance may wish to “pipe” the log
from recording to a concurrent replay. Karma’s faster parallel replay
makes this online replay more promising, but we leave detailed
design issues to future work.

4 Implementing Karma

While the previous section presented the ideas behind Karma, this
section presents a concrete hardware implementation and addresses
additional issues.

4.1 Example Base System
We assume a base system as illustrated in Figure 4 with parameter
values from Table 1. It is a multicore chip with private writeback L1
caches, shared multibanked L2 and a MESI directory protocol.

4.2 Karma Hardware
As Figure 4 depicts, Karma adds eight registers (148 bytes) to each
core: 128-byte address filter (FLT) (combining Rerun’s read/write
filters), 4-byte reference count (REFS), and for both the previous
and current episodes, there are predecessor sets (PRED0 and
PRED1), successor sets (SUCC0 and SUCC1) and 4-byte times-
tamps (TS0 and TS1). For 16 cores, all sets can be represented with
2-byte bit vectors, while more scalable representations are possible
as many episodes have one or two predecessor or successor.

Karma assumes L2 cache blocks include a directory that tracks
where a block is cached in the L1s, L1 cache shared replacements
are silent, and L1 writebacks continue to remember the previous
owner. Section 4.6 will discuss additional issues due to L1 and L2
caches being finite. Karma passes timestamps on coherence
response messages. Karma adds a single bit called previouslyOr-
dered in coherence response message, to be explained in
Section 4.3. For supporting replay, Karma adds wakeup messages
whose only payload is a source core identifier.

4.3 Predecessor and Successor Sets
This subsec-
tion dis-
cusses some
subtle issues
for how and
why Karma
represents
DAG edges
between epi-
sodes as pre-
decessor and
successor sets
between
cores. We implement each set with a 2-byte bit vector, but larger
systems can use other encodings since most of these sets have just
one or a few elements.

Since predecessor and successor sets can only record a single edge
from/to each other core, we take special care to avoid recording a
second edge between the same two cores (Figure 5). When sending
a message that would constitute a second outgoing edge from an
episode to the same other core, we set the previouslyOrdered bit in
the coherence reply message to indicate that this message does not
represent an edge, as depicted in Figure 5(a) and (b). It is correct to
elide this edge, as it is redundant because of the previous edge to
this core. On receiving a message that would be the second incom-
ing edge from another core, we end the receiving core’s episode,
start a new episode, and add the edge to the otherwise empty new
predecessor set (Figure 5(c)). This is correct, since cores can always
end episodes early. On receiving a request message from a core

Table 1: Base System Configuration
Cores 16, in-order, 3GHz

L1 Caches Split I&D, Private, 32K 4-way set associative,
write-back, 64B lines, LRU replacement, 3 cycle
hit

L2 Cache Unified, Shared, Inclusive, 16M 8-way set
associative, write-back, 16 banks, LRU
replacement, 21 cycle hit

Directory Full bit vector in the L2

Memory 4G DRAM, 300 cycle access

Coherence MESI Directory, silent replacements

Consistenc
y Model

Sequential Consistency (SC)
(with extension to TSO in Section 4.7)

L2

Bank 0
Data

Array

Coherence Ctrl.

Directory

Tag

Core 0 Core 1 Core 15

Pipeline

L1 I L1 D

L2

Bank

L2

1 15

Interconnect

Karma’s per−core
Sate

References (REFS)

Previous Episode

Current Episode

Address Filter (FLT)

Timestamp (TS1)

Predecessor (PRED1)

Bank

Successor (SUCC0)

Predecessor (PRED0)

Successor (SUCC1)

Timestamp (TS0)

Figure 4. Base System Configuration with Karma’s State per Core
5

already ordered after this core’s current episode, this core responds
with the previouslyOrdered bit set so that this message is also not a
DAG edge, as depicted in Figure 5(d). This action is correct because
the missing edge is implied by transitivity [41].

Karma’s approach for representing DAG edges leads to a convenient
invariant during replay (Section 4.5): when a core receives a wakeup
message from core req, the message pertains to the receiving core’s
next episode whose predecessor set includes core req. This allows
the wakeup message to physically name a core and yet have the
edge be applied to a specific episode as in Figure 3(b).

4.4 Karma Recording
As depicted in Figure 6, the key to Karma recording is what actions
Karma takes when a core/L1 sends a data response or acknowledge-
ment (left side) and receives data or an acknowledgement in
response to a coherence request it has made (right side). The top of
Figure 6 repeats the Karma state from Figure 4.

During recording, each core sometimes sends a coherence reply
(data and acknowledgement) in response to coherence request from

another core req. The core first tests whether core req is already an
element of SUCC1. If it is, the outgoing message’s previouslyOr-
dered bit is set, so that the message does not create an edge in the
DAG (Section 4.3) and no other actions are needed.

Otherwise, the core examines whether its address filter contains the
message address (or a false positive). If so, then the core associates
the outgoing edge with its current episode. It sets the message’s
timestamp to TS1 and previouslyOrdered bit to false. It then adds
core req to SUCC1. If the filter does not match, the core associates
the message with its previous episode and takes corresponding
actions using TS0 and SUCC0. This is correct, because if a block is
not touched by the current episode it was touched no later than the
previous episode at that core.

During recording, a core executes instructions, which sometimes
generate cache misses and coherence requests. Upon receiving a
coherence response message (data or acknowledgement) from core
src, a core may or may not take any actions for recording
(Figure 6(b)). In particular, if the incoming message’s previouslyOr-
dered bit is set, no action is needed, because the message comes

C1C0 C0 C1 C0 C1 C0 C1

SUCC=..

REFS=..

E1j

PRED=C0
REFS=..

REFS=..
PRED=..
SUCC=..

REFS=..

SUCC=..
PRED=..
REFS=..

PRED=..
SUCC=C1

REFS=..

SUCC=..

REFS=..
PRED=C0

E1j+1

REFS=..

SUCC=..

SUCC=..

E1j

REFS=..
PRED=C0
SUCC=..

REFS=..
PRED=..
SUCC=..

PRED=..
REFS=..

the same episodes.

PRED=C0

PRED=..
SUCC=C1

REFS=..

PRED=..
SUCC=C1

REFS=..

SUCC=C1

(a) (c)(b) (d)

PRED=..
SUCC=C1

PRED=C0

E1j

E0i

E1j+1

E0i

E1j

E0i

E0i+1

E0i

E0i+1

E1j+1

Solution: Elide second (dashed)

previouslyOrdered bit).

Problem: Predecessor and
successor sets cannot
remember parallel edges from/to

Problem: Successor set cannot

on the same other core.

Solution: Elide second (dashed)
from DAG (by setting

cannot remember more than
one edge to an episode from

Problem: Predecessor set

Solution: Start a new episode
and add edge to it instead.

Problem: Dotted edge

Solution: Elide second (dashed)
from DAG (by setting

unnecessary (implied by

more complex.

previouslyOrdered bit).

core.
episodes on the same other

transitivity) and makes replay

edge from DAG (by setting
previouslyOrdered bit).

from an episode to episodes
remember more than one edge

Figure 5. Subtle Implementation Issues Regarding Predecessor and Successor Sets

REFS1=0
TS1 = max(i_msg.TS+1,TS0+1)

} else {
/* Update the current episode */

TS1 = max(i_msg.TS+1, TS1)
PRED1.set(i_msg.src)

}

}

State per core

FILTER: Address filter
for current episode

for previous episode
REFS1: Memory Reference count

Coherence Message Structure
src/req: Source or Requestor core id Addr: Addressdst: Destination
previouslyOrdered: need an Edge in DAG? TS: Timestamp Payload: Data etc.

Action on sending data/Ack reply: Action on receiving data/Ack i_msg:

if(i_msg.previouslyOrdered == true) {

}else{

if((SUCC1 not empty
|| PRED1 contains i_msg.src){

&& i_msg.TS>=TS1)

/* Do nothing */

receive_request_message(i_msg)

REFS0: Memory Reference count

REFS0=REFS1
PRED0=PRED1
SUCC0=SUCC1
/* Set up new episode */

TS0=TS1

write_to_log(REFS0,PRED0,SUCC0)

Clear PRED1,SUCC1 and FILTER

/* Log previous episode */

/* Move current episode to previous*/

 o_msg.previouslyOrdered = true
/* No new edge in DAG neded */

} else {
 if(FLT contains i_msg.Addr){

/* Current episode*/

 o_msg.previouslyOrdered = false

 to coherence protocol */

 } else {

 o_msg.TS = TS1
 o_msg.previouslyOrdered = false

SUCC1.set(i_msg.req)

} else {

if(SUCC0 contains i_msg.req) {
/* Previous episode */

}
}

o_msg.TS = TS0

/* Fill in other fields in o_msg according

 o_msg.previouslyOrdered = true

send_response_message(o_msg)

/* No new edge required */

/* End episode */

TS0: Timestamp of previous Episode

SUCC0: Successor set of previous Episode
PRED0: Predecessor set of previous Episode

SUCC1: Successor set of current Episode
PRED1: Predecessor set of current Episode

TS1: Timestamp of current Episode

(a) (b)

if(SUCC1 contains i_msg.req) {

SUCC0.set(i_msg.req)

}

PRED1.set(i_msg.src)

Figure 6. Karma’s Recording Algorithm (at each core)
6

from a core whose current or previous episode was already ordered
with respect to this core’s earlier or current episode.

If episode ordering is required, the incoming message may cause
the current episode to end for two reasons. First, the episode ends if
SUCC1 is not empty and the message’s timestamp is greater than
the current episode’s timestamp. This is done to prevent cycles in
the DAG. Second, the episode ends on incoming message from core
src that is already in the current episode’s PRED1.

To end an episode, a core logs the previous episode’s memory refer-
ence count and the predecessor/successor sets, copies the current
episode’s information to the previous one’s, and then initializes the
new current episode’s values. In particular, the timestamp update
follows Lamport scalar clock rules, the filter is cleared, the succes-
sor set made empty, and predecessor set made to contain only the
message source (core src). The timestamp is not logged and thus
has no role in replay.

4.5 Karma Replay
During replay, a Karma core repeat four steps, depicted in Figure 7.

(1) When a core is ready to start a new episode, it reads the prede-
cessor/successor (PRED1/SUCC1) sets and reference count REFS1
for the next episode from its per-core log. These values are stored in
the same special registers as used in recording. Replay on this core
is complete when its log is empty.

(2) The core waits for wakeup messages from each core in the epi-
sode’s predecessor set PRED1. When the core has received a mes-
sage for all cores originally in PRED1, it moves to the next step.

(3) The core executes instructions of the episode, decrementing
REFS1 on each dynamic memory references, and stops execution
when the episode REFS1 is zero and the episode is complete.

(4) The core sends a wakeup message to each core in its successor
set SUCC1. When complete, the core goes back to step (1).

Karma’s replay algorithm counts architectural memory references,
but never micro-architectural events, such as cache misses. Thus,

Karma replay does not require the same caches or cache state as
was present during Karma recording.

The description above acts as if the wakeup messages arrive only
during step (2), whereas they can actually arrive at any time. We
implement a simple replayer that just buffers early messages. A
more complex replayer could “pipeline” episodes by reading the
next log entry early and gathering wakeup messages for the next
episode while the current episode is still executing.

More subtly, wakeup messages for future episodes can arrive earlier
than ones needed for the next episode(s), theoretically filling up any
fixed sized message buffer. Fortunately, since the only information
that must be remembered about a wakeup message is its source core
identifier, a core can remember up to 8 wakeup messages per core
(128 total) using a three-bit counter for each of 16 cores (6 bytes
total). Moreover, these buffer counts can be made unbounded using
known “limitless” techniques [8] that maintain rare overflow counts
in software.

4.6 Effect of Finite Caches
Heretofore we assumed infinite L1 and L2 caches, but real systems
have finite caches. Here we extend Karma to handle L1 and L2
cache replacements (from ‘Shared’ and ‘Exclusive’) and writebacks
(from ‘Modified’) [38]. Many solutions are possible (and could be
an entire paper). Assume that a block is evicted by core C0 at epi-
sode E00 and next used by core C1 in episode E19. In all cases, epi-
sode E00 must be ordered before episode E19.

L1 Evictions. Karma handles L1 replacements and writebacks
mostly like FDR [41]. There are three possible cases during L1
eviction that require attention. First, a shared replacement by C0 is
silent. A subsequent miss by C1 will send an invalidation to C0
whose acknowledgement message will order episode E19 after C0’s
current episode which is (long) after episode E00. Second, a write-
back by C0 does not reset the block owner field at the L2, much like
LogTM’s sticky states [29] and FDR [41]. As in the first case, a
subsequent miss by C1 will send an message to C0 whose acknowl-
edgement message will order episode E19 after C0’s current epi-
sode which is after episode E00. Third, C0 could have written back
the block and one or more other cores read it. Here Karma, extends
the L2 directory by 4 bits (< 1% of a 64-byte cache block) to keep
core identifier of the last writer to a block, so that reads can con-
tinue to get ordered after C0’s current episode that is after E00. This
is the same state that a MOESI coherence protocol needs to remem-
ber for an owner among sharers.

L2 Evictions. Karma seeks a different solution for L2 evictions,
because (a) they are much less common and (b) we wish to add lit-
tle or no state to main memory. The key idea is to compute a proxy
core to order the eviction before any subsequent use. For example,
the proxy core for victim block 100 with 16 cores might be 100
modulo 16 = C4. When the L2 seeks to evict block 100 last written
by core C0, it will first order the current episode of C0 before the
current episode of C4. (Much) later when C1 misses to memory for
block 100, the L2 can recompute the proxy C4 and order the current
episode of core C4 before the current episode of core C1 which is
E19. By transitivity, episode E00 is ordered before E19. Optionally,
memory can use a single bit to remember whether a block was ever
cached, as we assume in our simulations. Many other solutions are
possible, including broadcasting on L2 misses in small systems or
augmenting main memory to remember the previous writer if met-
abits are available.

PRED1: Predecessor set of current episode (executing/waiting)
SUCC1: Successor set of current episode (executing/waiting)
REFS1: Count of residual memory references of current episode

src: Source dest: Destination
Wakeup message structure:

State per core:

/* (2) Wait until all required wakeup messages arrive */
 when receive_wakeup_message(i_msg) {

PRED1.unSet(i_msg.src)

/* (3) Execute the new episode */

Before the start of a new episode:
/* (1) Get next log entry */
read_from_log(REFS1,PRED1,SUCC1)

while(REFS1 != 0) {

Execute instructions

REFS1 = REFS1 − 1

/* (4) Send out wakeup messages */

o_msg.src = own_core_id
For each element P in SUCC1 {

} }
}

} /* Finished episode execution*/
}

}
send_wakeup_message(o_msg)
o_msg.dest = P

while(PRED1 not empty) {

if(PRED1 contains i_msg.src) {

if(memory reference) {

Figure 7. Karma’s Replay algorithm (at each core)
7

4.7 Extending Karma to Support TSO (and x86)
Hitherto, Karma implicitly assumed the sequential consistency (SC)
memory consistency model [20], but now we show how to extend
Karma to total store ordering (TSO) [14, 40]. Unlike SC, TSO
exposes (an abstraction of) write buffer for committed writes. More-
over, TSO provides a correct implementation of the x86 memory
model [18] that exploits most of the flexibility that x86 allows. We
extend Karma by adapting Xu et al.’s TSO solution from the depen-
dence-based RTR [32].

TSO presents challenges as it allows a processor to commit a write
(store) before a subsequent read (load) (in program order) and yet
order the write (at logical shared memory) after the read. In prac-
tice, this relaxation of write-read ordering is leveraged using a first-
in-first-out write buffer to hold writes that are committed but yet not
ordered. Xu et al. [32] showed that such write buffers can cause
their RTR system to record a cycle of dependences and deadlock the
replay. To break these cycles, they propose a order-value hybrid
recorder that detects a problematic read (or load) and reacts by
recording the value read and not recording the write-after-read
dependency that made the read problematic. Specifically, a prob-
lematic read is a read that gets its value V from the cache, while one
or more earlier committed writes (in program order) are in the write
buffer and cache block containing V is invalidated before all earlier
writes are ordered. The execution is replayed following the now-
acyclic dependencies and “bypassing” values to reads from the log
whenever present.

We found that Karma’s replayer can also run into a similar situation
for the same reasons, but fortunately, Xu et al.’s solution can be
extended to episodic record/replay of Karma. Figure 8 illustrates
how we can change Karma to allow order-value hybrid recording in
the presence of problematic reads in a TSO execution. Assume that
the writes from both the cores are ordered after the subsequent
reads, so that both reads return the value 0. Both reads will be
detected as problematic (with Xu et al.’s detection mechanism),
cause the new recorder to simply log the value of each read (as
shown in the Figure 8) and to not modify the predecessor or succes-
sor set to effectively omit logging the dependency (following Xu et
al.). Figure 8 shows how logs for both episodes E00 and E11 could
include entries that each episode’s second instruction (offset 1)
obtained value 0. Thus, Karma records a TSO execution that is not
an SC execution.

5 Evaluation Methods

We evaluate Karma using the multicore hardware presented in
Section 4, except that we study scaling by varying core count: 4, 8,
and 16 cores. When doing this, we keep the shared L2 cache size

per core constant at 1MB, so the total L2 cache size is 4MB for 4
cores, 8MB for 8 cores, and 16MB for 16 cores.

For comparison purposes, we also evaluated Rerun [17] in the same
setup, as it is the closest cousin to Karma, using the code from
Rerun’s recorder provided to us by Wisconsin. More specifically,
we compare against an idealized Rerun replayer (non-sequential)
that (a) replays episodes with the same timestamp in parallel (as in
Figure 1(b)) and (b) appears to wakeup episode(s) with the next
timestamp after the last episode with the current timestamp com-
pletes. A practical implementation of Rerun replay would, of
course, be slower than this idealized one.

We use the Wisconsin GEMS [26] full system simulation infrastruc-
ture, which models an enterprise-level SPARC server running on
unmodified Solaris 9 operating system. This simulator uses the
Simics [25] full system simulator as front end for the functional part
of the simulation and uses the Ruby memory timing model to simu-
late different hardware platforms. In this work we concentrate on
memory race recording and replaying and assumes support for han-
dling DMA, I/O, and external interrupts much like FDR [41] and
software layer support much like Capo [28]. To approximate this,
we dilate Simics’s time to make sure interrupts arrive between the
same dynamic instructions during both recording and replay.

We use the Wisconsin Commercial Workload suite [1] to drive eval-
uation. This workload suite consists of a task-parallel web server
(Apache), a java middleware application (Jbb), a TPC-C like online
transaction processing (Oltp) workload on DB2, and a pipelined
web server (Zeus). We stress-tested Karma implementation with
memory race ordering sensitive microbenchmark racey[16].

6 Experimental Results

This section will ask three basic questions and provide the answers
summarized here:

Question #1: Does Karma speedup replay? Yes, Karma replay
can be 1.4X-7.1X faster than idealized Rerun replay. This translates
to a modest 19%-28% slowdown for the replay over the base system
without any record/replay in a 16 core system. With fewer cores the
slowdown is even less.

Question #2: How can Karma trade off log size and replay
speed? By loosening the bound on maximum episode size, Karma
can achieve smaller log sizes (e.g., 47%) for situations when slower
replay is tolerable (e.g., 21% slower). This presents an effective
control knob to trade off the log size versus replay speed, depending
upon the requirement of a particular use of deterministic replay.

Question #3: How does Karma’s log size compare to Rerun’s?
Karma and Rerun log sizes are comparable with a 256-memory-ref-
erence maximum episode size. As we increase episode size, Karma
achieves substantial log size reduction (up to 43%) over Rerun and
still replays much faster than Rerun.

6.1 Big Picture: Much Faster Replay While Retaining Fast
Recording
Figure 9 displays the most important histograms in this paper. Each
histogram provides results for a different benchmark. Each cluster
of bars within a histogram represents a different configuration of the
CMP. The configuration here is characterized by the number of
cores (4, 8, and 16) and total L2 cache size (4MB, 8MB, and
16MB). All histogram heights depict the speedup normalized to the
native execution at corresponding CMP configuration with no
recording or replay (Base). For example, bars clustered around x-
axis point for 16core-16MB configuration are speedup normalized

[1: ordered here]

1: A=1
2: %r1 = B 2: %r2 = A

1: B=1

E00

[1: ordered here]

 C0 C1
Initial value A=B=0

Offset=1
Value=0

E10

SUCC=..
PRED=..
REFS =..

Offset=1
Value=0

SUCC=..
PRED=..
REFS =..

Figure 8. Karma’s handling of TSO execution
through hybrid order-valu recording.
8

to execution for 16core-16MB L2 cache CMP configuration without
any record/replay (Base).

Each cluster of bars in a histogram has three bars representing exe-
cution with no record/replay (Base), idealized Rerun replay and
Karma replay. Not shown are Rerun and Karma recording, as they
are mostly very close to Base. All results in this section assume a
maximum episode size of 256 memory references, which, as we
will see later, produces a log size similar to Rerun’s. By showing
performance comparison of our system for different configuration
points for CMP, we tried to demonstrate scalability and applicability
of our proposed system under varying CMP configurations.

Question #1: Does Karma speedup replay? Yes, Karma replay
can be 1.4-7.1X faster than idealized Rerun replay depending upon
the number of cores and the application. For Apache with 4, 8, and
16 cores, for example, Karma replay is 1.4X, 2X, and 3X faster than
Rerun replay. This is not surprising, since even our idealized Rerun
replay still does not expose enough parallelism due to scalar clock
based ordering of episodes. Results for Oltp and Zeus are similar,
while for Jbb, Karma replay speed is 7.1X of Rerun’s. For the 16-
core system, Karma replay is only 19%, 28%, 22% and 25% slower
than the Base execute (without record/replay) for Apache, Jbb, Oltp
and Zeus, respectively. For fewer cores, this slowdown is much less.

Recording. Karma’s recording (not shown in the figure) is usually
negligibly different from doing no recording/replay (i.e., Base), just
like Rerun’s recording. We observed for Apache, Jbb and Zeus,
Karma recording runs nearly identically (<1% slowdown) with
doing no recording (Base). Karma recording also works similarly
well for OLTP with 4 and 8 cores, but adds a bit more overhead
(~10%) to 16-core OLTP. More importantly, Karma recording scales
well when applications scale well.

Bandwidth. Karma sends around 2% more traffic over the intercon-
nect while recording than compared to Rerun. This is because of
extending few coherence messages (previouslyOrdered bit, etc.) and
sometimes because of extra messages. This modest extra bandwidth
could affect execution time substantially if the interconnect was

near saturation (which it should not be). One would note that Rerun
adds around 10% bandwidth overhead on the interconnect over a
system with no record/replay.

Sensitivity Analysis. The results above showed that Karma gains
are robust with varying core count (4, 8 and 16) and shared L2 cache
sizes (4, 8, 16 MB). Additional sensitivity analysis (not shown),
confirms that results qualitatively hold during variations, e.g., dou-
bling L1 size, doubling L2 size, and halving memory latency.

6.2 Obtaining Smaller Logs but Slower Replay
Above we showed that Karma replay performance is much better
than Rerun’s (1.4X-7.1X) for what will turn out to be a comparable
log size. Some uses of record/replay, e.g., debugging, may wish to
reduce rate of log size growth further, so that, for fixed log size, one
can record a longer execution. Karma facilitates this for determinis-
tic record/replay uses that can tolerate somewhat slower replay. This

0

0.2

0.4

0.6

0.8

1

1.2

4core-4MB 8core-8MB 16core-16MB

Sp
ee

du
p

no
rm

al
ize

d t
o

"B
as

e"
 o

f c
or

re
sp

on
di

ng

co
nf

ig
ur

at
io

n

Number of cores-L2 cache size

Apache
Base

Rerun Replay

Karma Replay

0

0.2

0.4

0.6

0.8

1

1.2

4core-4MB 8core-8MB 16core-16MB

Sp
ee

du
p

no
rm

al
ize

d
to

 "
Ba

se
" o

f c
or

re
sp

on
di

ng

co
nf

ig
ur

at
io

n

Number of cores-L2 cache size

Oltp
Base

Rerun Replay

Karma Replay

0

0.2

0.4

0.6

0.8

1

1.2

4core-4MB 8core-8MB 16core-16MB

Sp
ee

du
p

no
rm

al
ize

d t
o

"B
as

e"
 o

f c
or

re
sp

on
di

ng

co
nf

ig
ur

at
io

n

Number of cores-L2 cache size

Jbb Base

Rerun Replay

Karma Replay

0

0.2

0.4

0.6

0.8

1

1.2

4core-4MB 8core-8MB 16core-16MB

Sp
ee

du
p

no
rm

al
ize

d t
o

"B
as

e"
 o

f c
or

re
sp

on
di

ng

co
nf

ig
ur

at
io

n
Number of cores-L2 cache size

Zeus Base

Rerun Replay

Karma Replay

Figure 9. Comparison of Rerun’s and Karma’s Replay Speed (normalized to Base, 256-reference max. episodes)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9

Ka
rm

a
Re

pl
ay

 S
lo

w
do

w
n(

 w
.r.

t r
ec

or
di

ng
)

Logsize (Bytes/Kilo Instr)

Apache

Zeus

Oltp

Jbb

Max. Episode
size 128

128
256

512

1024

2048

4096
8192

Unbounded

Figure 10. Tradeoff between Log size and Replay
Slowdown.

By varying maximum episode size across 128 (right end of each appli-
cation’s lines), 256, 512, ... 8K, and unbounded number of memory ref-
erences, allow one tradeoff smaller log with some replay slowdown.
Displayed results use 16 cores.
9

10

might be a good tradeoff when recording is much more common
(e.g., always on) than replay (e.g., to investigate a crash).

Figure 9 illustrates Karma log size and replay speed for each of our
four applications. The x-axis gives uncompressed log size growth in
bytes per thousand instructions. The y-axis gives replay speed nor-
malized to recording speed. For each application, each point on its
lines, beginning from the right, provides the tradeoff with maximum
episode sizes with memory reference counts: 128, 256 (the value
used in Section 6.1), 512, ..., 8K, and unbounded.

Question #2: How can Karma trade off log size and replay
speed? By loosening the bound on maximum episode size, Karma
achieves smaller log sizes but slower replay. For example, increas-
ing the maximum episode size from 256 to 2K references has the
following effects: Apache generates 54% smaller log for 23%
slower replay, Jbb generates 71% smaller log for 87% slower replay,
OLTP generates 60% smaller log for 21% slower replay, and Zeus
generates 47% smaller log for 33% slower replay. Three of four
benchmarks pay a modest replay slowdown, while Jbb is more sen-
sitive.

Question #3: How does Karma log size compare to Rerun’s?
Karma and Rerun log sizes are comparable with a 256-memory-ref-
erence maximum episode size. Figure 10 displays Karma’s uncom-
pressed log size normalized to Rerun’s uncompressed log size on a
16 core system. The x-axis varies both Karma and Rerun’s maxi-
mum episode sizes (in memory references) for 128, 256, ..., 8K, and
unbounded. For the default of 256 memory references, Karma’s log
sizes versus Rerun’s varies from 10% smaller for Zeus to 17%
larger for OLTP. As episodes grow larger, Karma’s log size
decreases faster than Rerun’s. For maximum episode sizes of 1K
references and greater, Karma’s log is always smaller than Rerun’s.
With a maximum episode size of 8K references), Karma log size is
smaller than Rerun’s by 33%, 43%, 17% and 35% for Apache, Jbb,
Oltp and Zeus, respectively.

If small logs are more important than faster replay, then it is reason-
able to set the maximum episode size to 2K references. To this end
we found out that with maximum episode size 2K references,
Karma retains substantial replay speedups with respect to Rerun
(e.g. 1.3X-4.8X) but they are smaller than with 256-reference epi-
sodes. Moreover, Figure 10 showed that Karma’s log size is 8-35%
smaller than Rerun’s log size, when the maximum episode size is
limited to 2K memory references in both systems.

7 Conclusions

This paper proposes Karma for both scalable recording and replay.
Karma builds episode-based memory race recorder/replayer using a
directory coherence protocol, without requiring any global commu-
nication. During recording, Karma records the order of episodes
with a directed acyclic graph and extends episodes even after some
conflicts. During replay, Karma uses wakeup messages to trigger
parallel replay of independent episodes. Results with several com-
mercial workloads on a 16-core multicore system show that Karma
can achieve replay speed within 19%-28% of execution speed with-
out record-replay and four times better than idealized Rerun replay.

8 Acknowledgements

We thank Derek Hower for providing the code for Rerun. We thank
Brad Beckmann, Dan Gibson, Heidi Arbisi-Kelm, Rathijit Sen,
Mike Swift, Haris Volos, Min Xu, the Wisconsin Multifacet group,
the anonymous reviwers and the Wisconsin Computer Architecture
Affiliates for their comments and/or proofreading. Finally we thank
the Wisconsin Condor project, the UW CSL for their assistance.

This work is supported in part by the National Sicence Foundation
(CNS-0551401, CNS-0720565 and CNS-0916725), Sandia/DOE
(#MSN123960/DOE890426), and University of Wisconsin (Kellett
award to Hill). The views expressed herein are not necessarily those
of the NSF, Sandia or DOE. Bobba was PhD student at University of
Wisconsin-Madison when this work was performed. Hill has a sig-
nificant financial interest in Microsoft.

References.
[1] Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper, Milo M. K. Mar-

tin, Daniel J. Sorin, Mark D. Hill, and David A. Wood. Evaluating Non-deter-
ministic Multi-threaded Commercial Workloads. In Proc. of the 5th Workshop
on Computer Architecture Evaluation Using Commercial Workloads, pages 30–
38, February 2002.

[2] Gautam Altekar and Ion Stoica. ODR: output-deterministic replay for multicore
debugging. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles (SOSP’09), 2009.

[3] David F. Bacon and Seth Copen Goldstein. Hardware-Assisted Replay of Mul-
tiprocessor Programs. Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, published in ACM SIGPLAN Notices, pages 194–206,
1991.

[4] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman.
CoreDet: a compiler and runtime system for deterministic multithreaded execu-
tion. In Proc. of the 15th Intnl. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 53–64, March 2010.

[5] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Er-
rors. Communications of the ACM, 13(7):422–426, July 1970.

[6] Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrellas. Bulk Disambigua-
tion of Speculative Threads in Multiprocessors. In Proc. of the 33nd Annual Int-
nl. Symp. on Computer Architecture, June 2006.

[7] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: Bulk
Enforcement of Sequential Consistency. In Proc. of the 34th Annual Intnl. Symp.
on Computer Architecture, June 2007.

[8] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directories:
A scalable cache coherence scheme. In ASPLOS-IV: Proceedings of the fourth
international conference on Architectural support for programming languages
and operating systems, pages 224–234, New York, NY, USA, 1991. ACM.

[9] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Determin-
istic Shared Memory Multiprocessing. In Proc. of the 14th Intnl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems, pages
85–96, March 2009.

[10] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and Peter M.
Chen. ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging
and Replay. In Proc. of the 2002 Symp. on Operating Systems Design and Im-
plementation, pages 211–224, December 2002.

[11] George W. Dunlap, Dominic Lucchetti, Peter M. Chen, and Michael Fetterman.
Execution Replay of Multiprocessor Virtual Machines. In International Confer-
ence on Virtual Execution Environments (VEE), 2008.

[12] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[13] Lance Hammond, Ben Hubbert, Michael Siu, Manohar Prabhu, Mike Chen, and
Kunle Olukotun. The Stanford Hydra CMP. IEEE Micro, 20(2):71–84, March-
April 2000.

[14] Sudheendra Hangal, Durgam Vahia, Chaiyasit Manoit Juin-Yeu Joseph Lu, and
Shridhar Narayanan. TSOtool: A Program for Verifying Memory Systems Us-
ing the Memory Consistency Model. In Proc. of the 31st Annual Intnl. Symp. on
Computer Architecture, June 2004.

[15] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. Technical Report Technical Report
92/07, Digital Cambridge Research Lab, 1992.

[16] Mark D. Hill and Min Xu. Racey: A Stress Test for Deterministic Execution.
http://www.cs.wisc.edu/ markhill/racey.html.

[17] Derek R. Hower and Mark D. Hill. Rerun: Exploiting Episodes for Lightweight
Race Recording. In Proc. of the 35th Annual Intnl. Symp. on Computer Archi-
tecture, June 2008.

[18] Intel, editor. Intel 64 and IA-32 Architectures Software Developer’s Manual,
volume 3A: System Programming Guide Part 1. Intel Corporation.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

128 256 512 1024 2048 4096 8192 Unbounded

Ka
rm

a
lo

g
si

ze
 n

or
m

al
iz

ed
 to

 R
er

un
's

 lo
g

si
ze

Maximum allowable Episode size

Apache

Zeus

Oltp

Jbb

Figure 11. Log size comparison between Karma and
Rerun

[19] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed Sys-
tem. Communications of the ACM, 21(7):558–565, July 1978.

[20] Leslie Lamport. How to Make a Multiprocess Computer that Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, pages 690–691,
1979.

[21] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool
Publishers, 2007.

[22] Thomas J. Leblanc and John M. Mellor-Crummey. Debugging Parallel Pro-
grams with Instant Replay. IEEE Transactions on Computers, C-36(4):471–
482, April 1987.

[23] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish Narayana-
samy, and Peter Chen. Respec: efficient online multiprocessor replayvia specu-
lation and external determinism. In Proc. of the 15th Intnl. Conf. on Architectur-
al Support for Programming Languages and Operating Systems, pages 77–90,
March 2010.

[24] Dominic Lucchetti, Steven K. Reinhardt, and Peter M. Chen. ExtraVirt: Detect-
ing and recovering from transient processor faults. In 2005 Symp. on Operating
System Principles work-in-progress session, October 2005.

[25] Peter S. Magnusson et al. Simics: A Full System Simulation Platform. IEEE
Computer, 35(2):50–58, February 2002.

[26] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.
Wood. Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) Toolset. Computer Architecture News, pages 92–99, September 2005.

[27] Pablo Montesinos, Luis Ceze, and Josep Torrellas. DeLorean: Recording and
Deterministically Replaying Shared-Memory Multiprocessor Execution Effi-
ciently. In Proc. of the 35th Annual Intnl. Symp. on Computer Architecture, June
2008.

[28] Pablo Montesinos, Matthew Hicks, Samuel T. King, and Josep Torrellas. Capo:
A Software-Hardware Interface for Practical Determinisitic Multiprocessor Re-
play. In Proc. of the 14th Intnl. Conf. on Architectural Support for Programming
Languages and Operating Systems, March 2009.

[29] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and
David A. Wood. LogTM: Log-Based Transactional Memory. In Proc. of the
12th IEEE Symp. on High-Performance Computer Architecture, pages 258–269,
February 2006.

[30] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording Shared
Memory Dependencies Using Strata. In Proc. of the 12th Intnl. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems, pages
229–240, October 2006.

[31] Satish Narayanasamy, Gilles Pokam, and Brad Calder. BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging. In Proc. of
the 32nd Annual Intnl. Symp. on Computer Architecture, pages 284–295, June
2005.

[32] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient De-
terministic Multithreading in Software. In Proc. of the 14th Intnl. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems,
March 2009.

[33] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik,
Kyu H. Lee, and Shan Lu. PRES: probabilistic replay with execution sketching
on multiprocessors. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles, October 2009.

[34] Gilles Pokam, Cristiano Pereira, Klaus Danne, Rolf Kassa, and Ali-Reza Adl-
Tabatabai. Architecting a chunk-based memory race recorder in modern CMPs.
In Proc. of the 42nd Annual IEEE/ACM International Symp. on Microarchitec-
ture, pages 576–585, December 2009.

[35] Milos Prvulovic and Josep Torrellas. ReEnact: Using Thread-Level Speculation
Mechanisms to Debug Data Races in Multithreaded Codes. In Proc. of the 30th
Annual Intnl. Symp. on Computer Architecture, pages 110–121, June 2003.

[36] Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel. Dependence-
Aware Transactional Memory for Increased Concurrency. In Proc. of the 41st
Annual IEEE/ACM International Symp. on Microarchitecture, November 2008.

[37] G.S. Sohi, S. Breach, and T.N. Vijaykumar. Multiscalar Processors. In Proc. of
the 22nd Annual Intnl. Symp. on Computer Architecture, pages 4June 1995.

[38] Paul Sweazey and Alan Jay Smith. A Class of Compatible Cache Consistency
Protocols and their Support by the IEEE Futurebus. In Proc. of the 13th Annual
Intnl. Symp. on Computer Architecture, pages 414–423, June 1986.

[39] Gwendolyn Voskuilen, Faraz Ahmad, and T. N. Vijaykumar. Timetraveler: ex-
ploiting acyclic races for optimizing memory race recording. In Proc. of the 37th
Annual Intnl. Symp. on Computer Architecture, pages 198–209, June 2010.

[40] David L. Weaver and Tom Germond, editors. SPARC Architecture Manual
(Version 9). PTR Prentice Hall, 1994.

[41] Min Xu, Rastislav Bodik, and Mark D. Hill. A “Flight Data Recorder” for En-
abling Full-system Multiprocessor Deterministic Replay. In Proc. of the 30th
Annual Intnl. Symp. on Computer Architecture, pages 122–133, June 2003.

[42] Min Xu, Rastislav Bodik, and Mark D. Hill. A Regulated Transitive Reduction
(RTR) for Longer Memory Race Recording. In Proc. of the 12th Intnl. Conf. on
Architectural Support for Programming Languages and Operating Systems,
pages 49–60, October 2006.

[43] Min Xu, Vyacheslav Malyugin, Jeff Sheldon, Ganesh Venkitachalam, and Boris
Weissman. ReTrace: Collecting Execution Trace with Virtual Machine Deter-
ministic Replay. In Proceedings of the 3rd Annual Workshop on Modeling,
Benchmarking and Simulation, June 2007.

[44] Jie Yu and Satish Narayansamy. A Case for an interleaving constrained shared-
memory multi-processor. In Proc. of the 36th Annual Intnl. Symp. on Computer
Architecture, pages 325–336, June 2009.
11

	TECHCOVER.NEW1680.pdf
	1680
	Arkaprava Basu$, Jayaram Bobba* and Mark D. Hill$
	basu@cs.wisc.edu, jayaram.bobba@intel.com, markhill@cs.wisc.edu
	1 Introduction
	Figure 1. Rerun’s Record and idealized Replay

	2 Related Work and Rerun Review
	2.1 Related Work
	2.2 Rerun Review
	Record.
	Replay.
	Figure 2. Karma’s DAG-based Record and Replay with Rerun’s Episodes

	3 Karma Insights: Replaying Episodes in Parallel
	3.1 Key Idea 1: Using a Directed Acyclic Graph to Order Episodes During Replay
	3.2 Key Idea 2: Extending Rerun’s Episode
	Figure 3. Karma’s Record and Replay with Extended Episodes

	3.3 A Sketch of Karma Operation
	Record Sketch.
	Replay Sketch.
	Online Replay?

	4 Implementing Karma
	4.1 Example Base System
	4.2 Karma Hardware
	4.3 Predecessor and Successor Sets
	Table 1: Base System Configuration
	Figure 4. Base System Configuration with Karma’s State per Core

	4.4 Karma Recording
	Figure 5. Subtle Implementation Issues Regarding Predecessor and Successor Sets
	Figure 6. Karma’s Recording Algorithm (at each core)

	4.5 Karma Replay
	Figure 7. Karma’s Replay algorithm (at each core)

	4.6 Effect of Finite Caches
	L1 Evictions.
	L2 Evictions.

	4.7 Extending Karma to Support TSO (and x86)
	Figure 8. Karma’s handling of TSO execution through hybrid order-valu recording.

	5 Evaluation Methods
	6 Experimental Results
	Question #1: Does Karma speedup replay?
	Question #2: How can Karma trade off log size and replay speed?
	Question #3: How does Karma’s log size compare to Rerun’s?
	6.1 Big Picture: Much Faster Replay While Retaining Fast Recording
	Question #1: Does Karma speedup replay?
	Figure 9. Comparison of Rerun’s and Karma’s Replay Speed (normalized to Base, 256-reference max. episodes)

	Recording
	Bandwidth
	Figure 10. Tradeoff between Log size and Replay Slowdown.

	Sensitivity Analysis

	6.2 Obtaining Smaller Logs but Slower Replay
	Question #2: How can Karma trade off log size and replay speed?

	7 Conclusions
	Figure 11. Log size comparison between Karma and Rerun

	8 Acknowledgements
	References.

