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Abstract
High performance cache mechanisms have a great impact
on overall performance of computer systems by reducing
memory-access latency. Least-Recently Used (LRU) mecha-
nism can achieve good performance in small workload; how-
ever, it suffers from thrashing caused by memory-intensive
application. To address this challenge, dynamic insertion
policy-DIP, which dynamically switches betweenLRU and
an alternative policy, has recently been proposed. The algo-
rithm, however, applies either one of the two policies to the
entire cache based on the total number of misses. Therefore,
such algorithm is not flexible enough to adjust to the differ-
ent memory access pattern of each set.

In this paper, we propose a novel approach, calledSIP

(Speculative Insertion Policy), to achieve high-performance
caching viaworkload speculation mechanism. By utilizing
memory-access direction and cache misses/hits , SIP esti-
mates the size of per-set workload and dynamically selects
an optimized policy for each set, leading to significant im-
provement in cache performance with only 13Kbits addi-
tional storage requirement overLRU for 1MB cache.

1. Introduction
Least-Recently Used (LRU) policy is well known for its good
performance in small workload. However, for applications
that work on fairly large workload, especially for those larger
than the cache capacity,LRU mechanism suffers from fre-
quent cache misses. This situation is referred as thrashing.
To deal with this problem, several alternative algorithms
have been proposed [3][4][5][6][7]. Recently, a dynamic
insertion policy (DIP) was proposed [6].DIP dynamically
switches between two policies-LRU andBIP. However, this
mechanism assigns one of the two policies for the entire
cache, and thus cannot adjust to the different access behavior
of each set.

In this paper, we propose a novel approach, calledSIP

(Speculative Insertion Policy), to achieve high-performance
caching viaworkload speculation mechanism. This mecha-
nism can utilize memory access characteristics in an appli-
cation to speculate the size of workload for each cache set.
Based on the estimated workload size, an appropriate cache-
replacement policy is dynamically selected at a set-by-set
basis, thus leading to significant performance improvement
with a small amount of storage overhead.

The contributions of our work are summarized as follows:
• We present a novel algorithm-SIP, which dynamically

selects betweenLRU andBIP for each set based on the
estimated workload size.
• We have analyzed the memory-access patterns of the

SPEC2006 Benchmark suite[1] with respect to (i) the
number ofsequential cache misses and (ii) the change in
the direction of memory accesses during execution. The
results of the analysis have been utilized forSIP to detect
thrashing.

• We present a possible hardware design as well as storage
overhead for implementingSIP.
• We compared the performance ofSIP with that of other

policies, such asLFU, NRU, and DIP. Our evaluation
shows thatSIP can slightly outperform all the other test-
ing policies that have achieved the best performance on
each benchmark.
• We also measured the performance ofSIP under various

configurations such as different size of the history register
and that of the workload counter.
The remainder of this paper is organized as follow:§2

provides a brief background to variants ofLRU, such asLIP,
BIP andDIP. §3 describes our proposed policy-SIP. §4 evalu-
ates experimental results.§5 describes hardware implemen-
tation and storage overhead.§6 concludes the paper.
2. Background - Dynamic Insertion Policy
M. K. Qureshi et al. introduced two promising algorithms–
LRU Insertion Policy (LIP) and Bimodal Insertion Policy
(BIP)–to address the thrashing incurred by conventional
LRU [6]. When cache miss occurs,LIP inserts the new data
into the least-recently-used cache line instead of themost-
recently-used cache line done byLRU. If cache hit happens
at the newly inserted data again, the data is promoted to the
most-recently-used line. If a miss occurs in between, this
data will be evicted first. With this protection mechanism,
the rest of the cache lines are effectively preserved.BIP is
an improved version ofLIP, which is more flexible in choos-
ing the insertion place during cache line replacement, hence
achieving better performance for applications with changing
access pattern.

They also proposedDynamic Insertion Policy(DIP), which
dynamically selects an optimized policy betweenBIP and
LRU based on the number of misses incurred during runtime.
Based on this mechanism, two variants-DIP-Global andDIP-
Set Dueling were proposed. These two techniques are dis-
tinguished by the number of sets used to keep track of cache
misses:DIP-SD assigns a limited number of sets as sampling
sets whereasDIP-Global employs all the sets. Despite the
different tracking mechanisms, these two algorithms have
the same drawback. Each time they assign the same replace-
ment policy to the majority of the sets, and thus are unable
to adjust to different access behavior on different sets. Asa
result, a new dynamic replacement policy with a set-by-set
resolution is needed to further enhance cache performance.

3. Workload Speculation Algorithm for SIP

3.1 Analysis on Memory-Access Pattern
We have analyzed the memory-access patterns of the SPEC2006
Benchmark suite with respect to (i) the number ofsequen-
tial cache misses (Fig. 1 a) and (ii) changes in the direction
of memory access during execution (Fig. 1 b). We choose
two applications from the benchmark–GCC and HMMR–to
discuss how these two memory-access characteristics of ap-
plications affect the performance of a cache-replacement
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Figure 1. Analysis on Memory-Access Pattern

policy. When LRU and BIP policies are considered,LRU

leads to the best performance on GCC (total hit-rate 43.7%),
whereasBIP works the best for HMMR(total hit-rate 48.8%).
WhenLRU is used in HMMR, thrashing arises (total hit-rate
10.3%). The analysis results are summarized as follows:
• Sequential cache-miss count.We have tracked ev-

ery cache access to record how many times sequential
cache misses(SCM) occur and how long each SCM lasts.
Fig. 1(a) shows the number of SCM for each application.
When usingLRU as the replacement policy, there was
only 4% of more than seven SCM in GCC while 38% of
the SCM occurred in executing HMMR. In addition, the
number of SCM ranges from 1 to 224 for GCC, whereas
1 to 472 for HMMR. As a result, a frequent and long
SCM indicates the likelihood of thrashing.
• Changes in the direction of cache access.For each

cache set, we compared the tag value of the currently ac-
cessed line with that of the previously accessed line. If
the current tag is greater than the previous tag, we con-
sider this as the cache access being in upward direction,
and vice versa; when the previous tag equals to the cur-
rent tag, we consider this as the access being in the same
direction of the previous access.
Fig. 1(b) shows the average percentages of upward and
downward memory access. In GCC, for whichLRU works
best, the percentages of upward and downward access
are balanced, which implies a non-biased accessing di-
rection. In HMMR, on the other hand, upward access
takes more percentage, which indicates a biased access-
ing direction. This directional characteristic is also ob-
served from our simulation on other applications. Hence,
we conclude that abiased access direction can also be
used as an indicator of possible thrashing.

3.2 SIP - Speculative Insertion Policy
Based on the analysis results mentioned in§3.1, we de-
veloped a new algorithm that dynamically selects anopti-
mized replacement policy for each set. The selection criteria
is based on the size of workload per set that is estimated
via cache hits/misses as well as memory-access directions
on each set. If the estimated workload size of a cache set is
smaller than cache associativity,LRU is selected for the set,
otherwise,BIP is chosen.

Workload speculation mechanism: To estimate the work-
load size of each cache set during execution, we introduce
a history register and aworkload counter (WC) for each set.
The history register is a shift register to keep track of the di-
rection of each cache access whileWC is a saturated counter
to estimate the size of workload for each set. The informa-
tion about memory-access direction and cache misses/hits

Alg. 1 Algorithm for Replacement policy decision inSIP

Require: WC ← 0 : Workload Counter
Require: HR ← 0 : History Register

[1] if cache hit {
[2] if current tag 6= previous tag
[3] if current policy 6=LRU

[4] Increase WC
[5] else
[6] Decrease WC
[7] } else { // cache miss
[8] Shift HR
[9] if current tag > previous tag
[10] Set current history bit to 0

[11] else
[12] Set current history bit to 1

[13] Calculate GAD based on HR
[14] // GAD: General Access Direction
[15] if GAD has not changed
[16] if Current direction == GAD
[17] Increase WC // penalty to LRU(Thrashing)
[18] else //GAD has changed
[19] if current policy 6=LRU

[20] Decrease WC // penalty to BIP

[21] else // current policy is BIP

[22] Increase WC // penalty to LRU

[23]}
[24] if WC is saturated
[25] WC = #associativity + 1 // stay in BIP

[26] if WC > #associativity
[27] Choose BIP as a new policy
[28] else
[29] Choose LRU as a new policy

are utilized to estimate the size of workload for each set as
follow:
• When a cache hit occurs,WC is changed to reinforce

the current replacement policy under the assumption
that a cache-hit event indicates the current policy works
well. To prevent the counter from being saturated too
fast, we exclude consecutive cache hits from being rein-
forced.(lines [1]–[6] in Alg.1)
• When a cache miss occurs, the cache controller compares

the tag bits of newly inserted line with the tag bits of pre-
viously accessed line to detect access direction for this
set. The history register shifts in the outcome of the com-
parison, which represents the current access direction.
By calculating how many bits in the history register rep-
resenting upward direction and how many representing
decreasing direction, a new general access direction for
each set can be obtained.(lines [8]–[13] in Alg.1)
Condition1: If the general access direction has not
changed and the most recent access direction stored in
the history register is the same as the general direction,
based on the analysis mentioned in§3.1,WC is increased
to favorBIP. (lines [15]–[17] in Alg.1)
Condition2: If the general access direction has changed,
A penalty applies to the current policy by changingWC to
favor the opposing policy. (lines [18]–[22] in Alg.1)

In order to promptly shift fromBIP to LRU according to
the change of the access pattern, the counter is reset to be
slightly biased toBIP once it is saturated.(line [25] in Alg.1)
When WC is greater than cache associativity, which is the
selection threshold, the cache controller assumes that the
cache set is working under memory-intensive workloads,
thus choosingBIP. Otherwise,LRU is selected (lines [24]–
[29] in Alg.1).
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Figure 2. (a) Hit-rate comparison ofSIP and other testing algorithms. (b) IPC comparison ofLRU variants.

3.3 Classification ofSIP Behavior
In this section, we consider three typical situations to under-
stand howSIP works.
• Situation 1:Thrashing with a biased access direction

In this case, due to condition 1, the workload counter is
increased and will eventually excess the threshold. Based
on the counter value, the cache controller choosesBIP to
protect the data in the cache.
• Situation 2:Turning point between thrashing and small

workload
In general, random access pattern causes consecutive
cache misses accompanied by frequent changes in gen-
eral access direction. In this case, according to the condi-
tion 2, the workload counter fluctuates around the thresh-
old, and thus the cache controller alternately selects be-
tweenLRU andBIP, which guarantees a certain degree of
protection for data already in the cache.
• Situation 3:Processing a small amount of workload

When a cache set is working under a small workload,
much smaller than the size of the cache set, the value of
the workload counter would be small as a result of short
SCM and theLRU policy would be chosen.

3.4 Variants of SIP–SIPBYPASSING and SIPLIP

We introduce two variants ofSIP, in which BYPASSING and
LIP are crafted intoSIP instead ofBIP, respectively. Through
bypassing data(without inserting data into cache),SIPBYPASSING

can provide further protection to the data under thrashing,
hence achieving better performance; on the contrary, by
eliminating the use of theBIP counter,SIPLIP can reduce hard-
ware cost.
4. Evaluation
4.1 Simulation Configuration
To evaluate the performance ofSIP, we employed a simula-
tion framework based on the CMP$im simulator in single-
thread mode[2]. The memory hierarchy contains three level
caches. Each cache supports 64-byte lines. The first-level
cache is split into a 32KB instruction cache and a 32KB
data cache, which are 4-way and 8-way set associative, re-
spectively. The second level cache is 256KB and 8-way set-
associative. The Last Level Cache (LLC) is 1MB and 16-
way set-associative. OurSIP is applied to LLC.
4.2 Performance Evaluation under SPEC2006
Fig. 2(a) shows the relative hit rate among the testing
policies–SIP variants,LRU variants, Pseudo LRU (PLRU),
Least Frequently Used (LFU), Random (RND) and Not Re-
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Figure 3. Comparison performance ofSIP andDIP-SD for
each set

cently Used (NRU). In addition, Fig. 2(b) shows the relative
IPC amongSIP variants andLRU variants. All the baseline
caches useLRU. We selected four benchmarks under which
the cache hit-rate ofLRU is over 10%.
• For HMMR and H264, which have large workload,LRU

variants, such asBIP, LIP andDIP, perform much better
thanLRU. Our proposed policy-SIPBIP outperformsLRU by
12.5% in IPC and 34.9% in hit-rate. One ofSIP variants,
SIPBYPASSING, achieves the best performance among all test-
ing policies. We analyzed the behavior ofSIPBIP for each
set in more detail in§4.5.
• For GCC, in whichLRU achieves the best performance

among all the testing policies other thanSIP, SIPBIP out-
performsLRU by 0.39% in hit-rate and shows the same
IPC as that ofLRU as shown in Fig. 2(b). Moreover,SIPBIP

surpassesBIP by 11% in hit-rate, which demonstrates
the benefits rendered by dynamically selectingoptimized
policy during run-time.
• For BZIP, SIPBIP does not surpass eitherLRU or BIP in

average hit-rate. A possible reason is that the gap between
the hit rates ofBIP and LRU is too small for theSIP

controller to decide which policy to use; as a result, it
chooses betweenLRU andBIP in a fluctuating manner, as
described in Situation 2 (§3.3).
In conclusion, when compared to other testing policies

that show the best performance on each benchmark, IPC
improvement ofSIPBIP ranges from +0.86% (overLRU-GCC)
to -3% (overBIP-HMMR).

4.3 Analysis on Policy Selection
Fig. 3 shows the numbers of cache hits on each set forSIPBIP

andDIP-SD under HMMR benchmark. InDIP-SD, there are
two sampling sets solely assigned withLRU andBIP to com-
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Figure 4. Variations of SIP: (a) IPC of SIP for different
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pare the numbers of misses incurred by each policy respec-
tively. We observe that the sampling set withBIP policy in-
curs high hit rate while the sampling set withLRU incurs low
hit rate. Hence, the value of the PSEL counter, which is the
selection threshold, fluctuates betweenLRU andBIP due to
cache misses experienced inLRU-sampling set. As a result,
the rest of the cache sets incur medium hit rate. ForSIP, most
of the cache sets chooseBIP during execution, hence achiev-
ing much higher hit-rate at the majority of the cache set.

4.4 Variation in Counter Bits
Fig. 4(a) records the IPC ofSIP under different sizes of work-
load counters. We can see that the 4-bit and 5-bit counters
achieve better performance. The 5-bit counter outperforms
the 4-bit counter in GCC and BZIP, but loses in HMMR and
H264. The rationale behind this is that a smaller counter is
easier to saturate, hence more biased toBIP: a larger counter
takes more time to approach the selection threshold, there-
fore more inclined toLRU. In order to achieve decent per-
formance among a wide range of applications, an unbiased
configuration is required. To this end, we decide to set the
number of counter bits to 5. Since the half of the maximum
counter value is the same as cache associativity, our policy
chooses betweenLRU andBIP fairly

4.5 Variation in History Bits
Fig. 4(b) shows the IPC ofSIP under different numbers of
history bits. From the simulation result, we can observe
that varying the number of history bits has little impact on
performance. The reason is that a small number of history
bits are sufficient to filter out the interference of access
fluctuation on calculating the general direction.
5. Hardware Design
To implementSIPBIP in hardware, a small amount of storage
is required for each set to store the following information
bits: a 2-bit history register, a 5-bit workload counter, a
current policy bit, a general direction bit, and a 4-bit index to
indicate the most recently accessed line for tag comparison.
Also, 4 position bits are needed for each cache line to track
the MRU and LRU position. And a 5-bitBIP counter is
used for entire cach. In a 1MB-16 set associative cache, the
storage overhead is 77Kbits in total, among which 64Kbits
are for originalLRU, and 13Kbits are the additional overhead
incurred bySIPBIP.

Fig. 5 describes the proposed hardware design to imple-
mentSIPBIP. A workload calculator serves as the controller to
estimate the size of workload for each set and to dynamically
choose betweenBIP andLRU based on the estimated work-
load size. Inside the workload calculator, there is a compara-

Figure 5. Hardware implementation ofSIP

tor that compares the current tag with the previous tag in the
same set to decide the current access direction. Also, some
combinational logics are used to obtain the general access-
direction. Another comparator is used to detect changes be-
tween current and previous general directions.

For SIPBYPASSING, although it shows the best performance
among all the testing policies, it requires an additional regis-
ter to store the previous tag value for each set. The reason is
that the cache controller bypasses data blocks under thrash-
ing, and hence the previous tag value cannot be retrieved
from the most recently accessed line as is done bySIPBIP. In
total,SIPBYPASSING requires additional 48Kbits for a 64-bit ma-
chine and 16Kbits for a 32-bit machine. Based on the perfor-
mance evaluation, however, such significant increase in stor-
age overhead ofSIPBYPASSING is only traded for 1.57% perfor-
mance gain in IPC overSIPBIP. Therefore, we can conclude
thatSIPBIP is an optimal policy in terms of high performance
and low storage overhead.
6. Conclusion
In this paper, we present a new approach, calledSIP, to im-
prove cache performance by dynamically selecting an opti-
mized replacement policy for each cache set viaworkload
speculation mechanism. Our experimental results show that
SIP can achieve decent performance among all the testing
policies under a wide range of applications.
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