

Computer
Sciences
Department

DIFC Programs by Automatic Instrumentation

William R. Harris
Somesh Jha
Thomas Reps

Technical Report #1673

April 2010

DIFC Programs by Automatic Instrumentation
William R. Harris Somesh Jha Thomas Reps ∗

University of Wisconsin
{wrharris, jha, reps}@cs.wisc.edu

Abstract
Decentralized information flow control (DIFC) operating systems
provide applications with mechanisms for enforcing information-
flow policies for their data. However, significant obstacles keep
such operating systems from achieving widespread adoption. One
key obstacle is that DIFC operating systems provide only low-level
mechanisms for allowing application programmers to enforce their
desired policies. It can be difficult for the programmer to ensure that
their use of these mechanisms enforces their high-level policies,
while at the same time not breaking the underlying functionality
of the application. These are issues both for programmers who
would develop new applications for a DIFC operating system and
for programmers who would port existing applications to a DIFC
operating system.

Our work significantly eases this task. We present an automatic
technique that takes as input a program with no DIFC code, and
two policies: one that specifies prohibited information flows and
one that specifies flows that must be allowed. Our technique then
produces a new version of the input program that satisfies the two
policies. To evaluate our technique, we created an automatic tool,
called SWIM (for Secure What I Mean), that implements the tech-
nique, and applied it to a set of real-world programs and policies.
The results of our evaluation demonstrate that the technique is both
sufficiently expressive to generate code for real-world policies, and
that it can generate such code efficiently. It thus represents a signif-
icant contribution towards developing systems with strong end-to-
end information-flow guarantees.

1. Introduction
Decentralized information flow control (DIFC) operating systems
provide applications with mechanisms for ensuring the secrecy and
integrity of their data [12, 19, 21] throughout a system. To enable
this, a DIFC OS maps the set of executing processes to a partially-
ordered set of labels. A process may send data to another process
only if the processes’ labels satisfy a certain ordering. A process
may change its own labels and the labels of other processes, under
restrictions enforced by the DIFC OS. Thus processes express how
they intend their information to be shared by associating the labels
with information, and the DIFC OS respects these intentions by
enforcing a semantics of labels.

Previous work has concerned how to implement DIFC systems,
in some cases atop standard operating systems. Furthermore, some
systems have formal proofs that if an application running on the
system correctly manipulates labels to implement a policy, then the
system will enforce the policy [11]. However, for a user to have
end-to-end assurance that their application implements a high-level
information-flow policy, they must have assurance that the applica-
tion indeed correctly manipulates labels. The label manipulations
allowed by DIFC systems are expressive but low-level, so a high-
level policy is semantically distant from a program’s label manipu-
lations. For the remainder of this paper, we narrow our discussion
from general DIFC systems to Flume [12]. In principle, our ap-
proach can be applied to arbitrary DIFC operating systems. How-
ever, targeting Flume yields both theoretical and practical benefits.

∗Also affiliated with GrammaTech, Inc.

void ap_mpm_run()
A1: while (*)
A2: Conn c = get_request_connection();

A3: Conn c’ = c; c = fresh_connection();

A4: tag_t t = create_tag();

A5: spawn(‘‘proxy’’, {c, c’}, {t}, {t}, {t});

A6: spawn(‘‘proxy’’, {c’, c}, {t}, {t}, {t});

A7: spawn(‘‘worker’’, c, {t}, {t}, {});

void proxy(Conn c, Conn c’,

Label lab, Label pos_cap, Label neg_cap)

P1: while (*)

P2: expand_label(pos_cap);

P3: Buffer b = read(c);

P4: clear_label(neg_cap);

P5: write(c’, b);

Figure 1. An example derived from the Apache multi-process
module.

From a theoretical standpoint, Flume defines the semantics of ma-
nipulating labels in terms of set operations, a well-understood for-
malism. From a practical standpoint, Flume runs on Linux, giving
our approach wide applicability. The work in [12] gives a compre-
hensive description of the Flume system.

To illustrate the gap between low-level label manipulations and
high-level policies, consider the server program in Fig. 1, a sim-
plified excerpt from an Apache multi-process module (MPM) [1].
For now, suppose that the program code consists only of the non-
highlighted code. In this program, an MPM process executes the
function ap mpm run, iterating through the loop indefinitely (lines
A1 - A7). On each iteration of the loop, the MPM waits for a
new connection c that communicates information for a service re-
quest (line A2). When the MPM receives a connection, it spawns
a Worker process to handle the request (line A7). One desirable
property for such a server is to isolate each Worker process: no
Worker process should be able leak information to another Worker
process, even if both processes are compromised and acting in col-
lusion. It is difficult to design a server that upholds such a property:
a Worker process may be compromised through any of a myriad
of vulnerabilities, such as a stack-smashing attack. Once processes
are compromised, they can communicate through any of several
channels on the system, such as the file system.

However, the server can isolate Worker processes when exe-
cuted on Flume. Suppose that the server in Fig. 1 is rewritten to
include the highlighted code, which makes use of an API provided
by the Flume. At a high level, Flume maps each process to three sets
of tags, or atomic elements: the process’s secrecy label, its positive

1 2010/4/23

capability, and its negative capability. 1 A process may only alter
its label by adding to it tags in its positive capability, or removing
from it tags in its negative capability. In the highlighted code, the
server uses the Flume API to ensure process isolation as follows.
As before, an MPM process executes the function ap mpm run, and
iterates through the loop indefinitely. Each time through the loop,
it waits for a connection to a service request. Now, however, before
spawning a Worker to handle the request, the MPM process per-
forms two additional tasks. At line A4, it creates a fresh tag, and
then initializes the label of the next Worker process with the tag,
but does not give the Worker the capability to add or remove the
tag from its label (line A7). This is the key to isolating the Worker
processes. The Flume reference monitor intercepts all communica-
tions between processes, and only allows a communication to suc-
ceed if the label of the sending process is a subset of the label of
the receiving process. Because the label of each Worker now con-
tains a distinct tag that the Worker cannot remove, no Worker can
send data to another. Flume associates other system objects, such
as files, with tags as well, so the processes cannot communicate
through files either.

However, while the label mechanisms provided by Flume are
powerful, their power can lead to unintended side effects. In Fig. 1,
the MPM process may not be able to alter the label of a process that
issues service requests. If the MPM gave each Worker a unique
tag and manipulated labels in no other way, then the label of each
Worker would contain a tag t, while the label of the process that
issued the request would not contain t. Thus the label of the Worker
would not be a subset of the label of the receiver, and the Worker
could not send information to the Requester. To resolve this, along
with each Worker, the MPM process spawns two processes to serve
as proxies for when the Worker receives information from (line A5)
and sends information to (line A6) the Requester. Let ProxyS be
the process forwarding information from its associated Worker to
the service requester. The MPM gives to ProxyS the capability to
add and remove from its label the tag t. To receive data from the
Worker, Proxys expands its label to include t; to forward the data
to the requester, it clears its label to be empty. Thus the untrusted
Worker is isolated, while the small and trusted Proxy successfully
communicates information between Worker and Requester.

This example illustrates that labels are a powerful mechanism
for enabling application programmers to enforce information-flow
policies. However, the example also illustrates that there is a signif-
icant gap between the high-level policies of programmers, e.g., that
no Worker should be able to send information to another Worker,
and the manipulations of labels required to implement such a pol-
icy. It also illustrates that these manipulations may be quite subtle
when balancing desired security goals with the required function-
ality of an application. If programmers are to develop applications
for DIFC systems, then they must resolve these issues manually. If
they wish to instrument existing applications to run on DIFC sys-
tems, then they must ensure that their instrumentation implements
their policy while not breaking the functionality requirements of
an existing, and potentially large and complex, program. If their
instrumentations do break functionality, it can be extremely diffi-
cult to discover this through testing: when a DIFC system blocks a
communication, it may not report the failure, because such a report
can leak information [12]. Label-manipulation code could thus in-
troduce a new class of security and functionality bugs that could
prove extremely difficult even to observe.

We have addressed this problem by creating an automatic DIFC
instrumenter, which produces programs that, by construction, sat-

1 Flume also allows processes to protect their integrity via an integrity label.
In this work, we focus on secrecy, but our techniques can be extended to
reason about integrity. See App. D.

Figure 2. Workflow of the DIFC instrumenter.

isfy a high-level DIFC policy. Our DIFC instrumenter takes as input
a program with no DIFC code, and two high-level declarative poli-
cies: one that specifies prohibited information flows (e.g. “Workers
should not communicate with each other.”), and one that specifies
flows that must be allowed (e.g. “A Worker should be able to com-
municate to a proxy.”). When successful, the instrumenter rewrites
the input program with label-manipulation code so that it enforces
the input policy. When unsuccessful, the instrumenter produces a
minimal subprogram of the original program and a minimal sub-
set of policies for which it could not find an instrumentation. To do
so, the instrumenter reduces the problem of correctly instrumenting
the program to a problem of solving a system of set constraints. It
feeds the resulting constraint system to an off-the-shelf Satisfiabil-
ity Modulo Theories (SMT) solver [7], which in our experiments
found solutions in seconds (cf. Tab. 4). From a solution, the in-
strumenter instruments the program. Thus the programmer reasons
at the policy level about information flow, and leaves to the instru-
menter the task of correctly manipulating labels. If the programmer
provides as input to the instrumenter the program in Fig. 1 minus
the statements that manipulate labels, and a formal statement of a
high-level policy similar to the one stated above, the instrumenter
produces the entire program given in Fig. 1.

The remainder of this paper is organized as follows: §2 gives
an overview of our technique by describing the steps that it takes
to instrument the example in Fig. 1. §3 formally describes the
technique. §4 reports our experience applying the technique to
real-world programs and information-flow policies. §5 places our
work in the context of other work on DIFC systems and program
synthesis. §6 concludes. Some technical details are covered in the
Appendix.

2. Overview
We now informally describe each step of the workflow of the DIFC
instrumenter using the example from Fig. 1. Fig. 2 illustrates the
workflow.

2.1 Programs and Policies as Inputs
The instrumenter takes two inputs. First, it takes a program con-
taining no Flume code. For the example in Fig. 1, the instru-
menter takes the version of the server uninstrumented with calls
to create tag(), expand label(), and clear label(). The in-
strumenter analyzes programs represented as Communicating Se-
quential Processes (CSP) [2], but can automatically translate a pro-
gram written in an imperative programing language, such as C, into
a CSP program that models properties relevant for DIFC instrumen-
tation.

Exa. 1. The instrumenter translates the Apache server introduced
in Fig. 1 to the following CSP program:

A1 = A5

A5 = A6 9 P1

A6 = A7 9 P1

A7 = A1 9W

P1 = P3

P3 = ?r → P5

P5 = !s→ P1

init = A1 9R

2 2010/4/23

In the equations of the CSP program, each variable corresponds
to a program point in the imperative program, and each equation
defines the behavior of the program at the corresponding point. The
expressions on the right-hand sides of equations are referred to as
CSP process templates. The equation A5 = A6 9 P1 denotes that
a process executing A5 transitions to launch two processes, one
executing A6 and the other executing P1. The equation P3 =?r →
P5 denotes that a process executing P3 receives a message from
process r and then transitions toP5. The requester process executes
template R. The definitions of other process template variables are
similar. §3.1 contains a more comprehensive discussion of CSP.

Second, the instrumenter takes as input a policy that specifies
correct information flow. Policies are sets of declarative flow as-
sertions, which are of two forms. A flow assertion of the form
Secrecy(Source,Sink,Declass,Anc) specifies that any process
executing template Source must not be able to send informa-
tion to a process executing template Sink unless the informa-
tion flows through a process executing template Declass, or the
Source and Sink processes were transitively created by the same
process executing template Anc. A flow assertion of the form
Prot(Source, Sink,Anc) specifies that if a process executing tem-
plate Source attempts to send information to a process executing
template Sink, and both the Source and Sink processes were tran-
sitively created by the same process executing template Anc, then
the send must be successful.

Exa. 2. The information-flow policy for the server in Fig. 1 can
be expressed as the set of flow assertions: {Secrecy (W , W,
{P1, P2, P3} W), Prot (W,P2, R), Prot (P3, R, init)}, where
init is a special process template that spawns all process templates.

In addition to flow assertions, the instrumenter takes a set of
rules declaring which process templates denote processes that may
be compromised. In Fig. 1, the instrumenter takes a rule declaring
that the Worker may be compromised.

2.2 From Programs and Policies to Instrumentation
Constraints

Given a program and policy, the instrumenter generates a system
of set constraints such that a solution to the constraints corresponds
to an instrumentation of the program that satisfies the policy. This
constraint system must assert that (1) the instrumented program
uses the Flume API to manipulate labels in a manner allowed by
Flume, and (2) the instrumented program manipulates labels to
satisfy all flow assertions.

Each variable in the constraint system corresponds to a label
value for the set of all processes that execute a given CSP template.
Flume restricts how a process manipulates its label in terms of the
capabilities of the process. The instrumenter expresses this in the
constraint system by generating, for each CSP process template P ,
variables that represent the set of tags in the label of a process
executing P (labP), its positive capability (posP), its negative
capability (negP), and the set of tags created when executing P
(createsP).

Some constraints in the system assert that each process’s labels
may only change in ways allowed by Flume. These constraints
assert that in each step of execution, a process’s label may grow
no larger than is allowed by its positive capability, and may shrink
no smaller than is allowed by its negative capability.

Exa. 3. To model how the label and capabilities of a process may
change in transitioning from executing templateA1 to templateA5,

the instrumenter generates the following four constraints:

labA5 ⊆ labA1 ∪ posA5

labA5 ⊇ labA1 − negA5

posA5
⊆ posA1

∪ createsA5

negA5
⊆ negA1

∪ createsA5

The other constraints in the system assert that the instrumented
program does not allow flows that are specified by a Secrecy flow
assertion, but allows all flows specfied in a Prot assertion.

Exa. 4. For the server in Fig. 1, the flow assertion Secrecy (W,
W, {P1, P3, P5},W) specifies that a Worker process, which exe-
cutes template W , may not send information to a different Worker
process unless the workers are created by the same MPM process
that executed template A1, or the information flows through a pro-
cess that executes a Proxy template P1, P3, or P5. In §3.3.2, we
define a set DistA1 of process templates, which the instrumenter
uses to encode the flow assertion as

labW 6⊆

0@labW −
[

R∈DistA1

createsR

1A ∪ [
Q6∈{P1,P3,P5}

negQ

For illustrative purposes, this constraint is slightly simplified from
its complete form, and may not lead the instrumenter to isolate
Worker processes that are compromised. However, the constraint
can be extended to do so in a straightforward way using techniques
described in App. C.

Exa. 5. For the server in Fig. 1, the flow assertion Prot (W,
P3, A1) specifies that a Worker process executing template W
must be able to send information to a process executing Proxy
template P3 if the two processes were created by the same MPM
process executing template A1. In §3.3.2, we define a set ConstA1

of process templates, which the instrumenter uses to encode the
flow assertion as

labW ⊆ labP3 ∩
[

Q∈ConstA1

createsQ

A similar flow assertion Prot(P5, R, init) specifies that a Proxy
process executing P5 must always be able to send data to the
Requester executing R. The instrumenter encodes this assertion
as

labP5 ⊆ labR ∩
[

Q∈Constinit

createsQ

The constraints generated for the example from Fig. 1 are given
in Tab. 1. The table contains a representative sample of the seman-
tic constraints: analogous constraints are generated for the other
process templates in the program.

2.3 From Instrumentation Constraints to DIFC Code
Solving the constraint systems described in §2.2 is an NP-
complete problem. Intuitively, the complexity arises because such
a constraint system may contain both positive and negative sub-
set constraints and union set expressions, as shown in Tab. 1 See
[8, App. G] for a formal proof. However, we can show that if the
constraint system has a solution, then it has a solution in which all
variables have a value with no more than N tags, where N is the
number of Secrecy assertions in the policy. Using the boundN , the
instrumenter translates the system of set constraints to a system of
bit-vector constraints such that the set-constraint system has a so-
lution if and only if the bit-vector system has a solution. Bit-vector
constraints can be solved efficiently in practice by an off-the-shelf
SMT solver [7]. The translator thus feeds the bit-vector system to
such a solver; if the solver determines that no solution exists for

3 2010/4/23

Semantics Secrecy Protected Flows
labA5 ⊆ labA1 ∪ posA5
labA5 ⊇ labA1 − negA5
posA5

⊆ posA1
∪ createsA5

negA5
⊆ negA1

∪ createsA5

. . .

labW 6⊆
“
labW −

S
R∈DistA1

createsR
”

∪
S
Q6∈{P1,P3,P5} negQ

labW ⊆ labP3 ∩
S
Q∈ConstA5

createsQ

labP5 ⊆ labR ∩
S
Q∈Constinit

createsQ

Table 1. A representative selection of constraints for the Apache server.

the bit-vector constraints, then it produces an unsatisfiable core,
which is a minimal set of constraints that are unsatisfiable. The
instrumenter determines the subprogram of the original program
and subset of flow assertions that contributed the constraints in the
infeasible core. It reports to the user that it may not be possible to
instrument the program to satisfy the policy, and as a programming
aid, provides the subprogram and policies that contributed the in-
feasible core. On the other hand, if the SMT solver finds a solution
to the bit-vector constraints, then the instrumenter translates this to
a solution for the system of set constraints.

Using the solution to the set-constraint system, the instrumenter
injects into the original program DIFC code that defines the label
values of all processes over any execution of the program to corre-
spond to the values in the constraint solution. By construction, the
resulting program satisfies the given information-flow policy.

Exa. 6. One Secrecy flow assertion contributes to the constraint
system summarized in Tab. 1. The instrumenter thus determines
that if the system has a solution, then it has a solution that can
be defined over a set of one element. Using this bound, the instru-
menter translates the system to an equisatisfiable bit-vector system,
and feeds the bit-vector system to an SMT solver. The solver deter-
mines that the bit-vector system has a solution corresponding to the
following set-valued solution defined over the set of elements {τ}:

X labX posX negX createsX
A1 ∅ ∅ ∅ ∅
A5 ∅ {τ} {τ} {τ}
A6 ∅ {τ} {τ} ∅
A7 ∅ {τ} {τ} ∅
P1 {τ} {τ} {τ} ∅
P3 {τ} {τ} {τ} ∅
P5 ∅ {τ} {τ} ∅
W {τ} ∅ ∅ ∅
R ∅ ∅ ∅ ∅

The instrumenter uses the solution to generate the DIFC code
highlighted in Fig. 1. In the solution, createsA5 = {τ}, so the
instrumenter inserts at line A5 a call to create a tag t. In the
solution, labP1 = posP1

= negP1
= {τ}, so the instrumeter

rewrites spawns of Proxy processes so that all Proxy processes are
initialized with t in their label, positive capability, and negative
capability. In the solution, labP3 = {τ} while labP5 = ∅, so the
instrumenter inserts at P5 code that clears t from the label of the
process. The final result is the full code given in Fig. 1.

3. DIFC Instrumentation
We now discuss the DIFC instrumenter in more detail. We first
formally describe the programs and policies that the instrumenter
takes as input, and then describe each of the steps it takes to
instrument a program.

3.1 DIFC Programs
The instrumenter analyzes programs in a variation of CSP that
we call CSPDIFC. Imperative programs are translated automatically
to CSPDIFC programs using a straightforward translation method

Prog := PROCVAR1 = Proc1 . . . PROCVARn = Procn

Proc := SKIP

|PROCVAR

|EVENT→ PROCVAR

|PROCVAR1 2 PROCVAR2

|PROCVAR1 9 PROCVAR2

EVENT := ChangeLabel(LABEL, LABEL, LABEL)

| CREATEτ

|? PROC ID

|! PROC ID

Figure 3. CSPDIFC: a fragment of CSP used to model the behavior
of DIFC programs. Events in gray are not contained in programs
provided by the user. They are only generated by the DIFC instru-
menter.

spelled out in [8, App. I]. The syntax of CSPDIFC is given in Fig. 3.
A CSPDIFC program

−→
P is a set of equations, each of which binds

a process template to a process-template variable. Intuitively, a
process template is the “code” that a process may execute. For
convenience, we sometimes treat

−→
P as a function from template

variables to the templates to which they are bound.
The semantics of CSPDIFC follows that of standard CSP [2], but

is extended to handle labels. The state of a CSPDIFC program is a
set of processes. Processes are scheduled non-deterministically to
execute their next step of execution. The program state binds each
process to:
1. A process template, which defines the effect on the program

state of executing the next step of the process.
2. A label, positive capability, and negative capability, which con-

strain how information flows to and from the process.
3. A namespace of tags, which constrain what tags the process

may manipulate.
We give CSPDIFC a trace semantics, which associates to every
CSPDIFC program

−→
P the set of traces of events that

−→
P may generate

over its execution. Events consist of:
1. One process taking a step of execution.
2. One process spawning another process.
3. One process sending information to another.
4. One process receiving information from another.

Whenever a process p bound to template variable X takes a step of
execution, p generates an event STEP(X). p then spawns a fresh
process p′, generates an event SPAWNS(p, p′), sets the labels of p′

to its own label values, sets the tag namespace of p′ equal to its own,
and halts. However, when

−→
P (X) = ChangeLabel(L,M,N) →

PROCVAR1 or
−→
P (X) = CREATEτ → PROCVAR1, no events

are generated in the trace. This allows us to state desired proper-
ties of an instrumentation naturally using equality over traces (see
§3.2.2). Note that this definition of

−→
P is purely conceptual: pro-

4 2010/4/23

grams produced by the instrumenter do not generate fresh processes
at each step of execution.

When a process p takes a step of execution, it may have further
effects on the program state and event trace. These effects are
determined by the template to which p is bound. The effects are
as follows, according to the form of the template:
• SKIP: p halts execution.
• PROCVAR: p initializes a fresh process p′ to execute the tem-

plate
−→
P (PROCVAR).

• PROCVAR12PROCVAR2: p chooses non-deterministically to
initialize p′ to execute either template PROCVAR1 or template
PROCVAR2.
• PROCVAR1 9 PROCVAR2: p spawns a fresh process p′,

which it initializes to execute template PROCVAR1, and a sec-
ond fresh process p′′, which it initializes to execute template
PROCVAR2.
• CREATEτ → PROCVAR1: p creates a new tag t, binds it to

the tag identifier τ in the tag namespace of p, and adds t to
both the positive and negative capabilities of p′. Tag t is never
bound to another identifier, so at most one tag created at a given
CREATE template can ever be bound in the namespace of a
process. However, multiple tags created at a template can be
bound in the namespaces of multiple processes.
• ChangeLabel(L,M,N) → PROCVAR1: L, M , and N are

sets of tag identifiers. p initializes p′ to execute PROCVAR1,
and attempts to initialize the label, positive capability, and neg-
ative capability of p′ to the tags bound in the namespace of p to
the identifiers in L, M , and N , respectively. Each initialization
is only allowed if it satisfies the conditions enforced by Flume:
(1) the label of p′ may be no larger (smaller) than the union (dif-
ference) of the label of p and the positive (negative) capability
of p, and (2) the positive (negative) capability of p′ may be no
larger than the union of the positive (negative) capability of p
and capabilities for all tags created at p′.
• ! q → PROCVAR1: p attempts to send information to process
q. For simplicity, we assume that a process may attempt to send
information to any process, and make a similar assumption for
when p attempts to receive information. p generates an event
p!q only if it successfully sends information; that is, the label of
p is contained in the label of q. Process p then initializes p′ to
execute template PROCVAR1.
• ? q → PROCVAR1: p attempts to receive information from
q. p generates an event p?q only if it successfully receives
information; that is, the label of p contains the label of q.
Process p then initializes p′ to execute template PROCVAR1.

Tr(
−→
P) denotes the set of all traces of events that program

−→
P may

generate. A formal definition of Tr(
−→
P) is given in [8, App. E].

3.2 DIFC Policies
Policies give a formal condition for when one program is a correct
instrumentation of another.

3.2.1 Syntax of DIFC Policies
A DIFC policy F = (V,S,R) contains two sets, S and R, of
flow assertions defined over a set V of template variables. S is a
set of secrecy assertions, each of the form Secrecy(Source, Sink,
Declass, Anc), with Source, Sink, Anc ∈ V and Declass ⊆ V .
R is a set of protection assertions, each of the form Prot(Source,
Sink, Anc), with Source,Sink,Anc ∈ V .

3.2.2 Semantics of DIFC Policies
The semantics of a policy F = (V,S,R) is defined by a satis-
faction relation

−→
P ′ |= (

−→
P ,F), which defines when a program−→

P ′ is a correct instrumentation of
−→
P according to F . Program

−→
P ′ must satisfy three instrumentation conditions: secrecy (

−→
P ′ |=S

S), transparency (
−→
P ′ |=T (

−→
P ,R)), and containment (

−→
P ′ |=C

(
−→
P ,R)), which are defined below.

Secrecy. If no execution of
−→
P ′ leaks information from a source

to a sink as defined by S, then we say that
−→
P ′ satisfies the secrecy

instrumentation condition induced by S. To state this condition
formally, we first define a set of formulas that describe properties
of a trace of execution T . For process p and template P , let p ∈
P denote that p executes P in its next step of execution. Let
spawnedT (a, p) hold when process a spawns process p over the
execution of trace T :

spawnedT (a, p) ≡ ∃i. T [i] = SPAWN(a, p)

Let IsAnc(a, p, T) hold when process a is an ancestor of p under
the spawnedT relation:

IsAnc(a, p, T) ≡ TC(spawnedT)(a, p)

where TC denotes the transitive closure operator. Let ShareAnc(p, q,Anc, T)
hold when processes p and q share an ancestor in Anc:

ShareAnc(p, q,Anc, T) ≡ ∃a ∈ Anc.

IsAnc(a, p, T) ∧ IsAnc(a, q, T)

Finally, let InfFlowD,T (p, q) hold when information is sent and
received directly from process p to process q over the execution
of trace T , where neither p or q execute a template in D:

InfFlowD,T (p, q) ≡ ∃i < j. ((T [i] = p!q ∧ T [j] = q?p)

∨ spawnedT (p, q)) ∧ p, q 6∈ D
−→
P ′ satisfies the secrecy condition induced by Secrecy(Source,

Sink, Declass, Anc) ∈ S if for every execution of
−→
P ′, a process

p ∈ Source only sends information to a process q ∈ Sink with the
information flow avoiding all processes in Declass if the endpoints
p and q share an ancestor process a ∈ Anc. Formally, for every
trace T ∈ Tr(

−→
P ′), and every p ∈ Source and q ∈ Sink, the

following must hold:

TC(InfFlowDeclass,T)(p, q) =⇒ ShareAnc(p, q,Anc, T)

If the formula holds for every secrecy assertion in S, then
−→
P ′ sat-

isfies the secrecy instrumentation condition induced by S, denoted
by
−→
P ′ |=S S.

Transparency over protected flows. If an execution of
−→
P per-

forms only information flows that are described by the set R, then
this execution must be possible in

−→
P ′. We call this condition trans-

parency. Formally, let T ∈ Tr(
−→
P) be such that ProtTr(T,R)

holds, where

ProtTr(T,R) ≡ ∀p,q.
InfFlow∅,T (p, q) =⇒
∃Prot(Source, Sink,Anc) ∈ R.
p ∈ Source ∧ q ∈ Sink
∧ShareAnc(p, q,Anc)

If for every such T , it is the case that T ∈ Tr(
−→
P ′), then

−→
P ′

satisfies the transparency condition induced by P and R, denoted
by
−→
P ′ |=T (P,R).

Trace containment for protected flows. Finally, an instrumented
program

−→
P ′ should not exhibit any behaviors solely over flows

protected by R that are not possible in the input program P . We
call this condition trace containment. Formally, let T ∈ Tr(

−→
P ′).

If ProtTr(T,R) holds, then it must be the case that T ∈ Tr(
−→
P).

5 2010/4/23

If this holds for every trace of T ∈ Tr(
−→
P ′), then

−→
P ′ satisfies the

containment condition induced by
−→
P and R, denoted by

−→
P ′ |=C

(
−→
P ,R).

Formal Problem Statement. The goal of the DIFC instrumenter
is thus to take as input a program

−→
P , a DIFC policy F =

(V,S,R), and produce a program
−→
P ′ such that

−→
P ′ |=S S,−→

P ′ |=T (
−→
P ,R), and

−→
P ′ |=C (

−→
P ,R). If

−→
P ′ satisfies all three

conditions, then it is a correct instrumentation of
−→
P according to

F , denoted by
−→
P ′ |= (

−→
P ,F).

3.3 From Programs and Policies to Instrumentation
Constraints

The DIFC instrumenter takes as input a program
−→
P and policy F .

To produce a program
−→
P ′ such that

−→
P ′ |= (

−→
P ,F), the instru-

menter generates a system of set constraints such that a solution
to the system corresponds to

−→
P ′. The constraints generated ensure

two key properties of
−→
P : (1)

−→
P ′ only manipulates labels in a man-

ner allowed by the Flume reference monitor, and (2) the values of
labels of all processes in all executions of

−→
P ′ ensure that F is sat-

isfied.

3.3.1 Constraint Variables and Their Domain
The constraint system is defined over a set of variables, where
each variable describes how a process should manipulate its label
and capabilities when it executes a given template. One natural
candidate for the domain of such variables is a finite set of atomic
elements, where each element corresponds to a tag created by the
program. However, if the DIFC instrumenter were to use such a
domain, then it could not produce a program that may create an
unbounded set of tags over its execution. The instrumenter thus
could not handle many real-world programs and policies of interest,
such as the example described in §2. The domain of the constraint
variables is thus a finite set of atomic elements where each element
corresponds to a tag identifier bound at a template CREATEτ in
the instrumented program.

For each CSPDIFC template variable X in
−→
P , the instru-

menter generates four constraint variables: labX , posX , negX ,
createsX . Let τ be a tag identifier. If in a constraint solution,
τ ∈ createsX , then in

−→
P ′, the template P bound to X is rewritten

to CREATEτ → P . If τ ∈ labX , then the label of process p ∈ X
executing

−→
P ′ contains a tag bound to τ . The analogous connection

holds for variable posX and the positive capability of p, and the
variable negX and the negative capability of p.

Exa. 7. The constraint variables used by the instrumenter are il-
lustrated in Exa. 6. Consider the templatesA5 andW . The solution
in Exa. 6 defines createsA5 = {τ}. Thus the instrumenter rewrites
template A5 so that when a process executes A5, it creates a tag
and binds the tag to identifier τ . The solution defines labW = {τ},
posW = negW = ∅. Thus in the instrumented program, the label
of each Worker process contains a tag bound to τ , but each Worker
process cannot add or remove such a tag from its label.

3.3.2 Generating Semantic Constraints
The instrumenter must generate a system of constraints such that
any solution to the system results in DIFC code that performs
actions allowed by Flume. To do so, the instrumenter contrains how
a process’s labels and capabilities may change over each step of its
execution.

For each equation that defines the CSPDIFC program, the instru-
menter generates the set of constraints SemCtrs defined as follows:

SemCtrs(X = SKIP) = ∅
SemCtrs(X = Y) = StepCtrs(X,Y)

SemCtrs(X = EVENT→ Y) = StepCtrs(X,Y)

SemCtrs(X = Y 2 Z) = StepCtrs(X,Y)

∪ StepCtrs(X,Z)

SemCtrs(X = Y 9 Z) = StepCtrs(X,Y)

∪ StepCtrs(X,Z)

SemCtrs is defined by a function StepCtrs, which takes as input
two template variables X and Y . StepCtrs generates a set of
constraints that encode the relationship between the labels of a
process p ∈ X and the labels of process p′ ∈ Y that p spawns
in a step of execution. One set of constraints in StepCtrs encodes
that if a tag is bound to an identifier τ and is in the label of p′,
then the tag must be in the label of p, or it must be in the positive
capability of p′. Formally:

∀τ.τ ∈ labY =⇒ τ ∈ labX ∨ τ ∈ posY

Equivalently:
labY ⊆ labX ∪ posY

Additionally, if a tag is bound to τ in the label of p and is not in
the negative capability of p′, then the tag must be in the label of p′.
Formally:

∀τ.τ ∈ labX ∧ τ 6∈ negY =⇒ τ ∈ labY

Equivalently:
labY ⊇ labX − negY

The other constraints in StepCtrs encode that the capabilities of p′

may only grow by the capabilities of tags that p′ creates. If p′ has a
positive (negative) capability for a tag bound to an identifier τ , then
either p must have the positive (negative) capability for the tag, or
the tag must be created and bound to τ at p′. Formally:

∀τ.τ ∈ posY =⇒ τ ∈ posX ∨ τ ∈ createsY

∧ τ ∈ negY =⇒ τ ∈ negX ∨ τ ∈ createsY

Equivalently:

posY ⊆ posX ∪ createsY

negY ⊆ negX ∪ createsY

Finally, the instrumenter constrains that no tag identifier τ is bound
at multiple templates. Formally:

∀X,Y, τ. X 6= Y =⇒ τ 6∈ createsX ∩ createsY

Equivalently: ^
X 6=Y ∈Vars(

−→
P)

createsX ∩ createsY = ∅

The instrumenter conjoins these constraints with the constraints
generated from applying SemCtrs to all equations in

−→
P to form

a system of constraints ϕSem. Any solution to ϕSem corresponds to
a program in which each process manipulates labels as allowed by
Flume.

3.3.3 Generating Policy Constraints
The instrumenter must constrain that the instrumented program
satisfies the instrumentation conditions of §3.2.2. To do so, the
instrumenter generates constraints for each flow assertion in the
policy.

6 2010/4/23

Figure 4. The spawn graph of the server from Fig. 1. The dotted
and dashed paths denote process executions that invalidate init as a
template to create tags that isolate Workers.

First, suppose that the instrumenter is given a secrecy assertion
Secrecy(Source,Sink,Declass,Anc). The assertion induces a se-
crecy instrumentation condition. To instrument the program to re-
spect this condition, the instrumenter must assert that, for processes
p ∈ Source and q ∈ Sink that do not share an ancestor in Anc, in-
formation should not flow from p to q solely through processes that
are not in Declass. We describe how the instrumenter asserts this
by considering example executions that would violate the secrecy
assertion. To describe these executions, we use the spawn graph of
a program:

Def. 1. For a CSPDIFC program
−→
P , the spawn graph of

−→
P

is a graph that represents the “spawns” relation over process
templates. Formally, the spawn graph of

−→
P is G−→

P
= (N,E),

where for every template variable P , node nP ∈ N(G−→
P

), and
(nP , nQ) ∈ E(G−→

P
) if and only if a process p ∈ P may spawn

process p′ ∈ Q.

The spawn graph of the program from Fig. 1 is given in Fig. 4.

Exa. 8. Consider the server from Fig. 1 and the secrecy assertion
that no Workers executingW should be able to communicate infor-
mation to each other unless the information flows through a proxy:
Secrecy(W,W, {P1, P2, P3},W). Suppose that the instrumenter
generated no constraints to ensure that the instrumented program
followed this assertion. The instrumenter might then instrument the
program to create no tags. One execution of the program could then
create a Worker process p by executing the series of templates init,
A1, A5, A6, A7, and W (the dotted path in Fig. 4), and create an-
other Worker process q by executing templates init, A1, A5, A6,
A7, A1, A5, A6, A7, and W (the dashed path in Fig. 4). The label
of p would then be a subset of the label of q, and thus p could send
information to q.

To guard against executions such as those in Exa. 8 for a general
assertion Secrecy(Source, Sink,Declass,Anc), the instrumenter
could generate the constraint labSource 6⊆ labSink. However, this
constraint may not allow the instrumenter to find valid instrumen-
tations of the program in important cases.

Exa. 9. Suppose that for a general secrecy assertion Secrecy(Source,
Sink, Declass, Anc), the instrumenter generated the constraint
labSource 6⊆ labSink. Then for the server of Fig. 1 and secrecy as-
sertion of Exa. 8, the resulting constraint, labW 6⊆ labW , is unsat-
isfiable, and the instrumenter would fail to instrument the server.
However, if the instrumenter rewrote the server to create a tag each
time a process executed template A1, bind the tag to an identifier
τ , and place the tag in the label of the next Worker spawned, then
all Worker processes would be isolated.

By contrast, if the instrumenter rewrote the server to create a
tag each time a process executed template init, bind the tag to
an identifier τ , and place the tag in the label of the next Worker
spawned, then there would be executions of the instrumented pro-
gram in which Worker processes were not isolated. For example,

the Workers described in Exa. 8 would have in their labels the
same tag bound to τ , and thus would be able to communicate.

Thus there is a key distinction between templates A1 and init:
if p and q are distinct Worker processes, then they cannot share
the same tag created at A1. However, they can share the same tag
created at init.

The instrumenter captures the distinction between A1 and init
in Exa. 9 for a general secrecy assertion Secrecy(Source, Sink,
Declass, Anc) by constraining that there is a tag identifier τ ∈
labSource such that τ 6∈ labSink or τ must be bound at a template in
DistAnc, where DistAnc is defined as follows:

Def. 2. Let P and Q be process templates. Q is distinct for P ,
denoted by Q ∈ DistP , if and only if the following holds. Let Q
bind tags that it creates to a tag identifier τ , and let r, s be distinct
processes with distinct ancestors in P . If τ is bound to a tag t1 in
the namespace of r and τ is bound to a tag t2 in the namespace of
s, then t1 6= t2.

To instrument a program to satisfy a secrecy assertion, the
instrumenter could thus weaken the constraint labSource ⊆ labSink

from above to labSource 6⊆ labSink−
S
Q∈DistAnc

createsQ. However,
a program instrumented using such a constraint may still allow
flows from a process p ∈ Source to a process q ∈ Sink not
allowed by the assertion. The program could do so by allowing
processes not in Declass to receive information from p, remove
tags associated with the information, and then send the information
to q. To guard against this, the instrumenter strengthens the above
constraint to:

labSource 6⊆

0@labSink −
[

Q∈DistAnc

createsQ

1A ∪ [
D 6∈Declass

negD

We prove in [8, App. F] that this constraint is sufficient to ensure
that the instrumented program satisfies the secrecy assertion.

Now suppose that the instrumenter is given a protection asser-
tion Prot(Source, Sink,Anc). The assertion induces transparency
and instrumentation conditions. To instrument the program to re-
spect these conditions, the instrumenter must assert that whenever
a process p ∈ Source communicates data to a process q ∈ Sink
where p and q share an ancestor process a ∈ Anc, then the commu-
nication must be successful. To assert this, the instrumenter must
ensure that every tag t in the label of p is also in the label of q.
We describe how the instrumenter does so by considering example
executions that violate protection assertions.

Exa. 10. Consider the server from Fig. 1 and the protection asser-
tion Prot(P5, R, init) that each Proxy executing P5 must be able
to send information to the Requester executingR. Suppose that the
instrumenter generated no constraints to ensure that the program
followed this assertion. The instrumenter might then instrument the
program to bind a tag to an identifier τ at template A1. One exe-
cution of the program could create a Proxy process p by executing
the series of templates init, A1, A5, A6, P1, P3, and P5, and cre-
ate a Requester process q by executing the series of templates init
and R. Suppose that p had in its label the tag that was bound to τ
when its ancestor executed A1. Because no ancestor of q executed
A1, q would not have a tag in its label bound to τ . Thus the label
of p would not be a subset of the label of q, and p would fail to
communicate to q.

Exa. 10 demonstrates that for assertion Prot(Source, Sink,Anc),
if a tag in the label of p ∈ Source is bound to an identifier τ , then
for p to send information to q ∈ Sink, there must be a tag in the la-
bel of q that is bound to τ . This is expressed as labSource ⊆ labSink.
However, this constraint is not sufficient to ensure that p and q
communicate, as demonstrated by the following example.

7 2010/4/23

Exa. 11. Suppose that the server in Fig. 1 was instrumented to bind
a tag to an identifier τ atA1, add this tag to the next Proxy process,
and add the tag to the label of the Requester process executing R.
Each Proxy process executing P3 would have a different ancestor
that executed A1, and thus each Proxy would have a different tag
in its label. Although labP3 = {τ} ⊆ {τ} = labR, because each
tag bound to τ in the label of each Proxy process executing P3

is distinct, the label of the Requester process does not contain
the label of all processes executing P3. Thus communication from
Proxy processes to the Requester could fail.

On the other hand, suppose that the server was instrumented
to bind a tag to τ at init, and add this tag to the label of Proxy
processes executing P3 and the Requester executing R. Then the
same tag would be in the labels of each Proxy process and the
Requester. The key distinction between A1 and init is that a Proxy
and Requester may have distinct tags created at A1, but cannot
have distinct tags created at init.

The instrumenter captures the distinction between init and A1

in Exa. 11 for a general assertion Prot(Source, Sink,Anc) by
strengthening the above constraint that labSource ⊆ labSink to con-
straining that if a tag in the label of p ∈ Source is bound to an
identifier τ , then τ ∈ labSink and τ must be bound at a template in
ConstAnc, where ConstAnc is defined as follows.

Def. 3. Let P,Q be process templates. Q is constant for P ,
denoted Q ∈ ConstP , if and only if the following holds. Let
processes r and s share in common their most recent ancestor in
P , and let Q bind tags to a tag identifier τ . If τ is bound to a tag t1
in the namespace of r, and τ is bound to a tag t2 in the namespace
of s, then t1 = t2.

For a protection assertion Prot(Source, Sink,Declass), the
conditions on each tag identifier τ are expressed formally using
ConstAnc as:

∀τ.τ ∈ labSource =⇒ τ ∈ labSink ∧ τ ∈
[

Q∈ConstAnc

createsQ

Equivalently:

labSource ⊆ labSink ∩
[

Q∈ConstAnc

createsQ

We prove in [8, App. F] that this constraint is sufficient to ensure
that the instrumented program satisfies the protection assertion.

The definitions of Dist and Const given in Defn. 2 and Defn. 3
explain how the sets are used to instrument a program, but they do
not describe how the sets may be computed. The sets are computed
through a series of reachability queries over the spawn graph of the
program. For further details, see App. A.

A solution to the conjunction ϕPol of constraints generated for
all flow assertions in a policy F corresponds to an instrumentation
that respects all assertions. A solution to the conjunction of these
constraints with the semantic constraints, ϕTot ≡ ϕSem ∧ϕPol, thus
corresponds to a program that manipulates Flume labels legally to
satisfy F .

3.4 Solving Instrumentation Constraints
After generating a system of constraints ϕTot as described in §3.3,
the instrumenter must find a solution to ϕTot, and from the solution
instrument

−→
P . Unfortunately, such systems are computationally

difficult to solve in general; finding a solution to ϕTot is NP-
complete in the number of terms in ϕTot. We give a proof of
hardness in [8, App. G].

However, although such systems are hard to solve in general,
they can be solved efficiently in practice. Modern Satisfiability
Modulo Theory (SMT) solvers [7] can typically solve large logical

formulas very quickly. To apply an SMT solver, the instrumenter
must translate ϕTot from a formula over a theory of set constraints
to a formula over a theory supported by the solver, such as the the-
ory of bit-vectors. To translate ϕTot, the instrumenter must derive
for ϕTot a bound B such that if ϕTot has a solution, then it has a
solution in which the value of each constraint variable contains at
most B elements. Such a bound B always exists, and is equal to
the number of secrecy flow assertions. We prove the validity of this
bound and give the explicit rules for translating set constraints to
bit-vector constraints in App. B.

The instrumenter applies an SMT solver to the bit-vector trans-
lation of the set-constraint system. If the SMT solver determines
that the formula is unsatisfiable, then it produces an unsatisfiable
core of bit-vector constraints. The core is a subset of the original
constraint system that is unsatisfiable, and does not strictly con-
tain an unsatisfiable subset. Given such a core, the instrumenter
computes the subprogram and flow assertions that contributed con-
straints in the core, and presents these to the user. If the SMT solver
determines that the constraint system is satisfiable, then the instru-
menter rewrites the program so that the label values of all processes
that execute the instrumented program correspond to the label val-
ues in the constraint solution.

3.5 From Constraint Solutions to Instrumented Programs

For a program
−→
P and policy F , if the instrumenter obtains a

solution to the constraint systemϕTot described in §3.3.3, then from
this solution it rewrites

−→
P to a new program

−→
P ′ that respects F .

Each equation X = P in
−→
P is rewritten as follows. If createsX

contains a tag identifier τ , then the instrumenter rewrites P to
CREATEt → P . Now, suppose thatL,M , andN are the sets of tag
identifiers in the constraint values for labX , posX , and negX . Then
the instrumenter rewrites P to ChangeLabel(L,M,N)→ P . The
instrumenter can reduce the number of ChangeLabel templates
generated by only generating such a template when a label or
positive capability changes from that of a preceeding P template
in G−→

P
.

The instrumenter is sound in the sense that if it produces an
instrumented program, then the program satisfies the instrumenta-
tion conditions of §3.2. However, it is not complete; e.g., to satisfy
some programs and policies, it could be necessary for different pro-
cesses executing the same template to contain tags created at differ-
ent templates. This behavior is not supported by the instrumenter.
However, our experiments, described in §4, indicate that in practice,
the instrumenter can successfully instrument real-world programs
to handle real-world policies.

4. Experiments
We evaluated the effectiveness of the DIFC instrumenter by exper-
imenting with four programs. The experiments were designed to
determine whether, for real-world programs and policies,
• the instrumenter is expressive: can its language of policies en-

code real-world information-flow policies, and can the instru-
menter rewrite real programs to satisfy such policies? We found
that each of the real-world policies could be encoded in the lan-
guage of the instrumenter, and that the instrumenter could find
a correct instrumentation of the program with minimal, if any,
manual edits of the program.
• the instrumenter is efficient and scalable: can it instrument

programs quickly enough to be used as a practical tool for
developing applications? We found that the instrumenter could
instrument programs in seconds.

8 2010/4/23

To examine these properties, we implemented the DIFC instru-
menter as an automatic tool 2 called SWIM 3 and applied it to in-
strument the following program modules:
1. The multi-process module of Apache [1].
2. The CGI and untrusted code launching modules of FlumeWiki [12].
3. The scanner module of ClamAV [4].
4. The OpenVPN client [16].

For each program module, we chose an information-flow policy
from the literature [12, 21], expressed the policy in terms of the
flow assertions described in §3.2.2, and then fed the program and
policy to the tool.

We implemented SWIM using the CIL [15] program-analysis
infrastructure for C, and the Yices SMT solver [7]. The only pro-
gram annotations required by SWIM are C labels (not Flume labels)
that map program points to variables used in flow assertions. When
successful, SWIM outputs a C program instrumented with calls to
the Flume API such that the program satisfies the input policy. We
performed all experiments using SWIM on a machine with a 2.27
GHz 8-core processor and 6 GB of memory, although SWIM uses
only a single core.

We first describe our experience using SWIM, and then evaluate
its performance.

Apache Multi-Process Module. We applied SWIM to the multi-
process module of the Apache web-server to automatically produce
a version of Apache that isolates Worker processes. A model of the
Apache system architecture, along with the desired policy, serves
as the example described in §2. When we initially applied SWIM to
Apache and its policy, SWIM was unable to find an instrumentation.
Indeed, it was impossible to instrument Apache to isolate Worker
processes, because its MPM process establishes a direct connection
between the process that issues a request and the Worker process
spawned to service a request. We thus modified the MPM code
by hand to spawn uninstrumented proxy processes, which forward
information between Worker and requester, as described in §1 and
§2. When we applied the instrumenter to the modified program,
it instrumented the new program so that it satisfied the policy.
Although it is unfortunate that we had to modify the program
manually, we were able to use the instrumenter to determine that
such an modification was necessary. Moreover, the modification
was relatively simple, and in the future, it may be possible to
automatically rewrite a program as necessary with simple objects
such as connection proxies to find a correct instrumentation.

FlumeWiki CGI and Untrusted Code Modules. We applied
SWIM to FlumeWiki modules that launch processes to service re-
quests, producing a version of FlumeWiki in which each process
that services a request acts with exactly the DIFC permissions of
the user who makes the request. FlumeWiki [12] is based on the
software package MoinMoin Wiki [13], but has been extended to
run on the Flume operating system with enhanced security guar-
antees. Similar to Apache, in FlumeWiki a launcher process re-
ceives requests from users for generating CGI forms, running po-
tentially untrusted code, or interacting with the Wiki. The launcher
then spawns an untrusted Worker to service the request. However,
whereas Apache should execute with no information flowing from
one Worker to another, in FlumeWiki each Worker should be able
to access exactly the files that can be accessed by the user who is-
sued the request. To express this policy and instrument FlumeWiki
to satisfy it, we used policies defined over persistent principals
(e.g. users). The semantics of these policies and the instrumenter’s
technique for generating code that satisfies them is analogous to
how it generates code to handle the policies of §3.2. We give fur-

2 Available at http://cs.wisc.edu/∼wrharris/software/difc
3 Secure What I Mean

ther details in [8, App. H]. We removed the existing DIFC code
from the modules of FlumeWiki that launch processes that serve
CGI forms or run untrusted code. We then applied SWIM to the
uninstrumented program and policy. SWIM instrumented the pro-
gram correctly, with code that was similar to the original, manually
written code.

ClamAV Virus Scanner Module. We applied SWIM to ClamAV
to automatically produce a virus scanner that is guaranteed not to
leak sensitive data over a network or other output device, even if it
is compromised. ClamAV is a virus-detection tool that periodically
scans the files of a user, checking for the presence of viruses by
comparing the files against a database of virus signatures. To func-
tion correctly, ClamAV must be trusted to read the sensitive files of
a user, yet a user may want assurance that even if a process running
ClamAV is compromised, it will not be able to send sensitive data
over a network connection.

Inspired by [21], we modeled a system running ClamAV using
the “scanner” module of ClamAV, a file containing sensitive user
data, a file acting as a user TTY, a proxy between the scanner and
the TTY, a file acting as a virus database, a file acting as a network
connection, a process acting as a daemon that updates the virus
database, and a process that spawns the scanner and update daemon
and may set the labels of all processes and files. We then wrote a
policy of nine flow assertions that specified that:
• The update daemon should always be able to read and write to

the network and virus database.
• The scanner should always be able to read the sensitive user

data and virus database.
• The scanner should never be able to send data directly to the

network or TTY device. However, it should always be able
to send data to the proxy, which should always be able to
communicate with the TTY device.

SWIM automatically instrumented the model so that it satisfies the
policy. Although we only used SWIM to instrument one, arbitrarily
chosen system configuration, because SWIM is able to instrument
systems very quickly, it could easily be used to reinstrument a
system as the configuration of the system changes.

OpenVPN. We applied SWIM to OpenVPN to automatically pro-
duce a system that respects VPN isolation. OpenVPN is an open-
source VPN client. Because VPNs act as a bridge between net-
works on both sides of a firewall, they represent a serious security
risk [21]. A common desired policy for systems running a VPN
client is VPN isolation, which specifies that information should be
not able to flow from one side of a firewall to the other unless it
passes through the VPN client.

We modeled a system running OpenVPN using the code of the
entire OpenVPN program, files modeling networks on opposing
sides of a firewall (Network1 and Network2), and a process (init)
that launches OpenVPN and may alter the labels of the networks.
We expressed VPN isolation for this model as a set of six flow
assertions that specified that:
• Information show not flow between Network1 and Network2

unless it flows through OpenVPN.
• OpenVPN should always be able to read to and write from

Network1 and Network2.
SWIM automatically instrumented the model so that it satisfies the
policy. As in the case with ClamAV, we applied SWIM to one
particular configuration of a system running OpenVPN, but SWIM
is fast enough that it can easily be reapplied to a system running
OpenVPN as the system’s configuration changes.

Our experience using SWIM indicates that the DIFC instru-
menter is sufficiently expressive to instrument real-world programs
to satisfy real-world policies. While the flow assertions presented in
§3.2 are simple to state, they can be combined to express complex,

9 2010/4/23

Program Name LoC Time (s) Num. Inst.
Apache (MPM) 15,409 2.302 49

FlumeWiki (CGI) 300 0.183 46
FlumeWiki (WC) 286 0.096 34
ClamAV (scanner) 10,919 1.374 117

OpenVPN 98,262 7.912 51

Table 2. Performance of the DIFC instrumenter.

realistic policies. While not all programs could be instrumented to
satisfy a desired policy without modification, when an instrumen-
tation does exist, the instrumenter was able to find it each time.

For each application, we empirically measured the performance
of SWIM. Results are given in Tab. 4. Col. “LoC” gives the number
of lines of code in the program modules given to SWIM. Col. “Time
(s)” gives the time in seconds required for the instrumenter to in-
strument the program. Col. “Num. Inst.” gives the number of state-
ments instrumented by SWIM. The results indicate the DIFC instru-
menter is a practical technique: SWIM is able to instrument large,
real-world program modules in seconds. Thus it is fast enough even
to be integrated into the edit-compile-run cycle of the software-
development work cycle.

5. Related Work
Multiple operating systems support DIFC, including Asbestos [19],
HiStar [21], and Flume [12]. These systems all provide low-level
mechanisms that allow an application programmer to implement
an information-flow policy. Our instrumenter complements these
systems. Although we have restricted the discussion to Flume, our
instrumenter can be easily generalized to allow for program trans-
formations to instrument programs for other DIFC operating sys-
tems. By running automatically-instrumented programs on top of
a DIFC operating system, a user obtains greater assurance of the
end-to-end information-flow security of their application. Note that
the Asbestos system attempts to lessen the amount of DIFC code in
applications by implicitly redefining label values to allow commu-
nication when the process is capable of performing the redefinition.
This has multiple disadvantages. Krohn and Tromer [11] demon-
strate that such systems may allow forbidden information flows.
Furthermore, such implicit behaviors can make programs more dif-
ficult to reason about.

Harris et. al. [9] apply a model checker for safety properties of
concurrent programs to determine if a fully instrumented DIFC ap-
plication satisfies a high-level information flow policy. The present
paper describes how to instrument DIFC code automatically, given
only an uninstrumented program and a policy. Such code is correct
by construction. Krohn and Tromer [11] use CSP to reason about
the Flume OS, not applications running atop Flume.

Resin [20] is a language runtime that allows a programmer to
specify dataflow assertions, which are checked over the state of
the associated data before the data is allowed to be sent from one
system object to another. Resin allows for arbitrary code to be run
on certain events, but it does not attempt to provide guarantees
that an application satisfies a high-level policy. In comparison, our
policy language is less expressive, but the code generated by our
approach is correct by construction. Additionally, DIFC systems
provide certain guarantees that Resin does not match [20].

Previous work describes techniques to automatically synthesize
programs from complete specifications of their behavior [6, 17].
Like our instrumenter, these techniques assume a program skeleton
and a specification of correctness, and then use constraint solving to
generate language constructs, yielding a concrete implementation
of the specification. However, these techniques synthesize single-

process arithmetic programs, while our instrumenter rewrites pro-
grams that may execute over an unbounded set of processes.

Several programming languages, such as Jif, provide type sys-
tems based on security labels that allow the programmer to validate
security properties of their code through type-checking [14, 18]. Jif
has been used to implement several real-world applications with
strong security guarantees (e.g. [5, 3, 10]), but these programs are
written from scratch in Jif. Automatic techniques can partition a
Jif web application between its client and server [3], but the im-
plementation of the composite program was done manually prior
to partitioning. Our instrumenter adds labeling code to complete
applications developed without label code.

6. Conclusion
Until now, the promise of DIFC operating systems has been limited
by the added burden that they place on application programmers.
We have presented a technique that takes a DIFC-unaware applica-
tion and an information-flow policy and automatically instruments
the application to satisfy the policy, while respecting the function-
ality of the application. Our technique thus greatly improves the
applicability of DIFC systems and the end-to-end reliability of ap-
plications that run on such systems.

References
[1] Apache. http://www.apache.org.

[2] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of
communicating sequential processes. J. ACM, 31(3):560–599, 1984.

[3] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng. Secure web applications via automatic partitioning. In
SOSP, 2007.

[4] Clamav. http://www.clamav.net.

[5] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure
voting system. SP, 2008.

[6] M. Colón. Schema-guided synthesis of imperative programs by
constraint solving. In LOPSTR, 2004.

[7] B. Dutertre and L. de Moura. The Yices SMT solver. http:
//yices.csl.sri.com/tool-paper.pdf, August 2006.

[8] W. R. Harris, S. Jha, and T. Reps. DIFC Programs by Automatic In-
strumentation. http://cs.wisc.edu/∼wrharris/publications/tr-1673.pdf,
2010.

[9] W. R. Harris, N. A. Kidd, S. Chaki, S. Jha, and T. Reps. Verifying
information flow control over unbounded processes. In FM, 2009.

[10] B. Hicks, K. Ahmadizadeh, and P. McDaniel. Understanding practical
application development in security-typed languages. In ACSAC,
2006.

[11] M. Krohn and E. Tromer. Noninterference for a practical DIFC-based
operating system. In SP, 2009.

[12] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information flow control for standard OS abstractions.
In SOSP, 2007.

[13] MoinMoin. The MoinMoin wiki engine, Dec. 2006.

[14] A. C. Myers and B. Liskov. A decentralized model for information
flow control. In SOSP, 1997.

[15] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation
of C programs. In CC, 2002.

[16] Openvpn. http://www.openvpn.net.

[17] S. Srivastava, S. Gulwani, and J. S. Foster. From program verfication
to program synthesis. In POPL, 2010.

[18] N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language for
enforcing user-defined security policies. In SP, 2008.

10 2010/4/23

[19] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,
D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières. Labels and
event processes in the Asbestos operating system. ACM Trans.
Comput. Syst., 25(4):11, 2007.

[20] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving
application security with data flow assertions. In SOSP, 2009.

[21] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making
information flow explicit in HiStar. In OSDI, 2006.

A. Computing DistP and ConstP
The definition of Dist given in Defn. 2 explains how Dist sets
may be used to formulate constraints for Secrecy assertions, but
it does not describe how Dist sets may be computed. For a program−→
P with template P , the set DistP is computed by applying the
following theorem and issuing a series of reachability queries over−→
P ’s spawn graph G−→

P
:

Thm. 1. For program
−→
P that contains process templates P andQ,

Q ∈ DistP if and only if
−→
P contains no template variable R such

that:
1. nQ reaches nR.
2.
−→
P (R) = S 9 T , where nS and nT reach nP without going
through nQ, or nP reaches nR and nR reaches nP without
going through nQ.

Proof. We first prove that if no such R exists, then Q ∈ DistP . Let
T ∈ Tr(

−→
P) be a trace of an arbitrary execution. If T has a subse-

quence SPAWN(p0, p1), SPAWN(p1, p2), . . ., SPAWN(pn−1, pn),
then we say that T has a spawn trace p0 → p1 → . . . → pn. All
processes that execute in T start from a root process template A.
Consider processes d1 and d2 with spawn traces a → . . . → q →
. . . → p1 → . . . → . . . d1 and a → . . . → q → . . . → p2 →
. . . → d2 with a ∈ A, q ∈ Q, and p1, p2 ∈ P where d1 and d2

share the tag created at q in their namespaces. We want to show
that p1 = p2.

Suppose on the contrary that p1 6= p2. Because the spawn traces
of d1 and d2 start from the same process a, there must be some
processes r, s, t such that r → s is in the trace of d1 while r → t
is in the spawn trace of d2, with s 6= t. Let r, s, t be the first
processes for which this is the case. First, suppose that r spawns
before both p1 and p2. Then the spawn traces of d1 and d2 have
subtraces q → . . . → r → s → . . . → p1 → . . . → d1 and
q → . . . → r → t → . . . → p2 → . . . → d2. By hypothesis, d1

and d2 share the same tag created atQ, so neither subtrace executes
a process in Q other than q. However, this implies that r executes
a template R such that

−→
P (R) = S 9 T , and nS and nT reach

nP without going through nQ. Thus R satisfies the conditions of
Thm. 1, which violates our hypothesis. Thus r cannot spawn before
p1 and p2.

Now suppose that r spawns after p1, but before p2. Then the
spawn traces of d1 and d2 have subtraces q → . . .→ p1 → . . .→
r → . . . → d1 and q → . . . → r → . . . → p2 → . . . → d2

with q the only process in Q, p1, p2 ∈ P , and r ∈ R. These
subtraces imply that nP reaches nR and nR reaches nP without
going through nQ. Thus R satisfies the conditions of Thm. 1, and
violates our hypothesis. r may not spawn before p1 and after p2, by
a symmetric argument. Finally, if r spawned after p1 and p2, then
it would be the case that p1 = p2, which violates our hypothesis.
Thus no such r can exist, and it must be the case that p1 = p2.

We now prove that if R does exist, then Q 6∈ DistP . First,
suppose that

−→
P (R) = S 9 T , where nS and nT both reach nP .

Then
−→
P has an execution with processes d1 and d2 with spawn

subtraces q → . . . → r → s → . . . → p1 → . . . → d1

and q → . . . → r → t → . . . → p2 → d2 that contain
no processes in Q after q, with r ∈ R, s ∈ S, t ∈ T , and
p1, p2 ∈ P . Thus d1 and d2 have distinct ancestor processes in
P , but share a tag created at Q, and Q 6∈ DistP by definition. Now
suppose that nP reaches nR, and nS reaches nP without going
through nQ. Then

−→
P has an execution with processes d1 and d2

with spawn subtraces q → . . . → p1 → . . . → r → t → d1 and
q → . . .→ p1 → r → s→ . . .→ p2 → d2 where p1 6= p2 ∈ P ,
r ∈ R, s ∈ S, t ∈ T , and s 6= t. Neither subtrace contains a
process inQ aside from the common q at the start of both traces, so
d1 and d2 have distinct ancestor processes p1, p2 ∈ P , but share a
tag created at Q. In the case that nT instead of nS reaches nP , two
processes d1 and d2 have distinct ancestor processes p1, p2 ∈ P
but share a tag created at Q, by a symmetric arguments. Thus by
definition, Q 6∈ DistP .

The definition of Const given in Defn. 3 explains how Const
sets may be used to formulate constraints for Prot assertions, but it
does not describe how Const sets may be computed. For a program−→
P with template P , the set ConstP is computed by applying the
following theorem and issuing reachability queries over

−→
P ’s spawn

graph G−→
P

:

Thm. 2. For program
−→
P that contains process templates P and

Q,Q ∈ ConstP if and only if
−→
P contains no templateR such that:

1. nP reaches nR in G−→
P

.
2.
−→
P (R) = S 9 T , where nS or nT reach nQ without going
through nP .

Proof. We first prove that if there is no such R, then Q ∈ ConstP .
Let d1, d2 be distinct processes with spawn traces a → . . . →
p → . . . → r → s → . . . → d1 and a → . . . p → . . . r →
t → . . . → d2, where a ∈ A, q ∈ Q, r ∈ R, s ∈ S, t ∈ T , and
s 6= t. By hypothesis, neither of the subtraces s → . . . → p1 nor
t → . . . → p2 may execute Q, or R would satisfy the conditions
of Thm. 2. Thus if d1 has a tag created at Q, then it is the same tag
that r has, which is the same tag that p2 has.

We now prove that if such an R does exist, then Q 6∈ ConstP .
Suppose that nS reaches nQ, and the spawn traces from above have
subtraces s → . . . → q → . . . → d1 and t → . . . → d2, where
q ∈ Q. When q executes Q, it creates a fresh tag u and binds u in
its namespace. The only way that u may become unbound in the
namespace is if a subsequent process executes Q again, binding a
new fresh tag in the namespace. The most recent such tag is bound
in the namespace of d1. Thus d1 cannot share a tag created by d2,
and Q 6∈ ConstP . By a symmetric argument, if nT reaches nQ,
then Q 6∈ ConstP .

B. Translating Set Constraints to Bit-vector
Constraints

B.1 Bounding the Number of Abstract Tags in the Domain
To translate a system of set constraints ϕ to a system of bit-vector
constraints, the instrumenter must derive a bound B such that if ϕ
has a solution, then it has one in which the value of each variable
has at mostB elements. We will prove thatB is equal to the number
of negative set constraints in ϕ. To do so, we will prove a theorem
over a general class of set constraints that include those that may
be generated by the instrumenter.

Thm. 3. Let ϕ be a conjunction of constraints, where each con-
straint is of the form X ⊆ f(

−→
X) or Y 6⊆ g(

−→
Y), where X and Y

are single variables, and f(
−→
X) and g(

−→
Y) are set expressions built

11 2010/4/23

only from the sets of variables
−→
X and

−→
Y using set union, intersec-

tion, and difference. If ϕ has a solution, then it has one in which
the value for each variable contains at most one element for each
negative subset constraint.

Proof. Let s be a solution to ϕ, which maps each variable in ϕ
to a set of atomic elements, and extends to set expressions in the
natural way. For each negative subset constraint Y 6⊆ g(

−→
Y), pick

one element t ∈ s(Y) − s(g(
−→
Y)). Let E be the set of all such

chosen elements, and for each variable X , let s′(X) = s(X) ∩E.
s′ is a solution to ϕ. To see this, first note that s′(f(

−→
X)) =

s(f(
−→
X))∩E. This follows by the distributvity of intersection over

union, intersection, and difference. To see that s′ is a solution for
any positive constraint in ϕ, observe that

s′(X) = s(X) ∩ E ⊆ s(f(
−→
X)) ∩ E = s′(f(

−→
X))

To see that s′ is a solution for any negative constraint in ϕ, observe
that

s′(Y) = s(Y) ∩ E 6⊆ s(g(
−→
Y)) ∩ E = s′(g(

−→
Y))

The non-containment follows from the fact that by the definition of
E, s(Y) contains an element in E that is not in s(g(

−→
Y)).

B.2 From Set Constraints to Bit-vector Constraints
Using the bound B described in App. B.1, the instrumenter trans-
lates set-constraint system ϕ to a bit-vector constraint system ϕbv
such that if ϕbv has a solution, then the solution can be translated
efficiently into a solution for ϕ, and if ϕbv does not have a solu-
tion, then ϕ does not have a solution. To perform this translation,
the instrumenter applies the following rules to each constraint in ϕ:

Jterm1 ⊆ term2KBC ≡Jterm1KBT&Jterm2KBT = Jterm1KBT
Jterm1 6⊆ term2KBC ≡¬Jterm1 ⊆ term2KBC

JXKBT ≡XB
bv

Jterm1 ∪ term2KBT ≡Jterm1KBT | Jterm2KBT
Jterm1 ∩ term2KBT ≡Jterm1KBT&Jterm2KBT
Jterm1 − term2KBT ≡Jterm1KBT&Jterm2KBT

In the above rules, term is an arbitrary term in the theory of set
constraints. J�KBC translates a set constraint to a constraint over bit-
vectors of size B. It is defined using J�KBT , which translates a set
term to be a term defined over bit-vectors of size B. Variable XB

bv

denotes a bit-vector variable of size B that corresponds one-to-one
with the set variableX , & denotes bit-wise AND, | denotes bit-wise
OR, and X denotes the bit-wise complement of X .

C. Modeling Compromised Processes
A key strength of DIFC operating systems is that they allow a pro-
grammer to restrict the flow of their program’s information, even if
the information flows through a process that may be compromised.
Obviously, the DIFC instrumenter cannot hope to instrument pro-
gram segments that may become compromised and expect for the
code to be run in the event of a compromise. However, the instru-
menter can in many cases produce programs that soundly handle
compromised processes.

To instrument code that may have compromised processes, we
revise the constraints generated for policies. Prot assertions are
given to ensure that the DIFC system preserves some aspect of the
original program’s functionality. It is hopeless to try to preserve
functionality once a process has been compromised, so even if we
know that processes mentioned in a Prot assertion may be compro-
mised, the instrumenter does not rewrite the generated constraints.

However, suppose the instrumenter is given a secrecy assertion
Secrecy(Source, Sink,Declass,Anc), and extra information that
processes that execute Source or Sink may be compromised. The
constraint generated for such an assertion as described in §3.3.3 is

labSource 6⊆

0@labSink −
[

Q∈DistAnc

createsQ

1A ∪ [
D 6∈Declass

negD

Suppose that processes executing Source may be compromised. If
a compromised source process wishes to violate the assertion, then
it will attempt to send information with the smallest possible label
by removing all tags allowed by its negative capability. To constrain
that such a process still cannot leak data, the instrumenter alters the
left-hand side of the inequality:

(labSource − negSource) 6⊆

0@labSink −
[

Q∈DistAnc

createsQ

1A
∪

[
D 6∈Declass

negD

Suppose that processes executing Sink may be compromised. If a
compromised sink process wishes to violate the assertion, then it
will attempt to receive information with the largest possible label
by adding all tags allowed by its positive capability. To constrain
that such a process still cannot leak data, the instrumenter alters the
term in the right-hand side of the inequality related to the labels of
Sink processes:

labSource 6⊆

0@(labSink ∪ posSink) ∪
[

Q∈DistAnc

createsQ

1A
∪

[
D 6∈Declass

negD

We can rewrite the constraints of §2.2 to obtain the full constraint
system that allows the instrumenter to isolate Workers even if they
are compromised.

D. Integrity
DIFC operating systems give application programmers the power
to ensure the secrecy and integrity of their data. The techniques pre-
sented in the body of the paper automatically instrument programs
to uphold secrecy guarantees. However, they can be extended to
also instrument programs to uphold integrity guarantees. The full
Flume operating system maps every process to an integrity label, in
addition to the process’s secrecy label, positive capability, and neg-
ative capability. To instrument programs to enforce integrity guar-
antees, the instrumenter generates for every template variable X
an additional constraint variable intX . The instrumenter generates
constraints that assert the Flume semantics for integrity. These are
directly analogous to those that assert the semantics of secrecy la-
bels. The function StepCtrs(X,Y) defined in §3.3.2 is extended to
generate the following constraints:

intY ⊆ intX ∪ posY
intY ⊇ intX − negY

To extend the instrumenter to enforce integrity policies, we
would define flow assertions for integrity. The instrumenter would
then generate constraints analogous to those of §3.3.3.

E. Formal Trace Semantics of CSPDIFC

We give a formal semantics of CSPDIFC programs as a denotational
semantics that maps each program to the set of all event traces

12 2010/4/23

ProcTr((p, SKIP), π, λ, ν, µ, η) =STEP(p, P).SPAWN(p, p′).ProgTr(π − p, λ− p, ν − p, µ− p, η − p)
ProcTr((p,X), π, λ, ν, µ, η) =STEP(p, P).SPAWN(p, p′).

ProgTr((π − p)[p′ 7→
−→
P (X)], λ[p′ = p], ν[p′ = p], µ[p′ = p], η[p′ = p])

ProcTr((p,Proc12Proc2), π, λ, ν, µ, η) =STEP(p, P).SPAWN(p, p′).

ProgTr((π − p)[p′ 7→ Proc1], λ[p′ = p], ν[p′ = p], µ[p′ = p], η[p′ = p]

∪ ProgTr((π − p)[p′ 7→ Proc2], λ[p′ = p], ν[p′ = p], µ[p′ = p], η[p′ = p]))

ProcTr((p,Proc1 9 Proc2), π, λ, ν, µ, η) =STEP(p, P).SPAWN(p, p′).SPAWN(p, p′′) .

ProgTr((π − p)[p′ 7→ Proc1, p
′′ 7→ Proc2],

λ[p′ = p′′ = p], ν[p′ = p′′ = p], µ[p′ = p′′ = p], η[p′ = p])

ProcTr((p, ! q → Proc1), π, λ, ν, µ, η) =STEP(p, P).SPAWN(p, p′). (if(λ(p) ⊆ λ(q)) then (p!q) else []).

ProgTr((π − p)[p′ 7→ Proc1], λ[p′ = p], ν[p′ = p], µ[p′ = p], η[p′ = p])

ProcTr((p, ? q → Proc1), π, λ, ν, µ, η) =STEP(p, P).SPAWN(p, p′).(if(λ(q) ⊆ λ(p)) then (p?q) else[]).

ProgTr((π − p)[p′ 7→ Proc1], λ[p′ = p], ν[p′ = p], µ[p′ = p], η[p′ = p])

ProcTr(p,ChangeLabel(L,M,N)→ Proc1), π, λ, ν, µ, η) =if(η(p)(L) ⊆ λ(p) ∪ ν(p)) ∧ (η(p)(L) ⊇ λ(p)− µ(p))

∧ (η(p)(M) ⊆ ν(p)) ∧ (η(p)(N) ⊆ µ(p))

then ProgTr((π − p)[p′ 7→ Proc1],

λ[p′ 7→ L], ν[p′ 7→ η(p)(M)], µ[p′ 7→ η(p)(N)], η[p′ = p])

else ProgTr((π − p)[p′ 7→ Proc1],

λ[p′ = p], ν[p′ = p], µ[p′ = p], η[p′ = p])

ProcTr((p,CREATEτ → Proc1), λ, ν, µ, η) =ProgTr((π − p)[p′ 7→ Proc1],

λ[p′ = p], (ν − p)[p′ 7→ ν(i) ∪ {t}], (µ− p)[p′ 7→ ν(p) ∪ {t}],
(η − p)[p′ 7→ η(p)[τ 7→ t]), t fresh

ProgTr(π, λ, ν, µ, η) =
[

(p 7→P)∈π

ProcTr((p, P), π, λ, ν, µ, η)

Figure 5. Trace semantics of CSPDIFC.

that it may generate. Two functions define the trace semantics of
a program

−→
P . The function ProgTr defines the set of all traces

that program
−→
P may generate from a given program state, and is

defined as follows: first, let T be an infinite set of identifiers for
tags created during execution of

−→
P , and let L = 2T be the set of

all labels. Let I be the infinite set processes that may be spawned
during execution. The function ProgTr takes the following partial
functions as input:
1. A program state π : I ⇀ Proc, which maps each process to the

template that it executes in its next step.
2. A label map λ : I ⇀ L, which maps each process to its current

label.
3. A positive-capability map ν : I ⇀ L, which maps each process

to its positive capability.
4. A negative-capability map µ : I ⇀ L, which maps each

process to its negative capability.
5. A tag-namepsace map η : I ⇀ (A ⇀ T), where A is the set of

all tag identifiers in
−→
P . η maps each process to a set of bindings

from tag identifiers to tags. In other words, η maps each process
to its namespace of tags.

Intuitively, ProgTr defines the set of traces generated by
−→
P from

a state π to be the collection of traces generated from executing
the next step of each process in π. By applying ProgTr to a pro-

gram state that binds a single process to the root process template,
we obtain the set of all traces that can be generated by the pro-
gram. Formally, this set is expressed as ProgTr(∅[p 7→ R], ∅[p 7→
∅], ∅[p 7→ ∅], ∅[p 7→ ∅], ∅[p 7→ ∅]).

ProgTr is co-defined by a second function, ProcTr, which de-
fines how executing one step of a process contributes to the execu-
tion trace of a program. Like ProgTr, the function ProcTr takes as
input a program state, label map, positive-capability map, negative-
capability map, and map to tag namespaces. In addition, ProcTr
takes as its first argument a pair (p, P). Here, p is the identifier of
the next process to take a step of execution, and P is the process
template that it executes. When process p takes the next step of ex-
ecution, it adds events to the execution trace and alters the program
state based on the form of P . §3.1 informally describes what events
are added and how the program state is altered. The equations in
Fig. 5 define these effects formally.

The definitions in Fig. 5 make use of the following notation. Let
f be an arbitrary map (in Fig. 5, f stands for either λ, ν, or µ).
Then f − i denotes f without a binding for domain element i. Map
f [i 7→ d] is the same map as f , with the exception that domain
element i is bound to range element d. Map f [p′ = p] is the same
map as f , but with f [p′ = p](p′) = f(p) and f(p) undefined. Each
equation has an implicit condition that any process spawned in the
step of execution, such as p′ or p′′, is not previously in the domain

13 2010/4/23

of any map. The operator . is used to prefix a single event to a set of
traces. If E is an event and T is a set of traces, then E . T denotes
the set of traces {E . T | T ∈ T }, where E . T denotes prefixing
the event E to the trace T .

F. Proof of Correctness
We now prove that when the instrumenter produces a program, the
program is correct according to the definition of §3.2. We first give
definitions and lemmas that allow us to prove this.

Def. 4. Each trace of a program corresponds one-to-one with an
execution of a program. An execution is a sequence of spawns
p→ q, where p, q are processes, and p→ q denotes that p executes
the template to which it is bound, and then spawns q.

Let σ = p0 → p1, . . . , pn−1 → pn be an execution of
program

−→
P , and let

−→
P ′ be an instrumentation of

−→
P using the

procedure given in §3. σ has a corresponding execution inst−→
P ′(σ)

in
−→
P ′, which is the same with the exception of label manipulations,

constructed as follows. Note that the instrumenter rewrites every
equation X = T in

−→
P , to a set of equations of the form X =

E0 → X0;X0 = E1 → X1; . . . ;Xn = T , where each Ei
is either a CREATE or ChangeLabel event. To construct inst−→

P ′ ,
rewrite σ by replacing each spawn p → q with p ∈ T with a
sequence of spawns p → p0, p1 → p2, . . . , pn−1 → pn, where
each pi ∈

−→
P ′(Xi). The resulting execution is in

−→
P ′.

Furthermore, for every execution in
−→
P ′, there is a correspond-

ing execution erase(σ) in
−→
P that is the same, with the exception

that it does not manipulate labels. Let p → q, q → r be a pair of
spawns in σ, an execution of

−→
P ′. If q ∈

−→
P ′(X) for some tem-

plate X that is in
−→
P ′ but not in

−→
P , then replace the pair of spawns

with a single spawn p → r. After repeating this for all such q, the
resulting execution, erase(σ) is an execution of

−→
P .

We now establish that if
−→
P ′ is instrumented to respect an pro-

tection assertion, then all flows described in the assertion are suc-
cessful in all executions of

−→
P ′.

Lem. 1. Let
−→
P be instrumented according to §3 for a policy

F = (S,R) to form
−→
P ′. Let σ be an execution of

−→
P ′ such

if p → p′ and q → q′ are in σ where p executes template
! q → X and q executes template ? p → Y , then there is some
template Prot(Source,Sink,Anc) ∈ R such that p ∈ Source,
q ∈ Sink, and p and q share their most recent ancestor in Anc.
Then (p!q), (q?p) ∈ Tr(σ).

Proof. Let t be a tag where t ∈ labP , and t is bound to an identifier
τ . By the constraint of §3.3.3, labSource ⊆ labSink, so τ is bound
a tag u in the label of q. Furthermore, τ was bound at a template
in ConstAnc. p and q share their most recent ancestor in Anc, so
by the definition of ConstAnc, their tags bound to τ are the same.
Thus t = u, and in general, the label of p is a subset of the label of
q. Thus when p attempts to send data to q, the send is successful,
and the program generates the event p!q. Symmetrically, when q
attempts to receive data from p, it is successful, and the program
generates the event q?p.

An immediate corollary of Lem. 1 is that for an execution σ of−→
P , Tr(σ) = Tr(inst(σ)). Furthermore, if σ is a trace of

−→
P ′, then

Tr(σ) = Tr(erase(σ)). We are now ready to prove that programs
produced by the instrumenter are correct.

Thm. 4. Given program
−→
P and policy F = (S,R), let

−→
P ′ be

the program produced by the instrumenter according to §3. Then−→
P ′ |= (

−→
P ,F).

Proof. To prove that
−→
P ′ |= (

−→
P ,F), we must prove that

−→
P ′

satisfies each of the instrumentation conditions given in §3.2.2. We
first show that

−→
P ′ satisfies the secrecy instrumentation condition

by considering an arbitrary secrecy flow assertion Secrecy(Source,

Sink, Declass, Anc) ∈ S. Consider an arbitrary execution of
−→
P

with a sequence of sends and receives p → p1 → . . . → pn = q,
where p ∈ Source, q ∈ Sink, pi 6∈ Declass, and pi → pj
denotes that pi sends information to pi+1 and pi+1 later receives
the information. We need only consider the case where p and q do
not share an ancestor in Anc. By the constraints of §3.3.3 and the
instrumentation of §3.5, the label of p contains a tag t created in
some template P such that no tag created at P is in the negative
capability of any process not in Declass. Thus if a pi received data
from pi−1, it had to have t in its label, and could not remove t from
its label. By §3.3.3, either (1) no tag created at P is in the label of
q or (2) P is distinct in Anc. If (1) holds, then the label of q does
not contain t, and thus cannot contain the label of pn−1. Thus pn−1

cannot send information to q. If (2) holds, then while the label of q
may contain a tag u created at P , tags t and umust be distinct. Thus
pn−1 still fails to send information to q. The secrecy flow assertion
is thus respected, and in general

−→
P ′ |=S S.

We now show that
−→
P ′ satisfies the transparency conditions

induced by R. Let T ∈ Tr(
−→
P) generated by execution σ. By

Lem. 1, the trace of inst(σ) is identical, and thus T ∈ Tr(
−→
P ′), and−→

P ′ |=T (
−→
P ,F). To see that

−→
P ′ satisfies the containment condition

induced by, consider a trace T ∈ Tr(
−→
P ′) generated by an execution

σ for which all flows are protected byR. By Lem. 1, erase(σ) has
the same trace as σ. Thus T ∈ Tr(

−→
P), and

−→
P ′ |=C (

−→
P ,F).

G. Proof of Hardness of Constraint Solving
Let a DIFC synthesis constraint problem C be a constraint pro-
duced from the following grammar for Ctr:

Ctr := Ctr ∧ Ctr

|VAR ⊆ SetExpr

|VAR 6⊆ SetExpr

SetExpr := ∅
|VAR

|SetExpr ∪ SetExpr

|SetExpr − SetExpr

Let VC be the set of all variables appearing in C. A solution to
C is some powerset lattice and a mapping from each variable in
the constraint system to an element in the lattice that satisfies the
constraints. Formally, it is a pair (n, s) where n ∈ N and s : VC →
2n is such that s(c) = T, where s(c) is the evaluation of variables
lifted to an evaluation of expressions and constraints in the standard
way. Let DIFC-SAT be the problem of deciding whether any DIFC
synthesis constraint problem has a solution. Observe that while
the grammar for Ctr does not describe all constraints that may be
generated to instrument a DIFC program, for any constraint it is
straightforward to construct a program and policy and induce the
constraint.

Thm. 5. DIFC-SAT is NP-complete.

Proof. We first show that the problem is in NP. Observe that
Thm. 3 applies to the constraints in DIFC-SAT. Thus by Thm. 3,
if C has a solution, then it has one defined in a number of tags B
that is linear in the number of constraints. For a non-determinisitc

14 2010/4/23

machine to solve an instance C in polynomial time, it guesses a so-
lution (m, s) where m is bounded linearly by |C|. The assignment
s can then be validated in a number of steps polynomial in the size
of |C|.

We show completeness by reduction from 3SAT, first giving the
reduction and then proving its correctness. Let ϕ be an instance of
3SAT. Assume without loss of generality thatϕ is in CNF. Generate
a set variable XT and constrain it with XT 6⊆ ∅. For every
propositional variable x ∈ Vars(ϕ), generate two set variables
X,X and constrain them to be disjoint, expressed in the grammar
of constraints asX ⊆ X−X . Let l1∨l2∨l3 be a disjunctive clause
in ϕ. If li = xi is a variable, then let Li be the corresponding set
variable Xi, and if li = ¬xi is the negation of a variable, let Li be
Xi. Construct the set constraint XT ⊆ L1 ∪ L2 ∪ L3. Let D(ϕ)
be the collection of all constraints generated. D(ϕ) has a DIFC
solution if and only if ϕ has a solution.

We now prove that the given reduction is correct. First, suppose
that the 3SAT instance ϕ has a satisfying assignment s. Then
D(ϕ) has a solution (21, s′) where s′(X) = {0} if and only if
s(x) = T. To see this, observe that under s′ each pair X,X is
disjoint, trivially. Furthermore, it must be the case that XT = {0},
and each expression XT ⊆ L1 ∪ L2 ∪ L3 corresponding to some
clause l1 ∨ l2 ∨ l3 must consist of at least one set variable that
contains 0.

Now suppose that D(ϕ) has a solution (n, s′). For a proposi-
tional literal x, let x = T if and only if k ∈ s′(XT) for any fixed
k < n. For this to be a valid solution toϕ, it must be the case that no
propositional variable and its complement are both assigned to T.
However, this cannot be the case, as every pair of variables X,X
is constrained to be non-overlapping, so it cannot be the case that
both would contain any fixed element k. Additionally, it must be
the case that for every l1 ∨ l2 ∨ l3, in the corresponding set expres-
sion L1∪L2∪L3, at least one set variable contains k. This follows
because the set expression is constrained as XT ⊆ L1 ∪ L2 ∪ L3,
and k ∈ XT.

H. Persistent Principals
Programs may sometimes need to be instrumented to have informa-
tion flow to and from persistent principals, such as files, which may
have labels and capabilities defined before the system is executed.
To handle such cases, we extend the DIFC instrumenter beyond the
techniques given in §3, which only reason about principals such
as processes that are introduced during execution. Persistent prin-
cipals are handled in an analogous way: the possibly unbounded
set of labels that they may have are abstracted to a finite set tag
identifiers, the requirements for how their information may flow
are encoded as constraints over these identifiers, and the resulting
constraint system is fed to a constraint solver. The key difference is
that while in §3 each abstract tag represented all tags created when
executing a template, with persistent principals each abstract tag
represents all tags that a principal may have before execution.

Formally, we extend the set of flow assertions defined in §3.2 to
include four additional assertions:
• WriteAtMost(user,Proc) specifies that any process executing

template Proc should only be able to write to files to which the
persistent principal user is able to write.
• WriteAtLeast(user,Proc) specifies that if a user is able to

write to a file, then a process executing Proc should be able
to write to it as well.
• ReadAtMost(user,Proc) specifies that any process executing

template Proc should only be able to read from files from which
the persistent principal user is able to read.

• ReadAtLeast(user,Proc) specifies that if a user is able to from
a file, then a process executing Proc should be able read from
it as well.
We extend the constraint system of §3.3 to reason about such

flow assertions. For every template variable X in a CSPDIFC pro-
gram

−→
P , we generate additional constraints variables PersLab,

PersPos, and PersNeg, which are used to store the labels, posi-
tive capabilities, and negative capabilities associated with persistent
principals. For each persistent principal u in the set U of all persis-
tent principals mentioned in the set of flow assertions, we generate
fresh abstract tags lu, pu, and nu. The represent, respectively, the
set of all tags in the label, positive capability, and negative capabil-
ity of u when the programs executes.

The constraints generated over persistent constraint variables
are analogous to those for non-persistent principals, with one key
difference. Recall from §3.3.1 that for a template X , the variables
labX , posX , and negX share one domain of elements, and that
the value of capability variables posX and negX constrains how
the values in the label variable labX may change. This is feasi-
ble for processes, because all abstract tags in the values of these
variables correspond to tags created during execution of the pro-
gram. However, when dealing with persistent principals, the instru-
menter cannot assume any relationship between the tags in the label
of a user u and those in its positive or negative capabilities. Thus
the instrumenter must assume that once the tags in a user’s label
have been added to the label of a process, those tags cannot be re-
moved. Formally, for every pair of template variablesX,Y given to
StepCtrs as defined in §3.3.2, the instrumenter generates the con-
straint PersLabX ⊆ PersLabY . No semantic constraints restrict
how a process may add or remove persistent capabilities, as we as-
sume that a process may add the capabilities of any user, and may
always drop capabilities.

The instrumenter generates constraints to encode each flow as-
sertion that appears in a policy. It generates constraints per assertion
as follows. In each case, let lu, pu, and nu be the abstract tags al-
located for the label, positive capability, and negative capability of
user u.
• WriteAtMost(user, P): the instrumenter must constrain that

the label of P contains the label of user, and that the negative
capabilities of P are contained by the negative capabilities of
user. Formally:

PersLabP ⊇ {lu}
PersPosP ⊆ {pu}

• WriteAtLeast(user, P): the instrumenter must constrain that
the label of P is contained by the label of user, and that the
negative capabilities of P contain the negative capabilities of
the user. Formally:

PersLabP ⊆ {lu}
PersNegP ⊇ {nu}

• ReadAtMost(user, P): the instrumenter must constrain that the
label of P is contained by the label of user, and that the positive
capabilities of P are contained by the negative capabilities of
user. Formally:

PersLabP ⊆ {lu}
PersPosP ⊆ {pu}

• ReadAtLeast(user, P): the instrumenter must constrain that
the label of P contains the label of user, and that the positive
capabilities of P contain the positive capabilities of user. For-

15 2010/4/23

Prog :=stmt

stmt :=VAR := exp

|send(p)
|recv(p)
|spawn(P)

|stmt1; stmt2

|if exp then stmt1 else stmt2

|while (exp) stmt1

Figure 6. IMP: a simple imperative language.

mally:

PersLabP ⊇ {lu}
PersPosP ⊇ {pu}

The instrumenter generates code based on a constraint solution
as follows. The instrumenter represents a persistent principals as a
quadruple of four objects:
1. A program variable that contains a user token.
2. A label accessor function that takes as input the user token and

returns the persistent label of the persistent principal.
3. A positive capability accessor function that takes as input the

user token and returns the positive capability of the persistent
principal.

4. A negative capability accessor function that takes as input the
user token and returns the negative capability of the persistent
principal.

Flume provides such accessor functions for users in its API. Other
accessors may be defined and given to the instrumenter as needed.

Persistent principals are used to instrument the FlumeWiki
server described in §4. FlumeWiki requires that a Worker pro-
cess execute with exactly the ability to write to and read from
exactly the same files as the user who issues the request. This
requirement is expressed as a conjunction of the flow asser-
tions WriteAtMost(user,Worker), WriteAtLeast(user,Worker),
ReadAtMost(user,Worker), and ReadAtLeast(user,Worker).

I. Instrumenting Imperative Programs
§3 considers how to instrument CSPDIFC programs. In practice, this
is not a limitation, because imperative programs can be modeled as
CSPDIFC programs, and an instrumented CSPDIFC program can be
translated to an instrumented imperative program.

I.1 From Uninstrumented Imperative Programs to
Uninstrumented CSP Programs

Imperative programs can be automatically modeled as CSPDIFC

programs. To demonstrate this, we present a toy imperative lan-
guage, IMP, whose syntax is given in Fig. 6. An IMP program is
an imperative statement, which may optionally have a control-flow
label. Statements can be constructed as normal assignments, the
distinguished statements send, recv, and spawn, and the standard
control-flow structures if and while. Calls to send and recv com-
municate information to a process identified as p, while spawn(Q)
launches a new process starting execution at the statement labeled
Q, while continuing execution of the current process. The set of
expressions that can occur in an IMP program is ignored by the in-
strumenter, and thus we omit a detailed description. The semantics
of IMP programs are standard.

An IMP program P can be translated into a program in CSPDIFC

that over-approximates the set of executions of P . Such a transla-
tion is described by the rules in Fig. 7, which are written in an ML-
like syntax. In Fig. 7, the function ImpToCSP takes as input an IMP
program to be translated and an auxiliary CSPDIFC process variable
P . Variable P is assumed to be bound by a process equation to a
CSPDIFC process that models all execution after the IMP program.
The output of ImpToCSP is a list of equations defining all process
templates. Each rule that partially defines ImpToCSP introduces
a fresh process variable X . The variable X binds to the CSPDIFC

process representation of the IMP statement being translated.
The translation ImpToCSP yields a CSP program whose trace

semantics “reasonably” over-approximates the set of traces of the
original IMP program in the following sense. If one were to replace
all predicates in all guards in the original IMP program with a
predicate whose value was non-deterministic, then the set of traces
of the IMP program and CSPDIFC process obtained by translation
would be identical.

I.2 Instrumented CSPDIFC Programs to Instrumented
Imperative Programs

If we translate imperative programs to CSPDIFC programs using
the rules of Fig. 7, then every imperative program statement cor-
responds to exactly one CSPDIFC template variable. Suppose that
the instrumenter produces an instrumented CSPDIFC program that
satisfies a policy. The instrumented program contains templates of
two new forms that must be translated to a corresponding form in
the imperative program. First, a CSPDIFC program may contain a
template of the form CREATEt → P . To translate such a template
to an imperative program, the instrumenter declares in the impera-
tive program a global tag variable tag t and instruments the cor-
responding location with a call t := create tag().

Second, a CSPDIFC program may contain a template of the
form ChangeLabel(L,M,N) → P , where L,M,N are sets of
tag identifiers. The translator prepends the corresponding program
location with calls to the Flume API function that set the label
values of the process to the corresponding label values. Let t ∈ L
be a tag identifier. The instrumenter generates code that uses an
empty scratch variable (e.g. tmp), and adds to it the tag stored in
the corresponding label variable tag t.

Exa. 12. Suppose that x := exp is a statement in an imperative
program given to the DIFC instrumenter, and that the instrumenter
translates the statement to a CSPDIFC program in which the state-
ment is modeled by an equation X = P . Suppose that the in-
strumenter finds a solution for the program containing the state-
ment and a policy, and rewrites the CSPDIFC equation to be X =
ChangeLabel(L,M,N) → P , where L = {t}, M = {t, u}, and
N = ∅. The instrumenter then generates the following imperative
code:

clear_tag_set(tmp);
expand_tag_set(tmp, tag t);
set_label(tmp);
clear_tag_set(tmp);
expand_tag_set(tmp, tag t);
expand_tag_set(tmp, tag u);
set_pos_cap(tmp);
clear_tag_set(tmp);
set_neg_cap(tmp);
x := exp;

16 2010/4/23

ImpToCSP(x := exp, P) = [STEP(X)→ P]

ImpToCSP(send(c), P) = [X =! c→ P]

ImpToCSP(recv(c), P) = [X =? c→ P]

ImpToCSP(spawn(Q), P) = [X = P 9Q]

ImpToCSP(stmt1; stmt2, P) =

let[Y1 = Z1; . . .] as defs = ImpToCSP(stmt2, P) in

[X = ImpToCSP(stmt1, Y1)] . defs

ImpToCSP(if exp then stmt1 else stmt2, P) =

let[Y1 = Z1; . . .] as defs1 = ImpToCSP(stmt1, P) in

let[Y2 = Z2; . . .] as defs2 = ImpToCSP(stmt2, P) in

[X = Y12 Y2].defs1.defs2

ImpToCSP(while (exp) stmt, P) =

let[Y1 = Z1; . . .] as defs1 = ImpToCSP(stmt, P) in

[X = P 2 Y1] . defs1

Figure 7. Translation rules from IMP statements to CSPDIFC processes.

17 2010/4/23

