

Computer
Sciences
Department

Revisiting Database Storage Optimizations on Flash

Mohit Saxena
Michael M. Swift

Technical Report #1671

March 2010

Revisiting Database Storage Optimizations on Flash

Mohit Saxena and Michael M. Swift
Department of Computer Sciences
University of Wisconsin-Madison

{msaxena,swift}@cs.wisc.edu

ABSTRACT
The database storage hierarchy has been heavily optimized for the
performance characteristics of disks. Storage managers typically
employ row- or column-oriented storage layouts, or a combina-
tion, to improve the I/O performance of different query workloads
with disks. The recent rise of flash memory-based solid-state drives
(SSDs) significantly change the performance characteristics of stor-
age: these drives provide an order of magnitude lower read/access
latencies, significantly higher read bandwidths, and most impor-
tantly, negligible seek overheads.

In light of these differences, we analyze major storage optimiza-
tions for read-optimized databases. We examine the benefits of row
and column-oriented storage layouts on flash SSDs. Our measure-
ments span through different workload variations, including selec-
tivity, projectivity and concurrency that affect query processing on
flash. Further, we also investigate the cost and benefits of a set of
database optimizations, including data compression, prefetching,
and indexes on flash SSDs. We back our experimental evaluation
with analytical models of the performance tradeoffs of these opti-
mizations.

Three of our key findings are: (1) SSDs scale up linearly with con-
current execution of database queries and outperform disks by up
to a factor of two, (2) the low seek cost on SSDs makes column-
storage a better choice for laying out data on a variety of flash de-
vices, (3) and that while data compression is useful to further lever-
age the bandwidth of flash, database prefetching has less benefit
for flash storage. Finally, we present a list of design implications
of our findings on future database and operating systems for effec-
tively embracing flash storage.

1. INTRODUCTION
Tape is Dead, Disk is Tape, Flash is Disk, RAM lo-
cality is King.

– Jim Gray [15]

For decades, databases have been optimized for the performance
characteristics of magnetic disks, such as their long access and
seek latencies, and high sequential bandwidth [14, 26]. For ex-
ample, databases often prefetch large buffers to amortize the cost
of I/O over more data. However, solid-state disks (SSDs), built on
flash memory, have recently achieved large capacity and high per-
formance, making them a promising replacement for disks in many
workloads.

SSDs represent a major advancement for storage management in
database systems. To date, most uses of flash technology have fo-
cused on their high random-read throughput: a single mid-market
device may provide 35,000 random I/O reads per second, while the
fastest disks achieve barely 300. Thus, SSD usage in data man-
agement has been limited to the domain of transaction processing,
where small random accesses are common.

However, there has been little investigation of the use of SSDs
in decision support systems for analytical data processing. These
workloads benefit from higher sequential bandwidths of SSDs, their
small form factors and their low-power operation. A farm of slow,
expensive and power-hungry disk arrays can be replaced with large
SSDs optimized for selection, projection and scan queries used for
business-intelligence applications and data warehouses. These ap-
plications deploy read-optimized databases for these workloads. In
particular, such systems are tailored for read-only queries and are
updated by bulk-loading with large database relations periodically
[29, 18]. SSDs, with an order of magnitude faster access latencies
and high bandwidths, are well suited for these applications when
combined with a separate write-optimized staging area for periodic
updates [27].

Most read-optimized databases employ several techniques that im-
prove the performance with magnetic disks [18, 20]. In particular,
database storage managers use:

• column-oriented storage layouts [13, 29] or a row/column
combination [9, 16, 17] to reduce the cost of I/O to disks;

• compression to improve the effective bandwidth of disks at
the cost of increased CPU overheads [6, 14, 32];

• database and file-system prefetching to amortize seek costs
by reading ahead additional contiguous pages from disk; [28].

• reordering, scheduling and delaying I/O requests to minimize
seeking between different datasets on disk [22].

In the light of widely different performance characteristics of SSDs,
the cost and benefits of these optimizations may change as com-
pared to disks.

In this paper, we revisit these storage optimizations on flash stor-
age. We experiment with a high-performance database storage man-
ager [1] and workloads based on the TPC-H specification [5] to
isolate the performance impact of different database storage lay-
outs for SSDs. Our experiments use densely packed pages that
closely resemble the characteristics of commodity read-optimized
databases [7, 10]. To provide generality, our measurements span a
range of devices, from disks to low-end SSDs to high-performance
SSDs, and workload variations.

With this study, we hope to inspire the database and OS research
community to reconsider these optimizations originally designed
for disks as many applications migrate to flash storage. Specifi-
cally, we address the following questions to unravel the different
performance tradeoffs for data processing on SSDs through our ex-
periments and analysis:

• What is the impact of different storage layouts on database
query processing on flash storage? How do the performance
tradeoffs for row and column stores differ for SSDs when
compared with near-line and enterprise disk configurations?

• What is the impact of different query processing workloads,
such as changed relation size, selectivity, or concurrency of
different queries, on SSDs? Does workload affect perfor-
mance differently on flash than on disk?

• What are the costs and benefits of optimizations such as data
compression, storage indexing and database prefetching when
used with SSDs?

The rest of the paper is structured as follows. We review the ba-
sics of flash memory and solid-state disks in Section 2, followed
by a description of modern database storage hierarchy in Section 3.
Section 4 describes our experimental methodology, discussing our
query workloads, storage manager, measurement framework and
storage devices used for experiments. Section 5 describes our find-
ings and analytical models for performance tradeoffs of different
storage optimizations. Section 6 presents a list of design implica-
tions on future database and operating systems for effectively em-
bracing flash storage. Finally, we present related work in Section 7
and conclude in Section 8.

2. FLASH STORAGE BACKGROUND
As prices drop and write performance improves, non-volatile NAND
flash memory has become a viable storage replacement for hard
disks. Solid-state disks, built of multiple flash memory chips, com-
monly provide a drop-in replacement for hard disks to avoid the
need for new device drivers. With additional mechanisms incor-
porated in the device firmware called the Flash Translation Layer
(FTL), SSDs mask the differences between flash and disk storage
technologies. However, SSDs differ from hard disks in three major
ways relevant to data-analytics workloads: I/O performance, cost,
and power consumption.

I/O Performance. SSD performance differs from disks both in
transfer rate and seek time. Most importantly, flash media pro-
vides significantly lower random read latencies (0.1ms vs. 4-8ms
for disks). In addition, a single SSD may internally contain many
flash chips, allowing a RAID-like increase in I/O bandwidth within
a single device. Thus, sequential read performance can be much
higher than disks (250 MB/s for mid-range SSDs vs. 120 MB/s
for the fastest disks). However, write performance for flash may
be slower than disk, because blocks must first be erased. Better

Device Sequential (MB/s) Random 4K-IO/s
Read Write Read Write

HDD 80 70 120-300/s
USB flash 11.7 4.3 150/s 20/s

SSD 250 170 35K/s 3.3K/s
PCI-e flash 700 600 102K/s 101K/s

Table 1: Disk and NAND flash memory performance: Hard
disks exhibit a small variance in performance due to their me-
chanical nature. In contrast, flash memory devices present a
wide range in performance due to different host interfaces and
significant internal parallelism.

flash devices maintain a pool of clean blocks to absorb writes thus
reducing the need to wait while erasing a block [8].

In contrast to disks, which present a small variance in performance
due to their mechanical nature (seek times and rotation speed have a
narrow range), flash storage devices exhibit a wide range of perfor-
mance. Table 1 shows the performance of a variety of devices. In-
expensive and low-end devices such as USB flash sticks or camera
memories offer moderate read bandwidth but have poor random-
write performance. Solid-state disks (SSDs), with a standard SATA
interface provide much better bandwidths, up to three times the
fastest hard disks. This performance is mainly attributable to the
device firmware, which implements intelligent block mapping schemes,
parallel I/O accesses to multiple flash chips and write buffering
[23]. High-end flash drives connected with the PCI-e interconnect
interface and dedicated device drivers (rather than using the exist-
ing SATA drivers) are even faster [2]. Therefore, the variance in
flash performance arises from two sources. First, an SSD can in-
corporate additional banks of flash chips, allowing more through-
put through parallelism. Second, an SSD can incorporate smarter
FTLs that are better able to conceal the costs of erasing flash before
writing.

Cost. Until recently, flash memory was far more expensive than
either disk or DRAM. The density of flash memory chips has dou-
bled 14 times in the last 19 years, which is faster than the Moore’s
law for processors. This trend is expected to continue at least until
a density of 32 GB/chip is achieved in the next few years [3]. Mid-
range SSDs currently cost approximately $2.8/GB (quote of Intel
X-25M SATA SSD, as of October 2009), which is 2–10 times ex-
pensive per byte than enterprise and near-line disks. This high cost
arises from the manufacturing process of SSDs, which requires ex-
pensive wafer fabs. For workloads demanding high random I/O op-
erations per second (IOPS), though, flash SSDs are about 50 times
cheaper than a configuration of disks supporting the same number
of IOPS. In addition, price-per-MBPS for sequential throughput is
comparable to disks, as a single SSD can deliver nearly triple the
bandwidth of a single disk.

Power. Unlike disks, flash does not have any mechanical or mov-
ing parts. Hence, flash devices consume significantly lower power
while operating and almost zero power when idle. The typical
power consumption for SSDs range between 0.15–2 W when active
and as low as 0.06 W when idle [21]. In contrast, power consump-

File System

Table Space

Buffer Manager

Storage Manager

Tables

I/O scheduler

Block Device Drivers

Disk Array

Flash

Disk

FTL

DBMS

OS

Hardware

Figure 1: Database Storage Hierarchy: Buffer and storage
managers employ different mechanisms to optimize for the per-
formance of storage device and query workload. In addition,
file systems and the operating system prefetch data and sched-
ule block I/O requests submitted to the underlying device for
amortizing disk seeks.

tion for SATA disks is between 13–18 W, or six to ten times greater
than an SSD. At 10 cents per kilowatt-hour, the cost of a single disk
for continuous three-year activity would be about $47, and almost
$100 when including the cost of cooling and power distribution. In
contrast, an SSD can be powered for just $10. The power savings
increase further for large disk arrays with expensive controllers that
provide comparable random performance. Thus, SSDs tend to be
price-competitive with disks when considering the complete cost
of both device and power.

3. DATABASE STORAGE MANAGEMENT
Disk access can be a dominant cost for databases workloads, so
database management systems carefully manage all I/O. DBMS
storage managers also account for the storage device performance
characteristics, such as seek time, access latency, and sequential
bandwidth. Thus, databases lay out data and optimize their access
patterns to minimize the cost of I/O.

Figure 1 shows a typical database storage hierarchy on Linux (so-
phisticated and special-purpose database systems may differ). Mul-
tiple database relations and storage indexes are clustered together
in logical table spaces that are laid out as files on disks. The buffer
manager maintains a pool of memory buffers to cache data in mem-
ory. Lower down the stack, the storage manager is responsible for
most of the I/O to the underlying storage device, deciding which
blocks to retrieve and when. The storage manager may directly ac-
cess the device or may use the file system to perform I/O on its
behalf.

Data Layout. One of the major focuses of this paper is studying
the impact of the storage manager’s data layout. The two major lay-
out organizations are row-oriented, in which all rows of a database
relation are stored contiguously in a single file, or column-oriented,

in which attribute values of each column in the relation are stored
contiguously in a separate column file, also called achunk. Row
stores are more effective if the entire row is read, while column
stores improve performance if only a small number of attributes are
projected from each row. Unlike row stores, column stores tend to
read fewer bytes by (i) seeking between files corresponding to the
columns projected in the query, and (ii) seeking between attribute
values in a column file for which the corresponding row has been
selected by the query predicate. Other hybrid storage layouts, such
as PAX [9], DMG [17] and column abstractions [16], mix row- and
column-oriented storage.

Compression. Compression can improve query performance by
trading CPU processing for more effective use of disk and memory
bandwidth. Column stores enable compression by storing all val-
ues of an attribute together, for example by replacing data values
with indexes into a dictionary. Therefore, database administrators
frequently use different compression schemes during the physical
design phase of database schemas to optimize for both performance
and storage space [6, 14, 32].

Prefetching. Database storage managers prefetch data that is not
needed immediately. Prefetching for disks provides two benefits.
First, reading more data at a time amortizes the high random seek
latencies for disks over larger sequential requests. Second, prefetch-
ing overlaps I/O with computation, so that data is already avail-
able in memory when it is finally requested [28]. Storage managers
in modern database systems, for example SQL Server Enterprise,
prefetch up to 1,024 8 KB pages.

OS and Device Optimizations. Within the OS, the I/O sched-
uler merges, reorders and delays requests to optimize the perfor-
mance on the underlying storage device (presumably disks or disk
arrays). The device provides the final layer of I/O scheduling. For
disks, the controller may again reorder or buffer requests to im-
prove performance based on the current location of the disk head.
For SSDs, scheduling occurs in the FTL, which improves perfor-
mance by remapping logical block addresses to physical flash ad-
dresses.

In summary, the database storage hierarchy embeds different disk-
oriented optimizations at various levels. Both storage managers
and file systems employ data prefetching to reduce access latencies,
and optimize data layout to reduce the number of seeks. Finally,
the disk scheduler and device drivers both reorder operations to
minimize seeks as well. This paper revisits the cost and benefits of
these disk-oriented optimizations for flash storage.

4. EXPERIMENTAL SETUP
The I/O performance of query processing in database systems is
affected by the query workload, storage management and the char-
acteristics of the storage device. This section presents our experi-
mental methodology to investigate the impact of each of them for
flash storage.

We focus our study on queries commonly used for large-scale data
analysis. To model this workload, we use different select, project
and scan queries based on the TPC-H workload specifications [5].
To isolate the impact of various storage manager optimizations, we
use a high-performance query engine [18] that implements both
row and column-oriented storage layouts. We measure the per-
formance of query processing on a variety of storage devices with
different performance characteristics. All our experiments are re-

peated multiple times, and we report the average over ten execu-
tions.

4.1 Query Workload
We focus our study on data analysis queries used for mining large
data repositories in data warehouses and business intelligence ap-
plications. This workload mainly consists of selection, projection
and scans over large relations, but few updates. Thus, these work-
loads are generally run on read-optimized databases that minimize
the number of bytes read from disk for processing a given query.
Database relations are periodically updated in bulk from a separate
write-optimized staging area, where new data is aggregated. This
workload forms the basis of TPC-H [5].

Flash storage provides ample opportunities to optimize the perfor-
mance of such queries because of its high read bandwidth and low
random access latency. Hence, we study the performance of differ-
ent variants of the following select, project and scan queries:

selectT.a1, T.a2, T.a3 ... from T
wherePredicate P(T.a1)

In this query, T represents the database relation;a1, a2, a3 are dif-
ferent attributes and P is a sargable predicate on the first attribute.
To isolate the effects of different storage layouts, we do not use
storage indexes to accelerate queries unless otherwise noted. We
change the projectivity of the query by varying the number of at-
tributes projected in the select phrase of the query. Similarly, we
change the selectivity factor from 0.1% to 100% (low selectivity
implies less qualified tuples) by modifying the predicate P. The
number of columns projected and the number of rows selected in a
query have a direct influence on its execution time.

Our experiments use two tables LINEITEM and ORDERS, that are
based on TPC-H benchmark specification. We choose these tables
to isolate the effects of tuple sizes and to ensure direct comparison
of our results with earlier studies [18]. We use the official TPC-
H toolkit [5] to populate these tables with data values for different
attributes. For our experiments, LINEITEM represents a wide re-
lation of 16 attributes of 150 bytes per tuple. ORDERS has a tuple
width of 32 bytes and contains 7 attributes per tuple. To ensure
a fair comparison between the two tables, we scale them to have
the same number of rows: scaling LINEITEM by 10x and OR-
DERS by 40x ensures that both relations have 60 million tuples.
LINEITEM takes over 9GB of disk space and ORDERS takes over
2GB. For most of our experiments, the size of these relations is
sufficient enough to analyze the steady state I/O performance of
different storage devices.

4.2 Data Manager
Query Engine. We focus on comparing the performance trade-
offs of row and column stores for flash devices. In order to isolate
the impact of storage layout, we use the query engine implemented
by Harizopoulos et al. [18], which is available online [1]. While
some commodity and research database systems implement col-
umn stores, such as C-Store [29] and MonetDB [10], they provide
extensive performance optimizations for query processing such as
in-memory database kernels built on virtual memory primitives,
multi-threaded parallelism and vector storage for columns. These
optimizations tend to blur the fundamental impact of row and col-
umn stores for flash devices, which is the focus of our experiments.

The query engine used can operate on both row and column-oriented
data. It has been used in previous published work [18, 20], and thus
ensures a direct comparison of row and columns stores for flash de-
vices. Furthermore, the query engine uses zero-copy direct I/O, and
transfers data directly from the storage device to user-space buffers
without an explicit buffer pool.

Scanners.The query engine pre-compiles the queries and pipelines
their execution for operating on the output blocks. Scanners recon-
struct the tuples, apply predicates, extract the projected attributes
and combine them for materialization later. Both the row and col-
umn stores use densely packed pages on disk. The scanners for
row stores read data pages from disks into an I/O scan buffer and
then decode the columns from each page. Column store scanners,
in contrast, read multiple files (chunks) from disk corresponding
to the columns projected until the output tuple buffer is full. Each
projected column is examined only at positions where the predicate
was satisfied by the scan of the preceding column. This reduces
disk I/O at the cost of additional seeking within a column.

Application Parameters. We tune the configuration parameters of
the query engine for high performance. The major parameters we
tune are: I/O depth (prefetching distance), I/O unit (scan buffer)
size, page size, and block (materialized tuple buffer) size. We find
that the most significant parameters are I/O depth and I/O unit size.
We use an I/O unit of 128 KB and an I/O depth (prefetch read-
ahead distance) of 6 MB (48 I/O units) unless otherwise specified.
In addition to these application-level parameters, our experiments
require careful configuration of operating system and storage de-
vice parameters, which we discuss in Section 4.3 and Section 4.4
respectively.

Data Compression.Compression can improve scan performance
by trading CPU processing for more effective use of disk band-
width. Flash devices have higher bandwidths and thus may benefit
from compression in a different manner than disks. We use three
different compression schemes for our experiments - bit-packing,
dictionary and FOR-delta. Bit-packing stores each attribute using
only the minimum number of bits in the maximum value of its do-
main. Dictionary-based compression uses an array with all distinct
values of the attribute and stores each attribute as an index num-
ber to that array (similar to a hash lookup). FOR-delta (Frame-
Of-Reference) uses a base value per page and stores deltas for at-
tributes with it (see [6, 32, 14] for more details on these compres-
sion schemes). The performance differences of the compression
schemes have been studied earlier [6], so we only present results
for the best mechanism.

Database Indexes.Storage indexes improve the execution time
for processing a query by directly seeking to the selected row. As
our optimized storage manager does not support indexes, we in-
stead use PostgreSQL 8.3 [4] with the same tables (LINEITEM
and ORDERS) for these experiments. We use bitmap indexes to
investigate the impact of SSDs for storing database indexes. We
vary the number of attributes projected in each query from one to
all. The PostgreSQL query planner selects the primary and sec-
ondary indexes for the columns used in query predicates. We also
investigate the impact of multiple indexes by using additional AND
predicates. Such queries have the following format:

selectT.a1, T.a2, T.a3 ... from T
wherePredicateP1(T.a1) AND P2(T.a2)

Device Sequential (MB/s) Random 4K-IO/s Latency
Read Write Read Write ms

Disk 80 68 120-300/s 4-5
SSD-Fast 250 70 35K/s 3.3K/s 0.1

SSD-Medium 69 20 7K/s 66/s 0.2
SSD-Slow 25 20 6K/s 136/s 0.6

Table 2: Performance characteristics of storage devices used:
SSD-Fast, SSD-Medium and SSD-Slow represent different
price points and performance. SSDs substantially outperform
disks for random read IOPS.

In this query,P1 and P2 are sargable predicates casted over the
indexed attributesa1 anda2. Finally, we study the effect of index
utilization by varying the selectivity of the query.

4.3 Measurement Platform
Platform and Measurement Tools:We perform all measurements
on a 2.5GHz Intel Core 2 Quad system configured with 4GB DRAM
and 3MB L2 cache per core, running Ubuntu 8.0.4 (Linux kernel
2.6.24). We verify our results for the elapsed time for query exe-
cution using both performance counters and the Posixtimeutility.
Furthermore, we instrument the Linux kernel with the Linuxblk-
tracemechanism to intercept and trace the I/O requests at the block
layer in the operating system. These traces, along with the Linux
iostatutility, enable us to monitor disk activity, such as the number
of seeks performed during a query. We use the ext2 file system for
both disk and flash devices. While the journaling ext3 file system is
more commonly used in practice, its read performance is identical
to ext2 but the journal requires extra updates to ensure consistency
after a crash.

4.4 Storage Device Characteristics
There is a high variance in the performance of flash SSDs, with per-
formance roughly corresponding to price. We therefore use three
flash devices (solid-state disks) fabricated by three major SSD man-
ufacturers at different price points. Among the three, two use a
SATA 2.0 interface and the third uses a SATA 1.0 interface. Since
our intention is not to compare the performance of these competing
SSDs, we refer to them as SSD-Fast, SSD-Medium and SSD-Slow
from faster to slower devices. SSD-Fast is a relatively high-end de-
vice with SSD-Medium and SSD-Slow are intermediate and low-
end devices. Table 2 presents the measured performance for these
devices, which differs from advertised data-sheet values. Sequen-
tial read bandwidth, random read I/O operations per second and
seek latency of the three devices are most relevant for our experi-
ments. We use a Seagate Barracuda 7200 RPM disk, which uses a
SATA 2.0 interface and simply refer to it as disk. Scan workloads,
with largely sequential access, are dependent on the I/O bandwidth
of the system, which RAID striping can improve. Therefore, we
also investigate the impact of using a software RAID-0 disk array
for our measurements.

Flash devices often require tuning to attain optimal performance.
We enable Native Command Queuing (NCQ) for SSD-Fast and
configure the system BIOS to treat SATA devices in native, rather
than compatible mode, to boost its performance. The device I/O
queue depth is configured to 32 for both SSD-Fast and disk to en-
sure a fair comparison. Finally, we enable on-disk prefetching for
all devices unless otherwise mentioned.

5. PERFORMANCE STUDY
Database management systems use different storage layouts and
other mechanisms such as data compression, prefetching and stor-
age indexing to optimize the performance of different query work-
loads. We focus our measurement study on three questions sur-
rounding these components:

• What is the impact of differentstorage technologiesandlay-
outson the performance of database query processing?

• How does the performance of flash database storage vary
across differentquery workloads?

• What are the costs and benefits of different disk-oriented
storage optimizationsfor flash storage?

We experiment with different disk, SSD and device configurations
and answer the first question in Section 5.1. Next, we investi-
gate a variety of query workloads to measure the performance of
flash database storage in Section 5.2. Finally, we evaluate the cost
and benefits of different storage optimizations such as database
prefetching, data compression and storage indexing in Section 5.3.

5.1 Database Storage Layouts
In this section, we experimentally evaluate and analytically model
the performance of different database storage layouts across a range
of devices.

5.1.1 How do the performance tradeoffs for row and
column stores differ for flash as compared to
disks?

To answer this question, we compare the performance of row stores
with column stores on the high-end flash SSD-Fast with disk. We
measure scan performance with select queries for a selectivity fac-
tor of 10%. Column-store effectiveness increases when only a few
attributes are retrieved, so fewer bytes are read from the device.
Thus, we vary the number of attributes projected per tuple for our
experiments. We use the LINEITEM table with a tuple width of
150 bytes and 16 attributes.

Figure 2(a) and 2(b) show the time taken to complete the select
query using row and column store layouts on disk and flash SSD-
Fast with different projectivity factors. Both row and column store
layouts for SSD-Fast outperform disk. Row stores for SSD-Fast
are twice as fast as for the disk, which reflects the difference in
sequential read bandwidths of the two devices; row stores tend to
saturate the I/O capacity of the device.

For disk, column store performance degrades quickly as the number
of projected columns increases from 1 to 16 because of an increase
in both I/O and CPU overheads for processing more columns. The
I/O wait time increases by a factor of fifty when increasing the num-
ber of bytes projected per tuple from 4 to 150, and total CPU time
increases by a factor of five. Thus, for disks, we observe a crossover
point when 90% of the tuple is projected, at which point row stores
become more efficient than column stores.

For a deeper understanding of why column store performance de-
grades on disk with projectivity, we instrument the Linux kernel
with blktrace and trace each I/O request submitted to the device
driver. We identify asseeksall requests that are at least 63 disk
sectors apart from the previous request. At 100% projectivity, 867
seeks occur for column stores – almost 10 times greater than for
row stores. At 10% projectivity, column stores issue only 83 seeks

 0

 20

 40

 60

 80

 100

 120

 140

 16 32 48 64 80 96 112 128 144

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column

(a) Disk

 0

 10

 20

 30

 40

 50

 60

 16 32 48 64 80 96 112 128 144

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column

(b) SSD-Fast

 0

 20

 40

 60

 80

 100

 120

 140

 160

 16 32 48 64 80 96 112 128 144

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column

(c) SSD-Medium

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 16 32 48 64 80 96 112 128 144

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column

(d) SSD-Slow

Figure 2: Performance of row and column stores on flash devices and disk. Flash devices at different price points exhibit different
performance. However, in contrast to disks, column stores always outperform row stores for all flash devices at any projectivity and
fixed selectivity of 10%. The y-axis scale is different for all devices.

– roughly the same number for row stores. This suggests that as
projectivity increases, column stores spend more time seeking, both
across columns and within columns to skip the attributes that do not
satisfy the predicate. Thus, it results in a crossover point where col-
umn stores perform worse with disks.

The shape of the performance curves for column stores on flash
is similar to that for disk. However, column storesalwaysper-
form better than row stores for SSD-Fast. SSD-Fast provides much
lower seek latency (0.1ms vs. 4ms) than disks, which prevents a
crossover between the column- and row-store curves even at high
projectivities. For disks, the penalty for seeks at 100% projectivity
takes at least 3.5 seconds, while they take less than 0.1 seconds for
SSD-Fast.

We now present a simple analytical model of the performance of
the two storage layouts that explains the crossover point. We as-
sume that select query workloads are I/O bound with negligible
CPU overhead because there is a significant overlap between the
CPU and I/O times. LetR be the size of the relation in megabytes
andB the bandwidth of the storage device in megabytes/s. For a
row store layout, the query completion time is given as the ratio of
the two quantities:

tr = R/B (1)

For a column store layout, query execution time is also affected
due to seeking between different columns. Letk be the number of
attributes projected,C be the average size of each chunk (column
file), andl be the seek latency of the device.

tc = α · k · (C/B) + β · k · l (2)

In Equation 2, the elapsed time for column stores has two compo-
nents: the time to read columns at full sequential bandwidth and
the time to seek between columns.α andβ adjust for imperfect
I/O behavior.α reflects that not all columns are of equal width and
that not all columns are read at the full sequential bandwidth. This
is because ext2 and most other file systems do not lay out data in a
perfectly sequential manner. Hence,α is the reduction in the sus-
tained transfer bandwidth. Since column stores result in seeking
both across and within columns to skip attribute values that do not
satisfy the predicate, the termβ adjusts the number of seeks; in
most casesβ is greater than one.

The crossover point occurs when the performance of row stores
equals that of column stores as modeled by Equation 1 and 2 re-
spectively. We derive the following formulation fork, the number
of columns projected at crossover:

k ≈ R

α · C + β · B · l (3)

For a device with no seek cost, the crossover point never occurs and
k approximates the total number of attributes in the relation, which
equalsR

C
. For devices with higher seek costl, the crossover occurs

when the bandwidth-latency product,β · B · l becomes a substantial
fraction of the column sizeC in the denominator.

For disk,l can be as high as 4–5 milliseconds and thus we find that
a crossover occurs. A single seek for column stores on a disk with
sequential read bandwidth of 80 MB/s results in 0.4 MB less data
read than for a purely sequential workload. The bandwidth-latency
product in the denominator of Equation 3 accounts for this loss.
For disks, the 867 seeks incurred at 100% projectivity reduces the
effective bandwidth of the disk by 347 MB over the workload. In
comparison, the average column size for LINEITEM relation of 9
GB size with 16 attributes is about 562 MB. In contrast, for flash
SSD-Fast with negligible seek overheads, the contribution of seek
latency is 22 MB, or less than 4 percent of a column. This results
in a crossover pointk equal to the total number of attributes in the
tuple, and explaining why columns stores always outperform row
stores.

5.1.2 Do the performance tradeoffs differ across de-
vice models and disk configurations?

Flash devices at different price points provide widely varying per-
formance due to different internal levels of parallelism (as in RAID
for disks) and sophistication of write-buffering algorithms [8]. Thus,
the performance on a high-end SSD may not carry through to cheaper
devices. We repeat our experiments on an intermediate flash SSD-
Medium and a low-end flash SSD-Slow. Figure 2(c) and 2(d) shows
row and column store performance for these two devices respec-
tively.

We observe two important features. First, regardless of the device
performance characteristics, column stores always perform better
than row stores for all flash devices; there is no crossover between
the two storage layouts. This again conforms with our formula-
tion for predicting crossover for flash devices since the bandwidth-
latency product for both SSD-Medium and SSD-Slow is half that

 0

 5

 10

 15

 20

 25

 4 8 12 16 20 24 28 32

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column

(a) Disk

 0

 2

 4

 6

 8

 10

 12

 4 8 12 16 20 24 28 32

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column

(b) SSD-Fast

Figure 3: Performance of row and column stores on disk and
SSD-Fast for narrow tuples: Reduction in tuple size further
shifts the crossover point to left for disk. In contrast, there is
no crossover for SSD-Fast for narrow tuples. The y-axis scale
is different for both devices.

of SSD-Fast and much smaller than a column.

Second, the performance of row and column stores for SSD-Medium
is comparable to that of disk. This is because SSD-Medium pro-
vides lower read bandwidth than disk (69MB/s vs. 80MB/s), which
is compensated by its order of magnitude better seek latency (0.2ms
vs. 4ms) to some extent. On the other hand, SSD-Slow always per-
forms worse than disk for both row and column stores because of
its considerably lower sustained read bandwidth (25MB/s) and rel-
atively higher seek latency (0.6ms).

While flash devices exhibit internal parallelism, disks can be con-
figured in RAID arrays to provide device level parallelism and im-
proved performance. We construct a RAID-0 software disk array
with two SATA disks, capable of delivering up to 160 MB/s band-
width (80 MB/s per disk). However, we found that while bandwidth
improved, seek latencies did not. As a result, the performance of
column store layouts is similar to that of a single disk. While the
RAID-0 configuration provides throughput similar to SSD-Fast, its
seek time is still much higher and we again observe a crossover for
the two layouts when 90% of the tuple is projected.

5.2 Query Workloads
Database workloads, in terms of the query selectivity, width of data,
and concurrency of access, can also accentuate differences between
flash and disk storage.

5.2.1 Does the width of tuples affect this tradeoff?
For disks, prior work has shown that row stores perform better with
narrower tables because narrow tuples can be packed tightly in a
read-optimized page and thus can be scanned much faster [18, 20].
The width of tuples also changes the number of bytes retrieved for
each tuple. Furthermore, tuple size also affects the seek compo-
nents in the denominator of Equation 2 due to a reduction in the
size of columns.

To investigate the impact of tuple width, we repeat our experiments
with the ORDERS table, which has only 7 attributes per tuple with
a total size of 32 bytes (in comparison, LINEITEM has 16 attributes
in 150 bytes). Figure 3 plots the performance of row and column
stores against projectivity on SSD-Fast and disk. We do not show
the results for SSD-Medium and SSD-Slow for brevity since they
were similar to SSD-Fast but scaled to their lower sequential band-
widths (as access latencies are similar).

For flash device SSD-Fast, the row and column store performance

 0

 5

 10

 15

 20

 25

 30

0.01 100 0.01 0.1 1 10 100

P
er

ce
nt

ag
e

Percentage Selectivity

row store column store

user
system

(a) Disk

 0

 10

 20

 30

 40

 50

 60

0.01 100 0.01 0.1 1 10 100

P
er

ce
nt

ag
e

Percentage Selectivity

row store column store

user
system

(b) SSD-Fast

Figure 4: Impact of selectivity on breakdown of CPU time for
query execution on disk and SSD-Fast: Selectivity does not af-
fect the performance of row stores. An increase in selectivity
also increases the CPU overhead, thus reducing its overlap with
I/O wait time for both disk and SSD-Fast. However, this CPU
overhead is a larger fraction of the total execution time for col-
umn stores on flash SSD-Fast than disk. The y-axis scale is
different for both devices.

is similar to the LINEITEM table, and column stores still outper-
form row stores. Thus, column stores provide high performance on
flash regardless of tuple width.

For disk, however, we observe that the crossover point where row
stores perform better occurs earlier for narrow tuples. Column
stores perform worse than row stores when projecting more than
75% of the tuple. As compared to LINEITEM in Figure 2(a) with
crossover point at 90% projectivity, it shifts left for ORDERS be-
cause row stores perform less I/O per tuple, so the opportunity to
improve performance with column stores is lower. As each column
is smaller, the seeks between columns have proportionally more
impact on performance: column stores seek about 182 times and
row stores only 19 times at 100% projectivity for ORDERS.

5.2.2 Does selectivity of the query affects this trade-
off?

The selectivity of a query decides the number of tuples read while
scanning that are discarded because they do not match the pred-
icate. We investigate its impact by varying the selectivity of our
queries from 0.1% to 100% on a log scale for both relations. To
highlight the difference between row and column stores, Figure 4
shows the fraction of user and system times for queries that yield
variable selectivities at 100% projectivity. These queries are exe-
cuted on LINEITEM table stored on disk and flash SSD-Fast. Row
stores iterate through all the tuples in the relation regardless of se-
lectivity. So there is little change in the CPU overhead for row
stores on both disk and SSD-Fast.

However, we observe that with increased selectivity there is an in-
crease in CPU overhead for column stores on both disk and SSD-
Fast. As we vary selectivity for column stores, the total CPU uti-
lization increases up to 59% at 100% selectivity for SSD-Fast. It
remains constant between 5–8% for row stores regardless of se-
lectivity. The increase in CPU time for column stores is mainly
attributed to the extra work done by each scan node of the query
engine for processing extra tuples. In contrast, the percentage of
CPU overhead for column stores only increases up to 26% on disk,
which is less than half that on SSD-Fast. Therefore, column stores
are still I/O bound on disk, but become more CPU bound on SSD-
Fast with an increase in selectivity. Hence, there is less overlap
between CPU and I/O with flash SSD-Fast than with disk.

 0

 2

 4

 6

 8

 10

 12

 14

Fast Medium Slow Disk Seeks
 0

 50

 100

 150

 200
N

or
m

al
iz

ed
 T

im
e

N
or

m
al

iz
ed

 S
ee

ks

Number of concurrent queries

1
2
4
8

Figure 5: Execution time and number of seeks for concurrent
queries relative to a single query: Flash devices scale linearly
with an increase in the number of concurrent queries. In con-
trast, for eight concurrent queries, disk performance is up to
fourteen times worse than a single query. Furthermore, the
number of seeks also increase non-linearly, thus degenerating
the workload to a large extent. The left y-axis shows the query
execution time and the right y-axis shows the number of seeks,
both relative to single query.

Nevertheless, we do not find any crossover for the total query ex-
ecution time on SSD-Fast even at 100% selectivity because the in-
creased CPU time still overlaps with I/O wait time. Similar results
are obtained for the two other slower flash devices. However, with
faster devices, such as the Fusion-IO ioXtreme PCI-e SSD that pro-
vides up to 600 MB/s sequential read bandwidth [2], there will be
less overlap between the I/O and CPU times, and the increase in
CPU utilization for column stores may tip performance to favor
row stores at high selectivity.

Our results reiterate recent work by Tsirogiannis et al. [31]. Their
work shows that using PAX architecture [9], a hybrid of row and
column stores, does not improve query execution time for variable
selectivity factors unless additional optimizations are used. For ex-
ample, reading only mini-pages that correspond to attributes used
in the selection predicate and using fully or partially sorted at-
tributes are necessary to leverage selectivity for performance. How-
ever, such optimizations only improve the performance of PAX lay-
out for low selectivity queries. We discuss this more in Section 7.

5.2.3 How do concurrent queries scale with flash and
disk?

Database systems may perform poorly with concurrent queries that
cause competing disk traffic [24]. Such competing traffic can turn
multiple sequential workloads into a collectively seek-bound work-
load that performs poorly on disks. The database, file system, and
I/O scheduler of the operating system may try to minimize seeks
by clustering nearby I/O requests. In some cases, concurrent scan
queries to the same relation can be optimized by sharing the same
scanner [19], so we analyze scans of different relations. We mea-
sure the performance with a single row or column store select query
on an instance of ORDERS table, while competing against a vari-
able number of concurrent row store select queries on an instance
of LINEITEM table.

Figure 5 plots the query execution time of concurrent row store se-
lect queries normalized to one individual query for all three flash
devices and disk, as we increase the degree of concurrency. Against
the right y-axis, we show the number of seeks. Column store per-
formance is similar, so we do not include its results.

With a single query, performance is equal to that of row stores in
Figure 3 and normalized to one in Figure 5 for the different devices.
Furtermore, there are few seeks for single query. However, when
the number of concurrent scans increases to two, the number of
seeks shoot up quickly and disk performs worse than both SSD-Fast
and SSD-Medium, despite the 6 megabytes read-ahead that tries to
amortize the cost of seeks. With an SSD, each individual query
takes twice as long to complete, while with disk, each query takes
4 times longer. As the degree of concurrency increases, execution
time increases linearly with the number of concurrent queries for
all SSDs. This demonstrates that bandwidth is the most significant
factor for concurrent queries with SSDs, as the seeks incurred have
little impact on performance.

For disk, though, execution time increases twice as fast, and 8 con-
current queries perform 14 times slower than for a single query.
Unlike SSDs, seek times dominate performance for disk at high
concurrency. Thus, performance for disk would be much better if
the two queries were run sequentially rather than concurrently as
the system is unable to effectively schedule the two competing I/O
streams to achieve maximum performance.

We also measure the impact of the operating system with two dif-
ferent I/O schedulers: CFQ and NOOP. CFQ batches up all the
asynchronous requests from different processes in a number of queues
with different I/O priorities. As CFQ seeks fairness between queues,
the scheduler trades off seek time between successive requests sub-
mitted to the device driver for more equal performance. In contrast,
NOOP inserts all requests in a single FIFO queue and submits them
as soon as possible.

We observe marginal differences in the performance of flash de-
vices with the two schedulers. The performance difference between
NOOP and CFQ is less than 3 percent, indicating that scheduling
is less necessary for SSDs. For disks, NOOP performs 13% better
than CFQ. This suggests that the workload submitted to the device
has degenerated to a large extent and ensuring fairness between dif-
ferent query executions further degrades the performance. This is
also visible in Figure 5 as the steep rise in the number of seeks.
They rise by a 33 times for two competing queries, and by over 200
for eight queries. For the 2 GB scan, these seeks lead to an average
request length of 2.2 MB, which may be larger than the window
of requests the CFQ scheduler considers for reordering. Thus, it
breaks large sequential reads to achieve better fairness, which in-
creases the seek overhead.

These results suggest that achieving fairness for the different con-
current queries at the block layer may prove difficult with disks, and
demands careful planning within the database or application. In
contrast, flash devices require little scheduling to achieve high per-
formance, and thus naturally perform well with concurrent queries.

5.3 Database Storage Optimizations
In addition to the customized storage layouts, database storage man-
agers implement numerous optimizations to improve performance
by hiding or reducing the cost of disk accesses. We next investigate
the impact of three such optimizations on flash storage: compres-

 0
 10
 20
 30
 40
 50
 60
 70

Disk Medium
Fast

P
er

ce
nt

ag
e

S
pe

ed
up

column row

(a) Compression Speedup

 0
 20
 40
 60
 80

 100

column:Disk

row:Disk
column:Fast

row:Fast

P
er

ce
nt

ag
e

System User I/O

(b) Compression Cost

Figure 6: Performance of row and column stores on disk, SSD-
Fast and SSD-Medium with data compression: Compression
benefits SSDs to a larger extent than disk. However, compres-
sion costs extra CPU time for column stores and makes them
CPU bound on flash devices. The y-axis scale is different for
both devices.

 0

 1

 2

 3

 4

 5

 4 8 12 16 20 24 28 32

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column

(a) SSD-Fast

 0

 2

 4

 6

 8

 10

 12

 14

 4 8 12 16 20 24 28 32

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column

(b) SSD-Medium

Figure 7: Impact of compression on performance of column
stores on flash devices: Compression increases the CPU over-
head for column stores at high projectivity resulting in low
overlap with I/O wait time. Thus, it causes a crossover between
row and column store performance for both flash devices.

sion, prefetching, and indexing.

5.3.1 How does database compression perform on
flash storage?

As we have shown, performance of select and project queries is
constrained by I/O bandwidth. Thus, compression offers an oppor-
tunity to improve I/O performance at the cost of additional CPU
usage to compress and uncompress the relations. We use FOR
compression on the ORDERS table, which compresses its 32 byte
tuples down to 12 bytes.

Figure 6(a) shows the speedup in performance of row and column
stores for different storage devices at 100% projectivity. We make
two major observations about the effects of compression. First,
compression greatly benefits both disks and SSDs but by different
amounts. Compression reduces the query time for disk by 56%
with a row store and 46% for a column store. However, com-
pression improves the performance of both SSD-Slow and SSD-
Medium by 63% for row stores and 59% for column stores. The
benefit of compression comes from increasing the effective I/O
bandwidth while leaving seek latencies unchanged. Thus, for SSDs,
where seek latency is negligible, compression offers greater bene-
fits for reducing total I/O time.

Second, row stores benefit from compression more than column
stores at 100% projectivity. This becomes more clear when we ob-
serve the performance of the two layouts as we vary the number
of attributes projected and observe the execution time breakdown
of the workload. We plot the query execution time for flash SSD-

Fast and SSD-Medium in Figure 7. Disk is still I/O bound, thus
we omit its results. As we increase projectivity, the CPU cost for
re-assembling tuples from columns grows even higher with com-
pression for column stores. Therefore, the benefit of increased ef-
fective bandwidth is reduced by the extra CPU time spent generat-
ing output data. Furthermore, with compression the system cannot
overlap CPU utilization with I/O as effectively for column stores.
Figure 6(b) shows the breakdown of the elapsed time at 100% pro-
jectivity for compressed row and column stores on disk and SSD-
Fast. In this figure, I/O time represents the fraction of the elapsed
time that is neither user nor system time. Similar results are ob-
served on flash SSD-Medium and SSD-Slow. The salient feature
of this figure is the time spent in usermode, which represents the
time to uncompress data. Row store layouts require less process-
ing, and hence are better able to overlap CPU usage with I/O. The
column store, in contrast, spends more of its time reconstructing
tuples and hence does not keep the device busy, leading to longer
execution.

We now analyze the performance of row and column stores with
compression by extending our original model described in Equation 3.
For simplicity, we redefineR andC as the average size of the re-
lation and a chunk (column file) after compression. As shown in
Figure 7, row store performance is independent of the number of
projected columns and is only dominated by I/O bandwidth, thus
we reuse Equation 1 for its query execution time.

However, columns stores are less able to overlap the extra CPU
time to uncompress data with I/O because of their less-regular I/O
patterns. Therefore, the CPU cost of compression is proportional
to k · C, the product of the number of columns projected and the
average size of a chunk that is uncompressed. We multiply this
product byγ to adjust for the differences in compression speeds
and ratios for different schemes and attribute values. For flash de-
vices with negligible seek latencies, we rewrite Equation 2 with this
additional CPU overhead to compute the query execution time for
column stores as follows:

tc = max{α · k · (C/B), γ · k · C} (4)

Thus, when bandwidth is low, the first term dominates and the
workload is I/O bound. However, when bandwidth is higher, the
workload can become CPU bound with the second term. We cal-
culate that for our workloads, the query saturates the CPU with a
device bandwidth of 380 MB/s. Thus, for higher-bandwidth de-
vices, row stores will outperform column stores with compression.

In summary, compression benefits flash devices and disks by re-
ducing the amount of data read. However, flash devices benefit
more, because bandwidth is a greater part of the I/O cost. In ad-
dition, the additional processing to reconstruct tuples can push the
performance of column stores below row stores at high projectiv-
ities. This shows that although compression increases effective
bandwidth for flash devices, it can still tradeoff for column store
performance because of its high CPU costs.

5.3.2 Does prefetching benefit flash like disks?
Database storage managers prefetch data that is not needed imme-
diately. Prefetching for disks provides two benefits. First, reading
more data at a time amortizes the high random seek latencies over
larger sequential requests. Second, prefetching overlaps I/O with

 0

 20

 40

 60

 80

 100

 4 8 12 16 20 24 28 32

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column 256KB

column 6MB

(a) Disk

 0

 2

 4

 6

 8

 10

 12

 4 8 12 16 20 24 28 32

E
la

ps
ed

 T
im

e
(s

)

Projected bytes per tuple

row
column 256KB

column 6MB

(b) SSD-Fast

Figure 8: Database Prefetching: For disks, a high read-ahead
is beneficial for amortizing seeks and improving the query ex-
ecution time. In contrast, prefetching has almost no impact on
the performance of column stores on flash devices. The y-axis
scale is different for both devices.

computation, so that data is already available in memory when it is
finally requested [28].

We measure the benefits of prefetching for the performance of row
and column store layout by scanning ORDERS on the four devices.
Figure 8 shows the query execution time with read-aheads of 256
KB (2 I/O units) and 6 MB (48 I/O units). We also measure the
number of seeks for each data point. We observe that prefetching
does not improve row store performance, because there are few
seeks to be amortized. In addition, the number of seeks for row
stores is fairly constant regardless of projectivity. Hence, we only
show a single row-store curve for each of the two devices.

However, as shown earlier in Section 5.1.1, column stores incur
more seeks as projectivity increases. Therefore, column stores ben-
efit differently for the two devices with prefetching. For disk, as we
increase the prefetch read-ahead from 256 KB to 6MB, there is a
dramatic decrease in the query execution time for column stores.
This is because the number of times column stores seek decreases
with an increase in the read-ahead: at 100% projectivity, the 6 MB
read-ahead causes 182 seeks, while for a 256 KB read-ahead, it
shoots up to 2941. Thus, prefetching compensates for disk perfor-
mance by reducing the number of seeks.

However, for flash devices the cost for random access is a small
component of the access time. This is reflected in the curves for col-
umn store performance for flash SSD-Fast. There is little change in
the performance of SSD-Fast as the prefetch read-ahead is reduced.
Similar results occur with SSD-Medium and SSD-Slow.

In summary, storage optimizations that compensate for slow seeks,
such as prefetching, are no longer required for flash devices, while
those that improve effective bandwidth, such as compression, are
still useful.

5.3.3 How do storage indexes perform on flash?
Storage indexes accelerate database query processing by directly
seeking to the selected rows instead of scanning all rows. As our
optimized storage manager does not support indexes, we instead
use PostgreSQL for these tests, which uses a row-store layout, and
configure it to create bitmap indexes over different attributes.

Use of an index can change performance for two reasons. First, the
database must perform I/O to read in the index. Second, with an
index the database can seek between the selected tuples in the data
tables rather than scanning.

 0

 10

 20

 30

 40

 50

 60

 70

0.1 1 10 100

T
im

e
(s

)

Percentage Selectivity

Disk
Index-SSD

SSD

Figure 9: Impact of indexing on performance of query pro-
cessing for variable selectivities on PostgreSQL with different
devices used for storing index and relation data.

We investigate the impact of storing indexes on disk and flash de-
vices in three configurations. We compare storing both index and
relation on (i) a single disk and (ii) a single SSD. Compared to
the actual data, indexes are accessed more frequently and are much
smaller. Therefore, we also evaluate (iii) storing the index on an
SSD and relation on disk, which allows a much larger dataset than
if it is all on an SSD. We use the ORDERS relation and flash SSD-
Fast for these experiments. We create a bitmap index on the first
column with a total size of 375 megabytes and vary the selectivity,
which affects the utilization of the index. Lower selectivity means
the index is more useful, while at higher selectivity there is less
opportunity to skip over unnecessary rows.

Figure 9 plots the query execution time for these three configura-
tions. We make two observations on the impact of indexing. First,
we find no difference in the benefit of indexes between disk and
SSD: in both cases, the change in selectivity leads to a similar
change in performance, indicating that index behavior affects per-
formance on both devices similarly. Thus, the change in perfor-
mance is not dependent on the device.

Second, at high selectivities we observe that storing the index on
an SSD improves performance by 10% compared to the disk-only
case. In this case, the time to access the index is a noticeable frac-
tion of total query execution time, so the faster SSD improves per-
formance. However, we observe that at low selectivities, storing the
index on an SSD and the data on a disk has little benefit. The per-
formance is similar because PostgreSQL aggressively prefetches
index data to hide the cost of access, and thus reading the index has
little impact on performance.

6. FINDINGS AND IMPLICATIONS
The goal of this paper is to evaluate different components and op-
timizations in the database storage hierarchy for flash storage. We
present a holistic view of mechanisms spanning the design of database,
OS I/O scheduling, and the characteristics of different storage de-
vices. Our analytical models back our experimental findings on the
performance tradeoffs of these mechanisms.

In this section, we present the design implications on future database
and operating systems for effectively embracing flash storage.

Storage Layouts. We find that, unlike on disks, column stores
outperform row stores on flash devices for a wide variety of query
workloads. Similar to disks, they outperform row stores for low
projectivity queries because they make better use of I/O bandwidth.
Unlike disks, this tradeoff holds for high projectivity queries as well
because SSDs possess negligible seek overheads. Our findings are
consistent across different flash device models and disk configu-
rations. At a high level, these findings make a strong argument:
database storage layouts that improve effective utilization of band-
width best suit the performance characteristics of flash storage.

Database Compression.We find that data compression, which
optimizes I/O bandwidth, has a greater benefit for SSDs than for
disks, because I/O bandwidth accounts for a greater portion of per-
formance. However, upcoming faster flash devices over new host
interconnects, such as Fusion-IO ioXtreme SSD over PCI-e bus [2]
and Sun F5100 flash arrays over SAS interfaces [30], can effec-
tively reduce the overlap between CPU and I/O wait times. Such
devices may lead to CPU-bound workloads that do not benefit from
compression, or will require new compression schemes that bal-
ance CPU and I/O utilization.

Database Prefetching.We find that prefetching contiguous blocks
to compensate for slow disk seeks is no longer beneficial for flash
storage. Furthermore, the fast random access of SSDs provides new
opportunities for the redesign of database prefetching. Rather than
prefetching only sequential data, database storage managers can
leverage their knowledge about the block access patterns of differ-
ent query workloads. For example, they can effectively prefetch
more distant pages with better temporal locality by using stride
prefetching at a negligible cost of seeking on flash.

Storage Indexing. For low selectivity queries, indexes accelerate
execution time by caching index pages in main memory for both
disks and SSDs. However, for high selectivity queries, the effective
utilization of indexes increases and storing indexes on flash offers
significant performance improvement. Therefore, future database
storage managers can benefit from the design of new hybrid sys-
tems that use flash for storing indexes.

Concurrency. We find that the performance of flash storage scales
linearly with an increase in the degree of concurrency. In contrast,
competing database queries can degenerate into a seeking work-
load and significantly degrade disk performance. Database mech-
anisms that optimize for disk performance by sharing the same
scanner across different queries [19] can be significantly simpli-
fied. Thus, flash storage offers a cleaner alternative for redesigning
such database mechanisms and also providing scalable and faster
performance.

Disk Scheduling. In addition to database mechanisms for manag-
ing seeking workloads, operating systems also cluster nearby I/O
requests by reordering or delaying them. We find less than 3 per-
cent difference for SSDs between the performance of NOOP and
CFQ I/O scheduling at the block layer in the Linux kernel. There-
fore, flash storage requires rethinking the design of a light-weight
block layer in the operating system which keeps up with an order
of magnitude low access latency of flash than disks.

7. RELATED WORK
This paper draws on past work investigating database optimizations
for flash and disk storage. We categorize this work into two broad
classes: data layouts for flash and disk storage, and measurement

studies on understanding the performance characteristics of flash
devices.

Database Storage Layouts.Traditionally, database systems have
mostly used the N-ary storage model (NSM), a page-based stor-
age layout to store tuples contiguously. To save on the memory
and disk bandwidths for queries projecting on a small fraction of
tuples, Copeland et al. first proposed the decomposition storage
model (DSM) [13]. Recently, more DSM-like (column store) com-
mercial products and research prototypes have appeared, such as
SybaseIQ, Vertica, C-Store [29] and MonetDB/X100 [10]. PAX
(Partition Attribute Across) [9] is a hybrid approach which uses a
DSM-like organization within a NSM page, thereby optimizing for
memory bandwidth. All these layouts trade I/O performance be-
tween different workloads. Harizopoulos et al. first investigated
the performance tradeoffs for row and column stores [18]. Later,
Holloway et al. [20] and Abadi et al. [7] answered many unre-
solved questions by focusing on a wider variety of scenarios. How-
ever, these studies only focus on the performance characteristics of
disks, which widely differ from flash devices.

The most closely related work that focuses on flash-based database
storage is by Tsirogiannis et al. [31, 27]. The authors investigate
the suitability of a hybrid column-based page layout, based on PAX
architecture, and compare it with NSM on a single flash device.
They propose a new scan and join algorithm which leverages the
column-based page layout to improve read efficiency. In contrast,
we focus on the broader performance differences between disk and
flash. We isolate the scenarios where the performance tradeoffs
between row and column stores differ for flash devices from disks
and provide analytical models for such differences. Furthermore,
we analyze the tradeoffs for other disk-oriented optimizations like
data compression, prefetching and I/O scheduling and highlight the
additional benefits of flash devices for concurrent workloads.

Flash Measurement Benchmarks.Many studies have benchmarked
the read and write performance of different flash devices to reveal
their internals and provide hints for their optimal usage for different
access patterns [8, 11, 12, 25]. Agrawal et al. present a taxonomy
of design tradeoffs for the internal organization of SSDs [8]. They
find that SSD performance is highly sensitive to workload and that
FTL design choices greatly impact performance. Bouganim et al.
describe uFLIP, a benchmark for measuring the response times for
different flash access patterns [11]. Chen et al. present a measure-
ment study investigating the intrinsic characteristics and system im-
plications of solid-state disks [12]. Similar to our work, all these
studies acknowledge the high variance in the performance charac-
teristics across different flash devices. However, in contrast to these
past studies, which only focus on the basic performance character-
istics of flash, this paper steps forward by investigating the impact
of flash on storage optimizations in database and operating systems.

8. CONCLUSIONS
Database storage has been heavily optimized for disks over the last
few decades. Compared to disks, flash devices provide an order
of magnitude lower read/access latencies, much higher bandwidths
and negligible seek overheads. In the light of these differences, we
revisit major database storage optimizations in this paper, includ-
ing data layouts, compression, database prefetching and indexes on
flash. We analytically model the performance tradeoffs of these
mechanisms for flash storage across different workload variations.
Our results show that most optimizations for disk are still useful
for flash, but differ in the degree of benefit. Furthermore, we pro-

vide interesting design implications on future database and operat-
ing systems for effectively embracing flash storage.

9. REFERENCES
[1] C-Store: A Column-Oriented Database.

http://db.csail.mit.edu/projects/cstore .
[2] Fusion-IO ioXtreme PCI-e SSD Datasheet.

http://www.fusionio.com/ioxtreme/PDFs/
ioXtremeDS_v.9.pdf .

[3] NYTimes: Counting Down to the End of Moore’s Law, May
2009.http://tinyurl.com/o2nz2j .

[4] PostgreSQL Database Server.
http://www.postgresql.org .

[5] TPC-H Toolkit.http://www.tpc.org/tpch .
[6] D. J. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented database
systems. InSIGMOD, 2006.

[7] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores
vs. row-stores: How different are they really? InSIGMOD,
2008.

[8] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for ssd
performance. InUSENIX, 2008.

[9] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. InVLDB, 2001.

[10] P. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:
Hyper-pipelining query execution. InCIDR, 2005.

[11] L. Bouganim, B. por Jonsson, and P. Bonnet. uflip:
Understanding flash io patterns. InCIDR, 2009.

[12] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of flash
memory based solid state drives. InSIGMETRICS, 2009.

[13] G. P. Copeland and S. N. Khoshafian. A decomposition
storage model. InSIGMOD, 1985.

[14] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing
relations and indexes. InICDE, 1998.

[15] J. Gray. Tape is dead, disk is tape, flash is disk, ram locality
is king, Dec. 2006.http://tinyurl.com/d2enxp .

[16] A. Halverson, J. Beckmann, J. Naughton, and D. J. DeWitt.
A comparison of c-store and row-store in a common
framework. InTechnical Report, University of
Wisconsin-Madison, TR1566, 2006.

[17] R. A. Hankins and J. M. Patel. Data morphing: An adaptive
cache-conscious storage technique. InVLDB, 2003.

[18] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden.
Performance tradeoffs in read-optimized databases. In
VLDB, 2006.

[19] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: A
simultaneously pipelined relational query engine. In
SIGMOD, 2005.

[20] A. L. Holloway and D. J. Dewitt. Read-optimized databases,
in depth. InVLDB, 2008.

[21] Intel. X-25 mainstream ssd datasheet, May 2009.
http://download.intel.com/design/flash/nand/mainstream/mainstream-
sata-ssd-datasheet.pdf.

[22] S. Iyer and P. Druschel. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous IO. InSOSP, 2001.

[23] H. Kim and S. Ahn. Bplru: A buffer management scheme for
improving random writes in flash storage. InUSENIX FAST,
2008.

[24] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. InACM TODS, Volume-6, Issue 2,
1981.

[25] D. Myers. On the use of nand flash memory in
high-performance relational databases. InMIT MSc. Thesis,
2008.

[26] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for
redundant array of inexpensive disks (raid). InSIGMOD,
1988.

[27] M. A. Shah, S. Harizopoulos, J. L. Wiener, and G. Graefe.
Fast scans and joins using flash drives. InFourth Workshop
on Data Management on New Hardware (DaMoN),
SIGMOD, 2008.

[28] E. Shriver, C. Small, and K. A. Smith. Why does file system
prefetching work? InUSENIX, 1999.

[29] M. Stonebraker, D. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: A column oriented database. InVLDB, 2005.

[30] Sun-Online. Sun Storage F5100 Flash Array.
http://www.sun.com/F5100 .

[31] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe. Query processing techniques for solid state
drives. InSIGMOD, 2009.

[32] T. Westmann, D. Kossman, S. Helmer, and G. Moerkotte.
The implementation and performance of compressed
databases. InSIGMOD Rec, 29(3), 2000.

