

Computer
Sciences
Department

The Case for Fine-Grained Traffic Engineering in Data Centers

Theophilus Benson
Aditya Akella
Ming Zhang

Technical Report #1666

October 2009

The Case for Fine-Grained Traffic Engineering in Data Centers

Theophilus Benson†, Aditya Akella† and Ming Zhang⋆
† University of Wisconsin-Madison;⋆ Microsoft Research

Abstract

Data center traffic characteristics are not well under-
stood. In particular, it is not clear how the prevalent
traffic patterns may impact candidate mechanisms for
managing traffic inside the data centers. In this paper,
we conduct a measurement study of network-level traf-
fic patterns inside data centers. Based on our empirical
insights, we design a traffic generator for creating repre-
sentative workloads for traffic between TOR switches in
a data center. We use this generator to evaluate several
traffic engineering techniques and data center network
architectures, and analyze their short comings. Our find-
ings highlight the need for fine-grained traffic engineer-
ing (TE) mechanisms. We design and implement such an
approach using OpenFlow and show how it can signifi-
cantly improve data center TE.

1 Introduction
Data centers are being heavily employed in enterprise,
consumer and university settings to run a variety of ap-
plications and cloud-based services. These range from
Internet-facing “sensitive” applications, such as, Web
services, instant messaging, stock updates, financial ap-
plications and gaming, to computationally intensive ap-
plications, such as, indexing Web content, data analysis,
archival and scientific computing.

The performance of these applications crucially de-
pends on the functioning of the data center network in-
frastructure. For example, a congested data center net-
work, where internal traffic is routinely subjected to
losses and poor throughput, could lead to search queries
take longer to complete, IM message getting delayed,
gaming experience deteriorating, and POP mail services
and Web transactions hanging. The dissatisfied end-users
and subscribers could choose alternate providers, result-
ing in significant loss in revenues for the data center.

Central to the well-oiled functioning of a data center
is a robust network traffic engineering (TE) mechanism.
Unfortunately, anecdotal evidence suggests that data cen-
ter TE is in a very primitive state. Today, most opera-
tors try to tweak wide-area traffic engineering and rout-
ing mechanisms (e.g., single path routing and ECMP)
to manage their data centers. This is a natural thing to
do because these mechanisms come bundled with cur-
rent switches and they are well-understood. However,
this naive approach is effective only if data center and
wide area traffic share basic similarities.

The fact that “traditional” approaches are ineffective is
reinforced by recent work that has shown that data cen-
ter networks could experience congestion events lasting
upto a few seconds each time, during which applications
experience numerous failures [16]. Thus, there is a need
for data-center oriented TE mechanisms. However, de-
signing such mechanisms is difficult today because very
little is known about the traffic patterns prevalent in data
center networks and how these interact with topology
and routing, and their impact on the time-scales at which
TE decisions need to be made.

Our paper makes four important contributions that fur-
ther the state of the art in data center TE:1 a measurement
study of data center traffic characteristics; a data center
workload generator to evaluate TE proposals; a compar-
ative study of commonly used and recent proposals for
traffic engineering; and, a novel fine-grained TE scheme
for data centers.
⋆ Measurement study:2 We empirically study the traf-
fic patterns on data center network links with an explicit
focus on TE issues. Using SNMP data collected from
19 large Internet-facing data centers, we study proper-
ties of data center physical topologies, distributions of
utilizations and loss rates on data center links and their
dependence on the network location of a link, and varia-
tions in link utilization and loss rate over time. Our key
findings are: (1) In general, the average link utilization
is low, with links within the core of a data center being
more heavily utilized than other links; (2) In contrast,
the loss rates are the lowest (and almost non-existent)
in the core; Loss rates at other links are non-trivial in
magnitude. (3) Several data center links are unused at
a given time, but the set of inactive links changes con-
stantly. Thus, losses can be avoided, but careful traffic
engineering is required.

We also study low-level packet traces collected from
five switches in one of the data centers. From these
traces, we find evidence of ON/OFF traffic patterns,
where the ON-periods, OFF-periods and inter-arrival
times follow heavy-tailed distributions. These traffic pat-
terns can help explain the utilizations and loss rates we
observed from SNMP data.
⋆ Workload generator:3 Our second contribution is a

1This paper builds on our earlier workshop paper [9]. We have high-
lighted key enhancements and new contributions below.

2We present a more detailed explanation of key measurement results
in [9], along with some new results on traffic/loss patterns.

3This is partly a new contribution. Some of the algorithms underly-
ing the workload generator were discussed in [9].

1

data center workload generator that can provide repre-
sentative models for traffic between TOR switches in a
data centers and help realistically evaluate various data
center TE mechanisms. At the heart of the workload
generator is a unique “parameter space exploration” al-
gorithm that derives the optimal set of traffic generation
parameters for TOR switches in a simulated data center
such that the resulting packet stream matches empirically
measured data both on microscopic (e.g. packet inter-
arrivals) and macroscopic (e.g. link utilizations and loss
rates) levels.
⋆ Comparative TE evaluation:4 The third contribution
of our paper is a study of the applicability of various traf-
fic engineering mechanisms, and of recent proposals for
data center interconnection and routing that promise very
high bisection bandwidth [6], toward mitigating losses
inside data centers. In conducting this study, we employ
our traffic generator atop a small-scale virtual data cen-
ter testbed. Through our study, we find that existing tech-
niques are unable to avoid losses arising due to the bursty
nature of data center traffic. This could arise due to one
of several reasons: (1) not using multipath routing, or
(2) not adapting to instantaneous load, or (3) not using a
global view to make traffic engineering decisions.
⋆ Fine-grained TE:5 The final contribution of our pa-
per is a new, fine-grained, load-sensitive traffic engi-
neering approach that virtually eliminates losses due to
bursty traffic inside data centers. Our solution relies
on a central controller that computes optimal routes af-
ter actively probing the instantaneous levels of activ-
ity within the data center network. Although a central-
ized, fine-grained solution seems too daunting to imple-
ment, we argue that the recent OpenFlow framework [3]
could be employed effectively in realizing this approach.
Furthermore, OpenFlow can be enabled several “data
center-grade” switches today via a simple firmware up-
grade. Using our workload generator, we find that our
OpenFlow-based approach can virtually eliminate losses
in data center networks.

With the growing centrality of data centers and cloud
computing in everyday Internet transactions, it is cru-
cial to understand how to run the underlying network
in these settings in the most efficient fashion. Our pa-
per sheds light on this important problem domain, iden-
tifying the pitfalls of existing mechanisms and the fun-
damental properties of network traffic that lead to the
pitfalls. Although we present a new traffic engineering
approach that addresses the drawbacks of current tech-
niques, we believe that it is just one solution in a space
of possible solutions that share some key properties. We
believe that our workload generator could prove instru-
mental in identifying other, potentially better candidates

4This is a new contribution.
5This is a new contribution.

in this solution space. Our workload generator and the
virtual data center testbed are currently available for use
upon request. We are planning a public release soon.

2 Empirical Study
In this section, we present an empirical study of data cen-
ter networks and data center traffic based on traces col-
lected from data centers owned by a large corporation.
Our goal is to gain insights into what constraints and
requirements drive network traffic engineering mecha-
nisms in data centers. Specifically, we aim to shed light
on the following issues.
• Topology: What is the physical structure and size of
the data center networks? How different are they from
each other?
• Macroscopic performance properties: What are the
coarse-grained characteristics of traffic observed on data
center links and switches? In particular, what are the link
utilizations and loss rates on the data centers? How do
they vary over time and across links?
• Microscopic traffic properties: What are the fine-
grained properties of data center network traffic? Can the
traffic properties be characterized using well understood
distributions?

2.1 Data Sets
To answer the above questions, we collected two sets of
measurement data. The first data set comprised of SNMP
data extracted from19corporate and enterprise data cen-
ters hosting either intranet and extranet server farms or
Internet server farms. SNMP MIBs were polled every
5 minutes and data was collected over a10-dayperiod.
These data centers support a wide range of applications
such as search, video streaming, instant messaging, map-
reduce, and web applications. The 19 data centers’ are
spread throughout the world.

The second data set is comprised of packet traces from
packet sniffers on five switches in one of the data centers
(located in the US). The sniffers ran WinDump, which is
able to record packets at a granularity of 10ms.

In what follows, we first briefly examine the physi-
cal topologies and sizes of the 19 data centers. Then
we study the SNMP statistics to characterize link utiliza-
tion and packet loss in a data center. Finally, we use the
packet traces to characterize the temporal patterns of data
center traffic.

2.2 Topology
Table 1 summarizes topological information in the 19
data centers. Our review of the physical topologies
showed that all these data centers follow a tiered archi-
tecture, with network devices organized intotwo or three
layers. Most commercial data centers are known to fol-
low such tiered designs. The innermost and the outer-
most tiers are called thecoreand theedgelayers (devices

2

Data-Center Fraction Core Frac Aggr Frac TOR Total #
Name Devices Devices Devices Devices
DC1 0.000 0.000 1.000 5
DC2 0.667 0.000 0.333 5
DC3 0.500 0.000 0.500 6
DC4 0.500 0.000 0.500 7
DC5 0.500 0.000 0.500 7
DC6 0.222 0.000 0.778 9
DC7 0.200 0.000 0.800 13
DC8 0.200 0.000 0.800 13
DC9 0.000 0.077 0.923 26
DC10 0.000 0.043 0.957 47
DC11 0.038 0.026 0.936 78
DC12 0.024 0.072 0.904 83
DC13 0.010 0.168 0.822 210
DC14 0.031 0.018 0.951 230
DC15 0.013 0.013 0.973 302
DC16 0.005 0.089 0.906 427
DC17 0.016 0.073 0.910 562
DC18 0.007 0.075 0.918 612
DC19 0.005 0.026 0.969 763

Table 1: Statistics for the 19 data centers studied. For
each data center, we present the fraction of devices in
each layer.

Core Links Aggr Links Edge Links
% Used 58.88% 73.7% 57.52%

Table 2: Statistics for the interfaces polled for SNMP
data. The information is broken down according to the
layer that the interfaces belong to. For each layer, we
present the percent of interfaces that were utilized and
the percent of interfaces that experienced losses.

in the edge layer are known as top-of-rack or TOR). Be-
tween the two layers, there may be anaggregationlayer
when the number of devices is large.

The first eight data centers have two layers due to their
limited size (5–13 switches). The remaining eleven data
centers have all the three layers. Of these, 4 data centers
have few 10s of switches, while the remaining 7 have
roughly an order magnitude higher number of switches
on average.

2.3 Macroscopic View
Next, we examine the utilization and packet losses ob-
served for data center links and the implications for traf-
fic engineering. We organize our study into a set of ques-
tions that often arise in the context of TE decisions.

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

Percent of 10 Day Period that link is unused

C
D

F

Figure 1: A CDF of the percent of times a link is unused
during the 10 day interval.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

95th Percentile Utilization for each link over
the 10 day period

C
D

F

Edge
Agg
Core

Figure 2: A CDF of the 95th link utilization at the various
layers in the Data Centers studied.

Q1. Are all links heavily utilized? Table 2 provides a
breakdown usage of the links across all the data centers.
Roughly 60% of the core links and the edge links are
actively being used during any given 5 minute interval.
More surprising is the fact that 40% of the links arenot
used at allin these intervals. This observation aligns with
recent observations that a significant amount of traffic in
data centers is confined to within servers in a rack [16].

Figure 2 shows the CDF of the 95th percentile utiliza-
tion of those used links, computed over all the 5 minute
intervals where the link was utilized. On the whole, we
find link utilizations to below – the 95th percentile uti-
lization is only 0-40% across all links, and under 10%
and 20% for links in the aggregation and edge layers re-
spectively.

We also note that: (1) The utilization is significantly
higher in the core (median of 25%) than in the aggrega-
tion (median of 5%) and edge (median of 10%) layers.
This is expected since a small number of core links mul-
tiplex traffic from a large collection of edge links (Ta-
ble 2). (2) Link utilization is 4-5X lower in the aggrega-
tion layer than in the core layer, with the 95th percentile
utilization not exceeding 10% for any link. Again this
is expected because in our data center topologies there
are nearly four times as many aggregation links as core
links. Moreover, link capacities of aggregation and core
links are the same in many cases. (3) Edge links have
slightly higher utilization than aggregate links because
they are at least 10X lower in their capacities (1Gps at
the edge vs 10Gbps in the aggregation).

0 .4 .8
0

0.2

0.4

0.6

0.8

1

95th Percentile Discards

C
D

F

Edge
Agg
Core

Figure 3: CDF of 95th percentile “scaled” loss rates of
links at the various layers in all data center.

Q2. Does this mean there are no losses?The gener-
ally low utilization across links that we observed earlier
may lead one to conclude that data centers observe no

3

network loss. We examine this next.
Figure 3 illustrates the CDF of 95th percentile

“scaled” packet loss rates on the core, edge, and aggre-
gation links. To compute actual link loss rates, we need
the number of bytes discarded and the total number of in-
put bytes. In contrast, SNMP counters only provide the
number of packets discarded and the input bytes. Thus,
we compute a “scaled” loss rate by converting discarded
packets into bytes after scaling by an average packet size
of 850B. We derived the scaling factor of 850B from the
observations made about the size of packets observed in
DC 10. Although, the real loss rates are likely to be dif-
ferent, comparison of loss rate distributions across the
three layers is likely to be the same for real and scaled
loss rates. We note immediately from Figure 3 that all
layers experience some level of losses - no layer is com-
pletely loss free.

A surprising observation from Figure 3 is that, in spite
of the higher utilization in the core, core links observe
the least loss rates – in fact, most of the links are almost
loss-free. In contrast, links near the edges of the data
center observe the greatest degree of losses. A plausible
explanation for this observation is that traffic traversing
the data center between TOR switches is bursty in nature
– the average utilization of the bursty traffic is low, but
the instantaneous rates of bursts at the TORs could be
high enough to lead to losses. The bursts gets smoothed
at the core due to statistical multiplexing. We explore
this observation in greater detail in subsequent sections.

Q3. Are the losses unavoidable?An important ob-
servation from Figure 3 is that a small fraction of the
links experience much great amount of losses than the
rest of the links. This observation motivates our quest
for better engineering approaches as it indicates that it
may be possible to route traffic on alternate paths to avoid
most of the losses.

Q4. Can existing traffic engineering approaches
help? Given the large number of unused links (40% are
never used) and that losses are more prevalent on some
links than others at a given time, an ideal traffic engineer-
ing scheme would split traffic across the over-utilized
and the under-utilized links. Many existing TE schemes
can perform this type of load balancing (e.g. ECMP).
Next, we briefly take an empirical view into whether
these approaches are applicable.

Specifically, we examine the link idleness in one of the
data centers, DC 17, and observe that although a large
number of links are unused, the exact set of links that
are unused constantly changes. In Figure 1 we present a
CDF of the fraction of the 10 day period that each unused
link is found to be idle. From Figure 1, we observe that
80% of the unused links are idle for 0.002% of the 10
days or 30 minutes. Thus, although significant numbers
of links are idle, the set of links that are idle in any given

5 minute interval is constantly changing.
As we will show next, the traffic in the data center can

be quite bursty and traffic patterns could be very different
across switches, due to which link usage is difficult to
predict and existing traffic engineering schemes become
less applicable.

2.4 Microscopic View
We now examine finer grained traffic characteristics.

Q5. Are there patterns in link usage? We reuse
the SNMP data to examine patterns in the traffic sent or
received by individual switches. If the patterns are uni-
form across switches (e.g. if there are diurnal patterns),
then traffic engineering may be easy; On the other had,
if each switch has a different send/receive pattern, then
traffic engineering may not be as easy.

In general, we found that switches could differ radi-
cally in these respects, making traffic engineering rather
challenging. In particular, there could be sharp differ-
ences in the amount of traffic they send vs. receive, and
there may be differences in the trends of traffic volumes
and losses over time. To exemplify this, in Figure 4 we
show a time series of two aggregation layer switches in
a 3-tier data center that were selected at random. This
was derived from the SNMP data measured over a single
day. We note that the number of bytes sent out from and
received at the switches in (a) and (d) are almost identi-
cal. In contrast, the switch in (c) sends almost 25% more
bytes than it receives and that in (b) sends nearly twice
as it receives. All four switches also differ significantly
in how traffic volumes vary over time.

Figures (e)–(h) show the drops (in terms of the total
number of bytes drop over a 5 minute interval) observed
at the corresponding switches. In the case of the fourth
switch (d & h), we note a strong correlation between ex-
tent of drops and the traffic volumes. However, in all
other cases, the correlation is weaker (e.g. the second
switch) or even non-existent (e.g. the third switch).

We now seek to understand finer-grained characteris-
tics of traffic. For this study, we use low level packet
traces from five TOR switches in one of the data centers,
DC 10, which is a 2-tier corporate data center containing
intranet server farms and hosting several line-of-business
applications (e.g. web services). Our observations are
limited by the vantage points we have, i.e., the five TOR
switches.

Q6. What are the key fine-grained properties of
data center traffic? We first try to identify key patterns
in the packet transmissions at the switches.

Figure 5 shows the time-series of the number of pack-
ets transmitted during several short time intervals at one
of the switches. It is immediately clear that the packet
arrivals exhibit an ON/OFF pattern. We observed simi-
lar ON/OFF bursty traffic patterns at the remaining four

4

0 5 10 15 20 25
1

2

3

4

5

6

7

8x 10
9

Time (in hours)

B
y
te

s
 T

ra
n

s
fe

rr
e

d

Recv
Send

0 5 10 15 20 25
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7x 10
7

Time (in hours)

B
y
te

s
 T

ra
n

s
fe

rr
e

d

Recv
Send

0 5 10 15 20 25
1

2

3

4

5

6

7

8x 10
7

Time (in hours)

B
y
te

s
 T

ra
n

s
fe

rr
e

d

Recv
Send

0 5 10 15 20 25
0

2

4

6

8

10

12

14x 10
8

Time (in hours)

B
y
te

s
 T

ra
n

s
fe

rr
e

d

Recv
Send

(a) (b) (c) (d)

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

Time(in Hours)

#
 P

a
c
k
e

ts
 l
o

s
t

0 5 10 15 20 25
0

500

1000

1500

Time(in Hours)

#
 P

a
c
k
e

ts
 l
o

s
t

0 5 10 15 20 25
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Time(in Hours)

#
 P

a
c
k
e

ts
 l
o

s
t

0 5 10 15 20 25
0

100

200

300

400

500

600

Time(in Hours)

#
 P

a
c
k
e

ts
 l
o

s
t

(e) (f) (g) (h)

Figure 4: Time series of traffic volumes and losses from aggregation and TOR switches

switches as well.

0 2 4 6 8 10
x 10

4Time (in Milliseconds)

#
 o

f
p

a
c
k
e
ts

 r
e
c
e
iv

e
d

0 2 4 6 8 10
x 10

4Time (in milliseconds)

#
 p

a
c
k
e
ts

 r
e
c
e
iv

e
d

(a) 15ms (b) 100ms

Figure 5: ON/OFF characteristics: Time series of Data
Center traffic (number of packets per time) binned by two
different time scales.

Next, we try to characterize the traffic using well-
known statistical distributions. Such distributions have
formed the bases for workload models in other context
such as HTTP traffic (e.g. [8]) and we hope to lever-
age them in a similar way for our workload generator
in § 3. To do this, we first use a packet inter-arrival time
threshold to identify the ON/OFF periods in the traces.
Let arrival95 be the 95th percentile value in the inter-
arrival time distribution at a particular switch. We define
aperiodon as a longest continual period during which all
the packet inter-arrival times are smaller thanarrival95.
Accordingly, aperiodoff is a period between two ON
periods. To characterize this ON/OFF traffic pattern, we
focus on three aspects: (i) the durations of the ON peri-
ods; (ii) the durations of the OFF periods; and (iii) the
packet inter-arrival times within ON periods.

Figure 6(a) illustrates the distribution of inter-arrival
times within ON periods at one of the switches. We

bin the inter-arrival times according to the clock gran-
ularity of 10µs. Note that the distribution has a positive
skew and a long tail. We attempted to fit several heavy-
tailed distributions and found that the lognormal curve
produces the best fit with the least mean error. Figure
6(b) shows the distribution of the durations of ON pe-
riods. Similar to the inter-arrival time distribution, this
ON period distribution also exhibits a positive skew and
fits well with a lognormal curve. The same observation
can be applied to the OFF period distribution as well, as
shown in Figure 6(c).

In summary, our measurement study shows that data
center traffic is bursty in nature, and the unpredictabil-
ity of bursty traffic means that traffic engineering in data
centers could be challenging. In§4, we conduct a large
scale study of a variety of traffic engineering mechanisms
and show that they are unable to accommodate the afore-
mentioned data patterns effectively. To aid in this study,
we need a workload generator that reproduces data cen-
ter traffic at fairly fine time-scales and with sufficient fi-
delity. This is the subject of the next section.

3 Data Center Workload Generator
Thorough evaluation of research ideas for data center
networks is hampered by the lack of good workload mod-
els. An important contribution of this paper is a prelim-
inary data center workload generator, constructed based
on the measurement insights presented in the previous
section. Our workload generator focuses on the traf-
fic generation process driving the bytes leaving Top-Of-
Rack (TOR) switches in data centers. It does not model
application-level traffic characteristics nor does it model

5

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

interarrival times (in milliseconds)

C
D

F

wbl: 0.013792

logn: 0.011119

exp: 0.059716

pareto: 0.027664

data

2 3 4 5 6 7 8 9 10
x 10

4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Length of OFF−Periods(in milliseconds)

C
D

F

wbl: 0.090269
logn: 0.081732
exp: 0.11594
pareto: 0.66908
data

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Length of ON−Periods *(in milliseconds)

C
D

F

wbl :0.016516

logn :0.016093

exp :0.01695

pareto :0.03225

data

Figure 6: CDF of the distribution of the arrival times of packets at three of the switches in DC 10. The figure contains
best fit curve for log-normal, Weibull, Pareto, and Exponential distributions as well as the least mean errors for each.

intra-rack traffic. Thus, our traffic generator can help re-
searchers study the interaction between data center traffic
and the underlying network interconnect and routing, but
it is not useful to study the impact of application place-
ment algorithms, for instance.

The central goal driving the design of our data center
workload generator is that researchers using the work-
load generator should be confident that the traffic pat-
terns are very close to one of the 19 data centers we have
studied. The generated workloads should match both the
microscopic and the macroscopic patterns.

To match the microscopic behavior, our workload gen-
erator uses the observation that the arrival processes at
each TOR switch in a data center can be modeled by 3
lognormal distributions. To match the macroscopic be-
havior, we create appropriate packet generators whose
lognormal parameters are chosen such that the loss rate
and volume distributions match a given measured data
center from the 19 data centers above. Our workload
generator also takes as input the TOR-to-TOR traffic ma-
trix to determine the destination for the packets generated
at a TOR switch.

3.1 Workload Parameter Discovery
A crucial step in our workload generator is deriving
the appropriaterealistic distribution parameters for the
packet generation processes at various TOR switches to
match a target data center. While most TOR traffic is
bursty, switches may differ in the relative levels of bursti-
ness. Thus, an obvious approach of configuring packet
generators directly with the exact parameters for the dis-
tributions identified in Figure 6 is likely to be incorrect.
Instead, finding the right parameters requires searching
through a multi-dimensional space for the best-fitting
point, where each dimension in the space represents pos-
sible values of the parameters for one of the three distri-
butions. Since each distribution is described by 2 param-
eters (the mean and the standard deviation), this results

in a 6-dimensional search space.

Exploring all points in the search space will result in
accurate results but is clearly infeasible. In what fol-
lows, we describe a new search space exploration algo-
rithm that is tractable and reasonably accurate. Our al-
gorithm is iterative in nature and is similar to simulated
annealing — in each iteration the algorithm explores the
search space by examining the neighbors of a candidate
point and moving in the direction of the neighbor with
the highest “score”, where “score” measures how well
the parameters corresponding to the point in question de-
scribe the coarse-grained distributions.

There are four challenges in developing such an algo-
rithm: (1) developing an accurate scoring function for
each point, (2) determining a set of terminating condi-
tions (3) defining a heuristic to avoid getting stuck in lo-
cal maxima and selecting an appropriate starting point
and (4) defining the neighbors of a point and selecting
the next move. In what follows, we describe how these
challenges can be addressed.

We start by noting that our framework takes
as input the distribution of SNMP-derived volumes
(volumeSNMP), and loss rates (lossrateSNMP) for a
given link at the edge of the data center. To create a dis-
tribution of volume and loss, we aggregate several hours
worth of data and assume that the target distributions
remain relatively constant during this period. The ap-
proach returns as output, the parameters for the 3 distri-
butions(ontimes, offtimes, arrivaltimes) that provide
fine-grained descriptions for the traffic on the edge link.

Scoring function. An effective scoring function, for de-
ciding the utility of a point and the appropriate direction
for the search to proceed in, is not obvious. To score the
parameters at a point, we utilize two techniques: first,
we use a heuristic algorithm to approximate the distribu-
tions of loss and volume that the parameters correspond-
ing to the point in question generate; we refer to these

6

DERIVEONOFFTRAFFICPARAMS(µon, σon, µoff , σoff , µarrival , σarrival)

// Calculate the mean on and OFF period lengths
1 meanon ← exp(µon) + σon

2 meanoff ← exp(µoff) + σoff

// Determine the total on-time in a 5 minute interval
3 totalon = 300 ∗ (meanon/(meanoff + meanon))

// Calculate the average number of ON periods
4 NumOnPeriods = totalon/meanon.

// Calculate the maximum number of bytes
// that can be sent during the ON period

5 linkcapacity = linksspeed ∗meanon/8.
// Determine how much bytes can be absorbed by buffering
// during the OFF period

6 bufcapacity = min(bitsofbuffering, linksspeed ∗meanoff)/8
// Iterate over ON period to calculate net volume and loss rate
// observed over the 5 minute interval

7 for i = 0 to NumOnPeriods
a. ai ∈ A{interarrival time distribution}
b. volon = (meanon/ai) ∗ pktSize
c. voltotal+ = min(volon, linkcapacity + bufcapacity)
d. losstotal+ = max(volon − linkcapacity − bufcapacity , 0)

Figure 7: Pseudocode for TOR parameter discovery.

asvolumegenerated andlossrategenerated. Second, we
employ a statistical test to score the parameters based on
the similarity of the generated distributions to the input
distributionsvolumeSNMP andlossrateSNMP .

We use a simple heuristic approach to obtain the
loss rate and volume distributionsvolumegenerated and
lossrategenerated generated by the traffic parameters
(µon, σon, µoff , σoff , µarrival, σarrival) corresponding
to a given point in the search space of parameters for
a TOR switch. Our heuristic relies on the subroutine
shown in Figure 7 to derive a single sample for the
volumegenerated andlossrategenerated distributions.

The subroutine determines the traffic volume and loss
during a 5-minute interval (voltot, losstot) as the sum of
loss and volume in each individual ON period in the in-
terval. Line 1 calculates the average length of an ON pe-
riod and an OFF period. The volume in an ON period is
the sum of the bytes in the packets received, where pack-
ets are spaced based on the inter-arrival time distribution
(calculated in Line 7.c). The loss in that ON period is
the number of bytes received minus the bytes success-
fully transmitted during the on period and the number of
bytes buffered. Throughout the calculation, we assume
an average packet size of 1KB. In Line 7.b, the inter ar-
rival time distribution is used in the generation ofai –
each time a new value,ai, is drawn from the distribution.
The distributionA in Line 7.b is a lognormal distribution
with the following parameters, (µarrival, σarrival).

We run the above subroutine several (100) times
to obtain multiple samples forvoltotal and losstotal.
From these samples, we derive the distributions
volumegenerated andlossrategenerated.

Next, we use the Wilcoxon similarity test [23]
to compare the distribution of computed volumes
volumegenerated (loss rates) against the distribution of
empirical volumesvolumeSNMP (loss rates). The

Wilcoxon test is a non-parametric test that checks
whether two different distributions are equally dis-
tributed around a mean – the test returns the probability
that this check holds. The Wilcoxon test is used because
unlike the popular t-test or chi-test, the Wilcoxon does
make any assumptions about the distribution of the un-
derlying input data-sets. Using a distribution free statis-
tical test allows for the underlying distribution for any of
the 3 parameters to change.

We compute the score of a point as the minimum of the
two Wilcoxon scores – the confidence measure for simi-
larity – for volume distribution and loss distribution. We
use the minimum for comparison instead of other func-
tions such as average, because this forces the search al-
gorithm to favor points with high scores for both distri-
butions.

Neighbor selection.Each point in our search space can
be described as a coordinate in the 6 dimension space. A
neighbor for such a point is the closest one in the coor-
dinate space, modulo some quantization of the real val-
ues in each dimension. For each point we evaluate 12
neighbors each of which is adjacent along one of the 6
dimensions. Once all 12 neighbors are evaluated, our al-
gorithm chooses the point with the best accuracy, or a
random neighbor if all neighbors are identical in terms
of accuracy.

Termination condition. The search algorithm termi-
nates for one of two reasons: a point with a good score
(> 90%) is discovered or the search fails to discover a
point with a suitable score (> 10%) even after a large
number of iterations (1000). When a search terminates,
the top score discovered during the search as well as the
parameters for the corresponding point in the space are
both returned.

Avoding local optima. To avoid getting stuck in a lo-
cal optimum, we run our search a predefined number
of times and vary the starting points for each search.
We then compare the returned values of each search and
chooses the best. Two key challenges in this approach
are determining the number of searches to perform and
carefully determining the start point for each search to
avoid repetitive searches through the same sub-space of
parameters.

To solve both challenges, we partition the search space
into Nsub regions and initiate an independent search at
a randomly chosen point in each sub-region. Our algo-
rithm performs a parallel search through each of theNsub

regions and selects the most accurate of theNsub results
to return. The choice ofNsub depends on the trade-off
between the time consumed by the search space explo-
ration algorithm (which deteriorates withNsub) and the
accuracy of the outcome (which is good for highNsub).
In our evaluation, we find thatNsub = 64 offers a good

7

trade-off between speed and accuracy.

3.2 Implementation
We implement a data center workload generator based
on the parameters derived by the algorithm above. The
generator takes as input a data center topology, TOR-to-
TOR traffic matrix, and parameters for the distributions
of traffic processes for different switches. The packet
generation module for a switch is written in C++. The
generated packets are randomly distributed to destination
TOR based on the provided traffic matrix.

In Section 4, we describe how we employ the traffic
generator within a virtualized data center testbed to com-
pare various traffic engineering approaches. We outlined
key issues we faced therein that warranted changes to our
workload generator.

3.3 Coarse Grained Validation
To verify that the above approach discovers parameters
for an arrival process that approximate traffic at the edge
switches reasonably well, we implement the arrival pro-
cess in NS2 [1] and validate the results against data from
a randomly chosen data center, DC #17, which had 562
devices in all. Verification of the framework consists of
three steps: (a) using the framework to generate param-
eters that match the SNMP data for an edge switch (b)
running the NS2 simulator with the parameters as input,
and (c) performing a statistical test to compare the orig-
inal SNMP data to equivalent data obtain from the NS-2
simulation.

We model an edge link in NS2 to have 5 MB of in-
put buffering, use a FIFO queuing discipline, and have
a propagation delay of 5 microseconds. We evaluate the
quality of a match by running the Wilcoxon test to com-
pare data observed for the switch with the data gener-
ated by the simulation. To get the distributions of vol-
ume and loss rate from the simulator, we run the simu-
lator several times to get a statistically significant num-
ber of data-points for either distribution. We consider a
match successful if the Wilcoxon test passes with over
90% confidence.

In Figure 8, we provide a CDF of the confidence re-
turned by the Wilcoxon test for validations run on over
200 edge links in DC #17. We note that our parameter
discovery approach is reasonably accurate: it can find
the appropriate parameters for arrival processes for over
90% of the devices with at least an 85% confidence ac-
cording to the Wilcoxon test.

4 Comparative Study of TE Approaches
In this section, we evaluate the effectiveness of various
traffic engineering techniques and/or network architec-
tures at accommodating the traffic patterns observed in
Section 2. We conduct our study along two dimensions:

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

accuracy of space search algorithm

C
D

F

Figure 8: CDF of the validation score for each edge link
simulated. Each score is a minimum of the Wilcoxon test
on the volume distributions and the Wilcoxon test on the
loss distributions for the switch

Figure 9: Tree topology with redundant links between
the the TOR and the aggregation layer. The edge links
are 20Mbps, while the core links are 25Mbps, represent-
ing an over-subscription of 3.2.

Figure 10: Tree topology with increased core capacity
and path diversity. The edge links are 20Mbps, while the
core links are 25Mbps, representing an over-subscription
of 3.2.

Figure 11: Fat-Tree topology (k=4). Each TOR has 2 end
hosts [6]. Each link’s capacity is 20Mbps.

8

• Topology: We examine if and to what extent a richer
network topology can help alleviate prevalent congestion
in a data center network. We study a simple two tier hier-
archical network (Fig 9) which is similar to that used in
the 3-tier data centers we studied in Section 2, the same
network with more core nodes for improved bisection
bandwidth (Fig 10) and the Fat-Tree topology proposed
in [6] (Fig 11) that has much higher bisection bandwidth
and path diversity. Note that all topologies have the same
number of edge switches and the same capacities on edge
links. The capacities on the other links are also shown.
• Routing/TE: We also study if and to what extent sim-
ple multi-path routing (i.e., ECMP) and load-sensitive
multi-path routing (i.e., the flow classification heuris-
tic in [6]) can help alleviate congestion when used in
conjunction with the above topological structures. We
also examine the constraints imposed by using naive,
static single-path routing. We have implemented all three
classes of routing approaches in our testbed described be-
low.

We experiment using a virtual testbed of 5 physical
machines. These machines have Intel Core 2 Quad CPU
running at 2.66GHz, with 3072KB cache and 8GB of
RAM, running Ubuntu GNU/Linux 2.6. These machines
were interconnected by a 48 port Cisco Catalyst 3750G
switch with 1GigE links. Using the Virtual Box pack-
age [5], we run virtual experimental topologies reflect-
ing the ones described atop these 5 physical machines.
For each topology, the traffic generators and the switches
are each run within separate virtual machines. The traf-
fic generators are user space programs. The switches are
kernel modules running the OpenFlow [3] reference im-
plementation. We use OpenFlow because it allows us to
emulate a large class of routing and traffic engineering
mechanisms in a relatively simple fashion without hav-
ing to implement their distributed versions within our
switches. The virtual links between the traffic genera-
tors and the switches are implemented in VDE [4]. To
gather measurement and evaluation data from these vir-
tual links, we modified the VDE component to enable
logging and accurate rate limiting. The traffic genera-
tors are bandwidth-limited to 20Mbits/s to ensure that the
physical host CPU and memory are not overwhelmed.

In adapting the workload generator from Section 3 to
our virtualized environment, we encountered a few chal-
lenges. The first involved the kernel timer resolution:
we found the family of sleep functions provided by the
kernel to be imprecise. This imprecision arose due to in-
teraction between the timers and clocks of the virtual and
guest operating systems. To overcome this constraint and
to be able to generate packets that closely match the said
distributions, each traffic generator simply performs a
“busy wait” until the target time, at which point a packet
gets sent. This is accurate but imposes a slightly higher

(a)
0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

2.5

3

3.5

4

Network Links

U
ti

li
z
a

ti
o

n
 (

in
 %

)

Spanning
ECMP

(b)
0 2 4 6 8 10 12 14 16 18 20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Network Links

L
o

s
s

 R
a

te
 (

in
 %

)

Spanning
ECMP

Figure 12: Utilization (a) and loss rates (b) of links in the
constrained topology.

CPU load.
The second involved the speed of packet generation –

we observed that the virtualized end hosts couldn’t gen-
erate packets faster than 30Mbits due to limitations in
the virtual box implementation. To resolve this issue, we
scaling down the arrival process by a constant factorc,
wherec is the link rate of the link being simulated di-
vided by the link rate of the testbed link.

In our evaluation, we use two TOR-to-TOR matrices:
(1) uniformly random and (2) gravity-model based. We
only present results for the uniform traffic matrix. Obser-
vations for the uniformly random traffic matrix are qual-
itatively similar.

When comparing different approaches, we ensure that
the exact same traffic patterns are used by fixing the ran-
dom seed used in our traffic generators. This enables a
direct and accurate comparison of the approaches.

4.1 Constrained Topology
We first examine the topology in Figure 9 where there is
a single core node and limited path diversity (atmost two
equal length paths between any pair of nodes, with both
the paths passing through the single core node). We first
examine the performance of single path static routing,
and then study if ECMP (where traffic is split across two
equal cost paths) can perform better.

In Figure 12(a), we present the utilization and loss
rates of the various links connecting both tiers under both
ECMP and single-path routing. As expected, we see
that ECMP spreads traffic across links in the network:
ECMP leaves 8 links unused, while single path routing

9

(a)
0 5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

3.5

4

Network Links

U
ti

li
z
a

ti
o

n
 (

in
 %

)

ECMP

(b)
0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Network Links

L
o

s
s

 R
a

te
 (

in
 %

)

ECMP

Figure 13: Utilization (a) and loss rates (b) of links in the
topology with higher bisection bandwidth.

leaves 11 links unused. In Figure 12(b), we show the
per-link losses for ECMP and single-path routing, where
the links are ordered according to their utilization under
single-path routing. We find that ECMP, on account of
spreading traffic more evenly, does a better job of reduc-
ing loss rates: both techniques have 4 links with losses
but the losses in ECMP are lower. In general, we find that
ECMP is a better fit for data center networks, however,
it is not perfect as it still results in a substantial amount
of loss. ECMP is unable to reduce losses significantly as
it balances traffic across multiple paths leading to even
utilization, but it does into take into account the instan-
taneous load on each path which is central to controlling
losses. Consider two source-destination pairs whose traf-
fic is highly bursty, but the average load due to either pair
is low. Nothing stops ECMP from assigning the two sets
of flows to a common set of network links. Since ECMP
does not re-assign based on observed load, it cannot help
overcome losses due to temporary over-subscription on
path, which may happen when both sets of flows experi-
ence bursty transmission at similar times.

These experiments point to the fact that shows that,
traffic engineering techniques must exploit multiple-path
routing in existing data center topologies in order to
obtain better performance. But, simply striping traffic
across multiple paths is insufficient.

4.2 Topology With Higher Bisection Band-
width

A key issue with the above topology is its poor bisec-
tion bandwidth. In this section, we examine to what ex-
tent increasing the bisection bandwidth, by doubling the

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

Network Links

U
ti

li
z
a

ti
o

n
 (

in
 %

)

SpanningECMP

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

Network Links

L
o

s
s

 R
a

te
 (

in
 %

)

ECMP

Figure 14: Utilization(top) and loss rates (bottom) of
links in the topology with higher bisection bandwidth in
the Fat-tree topology

capacity in the core can help. As the previous section
showed, using multipath routing is crucial, in this sec-
tion, we simply study the impact of using ECMP on the
richer topology in Figure 10. The higher path diversity in
Figure 10 allows us to use ECMP with up to four candi-
date paths per source destination pair (as opposed to just
two in the previous section).

The results are shown in Figure 13. Comparing Fig-
ure 12(a) and Figure 13(a), we see that the average per-
link utilization is lower in the topology with greater bi-
section bandwidth and path diversity. Similarly, from
Figure 12(b) and Figure 13(b), we note that the average
loss rate is lower for the richer topology. However, the
maximum loss rate has increased significantly (0.08% to
0.8%).

This suggested that the fundamental drawback of
ECMP, namely its load-insensitive nature, cannot be
fully masked even by a higher degree of path diversity.
Bursty traffic accentuates this drawback of ECMP.

4.3 Fat-Tree
Finally, we examine a recent proposal, the Fat-Tree in-
terconnect, that supports extremely high bisection band-
width [6, 19]. This topology is shown in Figure 11. In
theory, routes can be constructed over this topology to
support any traffic demand matrix in a completely loss-
free manner. However, this is true only as long as: (1)
the traffic demands do not overflow link capacities of
servers, (2) routes computed are optimal for the current
traffic matrix. In practice, condition #1 would likely

10

always hold, but condition #2 is harder to ensure as it
requires constant recomputation of routes matching the
current traffic demand matrix. In [6], the authors lever-
age a fixed number of shortest path routes between each
source-destination pair, and use alocal heuristic to bal-
ance load across the shortest paths in order to meet con-
dition #2 to an approximate extent. In particular, at regu-
lar intervals (say, every second), each switch in the lower
level of the topology measures the utilization of its out-
put ports (averaged over some period of time, say 10s)
and reassigns a minimal number of flows if the utiliza-
tions of the output ports are mis-matched. Ideally, the
fat-tree topology should be able to ensurezero losseson
all links. We now study how the local heuristic may pre-
vent this goal from being achieved using our workload
generator.

The results are shown in Figure 14. Comparing Fig-
ure 14(a) and Figure 13(a), we see that the average per-
link utilization is higher in the Fat-tree topology than in
the topology considered in the previous section (i.e. Fig-
ure 10). However, this is because all links in the Fat-
tree topology are of the same low capacity, while links
connecting directly to the core in Figure 10 have higher
capacity than other links.

In Figure 14(b), we show the loss rates for the Fat-Tree
topology. Surprisingly, losses are not any better than any
of the previous settings! We argue that this occurs be-
cause of the local heuristic employed for balancing load
on network paths. When each switch makes a local de-
cision to rebalance traffic, it does not take into account
how the rebalancing interacts with traffic further down-
stream. The downside of taking a purely local view of
re-balancing is exacerbated in the presence of bursty traf-
fic, especially when multiple bursty sources cause sud-
den over-subscription on remote links on paths to their
destinations.

To summarize, using our workload generator on a vir-
tual testbed, we have found that existing techniques fail
to control losses in the presence of bursty traffic in data
centers for one of several reasons: (1) Not using multi-
path routing (2) Not taking instantaneous load into ac-
count and (3) Not making decisions on the basis of a
global view of the network.

5 Fine-grained Traffic Engineering
Our study in the previous section shows that an ideal traf-
fic engineering solution should: (1) work with a global
view of data center network traffic and accommodate
network-wide objectives for managing traffic, (2) react
very quickly and accurately to changes in network traffic
patterns and (3) should rely on multi-path routing.

In this section, we propose a centralized fine-grained
traffic engineering heuristic that satisfies the above prop-
erties. Our heuristic relies on a logically central con-

troller and monitoring agents on switches. The monitor-
ing agents update the controller with instantaneous traf-
fic demands and the traffic matrix on a periodic basis.
The central controller computes routes that optimize a
network-wide objective, e.g. minimize the average loss
across all links, and installs the routes. We first describe
the LP-based heuristic that the controller can employ to
derive the routes (§5.1). We then describe how our traf-
fic engineering approach can be implemented in Open-
Flow (§5.2). Finally we conlude with an evaluation of
our OpenFlow-based implementation (§5.3).

5.1 Linear Program Formulation
We formulate a linear program for deriving network-
wide routes based on the instantaneous traffic demands
and the traffic matrix. We note that our LP formulation
is simply a heuristic to solve the problem of allocating
instantaneous traffic demands on network paths so that
the network-wide loss rates (or some function of them)
are minimized. The LP is certainly not the most efficient
approach to solve this problem — we believe that it is
possible to develop much simpler and faster heuristics
for the above optimization problem. We leave this issue
for future work.

To formulate our linear program, we represent the data
center by a graphG = (V, E). Each vertexu ∈ V is
either an application end point, or an<IP address, port>
pair, or a switch. Each edge is a physical link between a
server and a switch or between two switches.

Let fu,v,e denote the fraction of traffic between the
pair (u, v) on edgee after considering loss at the buffer
on e. For each end-point pair(u, v), and edgee, let
lossu,v,e denote the fraction of traffic betweenu andv

that is lost at the output port for edgee. For bothf and
loss, the variables are defined for only those edges which
lie on one of the topk shortest paths betweenu andv.
Let Tu,v be the net traffic demand (in bytes) betweenu

andv. Let w+(n) indicate the outgoing edges for node
n, andw−(n) indicate the incoming edges.

We set up flow conservation constraints. For each end-
point pairu, v, for a given sourceu, we have:

∑

e∈w+(u)andSP (u,v)

(fu,v,e) = 1

For intermediate noden:
∑

e∈w−(n)andSP (u,v)

fu,v,e =

∑

e∈w+(n)andSP (u,v)

(fu,v,e + lossu,v,e)

For destinationv:
∑

e∈w−(v)andSP (u,v)

fu,v,e = 1 −
∑

e∈SP (u,v)

lossu,v,e

11

For each edgee,
∑

e∈SP (u,v)

fu,v,eTu,v ≤ Cape

Objective: The objective of the formulation then is
to minimize some function of the loss rates observed on
various links. In particular, we consider minimizing the
aggregate loss on all links:

Minimize:
∑

(u,v)

∑
e∈SP (u,v) lossu,v,e.

Other weighted functions of per-link loss can also be
considered.

Integer solution: The output of the above LP is the
set of variablesfu,v,e which indicate the fraction of traf-
fic betweenu andv that is routed on edgee. In our for-
mulation, we force these variables to be 0 or 1, so that all
traffic betweenu andv is routed along the same physical
path. This ensures that all bytes in an application flow
arrive in order (of course, route changes could introduce
reordering).

Number of variables: The number of variables and
constraints in the LP determines its run time. As stated
earlier, for each pairu, v, we considerf variables for
only those edgese that belong to shortest paths between
u andv. In the data centers we studied, the path length
is atmost6, and if we choose atmost the top-4 shortest
paths, it results in 24 variables per pair. For a data center
with A application end-points, the total number of vari-
ables isA2 × 24. A typical value forA in a large data
center is 10,000. Assuming there is skew in the instan-
taneous traffic demand, considering the top 1000 or so
pairs would suffice. In this case, the number of variables
is 1000 × 24.

5.2 Implementation Using OpenFlow
We implemented the above fine-grained traffic engineer-
ing approach in OpenFlow. In OpenFlow, an external,
logically-central “NOX” controller [2] written in soft-
ware can add and delete forwarding entries at fine time-
scales. We can achieve low-level programmatic control
over routing and forwarding by defining the appropriate
NOX policies that determine how flows are treated by the
network, using global network-wide information.

In a generic implementation of OpenFlow, when an
edge switch does not have forwarding entries for a flow,
e.g., when the first packet arrives for a flow never seen
before, it contacts the NOX controller, which then com-
putes and installs entries for the flow at edge switches
and other appropriate switches. Each entry maps a 10 tu-
ple for the flow (this includes the input port, source and
destination IP address and ports, source and destination
Ethernet addresses, protocol, VLAN ID, Ethertype) to a
next hop; this is in contrast to destination-based forward-
ing tables in typical switches. Once routes are installed,
each switch also tracks per-flow statistics using a simple

counter. Most major switch vendors are starting to sup-
port, or already support, OpenFlow. On existing switches
it can be enabled using a simple firmware upgrade.

In our data center traffic engineering framework, we
implement the central controller in NOX. As stated ear-
lier, the first packet of a flow is punted to the con-
troller, that computes a default route for it. The con-
troller polls the switches at regular intervals ofδpoll sec-
onds to track theinstantaneoustraffic demandsTu,v be-
tweenactiveapplication end-pointsu andv. Note that
such active end points already have routing state set up
in the switches. The controller uses this information to
compute smoothed averaged traffic demand for various
source-destination pairs (using an EWMA). Using these
as input, the controller solves the linear program using
an off-the-shelf LP solver (we useCVX [12]). If the
routes have changed for the active end-points, the con-
troller adds (and deletes) forwarding entries at the appro-
priate switches.

We employ two optimizations to reduce how often the
controller computes and installs routes: (1) If the im-
provement in the objective function for the new traffic
demands is not significant (we use 5%), then the con-
troller ignores the new solution and carries on with the
current route. (2) If the smoothed traffic demands for
various source destination pairs have not changed sub-
stantially (we again use 5%), then the controller avoids
solving the LP altogether.

We note that our implementation satisfies the three key
requirements outlined at the beginning of this section:
(1) using multipath routing; In fact, our approach uses
the top-k shortest paths, some of which may be longer
than the other, to exploit path diversity to the fullest, (2)
working on fine time-scales, as determined by the pa-
rametersδpoll and the EWMA weights, and (3) working
with a global view by using a central controller to reason
about network wide routes.

We also note that, on account of satisfying the three
requirements, our approach, should in theory result in
loss-freerouting when applied atop the Fat-Tree topol-
ogy. On other regular topologies, our approach may not
offer completely loss-free routing, but it should result in
significantly lower losses. We investigate this in the next
section and find, in fact, that our approach is able to en-
sure loss-free routing over all three topologies.

5.3 Evaluation
Microbenchmarks. We ran our LP for the test topolo-
gies in the previous section. Note that the topologies
have similar sizes as the first 10 data centers we stud-
ied in Section 2. For these data center topologies, the LP
completed in just a few microseconds each even when
using a commodity desktop with a 2GHz CPU and 1GB
RAM. We also created LPs with toy traffic patterns for

12

the larger data centers and found that the LP runs in a
few ms. With greater parallelism and processing, the run
time for the LP can be made negligible.

As in prior work [10], we estimated the number of new
flow requests that the NOX controller can handle on a
commodity desktop. Note that in our setting, this would
be required for the first packet of a new application flow.
We found that 15000 flows/s can be handled easily with-
out any additional CPU overhead. With greater paral-
lelism, processing and memory at the controller, we be-
lieve that this can be made 1-2 orders of magnitude faster.
This would suffice for the flow arrival rates reported in
recent study on data center application-level traffic pat-
terns [16] where the median arrival rate was measured to
be105 flows per second.

Finally, we conducted a limited number of tests to
measure the overhead of polling a commercial OpenFlow
enabled switch (from NEC) at 10ms intervals for the in-
stananeous traffic demands. We also measured the over-
head of installing and deleting routing table entries at the
same time scales (10ms), which reflects the worst case
load on the switch when our technique is employed for
TE. In both cases, we found that the switch’s forward-
ing performance was not hurt by the frequent polling and
flow table operations.

TE Performance. Based on our microbenchmarks
above, we set a small polling interval ofδpoll = 10ms.
We set weights on the EWMA such that the currently
polled instantaneous values of traffic demands receive
much higher weight than historical values.

We tried our fine-grained traffic engineering approach
on all three topologies in Section 4 using the exact same
traffic models as before. For the Fat-Tree topology (Fig-
ure 11), we found that our approach was able to ensure
that there wereno lossesat any switch at all. The promise
of the Fat-Tree interconnect was that it should be possi-
ble to find routes that ensure zero losses and our approach
is indeed able to find such routesby making accurate
network-wide decisions at fine enough time-scales.

On the other two topologies (Figures 9 and 10), we
found that our fine grained traffic engineering approach
was again able to eliminate all losses. This was surpris-
ing, especially since this also applied to the constrained
topology in Figure 9, where there was very little path di-
versity. Upon digging deeper, we found that the bursty
traffic patterns at the edge switches meant thatin any
given small time window, such as our polling interval of
10ms,a significant number of links remain unused. By
operating at fine time-scales, within each polling win-
dow, our approach iseasilyable to find non-overlapping
paths to accommodate the bursts from all active nodes.

6 Related Work
Measurements of data centers.Very little is known

about the nature of data center traffic. Aside from our
paper, the only other work to have considered this issue
is [16], where the authors study application level logs
collected on a cluster of servers at a single data center.
The data center studied is not virtualized and runs a sin-
gle application. In contrast, we study 19 data centers
that run a variety of applications. The study examines
application level traffic matrices, flow arrival and depar-
ture patterns, failures at the application level due to (pre-
sumed) network events, and flow duration. Our focus
on link and switch level statistics complements and rein-
forces the application-level observations in [16]. A key
observation in [16] is that congestion does happen in data
center networks and congestion events could last up to a
few seconds each time. Also, during these events, appli-
cations face numerous failures in reading from and writ-
ing data to the network. These observations further bol-
ster the need for effective TE in data centers.

Traffic Engineering. Traditional TE techniques, e.g.,
those applied to WAN traffic in ISP networks, work with
predicted traffic matrices and operate on coarse time-
scales of several hours [7, 24, 18]. These are inapplicable
to data centers. A recent proposal, TEXCP [15], tries to
improve responsiveness to real time traffic variations by
monitoring available bandwidth at fine time-scales using
active probes between ingress-egress node pairs. TEXCP
still operates on much coarse time-scales than what is
needed for data centers. Also, it relies on local rerouting
decisions while our work argues that a global view of
network traffic and centrally computing routes are most
desirable for data centers.

Data center TE has not received direct attention. Re-
cent approaches [6, 13, 19] have proposed better inter-
connects that can, in theory, support arbitrary traffic ma-
trices as long as the the traffic generated or received by
a server in the data center does not overwhelm its net-
work link. Our work shows that for these approaches to
effectively support such traffic matrices and meet the the-
oretical guarantees in practice they need to know the in-
stantaneous traffic demands and make fine-grained rout-
ing decisions. Our fine-grained TE approach can apply
to these interconnection approaches. It can even apply to
other approaches that propose using data center servers
as waypoints [14].

On a related note, we observe that our approach can
be installed in current data centers via a simple firmware
upgrade. In contrast, [6, 13, 19] require upgrades/fork-
lift changes to the hardware in data centers.

Concurrent work on “incast” [11, 22, 21] propose that
for certain traffic matrices, the solution lies not in the
network but at the the endhost. The author propose cer-
tain changes to the networking stack which can elimi-
nate incast congestion collapse. This solution only works
for certain traffic matrices. Our solution generalizes to a

13

much larger range of traffic matrices. Furthermore, our
traffic engineering approach is complementary to and can
coexist with end-host based approaches.

Workload generators. Numerous studies [17, 20]
have been performed on modeling wide-area and Eth-
ernet traffic. Such models have informed various ap-
proaches for traffic engineering, anomaly detection, pro-
visioning and synthetic workload generation. Our traffic
generator makes a similar contribution to research in data
center networking.

7 Conclusion
In this paper, we have presented a measurement study of
network-level traffic patterns inside 19 commercial data
centers. Our measurements reveal that link utilizations
are low and loss rates are significant on data center links,
and that the bursty nature of data center traffic is respon-
sible for this. We have designed a data center workload
generator based on these insights that can be use to pro-
duce workloads that closely match any one of the 19 data
centers that we have studied. Using the workload gener-
ator, we were able to identify three key drawbacks in ex-
isting approaches for traffic engineering in data centers
with respect to their ability to control losses on data cen-
ter links: (1) lack of multi-path routing, (2) lack of load-
sensitivity and (3) lack of a global view in making traf-
fic engineering decisions. Our insights have motivated
the design of a centralized fine-grained traffic engineer-
ing mechanism that can alleviate losses. We have imple-
mented this approach using OpenFlow and have found it
to be very effective.

This paper significantly advances the state of the art in
data center traffic engineering in terms of providing em-
pirical insights, providing deeper understanding of exist-
ing traffic engineering techniques in the context of data
centers, and providing a new and effective technique for
data center traffic engineering.

The workload generator and the virtual data center
testbed we used in our study are currently available for
use upon request. We are planning a public release soon.

References
[1] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

http://www.isi.edu/nsnam/ns/.
[2] NOX: An OpenFlow Controller.http://noxrepo.org/wp/.
[3] The OpenFlow Switch Consortium.http://www.openflowswitch.org/.
[4] VDE: Virtual Distributed Ethernet.http://vde.sourceforge.net/.
[5] VirtualBox. http://www.virtualbox.org.
[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. InSIGCOMM, pages 63–74, 2008.
[7] B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF

Weights. InInfocom, 2000.
[8] P. Barford and M. Crovella. Generating representative web workloads for

network and server performance evaluation. pages 151–160,1998.
[9] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding Data Center

Traffic Characteristics. InProceedings of Sigcomm Workshop: Research on
Enterprise Networks, 2009.

[10] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,and S. Shenker.
Ethane: taking control of the enterprise. InSIGCOMM, 2007.

[11] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph. Understanding
tcp incast throughput collapse in datacenter networks. InWREN ’09: Pro-

ceedings of the 1st ACM workshop on Research on enterprise networking,
pages 73–82, New York, NY, USA, 2009. ACM.

[12] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software
for disciplined convex programming, ver. 1.1. Available at
www.stanford.edu/∼boyd/cvx/, Nov. 2007.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexibledata center
network. InSIGCOMM, 2009.

[14] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu. Bcube: a high performance, server-centric network architecture for
modular data centers. InSIGCOMM, 2009.

[15] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope:
responsive yet stable traffic engineering. InSIGCOMM, 2005.

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
Nature of Data Center Traffic: Measurements and Analysis. InIMC, 2009.

[17] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson.On the self-
similar nature of ethernet traffic (extended version).IEEE/ACM Trans.
Netw., 2(1), 1994.

[18] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic
matrix estimation: existing techniques and new directions. In SIGCOMM
’02, 2002.

[19] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable fault-
tolerant layer 2 data center network fabric. InSIGCOMM, 2009.

[20] V. Paxson and S. Floyd. Wide area traffic: the failure of poisson modeling.
IEEE/ACM Trans. Netw., 3(3):226–244, 1995.

[21] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan. Measurement and analysis of tcp throughput
collapse in cluster-based storage systems. InFAST’08: Proceedings of the
6th USENIX Conference on File and Storage Technologies, pages 1–14,
Berkeley, CA, USA, 2008. USENIX Association.

[22] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and B. Mueller. Safe and effective fine-grained tcp
retransmissions for datacenter communication. InSIGCOMM, 2009.

[23] F. Wilcoxon. Biometrics bulletin. 1:80–83, 1945.
[24] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. Traffic Engineering with

Estimated Traffic Matrices. Miami, FL, Oct. 2003.

14

http://noxrepo.org/wp/
http://www.openflowswitch.org/
http://vde.sourceforge.net/
http://www.virtualbox.org
www.stanford.edu/~boyd/cvx/

	Introduction
	Empirical Study
	Data Sets
	Topology
	Macroscopic View
	Microscopic View

	Data Center Workload Generator
	Workload Parameter Discovery
	Implementation
	Coarse Grained Validation

	Comparative Study of TE Approaches
	Constrained Topology
	Topology With Higher Bisection Bandwidth
	Fat-Tree

	Fine-grained Traffic Engineering
	Linear Program Formulation
	Implementation Using OpenFlow
	Evaluation

	Related Work
	Conclusion

