

Computer
Sciences
Department

Static Verification of Data-Consistency Properties

Nicholas Kidd

Technical Report #1665

November 2009

STATIC VERIFICATION OF DATA-CONSISTENCY PROPERTIES

by

Nicholas A. Kidd

A dissertation submitted in partial ful�llment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2009

© Copyright by Nicholas A. Kidd 2009
All Rights Reserved

i

For JAK.

ii

acknowledgments

First and foremost, I thank my wife, Katie, for her continued support and pa-
tience. When we moved to Paris for a year to accompany my advisor Professor
�omas Reps during his sabbatical, Katie did not hesitate to put her career on
hold so that I could focus on my dissertation research. Katie, you made the
completion of the dissertation possible, and your con�dence and love were the
keys to success. �e dissertation is as much yours as it is mine. We did it!

I thank my parents, Baron and Kathy, for raising me in a household that
stresses education and a strong work ethic. I am still amazed and thankful
that they made the trip to Vienna in 2006 where I gave my �rst conference
presentation. Whatever nerves I had before the presentation, it was reassuring to
see their smiling faces in the audience. Mom and dad, you have always supported
my decisions, and your challenges and guidance have made me who I am today.

I thank my o�ce mate Akash Lal. Our many chess games are some of my
fondest memories of graduate school. Akash, you always took the time to listen
to my ideas, to help me �esh them out, and to give me a new perspective on the
problems that I was trying to solve. I am proud to have been your coauthor, and
I sincerely hope that our collaboration does not end at UW.

I thank Matthew Allen and William Benton, the 12-to-1 lunch gang. �ere
is no better mental break than recapping the weekend’s football games, and
discussing fantasy-football strategies. Your taste in ice cream and pie is exquisite,
and I will try to bring it back to Indiana.

I thank Junghee Lim, who with Akash, is my friend de Paris. I still miss the
delicious meals, sightseeing trips, and photography lessons. Two Paris alumni
done, you are the last. Finish strong, I know you will.

I thank Peter Lammich for introducing me to acquisition histories, and for
his collaboration on the decision procedure. Peter, working together has been a
pleasure, and I look forward to continuing to do so. I intend to take you up on
the o�er to go biking in the Black Forest.

iii

I thank Tayssir Touili for introducing me to communicating pushdown sys-
tems, Mandana Vaziri for introducing me to atomic sets, and Tayssir and Ahmed
Bouajjani for hosting me in Paris.

I thank my fellow PL students (past and present) at UW: Gogul Balakrish-
nan, Amanda Burton, Evan Driscoll, Matt Elder, Denis Gopan, Bill Harris, Steve
Jackson, Alexey Loginov, Mulhern, Tristan Ravitch, and Aditya �akur. �ank
you for the insightful discussions, and I wish you all the best.

I thank my thesis committee—Professor Ben Liblit, Professor Somesh Jha,
Professor Susan Horwitz, and Dr. Shaz Qadeer—whose feedback greatly im-
proved the dissertation.

Finally, I thank my advisor Professor �omas Reps. It is probably not cus-
tomary to thank one’s advisor at the end, but Tom is no ordinary advisor! Tom
is a mentor: he taught me how to do research, never let me be bothered when
a research idea did not pan out, and was always there at two in the morning
before a paper deadline. Tom is also a great friend. Katie, Junghee, Akash, and I
were fortunate to spend a year in Paris with Tom and Susan Horwitz during their
sabbaticals. It was my favorite and most productive year of graduate school.
Besides research, we all had the opportunity to really get to know Tom and Susan
outside the con�nes of 1210 West Dayton Street, and those are the times I will
remember most. Tom, thank you for everything. I hope that you enjoyed these
past seven years as much as I did.

iv

contents

Contents iv

List of Tables vii

List of Figures xi

Abstract xvi

1 Introduction 1
1.1 �e Challenge of Concurrency 1
1.2 My Approach 3
1.3 Dissertation Overview 9

2 Data Consistency 11
2.1 Data-Race Freedom 15
2.2 Serializability and Atomicity 17
2.3 Atomic-Set Serializability 21
2.4 Summary 27

3 De�nitions 29
3.1 Pushdown Systems 29
3.2 Weighted Pushdown Systems 36

4 Communicating Pushdown Systems 40
4.1 Overview 41
4.2 De�nition 42
4.3 Reachability Analysis of CPDSs 46
4.4 Improved Reachability Analysis 49
4.5 Abstraction-Re�nement-Policy Extensions 53
4.6 Case Study: A Bluetooth Driver 58

v

4.7 Summary 68

5 Empire: Model Extraction and Analysis 70
5.1 Review of AS-serializability Violations 72
5.2 �e Allocation-Site Abstraction 75
5.3 Random-Isolation Abstraction 78
5.4 Implementing Random Isolation 80
5.5 Empire Modeling Language 83
5.6 EML Generation 85
5.7 CPDS Generation 86
5.8 Experiments 96
5.9 Related Work101

6 Language Strength Reduction 103
6.1 Introduction103
6.2 Overview108
6.3 Nested Words111
6.4 Combining an NWA with a PDS115
6.5 Language Strength Reduction in Empire118
6.6 Experiments125
6.7 Combining an NWA with an EWPDS129
6.8 Related Work138

7 A Decision Procedure 140
7.1 �e Road to Decidability143
7.2 Program Model and Property Speci�cations149
7.3 Path Incompatibility151
7.4 Extracting Information from PDS Rule Sequences155
7.5 �e Decision Procedure158
7.6 Comparison164
7.7 A Symbolic Implementation168

vi

7.8 Generalizing to More �an Two PDSs172
7.9 Experiments173
7.10 Related Work176

8 Concluding Remarks 180

References 187

A Appendix 193
A.1 Proof of �m. 6.4193
A.2 Proof of �m. 6.17201
A.3 Proof of �m. 7.8212
A.4 Proof of �m. 7.12213

vii

list of tables

2.1 An interleaved execution of the program in Fig. 2.1 that violates
the intended semantics. Each column denotes the value of a spe-
ci�c variable after each program statement is executed. Only state
changes are listed. �e �nal row presents the value of each variable
after all program statements have been executed. 13

2.2 Notions of data consistency that have been proposed for traces and
sets of traces. 15

2.3 �e fourteen problematic access patterns. Patterns 1–5 involve a
single memory location; patterns 6–14 involve a pair of memory
locations. 24

3.1 �e encoding of an ICFG’s edges as PDS rules. 30

4.1 Time in seconds to analyze the Bluetooth models using the four
SDPs listed in the column headings. An “OOM” entry denotes that
Cpdsmc ran out of memory. For BT1–2, the time reported is for
Cpdsmc to determine reachability, i.e., �nd the bug. For BT3 with
2–3 Add processes, the time reported is for Cpdsmc to determine un-
reachability, i.e., prove that the bug cannot occur for an instantiation
with the listed number of Add processes. 66

4.2 Individual Multi-step SDP’s re�nement steps for analyzing the Blue-
tooth models. Bluetooth models BT2 and BT3 are instantiated with
two Add processes and one Stop process. Each table entry is the
ki-tuple used during an analysis round. �e column header gives
the component of the Bluetooth model that PDS Pi models. �e
vertical bar “|” separates process-PDSs from state-PDSs. Under-
lined entries mark the ki values that were updated for the between
approximation rounds. 68

viii

5.1 �e edge labels Labels of an EML �ow graph that represents an EML
function and their corresponding semantics. 85

5.2 Java statement types for CFGm, their corresponding EML labels, and
the condition necessary to generate the EML label. �e �nal row is
a catchall for the Java statements that are not modeled in EML. . . . 86

5.3 Each row de�nes a set of PDS rules in ∆2 from a rule in ∆1. �e
control location p from a rule in∆1 is not repeated because all rules
in∆1 are single-control-location rules. �e condition for generating
a rule re�ects that certain actions can only occur when a lock has
been allocated, e.g., acquiring a lock l can only occur after l has been
allocated (see §5.7). 90

5.4 Column “Benchmark” speci�es the names of the eight ConTest
benchmark programs analyzed. Column “# CPDSs” speci�es the
number of CPDSs generated. Column “Viol” speci�es the number
of AS-serializability violations detected. Column “OK” speci�es the
number of CPDS queries that reported no AS-serializability viola-
tion. Column “OOM” speci�es the number of CPDS queries that
exhausted memory (OOM). Column “OOT” speci�es the number of
CPDS queries that exhausted the 300-second timeout. �e horizon-
tal line after row 4 separates the benchmarks that did not contain
any synchronization operations after abstraction from those that
still did contain synchronization operations. 97

5.5 Marked entries denote violations reported by Empire, withX being
a veri�ed violation and 6 X a false positive. Scenarios 6–16 involve
two memory locations. 100

ix

6.1 Column “Benchmark” speci�es the names of the eight ConTest
benchmark programs analyzed. Column “# CPDSs” speci�es the
number of CPDSs generated. Column “Viol” speci�es the number
of AS-serializability violations detected. Column “OK” speci�es the
number of CPDS queries that reported no AS-serializability viola-
tion. Column “OOM” speci�es the number of CPDS queries that
exhausted memory (OOM). Column “OOT” speci�es the number of
CPDS queries that exhausted the 300-second timeout. �e horizon-
tal line after row 4 separates the benchmarks that did not contain
any synchronization operations after abstraction from those that
still contained synchronization operations. An up arrow (↑) denotes
that a table entry is higher when compared to Tab. 5.4. Similarly, a
down arrow (↓) denotes that a table entry is lower when compared
to Tab. 5.4. 126

7.1 Comparison between the (corrected) chaining approach of Kahlon
and Gupta (2007) and our tupling approach. L denotes the number
of locks, |A| denotes the number of states of an IPA A, and |SProcs|

denotes the number of EML processes (PDSs). 148
7.2 Comparison between the (corrected) chaining approach of Kahlon

and Gupta (2007) and our tupling approach. L denotes the number
of locks, |A| denotes the number of states of an IPA, and |SProcs|

denotes the number of EML processes (PDSs). 168
7.3 Analysis summaries of the four benchmark programs that contain

locking operations. �e annotations “↑” and “↓” show the relative
change with respect to the analysis summaries presented in §6.6 of
Ch. 6. 173

7.4 Total time (in seconds) for examples classi�ed according to whether
Cpdsmc succeeded or timed out. 176

x

7.5 Marked entries denote violations reported by Empire. An entry
marked with “X” was found using both Ipamc and Cpdsmc. An
entry marked with “X” was found only using Ipamc. 177

7.6 Related work on LTL/atomicity checking and context-bounded model
checking (CBMC). Each row speci�es whether the approach uses an
explicit modeling of the reachable con�gurations, which requires
splitting, or a symbolic modeling via the use of tupling 178

xi

list of figures

2.1 Two threads attempt to swap the values x and y: T1 performs “swap(x,y)”
while T2 performs “swap(y,x)”. 12

2.2 Two threads attempt to swap the values x and y: T1 performs “swap(x,y)”
while T2 performs “swap(y,x)”. Each statement is guarded by the lock
l, which guarantees that the program is data-race free. 17

2.3 An interleaved execution of thread T1 and T2 that contains an AS-
serializability violation. R andW denote a read and write access,
respectively. c and d denote �elds count and data, respectively. “[”
and “]” denote the beginning and end, respectively, of a unit of work.
�e subscripts “1” and “2” are thread ids. “(s” and “)s” denote the
acquire and release operations, respectively, of the lock of Stack s
that is the input parameter to SafeWrap.popwrap. 26

3.1 A Java program. 30
3.2 PDS rule set that encodes the interprocedural control �ow of the

Java program in Fig. 3.1. 32

4.1 Precision comparison between βk(Li) and αk(Li). 51

5.1 An interleaved execution of thread T1 and T2 that contains an AS-
serializability violation. R andW denote a read and write access,
respectively. c and d denote �elds count and data, respectively. “[”
and “]” denote the beginning and end, respectively, of a unit of work.
�e subscripts “1” and “2” are thread ids. “(s” and “)s” denote the
acquire and release operations, respectively, of the lock of Stack s
that is the input parameter to SafeWrap.popwrap(). 73

xii

5.2 �e NFA A12 that recognizes traces of interleaved read and write
memory accesses containing problematic access pattern 12 for the
program shown in Listing 5.1 (see §5.1). �e edge labeled alloc de-
notes allocating the randomly-isolated object. An edge labeledR1(c)

(W2(c)) denotes a read from (write to) the �eld Stack.count by
thread T1 (T2). Similarly, edges labeled R1(d) and W2(d) denote
accesses to the �eld Stack.data. �e self-loops labeled RiWi de-
note a read or write to any memory location by either thread. �e
symbols [and] denote Proc beginning and ending a unit of work, re-
spectively. �e symbols a1 and a0 are used to synchronize with Punit

to determine the unit-of-work status of Proc. If Proc completed the
outermost unit of work, then the state is reset to q2 by exchanging
an a0 action with Punit. Otherwise, the state qi—from which the
unit-of-work end action] was witnessed—is restored by exchanging
an a1 action with Punit. 94

6.1 Example EML program that makes use of reentrant locking. 109
6.2 Path 1 describes the execution path of EML process P0 from Fig. 6.1

that takes the true branch at line 13. 110
6.3 (a) Grammar for the CFL of a reentrant lock. (b) Grammar that distin-

guishes between outermost and nested parentheses. (c) Grammar
for the regular language of a non-reentrant lock. 110

6.4 An NWA template for the locking behavior of an EML process. . . . 112
6.5 PDS rules that encode EML process P0 from Fig. 6.1. PDS stack

symbols ef and xf denote entry and exit to the function f, respec-
tively, and stack symbols ni and ci denote are step and call nodes
subscripted by their line number, respectively. �e run [r1, . . . , r22]

corresponds to Path 1 from Fig. 6.2 in §6.2. 114

xiii

6.6 For Path 1 of PN〈P0〉, a pre�x bound of 7, and ρ = [r1, . . . , r22] from
Fig. 6.5, cols. (a) and (b) present f(ρ) before and after distinguishing
between OC and nOC lock acquisitions and releases, respectively.
Col. (c) presents f(ρ) after removing all nOC lock acquisitions and
releases from PN〈P0〉. Note that for cols. (a) and (b), the valuation is
an approximation, whereas col. (c) is able to describe Path 1 exactly
within the given pre�x bound. 120

6.7 �e NFA that recognizes the language of the violation monitor from
Ch. 5 after language-strength reduction has been performed. Σ
denotes the input alphabet, andΛ is de�ned asΣ\{]}. Once the NFA
guesses that a violation will occur by making a transition to state
q3, it must observe a violation before the unit-of-work end symbol
“]” appears in a trace. Otherwise, it will become stuck in a state q3−6. 124

6.8 Log-log scatter-plots of the Cpdsmc’s execution times for queries
generated from the four EML programs that contain synchroniza-
tion operations. �e y-axis is the execution time for the transformed
CPDSs (y-axis), and the x-axis is the execution time for the origi-
nal CPDSs using Individual Multi-step SDP presented in Ch. 4 (x-
axis). �e queries are categorized according to the result returned
by Cpdsmc on the transformed models. �e top plot shows those
queries on which Cpdsmc exhausted memory on the transformed
models and exhausted the 300-second timeout on the original mod-
els. �e (lower) left-hand plot shows the queries on which Cpdsmc
found an AS-serializability violation. �e right-hand plot shows
queries on which Cpdsmc found no violation on the transformed
models. �e 300-second timeout is denoted by the horizontal and
vertical lines that form a box in each of the plots. �e dashed-
diagonal line denotes equal running times: points below and to
the right of the dashed lines are runs for which Cpdsmc was faster
on the transformed models. 128

xiv

6.9 EWPDS rules that encode EML process P0 from Fig. 6.1 (subscripts
correspond to the line numbers). Only the constant weight dconst is
shown for the merge functions. �e EML labels “sync l” and “unit”
are the hypothetical modi�cations to EML, and denote a scoped use
of lock l and a unit of work, respectively. 133

7.1 �e state transitions of the PDS Pmon from Ch. 5. �e dashed lines
denote state transitions that require stack inspection. If the stack is
empty, the state is “reset” to q2. Otherwise, the top of the stack will
contain the unit-of-work marker>, and the state is restored from ri

to state qi. 145
7.2 �e NFA A7.2 that recognizes the language of the violation monitor

from Ch. 5 after language-strength reduction has been performed.
Σ denotes the input alphabet of A7.2, and Λ is de�ned as Σ \ {]}.
Once A7.2 guesses that a violation will occur by making a transition
to state q3, it must observe a violation before the unit-of-work end
symbol “]” appears in a trace. Otherwise, it will become stuck in a
state q3−6. 145

7.3 Individual executions of P1 and P2 from con�gurations c1 and c2 to
con�gurations c ′1 and c ′2, respectively. �e symbols (i and)i denote
acquiring and releasing lock li, respectively. �e dashed arrows
denote the sequential and inter-PDS locking dependences due to
locking operations. �e nodes n1 and n2 on the right are the nodes
in the graphG of locking dependences. �e cycle in the right-hand
graph is a proof that a scheduling of ρ1 and ρ2 does not exist; it
implies the cycle in the scheduling of locking operations indicated
by the dashed cycle in the left-hand graph. 153

xv

7.4 Π: a bad interleaving that is recognized by A7.2 (see 145), showing
only the actions that cause a phase transition. 1: the same interleav-
ing from �read 1’s point of view. �e dashed boxes show where
�read 1 guesses that �read 2 causes a phase transition. 2: the
same but from �read 2’s point of view and with the appropriate
guesses. 159

7.5 Log-log scatter-plots of the execution times of Ipamc (y-axis) ver-
sus Cpdsmc (x-axis). �e left-hand graph shows the 49 queries for
which Ipamc reported an AS-serializability violation; the right-hand
graph shows the 2,096 queries for which Ipamc veri�ed correctness.
�e dashed lines denote equal running times; points below and to
the right of the dashed lines are runs for which Ipamc was faster.
�e timeout threshold was 300 seconds, and is marked by the solid
vertical and horizontal lines that form an inner box. �e minimal
reported time is 0.1 second. 174

xvi

abstract

Writing correct shared-memory concurrent programs is hard. Not only must a
programmer reason about the correctness of the sequential execution of code,
but also about the possible side e�ects caused by interleaved execution of con-
currently executing threads. Incorrect use of synchronization primitives can
lead to data-consistency errors, which can have drastic consequences (cf. the
Northeast Blackout of 2003).

�is dissertation presents techniques to verify statically that the program-
mer’s use of synchronization primitives preserves data consistency. �e no-
tion of data consistency used throughout the dissertation is atomic-set seri-

alizability (AS-serializability), which was �rst proposed by Vaziri et al. (2006).
AS-serializability is a property of a program execution, and is a relaxation of
serializability. An execution is serializable if its outcome is equivalent to an
execution where all transactions are executed serially. AS-serializability relaxes
serializability to be only with respect to speci�c memory locations.

�e approach taken is to use software model checking to verify that every
possible execution of a concurrent program is AS-serializable. First, an abstract
program is generated from a concrete program. �e abstract program is de�ned
such that it over-approximates the set of behaviors of the concrete program.
Second, a software model checker explores all possible executions of the abstract
program.

�e challenge is to de�ne abstractions and techniques that account for
the multitude of sources of unboundedness in a concrete program. Concrete
programs have dynamic memory allocation, recursion, dynamic thread creation,
and reentrant locks, to name a few.

�e contributions of the dissertation are generic techniques to permit model
checking to be performed in the presence of several sources of unboundedness.
My research addressed the problem of determining whether all possible execu-
tions of a certain class of models of concurrent Java programs are AS-serializable.

xvii

Somewhat surprisingly, given the many sources of unboundedness allowed in
the models considered, I was able to show that the problem is decidable, and
gave a practical algorithm for the problem. �e technique has been implemented
in a tool called Empire, which has been used to �nd known bugs in concurrent
Java programs.

1

1 introduction

1.1 �e Challenge of Concurrency

To leverage the increased processing power of modern multicore processors,
programmers are left with the burden of writing concurrent programs. A popular
language for writing concurrent programs is Java. In Java, a concurrent program
consists of multiple threads that execute in parallel and communicate through
shared memory. Because the number of threads is typically greater than the
number of available processors (or cores), a thread scheduler determines which
threads will execute and for how long. From a programmer’s perspective, the
thread scheduler is non-deterministic.

Writing correct concurrent programs is a notoriously di�cult task because
the programmer must account not only for the sequential behavior of an indi-
vidual thread, but also for non-deterministic interference from other (external)
threads. Non-deterministic interference can result in data-consistency errors, a
class of programming errors that sequential programs are not prone to. Loosely
speaking, a data-consistency error occurs when a thread of execution exposes
intermediate computational results to external threads, or when it observes
external computational results when executing a sequence of operations that
de�ne one (larger) logically-atomic operation.1

To guard against data-consistency errors, shared-memory concurrent pro-
grams use locks to protect accesses to shared-memory locations. Locks enforce
mutual exclusion: only one thread may hold the lock at a given time. When a
thread needs to access a shared-memory locationm, it is responsible for acquir-
ing the lock l that protectsm. Because of mutual exclusion, and assuming that
accesses tom are consistently protected by l in each thread, the thread that
currently holds l can access and updatemwithout external interference (e.g.,
an update by another thread). Furthermore, proper synchronization requires

1Ch. 2 gives the formal de�nition of atomic-set serializability, the notion of data-consistency
correctness that is used throughout the dissertation.

2

that the thread holds l for the entire sequence of operations that constitutes
one larger logically-atomic operation. Failure to protect the entire sequence of
operations can result in a data-consistency error.

If threads do not consistently acquire the lock lwhen attempting to access
m, and at least one of the accesses is a write access, a data-consistency violation
known as a data race can occur. �e name re�ects the fact that two threads
are “racing” to access a shared-memory locationm. For some programming
languages, such as C and C++, the program behavior is unde�ned in the presence
of data races.

Data races, however, do not characterize the full set of single-location data-
consistency errors that are possible. For example, if one augments a program
that is prone to a data race with a new lock lnew, and encloses every program
statement between new program statements that acquire and release lnew, the
data race would be removed (using the technical de�nition); however, the same
executions or behaviors are still present.2

Another example concerns a data-consistency error in a commercial net-
working tool (Visser, 2009). �e scenario is as follows. A server maintains a
mapping M from users to workers (threads that are responsible for servicing
user requests). When a request req is received by the server for a user u, M is
queried to �nd the workerw that u is mapped to. After the lookup, but before
w is noti�ed of the request, the workerw terminates, and the mapping for u
is updated to another workerw ′. Hence, the server’s attempt to dispatch u’s
request to w fails. �is data-consistency error is an example of an atomicity

violation. �at is, the lookup and dispatch were supposed to appear to execute
atomically. Note that all methods were properly synchronized, i.e., no data
races were involved in this data-consistency error. Moreover, this particular
data-consistency violation involved multiple shared-memory locations.

Multi-location data-consistency errors are a third category of errors due to
concurrency. Multi-location data-consistency errors arise because programs

2�e same behaviors are present assuming a strong-memory model.

3

often have (usually unstated) consistency relationships between multiple shared-
memory locations (e.g., a mapping from user objects to worker objects). A recent
survey by Lu et al. (2008) of two popular open-source software applications,
Apache and Firefox, showed that multi-location data-consistency errors ac-
counted for one third of non-deadlock consistency errors. �us, it is crucial
that tools and techniques be able to verify the absence of multi-location data-
consistency errors.

1.2 My Approach

�is dissertation focuses on techniques to assist the programmer in reasoning
about the data consistency of a concurrent Java program. �e framework is that
the programmer supplies (a small number of) data-consistency speci�cations,
and the techniques presented in later chapters check that the program satis�es
the desired data-consistency properties.

�e approach taken is to use software-model checking. Model checking was
pioneered by Clarke and Emerson (1982) and Queille and Sifakis (1982) as a
technique for verifying properties of systems. Model checking follows a modular
approach to system veri�cation: instead of verifying a large complex property of a
system, model checking aims to verify that the system satis�es multiple (simpler)
properties. Oftentimes the property of interest is speci�ed as a temporal property.
A temporal property is a correctness speci�cation for each possible behavior of
a system. For software model checking, the system is a program and the set of
all behaviors is the set of all possible program executions. For example, if the
program of interest performs �le I/O, a temporal property for correct usage of a
�le would be that a �le must be opened before it can be read from or written to.

Data-consistency errors can be speci�ed as a temporal property of an inter-

leaved execution of a concurrent program. An interleaved execution consists
of the steps of all program threads from beginning to end in a serial order. For
example, consider an interleaved execution (trace) that has a data race. �e

4

trace must contain a sequence of steps by two threads where they access a
shared-memory location without proper synchronization. �e focus of the
dissertation is static techniques to verify that no interleaved execution of a con-
current program contains data-consistency errors. �e techniques developed
in the dissertation apply to data races and to data-consistency errors involving
multiple shared-memory locations.

In general, it is not possible to explore all possible (concrete) executions of
a program Prog—either sequential or concurrent—because Prog can have too
many sources of unboundedness. For example, Prog can have an unbounded
number of inputs and outputs, and a precise modeling of such artifacts is not pos-
sible. Dynamic memory allocation gives rise to an a priori unbounded amount of
memory consumption. Recursion gives rise to an a priori unbounded stack size.
�e values that a program variable can hold, such as an integer, are for practical
purposes unbounded. Concurrency further complicates matters by introducing
an unbounded number of threads of execution, and also an unbounded number
of interleaved executions.

Because it is infeasible to reason about all possible (concrete) executions
of Prog, abstraction is used to generate an abstract program Prog] of Prog that
uses an abstract or approximate semantics (Cousot and Cousot, 1977). �at
is, abstraction approximates sources of unboundedness. To give one exam-
ple of abstraction, consider replacing integer-valued variables with sign-valued

variables, where a sign value is even or odd. Sign-valued variables, and their
correspondingly de�ned abstract operators, such as +] for +, over-approximate
the unbounded integer-value space with the �nite (i.e., bounded) sign-valued
space.

For property veri�cation, the set of behaviors (traces) of Prog] must be a
superset or over-approximation of the actual behaviors (traces) of the concrete
program Prog. �us, if one can verify that a property holds for Prog], one can
conclude that the property holds for Prog.3 Software model checking focuses on

3�e converse is not always true: a property violation in Prog] does not always signify a

5

verifying that a (temporal) property holds for program models, i.e., for Prog].

Addressing Unboundedness

Addressing unboundedness is a central theme of the dissertation. �e choice of
what to abstract away is a consequence of the stated goal of data-consistency
veri�cation. �e �rst step is to de�ne for an input program Prog an abstract
program Prog] whose set of behaviors over-approximate the behaviors (concrete
executions) of Prog.

Data-consistency violations are speci�ed as a sequence of reads and writes to
shared-memory locations. �us, we abstract away the values of data and de�ne
Prog] to operate only on abstract locations. We bound the number of threads,
which removes the a priori unbounded number of threads due to Java’s dynamic
thread allocation. We use a demand-driven approach to memory allocation by
focusing on objects that can be allocated at a speci�ed allocation site. Focusing
on a speci�c allocation site still allows for an unbounded number of object
allocations; however, the random isolation abstraction that we describe in Ch. 5
allows us to reason soundly about the set of all objects that can be allocated at
that site.

After abstraction, Prog] contains (i) a �nite number of threads that (ii) access
a �nite number of abstract locations using (iii) a �nite number of locks for
synchronization. However, there are still four sources of unboundedness.

1. Each thread is (possibly) recursive, which allows for an unbounded stack
size.

2. Because threads have an a priori unbounded stack size, the number of
interleaved executions is also unbounded.

3. Modeled locks are reentrant (like Java locks). A reentrant lock is a lock that
may be (re)acquired multiple times by the thread that holds the lock, and

property violation in Prog. �is is a consequence of over-approximation.

6

must be released the same number of times before it can be acquired by
another thread. Because of recursion, the number of times that a thread
may (re)acquire a lock is unbounded.

4. �e last source of unboundedness comes from the data-consistency spec-
i�cation. In our setting, the user speci�es certain program methods as
being units of work; these are methods that must (appear to) execute atom-
ically.4 Because recursive methods may be speci�ed as units of work,
the number of times that a thread “begins” a unit of work, i.e., invokes a
speci�ed method, is also a priori unbounded.

�ese four sources of unboundedness lead us at �rst to believe that data-
consistency veri�cation is an undecidable problem. After all, one generally
needs only two sources of unboundedness to simulate a Turing machine. �us,
we turned to communicating pushdown system model checking as the software-
model-checking technique for attempting to explore all behaviors of Prog].

CPDS Model Checking

Communicating pushdown system (CPDS) model checking is a software-model-
checking technique that attempts to solve undecidable problems. A CPDS is a
formalism for modeling a concurrent message-passing program that uses global
rendezvous-style synchronization. Each thread is modeled as a pushdown sys-

tem (PDS), which is a formalism for precisely modeling recursive behaviors of
a thread. PDSs and CPDSs are formally de�ned in Chs. 3 and 4, respectively,
but for this discussion, we can view a PDS as de�ning a context-free language

(CFL) and a CPDS as de�ning a set of CFLs. For example, a PDS that models
a program thread de�nes a CFL whose alphabet symbols consist of reads and
writes to shared-memory locations, symbols for acquiring and releasing a lock,
and symbols denoting the begin and end of a unit-of-work method. We devel-

4Ch. 2 gives the formal de�nition of “execute atomically” for the atomic-set-serializability
correctness speci�cation.

7

oped methods to encode locks and data-consistency speci�cations as PDSs.
Because of reentrancy, we need a CFL rather than a regular language, i.e., we
need matched-parenthesis languages in which a parenthesis symbol denotes
the acquisition/release of a lock or entering/exiting an atomic block.

CPDS model checking can then be viewed as attempting to determine the
emptiness of the intersection of the set of CFLs, which is a known undecidable
problem. Because the problem is undecidable, the CPDS model checker Cpdsmc
implements only a semi-decision procedure, where a semi-decision procedure is
an algorithm that attempts to answer a “yes/no” query, but because of undecid-
ability, may also return with a result of “maybe”. Even though it implements only
a semi-decision procedure, in Ch. 5 we show that the use of Cpdsmc is e�ective
in practice.

Language Strength Reduction

To improve the e�ciency of model analysis, I developed a technique, known as
language-strength reduction, to eliminate reentrant uses of locks and reentrant
uses of unit-of-work methods. Removing reentrancy allows for the languages
that model locks and data-consistency speci�cations to be formulated as regular

languages instead of CFLs. Because the respective languages are now regular,
two of the four sources of unboundedness have been removed (i.e., an unbounded
stack is no longer required for components that model these aspects of program
behavior).

However, there still exist two sources of unboundedness, namely, recursive
procedure calls and interleavings. Because of these two sources of unbounded-
ness, we continue with the use of CPDS model checking for analyzing generated
models. �e bene�t of removing two of the four sources of unboundedness was
a total speedup of 1.8 when Cpdsmc was used to analyze models generated from
the ConTest benchmark suite (Eytani et al., 2007a). Moreover, two models that
previously exhausted all resources were now able to be analyzed.

8

A Decision Procedure

�e �nal breakthrough is a technique to deal with the unbounded number of
interleavings, which leaves only one source of unboundedness, namely recursion,
which PDS technology can easily manage. �e end result is that we show that
data-consistency veri�cation is in fact a decidable problem (see Ch. 7).

�e technique “decouples” the PDSs that model the bounded number of Java
threads. �at is, instead of directly exploring all possible interleaved executions,
which induces a tight coupling between the PDSs, a �nite summary of the
behaviors of each PDS is computed individually. After all summaries have been
computed, they are analyzed by a post-processing step to check that the data-
consistency speci�cation holds for Prog].

Besides the importance of showing that the problem is decidable, the model
checker that implements the decision procedure of Ch. 7 is 8.5 times faster
overall than the version of Cpdsmc from Ch. 6 when analyzing abstract programs.
Moreover, Cpdsmc timed out—returned “maybe”— for 68% of the queries that
were asked. �e decision-procedure implementation provided the answers to
these queries.

�e techniques described in the dissertation have been implemented in a
tool called Empire, which works as follows. �e input is (i) a concurrent Java
program, (ii) a data-consistency speci�cation for a Java class T of interest, and
(iii) an allocation site χ that allocates an object of class T (i.e., a “new T(. . .)”
statement). Empire then generates a model of the program that is speci�c to T
and χ, and checks that the data-consistency speci�cation is a property of the
model. Because the model over-approximates the set of behaviors of the input
program, if Empire is able to verify data-consistency of the model, then it also
establishes the data-consistency of all objects allocated at χ in the program.

9

1.3 Dissertation Overview

Ch. 2 discusses data consistency and provides examples that illustrate data-
consistency errors. It also de�nes atomic-set serializability, the formal
de�nition of data consistency that is used throughout the dissertation.
We also present a comparison of atomic-set serializability to other notions
of data-consistency.

Ch. 3 provides background de�nitions for pushdown systems (PDSs) and
weighted pushdown systems (WPDSs). Both PDSs and WPDSs are used
to model a sequential recursive program. Accompanying both de�nitions
are examples that illustrate how the formalism is used to perform program
analysis.
Contribution: WALi: the Weighted Automaton Library (Kidd et al., 2009a)
that implements the discussed PDS and WPDS algorithms.

Ch. 4 de�nes communicating pushdown systems (CPDSs): the formalism for
modeling concurrent recursive message-passing programs used for most
of the dissertation. Due to its expressive power, reachability analysis of a
CPDS is in general undecidable. However, the given semi-decision proce-
dure and several (unpublished) variations have been shown to be useful
in practice.
Contribution: �e CPDS model-checking algorithm (Chaki et al., 2006)
and several variations on the basic algorithm.

Ch. 5 presents random isolation, a program abstraction that is used to reason
about the locking behavior of programs that use dynamic memory allo-
cation, which is crucial for the analysis of concurrent programs that use
lock-based synchronization. Random isolation is also a generic technique
for proving a property about identical elements in a set of unbounded size
(e.g., all objects that can be allocated at an allocation point in a program).

10

Contribution: �e random-isolation abstraction and a source-to-source
transformation for implementing the abstraction (Kidd et al., 2009b).

Ch. 6 presents language strength reduction, a technique that allows a program
model to use non-reentrant locks in place of reentrant locks without a loss
in precision or soundness (i.e., the exact set of interleaved executions are
still considered in the transformed model). �e name comes from the fact
that the language that describes a reentrant lock is context-free—matched-
parenthesis words model lock acquisitions and releases—whereas the
language that describes a non-reentrant lock is regular—it consists of non-

nested matched-parenthesis words. Hence, the transformation performs
a strength-reduction operation on the language that describes a lock.
Contribution: �e language-strength-reduction transformation (Kidd et al.,
2008, 2007).

Ch. 7 presents a decision procedure for verifying atomic-set serializability. After
language strength reduction, the program abstraction has a �nite-data

model, which enables the de�nition of a decision procedure. To de�ne
the decision procedure, CPDSs are replaced by another multi-PDS model
that is less powerful, yet still able to verify atomic-set serializability of the
program abstraction.
Contribution: A decision procedure for verifying atomic-set serializability
of generated models (Kidd et al., 2009c).

Ch. 8 concludes and discusses opportunities for future work.

11

2 data consistency

Concurrency is a mechanism used to increase the performance of a program.
�e use-case for concurrency can di�er depending on the application.

• Server applications use concurrency to service multiple requests at the
same time, which increases throughput in much the same way that large
retail stores use multiple checkout lanes. For example, a web server uses
multiple threads of execution to satisfy simultaneously multiple requests
for web pages.

• GUI applications use concurrency so that an application is responsive to
user requests while other operations are performed in the background.
For example, a text editor could use one thread to wait for user input while
another separate thread executes a spell checker.

• Scienti�c applications use concurrency to apply the same task on distinct
elements in a set. For example, matrix multiplication simultaneously
computes multiple entries in the resultant matrix from the same two
input matrices.

• Other uses of concurrency arise depending on the needs of the program,
the expertise of the programmer, and the perceived bene�t of using con-
currency.

For many concurrent applications, shared state is used to synchronize the
concurrent processes. Server applications must synchronize accesses to the
data that is being served, and GUI applications must synchronize accesses to the
data that is being visualized and modi�cations to that data (e.g., the user may
edit a word in a text editor while the spell checker highlights the same word).
Scienti�c applications typically do not perform synchronization because the
concurrent threads operate on disjoint data sets.

12

T1 T2

1a t1 = x 2a t2 = y
1b x = y 2b y = x
1c y = t1 2c x = t2

Figure 2.1: Two threads attempt to swap the values x and y: T1 performs
“swap(x,y)” while T2 performs “swap(y,x)”.

Data-consistency errors can arise because multiple threads of execution
attempt to read and update shared state, but the inter-thread order in which the
accesses occur is non-deterministic (i.e., the application does not control the
thread scheduler). If accesses to shared state are not properly protected, many
problems can occur, such as lost updates, reads of stale data, and, depending on
the programming language, the behavior may even be unde�ned.

Let us illustrate some of these problems with a concrete example. Consider
the code fragment shown in Fig. 2.1. �ere are two shared-memory locations, x
and y, and two threads of execution, T1 and T2. Together, the three statements
that thread T1 executes perform a “swap(x,y)”. Similarly, the net e�ect of T2’s
execution is to perform a “swap(y,x)”. To perform the “swap” operations, T1 (T2)
uses the temporary storage variable t1 (t2) to hold the initial value of x (y). For
this example, assume that the “swap” operation constitutes one logically-atomic
operation for each thread. Furthermore, assume that before the execution of
either thread the value of x is not equal to the value of y (i.e., “x 6= y”).

Using x0 and y0 to denote the values of x and y before the execution of the
threads, the intended semantics of the example code is that at the end of the
execution of both threads, x = x0 and y = y0. �is is easy to see because for two
memory locations, a double swap is the same as the identity transformation.

If each thread’s code is run serially (i.e., the interleaved execution is “1a-
c ; 2a-c” or “2a-c ; 1a-c”), then it is easy to verify that once threads T1 and T2

have �nished execution, it will be the case that “x = x0 ∧ y = y0”. Unfortunately,

13

due to the absence of synchronization operations, not all executions have the in-
tended outcome. Consider the interleaved execution “1a;2a;2b;2c;1b;1c” shown
in Tab. 2.1. In Tab. 2.1, the left column shows the statement that is executed, and
the remaining columns denote the values of the variables after the statement is
executed. For each row, only an updated value is written in a column. �at is, if
a value is not given for a variable, it remains the same as the next-most-recent
value in that column. For example, in row 2b, the value of variable x can be
found in the x-column entry of row 1a. �e �nal row shows the values of each
variable after all statements have been executed. One can see that the outcome
is such that the values of both x and y are equal to the original value of x, i.e.,
“x = x0 ∧ y = x0”. �is is clearly not a desired behavior!

x y t1 t2
1a x0 y0 x0 0
2a y0

2b x0

2c y0

1b x0

1c x0

x0 x0 x0 y0

Table 2.1: An interleaved execution of the program in Fig. 2.1 that violates the
intended semantics. Each column denotes the value of a specific variable after
each program statement is executed. Only state changes are listed. The final
row presents the value of each variable after all program statements have been
executed.

�e fact that the desired property does not hold is a consequence of a data-
consistency error. �e programming error for the code in Fig. 2.1 is the absence of
operations to synchronize accesses to shared variables. In this case, the error can
be easily diagnosed by examining the code; however, data-consistency errors are
in general extremely di�cult to diagnose and debug because their very nature is

14

dependent on non-deterministic events, which includes the decisions made by
the thread scheduler and inputs from external sources, such as the user of an
application. One can imagine a case where the code in Fig. 2.1 always executes
each thread serially. �is could occur when the test machine is a uniprocessor
and performing three memory operations can be easily completed within one
execution context. In this scenario, program testing would not detect an error
because only non-buggy interleavings are considered. However, when upgrading
or migrating to a multi-processor (multi-core) machine, the code of each thread
could then be run in parallel and the buggy interleavings could be exercised.

Data-consistency errors are often non-local properties. �at is, diagnosing
the root cause of a data-consistency error requires reasoning about more than
just a piece of sequential code. For example, if there is a synchronization error in
the spell-checker code or the user-input code of a text-editing program, diagnos-
ing and creating a solution requires reasoning about the potential interactions
between two separate pieces of code. �e fact that programs often deliberately
violate data-consistency conditions, the fact that errors often arise only for sub-
tle reasons involving non-determinism, the need to perform non-local reasoning
to diagnosis data-consistency errors, all make it di�cult for programmers to
be sure that their code maintains (or reestablishes) desired data-consistency
conditions. �us, it is crucial that tools and techniques be developed to assist
the programmer in reasoning about the data consistency of a program. Before
presenting the approach taken in this dissertation to verifying data consistency,
we need to formally de�ne what it means for a program to be data consistent.

�e rest of this chapter discusses (i) data-race freedom, (ii) serializability and
atomicity, and (iii) atomic-set serializability and atomic-set atomicity. Tab. 2.2
presents the relationship between these data-consistency correctness criteria.
Within a column, a lower entry subsumes all higher entries. �at is, establishing
that a program satis�es a lower entry implies that it satis�es a higher entry.
Along a row, we indicate the terminology used depending on whether the data-
consistency property is speci�ed on a single trace or the set of all traces of a

15

§ where discussed Trace Property Set-of-Traces Property

§2.1 data-race free data-race free
§2.2 serializability atomicity
§2.3 atomic-set serializability atomic-set atomicity

Table 2.2: Notions of data consistency that have been proposed for traces and
sets of traces.

program. Finally, the leftmost column speci�es the section that discusses the
data-consistency correctness criteria of an individual row.

2.1 Data-Race Freedom

A data race is said to occur when two threads attempt to access the same memory
location without synchronization, and at least one of them is a write. �ere
are many data races in the code shown in Fig. 2.1 because the example does
not contain any synchronization operations. For example, after each thread
executes its �rst statement, T1 can write to x while T2 can read the value of x,
which is a data race on the shared-memory location x. In fact, in this same
scenario there is also a data race on shared-memory location y because T1 can
attempt to read the value of y while T2 is attempting to write a new value to y.

Data races occur in practice and can have devastating results. In 2003, the
Northeast Blackout left most of the Northeastern part of the United States and
Canada without power (Wikipedia, 2009). �e Northeast Blackout was more
extensive than it otherwise might have been because a data race caused the
backup generator to fail to respond, which caused a cascade of blackouts across
the North American continent.

Data-race detection has a long history in the research community. �e
seminal work on the dynamic detection of data races is the Eraser tool, which
introduced the lockset algorithm, and was developed by Savage et al. (1997). It its

16

most basic form, the lockset algorithm checks whether a program enforces the
discipline that a memory locationm is consistently protected by a lock l. During
program execution, a set of locks Lm is associated with a memory locationm.
Initially, the set of locks Lm is the set of all locks in the program. When a thread
T accessesm, the set of locks Lm is updated to be the intersection of Lm and
set of locks LT that T currently holds. If, after the intersection, Lm is equal to
the empty set, then there is the potential for a data race.

Others have developed static techniques to check the same locking discipline
that Eraser checked dynamically. For example, the Locksmith tool by Pratikakis
et al. (2006) uses an existential type system to check whether a memory location
is consistently protected by the same lock, and Naik and Aiken (2007) presented
a static analysis to detect data races based on conditional must not aliasing.
�e basic premise of that work is to demonstrate the absence of data races by
showing that, if whenever two locks are di�erent, then their guarded locations
must be di�erent.

Proving the absence of data races, i.e., data-race freedom, goes a long way to-
wards establishing data consistency. However, by de�nition, data-race detection
is unable to capture higher levels of data consistency (in the sense of Tab. 2.2).
�at is, the de�nition of a data race only considers two instructions executed
by two threads, which is a very limited scope. For example, the code shown in
Fig. 2.2 is the same as the code shown in Fig. 2.1 except that a global lock l has
been added, and each statement acquires the lock l before it is executed and
releases the lock l when execution completes. �e code shown in Fig. 2.2 does

not contain a data race because every memory access is protected with synchro-
nization on the lock l. However, the bad interleavings discussed at the beginning
of this chapter are all still possible. Although the use of synchronization by the
code in Fig. 2.2 is clearly broken, it illustrates the point that enforcing a locking
discipline—in particular, the discipline checked by Eraser and Locksmith—
does not account for the fact that the programmer intends for regions of code to
be protected and to be executed atomically.

17

T1 T2

1.a lock(l){t1 = x } 2.a lock(l){t2 = y }
1.b lock(l){x = y } 2.b lock(l){y = x }
1.c lock(l){y = t1} 2.c lock(l){x = t2}

Figure 2.2: Two threads attempt to swap the values x and y: T1 performs
“swap(x,y)” while T2 performs “swap(y,x)”. Each statement is guarded by the
lock l, which guarantees that the program is data-race free.

2.2 Serializability and Atomicity

Serializability is a stronger notion of data consistency than data-race freedom.
�e term serializability comes from the database community (Papadimitriou,
1986; Bernstein et al., 1987). For databases, the goal is to execute multiple SQL
queries (transactions) concurrently yet maintain the illusion that the transac-
tions are executed serially. An execution schedule is serializable if it is equivalent
to a schedule in which the transactions are executed in some serial order.

Various notions of equivalence relations between execution schedules have
been proposed, including con�ict equivalence and view equivalence (Bernstein
et al., 1987). We brie�y discuss con�ict equivalence and note that con�ict equiv-
alence is a stronger relation than view equivalence (con�ict equivalence implies
view equivalence). Con�ict equivalence uses the notion of con�icting actions as
an equivalence criterion. A pair of actions is said to con�ict if they occur in two
separate transactions, access the same data, and at least one is a write. Two
schedules S1 and S2 are con�ict equivalent if they execute the same transactions
and the order of con�icting actions is the same. A schedule is con�ict serializable

if it is con�ict equivalent to a serial schedule.
�ere have been many proposals for notions of serializability relevant for

program execution as well as analyses to detect serializability violations (Artho
et al., 2003; Lu et al., 2006; Xu et al., 2005; Wang and Stoller, 2006; Flanagan
and Freund, 2004, 2008). In general, a code region that should appear to exe-

18

cute atomically, i.e., denotes a logically-atomic operation, forms a transaction.
An interleaved program execution is then serializable if it is equivalent to an
execution in which the transactions are executed in some serial order.

For the code shown in Fig. 2.1, the executions (1) “1a-c ; 2a-c” and (2) “2a-
c ; 1a-c” are the only serializable executions (i.e., no interleaving is possible).
Brie�y, an execution that is equivalent to the serial execution (1) must read
the value of y that is written by statement 1c to ensure that the order of the
con�icting actions is the same. Since statement 2a reads y, it must come after
statement 1c and thus no interleaved execution is equivalent to serial execution
(1). A similar argument shows that there does not exist an interleaved execution
that is equivalent to serial execution (2): statements 1a and 2c are con�icting
actions.

Flanagan and Qadeer (2003) extend serializability from a property of a single
execution to a property of a set of executions. �at is, they are concerned with
de�ning a correctness criterion for all possible program executions. A program
is said to have the atomicity property if all possible executions are serializable.

Flanagan and Qadeer (2003) developed a type system for atomicity. �e type
system is such that if a program passes the type checker, then it has the atomicity
property. With respect to serializability and atomicity, the transactions are the
methods of a concurrent Java program. �eir type system errs on the side of
caution, i.e., a program may fail to type check but in fact have the atomicity
property. �e conservative approximation used in the type system is to check
that each method (transaction) of a concurrent Java program is atomic.

If a method is atomic, then any interaction between that method and

steps of other threads is guaranteed to be benign, in the sense that

these interactions do not change the program’s overall behavior

— Flanagan and Qadeer (2003)

If all methods of a program are atomic, then all executions must be serializable.
Hence, a program that type checks has the atomicity property. As mentioned

19

above, the converse it not necessarily true.
As a data-consistency correctness criterion, serializability and atomicity

are superior to data-race freedom. In each access to shared data takes place in
an atomic method, then the program must be data-race free. Furthermore, a
higher-level of data consistency can be captured, such as the fact that correct
execution of the code in Fig. 2.1 must execute the “swap” operations serially.
Unfortunately, atomicity can be overly restrictive because it is a control-centric

property—a property of a region of code that is a control structure of a program-
ming language.

To show how serializability and atomicity can be too restrictive, consider
the Java program in Listing 2.1, which de�nes two classes. Class Counter imple-
ments a performance counter to track the number of times non-static methods
are invoked. Class Stack implements a stack and has two �elds:

• Object data[] is an array that implements the backing store for a Stack.

• int count is a counter that keeps track of the number of items currently
on a stack.

Let us assume that the @atomic annotations on the methods of class Stack
specify that the annotated methods should appear to execute atomically. (For
now, ignore the annotation @atomic(S) on the �elds of class Stack.)

Consider the following interleaved execution of threads T1 and T2 from List-
ing 2.1:

T1:

replaceTop︷ ︸︸ ︷
inc..........

pop︷︸︸︷
inc

push︷︸︸︷
inc

T2:get..
�e interleaved execution lists the method calls that are performed by threads
T1 and T2, respectively. �e calls to Counter.inc, Counter.get, Stack.pop,
Stack.push, and Stack.replaceTop have been abbreviated as inc, get, pop,
push, and replaceTop, respectively. A horizontal sequence of dots denotes

20

Listing 2.1: Stack program.
1 class Counter {
2 private static int counter = 0;
3 public static synchronized void inc() { counter++; }
4 public static int get() { return counter; }
5 }
6 class Stack {
7 public static final int MAX=10;
8 @atomic(S) Object[] data = new Object[MAX];
9 @atomic(S) int count = -1;

10 @atomic public synchronized Object pop(){
11 Counter.inc();
12 Object res = data[count];
13 data[count--] = null;
14 return res;
15 }
16 @atomic public synchronized void push(Object o) {
17 Counter.inc(); data[++count] = o;
18 }
19 @atomic public synchronized int size() {
20 Counter.inc(); return count+1;
21 }
22 @atomic public synchronized replaceTop(Object o) {
23 Counter.inc(); pop(); push(o);
24 }
25 public static Stack makeStack() { return new Stack(); }
26 }
27 class Test() {
28 public static void main(String[] args) {
29 Stack stack = Stack.makeStack();
30 stack.push(new Integer(1));
31 new Thread("1") { stack.replaceTop(new Integer(2)); }
32 new Thread("2") { Counter.get(); }
33 }
34 }

21

that a thread is not currently executing (e.g., it has been swapped out by the
thread scheduler). For the method calls of T1, an overbrace is used to denote the
duration of execution of a parent method, and the methods that it invokes are
contained in the overbrace.

�e interleaved execution contains a serializibility violation. �e problem
is the multiple calls to Counter.inc. Each call to Counter.inc, or rather the
update performed by Counter.inc, by T1 is a con�icting action with the call
to Counter.get by T2. Because Stack.replaceTop is supposed to execute
atomically—denoted by the @atomic annotation—a serializable execution must
schedule the call to Counter.get by T2 completely before or after the call to
Stack.replaceTop by T1. �e interleaved execution shown above violates this
requirement, and hence contains a serializability violation.

Because of possible interleavings like the one shown above, the method
Stack.replaceTop fails the atomicity property.1 For the example program
in Listing 2.1, the interleaving shown above should be allowed. �at is, the
serializability violation is benign. To allow such interleavings, data-consistency
correctness must move from the control-centric nature of atomicity to a data-
centric correctness criterion that is able to reason about relationships between
memory locations (i.e., �elds of a class), or for the above example the lack of
relationships.

2.3 Atomic-Set Serializability

Vaziri et al. (2006) propose atomic-set serializability (AS-serializability) as a cor-
rectness criterion for data consistency. AS-serializability addresses the fact that
serializability can be an overly conservative correctness criterion because it
ignores relationships that may exist between shared memory locations, such as
invariants and consistency properties. By ignoring relationships, serializability

1Technically, Flanagan and Qadeer (2003) uses the theory of left and right movers, due to
Lipton (1975), to determine atomicity of a method. For this discussion, we omit these details.

22

may not accurately re�ect the intentions of the programmer for correct behavior,
resulting in false positives. For the program shown in Listing 2.1, interleaved
updates to the performance counter implemented by class Counter do not
cause a data-consistency error. �at is, the Counter.inc method is properly
synchronized, which eliminates data races, and its value has no e�ect on the
outcome of the program.

AS-serializability is a data-centric correctness criterion that is able to con-
sider relationships that exist between memory locations. It is based on the
notion of atomic sets. An atomic set is a set of memory locations for which an
invariant holds and thus must be updated atomically. Note that an atomic set
merely speci�es that there exists an invariant, but does not de�ne the invariant
itself.

In Listing 2.1, the annotations @atomic(S) on �elds Stack.data and
Stack.count denote that those �elds are members of the atomic set “S”. �e
(unspeci�ed) relationship between data and count is that the current value of
count is the index of the position in data where the top-of-stack item is stored.
�e existence of this relationship is re�ected by both �elds being members of
the atomic set “S”.

Associated with atomic sets are units of work, regions of code (methods) that
guarantee to maintain the invariant of an atomic set when executed serially. We
call a unit of work that writes to all members of an atomic set a write-complete

unit of work. In Listing 2.1, the units of work are methods that have the @atomic
annotation (e.g., the method Stack.pop). �e write-complete units of work are
the methods Stack.pop, Stack.push, and Stack.replaceTop.

Finally, atomic sets can be dynamically extended to include the atomic sets of
method parameters, which are referred to as unitfor parameters. �is is speci�ed
by an @atomic annotation on method parameters.2 Dynamic extension of an
atomic set captures the fact that if a unit of work is dependent on a method
parameter, execution of that unit of work must (appear to) be atomic for the

2(Vaziri et al., 2006) use the annotation “unitfor” to mark method parameters that should
be dynamically absorbed into an atomic set.

23

atomic sets of that parameter as well.
An execution is atomic-set serializable (AS-serializable) if its projection on

each atomic set is serializable (Vaziri et al., 2006). Recalling the earlier dis-
cussion that the method Stack.replaceTop fails the atomicity property, we
can now show that AS-serializability holds for Stack.replaceTop. Speci�cally,
the method Stack.replaceTop and the methods Stack.pop and Stack.push
that it invokes are all synchronized methods. For these methods, the atomic
set with respect to which they must execute atomically is the atomic set “S”. Be-
cause the methods are synchronized, no other thread can access the �elds that
are members of “S” until the method Stack.replaceTop completes execution.
Because the �eld Counter.counter is not a member of “S”, the write accesses
that cause serializability violations for some interleavings are of no consequence.
�us, all executions of Stack.replaceTop must be AS-serializable. Because all
executions of Stack.replaceTop are AS-serializable, we say that this method
has the AS-atomicity property. In fact, the relationship between serializability
(atomicity) and AS-serializability (AS-atomicity) is now clear: serializability is
the degenerate case of AS-serializability when all of memory is de�ned to be in
one atomic set.

AS-serializability Violations

An execution that is not AS-serializable is said to have an AS-serializability vi-
olation. A nice result from Vaziri et al. (2006) is that if all units of work are
write-complete, then AS-serializability violations can be completely character-
ized by a set of fourteen problematic access patterns. Tab. 2.3 presents the
fourteen problematic access patterns.3 Each pattern consists of a sequence
of reads (R) and writes (W) to an atomic-set member l, or to two atomic-set
members l1 and l2. Problematic access patterns 1 through 5 capture single-
location data-consistency errors, while problematic access patterns 6 through
14 capture multi-location data-consistency errors. Each memory access occurs

3�e patterns in Tab. 2.3 appear in Vaziri et al. (2006) and Hammer et al. (2008).

24

Id Problematic Access Pattern Description

1. Ru(l)Wu ′(l)Wu(l) Value read is stale by the
time an update is made in u.

2. Ru(l)Wu ′(l) Ru(l) Two reads of the same location
can yield di�erent values in u.

3. Wu(l) Ru ′(l)Wu(l) An intermediate state is
observed by u ′.

4. Wu(l)Wu ′(l) Ru(l) Value read may not be the same
as the one written last in u.

5. Wu(l)Wu ′(l)Wu(l) Value written by u ′ can be lost.

6. Wu(l1)Wu ′(l1)Wu ′(l2)Wu(l2) Memory can be left in an
inconsistent state.

7. Wu(l1)Wu ′(l2)Wu ′(l1)Wu(l2) same as above
8. Wu(l1)Wu ′(l2)Wu(l2)Wu ′(l1) same as above.
9. Wu(l1) Ru ′(l1) Ru ′(l2)Wu(l2) State observed can be inconsistent.

10. Wu(l1) Ru ′(l2) Ru ′(l1)Wu(l2) same as above
11. Ru(l1)Wu ′(l1)Wu ′(l2) Ru(l2) same as above.
12. Ru(l1)Wu ′(l2)Wu ′(l1) Ru(l2) same as above.
13. Ru(l1)Wu ′(l2) Ru(l2)Wu ′(l1) same as above.
14. Wu(l1) Ru ′(l2)Wu(l2) Ru ′(l1) same as above.

Table 2.3: �e fourteen problematic access patterns. Patterns 1–5 involve a
single memory location; patterns 6–14 involve a pair of memory locations.

during a unit of work u; the subscript on the memory access denotes which
unit of work it belongs to. For example, problematic access pattern 1 is de�ned
as “Ru(l)Wu ′(l)Wu(l)”, which describes an AS-serializability violation that
involves an atomic-set member l. �e �rst read and last write belong to unit of
work u. �e intervening write belongs to a unit of work u ′ that is executed by
another thread.

Informally, each pattern contains a pair of con�icting actions that cannot
be con�ict equivalent to a serial execution because the con�icting actions form
a cyclic dependency and thus no serial order can be found. For the �rst prob-
lematic access pattern, the �rst accesses, Ru(l) and Wu ′(l), are con�icting
actions and the last two accesses, Wu ′(l) andWu(l), are con�icting actions.

25

If we draw an edge between units of work to represent the order of con�icting
actions, then the �rst two statements induce the edge u→ u ′ and the last two
induce the edge u ′ → u. �ese two edges form a cycle. From serializability
theory, it is known that only executions that induce acyclic con�ict graphs are
serializable (Bernstein et al., 1987). Vaziri et al. (2006) proved that the absence
of all fourteen patterns is a su�cient condition to show that the execution is
AS-serializable (i.e., the con�ict graphs are acyclic with respect to the atomic
sets and their units of work).

To give a concrete illustration of an AS-serializability violation, let us re-
turn to the program in Listing 2.1. Class Stack assumes that the programmer
correctly uses the stack, and omits safety checks for the method Stack.pop.
�at is, Stack.pop does not verify that the stack is non-empty before attempt-
ing to remove the top-of-stack item. If Stack.pop is invoked on an empty
stack, then the �eld Stack.count will be -1. �e array access to the �eld
Stack.data will result in an ArrayIndexOutOfBoundsException being raised
because Stack.count has the value -1.

�e class SafeWrap de�ned below addresses this oversight by de�ning the
method SafeWrap.popwrap, which �rst checks that the parameter “Stack s”
is not empty before invoking the method Stack.pop. For the class SafeWrap,
the method SafeWrap.popwrap is a unit of work, denoted by the @atomic an-
notation, and the parameter “Stack s” is a unitfor parameter, also denoted
by the @atomic annotation. (Note that the @atomic annotation is a speci�-
cation, and not an implementation.) Recall that the atomic sets of a unitfor
parameter are dynamically incorporated into the atomic sets of the invoking
object, i.e., the this parameter, for the duration of a unit of work. Because class
SafeWrap does not de�ne any atomic sets, the atomic set with respect to which
SafeWrap.popwrap must execute atomically is the atomic set “S” de�ned by
class Stack.

1 class SafeWrap {
2 @atomic public synchronized Object popwrap(@atomic Stack s) {

26

3 return (s.size() >= 0) ? s.pop() : null;
4 }
5 public static SafeWrap makeSafeWrap() { return new SafeWrap(); }
6

7 public static void main(String[] args){
8 Stack stack = Stack.makeStack();
9 stack.push(new Integer(1));

10 new Thread("1") { makeSafeWrap().popwrap(stack); }
11 new Thread("2") { makeSafeWrap().popwrap(stack); }
12 }
13 }

Unfortunately, the attempt to “harden” the code by adding error checking
has introduced an AS-serializability violation. �e problem is that the program
synchronizes on the wrong object. In this case, the method SafeWrap.popwrap
has the synchronized annotation, whereas the method should have been writ-
ten to synchronize on the parameter “Stack s”. �is allows the interleaved
execution shown in Fig. 2.3.

T1:

popwrap︷ ︸︸ ︷
[1

size︷ ︸︸ ︷
[1(sR1(c))s]1 ..

pop︷ ︸︸ ︷
[1(sR1(c)R1(d)z

T2:

popwrap︷ ︸︸ ︷
[2[2(sR2(c))s]2︸ ︷︷ ︸

size

[2(sR2(c)R2(d)R2(c)W2(d)W2(c))s]2︸ ︷︷ ︸
pop

]2

Figure 2.3: An interleaved execution of thread T1 and T2 that contains an AS-
serializability violation. R andW denote a read and write access, respectively.
c and d denote �elds count and data, respectively. “[” and “]” denote the be-
ginning and end, respectively, of a unit of work. �e subscripts “1” and “2” are
thread ids. “(s” and “)s” denote the acquire and release operations, respectively,
of the lock of Stack s that is the input parameter to SafeWrap.popwrap.

�e interleaved execution shown in Fig. 2.3 contains problematic access
pattern 12. �e data accesses that are involved in the pattern are under-
lined in Fig. 2.3. Because of the AS-serializability violation, the method

27

SafeWrap.popwrap can raise an ArrayIndexOutOfBoundsException even
when it is invoked on a non-empty stack. �is is the case for the interleaved
execution shown in Fig. 2.3. Initially, the stack contains one item. �read T1 be-
gins execution and checks that the stack is non-empty by invoking Stack.size.
�e check succeeds, and so T1’s next action is to invoke Stack.pop. Before do-
ing so, thread T2 successfully executes SafeWrap.popwrap, which removes the
item from the stack, leaving it empty. When T1 resumes execution, it invokes
Stack.pop on an empty stack, which raises an exception. �e point at which
the exception is raised is denoted by the z symbol at the end of thread T1’s
execution sequence.

�e focus of the dissertation is on static techniques to verify that interleaved
executions like the one just discussed cannot happen—in other words, to verify
that a program has the AS-atomicity property.

2.4 Summary

�is chapter presented three notions of data-consistency: data-race freedom,
serializability and atomicity, and AS-serializability and AS-atomicity. �e latter
two correctness criteria provide a means of reasoning about data consistency
at larger granularity than data-race freedom. In our comparison of serializ-
ability (atomicity) to AS-serializability (AS-atomicity), we have shown that AS-
serializability (AS-atomicity) is a relaxation of serializability (atomicity). �e
relaxation provides a �ner notion of data consistency.

�is dissertation presents techniques to verify AS-atomicity of a concurrent
Java program. To the best of my knowledge, there are only two pieces of work
related to verifying AS-atomicity. �e �rst is the seminal work on atomic sets by
Vaziri et al. (2006), where atomic sets and AS-serializability were �rst de�ned. In
their setting, they extended the Java language with support for atomic sets, units
of work, and unitfor parameters. Given a program in their atomic-set-extended
Java, all program executions of the program are guaranteed to have the AS-

28

atomicity property. �e distinction between this dissertation and their work is
that we focus on analyzing plain old Java programs. �at is, the techniques to be
presented are capable of analyzing existing Java programs with a limited amount
of programmer-supplied annotations. In fact, as will be discussed in Ch. 5, the
main annotation is simply the program allocation site that allocates objects
with respect to which the programmer desires to verify AS-atomicity. Moreover,
the atomic-set-extended Java language is not yet available, and thus their system
does not currently assist a programmer with verifying data-consistency, i.e.,
AS-atomicity, of a program.

Hammer et al. (2008) presents a runtime technique to detect AS-serializability
violations in Java programs. Because their technique performs dynamic de-
tection of AS-serializability violations, it cannot guarantee the absence of AS-
serializability violations for all executions. �at is, the technique of Hammer
et al. (2008) cannot verify AS-atomicity of a Java program, but merely detects
bugs in speci�c concurrent executions.

29

3 definitions

�e focus of the dissertation is on techniques to verify AS-atomicity of a con-
current Java program. Ch. 1 presented a broad overview of the approach. From
an input Java program Prog, an abstract program Prog] is �rst de�ned (Ch. 5).
�en, Prog] is translated into the input format of a software-model checker. �e
dissertation uses two software-model checkers, namely, Cpdsmc (Chs. 5 and 6)
and Ipamc (Ch. 7). Each model checker uses a pushdown system (PDS) as its
underlying thread abstraction.

�is chapter formally de�nes pushdown systems and weighted pushdown
systems, a generalization of pushdown systems that we use to implement sym-
bolic model checkers, among other things. �e de�nitions are taken from Reps
et al. (2003, 2005, 2007). Readers familiar with pushdown systems and weighted
pushdown systems may skip to Ch. 4.

3.1 Pushdown Systems

Pushdown systems are used to describe pure sequential programs (Bouajjani
et al., 1997; Finkel et al., 1997). �ey have the property that for recursive programs,
in�nite sets of program con�gurations can be represented symbolically using
regular languages.

De�nition 3.1. A pushdown system (PDS) is a tuple P = (P, Γ , Lab,∆, c0), where
P is a �nite set of control locations; Γ is a �nite set of stack symbols; Lab is a
�nite set of labels (or actions);∆ ⊆ (P × Γ)× Lab× (P × Γ∗) is a �nite set of
labeled-transition rules, where a rule is denoted by r = 〈p,γ〉 a

↪−→ 〈p ′,u ′〉;
and c0 = 〈p0,γ0〉 is the initial con�guration of P. A con�guration c of P is a pair
〈p ∈ P,u ∈ Γ∗〉. For a rule r = 〈p,γ〉 a

↪−→ 〈p ′,u ′〉, we use lab(r) to denote r’s
label a.

Without loss of generality, a pushdown rule is restricted to have at most two

30

1 class Prog {
2 int _a,_b,_c,_d;
3 int a() {
4 return _a;
5 }
6 int b() {
7 return _b;
8 }
9 int ab() {

10 int t1 = a();
11 int t2 = b();
12 return t1+t2;
13 }
14 int cd() {
15 return _c+_d;
16 }
17 public static void int main(String[] a) {
18 int t1 = ab();
19 int t2 = cd();
20 }
21 }

Figure 3.1: A Java program.

Rule Control �ow modeled

〈p,n1〉
s1

↪−→ 〈p,n2〉 Intraprocedural edge n1 → n2

〈p,nc〉
sc

↪−→ 〈p, ef rc〉 Call to f, with entry ef, from nc that returns to rc
〈p, xf〉

sf
↪−→ 〈p, ε〉 Return from f at exit xf

Table 3.1: �e encoding of an ICFG’s edges as PDS rules.

stack symbols appear on the right-hand side, i.e., for 〈p,γ〉 a
↪−→ 〈p ′,u ′〉 ∈ ∆,

|u ′| 6 2 (Schwoon, 2002). Rules with zero, one, and two right-hand-side stack
symbols are called pop, step, and push rules, respectively. We use∆0,∆1, and∆2

to denote the set of pop, step, and push rules in∆, respectively.

31

A PDS P = (P, Γ , Lab,∆, c0) provides a way to encode a program’s inter-
procedural control �ow: P = {p} is a set containing a single control location
p, the stack alphabet Γ is de�ned to be the set of program nodes—Γ models
the program counter; the set of labels Lab is de�ned to be the set of program
statements, and∆ is de�ned according to Tab. 3.1. �e rule templates in Tab. 3.1
are interpreted as follows.

pop �e rule 〈p, xf〉
sx

↪−→ 〈p, ε〉 executes the statement sf, which is a return
from procedure f. �e program counter is updated to be the return point
that was pushed onto the stack by the caller.

step �e rule 〈p,n1〉
s

↪−→ 〈p,n2〉 executes the statement s associated with
node (program counter) n1, and updates the program counter to node n2.

push �e rule 〈p,nc〉
sc

↪−→ 〈p, ef rc〉 executes the statement sc, which is a
procedure call. �e program counter is updated to be the entry point ef
of the called procedure f. �e return point rc is pushed onto the stack to
ensure that when f returns, the program counter will be set to rc.

Example 3.2. Consider the Java program Prog given in Fig. 3.1. Let Stmts
be the set of program statements (e.g., “return _a”). �e PDS P3.2 =

(P3.2, Γ3.2, Lab3.2,∆3.2, 〈p,n17〉), where P3.2 = {p}, Lab3.2 is Stmts, Γ3.2 = {ni |

1 6 i 6 20}, and ∆3.2 is the set of PDS rules presented in Fig. 3.2, which are
generated using the rule templates given in Tab. 3.1. �e PDS P3.2 encodes the
interprocedural control �ow of Prog.

One is often interested in modeling more than just simple control �ow. For
example, given the Java program Prog from Fig. 3.1, the �eld-accesses-per-method

problem is to determine, for each methodm, what is the set of �eld names that
are accessed bym? Such queries can be answered by encoding the appropriate
information in the control locations of a PDS. For this particular problem, the
appropriate information is a set of (class-name, �eld-name) pairs. �at is, let K
be the set of all class names de�ned by a program, and F be the set of all �elds.

32

a() ab()

〈p,n3〉
ea

↪−→ 〈p,n4〉 〈p,n9〉
eab

↪−→ 〈p,n10〉
〈p,n4〉

return _a
↪−→ 〈p,n5〉 〈p,n10〉

t1 = a()
↪−→ 〈p,n3 n11〉

〈p,n5〉
xa

↪−→ 〈p, ε〉 〈p,n11〉
t2 = b()
↪−→ 〈p,n6 n12〉

b() 〈p,n12〉
return t1+t2

↪−→ 〈p,n13〉

〈p,n6〉
eb

↪−→ 〈p,n7〉 〈p,n13〉
xab

↪−→ 〈p, ε〉

〈p,n7〉
return _b

↪−→ 〈p,n8〉 main()

〈p,n8〉
xb

↪−→ 〈p, ε〉 〈p,n17〉
emain
↪−→ 〈p,n18〉

cd() 〈p,n18〉
t1 = ab()

↪−→ 〈p,n9 n19〉

〈p,n14〉
ecd

↪−→ 〈p,n15〉 〈p,n19〉
t2 = cd()

↪−→ 〈p,n14 n20〉
〈p,n15〉

_c+_d
↪−→ 〈p,n16〉 〈p,n20〉

xmain
↪−→ 〈p, ε〉

〈p,n16〉
xcd

↪−→ 〈p, ε〉

Figure 3.2: PDS rule set that encodes the interprocedural control �ow of the
Java program in Fig. 3.1.

For answering the �eld-accesses-per-method problem, each control location p
will be a subset of K× F.

Example 3.3. Consider the Java program Prog from Fig. 3.1. Let K = {Prog}
be the set of class names, and F = {_a, _b, _c, _d} be the set of �eld names.
Starting with the single-state PDS P3.2 from Ex. 3.2 that models the control �ow
of Prog, de�ne the PDS P3.3 = (2K×F, Γ3.2, Lab3.2,∆3.3, 〈∅,n17〉), where∆3.3 is∆3.2

augmented to update the control locations upon a �eld access. For a program
statement stmt ∈ Stmts, let accesses(stmt) be the set of �elds accessed by stmt.
For example, if stmt is “return _a” from line 4 in Fig. 3.1, then accesses(stmt) =

33

{(Prog, _a)}.1 De�ne∆3.3 to be the the following set of rules:{
〈s,ni〉

stmt
↪−→ 〈(s ∪ accesses(stmt)),u〉 | 〈p,ni〉

stmt
↪−→ 〈p,u〉 ∈ ∆3.2

∧ s ∈ 2K×F

}
.

PDS Reachability

Once a property of interest has been encoded in the control locations of a PDS,
e.g., the “�eld-accesses-per-method” property of Ex. 3.3, the query of interest is
to determine the set of reachable PDS con�gurations.

Given a PDS P = (P, Γ , Lab,∆, c0), we de�ne for each label a in Lab the
transition relation⇒a between con�gurations of P as follows: if 〈p,γ〉 a

↪−→
〈p ′,u ′〉 ∈ ∆, then 〈p,γ u〉 ⇒a 〈p ′,u ′ u〉 for every u ∈ Γ∗. We denote by
⇒ the union of the individual transition relations⇒a for each a ∈ Lab, i.e.,
⇒=df

⋃
a∈Lab ⇒a. Finally, the re�exive transitive closure of⇒ is denoted by

⇒∗.
Given a set of con�gurations C, we de�ne the set of forwards reachable

con�gurations fromC as:

post
∗(C) =df {c ′ | ∃c ∈ C : c⇒∗ c ′}, (3.1)

and the set of backwards reachable con�gurations fromC as:

pre
∗(C) =df {c ′ | ∃c ∈ C : c ′ ⇒∗ c}. (3.2)

Reachability queries often result in, and sometimes begin from, an in�nite set
of con�gurations. �us, we require a way to represent symbolically an in�nite set
of con�gurations using only a �nite amount of storage, which is accomplished
by using a non-deterministic �nite automaton.

1We assume that �eld names are not rede�ned by subclasses.

34

De�nition 3.4. For a PDS P = (P, Γ , Lab, c0,∆), a P-automaton is a tuple A =

(Q, Γ ,→,P, F), whereQ ⊇ P is a �nite set of states,→⊆ Q×Γ×Q is a transition
relation, P is the set of initial states, and F is the set of �nal states. We say that
a con�guration 〈p,u〉 is recognized by A if u is accepted by A when starting
from state p. Without loss of generality, we assume that A has no transitions
leading to an initial state, i.e., for all q ∈ Q,γ ∈ Γ , and p ∈ P, (q,γ,p) /∈→. A
set of con�gurations is regular if it is accepted by a P-automaton.

For a PDS P and a regular set of con�gurationsC, Bouajjani et al. (1997) and
Finkel et al. (1997) showed that the sets of con�gurations de�ned by post

∗(C)

and pre
∗(C) are regular sets of con�gurations, respectively. Indeed, ifC is repre-

sented as a P-automaton A, then the algorithms for computing post
∗(C) and

pre
∗(C) produce P-automata Apost∗ and Apre∗ , respectively, such that the set of

con�gurations recognized by Apost∗ and Apre∗ are exactly the sets post
∗(C) and

pre
∗(C), respectively.

Example 3.5. Consider the PDS P3.3 = (2K×F, Γ3.2, Lab3.2,∆3.3, 〈∅,n17〉) de�ned
in Ex. 3.3 for the Java program Prog in Fig. 3.1. LetM = {a, b, ab, cd, main} be the
names of the methods de�ned by Prog; letC = {〈∅,nm accessm〉 | m ∈M} be
a regular set of con�gurations, where nm is the program counter for the entry
point of methodm (e.g., n6 for method b), and accessm is a uniquely generated
stack symbol for methodm; and let Apost∗ be the P3.3-automaton that recognizes
post

∗(C). For a methodm, the solution to the �eld-accesses-per-method problem
can be obtained from Apost∗ by computing⋃

{s ∈ 2K×F | 〈s, accessm〉 ∈ Apost∗}.

Remark 3.6. A single reachability query of the PDS P3.3 is su�cient to solve the
�eld-accesses-per-method problem. �at is, Apost∗ summarizes the reachability
query, and one then asks multiple acceptance queries of Apost∗ to determine
the solution for each methodm. �is form of staged analysis generally provides
substantial savings when multiple queries will be issued.

35

PDS Paths

For a PDS P = (P, Γ , Lab,∆, c0), we sometimes need to reason about the set of
PDS paths that cause P to make a transition from con�guration c to con�gu-
ration c ′, where a PDS path ρ is a sequence of PDS rules [r1, . . . , rn]. We use
paths(c, c ′) to denote this set of PDS paths. Note that, due to recursion and
looping, the size of the set paths(c, c ′) can be in�nite.

For program analysis we are generally interested in PDS paths that begin
from the initial PDS con�guration c0. Hence, we distinguish such a PDS path
by calling it a run. For a setC of PDS con�gurations, we de�ne Runs(P,C) to be
the following set of PDS paths: {ρ ∈ paths(c0, c) | c ∈ C}.

�e Language of a PDS

�e last concept we de�ne for PDSs is that of the language of a PDS. �e language
of a PDS comes into play when dealing with both communicating pushdown
systems (Ch. 4) and multi-pushdown systems (Ch. 7). �e basic idea is to treat a
PDS as a language generator.

Speci�cally, for a PDS P = (P, Γ , Lab,∆, c0), we generalize the labeling func-
tion lab : ∆→ Lab from rules to labels to be a function from PDS paths to label
words, lab : ∆∗ → Lab∗, as follows:

lab([]) = ε

lab([〈p,γ〉 a
↪−→ 〈p ′,u ′〉]) = a

lab([r1, r2, . . . , rn]) = lab([r1]) · lab([r2, . . . , rn])

where · denotes the concatenation of labels to form label words.

De�nition 3.7. For a PDS P = (P, Γ , Lab,∆, c0) and a regular set of con�gura-
tionsC, the language of P with respect toC is de�ned as:

Lang(P,C) =df { lab(ρ) | ρ ∈ Runs(P,C) }. (3.3)

36

It is well-known that Lang(P,C) is a context-free language.

Example 3.8. Let P3.8 = ({pa,pb}, {γ,⊥}, {a,b},∆3.8, 〈pa,⊥〉) be a PDS where
∆3.8 is de�ned as follows:

{
〈pa,⊥〉 a↪−→〈pa,γ⊥〉, 〈pa,γ〉 a↪−→〈pa,γγ〉, 〈pa,γ〉 b↪−→〈pb, ε〉, 〈pb,γ〉 b↪−→〈pb, ε〉

}
.

�e language Lang(P3.8, {〈pb,⊥〉}) is the canonical context-free language {anbn |

n > 1}.

3.2 Weighted Pushdown Systems

Weighted pushdown systems (WPDSs) generalize PDSs by attaching to a PDS
P a semiring and a function that maps PDS rules to elements in the semiring’s
domain (Bouajjani et al., 2003; Reps et al., 2003, 2005). We often refer to a semi-
ring as a weight domain, and elements of a semiring’s domain as weights. Reps
et al. (2003, 2005) have shown the strong connection between interprocedural
data�ow analysis and computing reachability queries on a WPDS.

De�nition 3.9. A bounded idempotent semiring is a tuple S = (D,⊕,⊗, 0, 1),
whereD is a �nite set of elements called weights, 0, 1 ∈ D, and⊕ (the combine

operation) and⊗ (the extend operation) are binary operations onD such that

1. (D,⊕) is an commutative monoid with neutral element 0, where ⊕ is
idempotent: ∀x ∈ D, x⊕ x = x.

2. (D,⊗) is a monoid with neutral element 1.

3. ⊗ distributes over⊕: ∀x,y, z ∈ D,

x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z) and (x⊕ y)⊗ z = (x⊗ z)⊕ (y⊗ z).

4. 0 is an annihilator with respect to⊗: ∀x ∈ D, x⊗ 0 = 0 = 0⊗ x.

37

5. In the partial orderv de�ned by ∀x,y ∈ D, x v y i� x⊕y = x, there are
no in�nite descending chains.

As an example, a common semiring used in program analysis is the semiring
whose elements are binary relations over a �nite set V .

De�nition 3.10. For a �nite setV , the relational semiring SV = (2V×V ,∪, ; , ∅, Id)

is the semiring whose elements are binary relations over V ; the combine oper-
ation is union; the extend operation is relational composition (i.e., ∀R1,R2 ∈
2V×V : R1;R2 = {(v1, v3) | ∃v2 : (v1, v2) ∈ R1 ∧ (v2, v3) ∈ R2}); the 0 el-
ement is the empty relation; and the 1 element is the identity relation (i.e.,
Id = {(v, v) | v ∈ V}).

De�nition 3.11. A weighted PDS (WPDS) is a tuple W = (P, S, f), where
P = (P, Γ , Lab,∆, c0) is a PDS, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring, and f : ∆ → D is a map from PDS rules to weights. We abuse no-
tation by de�ning f : ∆∗ → D as f overloaded to operate on a rule sequence
σ = [r1, . . . , rn] as follows: f(σ) = f(r1)⊗ . . .⊗ f(rn).

For a WPDS W = (P, S, f) and con�gurations c and c ′, the set of PDS
paths paths(c, c ′) is de�ned on the underlying PDS P. Similarly, for a set of
con�gurationsC, the set of PDS runs Runs(W,C) is equal to Runs(P,C) for the
underlying PDS P.

For a set of con�gurationsC, reachability queries for PDSs—post
∗ and pre

∗—
are generalized for WPDSs as follows:

post
∗(C) =df { (c ′,w) | ∃c ∈ C : c⇒∗ c ′ ∧w =

⊕
ρ∈paths(c,c ′)

f(ρ)} (3.4)

pre
∗(C) =df { (c ′,w) | ∃c ∈ C : c ′ ⇒∗ c∧w =

⊕
ρ∈paths(c,c ′)

f(ρ)} (3.5)

Given a WPDS, Reps et al. (2003, 2005) present e�cient algorithms for com-
puting weighted post

∗ and pre
∗ queries. �is is accomplished by staging the

38

query. First, similar to PDSs, given a regular set of con�gurationsC, a reachabil-
ity query computes a weighted automaton that recognizes the set of reachable
con�gurations. Second, the automaton can then be queried to determine the
weight that is associated with a (forwards or backwards) reachable con�gu-
ration c ′. However, the automaton is not a P-automaton but a W-automaton,
where the di�erence is that each transition is labeled with a weight.

De�nition 3.12. Let W = (P, S, f) be a WPDS, where P = (P, Γ , Lab,∆, c0) is
a PDS, and S = (D,⊕,⊗, 0, 1) is a semiring. A W-automaton is a tuple AW =

(A, S, l), where A = (Q, Γ ,→,P, F) is a P-automaton, and l is a function that
maps each transition t in→ to a weight w in D. A con�guration c = 〈p,u〉,
is recognized by AW with weight w if u is accepted by A when starting from
state p, andw 6= 0 is the combine of all accepting paths for u in A using the
function l. For an accepting path t1, . . . , tn of transitions for u starting from p,
the weight of t1, . . . , tn is l(t1)⊗ . . .⊗l(tn) if AW is the result of a pre

∗ query, and
is l(tn)⊗ . . .⊗ l(t1) if AW is the result of a post

∗ query. We use AW(c) to denote
the weightw that AW recognizes cwith. For a regular set of con�gurationsC,
we de�ne AW(C) =

⊕
{ AW(c) | c ∈ C }.

Finally, we are sometimes interested in computing the combine-over-all-

valid-paths value between two regular sets of con�gurationsC andC ′.

De�nition 3.13. Let W = (P, S, f) be a WPDS, where P = (P, Γ , Lab,∆, c0). Let
C,C ′ ⊆ P×Γ∗ be two regular sets of con�gurations. �e combine-over-all-valid-

paths value COVP(C,C ′) is de�ned as⊕
σ∈paths(c,c ′), c∈C, c ′∈C ′

f(σ). (3.6)

Reps et al. (2003, 2005) also present an e�cient algorithm for computing a
COVP query. Essentially, for a WPDS W, a W-automaton AW is computed by
solving a post

∗(C) query. �e desired weight is then AW(C ′).

39

As a concrete example, we show how to use a WPDSCOVP query to compute
a solution to the �eld-accesses-per-method problem for the Java program Prog
in Fig. 3.1.

Example 3.14. Consider the program Prog from Fig. 3.1, which has the set of
class names K and �eld names F (as de�ned in Ex. 3.3). Let V = 2K×F be
the �nite set consisting of all subsets of K × F: V is equal to the set of con-
trol locations P3.3 of the PDS P3.3 from Ex. 3.3. Let WProg = (P3.2, SV , f) be
a WPDS where P3.2 = (P3.2, Γ3.2, Lab3.2,∆3.2, 〈p,n17〉) is the PDS from Ex. 3.2;
the semiring domain is binary relations over the subsets of K × F; and f is
de�ned as follows: for PDS rule r ∈ ∆, if lab(r) ∈ {“l = o.f ”, “o.f = l”} then
f(r) = {

(
s, s ∪ (Ko, f)

)
| s ⊆ K× F}, where Ko is the class name of the object-

reference o. For a methodm and its uniquely generated stack symbol accessm,
the query “COVP({〈p, em accessm〉}, {〈p, accessm〉})” computes a relationR that
can be used to determine the �elds that are accessed bym. In particular, the
projection of R on the empty set, denoted by R[∅], gives the �elds accessed bym.

Remark 3.15. Ex. 3.14 replaces PDS P3.3 from Ex. 3.3, which has multiple control
locations, by a WPDS whose PDS component has a single control location,
and whose semiring domain is binary relations on the control locations of the
original PDS. �is technique can be used for an arbitrary PDS (Schwoon, 2002).

An implementation of the WPDS algorithms (Reps et al., 2005) and some
not discussed here (Lal et al., 2005; Lal and Reps, 2006) can be found in the freely
downloadable library “WALi: Weighted Automaton Library” (Kidd et al., 2009a).

40

4 communicating pushdown systems

�e approach taken in the dissertation to verifying AS-atomicity of a concurrent
Java program is to use PDS-based software model checking. For the �rst part
of the dissertation, speci�cally Chs. 5 and 6, we use the PDS-based formalism
known as communicating pushdown systems (CPDSs).

CPDSs were �rst proposed by Bouajjani et al. (2003) as a generic model for
programs that perform global rendezvous-style synchronization. Conceptually,
a CPDS is a set of PDSs. Because each PDS de�nes a context-free language
(CFL), a CPDS can also be viewed as a set of CFLs. From the language point
of view, a CPDS-reachability query is tantamount to determining whether the
intersection of the set of CFLs is empty, which is a known undecidable problem.
�us, CPDS model checking uses only a semi-decision procedure (SDP), i.e., an
algorithm that (attempts to) answer an undecidable “yes/no” (reachability) query,
but can also return the inconclusive result “maybe”.

Bouajjani et al. (2003) proposed four language abstractions for the CFLs of
the PDSs of a CPDS. �e abstractions are regular over-approximations, and thus
determining the emptiness of intersection of the (regular) abstract languages is
decidable. Because over-approximation is used, if the intersection of the abstract
languages of the PDSs is empty, then so too is the intersection of the concrete
CFLs of the PDSs. Unfortunately, for the case when the intersection of the
abstract languages is non-empty, with the abstractions proposed by Bouajjani
et al. (2003) it is not possible to determine if a word in the abstract intersection
is in the concrete intersection. Moreover, they do not discuss how to re�ne the
abstractions.

Together with several collaborators, I developed re�nable abstractions that
address both of these issues (Chaki et al., 2006). In addition, this chapter presents
(1) a previously unpublished abstraction that is more precise than the one pre-
sented by Chaki et al. (2006), and (2) three heuristics for performing abstraction
re�nement. We conclude with a case study that uses CPDS model checking for

41

analyzing a model of a Windows Bluetooth driver.
�e rest of this chapter is organized as follows. §4.1 presents an overview of

the use of re�nable abstractions. §4.2 presents the formal de�nition of CPDSs.
§4.3 presents α-SDP, the SDP from Chaki et al. (2006) for performing CPDS
reachability analysis. §4.4 presents β-SDP, an improved SDP for performing
CPDS reachability analysis. §4.5 presents two heuristics, and their combination,
for performing CPDS reachability analysis. §4.6 presents a case study that com-
pares each of the de�ned SDPs for analyzing a model of a Windows Bluetooth
driver. §4.7 presents a summary.

4.1 Overview

Given a set of CFLs L1, . . . ,Ln for PDSs P1, . . . , Pn, the SDP that is implemented
by the CPDS model checker Cpdsmc uses abstraction to de�ne a regular over-
approximationRi for each CFLLi, 1 6 i 6 n, and approximates the intersection
result L =

⋂n
i=1 Li by R =

⋂n
i=1 Ri. �e abstractions employed use a form of

bounded precision. Namely, for a bound k, the language Li is divided into two
sets: (1) words of length less than k; and (2) words of length greater than or equal
to k. �e �rst set is referred to as the concrete set because it can be modeled
precisely, i.e., no abstraction is required. Likewise, the second set is referred to as
the abstract set because abstraction of this set is required to ensure decidability
of the emptiness of intersection.

Because each Ri, 1 6 i 6 n, is an over-approximation of the corresponding
CFL Li, R is an over-approximation of L; consequently, if R = ∅ then L = ∅.
�e key to the SDP is that if R 6= ∅, one can determine if R contains a concrete
word w from L (i.e., the length of w is less than k). If no such w exists, then
the abstractions must be re�ned, which amounts to increasing the precision
bound k. �us, the SDP uses the succession of approximations (indicated by
k,k ′,k ′′, . . .)

⋂n
i=1 R

k
i ,
⋂n
i=1 R

k ′

i ,
⋂n
i=1 R

k ′′

i , and so on, to determine if the actual
intersection L =

⋂n
i=1 Li is empty. �is process continues until either (i) a

42

concrete word has been found, (ii) the intersection has been shown to be empty,
or (iii) Cpdsmc has exhausted the available resources.

To de�ne a regular over-approximation of the abstract set, various abstrac-
tions have been considered: �e pre�x abstraction (Chaki et al., 2006) precisely
models the pre�x of length k of each abstract word, but loses precision by allow-
ing any sequence of symbols to follow the pre�x. �e su�x abstraction (Chaki
et al., 2006) precisely models the su�x of length k of each abstract word, but
loses precision by allowing any sequence of symbols to precede the su�x. �e
bi�x abstraction combines the pre�x and su�x abstractions so that abstract
words are constrained on each end, but loses precision by allowing any sequence
of symbols to come in-between. Finally, more precise abstractions for the parts
of words that lie beyond the k-bounded threshold can be used (cf. Nederhof ’s
survey (Nederhof, 1999)). For the rest of the chapter, we will only consider the
pre�x abstraction; however, the following discussion and the presented SDPs
apply to each of the possible abstractions described above.

4.2 De�nition

A CPDS consists of a set of n PDSs that perform global rendezvous-style syn-
chronization on a set of communicating actions. Informally, the labels that
annotate the rules of the PDSs are interpreted as communication actions. A
global con�guration g of a CPDS is a tuple (c1, . . . , cn) of con�gurations of the
individual PDSs.1 To model global rendezvous-style synchronization, a CPDS
can make a transition from global con�guration g to global con�guration g ′ i�
each individual PDS can make a (local) transition on the same communicating
action a, i.e, each PDS must use its locally de�ned transition relation⇒a. �is
is an important point because it induces a tight coupling between the PDSs of
a CPDS, which leads to undecidability for CPDS model checking. �e focus of

1We di�erentiate between PDS con�gurations and CPDS con�gurations by referring to the
latter as global con�gurations.

43

Ch. 7 is a technique that can decouple the PDSs for certain problems, which
results in a decision procedure for instances of those problems.

De�nition 4.1. A communicating pushdown system (CPDS) is a tuple Π =

(P1, . . . , Pn, Act) of pushdown systems, where Act =
⋃n
i=1 Labi is the union

of the individual action sets of the PDSs (Labi is the set of actions of Pi). �ere
is a special action τ that belongs to all the sets Labi, 1 6 i 6 n, such that for all
a ∈ Lab : τ ·a = a = a ·τ. �e action τ is neutral with respect to concatenation,
and represents an internal action of a process modeled by a PDS. �e non-τ
actions correspond to synchronization actions.

For a CPDSΠ, a global con�guration is a tuple g = (c1, . . . , cn) of con�gura-
tions of P1, . . . , Pn. �e initial global con�guration g0 = (c1

0, . . . , cn0) consists of
the initial con�gurations of the individual PDSs. For each action a ∈ Act, we
de�ne the relation a−→ between global con�gurations as follows:

• (c1, . . . , cn) τ−→(c ′1, . . . , c ′n) if there is an index 1 6 i 6 n such that ci ⇒τ

c ′i and c ′j = cj for every j 6= i;

• (c1, . . . , cn) a−→(c ′1, . . . , c ′n) if for every i, 1 6 i 6 n, ci ⇒a c ′i: all pro-
cesses synchronize on a and move simultaneously.

A setG of global con�gurations is regular if it can be represented as a tuple
(C1, . . . ,Cn) of regular sets of con�gurations of the individual PDSs, i.e.,G ={
(c1, . . . , cn) | c1 ∈ C1, . . . , cn ∈ Cn

}
.

From now on, we �x a CPDS Π = (P1, . . . , Pn, Act) and a regular set of
global con�gurations G = (C1, . . . ,Cn), where for every i, 1 6 i 6 n, Pi =

(Pi, Γi, Labi,∆i, ci0),

De�nition 4.2. �e language of Π with respect to G, denoted by Lang(Π,G),
consists of words formed by concatenating sequences of communicating actions
that allowΠ to make a transition from the initial global con�gurationgo to some

44

global con�guration g inG.

{w ∈ Act∗ | ∃g1, . . . ,gn ∈ G : g0
a1−−→ . . . an−−→gn ∧w = a1 · . . . · an }. (4.1)

Remark 4.3. Because the special actionτ is neutral with respect to concatenation,
i.e., τ · a = a = a · τ for all a in Act, the length of a wordw, denoted by |w|,
in Lang(Π,G) might not necessarily re�ect the number of transitions that Π
makes to generatew. �at is, ifw = a1 · . . . · an, then |w| 6 n because some of
the action symbols could be τ.

A CPDS is a natural model of concurrent programs where processes syn-
chronize via rendezvous. �e special transition relation τ−→models a particular
process of a concurrent program performing a local transition. A transition rela-
tion a−→models all processes synchronizing on a. Because a CPDS uses global
rendezvous-style synchronization—i.e., all PDSs synchronize on an actiona and
make a transition simultaneously—and because the special action τ is neutral
with respect to concatenation, we can see that the following holds:

Lang(Π,G) =

n⋂
i=1

Lang(Pi,Ci). (4.2)

Modeling k-wise synchronization

When using CPDSs to model real systems, it is often the case that not all pro-
cesses synchronize on every action. For example, if the program model uses
pairwise synchronization, each action a would be a member of exactly two
action sets Labi and Labj, i 6= j. However, for Eqn. (4.2) to hold, all PDSs must
have the same set of actions. �us, we need to insert everywhere in the paths of
Pi labels that correspond to the synchronization actions that are not in Labi,
but that the other PDSs can perform. Bouajjani et al. (2003) formalized this
encoding via the shu�e operation. For a,b ∈ Act and u, v ∈ Act∗, the shu�e

45

operation E on words is de�ned as follows:

u E ε = {u} = ε E u
au E bv =

(
{a} · (u E bv)

)
∪
(
{b} · (au E v)

)
,

and for two languages L and L ′, L E L ′ = {u E v | u ∈ L, v ∈ L ′}. Using the
shu�e operation, we de�ne the language Li as follows:

Li =df Lang(Pi,Ci) E (Lab \ Labi)∗. (4.3)

Bouajjani et al. (2003) show that Eqn. (4.2) is then extended as follows:

Lang(Π,G) =

n⋂
i=1

Li. (4.4)

�ey also showed that relaxing the synchronization model has no e�ect on
the expressive power of a CPDS—one can simply add “self-loops” to the rule
set of each PDS to account for unused actions. �at is, de�ne a CPDS Π ′ =

(P ′1, . . . , P ′n), where for 1 6 i 6 n, P ′i = (Pi, Γi, Lab,∆ ′i, c
i
0) is Pi with the rule

set∆i augmented as follows:

∆ ′i = ∆i ∪ {〈p,γ〉 a
↪−→ 〈p,γ〉 | p ∈ Pi,γ ∈ Γi,a ∈ (Act \ Labi)}.

Example 4.4. Ex. 3.8 in Ch. 3 de�ned the PDS P3.8 =

({pa,pb}, {γ,⊥}, {a,b},∆3.8, 〈pa,⊥〉) such that Lang(P3.8, {〈pb,⊥〉}) is
the canonical context-free language {anbn | n > 1}. Let P4.4 be
P3.8 with an unused action c and PDS rules added that explicity ac-
count for it: P4.4 =

(
{pa,pb}, {γ,⊥}, {a,b, c},∆4.4, 〈pa,⊥〉

)
, where

∆4.4 = ∆3.8 ∪
{
〈p, x〉 c

↪−→ 〈p, x〉 | p ∈ {pa,pb}, x ∈ {γ,⊥}
}

. �e
language Lang

(
P4.4, {〈pb,⊥〉}

)
is
{
(c∗a)n(c∗b)nc∗ | n > 1

}
.

�e language Lang(Π,G) de�ned by Eqn. (4.4) is equivalent to the language
Lang(Π ′,G) de�ned by Eqn. (4.2)—i.e., the following holds:

46

Lang(Π,G) =
n⋂
i=1
Li =

n⋂
i=1

Lang(P ′i,Ci) = Lang(Π ′,G).

�e α-SDP that is presented next only considers a CPDS where the action set
of each PDS is equal to Act, i.e., Labi = Act for each PDS Pi, 1 6 i 6 n. §4.4
presents theβ-SDP, which, unlikeα-SDP, takes advantage of the case when the
action sets are not all equal to Act.

4.3 Reachability Analysis of CPDSs

�e goal of CPDS model checking is to determine if a given set G of global
con�gurations is reachable inΠ. As discussed in §4.1, CPDS model checking is in
general undecidable. �us, we develop a semi-decision procedure that attempts
to answer a reachability query. �e semi-decision procedure (SDP) returns “Yes”
ifG is reachable, “No” ifG is not reachable, and “Maybe” if available resources
are exhausted.2

Each SDP presented in the chapter proceeds in two phases. First, abstraction
is used to compute a regular over-approximation of Lang(Π,G). Second, the
regular over-approximation is checked to determine whether the reachability
query can be answered de�nitively. If so, the user is given the answer. Otherwise,
the regular over-approximation is re�ned and the process continues.

�e Pre�x Abstraction

�e pre�x abstraction is a bounded abstraction that is precise up to a bound k,
and after that bound is exhausted, precision is lost.

2Available resources generally means the memory available to the analyzer, as well as a time
limit.

47

De�nition 4.5. Given a bound k and a language L ⊆ Act∗, the pre�x abstraction

αk(L) is the language:

{
w | w ∈ L∧ |w| < k

}
∪
{
bwckw ′ | w ∈ L∧ |w| > k∧w ′ ∈ Act∗

}
, (4.5)

where for a wordw and a bound k, bwck denotes the pre�x ofw of length k.
A word w ∈ αk(L) is called a concrete word if |w| < k and an abstract word
otherwise.

Example 4.6. Given P4.4 from Ex. 4.4 and boundk = 3,α3
(
Lang(P4.4 , {〈pb,⊥〉})

)
is the language

{
ab
}
∪
{
aaaw, aabw, aacw, abcw, acaw, acbw, accw,

caaw, cabw, cacw, ccaw, cccw | w ∈ Lab∗
}

.

For a language L and bound k, the pre�x abstraction αk(L) can be repre-
sented by two sets:

1. �e concrete set consists of all concrete words and is represented exactly.

2. �e abstract set consists of the pre�xes of length k, where each pre�x
summarizes an in�nite set of words.

�e representation is �nite because there are only a �nite number of wordsw
such that |w| 6 k.

Example 4.7. �e language α3
(

Lang(P4.4 , {〈pb,⊥〉})
)

from Ex. 4.6 can be
represented by the �nite sets

(
{ab}, {aaa, aab, aac, abc, aca, acb, acc, caa,

cab, cac, cca, ccc}
)

.

Implementing the Pre�x Abstraction

Given a PDS P and a regular set of con�gurations C, the pre�x abstraction
de�nes a regular approximation to Lang(P,C). To compute a pre�x abstraction,
we use a WPDS COVP query, where the weight domain is the pre�x semiring.

48

De�nition 4.8. Given action set Act and a bound k, letDαk be the powerset of⋃
06i6k Acti (i.e.,Dαk is the set of all subsets of words over Act of length less than

or equal to k). For two wordsw1 = a1 . . .ai andw2 = b1 . . .bj, letw1 ./k w2

be the word ba1 . . .aib1 . . .bjck, and extend ./k to operate on sets of words in
the natural way.3 �e pre�x semiring Sαk is de�ned as (Dαk ,∪, ./k, ∅, {ε}).

For PDS P = (P, Γ , Lab,∆, c0) and bound k, de�ne Wαk = (P, Sαk , f) to
be a WPDS, where Sαk is the pre�x semiring over Lab and k, and for each rule
r = 〈p,γ〉 a

↪−→ 〈p ′,u ′〉 in ∆, f(r) is the weight {a}. �e solution to the query
COVP({c0},C) on Wαk computes αk

(
Lang(P,C)

)
.

In practice, one must be careful with the representation of a weight. For a
bound k, the size of a weight, i.e., the number of words in the set, is exponential
in k. More precisely, it is bound byO(Labk). �us, an explicit representation
using sets of strings will not scale. Cpdsmc encodes sets of strings using binary
decision diagrams (BDDs) (Bryant, 1986). BDDs are also of exponential size
in the worst case; however, their implementation saves space by representing
duplicate elements (e.g., common pre�xes of words) with shared structures.

�eα-SDP

Alg. 4.1 presents α-SDP (originally de�ned by Chaki et al. (2006)). α-SDP takes
as input a CPDS Π and a regular set of con�gurationsG, and attempts to de-
termine ifG is reachable inΠ. To do so, it makes use of the pre�x abstraction.
Initially, the pre�x bound k is set to 1 (line 1). For a given value of k, the pre�x ab-
straction of each language Li for PDS Pi (cf. Eqn. (4.3)) computes a regular over-
approximation ofLi (line 3). �e intersection of the regular over-approximations
is then queried to determine ifG is reachable. If the intersection is empty, then
Gmust not be reachable (lines 4–5). �is is sound because each αk(Li) over-
approximates Li. �at is, A∩ =

⋂n
i=1 αk(Li) ⊇

⋂n
i=1 Li, and if A∩ = ∅ then⋂n

i=1 Li = ∅. Otherwise, a minimal-length wordwmin is extracted from A∩, and
3Recall that for a wordw, the word bwck is equal tow if |w| < k, and the pre�x ofw of

length k otherwise.

49

Algorithm 4.1: �e α-SDP. (wmin is a minimal-length word in A∩.)

Input 1:Π = (P1, . . . , Pn, Lab), a CPDS
Input 2:G = (C1, . . . ,Cn), a regular set of con�gurations
output : WhetherG is reachable inΠ.
k=11

while true do /* Resources are available */2

A∩ =
⋂n
i=1 αk(Li)3

if A∩ = ∅ then /* G is not reachable */4

return no5

else if |wmin| < k then /* G is reachable */6

return yes7

else8

k=k+19

return maybe /* Exhausted resources */10

α-SDP checks whetherwmin is concrete, i.e., |wmin| < k (line 6). Recall that the
pre�x abstraction is precise for words whose length is strictly less than k. �us,
if such a word exists then that word must also be in the concrete intersection
and hence a member of Lang(Π,G) (line 7). If no such word exists, i.e., all words
in A∩ have length greater than or equal to k, then k is incremented to re�ne the
abstraction (line 9). �is process terminates when either a value of k has been
reached that is precise enough to answer the query, or Cpdsmc has exhausted
all of its available resources.

4.4 Improved Reachability Analysis

�e CPDS reachability analysis described in §4.3 is ine�cient because of the
need to account for the right operand of the shu�e term in Eqn. (4.3). �at is,
explicitly adding rules to PDS Pi to account for the unused actions (i.e., Act \

Labi) causes (i) the abstraction to lose more precision than necessary, and (ii)
answer sets to be possibly of exponentially greater size than with the technique
described in this section. In fact, when only using αk(Li) to approximate the

50

language of Pi, Cpdsmc exhausted all resources on even the simplest of queries.
Using the improved βk(Li) abstraction de�ned below, Cpdsmc took only 2.76
seconds to determine reachability for a Bluetooth model (see §4.6), whereas
using the abstractionαk(Li), it ran out of memory on a dual-core Xeon processor
with 4 GB of memory.

We motivate the βk abstraction by reviewing CFLs and their pre�x ab-
stractions from earlier examples. Ex. 3.8 in Ch. 3 showed that the language
Lang(P3.8, 〈pb, ε〉) is {anbn | n > 1}. For k = 3, the �nite sets that represent
α3
(
Lang(P3.8, {〈pb, ε〉}

)
is
{
ab,aaa,aab

}
. When an unused communicating

action c is introduced, Ex. 4.4 showed that the language Lang
(
P4.4, {〈pb,⊥〉}

)
is
{
(c∗a)n(c∗b)nc∗ | n > 1

}
. Finally, Ex. 4.7 showed that the pair of �nite sets

that represent α3
(

Lang(P4.4 , {〈pb,⊥〉})
)

is
(
{ab}, {aaa, aab, aac, abc, aca,

acb, acc, caa, cab, cac, cca, ccc}
)

.
Observe that for the pre�x abstraction Rα3 = α3

(
Lang(P4.4, {〈pb, ε〉}

)
, all

of the regularity of the unused action c in Lang(P4.4, {〈pb, ε〉}), i.e., the c∗ in{
(c∗a)n(c∗b)nc∗ | n > 1

}
, has been lost. Moreover, the pre�x abstraction Rα3

actually recognizes words where a “b” action comes before an “a” action. �is
is because the abstract word ccc in the pair of �nite sets that represents Rα3 is
interpreted as the set of words {cccw | w ∈ Act∗}. Finally, explicitly modifying
Pi to account for unused actions, as in Ex. 4.4, causes the set that represents
αk(Li) to be exponentially larger in the size of Act \ Labi (e.g., aaa blows up
to
{
aaa,aac,aca,acc, caa, cac, cca, ccc

}
). We avoid this ine�ciency and

de�ne a more precise abstraction, βk, by leveraging the fact that we can use the
shu�e operation to account for unused actions.

Recall that for a PDS Pi, the concrete language of interest is Li de�ned by
Eqn. (4.3). Instead of directly applying the pre�x abstraction to Li (i.e., αk(Li)),
we gain precision by pulling the shu�e operation outside of the approximation:

βk(Li) =df αk
(
Lang(Pi,Ci)

)

E (Act \ Labi)∗. (4.6)

It is easy to see thatβk(Li) is an over-approximation ofLi, and that incrementing

51

βk(Li) αk(Li)

αk
(
Lang(Pi,C)

)

E (Act \ Labi)∗ ⊆ αk
(
Lang(Pi,C) E (Act \ Labi)∗

)
Figure 4.1: Precision comparison between βk(Li) and αk(Li).

k obtains a more precise over-approximation, i.e., for every i, Li ⊆ βk+1(Li) ⊆
βk(Li).

�e βk abstraction avoids the exponential increase that occurs when addi-
tional PDS rules are introduced to account for unused actions. Also,βk provides
a more precise over-approximation of Li because βk performs an exact shu�e.
�e relationship between αK(Li) and βk(Li) is shown in Fig. 4.1.

Moreover, performing the shu�e after computing the pre�x abstraction
is trivial. Let Ai = (Qi,Σi, δi,q0, F) be the automaton (de�ned in the
usual way) that accepts the language αk

(
Lang(Pi,Ci)

)
. �e shu�e operation

Lang(Ai) E (Act \ Labi)∗ is performed directly on Ai by augmenting the transi-
tion relation δi with the following set of additional transitions: {(q,a,q) | q ∈
Qi ∧ a ∈ (Act \ Labi)}.

Example 4.9. Let Act = {a,b, c}. �e language β3
(
Lang(P4.4, {〈pb,⊥〉})

)
is

{c∗ac∗bc∗} ∪ {c∗ac∗aw | w ∈ Act∗}. �is is a more precise approximation
than the language α3

(
Lang(P4.4, {〈pb,⊥〉})

)
=
{
ab
}
∪
{
aaaw, aabw, aacw,

abcw, acaw, acbw, accw, caaw, cabw, cacw, ccaw, cccw | w ∈ Lab∗
}

from Ex. 4.6 because for abstract words, the former enforces that two “a” actions
occur before a “b” action.

Alg. 4.2 presents the β-SDP, a more precise and e�cient SDP than α-SDP.
Compared to Alg. 4.1, there are two di�erences.

1. �e βk abstraction replaces the αk abstraction on line 3.

2. To determine the concreteness of wmin with respect to a PDS Pi, the
unused actions of Pi (i.e., Act \ Labi), must be projected out of the word
wmin (line 6). (Projection is explained next.)

52

Algorithm 4.2: �e β-SDP. (wmin is a minimal-length word in A∩.)

Input 1:Π = (P1, . . . , Pn, Lab), a CPDS
Input 2:G = (C1, . . . ,Cn), a regular set of con�gurations
output : WhetherG is reachable inΠ.
k=11

while true do2

A∩ =
⋂n
i=1 βk(Li)3

if A∩ = ∅ then4

return no5

else if max(|π1(wmin)|, . . . , |πn(wmin)|) < k then6

return yes7

else8

k=k+19

return maybe10

Because the βk abstraction performs the shu�e after approximating Li, the
length of a wordw ∈ A∩ is no longer su�cient to determine ifw is concrete.
�at is, for a wordw ∈ A∩ and PDS Pi, the actions that are not executed by Pi

and that were introduced in βk(Li) because of the shu�e operation must be
projected out (line 6). Letw be the sequence of actions a1 · · ·a|w|; then for each
i, 1 6 i 6 n, πi(w) = πi(a1) · · ·πi(a|w|), where the mapping πi is de�ned as
follows:

πi(a) =

{
a if a ∈ Labi
τ if a ∈ Lab \ Labi.

If the length of the projection is less than k (i.e., |πi(w)| < k), then this corre-
sponds to a concrete execution for process Pi.

Example 4.10. Let Π3 = (P1, P2, P3, Lab), where Lab = {τ,a,b, c,d}, Lab1 =

{τ,b,d}, Lab2 = {τ,a, c}, and Lab3 = {τ,a,b, c,d}. Assume that at k = 3, a
minimal-length wordw = abcdb ∈ A∩ has been found. �en π1(w) = bdb,
π2(w) = ac, and π3(w) = abcdb. Becausew is abstract for k = 3 (π1(w) > 3
and π3(w) > 3), the β-SDP re�nes the value of k to be 4. Note that for P2, the

53

wordπ2(w) = ac represents a concrete execution because its length is less than
3.

Comparing αk and βk: �e following theorem compares α-SDP and β-SDP.

�eorem 4.1. If the α-SDP decides reachability of G in Π at an abstraction k,

then the β-SDP will decide reachability ofG inΠ at an abstraction k ′ 6 k.

Proof. IfG is reachable, then the α-SDP �nds a concrete wordw ∈ Lang(Π,G)

at abstractionk, and |w| = k−1. (�e length ofwmust bek−1 because if it were
less than k− 1, then α-SDP would have foundw an a bound k ′ < k.) Because
of over-approximation, ifw ∈ Lang(Π,G), thenwwill be in

⋂n
i=1 βk(Li), and

thus the β-SDP will �ndw at abstraction k (or another concrete wordw ′ ∈
Lang(Π,G) such that |w ′| = k−1). However, because of the increased precision,
i.e., βk(Li) ⊆ αk(Li), the β-SDP can �nd a concrete wordw ′ at an abstraction
k ′ < k.

Otherwise, assume the α-SDP proves that Lang(Π,G) = ∅ at abstraction
k. For 1 6 i 6 n, βk(Li) ⊆ αk(Li). Hence, if

⋂n
i=1 αk(Li) = ∅, then⋂n

i=1 βk(Li) = ∅. Because βk(Li) ⊆ αk(Li), it is possible for the β-SDP to
prove emptiness at an abstraction k ′ < k.

4.5 Abstraction-Re�nement-Policy Extensions

�is section presents two abstraction-re�nement heuristics, and concludes
by showing how they are easily combined to form a third. �e �rst heuristic
attempts to be more intelligent in choosing how much to re�ne the abstrac-
tion. �e second heuristic attempts to be more intelligent in determining which

abstractions should be re�ned.

54

Algorithm 4.3: �e Multi-step SDP. (wmin is a minimal-length word in A∩.)

Input 1:Π = (P1, . . . , Pn, Lab), a CPDS
Input 2:G = (C1, . . . ,Cn), a regular set of con�gurations
output : WhetherG is reachable inΠ.
k = 11

while true do2

A∩ =
⋂n
i=1 βk(Li)3

if A∩ = ∅ then4

return no5

else if max(|π1(wmin)|, . . . , |πn(wmin)|) < k then6

return yes7

else8

k = πmax + 19

return maybe10

Multi-Step Abstraction Re�nement

�e β-SDP, and also the α-SDP, uses a simple abstraction-re�nement pol-
icy: increase the search depth by one (Algs. 4.1 and 4.2, line 9). �e heuris-
tic employed by Multi-step SDP attempts to improve on this policy by lever-
aging information present in the intersection result A∩. Speci�cally, at line 9
in Alg. 4.2, the β-SDP has found thatwmin is a minimal-length word, and that
max(|π1(wmin)|, . . . , |πn(wmin)|) > k. (We will use πmax to denote the result of
the max computation.) To determine whether or notwmin is concrete, a value
for k equal to πmax + 1 must be used. �e Multi-step SDP, presented in Alg. 4.3,
de�nes the next value of k to be πmax + 1. �e di�erence between β-SDP and
Multi-step SDP is highlighted, using underlining, on line 9 of Alg. 4.3.

�e bene�t of the Multi-step SDP is that Cpdsmc is able to converge more
quickly on a value for k that results in �nding a counterexample (i.e., a concrete
word), and avoids useless work in doing so. �is is illustrated in Ex. 4.11.

Example 4.11. Revisiting Ex. 4.10 wherew = abcdb, the Multi-step SDP deter-
mines that πmax = 5 because π3(w) = abcdb. �us, the next abstraction uses

55

a value of 6 for k instead of 4, and the model checker avoids analysis for k = 4
and k = 5.

Individual Abstraction Re�nement

�e Multi-step SDP addresses the fact that the β-SDP is naïve in determining
what the next value of k should be. We now de�ne the Individual SDP, which
addresses when a new abstraction should be computed.

Let w be a word in the intersection A∩. �en for PDSs Pi and Pj, i 6= j,
it need not be the case that |πi(w)| = |πj(w)| because Labi and Labj can be
di�erent. Due to this di�erence, if the shortest wordw is an abstract word then it
is not necessarily an abstract word for both Pi and Pj. �at is, ifw has the global
property of being abstract, it may in fact be (locally) concrete for some subset of
the PDSs. Ifw is concrete for Pi (i.e., |πi(w)| < k), then the approximation Ai for
the language Lang(Pi,Ci) need not be re�ned. �e Individual SDP, presented in
Alg. 4.4, leverages the possibility of local concreteness by applying an individual-
re�nement heuristic.

�e three di�erences between β-SDP and Individual SDP are highlighted,
using underlining, in Alg. 4.4. First, Individual SDP uses n local abstraction
levels k1, . . . ,kn (line 1). Second, for the wordwmin to be concrete, the length of
the projected word πi(wmin) must be less than ki, for 1 6 i 6 n (line 6). �ird,
ifwmin is an abstract word, then each ki is incremented only as needed (lines
9–11). �ese extensions allow the Individual SDP to focus its re�nement e�orts
on only those PDSs that require it.

Example 4.12. GivenΠ3 from Ex. 4.10, assume that k1 = k2 = k3 = 3 and that
w = abcdb is the same minimal-length word found. Because π2(w) = ac and
|ac| < k2, k2 is not re�ned for the next round of approximation by Individual

SDP. Similarly, because |π1(w)| > k1 and |π3(w)| > k3, the values for k1 and
k3 are incremented for the next round. �us, the next abstraction uses the ki
values (4, 3, 4).

56

Algorithm 4.4: �e Individual SDP. (wmin is a minimal-length word in A∩.)

Input 1:Π = (P1, . . . , Pn, Lab), a CPDS
Input 2:G = (C1, . . . ,Cn), a regular set of con�gurations
output : WhetherG is reachable inΠ.
k1, . . . ,kn = 11

while true do2

A∩ =
⋂n
i=1 βki(Li)3

if A∩ = ∅ then4

return no5

else if
∧n
i=1 |πi(wmin)| < ki then6

return yes7

else8

for i = 1 . . .n do9

if πi(w) > ki then10

ki = ki + 111

12

return maybe13

�ere are two bene�ts to performing abstraction re�nement at the level of
an individual PDS. First, it is possible that a counterexample can be found using
a very coarse approximation for some of the PDSs inΠ. �is permits the model
checker to avoid unnecessarily computing more precise over-approximations
(i.e., the βks) for such PDSs. Second, before performing the shu�e operation
de�ned by βki , the language αki

(
Lang(Pi,Ci)

)
is represented by a �nite set S.

Because the size of S can be exponential in the abstraction level ki, when the
model checker is able to use a coarser abstraction for Pi, it does so using smaller
sets, and thus using less memory.

Individual Multi-Step Abstraction Re�nement

�e logical next step takes advantage of these improvements at the same time.
To combine the two new abstraction-re�nement heuristics, only line 11 in Alg. 4.4
needs to be modi�ed. �e change is to incorporate the multi-step heuristic by

57

Algorithm 4.5: �e Individual Multi-step SDP. (wmin is a minimal-length word
in A∩.)

Input 1:Π = (P1, . . . , Pn, Lab), a CPDS
Input 2:G = (C1, . . . ,Cn), a regular set of con�gurations
output : WhetherG is reachable inΠ.
k1, . . . ,kn = 11

while true do2

A∩ =
⋂n
i=1 βki(Li)3

if A∩ = ∅ then4

return no5

else if
∧n
i=1 |πi(wmin)| < ki then6

return yes7

else8

for i = 1 . . .n do9

if πi(w) > ki then10

ki = πi(w) + 111

12

return maybe;13

de�ning the next value of ki to be |πi(w)| + 1 instead of ki + 1. By doing so, the
Individual Multi-step SDP, presented in Alg. 4.5, is able to take advantage of the
time and space savings provided by the new abstraction-re�nement policies.
Ex. 4.13 gives a comparison of the four SDPs.

Example 4.13. Revisiting Ex. 4.12 with k1 = k2 = k3 = 3 andw = abcdb, the
Individual Multi-step SDP would re�ne k1 and k3; however, it is able to make
a better choice for the next value of k3 because |π3(w)| = 5. �e Individual

Multi-step SDP would choose the next abstraction to have values (4, 3, 6).
To summarize, the re�nement decisions of the four SDPs are as follows:

β-SDP Multi-step SDP Individual SDP Individual Multi-step SDP

k = 4 k = 6 (k1,k2,k3) = (4, 3, 4) (k1,k2,k3) = (4, 3, 6)

58

4.6 Case Study: A Bluetooth Driver

�is section presents a case study of CPDS model checking. �e purpose of
the case study is to compare CPDS model checking using the SDPs that were
presented in this chapter. In addition, we illustrate how a concurrent shared-
memory program is modeled as a CPDS.

Background

�e programs that are discussed are several versions of a buggy Windows Blue-
tooth driver. �e original bug was found by Qadeer and Wu (2004). �e program
shown in Listing 4.1 is the model of an actual Windows Bluetooth driver written
in a Java-like modeling language called Zing (Qadeer et al., 2004).4

For the code shown in Listing 4.1 (and Listing 4.2), starting a process is
modeled by an asynchronous method call, and thus the program contains two
processes TAdd and TStop that execute the methods Add and Stop, respectively. A
valid instantiation of either program consists of a �nite number of Add processes
and one Stop process (Listing 4.1 and Listing 4.2 show instantiations with one
Add and one Stop process, respectively.) Processes communicate via the shared
variables shown at the top. �e �rst three variables are Boolean �ags that have
the following meanings:

• �e �ag stopped indicates whether the driver has stopped. It is initialized
to false in the main method, and set to true when all of the processes
have completed execution.

• �e �ag driverStoppingFlag indicates whether the driver has received
a request to stop execution. It is initialized to false, and set to true when
a stop request has been issued (modeled by the Stop method).

4�e programs shown in Listing 4.1 and Listing 4.2 have been simpli�ed to �t on one page.
�e actual Zing code can be found on the Bluetooth driver web page (Kidd, 2009).

59

Listing 4.1: Orig. Bluetooth model
1 bool stopped = false;
2 bool driverStoppingFlag = false;
3 bool stoppingEvent = false;
4 int pendingIo = 1;
5
6
7 // Models the single "stop" request
8 void Stop() {
9 driverStoppingFlag = true;

10 IoDecrement();
11 WaitForStoppingEvent();
12 stopped = true;
13 }
14
15 // Models a single "user" request
16 void Add() {
17 bool status = IoIncrement();
18 if (status) {
19 // do work here
20 assert(!stopped);
21 }
22 IoDecrement();
23 }
24
25 bool IoIncrement() {
26 if (driverStoppingFlag == true) {
27 return false;
28 }
29 else {
30 // BUG: Context switch here allows
31 // stopped to be set to true
32 InterlockedIncrementPendingIo();
33 return true;
34 }
35 }
36
37 void IoDecrement() {
38 int val = InterlockedDecrementPendingIo();
39 if (val == 0) { stoppingEvent = true; }
40 }
41
42 atomic int InterlockedIncrementPendingIo() {
43 pendingIo = pendingIo + 1;
44 return pendingIo;
45 }
46
47 atomic int InterlockedDecrementPendingIo() {
48 pendingIo = pendingIo - 1;
49 return pendingIo;
50 }
51
52 void WaitForStoppingEvent() {
53 select { wait (stoppingEvent) -> ; }
54 }
55
56 void main() {
57 async { Add(); }
58 async { Stop(); }
59 }

Listing 4.2: Rev. Bluetooth model
1 bool stopped = false;
2 bool driverStoppingFlag = false;
3 bool stoppingEvent = false;
4 int pendingIo = 1;
5
6
7 // Models the single "stop" request
8 void Stop () {
9 driverStoppingFlag = true;

10 IoDecrement();
11 WaitForStoppingEvent();
12 stopped = true;
13 }
14
15 // Models a single "user" request
16 void Add () {
17 bool status = IoIncrement();
18 if (status) {
19 // do work here
20 assert(!stopped);
21 }
22 IoDecrement();
23 }
24
25 bool IoIncrement() {
26 int val = InterlockedIncrementPendingIo();
27 if(driverStoppingFlag == true) {
28 // BUG: Decrement here causes a
29 // double decrement by Add
30 IoDecrement();
31 return false;
32 }
33 else
34 return true;
35 }
36
37 void IoDecrement() {
38 int val = InterlockedDecrementPendingIo();
39 if(v == 0) { stoppingEvent = true; }
40 }
41
42 atomic int InterlockedIncrementPendingIo() {
43 pendingIo = pendingIo + 1;
44 return pendingIo;
45 }
46
47 atomic int InterlockedDecrementPendingIo() {
48 pendingIo = pendingIo - 1;
49 return pendingIo;
50 }
51
52 void WaitForStoppingEvent() {
53 select { wait (stoppingEvent) -> ; }
54 }
55
56 void main(){
57 async { Add(); }
58 async { Stop(); }
59 }

60

• �e �ag stoppingEvent is set to true when all user requests have com-
pleted execution. �e Stop process discussed below waits for the �ag
stoppingEvent to be set to true before stopping the driver, i.e., before
releasing the shared resources.

�e fourth variable, pendingIo, is an integer counter that tracks the number
of active processes. It is initialized to 1 to model that the Bluetooth driver has
been loaded and has begun executing in the Windows kernel.

�e interleaved execution found by Qadeer and Wu (2004) that leads to an
assertion failure (line 20 of Listing 4.1) is as follows:

• TAdd begins execution and calls IoIncrement. �e �ag
driverStoppingFlag is false, so it proceeds down the else branch. At
this point it is interrupted on line 31.

• TStop begins execution and executes the method Stop to completion.
First, driverStoppingFlag is set to true. Second, IoDecrement is
called. �ird, IoDecrement calls InterlockedDecrementPendingIo,
which decrements pendingIo and returns 0. Fourth, because 0 was re-
turned, stoppingEvent is set to true. Fifth, WaitForStoppingEvent is
called and it immediately returns because stoppingEvent is true. Fi-
nally, stopped is set to true.

• TAdd resumes execution on line 31, which increments pendingIo by ex-
ecuting InterlockedIncrementPendingIo. �e method IoIncrement
returns true, and then TAdd proceeds down the true branch. At this point,
stopped is true and thus the assertion on line 20 fails.

Brie�y, the model-checking approach used by Qadeer and Wu (2004) is as
follows: from a program with two threads T1 and T2, they de�ne a single-threaded
program T that (i) begins executing T1, (ii) non-deterministically performs a
context switch to execute T2, and (iii) non-deterministically switches back to
T1. By bounding the number of context switches, sometimes referred to as

61

context-bounded model checking (Qadeer and Rehof, 2005; Lal et al., 2008; Lal
and Reps, 2008), they maintain decidability. In this case, because the bound
is 2, the melding of T1 and T2 to de�ne T can be obtained by inserting a non-
deterministic call to the main procedure of T2 before every statement de�ned by
T1. Similarly, before every statement de�ned by T2, a non-deterministic return
to T1 is inserted. Finally, the non-deterministic choice is guarded to ensure that
a call and a return can each occur once. Once T has been de�ned, a standard
PDS reachability query on the PDS P that models T can be used to perform
2-context-bounded model checking.

Every 2-context-bounded model checking problem can be encoded as a 2-
PDS CPDS using a pre�x bound k = 3. �e �rst communicating action passes
the global state from PDS P1, i.e., the control location of P1, to PDS P2. �e
second communicating action returns the updated global state from P2 to P1.
Hence, the set Act of communicating actions will be exactly the set of control
locations of the PDS P that models the melded thread T . Finally, a pre�x bound
of 3 ensures precision for two communicating actions.

Context-bounded model checking as de�ned by Qadeer and Wu (2004) can-
not verify a property of a program because it only explores executions with
at most 2-context switches, i.e., it uses under-approximation. In a discussion
with Qadeer, we pointed out that CPDS model checking can, in some cases,
verify a property because CPDS model checking uses (a sequence of) over-
approximations. Qadeer set forth the challenge to verify that the bug discovered
by Qadeer and Wu (2004) had been corrected in the updated Bluetooth driver
program shown in Listing 4.2. In an attempt to do so, we discovered that the
program shown in Listing 4.2 actually contained a bug. �e bug, and a proposed
�x, were reported in Chaki et al. (2006).

�e New Bug

�e program shown in Listing 4.2 is Qadeer’s revised version of the program
from Listing 4.1. �e only di�erence is the implementation of the IoIncrement

62

method on lines 25–34. (�e main di�erences are underlined in Listing 4.2.) In
an attempt to correct the bug discussed above, IoIncrement was modi�ed to
�rst increment the counter pendingIo, which eliminates the buggy interleaving
discussed above.

�e program shown in Listing 4.2 has the unspeci�ed invariant that the
value of pendingIo should be equal to the number of executing processes.
�e new bug is that certain thread interleavings cause the invariant to be vi-
olated. �e source of the bug is in the method IoIncrement. As the name
implies, IoIncrement should always increment pendingIo by one. However, if
driverStopingFlag is true, then IoDecrement is called. �e net e�ect is that
the counter is not incremented. When the Add method invokes IoIncrement,
and driverStoppingFlag is true, it will perform a double decrement on
pendingIo. As just described, in this scenario, the method IoIncrement does
not actually increment the counter. �us, the call to IoDecrement on line 17
performs a second decrement of pendingIo.

For an instantiation with only two threads, the bug does not lead to an
assertion failure on line 20. For the assertion to fail, there must be at least two
Add processes. For an instantiation with two Add processes, T 1

Add and T 2
Add, and

one Stop process TStop, the interleaved execution that causes an assertion failure
is as follows:

1. T 1
Add executes lines 12-14, and is then paused before checking the assertion

on line 15.

2. TStop executes lines 5–7, which leaves it stuck waiting for the
stoppingEvent �ag to be set to true.

3. T 2
Add executes to completion. In doing so, it performs the double decrement

to pendingIo, which results in pendingIo having the value 0. �e second
call to IoDecrement sets stoppingEvent to true because pendingIo is
0.

4. TStop is awakened, and sets stopped to true.

63

5. T 1
Add resumes execution. At this point, stopped is true, which causes the

assert statement on line 15 to fail.

It is necessary for there to be more than one Add process because the asser-
tion failure requires one Add process to perform the double decrement, which
allows the Stop process to set stopped to true, and a second Add process to
then execute (and fail) the assertion check on line 20. We have used Cpdsmc to
establish that an instantiation with just a single Add process could perform the
double decrement, but not cause the assertion to fail.

�e CPDS Model

In general, a shared-memory concurrent program modeled as a CPDS consists of
two types of PDSs, state-PDSs and process-PDSs. A state-PDS models a portion
of the shared state. For the program in Listing 4.2, there are four shared variables,
and hence the CPDS model contains four state-PDSs. A process-PDS models
an actual program process. For the program shown in Listing 4.2, process-PDSs
model the Add and Stop processes. We will use SProcs to denote the �nite set of
processes, and x to denote the name of a process in SProcs.

State-PDSs can be further characterized according to the type of shared
variable that they model. For a Boolean variable, such as stopped, a state-PDS
implements a �nite-state machine, and is formally de�ned below.

De�nition 4.14. Let b be a Boolean variable. �e PDS that models b is de�ned
as Pb = (Pb, Γb, Labb,∆b, cb0), where Pb = {p} is a single control location; Γb =

{t, f} consists of stack symbols t and f that represent the variable holding true
and false, respectively; Labb = {x.set, x.unset, x.is-set, x.not-set | x ∈ SProcs}

consists of actions to set b, unset b, and query whether b is set or not (is-set
not-set, respectively); cb0 is 〈p, t〉 or 〈p, f〉 depending on whether b is initialized

64

to true or false; and∆b is the set consisting of the following rules:

〈p, t〉 x.unset
↪−→ 〈p, f〉, 〈p, f〉 x.unset

↪−→ 〈p, f〉,
〈p, f〉 x.set

↪−→ 〈p, t〉, 〈p, t〉 x.set
↪−→ 〈p, t〉,

〈p, t〉 x.is-set
↪−→ 〈p, t〉, 〈p, f〉 x.not-set

↪−→ 〈p, f〉,

where each rule is instantiated for each process-PDS x. Note that there are no
rules of the form 〈p, t〉 x.not-set

↪−→ 〈〈〉〉p,γ and 〈p, f〉 x.is-set
↪−→ 〈〈p,γ〉〉.

�e set of rules∆b de�ned above models the transitions that can be applied
to the state of a Boolean �ag. For example, from the con�guration 〈p, t〉, which
denotes the Boolean �ag b having the value true, it can be set to false by a
process-PDS x by synchronizing on an x.unset action. Each rule is templated on
a process x to distinguish which process invokes the action. Because access to a
shared variable is modeled by pair-wise synchronization between a state-PDS
and a process-PDS, the actions used must be speci�c to the individual process-
PDSs. Hence, the state-PDSs template their action sets on the names of the
program’s processes (e.g., Add for the Bluetooth program).

A state-PDS can model an integer in a very restricted fashion. �at is, for an
integer i, the only operations that are allowed are (i) increments and decrements
to i by 1 (or any �xed constant), and (ii) tests of whether or not i is zero. �ese are
precisely the operations that are needed to model an integer that implements a
counter c. �e state-PDS that models a counter is de�ned by Defn. 4.15.

De�nition 4.15. Let c be a counter. �e PDS that models c is de�ned as
Pc = (Pc, Γc, Labc,∆c, cc0), where Pc = {p} is a single control location;
Γc = {1, 0} is a binary alphabet that is used to count in unary; Labc =

{x.inc, x.dec, x.is-zero, x.not-zero | x ∈ SProcs} consists of actions to increment
(inc) and decrement (dec) the counter, and to test whether or not the counter is
zero (is-zero and not-zero, respectively); cc0 = 〈p, 1k 0〉models c being initialized
to k by placing k occurrences of the symbol “1" on the stack; and∆c is the set

65

consisting of the following rules:

〈p, 0〉 x.inc
↪−→ 〈p, 1 0〉, 〈p, 1〉 x.inc

↪−→ 〈p, 1 1〉,
〈p, 0〉 x.is-zero

↪−→ 〈p, 0〉, 〈p, 1〉 x.not-zero
↪−→ 〈p, 1〉,

〈p, 1〉 x.dec
↪−→ 〈p, ε〉,

where each rule is instantiated for each process-PDS x.

In the set of rules ∆c de�ned above, rules that model incrementing the
counter always push a 1-symbol onto the stack. A counter that has the value
zero is modeled by the top-of-stack symbol being 0. A counter that has a non-
zero value is modeled by the top-of-stack symbol being 1. Speci�cally, a counter
that has a value of k is modeled by a stack that has k occurrences of the symbol
“1" at the top and a 0-symbol on the bottom. A decrement to the counter is
modeled by popping a 1-symbol o� the top of the stack. As for the PDS Pb that
models a Boolean variable b, the action set Labc for counter c is templated on
the names of the program’s processes.

For a process x, there is a process-PDS Px = (Px, Γx, Labx,∆x, cx0). �e con-
trol locations Px encode a �nite amount of local state, which enables modeling
Boolean return values from called methods. �e stack alphabet Γx, rules∆x, and
initial con�guration cx0 are all de�ned in the usual way (cf. Tab. 3.1 in Ch. 3). �e
action set Labx encodes both actions that a�ect the shared state of a program
statement, and actions that perform tests on the current valuation of the shared
state. For example, the statement “pendingIo = pendingIo + 1” on line 35
is modeled by exchanging an x.inc action with the PDS PpendingIo that models
the counter pendingIo.

Experiments

We repeated the Bluetooth experiments of Chaki et al. (2006) using the SDPs
that have been presented in this chapter. �e experiments consist of analyzing
the Bluetooth models BT1, BT2 and BT3.

66

Add β-SDP Multi-step Individual Individual

Procs SDP SDP Multi-step SDP
BT1 1 2.8 2.6 1.5 1.4
BT2 2 31.2 26.1 28.8 24.7
BT3 2 1.6 1.6 1.6 1.6
BT3 3 5.4 3.0 5.6 3.2
BT3 4 OOM OOM OOM OOM

Table 4.1: Time in seconds to analyze the Bluetooth models using the four SDPs
listed in the column headings. An “OOM” entry denotes that Cpdsmc ran out of
memory. For BT1–2, the time reported is for Cpdsmc to determine reachability,
i.e., �nd the bug. For BT3 with 2–3 Add processes, the time reported is for
Cpdsmc to determine unreachability, i.e., prove that the bug cannot occur for
an instantiation with the listed number of Add processes.

BT1 is the original buggy Bluetooth model that was �rst reported and pre-
sented by Qadeer and Wu (2004), and is shown in Listing 4.1.

BT2 is the proposed �x for BT1, and is shown in Listing 4.2. As described above,
BT2 is bug-free for an instantiation with a single Add process, but is buggy
for instantiations with two or more Add processes.

BT3 is our modi�cation to BT2 that removes the erroneous call to IoDecrement
on line 23. Removing the call corrects the bug, and has been veri�ed by
Cpdsmc for instantiations with two and three Add processes.

�e time to analyze each model using the four SDPs de�ned in §4.3 and §4.4
is given in Tab. 4.1. For the reported times, the model BT1 consisted of a single
Add process, while models BT2 and BT3 used a two-Add-process instantiation.
Note that analysis times are not reported for α-SDP because α-SDP exhausted
all resources when analyzing each of the models BT1–3.5 Overall, each re�ne-
ment heuristic alone, and their combination, provided a performance boost

5�is is not a contradiction with the experimental evaluation by Chaki et al. (2006) because
Cpdsmc was already using β-SDP. Although β-SDP had been unpublished until now, the fact
that α-SDP could not analyze the models led to the development of β-SDP.

67

over β-SDP for analyzing the Bluetooth models. �e best performance was ob-
tained by using Individual Multi-step SDP (see the right most column in Tab. 4.1).
Comparing Multi-step SDP to Individual SDP, analysis was faster for BT2 and
BT3 when using Multi-step SDP, and for BT1, Individual SDP provided a larger
performance gain.

�e four-Add-process instantiation of BT3 exhausted the available memory
resources. �e issue is that every Bluetooth process can both query and update
the state of the counter pendingIo, and the PDS PpendingIo allows for any combi-
nation of queries and updates. For example, the language of PpendingIo allows for
the Stop process to increment and decrement the counter pendingIo any num-
ber of times, which is an over-approximation of the Stop process’s actual behav-
ior (the Stop process only decrements pendingIo once, and never increments
pendingIo). �e net e�ect is that the language of PpendingIo grows exponentially,
which causes it to exhaust the available memory. Invalid behaviors, such as the
ones present in Lang(PpendingIo), could be removed. To do so would require, after
each approximation-round i, re�ning the language Lang(PpendingIo) by taking
the intersection of Lang(PpendingIo) and Lang(Ai∩), where Ai∩ is the intersection
of the computed pre�x languages for bound i. Intersection would remove words
from Lang(PpendingIo) that could not occur in an actual interleaved execution (e.g.,
a word consisting of actions that model increments to pendingIo by the Stop
process). In essence, for a PDS P, intersecting Lang(Ai∩) with Lang(P) before
computing the next-more-precise over-approximation βj(P), j > i, transfers
the “global knowledge” present in Ai∩—an over-approximation of the language
Lang(Π,G)—to P. We have not (yet) explored this possibility.

Considering the similarities of the models for BT2 and BT3, it may seem
odd that the analysis time for BT3 is much faster than for BT2 (for all SDPs
listed). �is is due to the fact that the analysis of BT3 requires one less round of
approximation to prove that a two-Add-process instantiation is correct, which
can be see in Tab. 4.2. Tab. 4.2 shows the sequence of re�nements used by
the Individual Multi-step SDP to analyze each model. An underlined ki value

68

BT1 BT2 BT3

(Stop, Add | pIo, sF, sE) (Stop, Add1, Add2 | pIo,sF,sE) (Stop, Add1, Add2 | pIo,sF,sE)

(2, 2 | 2, 2, 2) (2, 2, 2 | 2, 2, 2) (2, 2, 2 | 2, 2, 2)

(4, 2 | 4, 4, 4) (4, 4, 4 | 4, 4, 2) (4, 4, 4 | 4, 4, 2)

(4, 5 | 4, 5, 4) (7, 4, 7 | 7, 4, 7) (7, 4, 7 | 7, 4, 7)

(4, 5 | 4, 6, 4) (7, 4, 7 | 9, 4, 7)

Table 4.2: Individual Multi-step SDP’s re�nement steps for analyzing the Blue-
tooth models. Bluetooth models BT2 and BT3 are instantiated with two Add
processes and one Stop process. Each table entry is the ki-tuple used during
an analysis round. �e column header gives the component of the Bluetooth
model that PDS Pi models. �e vertical bar “|” separates process-PDSs from
state-PDSs. Underlined entries mark the ki values that were updated for the
between approximation rounds.

indicates a re�nement step for the PDS Pi of the CPDS. �e column headers
list the components of the Bluetooth model that are modeled by each PDS Pi,
where the abbreviations are: “pIo” for pendingIo, “sF” for StoppingFlag, and
“sE” for stoppingEvent.6 We can see that for BT3, the Individual Multi-step SDP
required only three rounds of approximation.

4.7 Summary

In this chapter, we de�ned communicating pushdown systems, and presented
multiple semi-decision procedures for attempting to answer a reachability query.
We applied CPDS model checking to �nd a known bug in a Windows Bluetooth
driver (BT1), �rst reported by Qadeer and Wu (2004). When attempting to verify
a proposed �x, analysis of the model BT2 using a two-Add-process instantiation
showed that the proposed �x did not actually correct the bug. We manually
corrected the �x to produce the model BT3, and proved that the assertion failure

6Because the �ag stopped is only modi�ed by the Stop process, we manually combined the
PDS Pstopped with the PDS PStop.

69

cannot occur for two- and three-Add-process instantiations of BT3.

70

5 empire: model extraction and analysis

�is chapter presents Empire, a tool to verify that all executions of a concurrent
Java program are AS-serializable. Empire takes a demand-driven approach to
the veri�cation problem. Instead of verifying AS-serializability of executions
for all of a program’s objects, the tool focuses on objects that are allocated at
a speci�ed allocation site. For Java, an allocation site is a program location
associated with a new statement. A demand-driven approach reduces the size
of generated models, and enables parallelization because many instances of
Empire can be used in parallel to verify the program proper.

�e input to Empire is a concurrent Java program Prog and an allocation
site χ̇ for a class T in Prog.1 �ere are two conventions for de�ning the atomic
sets of the class T .

1. Assume all �elds de�ned by class T form one atomic set. �is is the
approach taken by Hammer et al. (2008) for performing dynamic AS-
serializable violation detection.

2. �e Empire user speci�es the atomic sets of class T .

Similarly, the units of work for class T can be speci�ed by the user, or Empire
can use the default assumption that all public methods de�ned by T are units
of work. In addition, a unit-of-work method for a class T ′ that has a unitfor
parameter of type T is a unit-of-work method for class T . �e remainder of this
chapter merely assumes that the atomic sets and the unit-of-work methods of T
have been speci�ed in some manner.

Empire’s front-end uses abstraction to generate a program in Empire’s in-
termediate modeling language EML. An EML program consists of a �nite set of
processes that read from and write to a �nite set of shared-memory locations,
and that synchronize on a �nite set of locks. From one EML program, Empire

1�e symbol χ is used to denote an arbitrary allocation site. �e dotted version, χ̇, denotes
the allocation site speci�ed as input to Empire.

71

generates multiple CPDSs to pass as input to the CPDS model checker Cpdsmc.
�e translation from an EML program to a CPDS follows a strategy similar to
that used in the Bluetooth case study presented in §4.6 of Ch. 4. Each EML
process is modeled as a PDS, and each lock, which constitutes shared state, is
also represented by its own PDS. �e one complication in compiling an EML
program into a CPDS is how to detect an AS-serializability violation. We accom-
plish this by including a violation-monitor PDS that checks one of the fourteen
problematic scenarios.2

In each of the generated CPDSs, the target set of con�gurations is reachable if
and only if there exists an interleaved execution of the EML program that causes
the violation monitor to reach the error state. �us, a positive reachability result
from Cpdsmc for one query means that there is an AS-serializability violation
in the EML program. Because of over-approximation, the Java program may or
may not have an actual violation. A negative reachability result from Cpdsmc
for all queries means that all executions of the EML program have been veri�ed
to be AS-serializable, which proves that for all objects allocated at the speci�ed
allocation site, all executions of the Java program are AS-serializable.

�e choice to model a concurrent Java program as a CPDS has direct implica-
tions on program abstraction. A Java program, which has dynamic memory and
thread allocation, must be abstracted into an EML program with a �nite number
of threads and a �nite number of objects: each entity—thread or object—is
modeled as a PDS, and a CPDS has only a �nite number of PDSs. �e main
technical challenge is to design a �nite-entity program abstraction that (i) is
a sound overapproximation of the set of program behaviors, and (ii) retains
precision about the locking behavior of a program. We address the challenge by
de�ning the random-isolation abstraction.

Remark 5.1. A second implication is that translating an EML program into a
CPDS tightly couples the EML processes. By tight coupling, we refer to the

2To remind the reader, Tab. 2.3 on page 24 lists all of the fourteen problematic access
patterns.

72

fact that each PDS of a CPDS can directly observe every action of the rest of
the PDSs. For the translation presented in this chapter, the coupling is in fact
necessary. �e reason is that the languages of the PDSs for EML locks and
the violation-monitor PDS are context-free. As will be fully explained later,
the context-freeness comes from the fact that EML locks, like Java locks, are
reentrant. Moreover, units of work are reentrant, which causes the language of
the violation-monitor PDS to also be context-free. As a teaser, the focus of Ch. 6
is a technique to remove reentrant use of locks and units of work. We then show
in Ch. 7 that after reentrancy has been removed, the problem is in fact decidable!
But we have a long way to go before we can conclude with the decidability result.

�e rest of this chapter is organized as follows: §5.1 reviews AS-serializability
violations; §5.2 presents a program abstraction candidate; §5.3 presents the
random-isolation abstraction; §5.4 presents the implementation of the random-
isolation abstraction; §5.5 presents the Empire Modeling Language EML; §5.6
presents the translation from Java to EML; §5.7 presents the translation from
EML to a set of CPDSs; §5.8 presents our experimental evaluation; and §5.9
presents related work.

5.1 Review of AS-serializability Violations

Listing 5.1 repeats the Java program shown in Listing 2.1, which was discussed
in §2.2 and §2.3 of Ch. 2. �e class SafeWrap from §2.3 has been included, and,
to simplify the following discussion, the class Counter—whose �elds are not
involved in the AS-serializability violation—has been removed. We now review
the AS-serializability violation that was discussed in §2.3 of Ch. 2.

�e motivation for introducing class SafeWrap was that the method
Stack.pop does not check that the Stack is non-empty before accessing the
�eld Stack.data (line 6 of Listing 5.1). �e method SafeWrap.popwrap is a
wrapper for the method Stack.pop, and implements the safety check. First, on
line 23, SafeWrap.popwrap ensures that the size of the parameter “Stack s”

73

is greater than zero, which means that it is non-empty. Second, also on line
23, Stack.pop is invoked on the parameter “Stack s” if it is non-empty, and
otherwise the null reference is returned. �e method SafeWrap.popwrap is im-
plemented incorrectly: the synchronized keyword that annotates the method
performs a synchronization operation on the implicit this parameter (line 22),
whereas a synchronization operation should have been performed on the param-
eter “Stack s”. �e bug allows for the interleaved execution that was discussed
in §2.3, and is repeated below.

T1:

popwrap()︷ ︸︸ ︷
[1

size()︷ ︸︸ ︷
[1(sR1(c))s]1 ..

pop()︷ ︸︸ ︷
[1(sR1(c)R1(d)z

T2:

popwrap()︷ ︸︸ ︷
[2[2(sR2(c))s]2︸ ︷︷ ︸

size()

[2(sR2(c)R2(d)R2(c)W2(d)W2(c))s]2︸ ︷︷ ︸
pop()

]2

Figure 5.1: An interleaved execution of thread T1 and T2 that contains an AS-
serializability violation. R andW denote a read and write access, respectively.
c and d denote �elds count and data, respectively. “[” and “]” denote the be-
ginning and end, respectively, of a unit of work. �e subscripts “1” and “2” are
thread ids. “(s” and “)s” denote the acquire and release operations, respectively,
of the lock of Stack s that is the input parameter to SafeWrap.popwrap().

For the interleaved execution of threads T1 and T2 depicted in Fig. 5.1, thread
T1 begins execution �rst, invokes SafeWrap.popwrap, and then Stack.size,
which returns 1. �read T1 then proceeds down the true branch of the condi-
tional, but is preempted before invoking Stack.pop. �read T2 then begins exe-
cution, invoking and completing the methods SafeWrap.popwrap, Stack.size,
and Stack.pop. �read T2 is able to execute these methods because it is op-
erating on a di�erent SafeWrap object than thread T1, and thread T1 does not
hold the lock associated with the shared Stack object. When thread T1 resumes
execution, it invokes Stack.pop. �e error occurs at this point because the
shared object stack is now empty ; however, thread T1 is about to perform an
operation that was guarded by the condition “s.size() > 0”. Because the �eld

74

Listing 5.1: Modi�ed Stack program.
1 class Stack {
2 public static final int MAX=10;
3 @atomic(S) Object[] data = new Object[MAX];
4 @atomic(S) int count = -1;
5 public synchronized Object pop(){
6 Object res = data[count];
7 data[count--] = null;
8 return res;
9 }

10 public synchronized void push(Object o) {
11 data[++count] = o;
12 }
13 public synchronized int size() {
14 return count+1;
15 }
16 public synchronized replaceTop(Object o) {
17 pop(); push(o);
18 }
19 public static Stack makeStack() { return newχ̇ Stack(); }
20 }
21 class SafeWrap {
22 public synchronized Object popwrap(Stack s) {
23 return (s.size() > 0) ? s.pop() : null;
24 }
25 public static SafeWrap makeSafeWrap() { return new SafeWrap(); }
26
27 public static void main(String[] args){
28 Stack stack = Stack.makeStack();
29 stack.push(new Integer(1));
30 new Thread("1") { makeSafeWrap().popwrap(stack); }
31 new Thread("2") { makeSafeWrap().popwrap(stack); }
32 }
33 }

75

Stack.count has the value −1, the array access on line 6 that results from T1

invoking Stack.pop throws a java.lang.ArrayOutOfBoundsException.
�e interleaved execution raises an exception because it contains an AS-

serializability violation. In this case, the interleaved execution contains prob-
lematic access pattern 12: “R1(c);W2(d);W2(c);R1(d)”. �e �eld accesses that
are part of the pattern are underlined in Fig. 5.1.

Empire is a tool to verify that errors such as the one just described do not
occur in a concurrent Java program Prog. Empire returns answers of the form
“the problematic access pattern p is de�nitely not preset” or “the problematic
access pattern pmay be present”, where p is an integer in the range one through
fourteen that speci�es the particular problematic access pattern of interest
(cf. Tab. 2.3 on page 24 for the complete list). Empire uses abstraction to generate
an abstract program Prog] such that the set of behaviors of Prog] is a sound over-

approximation of the set of behaviors of Prog. �e challenge is to de�ne a �nite-
data abstraction such that Prog] is able to disallow certain thread interleavings
by modeling the synchronization of Prog’s processes.

5.2 �e Allocation-Site Abstraction

A natural choice for a �nite-data abstraction is the allocation-site abstraction

(Jones and Muchnick, 1982). Given an allocation site χ for class T , let Conc(χ)
denote the set of all concrete objects of class T that can be allocated at χ. �e
allocation-site abstraction uses a single abstract object ζ]

χ to summarize all of
the concrete objects in Conc(χ). When the size of Conc(χ), denoted by |Conc(χ)|,
is greater than 1, the abstract object ζ]

χ is referred to as a summary object. �us,
for each �eld f de�ned by T , �eld ζ]

χ.f is a summary �eld for the set of �elds
{ζ.f | ζ ∈ Conc(χ)}. Because the program has a �nite number of program points,
and each class de�nes a �nite number of �elds, this results in a �nite-data
abstraction.

�ere are �ve allocation sites in Listing 5.1: line 19 allocates a Stack object;

76

line 25 allocates a SafeWrap object; line 29 allocates an Integer object; and
lines 30 and 31 allocate Thread objects T1 and T2, respectively. All allocation
sites except the one on line 25 are executed exactly one time for all executions
of the program shown in Listing 5.1. �e allocation site on line 25 allocates
two concrete objects because the method SafeWrap.makeSafeWrap is invoked
once by thread T1 and once by thread T2.

�e allocation-site abstraction would de�ne the �ve abstract objects ζ]
19,ζ]

25,
ζ]

29,ζ]
30, and ζ]

31, where abstract object ζ]
i represents all concrete objects that

could be allocated at the allocation site on line i. For the program in Listing 5.1,
the abstract objects ζ]

19,ζ]
29, ζ]

30, and ζ]
31 each represent a singleton set because

the program only executes the associated allocation statement once (as dis-
cussed above). However, the abstract object ζ]

25 represents two concrete ob-
jects because the method SafeWrap.makeSafeWrap is invoked twice, once by
threads T1 and T2, respectively.

For the allocation-site abstraction to be sound, an analysis generally has
to perform weak updates on each summary object. �at is, information for the
summary object must be accumulated rather than overwritten. A strong update

of the abstract state generally can only be performed when the analysis can
prove that there is exactly one object allocated at χ, i.e., |Conc(χ)| = 1. For the
program in Listing 5.1, strong updates could be performed on all abstract objects
exceptζ]

25 because abstract objectζ]
25 represents two concrete SafeWrap objects.

Note that an interprocedural analysis would be required to determine that the
abstract object ζ]

19—the abstract object representing objects allocated by the
Stack.makeStack method—represents a singleton set. �e problem is that ζ]

19

is used to allocate all Stack objects, and thus an interprocedural analysis would
be required to prove that the method Stack.makeStack is invoked exactly one
time for all executions of the program. Because of this di�culty, analyses that
make use of the allocation-site abstraction typically resort to the assumption
that every abstract object is a summary object, and do not bother with proving
otherwise.

77

Empire is concerned with tracking reads and writes to the �elds of the T
objects allocated at the speci�ed allocation site χ̇. In Listing 5.1, the allocation
site of interest is on line 19. �is is denoted by the subscripted newχ̇ statement.
�e allocation-site abstraction is a sound overapproximation for modeling reads
and writes because a read from (write to) the abstract �eld ζ]

χ̇.f corresponds to
a possible read from (write to) ζ.f, for one concrete object ζ in Conc(χ). For the
progam shown in Listing 5.1, the reads and writes of interest are to the �elds
Stack.data and Stack.count. �e @atomic(S) annotation on the two �elds
speci�es that each �eld is a member of the atomic set S.

Empire must also model program synchronization. Empire accomplishes
this by de�ning locks in the EML program that correspond to the abstract
objects of Prog]. �ere are two possibilities for de�ning the semantics of an
EML lock. �e �rst possibility is to interpret a lock acquire as a strong update,
i.e., the program has de�nitely acquired a particular lock. �is would corre-
spond to acquiring the locks of all possible instances in Conc(χ), which in most
circumstances—including the one here—would be unsound. In the example
of Listing 5.1, this interpretation of locking combined with the allocation-site
abstraction would preclude the interleaved program execution that contains
the bug, because the two SafeWrap objects would e�ectively get the same lock,
and the two SafeWrap.popwrap methods would execute without interleaving.

�e second possibility for de�ning the semantics of EML locks is to interpret
lock acquire as a weak update, i.e., the program may have acquired a particular
lock. A weak update would leave the lock in a “possibly-held” state. When an
EML process Proc attempts to acquire a lock that is in the “possibly-held” state,
two cases must be considered.

1. �e lock is actually held by another EML process Proc ′ and thus Proc
must block until Proc ′ releases the lock.

2. �e lock is not held by another EML process Proc ′ and thus Proc may
acquire the lock.

78

�is semantics is sound because all possible cases are considered. However,
the overall e�ect of this semantics is, in essence, equivalent to an EML program
without locks because the program can never reason de�nitively whether or not
a lock is actually held. �at is, in the abstract program a thread is always able
to acquire a lock, which in essence means that the abstract program operates
as if there are no synchronization constraints. In general, this possibility would
greatly increase the number of false positives. For instance, in the example
of Listing 5.1, if we were to �x the code by adding an additional synchroniza-
tion block on the parameter Stack s inside the body of SafeWrap.popwrap,
the analysis would still report a bug because locking behavior was modeled
imprecisely.

5.3 Random-Isolation Abstraction

Our solution was to develop a new abstraction technique, random-isolation ab-

straction, which is a novel extension of allocation-site abstraction. �e random-
isolation abstraction is motivated by the following observation:

Observation 5.1. �e concrete objects that can be allocated at a given allocation

site χ, Conc(χ), cannot be distinguished by the allocation-site abstraction.

Obs. 5.1 states that if one chooses to isolate a random concrete object ζχ̈
from Conc(χ̇), the allocation-site abstraction would not be able to distinguish
the randomly-chosen concrete object from any of the other concrete objects
that are represented by ζ]

χ̇.3
�e random-isolation abstraction leverages Obs. 5.1 by randomly isolating

one of the concrete objects allocated at allocation site χ̇ and tracking it specially
in the abstraction. Whereas allocation-site abstraction would use one summary
object ζ]

χ̇ to represent all concrete objects Conc(χ̇) from χ̇, random isolation
uses two objects: one summary ζ]

χ̇ and one non-summary ζ]
χ̈. �e object ζ]

χ̈

3We use the double-dotted ζχ̈ to denote a randomly-isolated object.

79

is a non-summary object because it alone represents the randomly-isolated
concrete object ζχ̈. Because ζ]

χ̈ is a non-summary object, it is safe to perform
strong updates to its (abstract) state, which gives us Random-Isolation Principle

1.

Random-Isolation Principle 1 (Updates). Let ζχ̈ ∈ Conc(χ̇) be a randomly-

isolated concrete object. Because ζχ̈ is modeled by a special abstract object ζ
]
χ̈,

the random-isolation abstraction enables an analysis to perform strong updates

on the state of ζ
]
χ̈.

Random isolation also provides a powerful methodology for proving proper-
ties of a program: a proof that a propertyφ holds for ζ]

χ̈ proves thatφ holds for
all ζ ∈ Conc(χ̇). Consider a concrete trace of the program in which a concrete
object ζ ′ is allocated at a dynamic instance of χ̇, and φ does not hold for ζ ′.
Because of random isolation, the randomly-isolated object ζχ̈ is just as likely to
be ζ ′ as it is to be any other concrete object. �us, the prover must consider the
case that ζχ̈ is ζ ′. Because the property holds for ζ]

χ̈, and because ζ]
χ̈ represents

ζ ′ in the trace under consideration, then the property must also hold for ζ ′,
which is a contradiction. �is gives us Random-Isolation Principle 2:

Random-Isolation Principle 2 (Proofs). Given a property φ and site χ̇, a proof

that φ holds for the randomly-isolated abstract object ζ
]
χ̈ proves that φ holds for

every object that is allocated at χ̇. �at is,φ(ζ]
χ̈)→ (∀ζ∈Conc(χ̇).φ(ζ)).

Before describing the technical details of how random isolation is imple-
mented, we highlight the bene�ts of random isolation as used in Empire. A
generated EML program will have an EML lock for each non-summary object.
Because of random isolation, the state of the Java lock that is associated with
the randomly-isolated instance ζχ̈ can be modeled precisely by the state of the
special abstract object ζ]

χ̈. �at is, the acquiring and releasing of the lock for
ζχ̈ by a thread of execution can be modeled by a strong update on the state of
ζ

]
χ̈, thus allowing the analyzer to disallow certain thread interleavings when

performing state-space exploration on the generated EML program.

80

In contrast, because sound tracking of the lock state for a summary object
generally would result in the “possibly-held” state, EML programs have no locks
for summary objects: their modeled behaviors are not restricted by synchroniza-
tion primitives. �is provides a sound, �nite model of the locking behavior of
Prog]. (It is an over-approximation because the absence of locks on summary
objects causes them to gain additional behaviors.)

5.4 Implementing Random Isolation

Random isolation is implemented via a source-to-source transformation, which
we explain in the context of the example program shown in Listing 5.1. In
Listing 5.1, the allocation site of interest is on line 19, which we repeat below for
convenience.

public static Stack makeStack() { return newχ̇ Stack(); } (5.1)

Random isolation involves transforming the newχ̇ statement into

(rand() && test-and-set(Fχ̈)) ? newχ̈ Stack() : newχ̇ Stack(); (5.2)

�e site χ̇ from code fragment (5.1) is transformed into a conditional-allocation
site, where the conditional “tests-and-sets” a newly introduced global �ag Fχ̈.

Remark 5.2. �e “test-and-set” must be an atomic operation.4 Without the use of
an atomic “test-and-set”, the source-to-source transformation would introduce
a race condition that would allow multiple objects to be allocated at the newly
introduced allocation site χ̈.

�e global �ag Fχ̈ serves two purposes. First, because it can be set to true
only one time, it ensures that only one concrete object ζχ̈ can ever be allocated at
the generated site χ̈ (as for randomly-isolated objects, we use the double-dotted

4�e phrase “test-and-set” emphasizes that random isolation is not speci�c to Java. For
Java, the method AtomicBoolean.compareAndSwap is used.

81

version χ̈ to denote the allocation site of the randomly-isolated object). �at
is, Fχ̈ guarantees that |Conc(χ̈)| 6 1 for all possible executions of the program;
consequently, the size of the set that is the concretization of ζ]

χ̈ must also be less
than or equal to one.

Second, for performing AS-serializability-violation detection, we only have
to be concerned with executions in which ζχ̈ is eventually allocated (i.e., traces
in which |Conc(χ̈)| = 1). �is is a consequence of the use of randomness in
code fragment 5.2. If there was a trace in which ζχ̈ was not allocated but the
trace did in fact contain an AS-serializability violation, then because of the
use of randomness, there must exist a similar trace in which the ζχ̈ object was
allocated and the violation occurred on that object. �at is, the need to only
consider traces in which ζχ̈ is (eventually) allocated is a corollary of Random-

Isolation Principle 2. We can identify all such traces because the global �ag Fχ̈

must eventually be set to true in each trace. Moreover, when translating an EML
program into a CPDS, we can directly model the state of Fχ̈.

While the use of a source-to-source transformation is not strictly necessary,
it allows existing object-sensitive analyses to be used with minimal changes.
For example, let Pts be the points-to relation computed via a �ow-insensitive,
object-sensitive points-to analysis in the style of Milanova et al. (2005), and
let CG be an object-sensitive call graph.5 Because these two analysis artifacts
are object-sensitive, their respective data�ow facts make a distinction between
objects allocated at χ̈ and objects allocated at χ̇. For example, if T de�nes a
method T .m, then CG will contain at least two nodes for T .m: one for object
context χ̈, and one for object context χ̇. �us, inside of the control-�ow graph
for T .mwith object context χ̈, an analysis is able to take advantage of the fact
that the special Java this variable is referring to the non-summary object ζ]

χ̈.
�at is, a unique context of T .m has been created for ζ]

χ̈ without modifying the
5An object-sensitive call graph CG models the interprocedural control �ow of a program:

there is a node in CG for each method of the program for each context in which it can be invoked
(Milanova et al., 2005). An object-sensitive points-to analysis associates points-to facts with the
nodes of CG, thus computing di�erent points-to facts for di�erent object contexts of the same
method.

82

analyses!
In some situations, however, a CG node’s context is not enough

to distinguish between ζ
]
χ̈ and ζ

]
χ̇. Consider the code fragment

“synchronized(t) { t.m() }”, where t has been de�ned to be the re-
sult of code fragment (5.2), i.e., t is either a reference to the randomly-isolated
object ζχ̈ or to another object ζχ̇ allocated at site χ̇. Because of abstraction, the
points-to set for t will be de�ned as follows: Pts(t) = {ζ

]
χ̈, ζ]

χ̇}. When entering
the synchronized block, it is desirable to reason precisely about the state of
the lock associated with ζ]

χ̈; however, because of the imprecision of points-to
analysis, it is not directly possible to determine if the lock for ζ]

χ̈ is acquired
or not because the abstraction cannot determine if t solely references ζ]

χ̈. To
reason precisely about the state of the lock associated with ζ]

χ̈, we must be able
to distinguish between the case when t references ζ]

χ̈ and when t references ζ]
χ̇.

�at is, the abstract program Prog] should only acquire ζ]
χ̈ if “Pts(t) = {ζ

]
χ̈}”.

�e case analysis is accomplished via a second source-to-source transfor-
mation, de�ned as follows.

1 if (is_ri(t)) {
2 synchronized(t) { t.m(); }
3 } else {
4 synchronized(t) { t.m(); }
5 }

�e method “is_ri” returns true if t is a reference to the randomly-isolate
object ζχ̈, i.e., the method is_ri is de�ned as “return t == ζχ̈;”.

During points-to analysis, the interpretation of the call on is_ri performs
a case analysis on Pts(t). Speci�cally, the abstract interpretation of is_ri
performs the abstract test “t == ζ]

χ̈”, which allows the points-to analysis to
perform assume statements on the outgoing branches (e.g., when following
the true branch of the condition, the points-to analysis performs an “assume
Pts(t) = {ζ

]
χ̈}”). One can view this as a way to achieve object-sensitivity at

the level of a program block instead of just at the method level. Although the

83

second transformation is presented in the context of AS-serializability-violation
detection, it is a generic approach that can be applied wherever an analysis
needs to distinguish between ζ]

χ̈ and ζ]
χ̇ to perform a strong update.

Summary

After performing the source-to-source transformation to implement the random-
isolation abstraction, the abstract program Prog] has been de�ned. Prog] op-
erates over a set of abstract objects consisting of ζ]

χ for each allocation site χ
in the program (including the special abstract object ζ]

χ̈ for the generated allo-
cation site χ̈). Because threads in Java are objects themselves, Prog] now has
a �nite number of threads, where each thread is associated with an allocation
site. (We can, of course, generate multiple copies of each thread as needed. �at
is, the number of threads is actually a parameter of Prog].) �e interprocedural
control �ow of each thread is de�ned by the set of reachable nodes in the object-
sensitive call graph CG from the thread’s entry point. Finally, the intraprocedural
control �ow of each method is de�ned by the control �ow graph (CFG) for the
method, where for a methodm, CFGm consists of a set of Java statements Stmts,
a successor relation Succ ⊆ Stmts × Stmts, and has distinct entry and exit
statements.

5.5 Empire Modeling Language

From an abstract program Prog], Empire generates a program in the Empire
Modeling Language EML.

An EML program EProg consists of (i) a �nite set of shared-memory loca-
tions SMem; (ii) a �nite set of reentrant locks SLocks; and (iii) a �nite number of
concurrently executing processes SProcs.

An EML shared-memory locationm is an abstract memory location: abstract
reads and writes can be made onm; however, EML does not have a notion of
a value held bym. �e lack of values stored at shared-memory locations is an

84

artifact of Empire’s goal of verifying AS-serializability, which is a property of the
order of interleaved reads and writes of an application, and not the values read
and written.

An EML lock is reentrant, meaning that the lock can be reacquired by an EML
process that currently owns the lock, and also that the lock must be released the
same number of times to become free. EML restricts the acquisition and release
of an EML lock to occur within the body of a function, i.e., an EML lock cannot
be acquired in a function f and released in another function f ′. In addition, the
acquisition of multiple EML locks by an EML process must be properly nested:
an EML process must release a set of held locks in the order opposite to their
acquisition order. �e two restrictions are naturally ful�lled when EML is used
to model synchronized blocks and methods in a Java thread.

An EML process Proc is de�ned by a set of (possibly) recursive functions,
one of which is designated as the main function of the process. An EML function
f is de�ned by a labeled-�ow graph GF. A labeled-�ow graph is a tuple Gf =

(Nodesf, Edgesf,nentry,nexit), where Nodesf is a set of nodes, Edgesf ⊆ Nodesf×
Labels×Nodesf is a set of edges, nentry ∈ Nodesf is the distinct entry node, and
nexit ∈ Nodesf is the distinct exit node. An edge e = (n,a,n ′) ∈ Edgesf denotes
the �ow of control from node n to node n ′. Non-determinism is introduced by
having multiple outgoing edges from the same node. (EML programs have only
non-deterministic branches.) �e label a ∈ Labels represents a semantic action
that the EML process performs when transferring control from node n to node
n ′. EML supports the labels listed in Tab. 5.1.

An edge labeled “start Proc” starts the EML process named Proc. �is is used
to model the fact that when a Java program begins, only one thread is executing
its main method, and all other threads cannot begin execution until they have
been started by an already executing thread.

85

Labels Semantics

call f invoke function f
read m read from memory locationm ∈ SMem
write m write to memory locationm ∈ SMem
alloc l allocate the EML lock l ∈ SLocks
lock l acquire the EML lock l ∈ SLocks
unlock l release the EML lock l ∈ SLocks
unitbegin beginning a unit of work
unitend ending a unit of work
start Proc start EML process Proc
skip a statement whose semantic action is not modeled

Table 5.1: �e edge labels Labels of an EML �ow graph that represents an EML
function and their corresponding semantics.

5.6 EML Generation

Empire de�nes the EML program EProg as follows. To model the randomly-
isolated abstract object ζ]

χ̈, EProg de�nes a shared memory location mf for
each �eld f of the class T , and also an EML lock lχ̈ to model the lock associated
with ζ]

χ̈. �e status of the global �ag Fχ̈ is modeled by the EML lock lχ̈ being
allocated or not. As noted in §5.4, we are only concerned with executions in
which lχ̈ is eventually allocated. Hence we need only be concerned with traces
of the EML program in which “alloc lχ̈” appears somewhere.

Let Threads be the set of all subclasses of java.lang.Thread. For each
θ ∈ Threads, and for each allocation site χθ that allocates an instance of θ,
EProg de�nes an EML process Procχθ that models the behavior of one instance
of θ that is allocated at χθ. Also, EProg de�nes an EML process Procmain that
models the Java thread that begins execution of the main method.

�e functions of an EML process Proc correspond to the Java methods that
are reachable in the object-sensitive call graph CG from the entry point (e.g.,
main) of the Java thread that is being modeled. For a Java methodm, there is an
EML function fm. �e labeled-�ow graph Gfm is de�ned from the control-�ow

86

stmt astmt Condition

o.m() call m
entry unitbegin this= ζ

]
χ̈, CFGm is a unit of work

exit unitend this= ζ
]
χ̈, CFGm is a unit of work

x = o.f read mf ζ
]
χ̈ ∈ Pts(o)

o.f = x write mf ζ
]
χ̈ ∈ Pts(o)

newχ̈ T alloc lζ]
χ̈

monitorenter o lock lζ]
χ̈

Pts(o) = {ζ
]
χ̈}

monitorexit o unlock lζ]
χ̈

Pts(o) = {ζ
]
χ̈}

o.start() start Procχθ ζ]
χθ
∈ Pts(o).

* skip

Table 5.2: Java statement types for CFGm, their corresponding EML labels, and
the condition necessary to generate the EML label. �e �nal row is a catchall
for the Java statements that are not modeled in EML.

graph CFGm that is associated with m in CG. �e control-�ow graph CFGm
consists of a set of Java statements Stmts, a successor relation Succ ⊆ Stmts×
Stmts, and has distinct entry and exit statements. �e translation from CFGm
to Gfm is straightforward. �ere is a node nstmt ∈ Nodesfm for each stmt ∈
Stmts. �ere is a labeled edge (nstmt,astmt,nstmt ′) for each pair of statements
(stmt, stmt ′) ∈ Succ. �e label astmt models the execution of the Java statement
stmt. Tab. 5.2 shows the label astmt that is generated for a Java statement stmt.
Note that (i) synchronized blocks have been compiled down to the lower-
level Java bytecode statements monitorenter and monitorexit, and (ii) label
generation must know if a method is a unit of work.

5.7 CPDS Generation

An EML program has a set of shared-memory locations, SMem, a set of EML
locks, SLocks, and a set of EML processes, SProcs. Empire generates a number of

87

CPDSs for a given EML program: a CPDS is generated for each pair (m,m ′) ∈
SMem × SMem for the fourteen interleaving scenarios. Pairs are used because the
interleaving scenarios are de�ned in terms of at most two locations from an
atomic set (cf. Tab. 2.3 in Ch. 2). Moreover, AS-serializability-violation detection
is asymmetric in that it is performed with respect to an individual EML process
Proc. In total, Empire generatesO(|SProcs| ∗ 14 ∗ (|SMem|2)) CPDSs for an EML
program. In each generated CPDSΠ, there is a PDS for each global component
of the EML program.

1. Π contains a PDS for each EML lock to enforce mutual exclusion.

2. Π contains a PDS for each EML process.

3. Π contains a PDS that monitors for a violation.

Modeling an EML Lock

Because an EML lock is reentrant, the language of the PDS that describes such
behavior is context-free. �e PDS stack is used to count in unary the number of
times that a process has acquired the lock.6 Another process may acquire the
lock only when the process that currently holds the lock has released the lock
enough times to empty the stack. For an EML lock l, the PDS that models the
behaviors of l is de�ned as Pl = (Pl, Labl, Γl,∆l, 〈unalloc,⊥〉), where

• Pl = {unalloc, alloc}: the control locations unalloc and alloc denote whether
an EML lock l has been allocated.

• Labl = {“x.alloc l”, “x.lock l”, “x.unlock l” | x ∈ SProcs}: the actions x.alloc,
x.lock, and x.unlock denote that EML process x ∈ SProcs allocates, ac-
quires, and releases the lock, respectively. (�e property that a lock can be
allocated one time by a distinct EML process is enforced by the PDS rules,
and is explained below.)

6�e use of the stack to count in unary was also used to model a counter c for the Bluetooth
case study presented in §4.6 of Ch. 4.

88

• Γl = {⊥} ∪ SProcs: the stack symbol⊥ is the bottom-of-stack marker. For
an EML process x ∈ SProcs, the stack symbol x denotes that x currently
holds the lock. �e PDS rules ∆l maintain the invariant that the PDS
stack contains the symbol for only one EML process at a time.

• ∆l is the union of three rule classes: allocation, acquire, and release.

allocation {〈unalloc,⊥〉 x.alloc l
↪−→ 〈alloc,⊥〉 | x ∈ SProcs}. �ese rules model the

allocation of the EML lock l by an EML process x ∈ SProcs. Because
a lock can never return to the unalloc state, the property that a lock
can be allocated only one time is enforced.

acquire {〈alloc,γ〉 x.lock l
↪−→ 〈alloc, x γ〉 | x ∈ SProcs,γ ∈ {x,⊥}}. �ese rules

model the acquisition of l. �e rules push the name of the EML
process that acquires l, e�ectively incrementing the counter that
tracks the reentrant depth of acquisitions of l. Note that an EML
processx can only acquire the lock if the lock is either in the unlocked
state, modeled by γ = ⊥, or if the top-of-stack symbol is the name
of the EML process attempting to acquire the lock, which enforces
that only one EML process may hold l at a time.

release {〈alloc, x〉 x.unlock l
↪−→ 〈alloc, ε〉 | x ∈ SProcs}. �ese rules model the

release of l. As for the acquire rules, an EML process may only release
the lock if the top-of-stack symbol is the name of the EML process (i.e.,
if the EML process currently owns the lock). �e lock will become
free only when the current process has released the lock the same
number of times that it acquired the lock, which results in the stack
containing only the bottom-of-stack marker⊥.

Modeling an EML Process

Generating a PDS P for an EML process Proc is performed in two stages. First, a
single-state PDS P1 = (P1 = {p}, Lab1, Γ1,∆1, 〈p, emain〉) is generated using the

89

rule templates depicted in Tab. 3.1, with Lab1 being the set of all distinct EML
statements used by Proc pre�xed with the EML process’s name. For example,
if the EML statement is “read m” and the EML process’s name is Proc, then
Lab1 will contain “Proc.readm”. Including the EML process’s name in the PDS
action enables the violation monitor and locks to know which EML process
performs an action (cf. the PDS rules for an EML lock above). P1 captures the
interprocedural control �ow of Proc. �ere is one exception, the EML statement
“start Procχθ” does not include Proc as a pre�x because a thread can be started
by any other thread (but only started one time).

Second, PDS P2 is PDS P1 augmented to account for lock allocation. (Recall
that a lock must be allocated before it can be used.) �e set of control locations
P1 of P1 is expanded to include a boolean �ag for each lock l. If the �ag is true
then l has been allocated, otherwise an EML process has yet to allocate l.

From Proc’s point of view, there are two ways that a lock can be allocated:
either Proc allocates a lock or another EML process Proc ′ allocates the lock. If
Proc allocates the lock l, then there will be a PDS rule of the form 〈p,γ〉 Proc.alloc l

↪−→
〈p ′,u〉. �e corresponding rule in PDS P2’s rule set∆2 must ensure that the con-
trol location on the left-hand-side has the �ag for l set to false, and the control
location on the right-hand-side has the �ag for l set to true. Otherwise Proc ′

allocates l. In this case, Proc has no way of knowing when Proc ′ allocates l,
and therefore must guess when the allocation occurred. Guessing is modeled by
non-deterministically invoking the guess method, which simply guesses that an-
other EML process allocates l. Because of non-determinism, the guess method
causes Proc to consider all possibilities of lock allocation (i.e., the cross product
of SProcs and SLocks).

Formally, PDS P2 = (P2, Lab2, Γ2,∆2, 〈∅, emain〉), where

• P2 = 2SLocks : a control location is a set of �ags s denoting which locks have
been allocated. �e set of control locations P1 is not used because it is the
singleton set {p}.

• Lab2 = Lab1 ∪ {P ′.alloc l | P ′ ∈ (SProcs \ {Proc}), l ∈ SLocks}: Lab2 is Lab1

90

Action a Rule 〈p,γ〉 a
↪−→ 〈p,w〉 ∈ ∆1

τ, start P ′ { 〈s,γ〉 a
↪−→ 〈s,w〉 | s ∈ 2SLocks }

alloc l { 〈s,γ〉 P.a
↪−→ 〈s ∪ {l},w〉 | s ∈ 2SLocks ∧ l /∈ s}

lock/unlock l { 〈s,γ〉 P.a
↪−→ 〈s,w〉 | s ∈ 2SLocks ∧ l ∈ s }

read/write m { 〈s,γ〉 P.a
↪−→ 〈s,w〉 | s ∈ 2SLocks ∧ lχ̈ ∈ s }

ubegin/uend { 〈s,γ〉 P.a
↪−→ 〈s,w〉 | s ∈ 2SLocks ∧ lχ̈ ∈ s }

? { 〈s,γ〉 τ
↪−→ 〈s, guess γ〉 | s ∈ 2SLocks }

? { 〈s, guess〉 P
′.alloc l
↪−→ 〈s ∪ {l}, ε〉 | s ∈ 2SLocks ∧ l /∈ s

∧ P ′ ∈ (SProcs \ {P}) }

Table 5.3: Each row de�nes a set of PDS rules in∆2 from a rule in∆1. �e control
location p from a rule in ∆1 is not repeated because all rules in ∆1 are single-
control-location rules. �e condition for generating a rule re�ects that certain
actions can only occur when a lock has been allocated, e.g., acquiring a lock l
can only occur after l has been allocated (see §5.7).

augmented to include actions that allow for P2 to guess when another
EML process Proc ′ allocates a lock.

• Γ2 = Γ1 ∪ {guess}: Γ2 includes the stack symbol guess that implements the
guessing procedure.

• ∆2 is de�ned from ∆1 as shown in Tab. 5.3. Row 2 ensures that no lock
is allocated more than once; row 3 ensures that a lock is not used before
being allocated; and rows 4 and 5 ensure that the shared-memory locations
are not accessed before ζ]

χ̈ has been allocated. Row 6 de�nes rules that
invoke the “guessing” procedure for each con�guration of P2. Guessing
is necessary because an EML process cannot know when another EML
process allocates a lock. Row 7 de�nes rules that implement the guessing
procedure: from control location s, s ⊆ SLocks, guess that EML process
P ′ ∈ (SProcs \ {P}) allocates a lock l ∈ (SLocks \ s), and return back to the

91

caller in the control location s∪ {l}. �e guessing rule is then labeled with
action P ′.alloc l.

Violation Monitor

�e violation monitor detects when one of the interleaving scenarios occurs
during a unit of work for a speci�c EML process Proc. To do so, it must track (i)
the reads and writes to the shared-memory locations SMem by each EML process,
and (ii) whether or not the target EML process Proc is executing a unit of work.

Tracking the reads and writes of EML processes requires only a �nite amount
of state, i.e., state to track which reads and writes of interest have been seen.
Recall that units of work are reentrant because unit-of-work methods may be
recursive or invoke other unit-of-work methods. �us, tracking the unit-of-work
status of Proc requires an in�nite amount of state. Similar to how the PDS for
an EML lock uses its stack to count the depth of nested lock acquires, the PDS
for the violation monitor uses its stack to count in unary the depth of nested
calls to units-of-work methods by Proc.

Following the discussion above, we break down the de�nition of the PDS
Pmon that implements a violation monitor into two parts. �e �rst part handles
the in�nite-state portion of Pmon by de�ning the PDS Punit that tracks the unit-
of-work status of the target EML process Proc. �e second part handles the
�nite-state portion of Pmon by de�ning the non-deterministic �nite automaton
(NFA) Amon that accepts traces containing the problematic access pattern of
interest. Finally, the cross product of Punit and Amon, which implements the
intersection of their respective languages, de�nes Pmon.

Punit

To model the unit-of-work status of the target EML process Proc, a counter is
required because unit-of-work methods can be recursive or invoke other unit-
of-work methods. �e PDS Punit uses its stack to count the depth of nested calls

92

to unit-of-work methods, and is essentially the PDS for a counter de�ned by
Defn. 4.15 in Ch. 4—the di�erence being the actions that label the rules. Formally,
Punit = (Punit, Γunit, Labunit,∆unit, 〈p, 0〉), where

• Punit = {p} consists of a single control location;

• Γunit = {0, 1} is the stack alphabet;

• Labunit = { [,],a1,a0 } is the set of actions that count the depth of unit-of-
work calls in unary. �e actions [and] are shorthands for Proc.unitbegin
and Proc.unitend, respectively, and are used to synchronize with PProc

when it enters and exits a unit of work, respectively. �e actions a1 and
a0—denoting that the top-of-stack symbol is 1 and 0, respectively—are
used to synchronize with Amon so that Amon can test the unit-of-work
status of Proc.

• ∆unit is de�ned as follows:7

1. 〈p, 0〉
[

↪−→ 〈p, 1 0〉, 〈p, 1〉
[

↪−→ 〈p, 1 1〉,
2. 〈p, 0〉

a0
↪−→ 〈p, 0〉, 〈p, 1〉 a1

↪−→ 〈p, 1〉,

3. 〈p, 1〉
]

↪−→ 〈p, ε〉,

When Proc begins a unit of work, the stack symbol 1 is pushed onto the
stack (row 1). Likewise, when Proc exits a unit of work, the top-of-stack
symbol is popped o� (row 3). Note that the top of stack must contain the
stack symbol 1 for a pop to occur, and thus can only occur when Proc
is executing a unit of work. �e rules in row 2 allow for the NFA Amon

to query the unit-of-work status of Proc. �at is, if the stack symbol 1 is
on the top of the stack, which signi�es that Proc is currently executing a
unit of work, then Punit can exchange the action a1 with Amon. Similarly, if

7�e rules of∆unit are the same as the rules to implement a counter from Defn. 4.15. �e only
di�erence is that the actions that annotate the rules have been updated to model unit-of-work
method calls and returns (versus actions to change the state of a counter).

93

the stack symbol 0 is on the top of the stack, then Punit can exchange the
action a0 with Amon.

Amon

�e NFA Amon accepts interleaved executions (traces) that contain the memory
accesses speci�ed by the problematic access pattern of interest. To make the
discussion more concrete, we focus on the NFA A12 shown in Fig. 5.2, which
tracks the problematic access pattern “R1(c);W2(d);W2(c);R1(d)” for the AS-
serializability violation from the program shown in Listing 5.1 (see page 74).
For a generic problematic access pattern p, the de�nition of the NFA Amon that
recognizes traces containing p follows naturally.

Fig. 5.2 gives a graphical depiction of A12. �e initial state is q1 and the
�nal state is q7. For a trace to be accepted by A12, it must make a transition
through each state q1–7. �at is, the states q1–7 track the memory accesses that
make up problematic access pattern 12. �e transition (q1, alloc,q2) models the
allocation of the randomly-isolated object. Once the randomly-isolated object
has been allocated, A12 ignores reads and writes by following the self-loop on
state q2 until the target EML process Proc begins a unit of work—modeled by
the transition (q2, [,q3).

A12 makes use of non-determinism. For each state qi, 3 6 i 6 6, there is
a self-loop labeled with [RiWi. �e symbol [models reentrant calls to units of
work. �e state does not change because Proc must be executing a unit of work
for A12 to be in state qi. �e symbols Ri andWi denote read and write accesses
to any memory location by either thread. �e use of non-determinism enables
A12 to “guess” which memory accesses are actually involved in problematic
access pattern 12. For example, if A12 is in state q3 and observes the action
R1(c), it can make a transition to state q4—-the action is part of problematic
access pattern 12—or it can follow the self-loop and remain in state q3—the
action is not part of problematic access pattern 12. Non-determinism is required
because a thread may perform multiple memory accesses during a unit of work.

94

q7q1
alloc

q2
[

RiWi

q3
R1(c)

[RiWi

q4
W2(d)

[RiWi

q5
W2(c)

[RiWi

q6
R1(d)

[RiWi

r6r3 r4 r5

]]]]a1 a1 a1 a1a0

Figure 5.2: �e NFA A12 that recognizes traces of interleaved read and write
memory accesses containing problematic access pattern 12 for the program
shown in Listing 5.1 (see §5.1). �e edge labeled alloc denotes allocating the
randomly-isolated object. An edge labeled R1(c) (W2(c)) denotes a read from
(write to) the �eld Stack.count by thread T1 (T2). Similarly, edges labeled R1(d)

and W2(d) denote accesses to the �eld Stack.data. �e self-loops labeled
RiWi denote a read or write to any memory location by either thread. �e
symbols [and] denote Proc beginning and ending a unit of work, respectively.
�e symbols a1 and a0 are used to synchronize with Punit to determine the unit-
of-work status of Proc. If Proc completed the outermost unit of work, then the
state is reset to q2 by exchanging an a0 action with Punit. Otherwise, the state
qi—from which the unit-of-work end action] was witnessed—is restored by
exchanging an a1 action with Punit.

�e states r3–6 are used to implement a “reset” check. �at is, if Proc �nishes
a unit of work, it will synchronize on the action Proc.unitend—abbreviated by].
Because A12 has only a �nite amount of state, it has no way of knowing whether
Proc exited the outermost unit of work. Tracking the reentrant depth of calls to
unit-of-work methods is the job of Punit. �us, A12 must synchronize with Punit to
determine whether it should reset its state to q2—Proc completed its outermost
unit of work—or return to its previous state qi from which the action] caused
A12 to make a transition to state ri—Proc exited a nested call to a unit-of-work
method.

�e de�nition of an NFA Amon for an arbitrary problematic access pattern

95

follows from the de�nition of A12.

Pmon

�e PDS Pmon is de�ned from the cross product of Punit = (Punit, Γunit, Labunit,
∆unit,c0) and Amon = (Q,Σ, δ,q1,qf). Speci�cally, Pmon = (Q, Γunit, Σ, ∆mon,
〈q1, 0〉), where∆mon is de�ned as follows:

• For an action a ∈ { [,] }, each rule 〈p,γ〉 a
↪−→ 〈p,u〉 ∈ ∆unit, and each

transition (q,a,q ′) ∈ δ, the rule 〈q,γ〉 a
↪−→ 〈q ′,u〉 ∈ ∆mon. �e rules

combine the counting of Punit with the state transitions of Amon.

• For an action a ∈ { a1,a0 }, each rule 〈p,γ〉 a
↪−→ 〈p,u〉 ∈ ∆unit, and each

transition (q,a,q ′) ∈ δ, the rule 〈q,γ〉 τ
↪−→ 〈q ′,u〉 ∈ ∆mon. Because the

actions a1 and a0 only implement synchronization operations between
Punit and Amon, they are replaced by the special CPDS action τ (i.e., they
are not part of an actual trace but are artifacts of our breakdown of the
de�nition of Pmon into constituents Punit and Amon).

• For each transition (q,σ,q ′) ∈ δ, whereσ /∈ Labunit,∆mon contains the set
of rules: {〈q,γ〉 σ

↪−→ 〈q ′,γ〉 | γ ∈ Γunit}. �ese rules account for reads and
writes to memory locations, and the allocation of the randomly-isolated
object.

At the PDS-language level, the cross product of Punit and Amon takes their in-
tersection, i.e., Lang(Pmon) = Lang(Punit)∩Lang(Amon). Intersection combines
the counting of Punit with the pattern recognition of Amon, which produces the
desired PDS Pmon that implements a violation monitor.

CPDS Query

Once a CPDS Π has been generated for an EML program EProg, a language-
emptiness query is passed to Cpdsmc, which requires de�ning the target set of
con�gurations for each PDS Pi.

96

• For PDS Pl that describes EML lock l, the target set of con�gurationsCl
is any con�guration: Cl = {〈p, x∗⊥〉 | x ∈ SProcs}.

• For PDS Px that describes EML process x ∈ SProcs, the target set of con-
�gurationsCx is any con�guration: Cx = {〈p,u〉 | p ∈ Px,u ∈ Γ∗x }.

• For the PDSPmon that describes the violation monitor, the target set of con-
�gurationsCmon is one in which the �nal control location qf—denoting
that an AS-serializability violation has occurred—has been reached. Specif-
ically,Cmon = {〈qf, 1+ 0〉}.

Let G be the con�guration sets for the PDSs. �e language-emptiness query
as de�ned is such that Lang(Π,G) = ∅ is true if-and-only-if the EML program
cannot generate a trace accepted by the violation monitor.

5.8 Experiments

Empire is implemented using the WALA (IBM, 2009) program-analysis frame-
work. Random isolation is implemented using WALA’s facilities for rewriting
the abstract-syntax tree (AST) of a Java program. �e default object-sensitive
call graph construction and points-to analyses are modi�ed to implement the
semantic reinterpretation of “is_ri”, as described in §5.4. After rewriting the
ASTs, Empire emits an EML program from the input Java program. �e EML
program is then translated into multiple CPDSs (see §5.7), for which reachability
queries are answered using Cpdsmc. Cpdsmc is implemented using the WALi
library (Kidd et al., 2009a), and the pre�x semiring (see Defn. 4.8 in Ch. 4) is
implemented using the BuDDy BDD library (BuDDy, 2004). All experiments
were run on a dual-core 3 GHz Pentium Xeon processor with 4 GB of memory.

�e goal of the experiments was to determine whether the techniques devel-
oped and implemented in Empire could detect both single- and multi-location
AS-serializability violations. We evaluated Empire on eight programs from the
ConTest suite (Eytani et al., 2007b), which is a set of small benchmarks with

97

Benchmark # CPDSs Viol OK OOM OOT

Account 642 5 78 24 535
AirlineTickets 900 12 882 0 6
PingPong 384 29 349 0 6
ProducerConsumer 512 19 79 37 377

SoftwareVeri�cationHW 15 0 5 0 10
BugTester 615 0 378 0 237
BuggyProgram 615 0 599 0 16
shop 900 3 0 257 640

Totals 4583 68 2368 318 1827

Table 5.4: Column “Benchmark” speci�es the names of the eight ConTest bench-
mark programs analyzed. Column “# CPDSs” speci�es the number of CPDSs
generated. Column “Viol” speci�es the number of AS-serializability violations
detected. Column “OK” speci�es the number of CPDS queries that reported
no AS-serializability violation. Column “OOM” speci�es the number of CPDS
queries that exhausted memory (OOM). Column “OOT” speci�es the number
of CPDS queries that exhausted the 300-second timeout. �e horizontal line
after row 4 separates the benchmarks that did not contain any synchronization
operations after abstraction from those that still did contain synchronization
operations.

known concurrency bugs. Empire requires that the allocation site of interest
be annotated in the source program. We annotated eleven of the twenty-seven
programs that ConTest documentation identi�es as having “non-atomic” bugs.
Our front-end currently handles eight of the eleven (the AST rewriting currently
does not support certain Java constructs). When analyzing a program with the
user-speci�ed allocation site χ̇ that allocates an object of type T , we used the
default assumptions that (i) all �elds declared by T are in one atomic set, and
(ii) each public method de�ned by T is a unit of work.

To reduce the size of the generated models, we made minor modi�ca-
tions to the benchmark programs. For the programs analyzed, �le I/O is used
to output debugging and scheduling information, and to receive input that

98

speci�es the number of threads. We removed these operations, and man-
ually unrolled loops that allocate Thread objects 2 times. When a bench-
mark used a shared object of type java.lang.Object as a lock, the type was
changed to java.lang.Integer because our implementation uses selective

object-sensitivity, for which the use of java.lang.Object as a shared lock
removes all selectivity and severely degrades performance.8 �e programs
SoftwareVerificationHW and shop de�ne each thread’s run() method to
consist of a loop that repeatedly executes one unit of work. For these programs,
the code in the body of the loop was extracted out into its own method so that
the default unit-of-work assumptions would be correct. Each modi�cation had
no impact on the AS-serializability violations that could occur in a benchmark.

In total, Empire generated 4583 CPDSs. Each query was analyzed by Cpdsmc
using a 300-second timeout. Tab. 5.4 presents a summary of the analysis results.9
�e dividing line that separates the �rst four benchmarks from the latter four
benchmarks pertains to lock usage. Each generated EML program consists of a
single lock, namely, the lock for the randomly-isolated object.10 However, for
the �rst four benchmarks, the code does not contain synchronized methods,
and hence does not acquire and release the lock associated with the randomly-
isolated object. For the latter four benchmarks, the code contains synchronized
methods, and the generated EML programs for these four contain lock and
unlock operations. In total, Cpdsmc

1. found 68 AS-serializability violations (col. “Viol”);
8By selective object-sensitivity, we mean that a full object-sensitive call graph is not con-

structed because doing so exhausts memory resources. Instead, the call graph is only object
sensitive with respect to a few key object types: the type T of the speci�ed allocation site, the
types of all of T ’s �elds, and the type of all subclasses of threads.

9�e experimental results di�er from Kidd et al. (2009b) because (i) a 300-second timeout
was used instead of a 200-second timeout, and (ii) the experiments from Kidd et al. (2009b)
used a di�erent version of Cpdsmc that applies the language strength reduction transformation
(Ch. 6).

10Empire can generate multi-lock EML programs when the Java program makes use of global
locks that are guaranteed to be unique, such as the lock that is associated with a Class object.

99

2. determined that 2368 queries did not contain an AS-serializability viola-
tion (col. “OK”);

3. ran out of memory for 318 of the queries (col. “OOM”);

4. and exhausted the allotted time for 1827 queries (col. “OOT”).

Combining the totals for cols. “Viol” and “OK”, Cpdsmc returned a de�nitive
answer for 2436 queries (53%), and exhausted resources for 2145 queries (47%).
For the benchmarks where no AS-serializability violations were found, Cpdsmc
exhausted resources on the queries where a bad con�guration was reachable.
(We veri�ed reachability of the bad con�gurations using the decision procedure
for �nding AS-serializability violations of EML programs that is presented in
Ch. 7.)

For each AS-serializability violation reported by Empire, we manually veri-
�ed whether or not it was an actual AS-serializability violation, and not a false
positive due to abstraction. Tab. 5.5 presents a breakdown of the problematic-
access-pattern numbers of the AS-serializability violations that were found for
each benchmark program. For 5 of the 8 benchmarks listed in Tab. 5.5, Empire
found multiple violations. �e false positives reported for PingPong are due to
an over-approximation of a thread’s control �ow—exceptional-control paths are
allowed in the model that cannot occur during a real execution of the program.

Overall, the experiments showed that Empire is able to detect both single-
and multi-location AS-serializability violations. It is interesting to note that for
benchmarks where a multi-location AS-serializability violation was found, a
single-location AS-serializability violation also occurred. �is can be explained
by the fact that Java methods typically read and write to a �eld multiple times,
which allows for both single- and multi-location AS-serializability violations to
occur.

100

Pr
og

ra
m

1
2

3
4

5
6

7
8

9
10

11
12

13
14

ac
co

un
t

X
X

X
X

ai
rl

in
es

Tc
kt

s
X
X

X
X

X
X

Pi
ng

Po
ng

X
X
X

X
6X

6X
6X

6X
6X

6X
6X

6X
6X

Pr
od

C
on

su
m

er
X
X
X
X
X

X
X

X

So
ftw

ar
eV

er
i�

ca
tio

nH
W

Bu
gT

es
te

r
Bu

gg
yP

ro
gr

am
sh

op
X
X

X

Ta
bl

e
5.

5:
M

ar
ke

d
en

tr
ie

s
de

no
te

vi
ol

at
io

ns
re

po
rt

ed
by

Em
pi

re
,w

ith
X

be
in

g
a

ve
ri

�e
d

vi
ol

at
io

n
an

d
6X

a
fa

ls
e

po
si

tiv
e.

Sc
en

ar
io

s
6–

16
in

vo
lv

e
tw

o
m

em
or

y
lo

ca
tio

ns
.

101

5.9 Related Work

�e idea of isolating a distinguished non-summary node that represents the
memory location that will be updated during a transition, so that a strong update
can be performed on it, has a long history in shape-analysis algorithms (Horwitz
et al., 1989; Jones and Muchnick, 1981; Sagiv et al., 2002). When these methods
also employ the allocation-site abstraction, each abstract memory con�guration
will have some bounded number of abstract nodes per allocation site.

Like random-isolation abstraction, recency abstraction (Balakrishnan and
Reps, 2006) uses no more than two abstract blocks per allocation site χ: a non-
summary block MRAB[χ], which represents the most-recently-allocated block
allocated at χ, and a summary block NMRAB[χ], which represents the non-
most-recently-allocated blocks allocated at χ. As the names indicate, recency
abstraction is based on tracking a temporal property of a block b: the is-the-
most-recent-block-from-χ(b) property.

With counter abstraction (McMillan, 1999; Pnueli et al., 2002; Yavuz-Kahveci
and Bultan, 2002), numeric information is attached to summary objects to
characterize the number of concrete objects represented. �e information on
summary object u of abstract con�guration S describes the number of concrete
objects that are mapped to u in any concrete con�guration that S represents.
Counter abstraction has been used to analyze in�nite-state systems (McMillan,
1999; Pnueli et al., 2002), as well as in shape analysis (Yavuz-Kahveci and Bultan,
2002).

In contrast to all of the aforementioned work, random-isolation abstraction
is based on tracking the properties of a random individual, and generalizing from
the properties of the randomly chosen individual according to Random-Isolation
Principle 2.

Various data-race detection tools were discussed in Ch. 2. We expect that
these tools could �nd the single-location AS-serializability violations that Em-
pire found (see §5.8). However, these tools would not be able to �nd the multi-
location AS-serializability violations that Empire found.

102

With respect to AS-serializability violation detection, the most closely re-
lated work is the dynamic tool for detecting AS-serializability violations devel-
oped by Hammer et al. (2008). �ey also analyzed programs from the Con-
Test benchmark suite, and their dynamic tool found AS-serializability vio-
lations in the programs Account, AirlineTcks, BugTester, PingPong, and
SoftwareVerificationHW. Our tool did not �nd the AS-serializability viola-
tion in BugTester because it exhausted the available resources; however, it did
�nd AS-serializability violations in shop, which their tool did not. �e remaining
two benchmarks were not analyzed by their tool.

103

6 language strength reduction

6.1 Introduction

Ch. 5 presented Empire, a tool for verifying AS-atomicity of concurrent Java
programs. Empire abstracts a concurrent Java program into a program written
in the Empire Modeling Language (EML), which consists of a �nite set of shared-
memory locations, a �nite set of locks, and a �nite set of concurrently executing
processes. Recall that, as in Java, an EML lock is reentrant; i.e., it can be acquired
multiple times by the process that owns the lock, but it also must be successively
released the same number of times. An EML lock is acquired and released by
entering and exiting, respectively, a function that is synchronized on the lock.
(Java synchronized blocks are modeled as inlined anonymous functions in EML.)

To verify AS-atomicity of an EML program EProg, Empire compiles EProg
into a CPDS Π that contains one PDS for each EML process and each EML
lock, and an PDS for the violation monitor. �e CPDSΠ is then fed to Cpdsmc,
which implements a semi-decision procedure that attempts to determine if the
intersection of the set of CFLs—the languages ofΠ’s PDSs—is empty or not.

If a language is known to be regular, then Cpdsmc can be directed to treat it
as such. Because determining if a CFL is regular is undecidable, we use a simple
syntactic heuristic to specify regularity, namely, see whether the rule set∆ of a
PDS P contains only step rules (i.e.,∆0 = ∅ = ∆2); this ensures that P de�nes
an NFA. For example, a rule r = 〈p,γ〉 a

↪−→ 〈p ′,γ ′〉would de�ne the transition(
(p,γ),a, (p ′,γ ′)

)
in the transition relation δ of NFA.

�e use of regular languages has a direct performance bene�t for all of the
SDPs de�ned in Ch. 4. When an NFA A is used in place of a PDS P,

1. Precision increases because Cpdsmc uses the exact language A in place
of an over-approximation of the language of P.

2. Cost decreases because (i) Cpdsmc avoids computing the pre�x abstractions—

104

one for each re�nement iteration—for P, and (ii) the intersection of the
speci�ed regular languages (the languages of A and other NFAs that re-
place PDSs) is precomputed once and for all.

�is chapter presents a generic technique that we use to reduce the number
of CFLs necessary to model an EML program. It is based on the observation that
the CFL for an EML lock l can be replaced by a regular language because an EML
process’s acquisitions and releases of l are synchronized with function calls and
returns. We call the process of replacing a CFL by a regular language language

strength reduction. �e end result is that reentrant locks can be replaced by non-
reentrant locks without sacri�cing soundness or precision. �us, for an EML
program withm processes and n locks, applying language strength reduction
allows the program to be described bym CFLs and n regular languages, versus
m+ n CFLs.

As de�ned in §5.7, the violation monitor Pmon is a true PDS and not an
NFA: it uses its stack to implement a counter. In this case, the stack height
represents the number of times the target EML process has entered a unit of
work. Just as we observed for EML locks, entering and exiting a unit of work is
also synchronized with function calls and returns. �us, we also apply language
strength reduction to the language of the violation monitor. After performing
language strength reduction, the transformed violation monitor’s language is
nearly identical to the �nite-state part Amon (e.g., A12 in Fig. 5.2). �e di�erence
is that non-determinism replaces the use of “reset” states (see §6.5).

For an EML program with set of processes SProcs and set of locks SLocks,
language strength reduction proceeds as follows:

1. For each EML processx ∈ SProcs, the PDSPx is de�ned using the encoding
given in §5.7 of Ch. 5.

2. For each EML process x ∈ SProcs, and for each EML lock l ∈ SLocks, a
nested-word automaton Nlx (Alur and Madhusudan, 2006) is de�ned such
that it recognizes the same set of executions as Px. Nested-word automata

105

(NWA) are formally de�ned in §6.3, but for this discussion, we can view
them as recognizers of CFLs where each word in the CFL is annotated
with a relation that captures its parse tree, which, in our setting, is the
parsing of matched calls and returns for runs of Px. �e NWANlx is de�ned
such that it is able to distinguish between an outermost acquisition of
l—one that de�nitely changes the owner of l—and an inner (or reentrant)
acquisition of l—one that increments the counter but does not change
the owner.

3. An important property of NWAs is that, because the matching relation
is exposed, they are closed under intersection. For each EML process
x ∈ SProcs, the NWA Nx is de�ned as the intersection of the NWAs Nlx,
l ∈ SLocks. Nx is able to distinguish between outermost and inner lock
acquisitions and releases by x for all locks l ∈ SLocks.

4. We de�ne a cross-product-like construction (§6.4) to combine an NWA
with a PDS, where the result is a new PDS that simulates both simulta-
neously. We use the construction to de�ne the PDS PN〈x〉 from Px and
Nx. Because PN〈x〉 simulates both Px and Nx, it retains the same set of
behaviors of Px while being able to distinguish between outermost and
inner lock acquisitions and releases.

5. Because PN〈x〉 can distinguish between outermost and inner lock acqui-
sitions, we remove all inner acquisitions from all runs of PN〈x〉. �is is
sound because inner acquisitions do not change the lock owner.

6. �e runs of all PDSs PN〈x〉, x ∈ SProcs, no longer contain inner (reentrant)
lock acquisitions and releases �us, we no longer require a stack to track
nested calls to acquire and release a lock because in the revised model they
do not occur. �at is, the language that models an EML lock is now regular.
�us, the transformed CPDS now containsm (transformed) PDSs, one
for each EML process, and n regular languages, one for each lock.

106

7. Finally, the same technique is applied to the EML process whose unit-of-
work status is being monitored by the violation monitor; i.e., we remove
inner unit-of-work symbols from its traces. Because the violation monitor
Pmon only required a stack to track the depth of nested calls to unit-of-
work methods, its stack is no longer necessary. �us, strength reduction
is also applied to the CFL of the violation monitor de�ned in §5.7 of Ch. 5
to replace its CFL with a regular language.

We applied the language-strength-reduction transformation to the CPDSs
that were generated by Empire for the eight ConTest benchmark programs
discussed in §5.8 of Ch. 5. Overall, the total running time taken by Cpdsmc to
analyze the transformed CPDSs was 1.8 times faster than analyzing the original
CPDSs (see §6.6).

Contributions.

�e observation that pushdown automata are closed under intersection when
the stacks are synchronized was formalized by Alur and Madhusudan (2004,
2006). �ey de�ned nested-word languages, which make stack operations ex-
plicit in the words of the language, and nested-word automata (NWA), which
accept such languages. �ey showed that these languages are closed under
intersection.

Our approach is similar in spirit to Alur and Madhusudan (2006). We use
an NWA N to model the locking (unit-of-work) behavior of an EML process.
We de�ne the nested-word language of a PDS (cf. §6.4) by associating a nested
word with every path of the PDS, which makes the stack operations explicit. We
give a generic construction that combines N with a PDS P to produce another
PDS PN whose nested-word language is the intersection of the nested-word
languages of P and N.

Language strength reduction requires the ability to distinguish between the
lock acquisitions and releases that change the owner of an EML lock l and those

107

that do not. We show how to achieve this using the NWA N. We then transfer
this ability to the PDS P for an EML process via the construction of PN. �is
enables us to perform language strength reduction for the lock l (§6.5), which
provides the performance bene�ts highlighted by items 1 and 2 in §6.1.

�e chapter concludes with a construction that combines an extended

weighted pushdown system (EWPDS) E—an extension to WPDSs that allows
for user-de�ned merge functions to fuse together the weight of the caller with
the weight of the callee (Lal et al., 2005)—with an NWA N to produce another
EWPDS EN. �e bene�t of this construction is that the EWPDS EN models
the state transitions of N via a relational weight domain, which is a symbolic

encoding of the state transitions of N.
In general, for an EWPDS E that models some program, computing the

COVP value (§6.7) over EN captures the set of all behaviors of the program
modeled by E that respect the behaviors described by N. One can view EN as
the synthesis of several recent threads of research by Alur and Madhusudan
(2006); Chaudhuri and Alur (2007) and Lal et al. (2005, 2007, 2008). Compared
to standard approaches to property checking, one can simultaneously check
properties

1. stated in a more expressive speci�cation language

2. on program models that support more powerful abstractions

3. while furnishing a broader range of diagnostic information when property
violations are detected.

�is is achieved in polynomial time and space for (possibly recursive) sequential
programs, and can be used in a semi-decision procedure for (possibly recursive)
concurrent shared-memory programs. Heretofore it was only known how to
achieve items 2 and 3 simultaneously.

�e remainder of the chapter is organized as follows: §6.2 provides an
overview. §6.3 presents nested words and nested word automata. §6.4 presents
the nested-word language of a PDS and the construction that combines an NWA

108

with an PDS. §6.5 presents the language-strength-reduction transformation.
§6.6 describes the experimental evaluation. §6.7 presents the de�nition of an
EWPDS, and the construction that combines an NWA with an EWPDS. §6.8
discusses related work.

6.2 Overview

Fig. 6.1 presents (a textual representation of) an EML program that de�nes one
EML lock l, one shared-memory location v, and one process P0. �ere are only
two possible execution paths of P0, depending on the direction taken at the
branch statement in function testAndSet on line 13. �e execution path that
takes the the true branch is given by Path 1 in Fig. 6.2. Let “(” and “)” denote lock l
and unlock l, respectively; “[” and “]” denote unitbegin and unitend, respectively;
and Rv andWv denote reading from and writing to the variable v, respectively.
Path 1 can be described by the wordwpath = “[((Rv)(Wv))]”. �e projection of
the locking symbols fromwpath produces the wordwl = “(()())”. In general, due
to recursion, the language that describes the set of possible program behaviors
with respect to l is the unbalanced-left matched-parenthesis language shown
in Fig. 6.3(a), where “unbalanced-left” denotes that a word in the language may
have unmatched left-parenthesis symbols, but not unmatched right-parenthesis
symbols.

For Path 1, there are two distinct types of lock acquisitions: ownership-
changing acquisitions (OC) and non-ownership-changing acquisitions (nOC).
�e dual also holds for lock releases. With respect towl, these two distinct types
correspond to outermost parentheses, denoted by “(o)o”, and nested parenthe-
ses, denoted by “(n)n”, respectively. Using this notation,wl can be rewritten as
“(o(n)n(n)n)o”. Fig. 6.3(b) extends this to the language level by distinguishing
between the outermost and nested parentheses of Fig. 6.3(a).

Observation 6.1. With respect to the executions of an EML program, only the OC
lock acquisitions and releases enforce mutual exclusion. For a program trace, pro-

109

1 lock: l;
2 var : v;
3
4 process P0 {
5 synchronized(l) get { read v; }
6
7 synchronized(l) set { write v; }
8
9 synchronized(l) testAndSet {

10 lock l;
11 get();
12 unlock l;
13 if(*) {
14 lock l;
15 set();
16 unlock l;
17 }
18 }
19
20 main {
21 unitbegin;
22 lock l;
23 testAndSet();
24 unlock l;
25 unitend;
26 }
27 }

Figure 6.1: Example EML program that makes use of reentrant locking.

jecting out the nOC lock acquisitions and releases does not change the set of in-

structions that are guarded by locks.

Projecting out the nested parentheses forwl results in “(o)o”. Performing
the projection on the grammar in Fig. 6.3(b) results in a regular language whose
grammar is shown in Fig. 6.3(c).

Language strength reduction is a generic technique that allows the use of

110

Path 1

main︷ ︸︸ ︷
emainn21n22c23 etestAndSetn10c11 egetn5xget︸ ︷︷ ︸

get

n12n13n14c15 esetn7xset︸ ︷︷ ︸
set

n16xtestAndSet

︸ ︷︷ ︸
testAndSet

n24n25xmain

Figure 6.2: Path 1 describes the execution path of EML process P0 from Fig. 6.1
that takes the true branch at line 13.

S → U

(a) M → ε | M M | (M)

U → M | M U | (U

S → Uo

Mo → ε | MoMo | (oM
n)o

(b) Uo → Mo | Mo Uo | (o U
n

Mn → ε | MnMn | (nM
n)n

Un → Mn | Mn Un | (n U
n

(c) S → (o)o S | (o | ε

Figure 6.3: (a) Grammar for the CFL of a reentrant lock. (b) Grammar that
distinguishes between outermost and nested parentheses. (c) Grammar for the
regular language of a non-reentrant lock.

the simpler language in Fig. 6.3(c) in place of the language in Fig. 6.3(a). Lan-
guage strength reduction provides the precision and cost bene�ts highlighted
by items 1 and 2 of §6.1.

Language strength reduction relies on the ability to distinguish between
the OC and nOC lock acquisitions of an EML process. In §6.3, we show how
this distinction can be captured by an NWA. Having de�ned the language of
Fig. 6.3(b) via an NWA N, we combine it with the PDS P that represents an EML
process. �is results in another PDS PN on which we then project out all nOC
lock acquisitions and releases. �e end result is that PN uses EML locks in only

111

a non-reentrant fashion, which enables each EML lock to be modeled by the
regular language shown in Fig. 6.3(c) in Cpdsmc. Using the simpler language of
Fig. 6.3(c) leads to the speedups reported in §6.6.

6.3 Nested Words

Alur and Madhusudan (2006) de�ne a nested word to be a pair (w, v), wherew
is a word a1 . . .ak over a �nite alphabet and v, the nesting relation, is a subset of
{1, 2, . . . ,k}× ({1, 2, . . . ,k} ∪ {∞}). �e nesting relation denotes a set of properly

nested hierarchical edges of a nested word. For a valid nesting relation, v(i, j)
implies i < j, and for all i ′, j ′ such that v(i ′, j ′) holds and i < i ′, then either
j < i ′ or j ′ < j. Given v, i is a call position if v(i, j) holds for some j, a return

position if v(k, i) holds for some k, and an internal position otherwise.
Nested words are a natural model for describing a trace of program execution.

�e nesting relation v de�nes the matched calls and returns that arise during
the trace. One can view a program as a nested-word generator, and the set of all
program traces (i.e., the set of generated nested words) de�nes the nested-word

language (NWL) of the program.

Example 6.1. Path 1 is
(
w, { (1, 22), (4, 19), (7, 10), (14, 17) }

)
, wherew is the

list of symbols emain through xmain of Path 1, and the nesting-relation entries are
the positions ofw that correspond to the calls to and returns from functions
main, testAndSet, get, and set, in order.

A set of nested words is regular if it can be modeled by a nested-word automa-

ton (NWA) (Alur and Madhusudan, 2006). An NWA N is a tuple (Q,Σ,q0, δ, F),
whereQ is a �nite set of states, Σ is a �nite alphabet, q0 ∈ Q is the initial state,
F ⊆ Q is a set of �nal states, and δ is a transition relation that consists of three
components:

• δc ⊆ Q× Σ×Q de�nes the transition relation for call positions.

• δi ⊆ Q× Σ×Q de�nes the transition relation for internal positions.

112

δc δr δi

(qc, csync,�) (�,qc, xsync,qc) (q,σ,q)

(q, cf,q) (q,q, xf,q)

Figure 6.4: An NWA template for the locking behavior of an EML process.

• δr ⊆ Q×Q× Σ×Q de�nes the transition relation for return positions.

Starting from q0, an NWA N reads a nested word nw = (w, v) from left to
right, and performs transitions (possibly non-deterministically) according to
the input symbol and the nesting relation. �at is, if N is in state qwhen reading
input symbol σ at position i in nw, then if i is an internal or call position, N

makes a transition to q ′ using (q,σ,q ′) ∈ δi or (q,σ,q ′) ∈ δc, respectively.
Otherwise, i is a return position. Let k be the call predecessor of i, and qc be the
state N was in just before the transition it made on the kth symbol; then N uses
(q,qc,σ,q ′) ∈ δr to make a transition to q ′. If, after reading nw, N is in a state
q ∈ F, then N accepts nw (Alur and Madhusudan, 2006).

We use NWLang(N) to denote the nested-word language that N accepts, and
NWLang(N,q) to denote the nested-word language such that for each nested
word nw ∈ NWLang(N,q), N is left in state q after reading nw. We extend this
notion to sets of states in the obvious way. �us, NWLang(N) = NWLang(N, F).

An NWA Template for Lock Behavior.

For an EML lock l and EML process πwith set of functions Sync synchronized
on l and set of functions Fun not synchronized on l, the locking behavior of π on
l is de�ned by an NWA N〈π〉 = (Q,Σ,q0, δ, F), whereQ = {�,�},Σ is the set of
control locations ofπ,q0 = �, F = Q, andδ is de�ned in Tab. 6.4. �e transitions
in Tab. 6.4 are instantiated for all q,qc ∈ Q, {csync, xsync ∈ Σ | sync ∈ Sync},
{cf, xf ∈ Σ | f ∈ Fun}, and σ ∈ (Σ− {csync, xsync, cf, xf | sync ∈ Sync, f ∈ Fun}).)

N〈π〉 consists of two states: locked (�) and unlocked (�). �e entry to
and exit from a function f are denoted by ef and xf, respectively. When an l-

113

synchronized function is called, N〈π〉makes a transition to the locked state
via the transitions (q, csync,�). When returning from a function, the state of
the caller is restored. For example, the transitions (�,qc, xsync,qc) ensure that
Nπ〈P0〉 goes to state qc of the caller.

Example 6.2. For EML process P0, Sync = {testAndSet, get, set} and Fun =

{main}. �e following sequence contains the calls and returns of Path 1 from
Fig. 6.2, and shows the state of N〈P0〉when processing the nested word nw from
Ex. 6.1.

�̂
emain

�̂
. . .
�̂
c23
�̂

. . .
�̂
c11
�̂

. . .
�̂

xget
�̂

. . .
�̂
c15
�̂

. . .
�̂

xset
�̂

. . .
�̂

xtestAndSet
�̂

. . .
�̂

xmain
�̂

Template Usage.

For EML process P0 from Fig. 6.1, let P〈P0〉 be the PDS that models P0 with the
rules shown in Fig. 6.5, and let N〈P0〉 be the NWA that results from instanti-
ating the above template with P0. With respect to the locking behavior of P0,
P〈P0〉 cannot distinguish between OC and nOC lock acquisitions and releases,
while N〈P0〉 is able to do so via its state space. �e transitions (�, csync,�) and
(�, csync,�) in δc are the OC and nOC lock acquisitions, respectively; and transi-
tions (�,�, xsync,�) and (�,�, xsync,�) in δr are the nOC and OC lock releases,
respectively.

We show how to combine P〈P0〉 and N〈P0〉 in §6.4 to construct another PDS
PN〈P0〉, such that PN〈P0〉 contains the same behaviors as P〈P0〉, but is able to
distinguish between the OC and nOC lock acquisitions and releases. Once such
a distinction can be made, we leverage Observation 1 to remove all nOC lock
acquisitions and releases from PN〈P0〉 (§6.5). �is makes it possible to model
an EML lock with the trivial language shown in Fig. 6.3(c).

114

Rules Symbol

1 〈p, emain〉
skip
↪−→ 〈p,n21〉

2 〈p,n21〉
unitbegin
↪−→ 〈p,n22〉 [

3 〈p,n22〉
lock l
↪−→ 〈p, c23〉 (

4 〈p, c23〉
skip
↪−→ 〈p, etestAndSet n24〉

5 〈p, etestAndSet〉
skip
↪−→ 〈p,n10〉

6 〈p,n10〉
lock l
↪−→ 〈p, c11〉 (

7 〈p, c11〉
skip
↪−→ 〈p, eget n12〉

8 〈p, eget〉
skip
↪−→ 〈p,n5〉

9 〈p,n5〉
read v
↪−→ 〈p, xget〉 Rv

10 〈p, xget〉
skip
↪−→ 〈p, ε〉

11 〈p,n12〉
unlock l
↪−→ 〈p,n13〉)

12 〈p,n13〉
skip
↪−→ 〈p,n14〉

13 〈p,n14〉
lock l
↪−→ 〈p, c15〉 (

14 〈p, c15〉
skip
↪−→ 〈p, eset n16〉

15 〈p, eset〉
skip
↪−→ 〈p,n7〉

16 〈p,n7〉
write v
↪−→ 〈p, xset〉 Wv

17 〈p, xset〉
skip
↪−→ 〈p, ε〉

18 〈p,n16〉
unlock l
↪−→ 〈p, xtestAndSet〉)

19 〈p, xtestAndSet〉
skip
↪−→ 〈p, ε〉

20 〈p,n24〉
unlock l
↪−→ 〈p,n25〉)

21 〈p,n25〉
unitend
↪−→ 〈p, xmain〉]

22 〈p, xmain〉
skip
↪−→ 〈p, ε〉

23 〈p,n13〉
skip
↪−→ 〈p, xtestAndSet〉

Figure 6.5: PDS rules that encode EML process P0 from Fig. 6.1. PDS stack
symbols ef and xf denote entry and exit to the function f, respectively, and
stack symbols ni and ci denote are step and call nodes subscripted by their line
number, respectively. �e run [r1, . . . , r22] corresponds to Path 1 from Fig. 6.2 in
§6.2.

115

6.4 Combining an NWA with a PDS
We �rst de�ne the notion of the nested-word language (NWL) of a PDS. De�n-
ing the NWL of a PDS establishes a relationship between the NWA and PDS
formalisms. Additionally, it allows for formal reasoning about the construction
that creates a PDS PN to simultaneously model a PDS P and an NWA N.

�e Nested-Word Language of a PDS

For a PDS P = (P, Γ , Lab,∆, c0), if (w, v) is a nested word in the NWL for P,
w consists of the sequence of left-hand-side stack symbols γ1 . . .γj for a run
ρ = [r1, . . . , rj] of P from some con�guration.1

�e PDS formalism does not have a natural way of modeling an NWA’s ability
to inspect the state of the caller when returning (i.e., a natural counterpart to δr).
�e construction that follows uses the PDS stack to achieve the same result. To
do so, stack symbols that “remember” the caller’s state must be created. �ese
symbols are bookkeeping symbols and should not be considered part of a run
of a PDS. �us, we slightly augment our de�nition of a PDS so that the stack
alphabet Γ is composed of two sets, Γα and Γβ, such that Γα ∩ Γβ = ∅. �e two
sets distinguish between the “actual” and “bookkeeping” stack symbols. If left
unspeci�ed, Γβ = ∅. Additionally, a bookkeeping symbol can only appear on
the left-hand side of a step rule.

We de�ne the function nwpost(ρ) that generates a nested word nw = (w, v)
for a run ρ = [r1, . . . , rj]. �e function nwpost(ρ) makes use of the helper func-
tion nwpost[r]((w, v)) that on input (w, v) produces a new nested word to re�ect
the execution of the rule r.

1Recall that a run is a sequence of PDS rules [r1, . . . , rj], where the �rst con�guration of r1
is the initial con�guration c0 of P.

116

nwpost[r]((w, v)) =

(wγ, v) if r = 〈p,γ〉 ↪→ 〈p ′,γ ′〉,γ ∈ Γα

(w, v) if r = 〈p,γ〉 ↪→ 〈p ′,γ ′〉,γ ∈ Γβ

(wγ, (v− {〈i,∞〉}) ∪ {〈i, |wγ|〉}) if r = 〈p,γ〉 ↪→ 〈p ′, ε〉,
i = max({j | 〈j,∞〉 ∈ v})

(wγ, v ∪ {〈|wγ|,∞〉}) if r = 〈p,γ〉 ↪→ 〈p ′,γ ′ γ ′′〉
(w, v) if r = ε

Using nwpost[r], nwpost([r1 . . . rj]) is de�ned as follows:2

nwpost([]) = (ε, ∅)
nwpost([r1, . . . , rj]) = nwpost[rj](nwpost([r1, . . . , rj−1]))

De�nition 6.3. For a PDS P, NWLang(P) = { nwpost(ρ) | ρ ∈ Runs(P) }.

�e set of all nested words that drive P to some state p ∈ P is denoted by
NWLang(P,p). We extend this notion to sets of states in the obvious way. �us,
NWLang(P) = NWLang(P,P).

Construction 1

Construction 1 combines a PDSP with an NWAN to produce a new PDSPN such
that PN is able to model both P and N simultaneously. �at is, the construction
ensures that NWLang(PN) = NWLang(P) ∩ NWLang(N).

A PDS P = (P, Γ , Lab,∆, 〈p0,γ0〉) and an NWA N = (Q,Σ,q0, δ, F), where
Γ = Σ, are combined to form a new PDS PN = (PN, ΓN, Lab,∆N, 〈(p0,q0), γ0〉),
where

2nwpost[r](nw) is not always de�ned because of max; and thus neither is nwpost. However,
for a run of a PDS from the initial con�guration, both will always be de�ned.

117

• PN ⊆ (P×Q)∪(P×(Q×Γ)). �e set of control locations (P×Q) merely
combines the control locations P of P with the statesQ of N. �e set of
control locations (P ×Q× Γ) are used by a pop rule to record the stack
symbol γ ∈ Γ that was popped o� of the stack. Recall that a transition in
the return transition relation δr is of the form (qr,qc,γ,q). �e elements
qr and γ are recorded in a control location of the form (p,qr,γ).

• ΓN = ΓαN∪Γ
β
N , where ΓαN = Γ is the stack alphabet of P (or equivalently, the

input alphabet of N), and ΓβN = Γ ×Q is a set of newly introduced stack
symbols that are used to record the state of N when a function call occurs.
Following the discussion above, a pop rule returns to a control location of
the form (p,qr,γ). �e push rule of the caller will use a modi�ed return lo-
cation of the form (γr,qc). When the callee returns (i.e., the pop rule �res),
the top of the stack will then contain (γr,qc), and the control location of
PN will be of the form (p,qr,γ). All inputs to δr are now present (i.e., qr,
qc, and γ), and PN will make a transition to a con�guration 〈(p,q),γr〉
using (qr,qc,γ,q) ∈ δr. �e rules to implement such a transition are
discussed below.

• ∆N is de�ned as follows:

1. For r = 〈p,n1〉 ↪→ 〈p ′,n2〉 ∈ ∆1 and t = (q,n1,q ′) ∈ δi,
〈(p,q),n1〉 ↪→ 〈(p ′,q ′),n2〉 ∈ ∆N. �ese rules implement the stan-
dard cross-product construction.

2. For r = 〈p,nc〉 ↪→ 〈p ′, e rc〉 ∈ ∆2 and t = (qc,nc,q) ∈ δc,
〈(p,qc),nc〉 ↪→ 〈(p ′,q), e (rc,qc)〉 ∈ ∆N, where (rc,qc) ∈ Γβ.
�ese rules record the state qc of the caller by pairing it with the
return location rc. �us, when the callee returns, the state of the
caller will be available to PN by extracting it from the top-of-stack
symbol �e need to distinguish between the stack alphabet of P

and the “bookkeeping” symbols introduced to model N is why we

118

introduce the new stack symbols Γβ and use the combined stack
alphabet Γ = Γα ∪ Γβ.

3. For r = 〈p, x〉 ↪→ 〈p ′, ε〉 ∈ ∆0 and t = (qr,qc, x,q) ∈ δr,
〈(p,qr), x〉 ↪→ 〈(p ′,qxr), ε〉 ∈ ∆N, where qxr ∈ Γβ. �ese rules
pops the top of the stack and record, via the control location (p ′,qxr),
that when making the pop, N was in state qr and the top of stack
was x. �e recorded information is then used by the dispatch rules,
de�ned below, to properly model δr of N.

4. For each p ∈ P and each rc ∈ Γ that occurs in∆2,∆N contains rules
of the form 〈(p,qxr), (rc,qc)〉 ↪→ 〈(p,q), rc〉, where qxr ∈ Γβ and
(qr,qc, x,q) ∈ δr. �ese rules all PN to make a transition to the
correct return point rc of P, and also to the correct state q of N. �e
rules use the control location (p,qxr), as well as the return transition
relation δr, to ensure that P and N are properly modeled.

�eorem 6.4. An NWA N combined with a PDS P results in a new PDS PN such

that NWLang(PN, (p,q)) = NWLang(P,p)∩NWLang(N,q), for anyp ∈ P and

q ∈ Q.

Proof. (Sketch) �e proof is by induction over the length of a run of the respective
PDSs that derive nested words. �e full proof can be found in App. A.1.

6.5 Language Strength Reduction in Empire

�m. 6.4 shows that the PDS PN is able to model both P and N simultaneously
(for nested words in their intersection). We use this operation in our method for
performing language strength reduction on both the language of an EML lock
and the language of the violation monitor. As noted in items 1 and 2 from §6.1,
replacing a CFL with a regular language improves Empire’s performance.

119

Reducing EML Locks

To illustrate language strength reduction for EML locks we focus on EML process
P0 from Fig. 6.1, whose PDS rules are given in Fig. 6.5. �e �rst three steps are
as follows:

1. PDS P〈P0〉 = (P, Γ , Lab,∆, 〈p, emain〉) is the PDS generated for EML pro-
cess P0 using the original Empire translation (cf. Ch. 5, §5.7). �e rule set
∆ is given in Fig. 6.5.

2. NWA N is generated using the locking template as described in §6.3. (In
general, let SLocks be the set of locks of the EML program. For each lock
l ∈ SLocks, an NWA Nl is generated using the NWA template with process
P0 from §6.3. N is de�ned by

⋂
l∈SLocks

Nl. �e state spaceQ of N is equal
to 2|SLocks|. �at is,Q = {�l,�l | l ∈ SLocks }, and each q ∈ Q represents
a set of locks that are held.)

3. PDSPN〈P0〉 = (PN, ΓN, Lab,∆N, 〈(p,q0), emain〉) is generated from P〈P0〉
and N. �e NWA template from §6.3 has been instantiated for EML process
P0, and thus NWLang(N) = NWLang(PN〈P0〉). Hence, PN〈P0〉 contains
the same behaviors as P〈P0〉. Additionally, by �m. 6.4, PN〈P0〉 is able to
distinguish between OC and nOC lock acquisitions and releases in the
same manner as N.

From Fig. 6.3(a) to Fig. 6.3(b)

�e translation from P0 to PDS P〈P0〉 = (P, Γ , Lab,∆, c0) generates a single-
state PDS, i.e., P = {p}. �e rule set∆ is given in Fig. 6.5. To call a synchronized
function, the caller �rst acquires the lock and then calls the function. Upon
returning from the callee, the lock is released. �is is exempli�ed by PDS rules
13, 14, and 18 in Fig. 6.5 for calling the synchronized function set. �e discus-
sion that follows presents the transformation for the PDS rules that encode

120

(a) (b) (c)

[((Rv)(WvΣ
∗ [(o(nRv)n(nWvΣ

∗ [(oRvWv)o]

Figure 6.6: For Path 1 of PN〈P0〉, a pre�x bound of 7, and ρ = [r1, . . . , r22] from
Fig. 6.5, cols. (a) and (b) present f(ρ) before and after distinguishing between
OC and nOC lock acquisitions and releases, respectively. Col. (c) presents f(ρ)
after removing all nOC lock acquisitions and releases from PN〈P0〉. Note that
for cols. (a) and (b), the valuation is an approximation, whereas col. (c) is able to
describe Path 1 exactly within the given pre�x bound.

the invocation and execution of the synchronized EML function set (rules
13–18 in Fig. 6.5). �e EML labels on each rule has been replaced by their cor-
responding symbol (e.g., lock l with “(”). We review PDS rules that acquire l,
call set, return from set, and release l. Before doing so, we note that there
is a mismatch between Java source code, which has synchronized methods,
and EML code, which uses lock l and unlock l statements. �e mismatch is
because Empire’s front end compiles a Java source program into a lower-level
format that wraps calls to synchronized methods between monitorenter and
monitorexit statements. �e EML statements lock l and unlock l then corre-
spond to monitorenter and monitorexit statements, respectively. Due to the
mismatch, one should view the “acquire” and “call” rules presented below as
de�ning a single logical transition—invoking a synchronized method—via an
acquire followed immediately by a call. Similarly, the “return” and “release” rules
(performed in that order) also de�ne a single logical transition—returning from
a synchronized method.

acquire 〈p,n14〉
(

↪−→ 〈p, eset n16〉, rule 13 from Fig. 6.5, acquires EML lock l before
calling set.

call 〈p, c15〉 ↪−→ 〈p, eset n16〉, rule 14 from Fig. 6.5, calls set.

return 〈p, xset〉 ↪−→ 〈p, ε〉, rule 17 from Fig. 6.5, returns from set.

121

release 〈p,n16〉
)

↪−→ 〈p, xtestAndSet〉, rule 18 from Fig. 6.5, releases EML lock l upon
return from set.

�e PDS PN will have the following corresponding rules. �e locking sym-
bols “(” and “)” are annotated with the subscriptsn and o to denote OC and nOC
lock acquisitions and releases, respectively. Moreover, because P is a single-state
PDS, the PDS state p has been omitted for clarity.

acquire 〈�,n14〉
(o

↪−→ 〈�, c15〉 and 〈�,n14〉
(n

↪−→ 〈�, c15〉 correspond to rule 13
listed in item “acquire” above. �e lock acquisition is an OC acquisition
if NWA is in the not-held state�. �e NWA state does not change when
acquiring the lock because the NWA state changes only when calling
and returning from a synchronized function, which is shown in the “call”
rules below. �at is, the “acquire” rules de�ned here and the “call” rules
de�ned next work together to de�ne conceptually a set of single (logical)
transitions that perform (i) the acquisition of a lock l, and (ii) the call to
the function set. As discussed above, this is due to the mismatch between
Java source code and EML code.

call 〈�, c15〉 ↪−→ 〈�, eset (�,n16)〉 and 〈�, c15〉 ↪−→ 〈�, eset (�,n16)〉 corre-
spond to rule 14 listed in item “call” above. Because set is a synchronized
function, the NWA makes a transition to the lock-held state� if it was in
the lock-not-held state�. Together with the “acquire” rules de�ned above,
PN〈P0〉models both calling a synchronized function and updating the
state of the NWA N.

return 〈�, xset〉 ↪−→ 〈�xset , ε〉 and 〈�, xset〉 ↪−→ 〈�xset , ε〉 correspond to rule 17
listed in item “return” above. �e stack symbol xset has been paired with
the PDS state (e.g.,�xset). �is is required so that the “simulate” rules listed
next can simulate the δr transition relation of N.

simulate 〈q, (�,n16)〉 ↪−→ 〈�,n16〉 and 〈q, (�,n16)〉 ↪−→ 〈�,n16〉, where q ∈
{ �xset ,�xset }, are the rules generated by item 4 in §6.4 to simulate the

122

δr function of N. �ese rules have the e�ect of restoring the state of the
NWA N to the state that it was in before the call, which corresponds to
how the actual state of a Java program would change when returning
from a synchronized methodm. Speci�cally, if the lock was held before
invokingm, then it remains held when returning fromm. Otherwise, the
lock was not held when invokingm, and it is released when returning from
m. Combining these rules with the “release” rules de�ned next provides
the same functionality for PN〈P0〉.

release 〈�,n16〉
)n

↪−→ 〈�, xtestAndSet〉 and 〈�,n16〉
)o

↪−→ 〈�, xtestAndSet〉 correspond
to rule 18 listed in item “unlock” above. �e NWA state signi�es whether
the lock lwas held before making the call. Hence, the latter rule is an OC
lock release because the caller did not hold the lock. Note that the NWA
state is not updated in a “release” rule. Updating the NWA state is the job
of the “simulate” rules.

We view the additional simulation rules as a non-observable step of PN.
�at is, in the rules listed above, one should consider a simulation rule fol-
lowed by a lock release rule as one logical step, which explains why the rule

r = 〈�,n16〉
)o

↪−→ 〈�, xtestAndSet〉 releases the lock l, denoted by)o, even though
its from-state is�. In other words, the from-state� of r is a record that before

invoking EML function set, the caller did not hold the lock.
Performing the annotation on the locking symbols of the rules involves a

homomorphism, with respect to lock acquisitions and releases, that maps the
language of PN to the language of P (i.e., from Fig. 6.3(b) to Fig. 6.3(a)). �e
homomorphism is de�ned by [(o 7→ (, (n 7→ (,)o 7→),)n 7→)]. �us, there is an
inverse homomorphism from the language of P to the language of PN.

From Fig. 6.3(b) to Fig. 6.3(c)

Once PN is able to distinguish between OC and nOC lock acquisitions and
releases, we leverage Observation 1 to remove all nOC lock acquisitions and

123

releases. Namely, the locking symbols (n and)n are simply replaced by τ, which
is the internal action symbol of a CPDS. Performing this transformation induces
a homomorphism from the language de�ned by Fig. 6.3(b) to the language
de�ned byFig. 6.3(c): [(n 7→ τ,)n 7→ τ] and all other symbols map to themselves.
�is is illustrated by the words shown in Fig. 6.6, cols. (b) and (c). Note that the
word shown in column (c) is not an approximation like those in columns (a) and
(b). �is is because the word that describes Path 1 is shorter after performing
language strength reduction.

Removing nested parentheses that denote nOC acquisitions and releases
guarantees that all lock acquisitions and releases modeled by PN are OC. �us,
all EML locks can now be modeled in the CPDS by a �nite-state machine for the
trivial language shown in Fig. 6.3(c).

Reducing the Violation Monitor

We also apply language strength reduction to the language of the violation
monitor. Just as an NWA can capture the locking behavior of an EML process
(cf. the NWA locking template shown in Tab. 6.4), it can also capture the unit-of-
work behavior of an EML process. In fact, the NWA locking template shown in
Tab. 6.4 can also be used to de�ne the unit-of-work behavior of an EML process.
To do so, we replace the set of methods Sync with the unit-of-work methods.
�us, the previous discussion that (i) de�nes the PDS PN〈P0〉 from PDS P and
NWA N, and (ii) removes the nOC lock acquisitions and releases already handles
removing non-state-changing unit-of-work symbols from the traces of P. �at is,
we simply treat the target EML process—P0 in the discussion above—as having
an extra “unit-of-work” lock whose state is updated when calling and returning
from unit-of-work methods.

After applying the transformation, the language of the violation monitor is
now regular, i.e., it no longer requires a stack to count the depth of nested calls
to unit-of-work methods because all nested unit-of-work symbols have been
removed from the traces of the target EML process. �e end result is that the

124

violation monitor’s language is now regular. For the AS-serializability violation
discussed in Chs. 2 and 5, the NFA A6.7 shown in Fig. 6.7 accepts the language
of the reduced violation monitor. Comparing A6.7 with the NFA A12—the NFA
that de�nes the �nite-state portion of Pmon in §5.7 on page 94—we see that the
“reset” states have been removed. In their place, A6.7 uses non-determinism to
“guess” when a violation will occur. �at is, when the target EML process begins
a unit of work, denoted by the “[” symbol, A6.7 is in state q2 and can make a
transition to state q3—it has guessed that an AS-serializability violation is about
to happen—or follow the self-loop and remain in stateq2—it has guessed that an
AS-serializability violation will not occur during this unit of work. If A6.7guesses
incorrectly that an AS-serializability violation will occur, then it will become
stuck in a state q3–6 when the target EML process exits the unit of work because
there is no outgoing edge from these states that is labeled with the symbol “]”
(the labelΛ that annotates the self-loop on states q3–6 represents Σ \ {] }). �us,
if the target EML process �nishes the unit of work and attempts to synchronize
with the violation monitor on the action], it will not be able to do so.

q7q1
alloc

q2
[

Σ

q3
R1(c)

Λ

q4
W2(d)

Λ

q5
W2(c)

Λ

q6
R1(d)

Λ

Figure 6.7: �e NFA that recognizes the language of the violation monitor from
Ch. 5 after language-strength reduction has been performed. Σ denotes the
input alphabet, andΛ is de�ned asΣ\ {]}. Once the NFA guesses that a violation
will occur by making a transition to state q3, it must observe a violation before
the unit-of-work end symbol “]” appears in a trace. Otherwise, it will become
stuck in a state q3−6.

125

Summary

For both EML locks and the violation monitor, we showed how to (i) construct
a PDS PN〈P0〉 and then (ii) remove nOC acquisitions and releases. After these
steps, the languages of the residual EML lock processes and the violation moni-
tor are regular: in other words, language strength reduction has replaced the
original CFLs with regular languages (while each original PDS P for an EML
process has been replaced by PN, from which nOC acquisitions and releases
have been removed). In addition, because the open and close-parenthesis sym-
bols for nOC acquisitions and releases have been removed, a path in an EML
process that uses reentrant locking is now described by a shorter word than
when nOC acquisitions and releases are observable. �is is illustrated in Fig. 6.6.
In fact, there is now no cost in the WPDS weight domain (i.e., the pre�x abstrac-
tion) to model a successive synchronized call, including recursive synchronized
functions.

�e same holds for the language of the violation monitor—the symbols for
nested calls and returns of unit-of-work methods have been removed. As for
locks, removing nested symbols allows for the language of the violation monitor
to be regular. Moreover, the �nite-state portion Amon that was used in §5.7 of
Ch. 5 is also simpler because the “reset” states are no longer needed. Finally, in
some cases, the CPDS model checker can �nd the same counterexample using a
smaller bound k.

6.6 Experiments

We implemented Construction 1 and the transformations from §6.5 in Empire.
We reanalyzed the 4583 transformed CPDSs that were generated for the eight
ConTest benchmark programs used in the experimental evaluation of the tech-
niques from Ch. 5. All experiments were run on the same dual-core 3 GHz
Pentium Xeon processor with 4 GB of memory.

�e total time taken by Cpdsmc to analyze all 4583 transformed CPDSs,

126

Benchmark # CPDSs Viol OK OOM OOT

account 642 5 78 50↑ 509↓
airlineTickets 900 12 882 0 6
PingPong 384 29 349 0 6
ProducerConsumer 512 32↑ 110↑ 85↑ 285↓
SoftwareVeri�cationHW 15 4↑ 5 0 6↓
BugTester 615 0 460↑ 155↑ 0↓
BuggyProgram 615 0 599 0 16
shop 900 6↑ 0 839↑ 55↓
Totals 4583 88↑ 2483↑ 1129↑ 883↓

Table 6.1: Column “Benchmark” speci�es the names of the eight ConTest bench-
mark programs analyzed. Column “# CPDSs” speci�es the number of CPDSs
generated. Column “Viol” speci�es the number of AS-serializability violations
detected. Column “OK” speci�es the number of CPDS queries that reported
no AS-serializability violation. Column “OOM” speci�es the number of CPDS
queries that exhausted memory (OOM). Column “OOT” speci�es the number
of CPDS queries that exhausted the 300-second timeout. �e horizontal line
after row 4 separates the benchmarks that did not contain any synchronization
operations after abstraction from those that still contained synchronization
operations. An up arrow (↑) denotes that a table entry is higher when compared
to Tab. 5.4. Similarly, a down arrow (↓) denotes that a table entry is lower when
compared to Tab. 5.4.

including queries on which it timed out, was around 349,100 seconds. In compar-
ison, the total time taken by Cpdsmc to analyze the untransformed CPDSs—i.e.,
the total time for the experiments in Ch. 5—was around 589,900 seconds. Com-
paring the total times, we see that applying the language-strength-reduction
transformation provided an overall speedup of around 1.7.

Tab. 6.1 presents a summary table using the same format as in §5.8 from
Ch. 5. For comparing the totals, Cpdsmc performs better when analyzing the
transformed CPDSs if it (i) �nds more violations, (ii) proves more CPDS queries
are unreachable, (iii) times out less often, or (iv) runs out of memory instead

127

of timing out. It is better for Cpdsmc to exhaust memory resources than time
resources because we use a maximum pre�x depth of 30 (which roughly equates
to 3 GB of memory).3 �us, exhausting memory resources is an indication that
the CPDS being analyzed is a di�cult CPDS because it requires a more precise
abstraction than CPDSs for which Cpdsmc returned a de�nitive answer. In addi-
tion, when Cpdsmc exhausts its available memory resources, it has explored the
reachable con�guration space of the input CPDS further than if it has exhausted
the allotted time. In Tab. 6.1, an arrow next to a table entry denotes the relative
change when compared to the corresponding entry in Tab. 5.4 (a table entry with
no arrow means that the numbers are the same). Because down arrows (↓) only
occur on the timeout column, table entries that are annotated with arrows indi-
cate totals where Cpdsmc performed better when analyzing transformed CPDSs
(Cpdsmc never performed worse when analyzing the transformed models).

If we only consider the four benchmarks whose EML code contains syn-
chronization operations—the bottom four benchmarks on Tab. 6.1—Cpdsmc
took roughly 92,400 seconds and 298,100 seconds to analyze the transformed
and original CPDSs, respectively, which is a total speedup of 3.2. Breaking it
down further, if we only consider the benchmarks that contain synchronization
operations and Cpdsmc returned a de�nitive answer on both the transformed
and original models, the total time taken by Cpdsmc was roughly 4,400 seconds
and 7,700 seconds to analyze the transformed and original CPDSs, respectively,
which is a total speedup 1.8.

Fig. 6.8 presents log-log scatter plots that compare the execution times of
Cpdsmc on the transformed models (y-axis) and the original models (x-axis).
�e 300-second timeout is denoted by the horizontal and vertical lines that form
a box in each plot. �e dashed-diagonal line denotes equal running times. Points
below and to the right are queries on which Cpdsmc was faster on the trans-
formed models. �e queries are categorized according to the result returned
by Cpdsmc when analyzing a transformed model. �e plot labeled “OOM” are

3�e experiments only use 3 GB of memory because the operating system reserves 1 GB for
its own use.

128

CPDS (seconds)

Tr
an

sf
or

m
ed

 C
P

D
S

 (
se

co
nd

s)

2^0

2^2

2^4

2^6

2^8

2^10

2^0 2^2 2^4 2^6 2^8 2^10

●
●

●
●

●
●

●●
●

●

AS−Violation

2^0 2^2 2^4 2^6 2^8 2^10

●●

●
●●

●

●●●●
●

●●●

●

●●●

●

●●●

●

●●●

●

●● ●

●

●●●

●

●●●
●●●●
●●

●
●●

●

●●
●●●●

●●

●

●●

●

●●

●

●●●●

●●●

●

●●●

●

●●●

●

●●●
●●●●
●●

●
●●

●

●●
●
●●●

●●

●

●●

●

●●

●

●●●
●

●●●

●

●●●

●

●●●

●

●●●
●●●●

●●

●

●●

●

●●
●●●●

●●

●

●●

●

●●

●

●●●●

●●●

●

●●●

●

●●●

●

●●●
●●●●

●●

●

●●

●

●●
●●●●

●●

●

●●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●
●●●●

●●

●

●●

●

●●
●●●●

●●

●

● ●

●

●●
●●●●

●

●●●

●

●●●

●

●●●●
●

●●●

●

●●●

●

●●●●
●

●●●

●

●●
●

●

●●●●
●
●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●
●●●●

●●

●

●●

●

●●

●●●●

●●

●

●●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●
●●●●
●●
●
●●

●

●●

●●●●

●●

●

●●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●
●●●●
● ●

●

●●
●

●●

●●●●

●●

●

●●

●

●●

●

●●●

●

●●●

●

●
●●

●

●●●

●

●●●
●●●●

●●

●
●●

●
●●

●●●●

●●

●

●●

●

●●

●●●
●●●●●●●●
●

●●●
●
●
●

●
●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●
●
●
●
●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●●●●
●
●●●●●●
●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●
●

●●
●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●●
●●●●●
●●●●●●
●
●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●
●●
●●●●●
●
●
●
●●●●
●
●●
●●●●●
●
●
●●●●●●●●●●●●

●●●
●

●●●●●●●●●
●●
●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●
●
●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●
●●●
●
●●

●
●●
●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●●
●
●
●

No AS−Violation

2^0

2^2

2^4

2^6

2^8

2^10

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●

●

●●

●
●

●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●
●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●
●
●
●

●●
●
●
●●

●
●
●

●

●

●

●

●
●

●●

●
●●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●●
●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●●

●
●
●
●

●●
●

●
●●

●
●
●

●

●

●

●

●
●

●●
●
●

●

●
●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●
●

●
●
●
●

●●
●

●

●●

●
●

●

●

●

●

●

●
●

●●
●
●

●

●
●

●

●

●

●
●●

●
●●

●●
●

●

●
●

●

●●

●

●●●●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●●

●
●
●●

●

●●

●
●
●
●

●●
●

●

●●

●
●
●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●●

●
●●●

●●
●

●

●
●

●

●●

●

●●●●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●
●
●
●

●●

●

●
●●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●●
●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●
●●
●
●
●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●●
●●
●
●
●
●

●

●

●

●

●

●
●

●

●

●
●
●●
●

●

●
●
●

●

●

●

●

●

●
●●

●
●

●●

●

●●

●
●
●
●

●●
●
●
●●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●●●

●●
●

●●
●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●
●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●●

●
●
●
●

●●
●
●
●●

●
●
●

●

●

●

●

●
●

●●
●
●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●●

●
●
●
●

●●
●
●
●●

●
●
●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●●

●
●
●
●

●●
●
●
●●

●
●
●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

OOM

Figure 6.8: Log-log scatter-plots of the Cpdsmc’s execution times for queries
generated from the four EML programs that contain synchronization operations.
�e y-axis is the execution time for the transformed CPDSs (y-axis), and the
x-axis is the execution time for the original CPDSs using Individual Multi-step

SDP presented in Ch. 4 (x-axis). �e queries are categorized according to the
result returned by Cpdsmc on the transformed models. �e top plot shows those
queries on which Cpdsmc exhausted memory on the transformed models and
exhausted the 300-second timeout on the original models. �e (lower) left-hand
plot shows the queries on which Cpdsmc found an AS-serializability violation.
�e right-hand plot shows queries on which Cpdsmc found no violation on
the transformed models. �e 300-second timeout is denoted by the horizontal
and vertical lines that form a box in each of the plots. �e dashed-diagonal line
denotes equal running times: points below and to the right of the dashed lines
are runs for which Cpdsmc was faster on the transformed models.

129

queries on which Cpdsmc ran out of memory. For each of these queries, Cpdsmc
exhausted the 300-second timeout when analyzing the original queries. �e
plot labeled “AS-Violation” shows queries where Cpdsmc found a violation. �e
vertical band on the right are queries in which Cpdsmc found a violation on the
transformed models, but ran out of time on the original models. �e plot labeled
“No AS-Violation” shows queries on which Cpdsmc reported no violation. �e
vertical band on the right again marks queries on which Cpdsmc exhausted
the 300-second timeout. Overall, the plots show that Cpdsmc, when analyzing
the transformed models, was able (i) to �nd more violations (in examples that
contain violations), and (ii) to show that more examples did not contain the
AS-serializability violation of interest (in examples free of the speci�ed viola-
tions). Moreover, for many queries, when analyzing the transformed models,
Cpdsmc exhausted memory resources whereas it exhausted time resources on
the untransformed models (plot “OOM”). As explained above, the answer “OOM”
is better than “OOT” because it means that Cpdsmc was able to explore more of
the state space.

6.7 Combining an NWA with an EWPDS
�is section presents a construction that combines an EWPDS E (de�ned next)
with an NWA N to produce another EWPDS EN. With respect to Empire and
language strength reduction, EN provides a mechanism to simulate symbolically

the transition relation δ of N. �e ability to combine an EWPDS with an NWA
is of general interest because of the reasons stated at the end of §6.1, namely
it advances the state of the art in property checking of programs. In this case,
the property (e.g., a safety property) is expressed as an NWA and the program is
modeled as an EWPDS.

Symbolic simulation might also be required to compute a reachability query.
Recall that when combining a PDSP = (P, Γ , Lab,∆, 〈p0,γ0〉) with an NWAN =

(Q,Σ,q0, δ, F) to produce a PDS PN = (PN, ΓN, Lab,∆N, 〈(p0,q0),γ0〉, the state

130

spacePN has size proportional to |P|× |Q|× |Γ |. When the size of |Q| is large—for
language strength reduction |Q| = 2SLocks—explicit modeling of the state can
cause a simple post

∗ query to become infeasible because reachability queries on
PDSs are quadratic in the number of control locations (e.g.,PN) (Schwoon, 2002).
Symbolic techniques, such as BDDs (Bryant, 1986), can address the state-space
problem because they can provide an exponential space savings. Furthermore,
the use of symbolic techniques allows for simulating the transition relation
of N directly instead of the multi-step simulation—i.e., the need to de�ne the
“simulation” rules in §6.4—required by the explicit simulation of PDS PN.

Extended Weighted Pushdown Systems

Extended weighted pushdown systems (EWPDSs) are an extension to WPDSs
developed by (Lal et al., 2005).4 An EWPDS is obtained by augmenting a WPDS
with a set of merge functions (Lal et al., 2005). Recall that weights encode the
e�ect that each statement (or PDS rule) has on the data state of the program
(cf. Ch. 3). Merge functions are used to fuse the local state of the calling procedure
as it existed just before the call with the global state produced by the called
procedure. �is capability is in similar spirit the an NWA’s ability to inspect
the state of the caller when modeling a return. With respect to Empire, merge
functions can be used to eliminate the lock acquire and release rules that wrap a
call to a synchronized function (see items “acquire” and “release” in §6.5) because
a single call rule can acquire a lock and use the merge function to release a lock.
Before formally de�ning merge functions and EWPDSs, we brie�y review the
pre�x weight domain de�ned by Defn. 4.8 in Ch. 4.

Example 6.5. �e Pre�x Weight Domain for CPDSs. For a CFL L over �nite al-
phabetΣ, the pre�x abstraction precisely models each wordw ∈ Lwhose length
is less than a bound k. If |w| > k, thenw is approximated by the regular lan-

4Due to the technical nature of the following material, the reader may want to reacquaint
themselves with the de�nition of WPDSs (Ch. 3), and the de�nition of the weight domain that
implements the pre�x abstraction as used by Cpdsmc (Ch. 4).

131

guage bwckΣ∗, where bwck denotes the pre�x ofw of length k. For two words
w1 = a1 . . .ai andw2 = b1 . . .bj, letw1 ./k w2 be the word ba1 . . .aib1 . . .bjck.
We extend ./k to �nite sets in the obvious way. For a �nite alphabetΣ and bound
k, letD be the powerset of

⋃
06i6k Σ

i. �e pre�x weight domain is de�ned as
Sαk = (D,∪, ./k, ∅, {ε}).

De�nition 6.6. A functionm : D×D → D is a merge function with respect
to a semiring S = (D,⊕,⊗, 0, 1) if it satis�es the following properties:

1. Strictness. For all a ∈ D,m(0,a) = m(a, 0) = 0.

2. Distributivity. �e function distributes over⊕. For all a,b, c ∈ D,

m(a⊕ b, c) = m(a, c)⊕m(b, c) andm(a,b⊕ c) = m(a,b)⊕m(a, c)

Example 6.7. �e Pre�x Merge Functions of Empire. Empire could use pre�x
merge functions of the form λd1.λd2.d1 ⊗ d2 ⊗ dconst, where dconst is either 1
for invoking non-synchronized functions, or {) } for invoking a function that is
synchronized on a lock l. Placing the close-parenthesis symbol, corresponding
to the release of a lock, inside of a merge function accurately re�ects the behavior
of returning from a synchronized function.

De�nition 6.8. Let M be the set of all merge functions on weight domain S,
and let ∆2 denote the set of push rules of a PDS P. An extended weighted
pushdown system is a quadruple E = (P, S, f,g) where P = (P, Γ , Lab,∆, c0) is
a PDS, S = (D,⊕,⊗, 0, 1) is a weight domain, f : ∆→ D is a map that assigns
a weight to each rule of P, and g : ∆2 → M assigns a merge function to each
rule in∆2.

Example 6.9. An EWPDS for an EML process. For an EML processπ, an EWPDS
E〈π〉 = (P, S, f,g) is generated where P is de�ned from EML process π using
the technique described in §5.7, S is the pre�x weight domain, and g assigns
pre�x merge functions to the ∆2 rules. Fig. 6.9 presents the rules that would
encode process P0 from Fig. 6.1. When compared to the PDS rules in Fig. 6.5, one

132

can see that the lock acquire and release rules that wrap a call to a synchronized
function are removed. Instead, their functionality is handled by a call rule whose
weight acquires a lock and whose merge function releases a lock.5 For example,
the EWPDS rule 10 Fig. 6.9 that models calling the set function (i) acquires the
lock, (ii) calls set, and (iii) releases the lock when set returns. In Fig. 6.5, the
same behavior required three separate rules, namely, rules 13, 14, and 18.

Run of an EWPDS.

A run of an EWPDS E is simply a run of its underlying PDS. We denote (i)
the set of all runs of E by Runs(E), (ii) the set of runs ending in con�gura-
tion c as Runs(E, c), and (iii) the set of runs ending in some con�guration c
from a set of con�gurations C as Runs(E,C). Using f and g, we can associate
a value to a run ρ, denoted by val(ρ). To do so, we de�ne the helper functions
val[r], build, and �atten. �e function val[r](z,S) takes a weight and a weight-
rule stack, and returns a weight and weight-rule stack:

val[r](z,S) =



(z⊗ f(r),S) if r = 〈p,γ〉 ↪→ 〈p ′,γ ′〉
(1, (z, r)||S) if r = 〈p,γ〉 ↪→ 〈p ′,γ ′γ ′′〉
(g(rc)(zc, f(rc)⊗ z⊗ f(r)),S ′) if r = 〈p,γ〉 ↪→ 〈p ′, ε〉

and S = (zc, rc)||S ′

(z⊗ f(r),S) if r = 〈p,γ〉 ↪→ 〈p ′, ε〉
and S = ∅

�e function build(ρ) maps a run to a weight and weight-rule stack as follows:

build([]) = (1, ∅)
build([r1, . . . , rj]) = val[rj](build([r1, . . . , rj−1]))

5To acquire and release a lock using a single call rule, we would need to modify EML to
support synchronized functions instead of having explicit lock acquire and release statements.

133

Rules Weight dconst

1 〈p, emain〉
skip
↪−→ 〈p,n21〉 1

2 〈p,n21〉
unit
↪−→ 〈p, c23 xmain〉 { [} {] }

3 〈p, c23〉
sync l
↪−→ 〈p, etestAndSet x ′main〉 { (} {) }

4 〈p, etestAndSet〉
skip
↪−→ 〈p, c11〉 1

5 〈p, c11〉
sync l
↪−→ 〈p, eget n13〉 { (} {) }

6 〈p, eget〉
skip
↪−→ 〈p,n5〉 1

7 〈p,n5〉
read v
↪−→ 〈p, xget〉 {Rv}

8 〈p, xget〉
skip
↪−→ 〈p, ε〉 1

9 〈p,n13〉
skip
↪−→ 〈p, c15〉 1

10 〈p, c15〉
sync l
↪−→ 〈p, eset xtestAndSet〉 { (} {) }

11 〈p, eset〉
skip
↪−→ 〈p,n7〉 1

12 〈p,n7〉
write v
↪−→ 〈p, xset〉 {Wv }

13 〈p, xset〉
skip
↪−→ 〈p, ε〉 1

14 〈p, xtestAndSet〉
skip
↪−→ 〈p, ε〉 1

15 〈p, x ′main〉
skip
↪−→ 〈p, xmain〉 1

16 〈p, xmain〉
skip
↪−→ 〈p, ε〉 1

17 〈p,n13〉
skip
↪−→ 〈p, xtestAndSet〉 1

Figure 6.9: EWPDS rules that encode EML process P0 from Fig. 6.1 (subscripts
correspond to the line numbers). Only the constant weight dconst is shown for
the merge functions. �e EML labels “sync l” and “unit” are the hypothetical
modi�cations to EML, and denote a scoped use of lock l and a unit of work,
respectively.

�e function �atten(z,S) “�attens” a weight and weight-rule stack by using the
extend (⊗) operation:

�atten(z, ∅) = z

�atten(z, (zc, rc)||S ′) = �atten(zc ⊗ f(rc)⊗ z,S ′)

134

Given these de�nitions, val(ρ) = �atten(build(ρ)).

Example 6.10. Valuation of Path 1. Using the EWPDS rules of Fig. 6.9, and for
a pre�x bound k > 10, one can verify that val([r1, . . . , r14]) = { [((Rv))(Wv))] },
which is the set containing only the word given in §6.2 for Path 1.

De�nition 6.11. For EWPDS E and a set of con�gurationsC, the combine-over-

all-valid-paths value COVPE(C) is de�ned as
⊕

{val(ρ) | ρ ∈ Runs(E,C)}.

�e COVP value captures the net e�ect of all paths leading to a set of con�g-
urations. An algorithm for computing COVP is given in Lal et al. (2005).

Example 6.12. COVP for EML process P0 from Fig. 6.1. Let E〈P0〉 be the EW-
PDS for process P0 with rules given in Fig. 6.9. For a pre�x bound k > 10,
COVPE〈P0〉(〈p, xmain〉) = { [((Rv)(Wv))] , [((Rv))] }. �e �rst string describes
the path that follows the true branch of the if statement at line 13 in Fig. 6.1,
and the second string describes the path that follows the false branch. Because
process P0 has only two valid paths and k > 10, the COVP weight precisely
describes the behavior of process P0. However, if kwas instead the value 8, then
the result of the same COVP computation would be { [((Rv)(Wv)Σ

∗ , [((Rv))] }.
Note that the �rst string has been approximated by an in�nite set of strings.

Construction 2

As for the case of combining an NWA with a PDS, we begin by de�ning the nested-
word language (NWL) of an EWPDS. �e NWL of an EWPDS E = (P, S, f,g) is
merely the NWL of the underlying PDS, with one additional restriction: the run
ρ for which a nested word is de�ned must have a non-zero weight.

De�nition 6.13. For an EWPDS E, the nested-word language NWLang(E) is
de�ned as NWLang(E) = { nwpost(ρ) | ρ ∈ Runs(E) ∧ val(ρ) 6= 0}.

We will sometimes wish to further restrict NWLang(E) by an acceptance
criterion, which we callϕ-acceptance.

135

De�nition 6.14. �eϕ-accepted nested-word language for an EWPDS E and
functionϕ : D→ B is de�ned as NWLangϕ(E) = {nwpost(ρ) | ρ ∈ Runs(E) ∧

val(ρ) 6= 0 ∧ ϕ(val(ρ))}.

�e construction that combines an EWPDS E with an NWA N produces
another EWPDS EN. �e weight domain of EN models the transition relation
of N in addition to the original weight domain of E. �is is accomplished via a
relational weight domain.

De�nition 6.15. A weighted relation on a set G, with weight domain S =

(D,⊕,⊗, 0, 1), is a function from (G×G) toD. �e composition of two weighted
relationsR1 andR2 is de�ned as (R1;R2)(g1,g3) = ⊕{w1⊗w2 | ∃g2 ∈ G : w1 =

R1(g1,g2),w2 = R2(g2,g3)}. �e union of the two weighted relations is de�ned
as (R1∪R2)(g1,g2) = R1(g1,g2)⊕R2(g1,g2). �e identity relation is the function
that maps each pair (g,g) to 1 and others to 0. �e re�exive transitive closure
is de�ned in terms of these operations, as usual. If R is a weighted relation and
R(g1,g2) = z, then we write g1

z−→ g2 ∈ R.

De�nition 6.16. If S is a weight domain with set of weightsD andG is a �nite set,
then the relational weight domain on (G, S) is de�ned as (2G×G→D,∪, ; , ∅, id):
weights are weighted relations on G, combine is union, extend is weighted
relational composition (“;”), 0 is the empty relation, and 1 is the weighted identity
relation on (G, S).

�is weight domain can be encoded symbolically using techniques such as
algebraic decision diagrams (Bahar et al., 1993).

�e weight domain of EN will be a relational weight domain on (G, S), where
G encodes the state space of N, and S is the weight domain of E. Intuitively,
for a run ρ of EN, the valuation val(ρ) in EN is a weighted relation R such that
if q1

z−→ q2 ∈ R, then (i) the valuation val(ρ) in E must be equal to z, and
(ii) starting from state q1, N can make a transition to state q2 on the nested
word nwpost(ρ). We now introduce some notation needed to de�ne how this is
accomplished by the construction.

136

First, for an NWA N = (Q,Σ,q0, δ, F), we de�neΣε = Σ∪ {ε}. �e relational
weight domain of EN is over the �nite setQ× Σε. �e pairing ofQwith Σε is
used below to properly model the return relation δr of N. We denote an element
(q,σ) of this set by qσ, but omit σwhen σ = ε.

Second, we de�ne the restriction of δi to σ, denoted by δ|σ
i , to be the relation

with (q1,q2) ∈ δ|σ
i i� (q1,σ,q2) ∈ δi. Note that by representing (q1,q2) as

(qε1 ,qε2), δ|σ
i can be embedded into (Q× Σε)× (Q× Σε) using only states in

which q ∈ Q is paired with ε (i.e., qε). Henceforth, we abuse notation and use
δ

|σ
i to mean the version that is embedded in (Q× Σε)× (Q× Σε). We de�ne
δ

|σ
c similarly. δ|σ

i and δ|σ
c will be the relational part of the weights that annotate

step and push rules in EN. By restricting δi (δc) to σ, a run of EN enforces that
E and N are kept in lock step (see Construction 1).

�ird, we de�ne the function expand(σ), which takes as input a symbol
σ ∈ Σ and generates the relation {(qε,qσ) | q ∈ Q}. �is is used to pass the
return location to EN’s merge functions, which is needed for properly modeling
the return relation δr of N.

Fourth, we de�ne δ̂ so that (qσr ,qc,q) ∈ δ̂ i� (qr,qc,σ,q) ∈ δr. Notice that
δ̂ combines the input symbol σ used in δr with the return state. �is is used by
EN’s merge functions to receive the return location passed via expand.

Construction 2. �e combination of an EWPDS E = (P, S, f,g) and an NWA
N = (Q,Σ,q0, δ, F) is modeled by an EWPDS EN that has the same underly-
ing PDS as E, but with a new weight domain and new assignments of weights and
merge functions to rules: EN = (P, SN, fN,gN), where SN = (DN,⊕N,⊗N, 0N, 1N)

is the relational weight domain on the setQ× Σε and weight domain S, and fN
and gN are de�ned as follows:

1. For step rule r = 〈p,n1〉 ↪→ 〈p ′,n2〉 ∈ ∆, fN(r) = {q1
f(r)−−−→ q2 | (q1,q2) ∈

δ
|n1
i }.

2. For push rule r = 〈p,nc〉 ↪→ 〈p ′, erc〉 ∈ ∆, fN(r) = {q1
f(r)−−−→ q2 | (q1,q2) ∈

δ
|nc
c } and gN(r)(wc,wx) = {q1

z−→ q2}, where q1, q2, and z are de�ned

137

by:

z = ⊕

g(r)(z1, z2) | ∃a,b :

 q1
z1−−→ a ∈ wc

∧ a
z2−−→ b ∈ (fN(r)⊗wx)

∧ δ̂(b,a,q2)




(6.1)

3. For pop rule r = 〈p, x〉 ↪→ 〈p ′, ε〉 ∈ ∆, fN(r) = {q
f(r)−−−→ qx | (q,qx) ∈

expand(x)}.

�e properties of Construction 2 are that (i) EN’s nested-word language is
the intersection of those of E and N, and (ii) the behaviors of EN (summarized
by its COVP values) are those of E restricted by N. Formally, these are captured
by �m. 6.17 and Cor. 6.18.

�eorem 6.17. An NWA N combined with an EWPDS E results in an EWPDS
EN such that NWLangϕ(EN) = NWLang(N,Q) ∩ NWLang(E), where for a run

ρ of EN with z = val(ρ),ϕ(z) = ∃q ∈ Q : q0
y−→ q ∈ z, and y 6= 0.

Proof. �e proof is given in App. A.2.

Corollary 6.18. An NWA N combined with an EWPDS E results in an EW-
PDS EN such that COVPEN

(C) =
⊕

{val(ρ) | ρ ∈ Runs(E,C), nwpost(ρ) ∈
NWLang(A,Q)}.

Complexity of EN versus E. �e complexity of computing COVP on an EWPDS
is proportional to the height of the weight domain, which is de�ned to be the
length of the longest descending chain in the domain.6 IfH is the height of the
weight domain of E, then the height of the weight domain of EN isH|Q|2, where
Q is the set of states of N. Because E and EN have the same PDS, the complexity
of computing COVP on EN only increases by a factor of |Q|2, albeit for language
strength reduction |Q| = 2SLocks .

6EWPDSs can also be used when the height is unbounded, provided there are no in�nite
descending chains. To simplify the discussion of complexity, we assume the height to be �nite.

138

Summary

We have completed the discussion of Construction 2. �e ability to combine
an EWPDS with an NWA advances the state of the art for property checking
programs (described in §6.1 and explored in more detail by (Kidd et al., 2007)).
Empire does not use this construction because the language-strength-reduction
transformation had the beautiful side e�ect of transforming the program model
so that the model-checking problem is decidable, which is discussed in Ch. 7.

6.8 Related Work

Alur and Madhusudan (2004, 2006) introduced the concept of an NWA. For
program veri�cation, they showed that a property speci�cation and a program
can be modeled by NWAs, and that veri�cation can be solved by taking their
intersection. Our work extends this result to property checking where the pro-
gram is speci�ed by an EWPDS and the property by an NWA. Because EWPDSs
allow programs to be abstracted using more than just predicate-abstraction
domains (i.e., abstract programs can be more than just Boolean programs), our
work has broadened the class of program abstractions for which one can use an
NWA as the property speci�cation.

Chaudhuri and Alur (2007) instrument a C program with an NWA that de-
�nes a property speci�cation. �is approach di�uses the NWA throughout the
program proper. Our approach combines the NWA with an EWPDS, but keeps
the NWA separated by modeling it using weights. �is is bene�cial for reporting
error-paths back to a user when model checking a C program because the in-
ternals of the NWA are not exposed in the error-path. Additionally, by keeping
the NWA separated in the weight domain, one can use symbolic encoding of
weights (Schwoon, 2002) for handling the potentially exponential size of the
NWA.

Kahlon et al. (2005a,b); Kahlon and Gupta (2007) analyze concurrent recur-
sive programs that use nested locking, where nested locking means that all

139

locks are released in the opposite order in which they are acquired. �eir locks,
however, are not reentrant and are not syntactically scoped. If one enforces syn-
tactically scoped locks, then one can apply our techniques for language strength
reduction to model a program with reentrant locks using only non-reentrant
locks. �is would produce a model to which their model-checking algorithms
could be applied.

140

7 a decision procedure

In this chapter, we combine the elements developed in previous chapters to
show that the problem of checking AS-atomicity of an EML program is actually
decidable. More precisely, we show that AS-serializability violation detection
for a language with (i) reentrant locks, (ii) an unbounded number of context
switches, and (iii) an unbounded number of lock acquisitions is decidable. (Ac-
tually, we show decidability for a model-checking formalism that can be used
to encode AS-serializability; however, for the purposes of this introduction, we
will provide intuition in terms of AS-serializability.) Because AS-serializability
violations can be completely characterized by the fourteen problematic access
patterns (see §2.3 of Ch. 2), this result shows that AS-atomicity veri�cation is
also decidable.

What are the Di�culties?

In Chs. 5 and 6, we addressed AS-serializability violation detection by encoding
the problem as a CPDS model-checking problem. �e results of the present
chapter show that CPDS model-checking was, in some sense, a too-powerful
hammer: the CPDS model-checking problem is, in general, undecidable, and
thus we were only able to obtain incomplete answers for 49% of the CPDS queries
posed in the experimental evaluation of Ch. 5 (see §5.8).

We discovered that the problem was decidable only after working on the
problem for several years (and developing the methods discussed in Chs. 5 and 6).
�ere are several reasons why it is not immediately apparent that the problem
is decidable:

1. EML locks, like Java locks, are reentrant. �e straightforward approach to
encoding a reentrant lock requires a counter to track the depth of nested
calls to synchronized methods, and a counter requires an in�nite-state
space. Our initial encoding of a counter (see Defn. 4.15 in §4.6) uses the

141

PDS stack to count in unary the value of the counter.

2. Like EML locks, units of work are also reentrant, and hence also require a
counter to track the depth of nested calls to unit-of-work methods. �e
counter to track the depth of nested calls to unit-of-work methods was
also encoded as a PDS that uses its stack to count in unary.

3. For an AS-serializability violation to occur, an interleaved execution must
be found such that the read and write accesses to memory locations occur
in a speci�ed order. Moreover, the interleaved execution must respect
the semantics of locks, which constitute global state of an EML program.
�e need to reason precisely about the owners of locks, and the validity
of individual PDS transitions with respect to locking semantics, induces
an apparent tight coupling between the PDSs. �at is, we at �rst thought
that the PDSs needed to synchronize their locking behaviors with the
lock-PDSs, which causes synchronization between the individual PDSs,
and thus a tight coupling.

Overcoming the Di�culties

At a high level, we overcome the apparent di�culties discussed above by trans-
forming the problem in several ways—in each step without losing precision—so
that the threads can be decoupled.

1. �e language-strength-reduction transformation that was presented in
Ch. 6 provides a mechanism to replace reentrant locks with non-reentrant
locks while still being able to explore the entire state space. �at is, preci-
sion is not lost because the transformed model contains the same set of
behaviors as the original model.

2. �e language-strength-reduction transformation also provides a mecha-
nism to eliminate the need to model nested calls to unit-of-work methods,

142

which reduces the language of a violation monitor from one that is context-
free to one that is regular. Moreover, for each problematic access pattern,
the NFA that recognizes traces that violate the pattern always has a special
form (discussed in §7.1).

3. �e techniques presented in this chapter provide a mechanism to analyze
the PDSs that model EML processes independently of each other. At a
high level, a summary of the locking behavior of each individual PDS—or
rather a summary of the constraints that the PDS’s use of locks places
on the set of possible interleaved executions—is computed by indepen-
dent analysis runs (one run per PDS), and then a post-processing step
determines whether there exists an interleaved execution that satis�es
the constraints computed for each PDS.

Contributions

�is chapter makes the following contributions:

• We de�ne a decision procedure for verifying AS-atomicity of an EML pro-
gram. �e decision procedure handles (i) reentrant locks (via language
strength reduction), (ii) an unbounded number of context switches, (iii)
an unbounded number of lock acquisitions and releases by each PDS, and
(iv) determines whether the sequence of interleaved memory accesses of
a problematic access pattern is present (or not). Because the set of behav-
iors of a generated EML program is an over-approximation of the set of
behaviors of the concurrent Java program from which it was generated,
verifying AS-atomicity of an EML program also veri�es AS-atomicity of
the concurrent Java program.

• �e decision procedure is modular: each PDS is analyzed independently
with respect to the violation monitor—the NFA that recognizes traces
containing an AS-serializability violation—and then a single compatibil-

143

ity check is performed that ties together the results obtained from the
di�erent PDSs.

• We leverage the special form of the NFA for a violation monitor to give
a symbolic implementation that is more space-e�cient than standard
BDD-based techniques for PDSs (Schwoon, 2002).

• We used the decision procedure to detect AS-serializability violations in
the EML programs analyzed in Ch. 5. �e decision procedure was 34 times
faster overall (i.e., the total running time for all queries) when compared
to the overall running time of Cpdsmc on the corresponding set of queries.
Moreover, for each query where Cpdsmc timed out, which was roughly
49% of the queries, the decision procedure actually performed more work
because it explored the entire state space.

�e rest of the chapter is organized as follows: §7.1 presents a more de-
tailed overview of the steps that were required to obtain the result that AS-
serializability-violation detection is decidable. §7.2 de�nes multi-PDSs and IPAs.
§7.3 reviews a decomposition result due to Kahlon and Gupta. §7.4 presents
lock histories. §7.5 presents the decision procedure for a 2-PDS. §7.6 gives a
detailed comparison with a certain decision procedure of Kahlon and Gupta.
§7.7 presents a symbolic implementation of our 2-PDS decision procedure. §7.8
generalizes the 2-PDS decision procedure to handle N-PDSs. §7.9 presents
experimental results. §7.10 describes related work.

7.1 �e Road to Decidability

�is section provides insight into how the problem can be transformed to �nesse
the features that make it appear to be undecidable.

144

Bounded Global Synchronizations

For formalisms that use multiple PDSs to model program threads, reachability
analyses that require an a priori unbounded number of global synchronizations
are in general undecidable (Ramalingam, 2000). For CPDSs, global synchroniza-
tion is a communicating action. For the concurrent-PDSs of Qadeer and Rehof
(2005) used for context-bounded model checking, a global synchronization is
a context switch. Both formalisms arti�cially bound the number of global syn-
chronizations to answer a bounded-reachability query: CPDSs with the pre�x
abstraction and concurrent-PDSs with context bounding.

For AS-serializability-violation detection, a global synchronization occurs
when the violation monitor updates its state (locks will be discussed shortly).
For the Java program from Ch. 5 shown in Listing 5.1 on page 74, there are
two threads, T1 and T2, and the atomic set consists of �elds count (c) and
data (d). �e instantiation of problematic access pattern 12 is de�ned as
“R1(c);W2(d);W2(c);R1(d)”. Before applying the language-strength-reduction
transformation from Ch. 6, the number of global synchronizations is unbounded
because the violation monitor, whose �nite-state portion is repeated in Fig. 7.1,
is required to count the reentrant unit-of-work depth for thread T1 using its
stack. �us, the violation monitor, or rather the PDS Pmon that implements the
violation monitor, could be forced to reset its state when T1 completes a unit of
work and the problematic access pattern has not been observed.

After applying the language-strength-reduction transformation, the lan-
guage of the violation monitor is much simpler because reentrant units of work
have been eliminated and thus counting is no longer required. In fact, the lan-
guage is now regular. �e non-deterministic �nite automaton (NFA) A7.2 that
recognizes the instantiation of problematic access pattern 12 is shown in Fig. 7.2.
�e absence of counting is re�ected in the fact that A7.2 does not contain the
“reset” states r3−6 needed by the PDS Pmon.

A7.2, and in general all NFAs that recognize the language of a reformulated
violation monitor after language-strength reduction, has a special form—the

145

q7q1
alloc

q2
[

RiWi

q3
R1(c)

[RiWi

q4
W2(d)

[RiWi

q5
W2(c)

[RiWi

q6
R1(d)

[RiWi

r6r3 r4 r5

]]]]a1 a1 a1 a1a0

Figure 7.1: �e state transitions of the PDS Pmon from Ch. 5. �e dashed lines
denote state transitions that require stack inspection. If the stack is empty, the
state is “reset” toq2. Otherwise, the top of the stack will contain the unit-of-work
marker>, and the state is restored from ri to state qi.

q7q1
alloc

q2
[

Σ

q3
R1(c)

Λ

q4
W2(d)

Λ

q5
W2(c)

Λ

q6
R1(d)

Λ

Figure 7.2: �e NFA A7.2 that recognizes the language of the violation monitor
from Ch. 5 after language-strength reduction has been performed. Σ denotes
the input alphabet of A7.2, andΛ is de�ned as Σ \ {]}. Once A7.2 guesses that a
violation will occur by making a transition to stateq3, it must observe a violation
before the unit-of-work end symbol “]” appears in a trace. Otherwise, it will
become stuck in a state q3−6.

only loops are self-loops on states. We call such an automaton an indexed phase

automaton (IPA). “Indexed” denotes that the index of a PDS is included on
the edge label of a transition. “Phased” denotes that a word accepted by an
IPA can be divided into phases, where a phase constitutes all symbols of the
word that cause an IPA to follow a self loop, i.e., remain in the same state. A
transition between states is called a phase transition. �e special form of IPAs

146

provides a bound on the number of global synchronizations. �at is, an IPA can
only perform a bounded number of phase transitions. Bounding the number of
phase transitions—global synchronizations—is a key step towards a decision
procedure.

Still ignoring locks and focusing on the two-threaded Java program described
above, the essence of the decision procedure is to ask for reachability of a se-

quence of global con�gurations, where a global con�guration g is a tuple of
(single-PDS) con�gurations (c1, c2), one for each PDS P1 and P2, respectively.
�e sequence of con�gurations comes directly from an IPA. For IPA A7.2, the �rst
global con�guration in the sequence is one in which P1 causes A7.2 to transition
from state q1 to state q2. �e rest of the global con�gurations model the rest
of the required phase transitions that cause A7.2 to reach its accepting state. If
such a sequence of con�gurations exists, then it is possible to drive A7.2 to its
accepting state. Driving A7.2 to its accepting state shows that the EML program
contains an AS-serializability violation, namely, the one de�ned by problematic
access pattern 12.

Accounting for Locks

Kahlon et al. (2005a) presents a decision procedure for checking reachability of
a set of global con�gurations of a multi-PDS, where a multi-PDS consists of a
set of PDSs P1, . . . , Pn that synchronize on a �nite set of non-reentrant nested
locks SLocks of size L (i.e., L = |SLocks|). For multi-PDSs, a global con�guration
is a tuple (c1, . . . , cn) of single-PDS con�gurations. �eir decision procedure
computes lock-usage summaries, known as acquisition histories, for the PDS
paths leading to the target set of single-PDS con�gurations for each PDS. A
post-processing step then compares the summaries to determine if the target
set of global con�gurations is reachable. For the following discussion, we note
that acquisition histories are a �nite abstraction—albeit of sizeO(2L)—and can
thus be embedded in the control locations of a single PDS. Embedding enables
a standard, single-PDS reachability query to be used to compute the lock-usage

147

summaries.
Recall that after applying the language-strength reduction transformation,

reentrant locks can be modeled by non-reentrant locks. �us, translating EML
into a multi-PDS instead of a CPDS as was performed in Ch. 6, we can use the
techniques of Kahlon et al. (2005a) to check for reachability of a single set of
global con�gurations. However, we require the ability to check for reachability
of a bounded sequence of global con�gurations.

To check reachability for a bounded sequence of global con�gurations, there
are two known techniques, both based on lock histories, an extension of acqui-
sition histories and formally de�ned in §7.4. �e �rst technique, which is the
focus of this chapter, is to use tuples of lock histories. Tupling enables a mech-
anism to “remember” or “record” the (set of) lock histories that arise at each
global con�guration in the desired sequence. Moreover, tupling establishes a
correlation between the lock histories that arise at each global con�guration
in the desired sequence. For AS-serializability-violation detection, the tuple
will consist of a lock history for each state of the IPA that accepts traces that
contain an AS-serializability violation. For A7.2, the tuple would have seven lock
histories, one for each state qi, 1 6 i 6 7.

�e second technique, due to Kahlon and Gupta (2007), uses a sequence of
chained reachability queries to compute a sequence of global con�gurations,
one for each phase transition in the IPA. For A7.2, the chain of reachability queries
would begin by computing a set of sets of global con�gurations that are compati-
ble (via lock histories) such that A7.2 performs a transition from state q1 to state
q2.1 Why a set of sets of global con�gurations? Chaining, unlike tupling, does
not provide a mechanism to maintain correlations between the lock histories of
intermediate global con�gurations. �us, the algorithm of Kahlon and Gupta
(2007) must perform chained reachability queries on sets of sets of global con�g-
urations. A comparison between the chained-reachability approach of Kahlon

1�e algorithm presented in Kahlon and Gupta (2007) is stated incorrectly and uses only
sets of global con�gurations. We will discuss this error in more detail in §7.6 where we present a
detailed comparison between our decision procedure and the one of Kahlon and Gupta (2007).

148

PDS control Queries Cost
locations

Chaining O(2L) O(2L·|A| · |SProcs|) O(2L · 2L·|A| · |SProcs|)

Tupling O(2L·|A|) |SProcs| O(2L·|A|) · |SProcs|

Table 7.1: Comparison between the (corrected) chaining approach of Kahlon
and Gupta (2007) and our tupling approach. L denotes the number of locks, |A|

denotes the number of states of an IPA A, and |SProcs| denotes the number of
EML processes (PDSs).

and Gupta (2007) and our approach is given in Tab. 7.1. We highlight two points:

1. Our tupling approach avoids an exponential in the number of locks L

when compared to the chaining approach of Kahlon and Gupta (2007).
(See the rightmost column in Tab. 7.1.)

2. Our tupling approach isolates the exponential cost in the PDS state space,
which is preferred because that cost can often be side-stepped using sym-
bolic techniques, such as BDDs, as explained in §7.7.

Even though our decision procedure was designed for verifying AS-atomicity
of EML programs, it is of general application when the program can be modeled
as a multi-PDS and the property of interest speci�ed as an arbitrary IPA, i.e.,
one whose input alphabet is not speci�c to verifying AS-atomicity. �us, the
remainder of the chapter is couched in terms of verifying properties speci�ed
by an IPA. Where appropriate, discussion has been added to establish the link
between the generic decision procedure and the IPAs that arise for verifying
AS-atomicity of EML programs.

149

7.2 Program Model and Property Speci�cations

A multi-PDS consists of a �nite number of PDSs P1, . . . , Pn—where each PDS
Pj = (Pj, Γj, Labj,∆j, cj0)2—that synchronize via a �nite set of locks SLocks =

{l1, . . . , lL} (i.e., L = |SLocks|). �e actions Lab of each PDS consist of lock-
acquires (“(i”) and releases (“)i”) for 1 6 i 6 L, plus symbols from Σ, a �nite
alphabet of non-parenthesis symbols.

�e intention is that each PDS models a thread, and lock-acquire and release
actions serve as synchronization primitives that constrain the behavior of the
multi-PDS. We assume that locks are acquired and released in a well-nested
fashion; i.e., locks are released in the opposite order in which they are acquired.

�e choice of what symbols (actions) appear in Σ depends on the intended
application. For the target application of verifying AS-atomicity, Σ consists of
symbols to read and write a shared-memory locationm (denoted by R(m) and
W(m), respectively), and to begin and end a unit of work ([and], respectively).

Formally, a program model is a tuple Π = (P1, . . . , Pn,SLocks,Σ). A global

con�guration g = (c1, . . . , cn,o1, . . . ,oL) is a tuple consisting of a local con�gu-
ration ci for each PDS Pi and a valuation that indicates the owner of each lock:
for each 1 6 i 6 L, oi ∈ {⊥, 1, . . . ,n} indicates the identity of the PDS that
holds lock li. �e value⊥ signi�es that a lock is currently not held by any PDS.
�e initial global con�guration is g0 = (c1

0, . . . , cn0 ,⊥, . . . ,⊥). A global con�g-
uration g = (c1, c2, . . . , cn,o1, . . . ,oL) can make a transition to another global
con�guration g ′ = (c ′1, c2, . . . , cn,o ′1, . . . ,o ′L) under the following conditions:

• If c1
a−→ c ′1 and a /∈ {(i,)i}, then g ′ = (c ′1, c2, . . . , cn,o1, . . . ,oL).

• If c1
(i−→ c ′1 and g = (c1, c2, . . . , cn,o1, . . . ,oi−1,⊥,oi+1, . . . ,oL), then

g ′ = (c ′1, c2, . . . , cn,o1, . . . ,oi−1, 1,oi+1, . . . ,oL).

• If c1
)i−→ c ′1 and g = (c1, c2, . . . , cn,o1, . . . ,oi−1, 1,oi+1, . . . ,oL), then g ′ =

(c ′1, c2, . . . , cn,o1, . . . ,oi−1,⊥,oi+1, . . . ,oL).
2PDSs are formally de�ned in Ch. 3.

150

For 1 < j 6 n, a global con�guration (c1, . . . , cj, . . . , cn,o1, . . . ,oL) can make a
transition to (c1, . . . , c ′j, . . . , cn,o ′1, . . . ,o ′L) in a similar fashion.

A program property is speci�ed as an indexed phase automaton.

De�nition 7.1. An indexed phase automaton (IPA) is a tuple (Q, Id,Σ, δ), where
Q is a �nite, totally ordered set of states {q1, . . . ,q|Q|}, Id is a �nite set of thread
identi�ers,Σ is a �nite alphabet, and δ ⊆ Q× Id×Σ×Q is a transition relation.
�e transition relation δ is restricted to respect the order on states: for each
transition (qx, i,a,qy) ∈ δ, either y = x or y = x + 1. We call a transition of
the form (qx, i,a,qx+1) a phase transition. �e initial state is q1, and the �nal
state is q|Q|.

�e restriction on δ in Defn. 7.1 ensures that the only loops in an IPA are
self-loops on states. We assume that for every x, 1 6 x < |Q|, there is only
one phase transition of the form (qx, i,a,qx+1) ∈ δ. (An IPA that has multiple
such transitions can be factored into a set of IPAs, each of which satisfy this
property.) Finally, we only consider IPAs that recognize a non-empty language,
which means that an IPA must have exactly (|Q| − 1) phase transitions. IPAs
enjoy the bounded-phase-transition property.

Property 7.2 (Bounded Phase Transition). Let A = (Q, Id,Σ, δ) be an IPA. Any

run of A that accepts a wordwwill make only a bounded number of phase transi-

tions. �at is, an accepting run of A on wordw will make exactly (|Q| − 1) phase

transitions.

For expository purposes, through §7.8 we only consider 2-PDSs, and �xΠ =

(P1, P2,SLocks,Σ) and A = (Q, Id,Σ, δ). Given Π and A, the model-checking
problem of interest is to determine if there is an execution that begins at the
initial global con�guration g0 that drives A to its �nal state.

§7.8 shows how to generalize the techniques to multi-PDSs. �e implemen-
tation, discussed in §7.7, is for the general case.

151

7.3 Path Incompatibility

�e decision procedure analyzes the PDSs ofΠ independently, and then checks
if there exists a run from each PDS that can be performed in interleaved parallel
fashion under the lock-constrained transitions ofΠ. To do this, it makes use of a
decomposition result, due to Kahlon and Gupta (2007, �m. 1), which we now
review.

Suppose that Π is in global con�guration g = (c1, c2,o1, . . . ,o2). Let
LocksHeld(Pk,g), k ∈ {1, 2}, denote {li | oi = k}; i.e., the set of locks held
by PDS Pk at global con�guration g. Furthermore, suppose that PDS Pk, when
started in (single-PDS) con�guration ck and executed alone, is able to reach
con�guration c ′k using the rule sequence ρk.

Before the execution of ρk, PDS Pk has a (possibly empty) set of initially-held
locks, i.e., the set LocksHeld(Pk,g). After the execution of ρk, PDS Pk will have
a (possibly empty) set of �nally-held locks. Along rule sequence ρk and for an
initially-held lock li and �nally-held lock lf, we say that the initial release of li
is the �rst release of li, and that the �nal acquisition of lf is the last acquisition
of lf. Note that for execution to proceed along ρk, Pk must hold an initial set
of locks at ck that is a superset of the set of initial releases along ρk; i.e., not all
initially-held locks need be released. Similarly, Pk’s �nal set of locks at c ′k must
be a superset of the set of �nal acquisitions along ρk.

Consider the case thatΠ = (P1, P2, Locks,Σ) is in global con�guration g =

(c1, c2,o1, . . . ,oL), and that Pk, while executed alone, can make a transition from
con�guration ck to con�guration c ′k using rule sequence ρk. Kahlon and Gupta’s
decomposition result characterizes the conditions under which it is not possible
forΠ to make a transition from global con�gurationg tog ′ = (c ′1, c ′2,o ′1, . . . ,o ′L).
Informally, by the semantics of locks, it must be the case that the set of locks held
by P1 and P2 at global con�gurations g and g ′ are disjoint—two PDSs cannot
hold the same lock at the same time. Similarly, if P1 holds a lock li throughout
ρ1, then P2 cannot acquire li, and likewise for P2.

Intuition into Kahlon and Gupta’s decomposition result can be obtained by

152

considering a dependence graph that represents the locking operations of the
PDSs. Let us focus on �nally-held locks. (�e dual of the following discussion
applies to initially-held locks.) Consider a graphG = (N,E), whereN is a set of
nodes, and E is a set of edges. �ere is a nodeni inN for each lock li. �ere is an
edge (ni,nj) if for some PDS Pk, li is a �nally-held lock, and lj is acquired (and
possibly released) after li in ρk. Edges capture (i) the sequential dependences
of lock operations by PDS Pk when executing rule sequence ρk, and (ii) the
inter-PDS dependences of lock operations. With respect to point (ii), observe
that if li is a �nally-held lock by P1, then if P2 acquires li in ρ2, it must also
release li in ρ2 before P1 acquires li for the �nal time. Similar reasoning applies
to a �nally-held lock lj of P2 and lock operations on lj by P1.

If there is a cycle in graphG, then a scheduling of ρ1 and ρ2 does not exist.
Consider the case where G has a cycle consisting of the edges (n1,n2) and
(n2,n1). Because there are outgoing edges from n1 and n2, the locks l1 and
l2 must be �nally-held locks. Moreover, they must be �nally-held locks of two
di�erent PDSs: Pk cannot make a �nal acquisition of l1, then make a �nal
acquisition of l2, and then reacquire l1. Assume that l1 is �nally-held by P1 and
l2 is �nally-held by P2. �e edge (n1,n2) means that l2 is acquired after the
�nal acquisition of l1 by P1; the edge (n2,n1) means that l1 is acquired after the
�nal acquisition of l2 by P2. Because l1 is �nally-held by P1, and because the
set of �nally-held locks of P1 and P2 are disjoint, there must be a corresponding
release of l1 by P2. �is scenario is shown in Fig. 7.3.

For a scheduling to exist, the sequential and inter-PDS dependences due to
locking operations must be satis�ed. �e cycle in the graphG on the right of
Fig. 7.3 shows that no such scheduling exists. �at is, the cycle inG captures
the cycle that is formed by the dashed edges on the left in Fig. 7.3, which denote
sequential and inter-PDS dependences due to locking operations. �e dashed
edges are explained as follows:

1. �e dashed edge from (1 to)2 denotes that the �nal acquisition of l1 by P1

must come before the release of l2 by P1.

153

c1 c'1
(1 (2)2

c2 c'2
(2 (1)1

n1

n2

Figure 7.3: Individual executions of P1 and P2 from con�gurations c1 and c2 to
con�gurations c ′1 and c ′2, respectively. �e symbols (i and)i denote acquiring
and releasing lock li, respectively. �e dashed arrows denote the sequential and
inter-PDS locking dependences due to locking operations. �e nodesn1 andn2

on the right are the nodes in the graphG of locking dependences. �e cycle in
the right-hand graph is a proof that a scheduling of ρ1 and ρ2 does not exist; it
implies the cycle in the scheduling of locking operations indicated by the dashed
cycle in the left-hand graph.

2. �e dashed edge from)2 to (2 denotes that the release of l2 by P1 must
come before the �nal acquisition of l2 by P2: P1 must complete its locking
operations on l2 before P2 �nally acquires l2.

3. �e dashed edge from (2 to)1 denotes that the �nal acquisition of l2 by P2

must come before the release of l1 by P2.

4. �e dashed edge from)1 to (1 denotes that the release of l1 by P2 must
come before the �nal acquisition of l1 by P1: P2 must complete its locking
operations on l1 before P1 can �nally acquire l1.

Here we have a contradiction: the release of l1 by P2 must come before the �nal
acquisition of l1 by P1 because of item 4; however, it must also come after the
�nal acquisition of l1 by P1 because of items 1–3 (i.e., the chain of dependences
that follows from items 1–3). �is argument shows that that a cycle inG is a
proof that a scheduling of ρ1 and ρ2 does not exist.

154

Similar reasoning to that just given can be used to (i) de�ne a graphHwhere
edges in H denote dependences due to initially-released locks, and (ii) show
that a cycle inH is a proof that a scheduling of ρ1 and ρ2 does not exist. We now
formally state Kahlon and Gupta’s decomposition result.

�eorem 7.3. (Decomposition �eorem (Kahlon and Gupta, 2007).) Suppose

that PDS Pk, when started in con�guration ck and executed alone, is able to reach

con�guration c ′k using the rule sequence ρk. For Π = (P1, P2, Locks,Σ), there

does not exist an interleaving of rule sequences ρ1 and ρ2 from global con�gura-

tiong = (c1, c2,o1, . . . ,oL) to global con�gurationg ′ = (c ′1, c ′2,o ′1, . . . ,o ′L) i� one

or more of the following �ve conditions hold:

1. LocksHeld(P1,g) ∩ LocksHeld(P2,g) 6= ∅: P1 and P2 both hold a lock.

2. LocksHeld(P1,g ′) ∩ LocksHeld(P2,g ′) 6= ∅: P1 and P2 both hold a lock.

3. In ρ1, P1 releases lock li before it initially releases lock lj, and in ρ2, P2 re-

leases lj before it initially releases lock li.

4. In ρ1, P1 acquires lock li after its �nal acquisition of lock lj, and in ρ2, P2

acquires lock lj after its �nal acquisition of lock li,

5. (a) In ρ1, P1 acquires or uses a lock that is held by P2 throughout ρ2, or

(b) in ρ2, P2 acquires or uses a lock that is held by P1 throughout ρ1.

With respect to the discussion above about graphsG andH of locking de-
pendences, Items 3 and 4 correspond to cycles in graphsG andH, respectively.
�e remaining items model standard lock semantics: only one thread may hold
a lock at a given time.

155

7.4 Extracting Information from PDS Rule

Sequences

To employ �m. 7.3, we now develop methods to extract relevant information
from a rule sequence ρk for PDS Pk. As in many program-analysis problems that
involve matched operations (Reps, 1998)—in our case, lock-acquire and lock-
release—it is useful to consider semi-Dyck languages (Harrison, 1978): languages
of matched parentheses (Dyck languages) in which each parenthesis symbol is
one-sided (semi-Dyck languages). �at is, the symbols “(” and “)” match in the
string “()”, but do not match in “)(”.3

Let Σ be a �nite alphabet of non-parenthesis symbols. �e semi-Dyck lan-
guage of well-balanced parentheses over Σ ∪ {(i,)i | 1 6 i 6 L} can be de�ned
by the following context-free grammar, where σ denotes a member of Σ:

matched → ε | σ matched | (i matched)i matched [for 1 6 i 6 L]

Because we are interested in paths (rule sequences) that can begin and end
while holding a set of locks, we also need to consider pre�xes and su�xes of
Lang(matched), which are languages of partially-matched parentheses. In par-
ticular,

• �e words in the language of su�xes of Lang(matched) may have extra
right-parenthesis symbols: every left parenthesis “(i” is balanced by a
succeeding right parenthesis “)i”, but the converse need not hold. �is is
called an unbalanced-right language.

• �e words in the language of pre�xes of Lang(matched) may have extra
left-parenthesis symbols: every right parenthesis “)i” is balanced by a
preceding left parenthesis “(i”, but the converse need not hold. �is is
called an unbalanced-left language.

3�e language of interest is in fact regular because the locks are non-reentrant. However,
the semi-Dyck formulation provides insight into how one extracts the relevant information from
a rule sequence.

156

It is useful to de�ne the following context-free grammars:

unbalR → ε | unbalR matched)i unbalL → ε | (i matched unbalL

�e language of words that are possibly unbalanced on each end is de�ned by

su�xPre�x → unbalR matched unbalL

Example 7.4. Consider the following su�xPre�x string, in which the positions
between symbols are marked A–W. Its unbalR, matched, and unbalL components
are the substrings A–N, N–P, and P–W, respectively.

Â
)1

B̂
(2

Ĉ
)2

D̂
)3

Ê
(2

F̂
(4

Ĝ
(5

Ĥ
)5

Î
)4

Ĵ
(6

K̂
)6

L̂
)2

M̂
)7

N̂
(6

Ô
)6

P̂
(4

Q̂
(2

R̂
)2

Ŝ
(2

T̂
(7

Û
)7

V̂
(8

Ŵ

Letwk ∈ Lang(su�xPre�x) be the word formed by concatenating the action
symbols of the rule sequence ρk. One can see that to use �m. 7.3, we merely
need to extract the relevant information fromwk. �at is, items 3 and 4 require
extracting (or recording) information from the unbalR and unbalL portions
ofwk, respectively; item 5 requires extracting information from the matched

portion ofwk; and items 1 and 2 require extracting information from the initial
and �nal parse con�gurations ofwk.

�e information is obtained using acquisition histories (AH) and release
histories (RH) for locks, as well as ρk’s release set (R), use set (U), acquisition set
(A), and held-throughout set (HT).

• �e acquisition history (AH) (Kahlon and Gupta, 2007) for a �nally-held
lock li is the union of the set {li} with the set of locks that are acquired (or
acquired and released) after the �nal acquisition of li.4

• �e release history (RH) (Kahlon and Gupta, 2007) of an initially-held lock
li is the union of the set {li} with the set of locks that are released (or
acquired and released) before the initial release of li.

• �e release set (R) is the set of initially-released locks.
4�is is a slight variation from Kahlon and Gupta (2007); we include li in the acquisition

history of lock li.

157

• �e use set (U) is the set of locks that form the matched part ofwk.

• �e acquisition set (A) is the set of �nally-acquired locks.

• �e held-throughout set (HT) is the set of initially-held locks that are not
released.

A lock history is a six-tuple (R, R̂H, U, ÂH, A, HT):

• R, U, A, and HT are the release, use, acquisition, and held-throughout sets,
respectively.

• R̂H is a tuple of L release histories, one for each lock li, 1 6 i 6 L.

• ÂH is a tuple of L acquisition histories, one for each lock li, 1 6 i 6 L.

Let ρ = [r1, . . . , rn] be a rule sequence that drives a PDS from some starting
con�guration to an ending con�guration, and let I be the set of locks held at the
beginning of ρ. We de�ne an abstraction function η(ρ, I) from rule sequences
and initially-held locks to lock histories; η(ρ, I) uses an auxiliary function, postη,
which tracks R, R̂H, U, ÂH, A, and HT for each successively longer pre�x.

η([], I) = (∅, ∅L, ∅, ∅L, ∅, I)
η([r1, . . . , rn], I) = postη(η([r1, . . . , rn−1], I), act(rn)), where

postη((R, R̂H, U, ÂH, A, HT),a) =

(R, R̂H, U, ÂH, A, HT) if a /∈ {(i,)i}

(R, R̂H, U, ÂH
′
, A ∪ {li}, HT) if a = (i

where ÂH
′
[j] =


{li} if j = i

∅ if j 6= i and lj /∈ A
ÂH[j] ∪ {li} if j 6= i and lj ∈ A

(R, R̂H, U ∪ {li}, ÂH
′
, A\{li}, HT\{li}) if a =)i and li ∈ A

where ÂH
′
[j] =

{
∅ if j = i

ÂH[j] otherwise

(R ∪ {li}, R̂H
′
, U, ÂH, A, HT\{li}) if a =)i and li /∈ A

where R̂H
′
[j] =

{
{li} ∪ U ∪ R if j = i

R̂H[j] otherwise

158

Example 7.5. Suppose that ρ is a rule sequence whose labels spell out the string
from Example 7.4, and I = {1, 3, 7, 9}. �en η(ρ, I) returns the following lock
history (only lock indices are written):

({1, 3, 7}, 〈{1}, ∅, {1, 2, 3}, ∅, ∅, ∅, {1, 2, 3, 4, 5, 6, 7}, ∅, ∅〉,
{6}, 〈∅, {2, 7, 8}, ∅, {2, 4, 7, 8}, ∅, ∅, ∅, {8}, ∅ 〉, {2, 4, 8}, {9}).

Remark 7.6. R and A are included above only for clarity; they can be recovered
from R̂H and ÂH, as follows: R = {i | R̂H[i] 6= ∅} and A = {i | ÂH[i] 6= ∅}.
In addition, from LH = (R, R̂H, U, ÂH, A, HT), it is easy to see that the set I of
initially-held locks is equal to (R ∪ HT), and the set of �nally-held locks is equal
to (A ∪ HT).

De�nition 7.7. Lock histories LH1 = (R1, R̂H1, U1, ÂH1, A1, HT1) and LH2 = (R2,
R̂H2, U2, ÂH2, A2, HT2) are compatible, denoted by Compatible(LH1, LH2), i� all
of the following �ve conditions hold:

1.(R1 ∪ HT1) ∩ (R2 ∪ HT2) = ∅ 2.(A1 ∪ HT1) ∩ (A2 ∪ HT2) = ∅
3. 6 ∃ i, j . lj ∈ ÂH1[i] ∧ li ∈ ÂH2[j] 4. 6 ∃ i, j . lj ∈ R̂H1[i] ∧ li ∈ R̂H2[j]

5.(A1 ∪ U1) ∩ HT2 = ∅∧ (A2 ∪ U2) ∩ HT1 = ∅

Each conjunct veri�es the absence of the corresponding incompatibility
condition from �m. 7.3: conditions 1 and 2 verify that the initially-held and
�nally-held locks of ρ1 and ρ2 are disjoint, respectively; conditions 3 and 4 verify
the absence of cycles in the acquisition and release histories, respectively; and
condition 5 veri�es that ρ1 does not use a lock that is held throughout in ρ2, and
vice versa.

7.5 �e Decision Procedure

As noted in §7.3, the decision procedure analyzes the PDSs independently. �is
decoupling of the PDSs has two consequences.

159

[1 R1(c) W2(d) W2(c) R1(d)1:
q3 q4 q4 q5q1 q2 q2 q3 q5 q6

[1 R1(c) W2(d) W2(c) R1(d)2:
q1 q2 q2 q3 q5 q6q3 q4 q4 q5

[1 R1(c) W2(d) W2(c) R1(d)
q3 q4 q4 q5q1 q2 q2 q3 q5 q6

Π:

Figure 7.4: Π: a bad interleaving that is recognized by A7.2 (see 145), showing
only the actions that cause a phase transition. 1: the same interleaving from
�read 1’s point of view. �e dashed boxes show where �read 1 guesses that
�read 2 causes a phase transition. 2: the same but from �read 2’s point of view
and with the appropriate guesses.

First, when P1 and A are considered together, independently of P2, they
cannot directly “observe” the actions of P2 that cause A to take certain phase
transitions. �us, P1 must guess when P2 causes a phase transition, and vice
versa for P2. An example of the guessing is shown in Fig. 7.4. �e interleaving
labeled “Π” is an example interleaved execution that is accepted by the IPA A7.2

from §7.1. In Fig. 7.4, only the PDS actions that cause phase transitions are show.
�e interleaving labeled “1” shows, via the dashed boxes, where P1 guesses that
P2 caused a phase transition. Similarly, the interleaving labeled “2” shows the
guesses that P2 must make.

Second, a post-processing step must be performed to ensure that only those
behaviors that are consistent with the lock-constrained behaviors ofΠ are con-
sidered. For example, for P2 to perform theWw(d) actions, P2 must hold the lock
associated with the randomly-isolated object because all writes to Stack.data
occur in a synchronized method. If P1 guesses that P2 performs theW2(d)

action at a point when it currently holds the lock associated with the randomly-
isolated object, then the behavior is inconsistent with the semantics ofΠbecause
both threads would hold the lock associated with the randomly-isolated object.
�e post-processing step ensures that such behaviors are not allowed.

160

Combining a PDS with a IPA

To de�ne a modular algorithm, we must be able to analyze P1 and A indepen-
dently of P2, and likewise for P2 and A. Our approach is to combine A and
P1 to de�ne a new PDS PA

1 using a cross-product-like construction. �e main
di�erence is that lock histories and lock-history updates are incorporated in the
construction.

Recall that the goal is to determine if there exists an execution of Π that
drives A to its �nal state. Because of the bounded-phase-transition property, we
know that any such execution must make |Q| − 1 phase transitions. Hence, a
valid interleaved execution must be able to reach |Q| global con�gurations, one
for each of the |Q| phases.

Lock histories encode the constraints that a PDS path places on the set of
possible interleaved executions ofΠ. A desired path of an individual PDS must
also make |Q| − 1 phase transitions, and hence our algorithm keeps track of |Q|

lock histories, one for each phase. �is is accomplished by encoding into the
state space of PA

1 a tuple of |Q| lock histories. A tuple maintains the sequence
of lock histories for one or more paths taken through a sequence of phases. In
addition, a tuple maintains the correlation between the lock histories of each
phase, which is necessary to ensure that only valid executions are considered.
�e rules of PA

1 are then de�ned to update the lock-history tuple accordingly.
�e lock-history tuples are used later to check whether some scheduling of an
execution ofΠ can actually perform all of the required phase transitions.

Let LH denote the set of all lock histories, and let L̂H = LH|Q| denote the
set of all tuples of lock histories of length |Q|. We denote a typical lock history by
LH, and a typical tuple of lock histories by L̂H. L̂H[i] denotes the ith component
of L̂H.

Our construction makes use of the phase-transition function on LHs de�ned
as follows: ptrans((R, R̂H, U, ÂH, A, HT)) = (∅, ∅L, ∅, ∅L, ∅, A ∪ HT). �is func-
tion is used to encode the start of a new phase: the set of initially-held locks is
the set of locks held at the end of the previous phase.

161

Let Pi = (Pi, Labi, Γi,∆i, 〈p0,γ0〉) be a PDS, SLocks be a set of locks of size L,
A = (Q, Id,Σ, δ) be an IPA, and L̂H be a tuple of lock histories of length |Q|. We
de�ne the PDS PA

i = (PA
i , ∅, Γi,∆A

i , 〈pA
0 ,γ0〉), where PAi ⊆ Pi ×Q× L̂H. �e

initial control state is pA
0 = (p0,q1, L̂H∅), where L̂H∅ is the empty lock-history

tuple (∅, ∅L, ∅, ∅L, ∅, ∅)|Q|. Each rule r ∈ ∆A
i performs only a single update to the

tuple L̂H, at an index x determined by a transition in δ. �e update is denoted by
L̂H[x 7→ e], where e is an expression that evaluates to an LH. Two kinds of rules
are introduced to account for whether a transition in δ is a phase transition or
not. (�e update to L̂H is listed after each rule kind.)

1. Non-phase Transitions: L̂H
′
= L̂H[x 7→ postη(L̂H[x],a)].

(a) For each rule 〈p,γ〉 a
↪−→ 〈p ′,u〉 ∈ ∆i and transition (qx, i,a,qx) ∈

δ, there is a rule for the form: 〈(p,qx, L̂H),γ〉 ↪−→ 〈(p ′,qx, L̂H
′
),u〉 ∈

∆A
i . Rules of this form ensure that PA

i is constrained to follow the
self-loops on IPA state qx.

(b) For each rule 〈p,γ〉 a
↪−→ 〈p ′,u〉 ∈ ∆i, a ∈ {(k,)k}, and each qx ∈

Q, there is a rule of the form: 〈(p,qx, L̂H),γ〉 ↪−→ 〈(p ′,qx, L̂H
′
),u〉 ∈

∆A
i . Rules of this form record the acquisition or release of the lock
lk in the lock-history tuple L̂H at index x. (Recall that the language
of an IPA is only over the non-parenthesis alphabet Σ, and does not
constrain the locking behavior. Consequently, a phase transition
cannot occur when PA

i is acquiring or releasing a lock.)

2. Phase Transitions: L̂H
′
= L̂H[(x+ 1) 7→ ptrans(L̂H[x])].

(a) For each rule 〈p,γ〉 a
↪−→ 〈p ′,u〉 ∈ ∆i and transition (qx, i,a,qx+1) ∈

δ, there is a rule of the form: 〈(p,qx, L̂H),γ〉 ↪−→ 〈(p ′,qx+1, L̂H
′
),u〉 ∈

∆A
i . Rules of this form perform a phase transition on the lock-history

tuple L̂H for PDS Pi.

162

(b) For each transition (qx, j,a,qx+1) ∈ δ, j 6= i, and for each p ∈
Pi and γ ∈ Γi, there is a rule of the form: 〈(p,qx, L̂H),γ〉 ↪−→
〈(p,qx+1, L̂H

′
),γ〉 ∈ ∆A. Rules of this form implement PA

i ’s guess-
ing that another PDS PA

j , j 6= i, causes a phase transition, in which
case PA

i has to move to the next phase as well.

Given PA, one can compute the set of all reachable con�gurations via the
query Apost∗ = post

∗
PA(〈pA

0 ,γ0〉) using standard automata-based PDS tech-
niques (Bouajjani et al., 1997; Finkel et al., 1997). (Because the initial con�gu-
ration is de�ned by the PDS PA, henceforth, we merely write post

∗
PA .) A con-

�guration c ∈ Apost∗ will be of the form 〈(p,q, L̂H),u〉, where p is a state of the
original PDS P, q is a state of the IPA A, L̂H is a lock-history tuple, and u ∈ Γ∗

is a reachable stack. �e lock-history tuple L̂H encodes the locking constraints
of all paths from 〈pA

0 ,γ0〉 to the con�guration c.

Checking Path Compatibility

For a generated PDS PA
k , we are interested in the set of paths that begin in the

initial con�guration 〈pA
0 ,γ0〉 and drive A to its accepting state q|Q|. Each such

path ends in some con�guration 〈(pk,q|Q|, L̂Hk),u〉, where u ∈ Γ∗. Let ρ1 and
ρ2 be such paths from PA

1 and PA
2 , respectively. To determine if there exists a

compatible scheduling for ρ1 and ρ2, we use �m. 7.3 on each component of the
lock-history tuples L̂H1 and L̂H2 from the ending con�gurations of ρ1 and ρ2:

Compatible(L̂H1, L̂H2)⇐⇒
|Q|∧
i=1

Compatible(L̂H1[i], L̂H2[i]). (7.1)

Due to recursion, PA
1 and PA

2 could each have an in�nite number of such
paths. However, each path is abstracted as a tuple of lock histories L̂H, and
there are only a �nite number of tuples in L̂H; thus, we only have to check
a �nite number of (L̂H1, L̂H2) pairs. For each PDS PA = (PA, Lab, Γ ,∆, cA

0),
the set of relevant L̂H tuples are found in the PA

k -automaton Akpost∗ that results

163

Algorithm 7.1: �e decision procedure.
input : A 2-PDSΠ = (P1, P2, Locks,Σ) and a IPA A.
output: true ifΠ can drive A to its accepting state.
let A1

post∗ ← post
∗
PA

1
; let A2

post∗ ← post
∗
PA

2
;1

foreach p1 ∈ P1, L̂H1 s.t. ∃u1 ∈ Γ∗1 : 〈(p1,q|Q|, L̂H1),u1〉 ∈ L(A1
post∗) do2

foreach p2 ∈ P2, L̂H2 s.t. ∃u2 ∈ Γ∗2 : 〈(p2,q|Q|, L̂H2),u2〉 ∈ L(A2
post∗)3

do
if Compatible(L̂H1, L̂H2) then4

return true;5

return false;6

from the post
∗ operation. �at is, one merely enumerates the state space of

Akpost∗ , extracting the L̂H tuples that are members of a state (p,q|Q|, L̂H). By only
considering states that have an IPA state-component of q|Q|, we ensure that the
PDS Pk performed the required (|Q| − 1) phase transitions.

Alg. 7.1 gives the algorithm to check whetherΠ can drive A to its accepting
state. �e two tests on lines 2 and 3 of the form “∃uk ∈ Γ∗k : 〈(pk,q|Q|, L̂Hk),uk〉 ∈
L(Akpost∗)”, where L(Akpost∗) is the language of the Pk-automaton, can be per-
formed by �nding any path in Akpost∗ from state (pk,q|Q|, L̂Hk) to the accepting
state.

�eorem 7.8. For 2-PDS Π = (P1, P2, Locks,Σ) and IPA A, there exists an exe-

cution ofΠ that drives A to its accepting state i� Alg. 7.1 returns true.

Sketch. �e proof builds on �m. 7.3 by showing that for runs ρ1 and ρ2 of
PDSs P1 and P2, respectively, that reach the target set of con�gurations of their
respective PDSs, there exists a scheduling of ρ1 and ρ2 for each phase by the
proof of �m. 7.3. Because each phase can be scheduled, there exists a scheduling
for runs ρ1 and ρ2. See App. A.3 for the entire proof.

164

7.6 Comparison

We now present a more detailed comparison of the decision procedure from
§7.5 with the (corrected) decision procedure of Kahlon and Gupta (2007).

�e Kahlon-Gupta decision procedure takes as input a multi-PDS and an
LTL formula ϕ. For our comparison, we will only consider a formula ϕ that
consists of the temporal operators eventually F and next X, and a 2-PDSΠ =

(P1, P2,SLocks).
�e Kahlon-Gupta decision procedure also uses lock histories; however,

unlike our decision procedure (§7.5), they do not use lock-history tuples but
merely a single lock history. �us, each PDS Pi is augmented so that its set of
control locations Pi includes a lock history. To model a global con�guration
ofΠ, they use a con�guration pair (c1, c2), where c1 and c2 are con�gurations
of P1 and P2, respectively. A set of global con�gurationsG is represented as a
pair of sets of con�gurations (C1,C2). �at is,G = (C1,C2) represents the set
of global con�gurations { (c1, c2) | c1 ∈ C1, c2 ∈ C2 }. Finally, for a set of global
con�gurationsG = (C1,C2), their algorithm must maintain the invariant that
for each pair of con�gurations (c1, c2) ∈ G, lock histories LH1 and LH2 that
annotate the control locations of c1 and c2, respectively, are in the Compatible
relation—i.e., that Compatible(LH1, LH2) holds.

�e Kahlon-Gupta decision procedure is de�ned inductively. For a given
logical formula ϕ, and from an automaton-pair that satis�es a subformula,
they de�ne an algorithm that computes a new automaton-pair for a larger
formula that has one additional (outermost) temporal operator. For example,
letG = (C1,C2) be the automaton-pair that satis�es a subformula. If the next-
outermost temporal operator is F, then they would de�neG ′ = (C ′1,C ′2), where
C ′i is obtained by performing a pre

∗ query on PDS Pi beginning fromCi. �e
automaton-pairG ′ is thus the pairing of the automata that result from the two
pre
∗ queries.
We observed that the decision procedure as presented in Kahlon and Gupta

(2007) contains an error, which Kahlon and Gupta con�rmed in email corre-

165

spondence (Kahlon and Gupta, 2009). For two automata-pairs G = (C1,C2)

andG ′ = (C ′1,C ′2), they claimed that disjunction distributes across automata-
pairs—i.e., thatG∨G ′ = (C1 ∨ C ′1,C2 ∨ C ′2). Disjunction does not distribute
because it loses correlations that need to be maintained. To illustrate this point,
consider the following two sets of global con�gurations: G = ({c1}, {c2}) and
G ′ = ({c ′1}, {c

′
2}). If one takes the disjunctionG∨G ′ as de�ned by Kahlon and

Gupta (2007), the result would beG∨G ′ = ({c1, c ′1}, {c2, c ′2}), which allows for
the global con�guration (c1, c ′2) to be in the disjunction when it is not inG or
G ′. Moreover, because correlations related to the Compatiblerelation can be
lost, the necessary invariant discussed above can be violated.

We can now explain why sets of automaton pairs are required to correct
their algorithm. �e Kahlon-Gupta algorithm must maintain the invariant that
for an automaton pair G = (C1,C2), the lock-history component of all con-
�guration pairs (c1 ∈ C1, c2 ∈ C2) must be in the compatible relation (i.e.,
Compatible(LH1, LH2), where LH1 is the lock history component of the control
location of con�guration c1). To maintain the invariant, after computing the
individual reachability query on each automatonCi (e.g., pre

∗(Ci)), the result-
ing automata cannot be simply paired back together because disjunction does
not distribute. Instead, sets of automaton-pairs must be de�ned so that (i) the
invariant continues to hold, and (ii) the compatibility invariant is maintained.

To translate a 2-PDSΠ and an IPA A into the input format of Kahlon and
Gupta (2007), one would have to perform two steps.

1. �e input formulaϕ is speci�ed over the control locations of the individual
PDSs. �us, the control locations of the PDSs ofΠmust be expanded to
include the states of A. To do so, one would need to perform the cross
product of Pi, 1 6 i 6 2, and A.

2. �e IPA A must be compiled into an LTL formula. Intuitively, for a 2-PDS,
an IPA A can be expressed as a 2-indexed LTL formula ϕA using only
the “eventually” F and “next” X operators: self-loops are captured with
an F, and phase-transitions with an X. Let the predicate Sqx denote an

166

atomic proposition meaning that the control state of each (augmented)
PDS satis�es qx. �at is, the control state of the PDS that results from the
cross product of PDS P with IPA A is of the form (p,qx). �e following
function can be used to translate an IPA A into a 2-indexed LTL formula:

H(q|Q|) = Sq|Q|

H(qx) = F(Sqx ∧ X(X(Sqx+1 ∧H(qx+1)))

In particular,ϕA isH(q1).

�e Kahlon-Gupta decision procedure would proceed by augmenting the
input PDSs with lock histories (not lock-history tuples). For all compatible lock
histories LH1 and LH2 (i.e., ∀LH1, LH2 ∈ LH : Compatible(LH1, LH2)), the query
of interest is then whether any of the following con�guration pairs are reachable
from the initial con�guration:{
(〈(p1,q|Q|, LH1),u1〉, 〈(p2,q|Q|, LH2),u2〉) | p1 ∈ P1,u1 ∈ Γ∗1 ,p2 ∈ P2,u2 ∈ Γ∗2

}
.

For each state qx of A, the functionH(qx) introduces three temporal oper-
ators. �us, the (corrected) Kahlon-Gupta decision procedure would require
(3 ∗ |Q|) inductive “steps” to be performed on each PDS, where a step for the
temporal operators X and F requires a single-step post query and a reachability
post

∗ query, respectively. Each step operates on a set of automaton-pairs. In
the worst case, the size of the set of automaton-pairs is of size exponential in
the number of locks. �us, in the worst case, their algorithm must perform
(3 ∗ |Q|) ∗ 2|SLocks| queries for each PDS.

To implement the (corrected) Kahlon-Gupta algorithm, there are two prob-
lems that appear to be di�cult to overcome. First, the number of queries is
exponential in the number of locks, which is not desirable because the cost
of each query is also exponential in the number of locks—the cost of a PDS
pre
∗ query has a linear factor in the size of the control locations, which is ex-

ponential in the number of locks because of the use of lock histories. Second,

167

the straightforward approach for reestablishing the invariant after perform-
ing the individual pre

∗ queries on the PDSs P1 and P2—i.e., de�ning the set
of automaton-pairs—is to enumerate the states of the automata C1 and C2

that result from the pre
∗ queries of P1 and P2, respectively. Enumeration is not

desirable because it requires enumerating over two sets that are each of size
exponential in the number of locks (i.e., the lock histories).

By moving from lock histories to tuples of lock histories, our decision pro-
cedure that is presented in §7.5 does not require multiple reachability queries.
�us, we do not need to perform the disjunction of automata that result from
intermediate reachability queries as is required by Kahlon and Gupta (2007).
�e use of lock-history tuples has the following bene�ts:

1. We avoid the need to perform an exponential number of queries on each
PDS because sets of automaton-pairs are not required.

2. Because tupling maintains correlations between the intermediate con-
�gurations of an individual PDS Pi, we do not need to (re)establish the
invariant that Kahlon and Gupta (2007) did for performing chained reach-
ability queries. Besides avoiding the need to operate on automaton-pairs
as discussed above, not being forced to (re)establish the invariant avoids
the enumeration of the control locations of automataC1 andC2 that result
from the intermediate pre

∗ queries of Kahlon and Gupta (2007).

We note that tupling is not free: the size of the set of control locations of each
PDS has an extra exponential factor, namely, the size of the set of statesQ of A.
However, isolating exponential factors in the PDS control locations is favored
because symbolic techniques such as BDDs can often represent exponentially
large state spaces in an e�cient manner. Finally, Tab. 7.2 repeats the comparison
table from the beginning of the chapter to emphasize that worst-case running
time of our algorithm has one less exponential factor when compared to the
(corrected) Kahlon-Gupta algorithm. Speci�cally, see the rightmost column.

168

PDS control Queries Cost
locations

Chaining O(2L) O(2L·|A| · |SProcs|) O(2L · 2L·|A| · |SProcs|)

Tupling O(2L·|A|) |SProcs| O(2L·|A| · |SProcs|)

Table 7.2: Comparison between the (corrected) chaining approach of Kahlon
and Gupta (2007) and our tupling approach. L denotes the number of locks, |A|

denotes the number of states of an IPA, and |SProcs| denotes the number of EML
processes (PDSs).

7.7 A Symbolic Implementation

Alg. 7.1 solves the multi-PDS model-checking problem for IPAs. However, an
implementation based on symbolic techniques is required because it would be
infeasible to perform the �nal explicit enumeration step speci�ed in Alg. 7.1, lines
2–5. One possibility is to use Schwoon’s BDD-based PDS techniques (Schwoon,
2002); these represent the transitions of a PDS’s control-state from one con�g-
uration to another as a relation, using BDDs. �is approach would work with
relations overQ × LH, which requires using |Q|2|LH|2 BDD variables, where
|LH| = 2L + 2L2.

�is section describes a more economical encoding that needs only (|Q| +

1)|LH| BDD variables. Our approach leverages the fact that when a property is
speci�ed with an IPA, once a PDS makes a phase transition from qx to qx+1,
the �rst x entries in L̂H tuples are no longer subject to change. In this situation,
Schwoon’s encoding contains redundant information; our technique eliminates
this redundancy.

We explain the improved approach by de�ning a suitable weight domain for
use with a WPDS.5

5To remind the reader, a WPDS W = (P, S, f) is a PDS P = (P, Lab, Γ ,∆, c0) augmented
with a bounded idempotent semiring S = (D,⊗,⊕, 1, 0), and a function f : ∆ → D that
assigns a semiring element d ∈ D to each rule r ∈ ∆. �e result of a WPDS post

∗ computation
is a weighted automaton Apost∗ . For the discussion that follows, Apost∗ is a function from a

169

De�nition 7.9. Let S be a �nite set; letA ⊆ Sm+1 and B ⊆ Sp+1 be relations of
aritym+ 1 and p+ 1, respectively. �e generalized relational composition ofA
and B, denoted by “A ; B”, is the following subset of Sm+p:

A ; B = { 〈a1, . . . ,am,b2, . . . ,bp+1〉 | 〈a1, . . . ,am, x〉 ∈ A∧

〈x,b2, . . . ,bp+1〉 ∈ B }.

De�nition 7.10. Let S be a �nite set, and θ > 0 be a bound. �e set of all θ-term

formal power series over z, with relation-valued coe�cients of di�erent arities, is

RFPS[S, θ] = {
∑θ−1
i=0 ciz

i | ci ⊆ Si+2}.

A monomial is written as cizi (all other coe�cients are understood to be ∅); a
monomial c0z

0 denotes a constant. �e multi-arity relational weight domain over

S and θ is de�ned by (RFPS[S, θ],×, +, Id, ∅), where× is polynomial multipli-
cation in which generalized relational composition and ∪ are used to multiply
and add coe�cients, respectively, and terms cjzj for j > θ are dropped; + is poly-
nomial addition using ∪ to add coe�cients; Id is the constant {〈s, s〉 | s ∈ S}z0;
and ∅ is the constant ∅z0.

Remark 7.11. A multi-arity relational weight domain over S and θ, as de�ned in
Defn. 7.10, meets the requirements of a bounded idempotent semiring (Defn. 3.9)
because of (i) the properties of polynomial addition and truncated polynomial
multiplication, (ii) the fact that the set of all relations of �nite arity > 2 and
the operation of generalized relational composition de�ned in Defn. 7.9 (“;”) is
a monoid, and (iii) “;” is both left- and right-distributive over union of arity-k
relations.

We now de�ne the WPDS Wi = (PW
i , S, f) that results from taking the

product of PDS Pi = (Pi, Labi, Γi,∆i, 〈p0,γ0〉) and phase automaton A =

regular set of con�gurationsC to the combine-over-all-paths (COVP) from c0 to all c ∈ C; i.e.,
Apost∗(C) =

⊕
{v | ∃c ∈ C : c0

r1 ...rn−−−−→ c, v = f(r1)⊗ . . .⊗ f(rn)}, where r1 . . . rn is a sequence
of rules that transforms c0 into c. See §3.2 of Ch. 3 for the formal de�nitions.

170

(Q, Id,Σ, δ). �e construction is similar to that in §7.5, i.e., a cross product is
performed that pairs the control states of Pi with the state space of A. �e
di�erence is that the lock-history tuples are removed from the control state,
and instead are modeled by S, the multi-arity relational weight domain over the
�nite set LH and θ = |Q|. We de�ne PW

i = (Pi ×Q, ∅, Γi,∆W
i , 〈(p0,q1),γ0〉),

where∆W
i and f are de�ned as follows:

1. Non-phase Transitions: f(r) = {〈LH1, LH2〉 | LH2 = post(LH1,a)}z0.

(a) For each rule 〈p,γ〉 a
↪−→ 〈p ′,u〉 ∈ ∆i and transition (qx, i,a,qx) ∈

δ, there is a rule r = 〈(p,qx),γ〉 ↪−→ 〈(p ′,qx),u〉 ∈ ∆W
i .

(b) For each rule 〈p,γ〉 a
↪−→ 〈p ′,u〉 ∈ ∆i, a ∈ {(k,)k}, and for each

qx ∈ Q, there is a rule r = 〈(p,qx),γ〉 ↪−→ 〈(p ′,qx),u〉 ∈ ∆W
i .

2. Phase Transitions: f(r) = {〈LH, LH, ptrans(LH)〉 | LH ∈ LH}z1.

(a) For each rule 〈p,γ〉 a
↪−→ 〈p ′,u〉 ∈ ∆i and transition (qx, i,a,qx+1) ∈

δ, there is a rule r = 〈(p,qx),γ〉 ↪−→ 〈(p ′,qx+1),u〉 ∈ ∆W
i .

(b) For each transition (qx, j,a,qx+1) ∈ δ, j 6= i, and for each p ∈ Pi
and γ ∈ Γi, there is a rule r = 〈(p,qx),γ〉 ↪−→ 〈(p,qx+1),γ〉 ∈
∆W.

A multi-arity relational weight domain is parameterized by the quantity
θ—the maximum number of phases of interest—which we have picked to be
|Q|. We must argue that weight operations performed during model checking
do not cause this threshold to be exceeded. For con�guration 〈(p,qx),u〉 to be
reachable from the initial con�guration 〈(p0,q1),γ0〉 of some WPDS Wi, IPA A

must make a sequence of transitions from states q1 to qx, which means that A

goes through exactly x− 1 phase transitions. Each phase transition multiplies
by a weight of the form c1z

1; hence, the weight returned by Apost∗({〈(p,qx),u〉})

171

Algorithm 7.2: �e symbolic decision procedure.

input : A 2-PDS (P1, P2, Locks,Σ) and a IPA A.
output: true if there is an execution that drives A to the accepting state.
let A1

post∗ ← post
∗
W1

; let A2
post∗ ← post

∗
W2

;1

let c1
|Q|−1z

|Q|−1 = A1
post∗
(
{〈(p1,q|Q|),u〉 | p1 ∈ P1 ∧ u ∈ Γ∗1 }

)
;2

let c2
|Q|−1z

|Q|−1 = A2
post∗
(
{〈(p2,q|Q|),u〉 | p2 ∈ P2 ∧ u ∈ Γ∗2 }

)
;3

return4

∃〈LH0, L̂H1〉 ∈ c1
|Q|−1, 〈LH0, L̂H2〉 ∈ c2

|Q|−1 : Compatible(L̂H1, L̂H2);

is a monomial of the form cx−1z
x−1, i.e., cx−1 is a relation of arity x + 1 (a

subset of LHx+1). �e maximum number of phases in a IPA is |Q|, and thus
the highest-power monomial that arises is of the form c|Q|−1z

|Q|−1. (More-
over, during post

∗
Wk

as computed by the algorithm from Reps et al. (2005), only
monomial-valued weights ever arise.)

Alg. 7.2 states the algorithm for solving the multi-PDS model-checking prob-
lem for IPAs. Note that the �nal step of Alg. 7.2 can be performed with a single
BDD operation.

�eorem 7.12. For 2-PDSΠ = (P1, P2, Locks,Σ) and IPA A, there exists an exe-

cution ofΠ that drives A to the accepting state i� Alg. 7.2 returns true.

Sketch. �e proof proceeds by showing that the multi-arity relations that an-
notate the rules of W simulate the change in control state of the rules of PA,
and vice versa. �is, combined with the proofs of correctness of algorithms
for solving reachability problems in PDSs (Bouajjani et al., 1997; Finkel et al.,
1997) and WPDSs (Bouajjani et al., 2003; Reps et al., 2005), proves that Alg. 7.2
computes the same result as Alg. 7.1. �e proof then reduces to the proof of
correctness for Alg. 7.1, which is given in App. A.3. �e full proof of simulation is
given in App. A.4.

172

7.8 Generalizing to More �an Two PDSs

Because the set of reachable con�gurations, and hence the set of lock-history
tuples, are computed independently for each PDS, the construction from §7.5
that combines a PDS P with a IPA A to form a new PDS PA does not change
when generalizing toNPDSs. Hence, to the only modi�cation required to de�ne
a decision procedure for anN-PDS is to generalize the compatibility check for
N lock-history tuples.

Generalizing the compatibility check to N lock-history tuples requires a
generalization of �m. 7.3 (page 154). �e extension of items 1, 2, and 5 toN
lock-history tuples is straightforward.

1. LocksHeld(P1,g) ∩ . . . ∩ LocksHeld(PN,g) 6= ∅.

2. LocksHeld(P1,g ′) ∩ . . . ∩ LocksHeld(PN,g ′) 6= ∅.

5. (a) In ρi, Pi acquires or uses a lock that is held by Pj, j 6= i throughout
ρj, or

(b) in ρi, Pi acquires or uses a lock that is held by Pj, j 6= i throughout
ρj.

Items 3 and 4 de�ne incompatibility to be a cycle of length two in the acquisition
and release histories, respectively. For example, consider a 3-PDS with three
(or more) locks. �e absence of a cycle of length three in an tuple of acquisition
histories would then be de�ned as:

@i, j,k : li ∈ ÂH1[j] ∧ lj ∈ ÂH2[k] ∧ lk ∈ ÂH3[i].

�e absence of a cycle of length three is de�ned similarly for release histories.
Hence, the generalized condition requires checking for a cycle in the acquisition
and release histories that has a length anywhere from two toN. We use the no-
tation Compatible(LH1, . . . , LHN) to denote the generalized check. �en Alg. 7.1

173

is modi�ed to containN foreach loops, and the compatibility check at line 4 is
replaced with Compatible(L̂H1, . . . , L̂HN).

Similarly, Alg. 7.2 is modi�ed to constructNWPDSs, performN post
∗ op-

erations (line 1), compute N combine-over-all-paths values c1
|Q|−1z

|Q|−1, . . .,
cN|Q|−1z

|Q|−1 (lines 2–3), and �nally perform the check

∃〈LH0, L̂H1〉 ∈ c1
|Q|−1, . . . , 〈LH0, L̂HN〉 ∈ cN|Q|−1 : Compatible(L̂H1, . . . , L̂HN).

As in Alg. 7.2, the compatibility check can be performed via a single BDD opera-
tion by de�ning theN-way compatibility relation.

7.9 Experiments

We modi�ed the Empire back end to generate muli-PDSs instead of CPDSs, and
implemented the symbolic decision procedure presented in Alg. 7.2 of §7.7 in a
tool called Ipamc. Ipamc is implemented using the WALi WPDS library (Kidd
et al., 2009a), and the multi-arity relational weight domain uses the BuDDy BDD
library (BuDDy, 2004). (�e multi-arity relational weight domain is included in
WALi starting with release 3.0.)

Benchmark # CPDSs Viol OK OOM OOT

SoftwareVeri�cationHW 15 6↑ 9↑ 0 0↓
BugTester 615 0 615↑ 0↓ 0
BuggyProgram 615 16↑ 599 0 0
shop 900 27↑ 873↑ 0↓ 0↓
Totals 4583 49↑ 2096↑ 0↓ 0↓

Table 7.3: Analysis summaries of the four benchmark programs that contain
locking operations. �e annotations “↑” and “↓” show the relative change with
respect to the analysis summaries presented in §6.6 of Ch. 6.

We reanalyzed the four EML programs that contained synchronization
operations—SoftwareVeri�cationHW, BugTester, BuggyProgram, and shop—

174

CPDSMC (seconds)

IP
A

M
C

 (
se

co
nd

s)

2^−2

2^0

2^2

2^4

2^6

2^8

2^10

2^−2 2^0 2^2 2^4 2^6 2^8 2^10

●●●●

● ●
●●●●●●●
●
●
●
●
●

●●
●●

●●

● ●

●
●

● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

AS−Violation

2^−2 2^0 2^2 2^4 2^6 2^8 2^10

●● ●

●

● ●

●

●

●

●●●●●

●
●●●● ●●●●●

●●●●

●

●●● ●●●● ●●●● ●●●●

●●●●●●●●
●

●●●
●

●●●
●

●●●
●
●●●
●

●●●
●●

●●
●

●●● ●
●●●

●●●●●●●● ●●●● ●●●● ●
●
●●

●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●● ●●●● ●●●● ●●●●

●●●

●

●●●● ●●●● ●●●● ●●●●

●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●● ●●●● ●●●● ●●●●

●●●●●●●● ●
●
●● ●●●● ●●●●

●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●● ●●●● ●●●● ●●●●

●●●●

●

●●● ●●●● ●●●● ●●●●

●●●●
●●●●
●

●●●
●

●●●
●

●●● ●●●●
●●●●
●

●●●
●●●●
●

●●●

●

●●●●

●●●●● ●●●●●

●

●

●●●

●
●●●●

●
●●●●

●●●●●

●●●●● ●●●●●

●
●
●●●

●●●●● ●●●●●

●●●●

●

●●● ●●●● ●●●● ●●●●

●●●●●●●● ●●●● ●●●● ●●●●
●●●●●●●● ●●●● ●●●● ●●●●

●
●
●●

●

●●● ●●●● ●●●●
●

●●●

●●●●●●●● ●●●● ●●
●
● ●●●● ●●

●
●●●●● ●●●● ●●●●
●

●●●

●●●●

●

●●● ●●●● ●●●● ●●●●

●●●●●●
●●

●●●●
●

●●● ●●●●
●
●●●●●●● ●●●● ●●●● ●●●●

●●●●

●

●●● ●●●● ●●●● ●●●●

●●●●●
●●●

●●
●
● ●

●●● ●●●●

●
●
●
●
●●

●

● ●●●● ●●●●
●

●●●

●●●●

●

●●●●●

●●●
●

●

●●

●●
●

●
●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●
●●●

●●

●●●
●
●●●
●
●●●
●●
●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●
●●●

●●

●●●
●
●●●
●
●●●
●
●
●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●●●●

●●

●●●
●
●●●
●
●●●
●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●
●●●●●
●
●●
●●

●●●●●●●●
●

●●●●●●●●●

●●●
●

●●●●●●●●●●

●●●●●

●●●●●●●●●

●●●●

●●●●●●●●●●

●●●
●

●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●●
●

●●●
●
●●●●●
●●●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●●
●
●●●
●
●●●
●
●●
●●●●●●
●

●●

●●
●

●●●
●
●●●
●

●●●●●●●●
●

●●

●●●●●●
●●●●●●
●●●●

●●●
●

●●●●●●
●●●●

●●●●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●●●●●●●
●
●●●●
●
●●●●●●
●
●●●
●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●

●

●●●●
●
●●●●

●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●

●●
●●●●●
●
●●●●●●
●●●●●●●●
●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●
●●●●●
●
●
●
●●●●
●
●●●●●●●
●●
●●●●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●
●

●●
●
●●●
●●
●
●
●●
●
●●●
●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●●●
●●●●●

●●●●●
●

●●●●●●
●●●●●●

●●●●●●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●●
●
●●●●●●
●
●●
●●●
●●
●●

●

●●●●●●●●●●

●●●●●●●●●●●●
●
●●
●●●●
●
●●
●●●●●●●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●
●
●
●
●●
●●●●●●●
●
●●●
●●●●●
●
●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●●
●●●●●●●
●●●●●
●
●●●●
●●●●●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●●●●●●●
●
●●
●
●●●
●
●●●●

●

●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●
●
●●●●●●
●●
●
●

No AS−Violation

Figure 7.5: Log-log scatter-plots of the execution times of Ipamc (y-axis) versus
Cpdsmc (x-axis). �e left-hand graph shows the 49 queries for which Ipamc
reported an AS-serializability violation; the right-hand graph shows the 2,096
queries for which Ipamc veri�ed correctness. �e dashed lines denote equal
running times; points below and to the right of the dashed lines are runs for
which Ipamc was faster. �e timeout threshold was 300 seconds, and is marked
by the solid vertical and horizontal lines that form an inner box. �e minimal
reported time is 0.1 second.

from §6.6. All experiments were run on a dual-core 3 GHz Pentium Xeon proces-
sor with 4 GB of memory.

�e purpose of the experiment was to determine the answer to the queries
on which Cpdsmc exhausted resources (roughly 50%), and to compare the per-
formance of the symbolic-decision procedure Alg. 7.2) implemented in Ipamc
to the Individual Multi-step SDP that is implemented in Cpdsmc. �e anal-
ysis summaries are shown in Tab. 7.3. As expected, the decision procedure
returned a de�nitive answer for all queries. For the benchmark BugTester, no
AS-serializability violations were found. Upon further inspection of the bench-
mark’s code, the allocation site that was speci�ed allocates an object on which
there cannot be an AS-serializability violation. From the analysis of BugTester,

175

and via the use of Ipamc as the back end of Empire, we have shown that Empire
is able to verify AS-atomicity for objects allocated at a speci�ed allocation site.
�e ability to prove partial correctness—AS-atomicity for objects allocated at
a speci�c allocation site—even for programs that in fact do contain bugs, is a
bene�t of the modular approach taken to verifying AS-atomicity.

Although the CPDS-based method is a semi-decision procedure, it is capable
of both (i) verifying correctness, and (ii) �nding AS-serializability violations (see
Chs. 5 and 6). (�e third possibility is that it times out.) Fig. 7.5 presents log-log
scatter plots of the execution times of Ipamc (y-axis) versus Cpdsmc, where
Cpdsmc used the SDPd presented in Ch. 4 (x-axis). �e “inner box” in each
scatter plot marks the timeout threshold of 300 seconds. �e vertical bands
on the “inner box” in each scatter plot are queries where Cpdsmc timed out.
�e dashed-diagonal line denotes equal running times. Points below and to
the right of the dashed line are queries where Ipamc was faster that Cpdsmc.
Because almost every point is below and to the right of the dashed-diagonal line
in Fig. 7.5, we can see that Ipamc performed better than Cpdsmc on nearly every
query.

Tab. 7.4 presents a comparison of the total time to execute all queries. �e
total times are partitioned according to whether Cpdsmc succeeded or timed
out. Comparing the total time to run all queries, Ipamc ran 34X faster (92,400
seconds versus 2,700 seconds). For queries on which both Ipamc and Cpdsmc
returned de�nitive answers, Ipamc ran 7X faster (10,000 seconds versus 1,400
seconds). Moreover, Cpdsmc timed out on about 50% of the queries—both for
the ones for which Ipamc reported an AS-serializability violation (37 timeouts
out of 47 queries), as well as the ones for which Ipamc veri�ed correctness (1,034
timeouts out of 2,145 queries).

Tab. 7.5 breaks down the AS-serializability violations found according to
the problematic access pattern that occurred. Entries marked with an “X” are
AS-serializability violations that Empire found using Ipamc but did not �nd

176

Query Category

Cpdsmc succeeded Cpdsmc timed out Total
(1,074) (1,071) (2,145)

Cpdsmc 10,000 82,400 92,400
Ipamc 1,400 1,300 2,700

Speedup 7X 62X 34X

Table 7.4: Total time (in seconds) for examples classi�ed according to whether
Cpdsmc succeeded or timed out.

using Cpdsmc because Cpdsmc exhausted the available resources.6 �e number
of additional AS-serializability violations detected clearly shows the bene�t of
using a decision procedure over a semi-decision procedure.

7.10 Related Work

�is chapter introduces a di�erent technique than that used by Kahlon and
Gupta (2007). To decide the model-checking problem for IPAs, one needs to
check pairwise reachability of multiple global con�gurations in succession. Our
algorithm uses WPDS weights that are sets of lock-history tuples, whereas
Kahlon and Gupta use sets of pairs of con�guration automata.

�e (corrected) Kahlon and Gupta algorithm performs a succession of pre
∗

queries; after each one, it splits the resulting set of automaton-pairs to enforce
the invariant that succeeding queries are only applied to compatible con�gura-
tion pairs. In contrast, our algorithm (i) analyzes each PDS independently using
one post

∗ query per PDS, and then (ii) ties together the answers obtained from
the di�erent PDSs by performing a single compatibility check on the sets of lock-
history tuples that result. Because our algorithm does not need a splitting step

6We have not manually veri�ed that the additional AS-serializability violations found using
Ipamc are actual bugs or false positives.

177

Pr
og

ra
m

1
2

3
4

5
6

7
8

9
10

11
12

13
14

So
ftw

ar
eV

er
i�

ca
tio

nH
W

X
X

X
X

Bu
gT

es
te

r
Bu

gg
yP

ro
gr

am
X

X
X
X
X

sh
op

X
X

X
X

X
X

X
X
X

X
X

X

Ta
bl

e
7.

5:
M

ar
ke

d
en

tr
ie

s
de

no
te

vi
ol

at
io

ns
re

po
rt

ed
by

Em
pi

re
.A

n
en

tr
y

m
ar

ke
d

w
ith

“X
”w

as
fo

un
d

us
in

g
bo

th
Ip

am
c

an
d

C
pd

sm
c.

A
n

en
tr

y
m

ar
ke

d
w

ith
“X

”w
as

fo
un

d
on

ly
us

in
g

Ip
am

c.

178

LTL/Atomicity CBMC

Explicit Kahlon and Gupta (2007) Qadeer and Rehof (2005)
(splitting)

Symbolic Kidd et al. (2009c) Lal et al. (2008)
(tupling) (atomicity)

Table 7.6: Related work on LTL/atomicity checking and context-bounded model
checking (CBMC). Each row speci�es whether the approach uses an explicit
modeling of the reachable con�gurations, which requires splitting, or a symbolic
modeling via the use of tupling

on intermediate results, it avoids enumerating compatible con�guration pairs,
thereby enabling BDD-based symbolic representations to be used throughout.

�is chapter advocates the use of tupling versus splitting for maintaining cor-
relations between intermediate con�gurations of a multi-con�guration reach-
ability query, i.e., a reachability query that must determine reachability of a
sequence of intermediate global con�gurations of a multi-PDS. Besides the (cor-
rected) Kahlon and Gupta (2007) algorithm, the algorithm for context-bounded
model checking by Qadeer and Rehof (2005) also requires splitting to maintain
correlations. In their case, they require splitting to enumerate the global state
space at a context switch, which, in essence, amounts to using sets of automaton-
pairs. Similar to our approach, Lal et al. (2008) use a form of tupling to maintain
correlations, which also enables them to isolate an exponential cost in the PDS
control locations.7 Tab. 7.6 presents a comparison of the four approaches. In
general, the use of tupling is preferred because:

1. Tupling permits an exponential-cost enumeration step to be avoided (and
thus have better worst-case asymptotic cost).

2. Tupling enables symbolic techniques to be employed, which has the ad-
7�e work of Lal et al. (2008) equips WPDS semirings with a tensor operation that can be

viewed as means to de�ning tuples for weight domains of in�nite size. For �nite weight domains,
such as lock histories, the tensor operation reduces to explicit tuples.

179

ditional bene�t of allowing the remaining exponential factors to be over-
come in practice.

Comparing context-bounded model checking as de�ned by Qadeer and
Rehof (2005); Lal et al. (2008) with our model-checking problem, we bound the
number of phases, but permit an unbounded number of context switches and an
unbounded number of lock acquisitions and releases by each PDS. �e decision
procedures from §7.5 and §7.7 are able to explore the entire state space of the
model; thus, our algorithms are able to verify properties of multi-PDSs instead
of just performing bug detection.

Dynamic pushdown networks (DPNs) (Bouajjani et al., 2005) extend paral-
lel PDSs with the ability to create threads dynamically. Lammich et al. (2009)
present a generalization of acquisition histories to DPNs with properly-nested
locks. �eir algorithm uses chained pre

∗ queries, an explicit encoding of acqui-
sition histories in the state space, and is not implemented.

180

8 concluding remarks

Commodity processors currently have two, four, or eight cores. Commerical
chip manufacturers, such as Intel®, have stated that the number of cores will not
only continue to rise, but will rise at a rapid pace. �e trend to higher numbers
of cores is evident from Intel’s Tera-scale Computing Research Program:

�e Intel® Tera-scale Computing Research Program is a worldwide ef-

fort to advance computing technology for the next decade. By scaling

multi-core architectures to 10s to 100s of cores and embracing a shift

to parallel programming, we aim to improve performance, increase

energy-e�ciency, and make future applications more compelling and

immersive.

— Intel Tera-scale Computing Research Program (2009)

While the shift to multi-core processors provides computing power hereto-
fore unseen in the consumer and server markets, to take advantage of this new
computing power requires the use of concurrent programming—i.e., programs
will consist of multiple threads executing in parallel to accomplish a desired
task.

Writing a correct concurrent program is notoriously more di�cult than
writing its sequential counterpart. Indeed, data-consistency errors—a type of
programming error that does not occur in sequential programs—can arise in a
concurrent program because of non-deterministic interference from concur-
rently executing threads.

A major focus of my dissertation research has been the development of
techniques to assist a programmer in reasoning about the data consistency of a
program. Speci�cally, the techniques that I developed, and that are presented
in the dissertation, check that a concurrent Java program has the AS-atomicity
property. �e dissertation has shown that software model checking is a feasible
approach for verifying AS-atomicity of concurrent programs. Speci�cally, the

181

major result was to show that the problem is decidable for recursive concurrent
EML programs with (i) reentrant locks, (ii) recursive unit-of-work methods, and
(iii) a property speci�ed as an indexed phase automaton (IPA).

We were able to obtain this decidability result only after working on the
problem for several years, and developing both a novel program abstraction
and several techniques for transforming program models to address the sources
of unboundedness that remain present in an abstract program (i.e., an EML
program).

A central theme of the dissertation is overcoming sources of unbounded-

ness. We say that a resource requirement for programs written in a language L
is unbounded if there is no a priori bound on the amount of the resource that
may be used by an L program. A concurrent Java program can have (1) an un-
bounded memory requirement, (2) an unbounded-size stack (due to recursion),
(3) an unbounded set of values that each memory location can hold, (4) an un-
bounded single-threaded execution trace (due to looping and recursion), (5) an
unbounded number of threads, (6) an unbounded number of lock acquisitions
and releases (due to unbounded execution traces), (7) an unbounded number
of times that a particular thread may reacquire a reentrant lock (due to recur-
sion), (8) an unbounded number of nested calls to unit-of-work methods (due
to recursion), and (9) an unbounded number of execution interleavings.

We were able to account for some of the sources of unboundedness through
the use of abstraction.

Ch. 5 presented random isolation, a program abstraction that is used to
reason about the locking behavior of programs that use dynamic memory allo-
cation. Random-isolation abstraction, like allocation-site abstraction, bounds
the number of abstract objects manipulated by an abstracted program Prog] by
associating abstract objects to Prog]’s allocation sites, where an abstract object
over-approximates the set of concrete objects that can be allocated at a site in
the original program Prog. However, unlike allocation-site abstraction, random-
isolation abstraction associates two abstract objects to a speci�ed allocation

182

site.1 We use isolation to ensure that one of the abstract objects represents a
singleton set of concrete objects so that strong updates can be performed on that
abstract object’s state. �e ability to perform strong updates is crucial for the
analysis of concurrent programs that use lock-based synchronization because it
enables a model checker to reason precisely about the state of the lock that is
associated with the randomly-isolated object. We use randomness to determine
when the randomly-isolated object is allocated, which provides a mechanism
for generalizing a proof that a property holds for the randomly-isolated object
to a proof that the property holds for all concrete objects that can be allocated
at the speci�ed site.

To bound the values that a memory location can hold, we observed that, for
AS-atomicity veri�cation, one is only concerned with read and write accesses to
shared-memory locations. �us, we further abstract the program by removing
values from memory locations, and only reason about accesses to them by the
individual threads.

After applying these abstractions to generate an abstract program Prog] that
over-approximates the set of behaviors of a concurrent Java program Prog, some
of the sources of unboundedness have been removed. After applying random-
isolation abstraction, the unbounded number of objects that can be allocated by
Prog are represented by a �nite number of abstract objects that can be allocated
in Prog]. We abstracted the unbounded set of values that a memory location can
hold. Finally, we bound the number of threads in Prog] to remove the unbounded
number of threads that can be created.

However, many sources of unboundedness remain, namely, (1) Prog] con-
tains reentrant locks; (2) each thread can de�ne recursive methods, which causes
the size of each local stack to be unbounded; (3) unit-of-work methods can also
be recursive, which requires the violation monitor to use an in�nite-state counter
to track the depth of nested calls to unit-of-work methods; and (4) the number of
interleaved executions is unbounded. Because of these remaining sources of un-

1Random isolation can, in general, be applied to every allocation site. We have not explored
this broader use of random isolation.

183

boundedness, we at �rst believed that verifying AS-atomicity for Prog]—or the
EML program that is generated from Prog]—is, in general, undecidable. �us,
in Ch. 5 we applied CPDS model checking (Chaki et al., 2006) to the problem of
verifying AS-atomicity, and showed that it was useful in practice. With respect to
CPDS model checking, Ch. 4 presented several (unpublished) variations on the
original semi-decision procedure, and, by analyzing a model of a real Windows
Bluetooth driver, showed that these techniques provide improved performance
in practice.

Ch. 6 presented a technique that we call language strength reduction, which
enables the context-free languages of an EML lock and the violation monitor
to be replaced with regular languages. To do so, we de�ned the nested-word
language of a pushdown system (PDS), and gave a construction that combined a
nested-word automaton (NWA) with a PDS. �e result is a new PDS PN that (i)
retains the same set of behaviors of the original PDS, and (ii) is able to distinguish
between ownership-changing (OC) and non-ownership-changing (nOC) lock
acquisitions and releases (and also outermost and inner calls to unit-of-work
methods). Because PN can make these distinctions, we could then remove from
PN all nOC lock acquisitions and releases, as well as actions that model calls
to and returns from inner unit-of-work methods. �e overall e�ect is that the
PDSs that model EML locks and the violation monitor no longer require a stack
to count their respective nesting depths, which allowed their languages to be
de�ned by non-deterministic �nite automata (NFAs)—i.e., strength reduction
was applied to their languages. Language strength reduction eliminated two
sources of unboundedness, and in doing so, produced an overall speedup of 1.8
when analyzing CPDSs generated by Empire.

Another important bene�t of language strength reduction is that the NFA
A that recognizes the language of the violation monitor always has a special
form, namely, the only loops in A are self-loops on states, which induces a total
order of the states of A. We call such an NFA an indexed-phase automaton (IPA).
IPAs enjoy the bounded-phase-transition property, which means that there is

184

a bound on the number of global synchronizations due to memory accesses
between the PDSs that model EML processes.

Even with these transformations to the model, the remaining PDSs of the
model still had, at �rst sight, a tight coupling because they need to synchronize
with each other on their use of locks. Nevertheless, it turned out that the re-
maining PDSs are not that tightly coupled. We used lock histories to summarize
the constraints that an individual PDS’s execution places on an interleaved
execution. Lock histories enable the PDSs that model a concurrent program
to be analyzed independently from each other. After analyzing each PDS inde-
pendently, the constraints that are generated for the PDSs are then checked
for compatibility. In �m. 7.8 we proved that there exists a set of lock histories
(one lock history per PDS) that satis�es the Compatible relation if-and-only-if
there exists an interleaved execution of the multi-PDS that can drive the NFA
of the transformed violation monitor to its accepting state—i.e., that an AS-
serializability violation can occur. �us, by �m. 7.8, we were able to show that
verifying AS-atomicity of an EML program is, in fact, decidable.

Our decidability result is related to work by Kahlon and Gupta (2007), who
showed that, for certain fragments of (indexed) LTL, model checking multi-PDSs
is decidable. �eir decision procedure—as it would be applied to AS-atomicity
veri�cation—also uses lock histories. Our work di�ers from the (corrected)
Kahlon and Gupta decision procedure because it uses tupling rather than split-

ting to answer the sequence of reachability queries that arise during the model-
checking process. �e use of tupling (i) eliminated an exponential factor in the
analysis cost, and (ii) isolates another exponential factor in the PDS control
locations, for which symbolic techniques can be used to overcome this cost in
practice.

Moving forward, there are various directions that one could take as follow-on
work to the dissertation. A natural extension of the work on the decision proce-
dure presented in Ch. 7 would be to determine whether our tupling approach
can be extended to handle properties speci�ed in the fragments of (indexed)

185

LTL that Kahlon and Gupta proved were decidable (Kahlon and Gupta, 2007).
Such an extension would be an important result because, as we discussed in §7.6
of Ch. 7, the use of splitting in the Kahlon-Gupta decision procedure(s) appears
to be the obstacle to creating an implementation that is e�cient enough to be
used in practice. As a teaser, we know how to relax property speci�cations from
the linear form of an IPA to a directed-graph form that is constrained so that
the only loops are self-loops on nodes in the graph. �e research opportunity is
to show that a property speci�ed in a decidable fragment of (indexed) LTL can
be encoded in the relaxed-graph-form IPA.

Another extension is to relax the �nite-thread restriction of EML programs.
�e work on dynamic-pushdown networks (DPNs) (Bouajjani et al., 2005)—an
extension of multi-PDSs to include thread creation—by Lammich et al. (2009)
looks like a promising approach. It is interesting to note that the tupling-versus-
splitting issue arises for DPNs as well. Lammich et al. (2009) use chained reacha-
bility queries to prove properties for DPNs. �ough they do not have an explicit
step that splits the automata that result from intermediate queries, they do
require a rather expensive intersection operation that, in essence, amounts to
splitting. At present, we do not fully understand how tupling would work with
dynamic thread creation. �at is, tupling is a mechanism to maintain necessary
correlations between intermediate con�gurations that are part of a sequence
of reachable con�gurations of a single PDS. For DPNs, one must be able to rea-
son about not only the intermediate con�gurations of a single PDS, but also
any PDSs that it may dynamically create. �us, it would appear that another
operation is required to join the tuples of child PDSs with a parent PDS.

Beyond extending Empire, the possibilities are endless. We know for certain
that concurrent programming, and, in particular, the analysis of concurrent
programs will remain an important area of research for the foreseeable future.
With respect to the analysis of concurrent programs, we have shown that one can
sometimes �nesse multiple sources of unboundedness as a way of establishing
decidability. In particular, for software model checking using multi-PDSs, there

186

is a chance of a problem being decidable if it can be shown that only a bounded

number of global synchronizations is actually necessary.
�e path that I have taken in my dissertation research to obtain a decision

procedure provides insight into both of these issues, namely, that apparently un-
decidable problems can sometimes be massaged or transformed to (1) remove
sources of unboundedness, and (2) bound the number of global synchroniza-
tions, at which point a decision procedure can be obtained.

187

references

Alur, Rajeev, and P. Madhusudan. 2004. Visibly pushdown languages. In STOC.

———. 2006. Adding nesting structure to words. In DLT.

Artho, Cyrille, Klaus Havelund, and Armin Biere. 2003. High-level data races.
Journal on Software Testing, Veri�cation and Reliability (STVR) 13(4).

Bahar, R.I., E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. 1993. Algebraic decision diagrams and their applications. In cad,
188–191.

Balakrishnan, G., and T. Reps. 2006. Recency-abstraction for heap-allocated
storage. In SAS.

Bernstein, P., V. Hadzilacos, and N. Goodman. 1987. Concurrency control and

recovery in database systems. Addison-Wesley.

Bouajjani, A., J. Esparza, and O. Maler. 1997. Reachability analysis of pushdown
automata: Application to model checking. In CONCUR.

Bouajjani, A., J. Esparza, and T. Touili. 2003. A generic approach to the static
analysis of concurrent programs with procedures. In POPL.

Bouajjani, A., M. Müller-Olm, and T. Touili. 2005. Regular symbolic analysis of
dynamic networks of pushdown systems. In CONCUR.

Bryant, R.E. 1986. Graph-based algorithms for Boolean function manipulation.
TOC 677–691.

BuDDy. 2004. A BDD package. http://buddy.wiki.sourceforge.net/.

Chaki, Sagar, Edmund Clarke, Nicholas Kidd, �omas Reps, and Tayssir Touili.
2006. Verifying concurrent message-passing C programs with recursive calls.
In TACAS, 334–349.

http://buddy.wiki.sourceforge.net/

188

Chaudhuri, S., and R. Alur. 2007. Instrumenting C programs with nested word
monitors. In SPIN.

Clarke, Edmund M., and E. Allen Emerson. 1982. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In Logic of

programs, workshop, 52–71.

Cousot, P., and R. Cousot. 1977. Abstract interpretation: a uni�ed lattice model
for static analysis of programs by construction or approximation of �xpoints.
In POPL, 238–252.

Eytani, Yaniv, Klaus Havelund, Scott D. Stoller, and Shmuel Ur. 2007a. Towards
a framework and a benchmark for testing tools for multi-threaded programs.
Conc. and Comp.: Prac. and Exp. 19(3).

———. 2007b. Towards a framework and a benchmark for testing tools for
multi-threaded programs. Conc. and Comp.: Prac. and Exp. 19(3).

Finkel, A., B.Willems, and P. Wolper. 1997. A direct symbolic approach to model
checking pushdown systems. Elec. Notes in �eor. Comp. Sci. 9.

Flanagan, Cormac, and Stephen N Freund. 2004. Atomizer: a dynamic atomicity
checker for multithreaded programs. In POPL, 256–267.

———. 2008. Velodrome: A sound and complete dynamic analysis for atomicity.
In POPL.

Flanagan, Cormac, and Shaz Qadeer. 2003. A type and e�ect system for atom-
icity. In PLDI.

Hammer, C., J. Dolby, M. Vaziri, and F. Tip. 2008. Dynamic detection of atomic-
set serializability violations. In ICSE.

Harrison, M. A. 1978. Introduction to formal language theory. Boston, MA, USA.

189

Horwitz, S., P. Pfei�er, and T. Reps. 1989. Dependence analysis for pointer
variables. In PLDI.

IBM. 2009. Watson Libraries for Analysis (WALA). http://wala.
sourceforge.net/wiki/index.php.

Intel Tera-scale Computing Research Program. 2009. Tera-scale computing
research program. [Online; accessed 24-July-2009].

Jones, N.D., and S.S. Muchnick. 1981. Flow analysis and optimization of Lisp-like
structures. In Program �ow analysis: Theory and applications. Prentice-Hall.

———. 1982. A �exible approach to interprocedural data �ow analysis and
programs with recursive data structures. In POPL.

Kahlon, V., and A. Gupta. 2007. On the analysis of interacting pushdown systems.
In POPL.

———. 2009. Personal communication.

Kahlon, V., F. Ivancic, and A. Gupta. 2005a. Reasoning about threads communi-
cating via locks. In CAV.

Kahlon, V., Y. Yang, S. Sankaranarayan, and A. Gupta. 2005b. Fast and accurate
static data-race detection for concurrent programs. In CAV.

Kidd, Nicholas. 2009. �e bluetooth driver models. http://pages.cs.wisc.
edu/~kidd/bluetooth.

Kidd, Nicholas, Akash Lal, and �omas Reps. 2007. Advanced queries for
property checking. Tech. Rep. 1621, Univ. of Wisconsin. Available at http:
//www.cs.wisc.edu/wpis/abstracts/tr1621.abs.html.

———. 2008. Language strength reduction. In SAS, 283–298.

———. 2009a. WALi: �e Weighted Automaton Library. http://www.cs.
wisc.edu/wpis/wpds/download.php.

http://wala.sourceforge.net/wiki/index.php
http://wala.sourceforge.net/wiki/index.php
http://pages.cs.wisc.edu/~kidd/bluetooth
http://pages.cs.wisc.edu/~kidd/bluetooth
http://www.cs.wisc.edu/wpis/abstracts/tr1621.abs.html
http://www.cs.wisc.edu/wpis/abstracts/tr1621.abs.html
http://www.cs.wisc.edu/wpis/wpds/download.php
http://www.cs.wisc.edu/wpis/wpds/download.php

190

Kidd, Nicholas, �omas Reps, Julian Dolby, and Mandana Vaziri. 2009b. Finding
concurrency-related bugs using random isolation. In VMCAI, 198–213.

Kidd, Nicholas A., P. Lammich, T. Touili, and �omas Reps. 2009c. A decision
procedure for detecting atomicity violations for communicating processes with
locks. In SPIN.

Lal, A., and �omas Reps. 2008. Reducing concurrent analysis under a context
bound to sequential analysis. In CAV.

Lal, Akash, Nicholas Kidd, �omas Reps, and Tayssir Touili. 2007. Abstract
error projection. In SAS.

Lal, Akash, and �omas Reps. 2006. Improving pushdown system model check-
ing. In CAV.

Lal, Akash, �omas Reps, and Gogul Balakrishnan. 2005. Extended weighted
pushdown systems. In CAV.

Lal, Akash, Tayssir Touili, Nicholas Kidd, and �omas Reps. 2008. Interpro-
cedural analysis of concurrent programs under a context bound. In TACAS,
282–298.

Lammich, Peter, Markus Müller-Olm, and Alexander Wenner. 2009. Predecessor
sets of dynamic pushdown networks with tree-regular constraints. In CAV. To
appear.

Lipton, Richard J. 1975. Reduction: a method of proving properties of parallel
programs. Commun. ACM 18(12):717–721.

Lu, Shan, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
mistakes—a comprehensive study on real world concurrency bug characteris-
tics. In ASPLOS.

Lu, Shan, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO: Detecting
atomicity violations via access interleaving invariants. In ASPLOS.

191

McMillan, K.L. 1999. Veri�cation of in�nite state systems by compositional
model checking. In CHARME, 219–234.

Milanova, Ana, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized
object sensitivity for points-to analysis for Java. TOSEM 14(1).

Naik, Mayur, and Alex Aiken. 2007. Conditional must not aliasing for static
race detection. In POPL, 327–338.

Nederhof, Mark-Jan. 1999. Practical experiments with regular approximation
of context-free languages. CoRR.

Papadimitriou, C. 1986. �e theory of database concurrency control. Computer
Science Press.

Pnueli, A., J. Xu, and L. Zuck. 2002. Liveness with (0, 1,∞)-counter abstraction.
In CAV.

Pratikakis, Polyvios, Je�rey S. Foster, and Michael Hicks. 2006. LOCKSMITH:
Context-sensitive correlation analysis for race detection. In PLDI, 320–331.
ACM Press.

Qadeer, S., S. K. Rajamani, and J. Rehof. 2004. Summarizing procedures in
concurrent programs. In POPL, 245–255.

Qadeer, S., and D. Wu. 2004. KISS: Keep It Simple and Sequential. In PLDI.

Qadeer, Shaz, and Jakob Rehof. 2005. Context-bounded model checking of
concurrent software. In TACAS.

Queille, Jean-Pierre, and Joseph Sifakis. 1982. Speci�cation and veri�cation of
concurrent systems in cesar. In Proceedings of the 5th colloquium on interna-

tional symposium on programming, 337–351. Springer-Verlag.

Ramalingam, G. 2000. Context-sensitive synchronization-sensitive analysis is
undecidable. ACM Transactions on Programming Languages and Systems 22.

192

Reps, �omas. 1998. Program analysis via graph reachability. Inf. and Softw.

Tech. 40.

Reps, �omas, Akash Lal, and Nicholas Kidd. 2007. Program analysis using
weighted pushdown systems. In FSTTCS.

Reps, �omas, Stefan Schwoon, and Somesh Jha. 2003. Weighted pushdown
systems and their application to interprocedural data�ow analysis. In SAS.

Reps, �omas, Stefan Schwoon, Somesh Jha, and David Melski. 2005. Weighted
pushdown systems and their application to interprocedural data�ow analysis.
SCP 58.

Sagiv, M., T. Reps, and R. Wilhelm. 2002. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems 24(3).

Savage, Stefan, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
�omas E. Anderson. 1997. Eraser: A dynamic data race detector for mul-
tithreaded programs. �eoretical Computer Science 15(4):391–411.

Schwoon, Stefan. 2002. Model-checking pushdown systems. Ph.D. thesis, TUM.

Vaziri, Mandana, Frank Tip, and Julian Dolby. 2006. Associating synchroniza-
tion constraints with data in an object-oriented language. In POPL, 334–345.

Visser, W. 2009. Personal communication.

Wang, Liqiang, and Scott D. Stoller. 2006. Accurate and e�cient runtime
detection of atomicity errors in concurrent programs. In PPoPP, 137–146.

Wikipedia. 2009. Northeast blackout of 2003. [Online; accessed 1-June-2009].

Xu, Min, Rastislav Bodík, and Mark D. Hill. 2005. A serializability violation
detector for shared-memory server programs. In PLDI.

Yavuz-Kahveci, T., and T. Bultan. 2002. Automated veri�cation of concurrent
linked lists with counters. In SAS, 69–84.

193

a appendix

A.1 Proof of �m. 6.4

Proof. �e proof is organized as follows:

1. NWLang(PN, (p ′,q ′)) ⊆ NWLang(P,p ′) by Lem. A.4;

2. NWLang(PN, (p ′,q ′)) ⊆ NWLang(N,q ′) by Lem. A.5; and

3. NWLang(PN, (p ′,q ′)) ⊇ NWLang(P,p ′) ∩ NWLang(N,q ′) by Lem. A.6.

Corollary A.1. NWLang(PN,P ×Q) = NWLang(P,P) ∩ NWLang(N,Q)

Proof.

NWLang(P,P) ∩ NWLang(N,Q) =
⋃
p∈P

NWLang(P,p) ∩
⋃
q∈Q

NWLang(N,q)

=
⋃

p∈P,q∈Q

NWLang(P,p) ∩ NWLang(N,q)

= NWLang(PN,P ×Q)

Notice that the last step above follows from �m. 6.4.

When discussing the nested-word languages for P and PN, we will always
be starting from con�guration 〈p0, emain〉 and 〈(p0,q0), emain〉, respectively. In
addition, because of the spitting of Γ into Γα and Γβ, in the inductive steps of
the proof we will use the e�ective length of a run de�ned as follows:

De�nition A.1. �e e�ective length of a run ρ = [r1, . . . , rj] is equal to the length
of the word componentw of the nested word nw = (w, v) = nwpost(ρ). For a
run ρ, we denote its e�ective length by E�Len(ρ).

194

Note that for a run ρ = [r1, . . . , rj], E�Len(ρ) is equal to the number of rules
in ρ whose left-hand-side stack symbol is in Γα. �is follows from the de�nition
of nwpost.

We �rst present the proofs for Lemmas A.2 and A.3. Lemmas A.2 and A.3 are
helper lemmas that aid in proving Lemmas A.4, A.5, and A.6.

Lemma A.2. For a run [r1, . . . , rj] of PN that generates a nested word nw ∈
NWLang(PN, (p ′,q ′)), the rule rj is either a step rule or a push rule from ∆N,

but not a pop rule.

Proof. For each nested word nw in NWLang(PN, (p ′,q ′)), there exists a run ρ
of PN such thatnw = nwpost(ρ). From the de�nition of NWLang(PN, (p ′,q ′)),
starting from the con�guration 〈p0, emain〉 and making a transition for each
rule r ∈ ρ, the result is a con�guration of the form 〈(p ′,q ′),u〉,u ∈ Γ∗,p ′ ∈
P,q ′ ∈ Q. By de�nition, all pop rules in∆N cause a con�guration of the form
〈(p,qr), xu〉 to make a transition to a con�guration of the form 〈(p,qxr),u〉.
Because the state qxr is not inQ, rj must be either a step or push rule.

Lemma A.3. For a nested wordnw = (w, v) ∈ NWLang(P,p ′)∩NWLang(N,q ′),

the length j of the run ρ = [r1, . . . , rj] of P that generates nw is equal to |w|.

Proof. From the de�nition of post[r], a rule appends its left-hand-side stack
symbol γ only if γ ∈ Γα. For P, Γβ = ∅, and nwpost([r1, . . . , rj]) will generate a
nested word nw = (w, v) such that |w| = j.

Lemma A.4. NWLang(PN, (p ′,q ′)) ⊆ NWLang(P,p ′).

Proof. We must show that PN is a subset of P; i.e., that Construction 1 did not
introduce behaviors or runs that were not originally a part of P. �e intuition
on which the proof is based is that Construction 1 produces a PDS whose set of
runs is a restriction of the set of runs of P. �us, we prove Lem. A.4 by providing

195

a function that maps each run ρN of PN to a run ρ of P such that nwpost(ρN) =

nwpost(ρ). For a rule r ∈ ∆ and transition t ∈ δ, we use the constructor κ(r, t)
to denote the set of rules in∆N that are generated by Construction 1 (see §6.4).
�e proof makes use of the deconstructor κ−1

∆ : ∆N → ∆, de�ned as follows:

κ−1
∆ (r) =


〈p,n1〉 ↪→ 〈p ′,n2〉 if r = 〈(p,q),n1〉 ↪→ 〈(p ′,q ′),n2〉
〈p,nc〉 ↪→ 〈p ′, e rc〉 if r = 〈(p,qc),nc〉 ↪→ 〈(p ′,q), e (rc,qc)〉
〈p, x〉 ↪→ 〈p ′, ε〉 if r = 〈(p,qr), x〉 ↪→ 〈(p ′,qxr), ε〉
ε if r = 〈(p,qxr), (rc,qc)〉 ↪→ 〈(p ′,q), rc〉

We extend the function κ−1
∆ (r) to work on a run as follows:

κ−1
∆ ([]) = []

κ−1
∆ ([r1, . . . , rj]) = κ−1

∆ (r1) :: κ−1
∆ ([r2, . . . , rj])

For a rule r ∈ ∆N and nested word nw = (w, v), we show by a case analysis
on the form of the rule r that nwpost[r](nw) = nwpost[κ−1

∆ (r)](nw).

1. r = 〈(p,q),n1〉 ↪→ 〈(p ′,q ′),n2〉, and n1 ∈ ΓαN . By de�nition, κ−1
∆ (r) =

〈p,n1〉 ↪→ 〈p ′,n2〉. Both nwpost[r](nw) and nwpost[κ−1
∆ (r)](nw) ap-

pend the symbol n1 to the nested word nw, and neither a�ect the nesting
relation.

2. r = 〈(p,q),n1〉 ↪→ 〈(p ′,q ′),n2〉, and n1 ∈ Γ
β
N . Because n1 ∈ Γ

β
N ,

nwpost[r](nw) = nw. By de�nition,κ−1
∆ (r) = ε, and nwpost[κ−1

∆ (r)](nw) =

nw.

3. r = 〈(p,qc),nc〉 ↪→ 〈(p ′,q ′), e (rc,qc)〉. By de�nition, κ−1
∆ (r) =

〈p,nc〉 ↪→ 〈p ′, e rc〉. Both nwpost[r](nw) and nwpost[κ−1
∆ (r)](nw) ap-

pend nc tow and add 〈(|w · nc|),∞〉 to v.

4. r = 〈(p,qr), x〉 ↪→ 〈(p ′,qxr), ε〉. By de�nition, κ−1
∆ (r) = 〈p, x〉 ↪→

〈p ′, ε〉. Let i = max({k | 〈k,∞〉 ∈ v}). Both nwpost[r](nw) and

196

nwpost[κ−1
∆ (rj)](nw) append x to w, remove 〈i,∞〉 from v, and add

〈i, |w · x|〉 to v.

Combining the above case analysis with the de�nition of nwpost, we have shown
that

nwpost([r1, . . . , rj]) = nwpost([κ−1
∆ (r1), . . . ,κ−1

∆ (rj)])

We follow this by showing that [κ−1
∆ (r1), . . . , κ−1

∆ (rj)] is a run of P. We show this
via an inductive argument on the e�ective length of the run.

Base case: �ere are two types of runs that have an e�ective length of zero.

1. j = 0. By de�nition, [] ∈ Runs(P).

2. Each rule of the run is such that its left-hand-side stack symbol γ ∈ ΓβN .
By the de�nition of Construction 1, each such rule must be preceded by a
pop rule, and the left-hand-side stack symbol of every pop rule in∆N is a
member of ΓαN . �us, this case cannot arise.

Inductive step: Let k be the e�ective length of the run. Let [r1, . . . , ri−1]

be a pre�x of the run such that E�Len([r1, . . . , ri−1]) = k − 1, and
nwpost([r1, . . . , ri−1]) ∈ NWLang(PN, (p,q)). By the inductive hypoth-
esis we can assume that [κ−1

∆ (r1), . . . , κ−1
∆ (ri−1)] is a run of P and that

nwpost([κ−1
∆ (r1), . . . , κ−1

∆ (ri−1)] ∈ NWLang(P,p). Note that ri−1 cannot be
a pop rule by Lem. A.2. We perform a case analysis on the su�x [ri, . . . , rj] of
the run to prove Lem. A.4. In each case, we assume that the pre�x [r1, . . . , ri−1]

transforms the con�guration 〈(p0,q0), emain〉 to a con�guration 〈(p,q),γu〉 and
the pre�x [κ−1

∆ (r1), . . . , κ−1
∆ (ri−1)] transforms the con�guration 〈p0, emain〉 to the

con�guration 〈p,γu ′〉. Note that u and u ′ are related. Namely, for each stack
symbol (rc,qc) ∈ u, u ′ has the corresponding stack symbol rc.

197

1. �e su�x [ri, . . . , rj] has length zero. �is case invalidates the inductive
assumptions because it does not increase the e�ective length of the run
by 1.

2. �e su�x [ri, . . . , rj] has length one. In this case, ri = rj and there are four
possible forms that the rule rj can have.

a) rj = 〈(p,q),γ〉 ↪→ 〈(p ′,q ′),γ ′〉, and γ ∈ ΓαN . �e con�guration
〈(p,q),γu〉 is transformed to the con�guration 〈(p ′,q ′),γ ′ u〉. By
de�nition, κ−1

∆ (rj) = 〈p,γ〉 ↪→ 〈p ′,γ ′〉, and the con�guration
〈p,γu ′〉 is transformed to the con�guration 〈p ′,γ ′ u ′〉.

b) rj = 〈(p,qc),γ〉 ↪→ 〈(p ′,q ′), e (rc,qc)〉. �e con�guration 〈(p,q),γu〉
is transformed to the con�guration 〈(p ′,q ′), e (rc,qc)u〉. By de�ni-
tion, κ−1

∆ (rj) = 〈p,γ〉 ↪→ 〈p ′, e rc〉, and the con�guration 〈p,γu ′〉
is transformed to the con�guration 〈p ′, e rc u ′〉.

c) rj = 〈(p,q),γ〉 ↪→ 〈(p,q ′),γ ′〉, and γ ′ ∈ ΓβN . �is case is not valid
because the e�ective length of the run [r1, . . . , rj] is k− 1.

d) rj = 〈(p,qr),γ〉 ↪→ 〈(p ′,qxr), ε〉. �is case is not valid because a
run cannot end with a pop rule by Lem. A.2.

3. �e su�x [ri, . . . , rj] has length two. In this case, one of the rules must
have its left-hand-side stack symbol in ΓαN and the other in ΓβN . �e
only rules whose left-hand-side stack symbols are in ΓβN are of the form
〈(p ′,qxr), (rc,qc)〉 ↪→ 〈(p ′,q ′), rc〉. For a run of PN, a rule of this form
must be immediately preceded by a pop rule. �is follows from Con-

struction 1. Because ri−1 is not a pop rule, we only need to consider the
following case:

[ri, rj] = [〈(p,q), x〉 ↪→ 〈(p ′,qxr), ε〉, 〈(p ′,qxr), (rc,qc)〉 ↪→ 〈(p ′,q ′), rc〉]

198

For the su�x to be valid, the con�guration 〈(p,q),γu〉must be of the form
〈(p,q), x (rc,qc)u ′′〉. In this case, the su�x transforms the con�guration
into 〈(p ′,q ′), rc u ′′〉. From the inductive hypothesis, the con�guration
〈p,γu ′〉 of P must be of the form 〈p, x rc u ′′′〉. Additionally, we have the
following:

[κ−1
∆ (ri), κ−1

∆ (rj)] = [〈p, x〉 ↪→ 〈p ′, ε〉, ε]

Applying the su�x to the con�guration 〈p, x rc u ′′′〉 results in the con�g-
uration 〈p, rc u ′′′〉.

4. �e su�x [ri, . . . , rj] has length equal to 3 or more. �is case cannot occur
because the su�x would have to contain at least 2 rules that do not change
the e�ective length of the run. From the de�nition of Construction 1, each
such rule must be immediately preceded by a pop rule. �us, the e�ective
length would increase by more than 1.

Lemma A.5. NWLang(PN, (p ′,q ′)) ⊆ NWLang(N,q ′).

Proof. �e proof of Lem. A.5 is similar to the proof of Lem. A.4. Speci�cally, we
provide a function such that for a run [r1, . . . , rj] of PN, the function de�nes a
run [t1, . . . , tj] of N, where a run of N is a sequence of transitions that N can
use to read a nested word NW. �e proof makes use of the deconstructor
κ−1
δ : ∆N → δ, de�ned as follows:

κ−1
δ (r) =


(q,n1,q ′) if r = 〈(p,q),n1〉 ↪→ 〈(p ′,q ′),n2〉
(qc,nc,q ′) if r = 〈(p,qc),nc〉 ↪→ 〈(p ′,q ′), e (rc,qc)〉
ε if r = 〈(p,qr), x〉 ↪→ 〈(p ′,qxr), ε〉
(qr,qc, x,q ′) if r = 〈(p ′,qxr), (rc,qc)〉 ↪→ 〈(p ′,q ′), rc〉

199

We extend the function κ−1
δ (r) to work on a run as follows:

κ−1
δ ([]) = []

κ−1
δ ([r1, . . . , rj]) = κ−1

δ (r1) :: κ−1
δ ([r2, . . . , rj])

Letnw ∈ NWLang(PN, (p ′,q ′)) be the nested word (w, v). By the de�nition
of NWLang(PN, (p ′,q ′)), there exists a run [r1, . . . , rj] of PN that generates nw.
We show that N can read nw and end in state q ′ using the run κ−1

δ ([r1, . . . , rj]).
�e proof is by induction on the e�ective length of the run. �e only cases that
need to be considered are exactly the cases enumerated in the proof of Lem. A.4.
Hence, we omit the invalid cases instead of restating why they are invalid.

Base case: �e run is empty. In this case, nw = (ε, ∅) and nw ∈
NWLang(PN, (p,q0)). �e corresponding run of N, κ−1

δ ([]), is also empty and
nw ∈ NWLang(N,q0).

Inductive step: Let k be the e�ective length of the run. We assume that
Lem. A.5 holds for the pre�x [r1, . . . , ri−1] of the run whose e�ective length is
k − 1. We perform a case analysis on the su�x [ri, . . . , rj] of the run to prove
Lem. A.5. In each case, we assume that the pre�x transforms the con�guration
〈(p0,q0), emain〉 to some con�guration 〈(p,q),γu〉.

1. �e su�x [ri, . . . , rj] has length one. In this case, ri = rj and there are two
possible forms that the rule rj can have such that it is a valid pre�x and
su�x of the run.

a) rj = 〈(p,q),γ〉 ↪→ 〈(p ′,q ′),γ ′〉, γ ∈ ΓαN . N can make a transition
from state q to state q ′ when reading input symbol γ via κ−1

δ (rj).

b) rj = 〈(p,q),γ〉 ↪→ 〈(p ′,q ′),γ ′γ ′′〉. N can make a transition from
state q to state q ′ when reading input symbol γ via κ−1

δ (rj).

200

2. �e su�x [ri, . . . , rj] has length two and is of the form:

[ri, rj] = [〈(p ′,q), x〉 ↪→ 〈(p ′,qxr), ε〉, 〈(p ′,qxr), (rc,qc)〉 ↪→ 〈(p ′,q ′), rc〉]

Because ri is a pop rule and nw is a nested word, there must have
been a rule rc in the run such that rc is a push rule. Furthermore, be-
cause rj �red, it must be the case that rc is of the form 〈(pc,qc),nc〉 ↪→
〈(pe,qe), e (rc,qc)〉. From this, we know that when N made its cor-
responding transition κ−1

δ (rc) (item 1b), it was in a state qc. �us,
in this case, N can move to state q ′ via the transition κ−1

δ ([ri, rj]) =

(qr,qc, x,q ′).

Lemma A.6. NWLang(PN, (p ′,q ′)) ⊇ NWLang(P,p ′) ∩ NWLang(N,q ′)

Proof. Let nw ∈ NWLang(P,p ′) ∩ NWLang(N,q ′) be the nested word (w, v).
By the de�nition of NWLang(P,p ′), there exists a run [r1, . . . , rj] of P from
〈p0, emain〉 such that nwpost([r1, . . . , rj]) = nw. From Lem. A.3, we know that
the length j of the run is equal to |w|. From the de�nition of NWLang(N,q ′),
there exists a run [t1, . . . , tm] of N that reads nw, and leaves N in state q ′ ∈ Q.
By the de�nition of NWAs, the number of transitionsm = |w| (each transition
reads exactly one character from the input string). �us, j = m = |w|. We show
that for nw, there exists a run of PN that simulates both P and N. �e proof is
via induction on the length j of the runs of P and N.

Base case: If j = 0, then nw = (ε, ∅), and nw = nwpost([]). By de�nition,
nw ∈ NWLang(PN, (p0,q0)).

Inductive step: We assume that PN has successfully simulated the �rst j− 1
rules of the run of P and the �rst j−1 transitions of the run of N. We show that PN

can simulate runs [r1, . . . , rj−1, rj] and [t1, . . . , tj−1, tj] of P and N, respectively.
We prove the inductive step via a case analysis on the rule rj and transition tj.

201

1. rj ∈ ∆1 and tj ∈ δi. PN simulates the steps of P and N by the rule rj and
transition tj, respectively, via the rule κ(rj, tj) ∈ ∆N.

2. rj ∈ ∆2 and tj ∈ δc. PN simulates the steps of P and N by rj and tj,
respectively, via the rule κ(rj, tj) ∈ ∆N.

3. rj ∈ ∆0 and tj ∈ δr. Let rj = 〈p, x〉 ↪→ 〈p ′, ε〉 and tj = (qr,qc, x,q ′).
Because P and N are able to make a transition on rj and tj, respec-
tively, and from our assumption that PN has simulated P and N through
j − 1 steps, one of the rules ri, 0 6 i < j, is a push rule of the form
〈p,nc〉 ↪→ 〈p ′, e rc〉. Additionally, ti must be a transition from δc of the
form (qc,nc,q). From item 2, PN simulates these instructions via the rule
κ(ri, ti) = 〈(p,qc),nc〉 ↪→ 〈(p ′,q), e (rc,qc)〉. Combining these facts
with the result of κ(rj, tj), we prove that PN simulates P and N for this
case. In particular, by de�nition κ(rj, tj) is a set of rules such that the set
contains at least two rules, one of the form 〈(p,qr), x〉 ↪→ 〈(p ′,qxr), ε〉
and another of the form 〈(p ′,qxr), (rc,qc)〉 ↪→ 〈(p ′,q ′), rc〉. �e former
is a direct result of κ(rj, tj). �e latter exists because tj exists and rc is
one of the return points from the original PDS P. �us, via the application
of the two rules, PN simulates P and N.

A.2 Proof of �m. 6.17

Proof. �e proof is organized as follows:

1. NWLangϕ(EN) ⊆ NWLang(E) by Lem. A.11;

2. NWLangϕ(EN) ⊆ NWLang(N),Q) by Lem. A.12; and

3. NWLangϕ(EN) ⊇ NWLang(N,Q) ∩ NWLang(E) by Lem. A.13.

202

For a run ρ, we use the notation vE(ρ), �attenE,buildE,and vE[r] to signify
the weighted valuation of ρ using S,f, and g as de�ned by E; and we use the
notation vEN

(ρ), �attenEN
,buildEN

,and vEN
[r] to signify the weighted valuation

of ρ using SN,fN,and gN as de�ned by EN. Additionally, we use 0, 1, and y (and
its variants) to denote weights from S; and we use 0N, 1N, and z (and its variants)
to denote weights from SN.

We �rst prove properties of the functions build, �atten, and v for a run ρ =

[r1, . . . , rj] that are important for proving �m. 6.17.

Lemma A.7. �atten(z⊗ z ′,S) = �atten(z,S)⊗ z ′.

Proof. �e proof is by induction of the size of S.

Base case: If S = ∅, then

�atten(z⊗ z ′, ∅) = z⊗ z ′ = �atten(z, ∅)⊗ z ′

Inductive step: Let S = (zc, rc)||S ′, and assume that �atten(z ⊗ z ′,S ′) =

�atten(z,S ′)⊗ z ′.

�atten(z⊗ z ′, (zc, rc)||S ′) = �atten((zc ⊗ f(rc))⊗ (z⊗ z ′),S ′)

= �atten((zc ⊗ f(rc)⊗ z)⊗ z ′,S ′)

= �atten((zc ⊗ f(rc)⊗ z),S ′)⊗ z ′

Lemma A.8. For a run [r1, . . . , rj], if rj is a step rule, then v([r1, . . . , rj]) =

v([r1, . . . , rj−1])⊗ f(rj).

Proof. Let (z ′,S ′) = build([r1, . . . , rj−1]). From Lem. A.7 and the de�nitions of

203

v[r], build, and �atten, the following holds:

v([r1, . . . , rj−1, rj]) = �atten(build([r1, . . . , rj−1, rj]))

= �atten(v[rj](build([r1, . . . , rj−1])))

= �atten(v[rj](z
′,S ′))

= �atten(z ′ ⊗ f(rj),S ′)

= �atten(z ′,S ′)⊗ f(rj)

= �atten(build([r1, . . . , rj−1]))⊗ f(rj)

= v([r1, . . . , rj−1])⊗ f(rj)

Lemma A.9. For a run [r1, . . . , rj], if rj is a call rule, then v([r1, . . . , rj]) =

v([r1, . . . , rj−1])⊗ f(rj).

Proof. Let (z ′,S ′) = build([r1, . . . , rj−1]). From Lem. A.7 and the de�nitions of
v[r], build, and v, the following holds:

v([r1, . . . , rj−1, rj]) = �atten(build([r1, . . . , rj−1, rj]))

= �atten(v[rj](build([r1, . . . , rj−1])))

= �atten(v[rj](z
′,S ′))

= �atten(1, (z ′, rj)||S ′)

= �atten(z ′ ⊗ f(rj)⊗ 1,S ′)

= �atten(z ′ ⊗ f(rj),S ′)

= �atten(z ′,S ′)⊗ f(rj)

= �atten(build([r1, . . . , rj−1]))⊗ f(rj)

= v([r1, . . . , rj−1])⊗ f(rj)

204

Lemma A.10. Let ρ = [r1, . . . , rj] be a run of E and EN such that: nw =

nwpost(ρ), nw ∈ NWLang(E), nw ∈ NWLang(EN), y = vE(ρ), and z =

vEN
(ρ). If y 6= 0, then for all q

y ′−−→ q ′ ∈ z such that y ′ 6= 0, y ′ = y. Otherwise

if y = 0, then z = 0N.

Proof. �e proof is by induction on the length j of the run. We �rst handle the
case where y 6= 0.

Base case: If j = 0, then vE([]) = 1 and vEN
([]) = 1N. By de�nition, 1N =

{q 1−→ q |q ∈ Q}.

Inductive step: We assume that Lem. A.10 holds for ρ ′ = [r1, . . . , rj−1], and
prove that it holds for ρ by a case analysis of rj. By our assumption, we have the
following:

• vE(ρ ′) = y ′.

• vEN
(ρ ′) = z ′, and for all q y ′′−−→ q ′ ∈ z ′ where y ′′ 6= 0, y ′′ = y ′.

Let vE(ρ) = y and vEN
(ρ) = z.

1. rj = 〈p,n1〉 ↪→ 〈p ′,n2〉. By Lem. A.8, y = y ′ ⊗ f(rj). By de�nition,
fA(rj) = {q ′

f(rj)−−−→ q ′′ | q ′ → q ′′ ∈ δ|n1
i }. From Lem. A.8, the following

holds:

vEN
(ρ) = vEN

([r1, . . . , rj−1, rj])

= vEN
([r1, . . . , rj−1])⊗ fN(rj)

= vEN
(ρ ′)⊗ fN(rj)

= z ′ ⊗ fN(rj)

= z ′ ⊗ {q ′
f(rj)−−−→ q ′′ | q ′ → q ′′ ∈ δ|n1

i }

= {q
y ′⊗f(rj)−−−−−−→ q ′′ |q

y ′−−→ q ′ ∈ z ′ ∧ q ′ f(rj)−−−→ q ′′ ∈ fN(rj)}

= {q
y−→ q ′′ |q

y ′−−→ q ′ ∈ z ′ ∧ q ′ f(rj)−−−→ q ′′ ∈ fN(rj)}

205

2. rj = 〈p,nc〉 ↪→ 〈p ′, e rc〉. �e same argument as above applies here,
simply replace Lem. A.8 with Lem. A.9 and fA(rj) = {q ′

f(rj)−−−→ q ′′ | q ′ →
q ′′ ∈ δ|nc

c }.

3. rj = 〈p, x〉 ↪→ 〈p ′, ε〉. Because nw is a nested word and by the de�nition
of nwpost (i.e., nwpost is unde�ned for the case where a pop rule does not
have a matching push rule), there must exist a matching push rule rc for
rj in the run. �us, with respect to vE, the following holds:

vE([r1, . . . , rj−1]) = �attenE(buildE([r1, . . . , rj−1]))

= �attenE(yx, (yc, rc)||S)

= �attenE(yc ⊗ f(rc)⊗ yx,S)

= �attenE(1⊗ (yc ⊗ f(rc)⊗ yx),S)

= �attenE(1,S)⊗ (yc ⊗ f(rc)⊗ yx) (A.1)

vE([r1, . . . , rj]) = �attenE(buildE([r1, . . . , rj]))

= �attenE(vE[rj](buildE([r1, . . . , rj−1])))

= �attenE(vE[rj](yx, (yc, rc)||S))

= �attenE(g(rc)(yc, f(rc)⊗ yx ⊗ f(rj)),S)

= �attenE(1⊗ (g(rc)(yc, f(rc)⊗ yx ⊗ f(rj))),S)

= �attenE(1,S)⊗ g(rc)(yc, f(rc)⊗ yx ⊗ f(rj))

(A.2)

206

Similar for vEN
, the following holds:

vEN
([r1, . . . , rj−1]) = �attenEN

(buildEN
([r1, . . . , rj−1]))

= �attenEN
(zx, (zc, rc)||S)

= �attenEN
(zc ⊗ fN(rc)⊗ zx,S)

= �attenEN
(1N ⊗ (zc ⊗ fN(rc)⊗ zx),S)

= �attenEN
(1N,S)⊗ (zc ⊗ fN(rc)⊗ zx)

(A.3)

vEN
([r1, . . . , rj]) =

= �attenEN
(buildEN

([r1, . . . , rj]))

= �attenEN
(vEN

[rj](buildEN
([r1, . . . , rj−1])))

= �attenEN
(vEN

[rj](zx, (zc, rc)||S))

= �attenEN
(gN(rc)(zc, fN(rc)⊗ zx ⊗ fN(rj)),S)

= �attenEN
(1N ⊗ (gN(rc)(zc, fN(rc)⊗ zx ⊗ fN(rj))),S)

= �attenEN
(1N,S)⊗ gN(rc)(zc, fN(rc)⊗ zx ⊗ fN(rj))

(A.4)

Because both Eqns. (A.1) and (A.2) contain �attenE(1,S) on the left-hand
side of the extend (⊗), it contributes the same value in both cases. We
denote the right-hand sides of the extend of Eqns. (A.1) and (A.2) by
yj−1 and yj, respectively. Likewise, both Eqns. (A.3) and (A.4) contain
�attenEN

(1N,S) on the left-hand side of the extend, and thus it contributes
the same value in both cases. Similarly, we denote the right-hand side of
the extend of Eqns. (A.3) and (A.4) by zj−1 and zj, respectively. From our

207

assumptions, we have the following:

zj−1 =

q yj−1−−−→ q ′

∣∣∣∣∣∣∣∃a,b :

 q
yc−−→ a ∈ zc

∧ a
f(rc)−−−→ b ∈ fN(rc)

∧ b
yx−−→ q ′ ∈ zx


 ,

where yj−1 = yc ⊗ f(rc) ⊗ yx. Notice that the right-hand side of the
extend in Eqn. (A.1) annotates the tuples in zj−1. From the de�nition of
gN (Eqn. (6.1)), the following holds:

zj =


q

yj−−→ q ′

∣∣∣∣∣∣∣∣∣∣∣∣
∃a,b, c,d :


q

yc−−→ a ∈ zc
∧ a

f(rc)−−−→ b ∈ fN(rc)

∧ b
yx−−→ c ∈ zx

∧ c
f(rj)−−−→ d ∈ fN(rj)

∧ (d,a,q ′) ∈ δ̂




,

where yj = g(rc)(yc, f(rc)⊗ yx⊗ f(rj)). Notice that the right-hand side
of Eqn. (A.2) annotates the tuples in zj. �us, we have proved the inductive
step.

We next handle the case where y = 0. �is case, namely that z = 0N, follows
from the above argument. �at is, for each q y−→ q ′ ∈ z, y = 0 and thus
z = 0N.

Lemma A.11. NWLangϕ(EN) ⊆ NWLang(E).

Proof. We prove Lem. A.11 by showing that NWLang(EN) ⊆ NWLang(E). Be-
cause both EN and E have the same underlying PDS P, a run of EN is a run of
E. Speci�cally, for a run ρ = [r1, . . . , rj], ρ ∈ Runs(EN) and ρ ∈ Runs(E). �e
NWLang for an EWPDS is de�ned in terms of runs and the weighted valuation
for a run. �us, we need only show that vE(ρ) = 0 =⇒ vEN

(ρ) = 0N, which fol-
lows from Lem. A.10. From Defn. 6.14, NWLangϕ(EN) ⊆ NWLang(EN), which
proves Lem. A.11.

208

Lemma A.12. NWLangϕ(EN) ⊆ NWLang(N,Q).

Proof. For a nested word nw ∈ NWLang(EN), let [r1, . . . , rj] be a run that gen-
erates nw, and let z = vEN

([r1, . . . , rj]) be the weighted valuation of the run.
We show that for each q0

y−→ q ∈ z such that y 6= 0, nw ∈ NWLang(N,q).
Lem. A.12 follows from this.

Lem. A.10 proves that for a run ρ = [r1, . . . , rj] of EN, the weighted valuation
z = vEN

(ρ) of the run conceptually consists of two parts. �e �rst part is
the relational part of the weighted relation, which models the NWA N. �e
second part is the weighted part of weighted relations, which models E. We
take advantage of this fact by observing that if we mask o� the second part,
then the weight domain resembles an ordinary relational weight domain. In
fact, relations are a degenerate form of weighted relations, where the weight
domain is the Boolean semiring ({1B, 0B},⊕B,⊗B, 0B, 1B). From this observation,
we take the following approach. First, we de�ne an operation called reduce,
which performs the masking referred to above, and allows us to reason bout
(essentially) unweighted runs of EN. Second, we show that the nested-word
language of the reduced EN is a subset of NWLang(N,Q). Because the “reduce”
operation can only make NWLang(EN) larger, and because NWLangϕ(EN) can
only be a subset, we complete the proof.

Reduce. For any nontrivial semiring S (i.e., one in which 0 6= 1), we can de�ne
a function αB : S→ SB that maps each non-zero weight of S to 1B and the zero
element of S to 0B. Note that αB(S) is an abstraction of S.

209

⊗S 0S ¬0S

0S 0S 0S

¬0S 0S {¬0S, 0S}

⊗B 0B 1B

0B 0B 0B

1B 0B 1B

⊕S 0S ¬0S

0S 0S ¬0S

¬0S ¬0S ¬0S

⊕B 0B 1B

0B 0B 1B

1B 1B 1B

�is is because for any two weights z1 and z2 in S such that z1 6= 0S and z2 6= 0S,
the following holds: αB(z1)⊗BαB(z2) = 1B; however, z1⊗z2 = 0S is possible (e.g.,
suppose that z1 and z2 are non-empty relations and their relational composition
results in the empty relation).

For an EWPDS E = (P, S, f,g), the operation reduce that produces de�nes
a new EWPDS EB = (P, SB, fB,gB), where fB(r) = αB(f(r)), and gB(r) =

λw1.λw2.w1⊗Bw2. Interestingly, P = EB, and thus NWLang(P) = NWLang(EB).
�is is easy to see as all runs of EB have the weight 1B, which simply indi-
cates reachability. �is is precisely what a run of P represents. Notice that
NWLang(P) ⊇ NWLang(E) because of the argument made above. Let EB

N be the
EWPDS that is generated by Construction 2 from EB and N. Because of EB over-
approximates E, we have the following: NWLang(EN) ⊆ NWLang(EB

N). �us,
proving that NWLang(EB

N) ⊆ NWLang(N,Q) is also a proof that NWLang(EN) ⊆
NWLang(N,Q), which completes the proof of this lemma. Because all weights
that annotate a weighted relation of EB

N are the one weight 1B, we omit the
discussion of the weights of EB

N from the rest of the proof

Base case: If j is equal to 0, then v([]) = 1 by the de�nition of v. For a relational
weight domain, the weight 1 is the identity relation, which is the set {q→ q |

q ∈ Q}. �erefore, the only tuple with q0 on the left-hand side in z is q0 → q0.
Also, because j = 0, we know that nw = (ε, ∅), which by the de�nition of

210

NWLang(N,q) is a member of NWLang(N,q0).

Inductive step: We assume that for length j− 1,nw ′ = nwpost([r1, . . . , rj−1]),
z ′ = v([r1, . . . , rj−1]), and for each q0 → q ′ ∈ z ′, nw ′ ∈ NWLang(N,q ′). We
now consider the possible forms of rule rj.

1. rj = 〈p,n1〉 ↪→ 〈p ′,n2〉. From Lem. A.8, z = z ′⊗f(rj). From Construction

2, f(rj) = δ
|n1
i . By the de�nition of δ|n1

i , for each q ′ → q ∈ f(rj), the
NWA N can make a transition from state q ′ to state q when reading
input symbol n1. By the de�nition of z ′ ⊗ f(rj), for each q0 → q ′ ∈ z ′

and q ′ → q ∈ f(rj), the weight z contains the tuple q0 → q. �us,
nw ∈ NWLang(N,q)

2. rj = 〈p,nc〉 ↪→ 〈p ′, e rc〉. From Lem. A.9, z = z ′ ⊗ f(rj). From Construc-

tion 2, f(rj) = δ
|nc
c . By the de�nition of δ|nc

c , for each q ′ → q ∈ f(rj),
the NWA N can make a transition from state q ′ to state qwhen reading
input symbol nc. By the de�nition of z ′ ⊗ f(rj), for each q0 → q ′ ∈ z ′

and q ′ → q ∈ f(rj), the weight z contains the tuple q0 → q. �us
nw ∈ NWLang(N,q).

3. rj = 〈p, x〉 ↪→ 〈p ′, ε〉. Because nw is a nested word and by the de�nition
of nwpost (i.e., nwpost is unde�ned for the case where a pop rule does not
have a matching push rule), there must exist a matching push rule rc for
rj in the run. �erefore, build([r1, . . . , rj−1]) must return a pair of the form
(zx, (zc, rc)||S ′). From our assumptions, the following must hold:

z ′ = v([r1, . . . , rj−1])

= �atten(build([r1, . . . , rj−1]))

= �atten(zx, (zc, rc)||S ′)

= �atten((zc ⊗ f(rc)⊗ zx),S ′)

= �atten({q ′′ → q ′ |∃a : zc(q
′′,a) ∧ (f(rc)⊗ zx)(a,q ′)},S ′)

211

�e last line replaces the weight equation with its corresponding relational
equation. A similar breakdown for z is as follows:

z = v([r1, . . . , rj−1, rj])

= �atten(build([r1, . . . , rj−1, rj]))

= �atten(v[rj](build([r1, . . . , rj−1])))

= �atten(v[rj]((zx, (zc, rc)||S ′)))

= �atten(g(rc)(zc, f(rc)⊗ zx ⊗ f(rj)),S ′)

= �atten({g ′′ → q |∃a,b : zc(q
′′,a) ∧ (f(rc)⊗ zx)(a,q ′)

∧ f(rj)(q
′,b) ∧ δ̂(b,a,q)},S ′)

�e last line in the equation above replaces the weighted equation with
its corresponding relational equation. �e underlined section highlights
the relationship between v([r1, . . . , rj−1]) and v([r1, . . . , rj−1, rj]). Notice
the additional use of δ̂(b,a,q) and f(rj). By the de�nition of EN, we know
that f(rj) = expand(x), where x is the left-hand-side stack symbol of
rj. Additionally, we know that when the modeling of N was in a state q ′,
then the state b must be equal to q ′x. �us, the two derivations prove
that if q0 → q ′ ∈ z ′ and nw ′ ∈ NWLang(N,q ′), then q0 → q ∈ z and
nw ∈ NWLang(N,q) for pop rule rj.

Lemma A.13. NWLangϕ(EN) ⊇ NWLang(N,Q) ∩ NWLang(E)

Proof. Letnw = (w, v) be a nested word in NWLang(N,Q)∩NWLang(E) such
that |w| = j. From the de�nition of NWLang(N,Q), there must exist a run
[t1, . . . , tj] that N can use to read nw. For the PDS component P of E and EN,
Γβ = ∅. From the de�nition of NWLang(E) and by Lem. A.3, there must exist a
run [r1, . . . , rj] of E such that nwpost([r1, . . . , rj]) = nw. �e proof is a simulation
proof and is performed by induction on the length j. �at is, we show that there

212

exists a run of EN such that the run simultaneously models the runs [t1, . . . , tj]
of N and [r1, . . . , rj] of E.

Base case: If j = 0, then the runs of N and E are empty (i.e., []), and thus
nw = (ε, ∅). By de�nition, nwpost([]) = (ε, ∅), and the empty run of EN

generates nw. Consequently, nw ∈ NWLang(EN).

Inductive step: We assume that EN has simulated the initial j− 1 steps of the
runs of both E and N. Speci�cally, let

• nw ′ = nwpost([r1, . . . , rj−1]) ∈ NWLang(E) ∩ NWLang(N,Q).

• y ′ = vE([r1, . . . , rj−1]) 6= 0.

• y = vE([r1, . . . , rj]) 6= 0.

• z ′ = vEN
([r1, . . . , rj−1]) 6= 0N.

• z = vEN
([r1, . . . , rj]) 6= 0N.

• q ′ be the state of N after making j− 1 transitions.

• q be the state of N after making j transitions.

Because EN and E have the same underlying PDS, we know that any run of E

is a run of EN. We now need to show that for each q0
y ′−−→ q ′ ∈ z ′ such that

y ′ 6= 0, we have q0
y−→ q ∈ z, where q is the state that N is in after making j

transitions. �is follows from Lem. A.10.

A.3 Proof of �m. 7.8

Proof. From �m. 7.3, we know that for paths π1 and π2 with rule sequences ρ1

and ρ2 from PDSs P1 and P2, respectively, where π1 and π2 begin with a disjoint

213

set of initially held locks I1 and I2, there exists a compatible scheduling of π1

and π2 i� Compatible(η(ρ1, I1),η(ρ2, I2)).
If Alg. 7.1 returns true, then there exists two tuples of lock histories, L̂H1 and

L̂H2, where L̂H1 (L̂H2) is an abstraction of a rule sequence ρ1 (ρ2) for a path π1

(π2) from the initial con�guration of PDS P1 (P2) that drives the IPA A to the
accepting state, such that Compatible(L̂H1, L̂H2). Because of the Decomposition
�eorem and the de�nition of Compatible(L̂H1, L̂H2), there must exist a schedul-
ing of ρ1 and ρ2 that adheres to the interleaved semantics of ofΠ. �at is, there
must exist an interleaved scheduling of ρ1 and ρ2 that causesΠ, starting from
the initial global con�guration g0, to pass through a sequence of con�gurations
such that a phase transition occurs at each intermediate con�guration, and
�nally to reach a con�guration such that the IPA N is in its accepting state.

If Alg. 7.1 returns false, then there does not exist two tuples of locks histories.
�is occurs if either one (or both) of the PDSs does not have a path that can drive
the PDS N to the accepting state, and thus it is not possible for an interleaved
execution ofΠ to drive IPA N to the accepting state. Otherwise, there must not
exist two tuples that are in the Compatible relation. From the de�nition of Com-
patible, there must be some phase such that the lock histories are incompatible,
and thus no interleaved execution exists.

�e generalization to an arbitrary number of PDSs proceeds similarly.

A.4 Proof of �m. 7.12

Proof. �e proof proceeds as follows: (i) show by induction that Alg. 7.1 and
Alg. 7.2 compute the same lock-history tuples for related PDS paths; and (ii)
combine the previous step with the proof of correctness for WPDSs. We use the
following de�nitions.

1. P = (P, Lab, Γ ,∆, c0) is a PDS

214

2. N = (Q, Id,Σ, δ) is a IPA

3. PN =
(
PN, ∅, Γ ,∆N, 〈(p0,q1, L̂H0),γ0〉

)
is the (unlabeled) PDS that re-

sults from combining P with N as de�ned in §7.5

4. W =
(
(P×Q, ∅, Γ ,∆W, 〈(p0,q1),γ0〉), S, f

)
is the WPDS that results from

combining P with N as de�ned in §7.7

5. ρP = [rP1 , . . . , rPn] is a rule sequence from P

6. ρN = [rN1 , . . . , rNn] is a rule sequence from PN

7. ρW = [rW1 , . . . , rWn] is a rule sequence from W

8. val(ρW) = f(rW1)⊗ . . .⊗ f(rWn) is the weighted valuation of ρW

9. inflate(cx−1z
x−1, x) = cx−1z

x−1;
{
〈LH, LH, LH|Q|−x

0 〉 | LH ∈ LH
}
z|Q|−x

10. deflate(c|Q|−1z
|Q|−1, x) ={

〈LH1, . . . , LHx, LHx+1〉 | 〈LH1, . . . , LHx, LHx+1, . . . , LH|Q|−1〉 ∈ c|Q|−1
}
zx−1

Item 9 de�nes the inflate function that takes a monomial of arity m and
transforms it into a monomial of arity |Q| − 1. �is is necessary for comparing
the result of executing a rule sequence ρN of PN with executing a rule sequence
ρW of W because ρW might not have performed |Q| − 1 phase transitions. �e
function inflate “appends” the empty lock history LH0 to the end of the monomial
cx−1z

x−1. �is coincides with the fact that a path from the initial con�guration
of PN only modi�es the lock-history tuple entries for the phases that it has been
in or is currently executing in. �e function deflate simply undoes the result of
inflate, i.e., cx−1z

x−1 = deflate(inflate(cx−1z
x−1, x), x).

Let cN
0 ⇒ρ

N
cN denote that PN makes a transition to a con�guration cN

from con�guration cN
0 when executing rule sequence ρN. Similarly, let cW

0 ⇒ρ
W

cW denote that W makes a transition to a con�guration cW from con�guration
cW

0 when executing rule sequence ρW. We show the following:

cN
0 ⇒ρ

N 〈(p,qx, L̂H),u〉 ⇔ cW
0 ⇒ρ

W 〈(p,qx),u〉∧〈LH0, L̂H〉 ∈ inflate(val(ρW), x).

215

�e proofs in both directions are by induction on the length of a rule sequence.

Show⇒.
For rule sequence ρN = [rN1 , . . . , rNn], assume that cN

0 ⇒ρ
N 〈(p,qx, L̂H),u〉.

We show how to construct a rule sequence ρW = [rW1 , . . . , rWn] such that (i)
cW

0 ⇒ρ
W 〈(p,qx),u〉 and (ii) 〈LH0, L̂H〉 ∈ inflate(val(ρW), x). For each case, we

rely on the fact that the generalized relational product always composes on the
rightmost tuple-component in the left-hand-side operand. �is allows us to
show that the “e�ect” of extending weights when �ring a rule sequence of W

mimics the explicit change in the control state of PN that occurs when �ring a
rule sequence of PN.

• Base case: n = 1.

For the base case, there is only one rule: rN1 = 〈(p0,q1, L̂H0),γ0〉 ↪−→
〈(p,qx, L̂H),u〉. From the de�nition of PN, there must be the rule
rP1 = 〈p0,γ0〉

a
↪−→ 〈p,u〉 in the original PDS P, and a transition

(q1, i,a,qx) ∈ δ. �us, by the de�nition of W, there must be the rule
rW1 = 〈(p0,q1),γ0〉 ↪−→ 〈(p,qx),u〉. We perform a case analysis on rN1
to show that 〈LH0, L̂H〉 ∈ inflate(val(rW1), x).

1. If x = 1, then

a) L̂H = L̂H0[1 7→ post(L̂H0[1],a)] = 〈post(LH0,a), LH|Q|−1
0 〉

b) f(rW1) =
{
〈LH, post(LH,a)〉 | LH ∈ LH

}
z0

c) inflate(val([rW1]), 1) =
{
〈LH, post(LH,a), LH|Q|−1

0 〉 | LH ∈ LH
}
z|Q|−1

d) 〈LH0, L̂H〉 ∈ inflate(val([rW1]), 1)

2. Otherwise x = 2, then

a) L̂H = L̂H0[2 7→ ptrans(L̂H0[1])] = 〈LH0, ptrans(LH0), LH|Q|−2
0 〉

b) f(rW1) =
{
〈LH, LH, ptrans(LH)〉 | LH ∈ LH

}
z1

c) inflate(val([rW1]), 2)
{
〈LH, LH, ptrans(LH), LH|Q|−2

0 〉 | LH ∈ LH
}
z|Q|−1

216

d) 〈LH0, L̂H〉 ∈ inflate(val([rW1]), 2)

• Inductive step.

Now consider the rule sequence ρN
n = [rN1 , . . . , rNn−1, rNn], and assume that

for the �rst n− 1 rules of the sequence, cN
0 ⇒ρ

N
n−1 〈(p,qx, L̂H),γu〉. Fur-

thermore, let us use the notation L̂H = 〈LH1, . . . , LHx, LHx+1
0 , . . . , LH|Q|

0 〉
so that we can deconstruct the L̂H tuple. (Note that it must be the case
that at all tuple indices greater than x the lock history is LH0 by construc-
tion.) By the induction hypothesis we have the following: there exists
a rule sequence ρW

n = [rW1 , . . . , rWn−1] such that cW
0 ⇒ρ

W
n−1 〈(p,qx),γu〉

and 〈LH0, L̂H〉 ∈ inflate(val(ρW
n−1), x). In addition, the following holds:

〈LH0, LH1, . . . , LHx〉 ∈ deflate(inflate(val(ρW
n−1), x), x)

Let rNn = 〈(p,qx, L̂H),γ〉 ↪−→ 〈(p ′,qy, L̂H
′
),u ′〉, then cN

0 ⇒ρN
n

〈(p ′,qy, L̂H
′
),u ′u〉. From the de�nition of PN, there must exist a rule

〈p,γ〉 a
↪−→ 〈p ′,u ′〉 ∈ ∆ and transition (qx, i,a,qy) ∈ δ. �us,

from the de�nition of W, there exists a rule rWn = 〈(p,qx),γ〉 ↪−→
〈(p ′,qy),u ′〉 ∈ ∆W, and cW

0 ⇒ρ
W
n 〈(p ′,qy),u ′u〉, which satis�es con-

dition (i) above. To show that condition (ii) above is satis�ed, i.e., that
〈LH0, L̂H

′
〉 ∈ inflate(val(ρW

n),y), we perform a case analysis on the rule
rNn = 〈(p,qx, L̂H),γ〉 ↪−→ 〈(p ′,qy, L̂H

′
),u ′〉.

1. If x = y, then

a) L̂H
′
= L̂H[x 7→ post(L̂H[x],a)] =

〈LH1, . . . , post(LHx,a), LHx+1
0 , . . . , LH|Q|

0 〉
b) f(rWn) =

{
〈LH, post(LH,a)〉 | LH ∈ LH

}
z0

c) 〈LH0, LH1, . . . , LHx〉 ∈ deflate(inflate(val(ρW
n−1), x), x), by the

induction hypothesis

d) 〈LH0, LH1, . . . , post(LHx,a)〉 ∈ deflate(inflate(val(ρW
n−1), x), x)⊗

f(rWn)

217

e) inflate(val(ρW
n), x) = inflate(val(ρW

n−1)⊗ f(rW1), x)

f) 〈LH0, L̂H
′
〉 ∈ inflate(val(ρW

n), x)

2. Otherwise y = x+ 1, and

a) L̂H
′
= L̂H[y 7→ ptrans(L̂H[x])] =

〈LH1, . . . , LHx, ptrans(LHx), . . . , LH|Q|
0 〉

b) f(rWn) =
{
〈LH, LH, ptrans(LH)〉 | LH ∈ LH

}
z1.

c) 〈LH0, LH1, . . . , LHx〉 ∈ deflate(inflate(val(ρW
n−1), x), x), by the

induction hypothesis

d) 〈LH0, LH1, . . . , LHx, ptrans(LHx)〉 ∈
deflate(inflate(val(ρW

n−1), x), x)⊗ f(rWn)

e) inflate(val(ρW
n),y) = inflate(val(ρW

n−1)⊗ f(rW1),y)

f) 〈LH0, L̂H
′
〉 ∈ inflate(val(ρW

n),y)

Show⇐.
For a rule sequence ρW

n = [rW1 , . . . , rWn], assume that cW
0 ⇒ρ

W 〈(p,qx),u〉 and
that 〈LH0, L̂H〉 ∈ inflate(val(ρW

n), x). We show how to construct a rule sequence
ρN = [rN1 , . . . , rNn] such that cN

0 ⇒ρ
N 〈(p,qx, L̂H),u〉. �e proof is by induction

on the length n of the rule sequence.

• Base case: n = 1.

For the base case, there is only one rule: rW1 = 〈(p0,q1),γ0〉 ↪−→
〈(p,qx),u〉. From the de�nition of W, there must exist the rule rP1 =

〈p0,γ0〉
a

↪−→ 〈p,u〉 ∈ ∆, and a transition (q1, i,a,qx) ∈ δ. �us, by
the de�nition of PN, there must be a rule rN1 = 〈(p0,q1, L̂H0),γ0〉 ↪−→
〈(p,qx, L̂H

′
),u〉. We perform a case analysis on rW1 to show that 〈LH0, L̂H〉 ∈

inflate(val([rW1]), x)⇒ L̂H
′
= L̂H.

1. If x = 1, then

a) f(rW1) =
{
〈LH, post(LH,a)〉 | LH ∈ LH

}
z0

218

b) 〈LH0, post(LH0,a), LHQ−1
0 〉 ∈ inflate(val([rW1]), x)

c) L̂H
′
= L̂H0[1 7→ post(L̂H0[1],a)] = 〈post(LH0,a), LH|Q|−1

0 〉.
d) L̂H

′
= L̂H

2. Otherwise x = 2, then

a) f(rW1) = c1z
1 =
{
〈LH, LH, ptrans(LH)〉 | LH ∈ LH

}
z1.

b) 〈LH0, LH0, ptrans(LH0), LH|Q−2|
0 〉 ∈ inflate(val([rW1]), 2).

c) L̂H
′
= L̂H0[2 7→ ptrans(L̂H0[1])] = 〈LH0, ptrans(LH0), LH|Q|−2

0 〉.
d) L̂H

′
= L̂H

• Inductive step.

Now consider the rule sequence ρW
n = [rW1 , . . . , rWn−1, rWn], and assume

that for the �rst n− 1 rules of the sequence, cW
0 ⇒ρ

W
n−1 〈(p,qx),γu〉. Let

rWn = 〈(p,qx),γ〉 ↪−→ 〈(p ′,qy),u ′〉, then cW
0 ⇒ρW

n 〈(p ′,qy),u ′u〉.
By the induction hypothesis we have the following: for 〈LH0, L̂H〉 ∈
inflate(val(ρW

n−1), x), there exists a rule sequence ρN
n−1 = [rN1 , . . . , rNn−1]

such that cN
0 ⇒ρN

n−1 〈(p,qx, L̂H),γu〉. Furthermore, let L̂H =

〈LH1, . . . , LHx, LHx+1
0 , . . . , LH|Q|

0 〉; then 〈LH0, LH1, . . . , LHx〉 ∈ val(ρW
n−1).

From the de�nition of W, there must exist a rule 〈p,γ〉 a
↪−→ 〈p ′,u ′〉 ∈ ∆

and transition (qx, i,a,qy) ∈ δ. From the de�nition of PN, there must
exist a rule rNn = 〈(p,qx, L̂H),γ〉 ↪−→ 〈(p ′,qy, L̂H

′
),u ′〉 ∈ ∆N, and

cN
0 ⇒ρ

W
n 〈(p ′,qy, L̂H

′
),u ′u〉. We perform a case analysis on rWn to show

that 〈LH0, L̂H〉 ∈ inflate(val(ρW
n), x)⇒ L̂H

′
= L̂H.

1. If x = y, then

a) f(rWn) =
{
〈LH, post(LH,a)〉 | LH ∈ LH

}
z0

b) 〈LH0, LH1, . . . , LHx〉 ∈ val(ρW
n−1), by the induction hypothesis

c) 〈LH0, LH1, . . . , post(LHx,a)〉 ∈ val(ρW
n−1)⊗ f(rWn)

d) 〈LH0, LH1, . . . , post(LHx,a)〉 ∈ val(ρW
n)

219

e) 〈LH0, LH1, . . . , post(LHx,a), LHx+1
0 , . . . , LH|Q|

0 〉 ∈ inflate(val(ρW
n), x)

f) L̂H
′
= L̂H[x 7→ post(L̂H[x],a)] =

〈LH1, . . . , post(LHx,a), LHx+1
0 , . . . , LH|Q|

0 〉
g) L̂H

′
= L̂H

2. Otherwise y = x+ 1, and

a) f(rWn) = c1z
1 =
{
〈LH, LH, ptrans(LH)〉 | LH ∈ LH

}
z1

b) 〈LH0, LH1, . . . , LHx〉 ∈ val(ρW
n−1), by the induction hypothesis

c) 〈LH0, LH1, . . . , LHx, ptrans(LHx)〉 ∈ val(ρW
n−1)⊗ f(rWn)

d) 〈LH0, LH1, . . . , LHx, ptrans(LHx)〉 ∈ val(ρW
n)

e) 〈LH0, LH1, . . . , LHx, ptrans(LHx), . . . , LH|Q|
0 〉 ∈ inflate(val(ρW

n), x)

f) L̂H
′
= L̂H[y 7→ ptrans(L̂H[x])] =

〈LH1, . . . , LHx, ptrans(LHx), . . . , LH|Q|
0 〉

g) L̂H
′
= L̂H

We have proved that the multi-arity relations that annotate the rules of W simu-
late the change in control state of the rules of PN, and vice versa. �is, combined
with the proofs of correctness of algorithms for solving reachability problems
in PDSs (Bouajjani et al., 1997; Finkel et al., 1997) and WPDSs (Bouajjani et al.,
2003; Reps et al., 2005), proves that Alg. 7.2 computes the same result as Alg. 7.1,
and thus completes the proof of correctness.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	The Challenge of Concurrency
	My Approach
	Dissertation Overview

	Data Consistency
	Data-Race Freedom
	Serializability and Atomicity
	Atomic-Set Serializability
	Summary

	Definitions
	Pushdown Systems
	Weighted Pushdown Systems

	Communicating Pushdown Systems
	Overview
	Definition
	Reachability Analysis of CPDSs
	Improved Reachability Analysis
	Abstraction-Refinement-Policy Extensions
	Case Study: A Bluetooth Driver
	Summary

	Empire: Model Extraction and Analysis
	Review of AS-serializability Violations
	The Allocation-Site Abstraction
	Random-Isolation Abstraction
	Implementing Random Isolation
	Empire Modeling Language
	EML Generation
	CPDS Generation
	Experiments
	Related Work

	Language Strength Reduction
	Introduction
	Overview
	Nested Words
	Combining an NWA with a PDS
	Language Strength Reduction in Empire
	Experiments
	Combining an NWA with an EWPDS
	Related Work

	A Decision Procedure
	The Road to Decidability
	Program Model and Property Specifications
	Path Incompatibility
	Extracting Information from PDS Rule Sequences
	The Decision Procedure
	Comparison
	A Symbolic Implementation
	Generalizing to More Than Two PDSs
	Experiments
	Related Work

	Concluding Remarks
	References
	Appendix
	Proof of Thm. 6.4
	Proof of Thm. 6.17
	Proof of Thm. 7.8
	Proof of Thm. 7.12

