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Abstract

This paper presentglCDASH, a refinement-based model checker
for machine code. While model checkers suctsbBam, BLAST,
and DASH have each made significant contributions in the field
of verification/flaw-detection, their use has been restddb pro-
grams for which source code is available. This paper dissussv-
eral challenges that arise when working with machine cauf ea-
plains how they are addressedViCDASH. Unlike previous model
checkersMCDASH does not require the usual preprocessing steps
of (a) building control-flow graphs, and (b) performing psito
analysis (or alias analysis); nor dogsCDASH require type infor-
mation to be supplied. The paper also describes how we exdend
MCDASH to check properties of self-modifying code.

MCDASH is built using language-independent meta-tools that
generate the implementations of the required analysis oneis
from descriptions of an instruction set's syntax and seiognit
has been instantiated for Intel x86 and PowerPC.

1.

Recent research in programming languages, software ergige
and computer security has led to new kinds of tools for atadyz
programs for bugs and security vulnerabilities [33, 25,135,13,

8, 5, 11, 26, 16, 1]. In these tools, program analysis is used t
determine a conservative answer to the question “Can ttgrqmo
reach a bad state?” Many impressive results have been adhiev
and some of this work has already been transitioned to copiater
products [8, 4, 15, 12].

However, these tools all focus on analyzisgurce codeUn-
fortunately, most programs that an individual user willtéllson
his computer, and many commercial off-the-shelf programas &
company will purchase, are delivered as machine code. Ifidin i
vidual or company wishes to vet such programs for bugs, ggcur
vulnerabilities, or malicious code (e.g., back doors, thoebs, or
logic bombs) the availability of good source-code-analysiod-
ucts is irrelevant. For instance, because device-driveeldpers
rarely make their source code available, we can tmigtthat they
have run Microsoft’s Static Driver Verifier (SDV) [4] on thredode
and fixed the bugs that were found; we are not in a positionrio ru
SDV ourselves because it does not work on machine code.
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Although establishing execution properties at the machoue
level is a challenging task, the problem of analyzing maeltiode
has been receiving increased attention [28, 17, 2, 9, 2Mdie-
over, it can be a useful complement to source-code anakgis,
when source code is available:

e The compilation from source code to machine code can intro-
duce subtle but important differences between what a pnegra
mer intended and what is actually executed by the processor.
However, source-code analyses are blind to the choices made
by the compiler. The effects of compilation can only be dietgc
by examining the machine code emitted by the compiler.

¢ |n addition to the machine code that a programmer creates by
compiling his source code, additional machine code is tirike
either statically or dynamically from libraries. Often theurce
code for these libraries is not available, and thus cannot be
analyzed by a source-code-analysis tool. However, a mechin
code-analysis tool can analyze a library’s machine code.

For these reasons, we have developed a model checker for ma-
chine code, calledMCDASH. The work onMCDASH addresses

the problem of creating a model checker that is (i) capabheeof
ifying properties of machine-code programs, and (ii) cameiar-
geted easily to different instruction sets automaticdflyparticu-

lar, MCDASH is built using language-independent meta-tools that
generate the implementations of the required analysis ooenis

from descriptions of an instruction set’'s syntax and seinanfo

date, versions dfICDASH have been instantiated for the Intel x86
and PowerPC instruction sets.

Previous model checkers, such $isAM [5] (the core com-
ponent of SDV),BLAST [26], MAGIC [10], and DASH [6], have
each made significant contributions in the field of verificatilaw-
detection; however, their use has been restricted to saaae pro-
grams written C. Although C is already quite low-level, thare a
number of issues that arise in the analysis of machine cadeath
not handled by the model checkers mentioned above.

Pointers and Types SLAM, BLAST, and MAGIC use points-
to analysis as a preprocessing step before starting thigcaéion
process proper. They rely on the points-to analysis to beieif
and reasonably precise to get good overall performancaeur
versions of these tools use a flow-insensitive (and possiélg-
sensitive) points-to analysis that makes unsound assongpabout
pointer arithmetic—they either ignore pointer arithmetitogether
(SLAM) or assume that the result of an arithmetic operation on a
pointer is always contained inside the object that the poippinted
to originally (BLAST andMAGIC).

The latter approach amounts to making an unchecked assump-
tion that the program is ANSI C compliant. The consequence is
that such model checkers do not account for behaviors teatlar
lowed by some compilers (e.g., arithmetic is performed oimtpo
ers that are subsequently used for indirect function cpb@ters
move off the ends of structs or arrays, and are subsequesrdyf-d
erenced; etc.) There can be good reasons why a program w$es su
features—e.g., as a way to simulate subclassing in C [35}+hley
can also lead to bugs and security vulnerabilities.
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Existing model checkers also typically depend on some form performing symbolic execution, and (c) a primitive for merhing

of type information, e.g., to distinguish array variablesnfi scalar
variables, or to ensure that dereferences of an addregsedvglian-
tity are compatible with the type of the objects to which fers.

weakest-liberal-precondition (WLP).
This provided a starting point for our work, but to create
MCDASH we still had to address all of the challenges discussed

For machine-code programs, making such assumptions is un-above. In doing so, we restricted ourselves to use only @ggu

reasonable: (i) An access on a local variable is compilednto a
instruction operand that dereferences a computed address.
instance, if local variable: is at offset 42 from the activation
record’s frame pointer (registebp), an access or would typi-
cally be turned into an operandyp—12], which dereferences the
computed addressbp—12. (ii) Type information may not be avail-
able for the objects to which an address-valued quantigrsef

DASH does not require a preprocessing step of points-to anal-

ysis, and it does handle pointer arithmetic to some exteatv-H
ever, it still requires type information to distinguish pt@r vari-
ables from scalar variables. In addition, equality and alisdity
constraints between pointer values are used to identifalias-

ing conditionrelevant to a specific property in a specific state. The
use of such aliasing conditions is centraDiaSH’s ability to per-
form verification in the absence of a separate points-toyaimalthe
aliasing conditions are acquired “on-the-fly"—during tleeicse of
verification—instead of ahead of time.

In machine code, int-valued quantities and address-vajuad-
tities are indistinguishable at runtime, and arithmeticaddresses
is used extensively. This makes it challenging to define @&
priate notion of “aliasing condition” for use MCDASH.

Byte-Addressable Memory In x86 machine code, memory is
byte-addressable, and a sound analysis must be able tehzod
aligned addresses.

Variables and Arrays: For source-level tools, an access to a
stack-allocated variable is not modeled as a dereferenaersim-
ory address. Programs in which the property of interest aan b
proven while reasoning about only stack variables providsye
cases for source-level tools. In machine code, howeveh prm-

grams are not as easy because every access on a stackedllocat

variable is performed via a memory dereference.

One shortcoming dDASH vis a vis machine code is that it treats
array accesses unsoundly (the wgyAM does). This allows the
DASH tool to avoid using the theory of arrays inside its theorem
prover (which improves the tool's scalability). Howevet, the
machine-code level, memory looks like one large array.

For both of these reasons, it is challenging for a machirmkeco
model checker to achieve the same degree of scalability@sees
code model checker.

Control Flow: Most front ends for processing a language’s
source code provide a reasonably accurate description ob-a p
gram’s control flow (using points-to-analysis results tpfay miss-
ing information about the callees of an indirect functiol)ca

For machine-code analysis, there are several reasons adw-re
ering control flow is challenging.

¢ The branch condition is often not explicit: many instruntgets
provide separate instructions for (i) setting flags (baseskone
condition that is tested) and (ii) subsequent branchingraliicg

to the values held by one or more flags.

e |t is often difficult to identify the targets of indirect juraand

indirect function calls [3].

MCDASH. MCDASH is based on thé&ASH algorithm of Beck-
man et al. [6].DASH uses concrete testing along with symbolic
reasoning to find either a test input that definitely causdsad)(
target state to be reached, or a proof that the bad state vanbe
reached. (The third possibility is thBtASH may fail to terminate.)

In the MCDASH implementation, we use a technique due to
Lim et al. [30] to generate automatically some of the key |ti@s
from a description of the concrete semantics of an inswacset.
This creates (a) an emulator for running tests, (b) a pnmitor

independent techniques. Consequently, the overall syatgémas

a “Yacc-like” tool for creating versions dfICDASH for different

machine-code instruction sets: given a description of atruia-

tion set, aMCDASH-based model checker is generated automati-
cally. This infrastructure has been used to generate two swclel
checkersMCDASH/x86 andMCDASH/PowerPC.

For a given instruction set, we can actually create thrdereifit

kinds of MCDASH model checkers:

MCDASH-ICFG: This version is useful in contexts in which it
is possible to create an accurate interprocedural cofibwl-
graph (ICFG)—that is, when source code, a cooperative com-
piler, and/or symbol-table/debugging information areilatde.

In particular, MCDASH-ICFG uses the ICFG to build its initial

abstraction of the program'’s state space. (In essencestitaks

states based on the value of the program counter.)

MCDASH-ICFG: Because it is not possible, in general, to build an
accurate ICFG for machine-code programs without assistanc
from the compiler MCDASH-ICFG uses an initial abstraction
of the state space that is coarser than the ICFG. It condists o
three abstract states defined by the predicates “PC = sfa@”,
= target”, and “PC# startA PC+# target” (where “PC” denotes
the program counterMCDASH-ICFG refines this abstraction
during the course of state-space exploration.

MCDASH-SMC: This version is capable of verifying (or detecting
flaws in) self-modifying code (SMC). (Self-modifying code i
used in runtime code generation, code-encryption scheands,
OS boot loading. It is also used in malware.)

The work described in the paper makes the following contidims:

1. MCDASH extendsDASH in several ways.

(a) MCDASH does not require any preprocessing analysis, such
as points-to analysis, alias analysis, and control-flow-ana
ysis; nor does it require information that identifies the-pro
gram'’s variables or their types.

(b) We developed a language-independent way/fGDASH to
identify the aliasing condition relevant to a specific pmpe
in a specific state.

(c) We developed a way to speed MCDASH—without im-
pacting soundnessusing a technique from concolic execu-
tion: some symbolic values are replaced with concrete val-
ues taken from the concrete state. This reduces the size and
complexity of the formulas sent to the theorem prover.

(d) We introduced several optimizations to regain some ef th
scalability lost by moving to a low-level language.

2. We extendedMCDASH to deal with self-modifying code
(SMC). This is not possible with most other model checkers
because they make a premature—and, in general, unsound—
commitment to the ICFG as an abstraction of a program'’s state
space. As far as we knowICDASH-SMC is the first model
checker to address verifying (or detecting flaws in) SMC.

Organization. The remainder of the paper is organized as fol-

lows: §2 reviews theDASH algorithm for model checking source-

code.§3 describesMCDASH-ICFG, our simplest approach to ex-
tending theDASH algorithm to work on machine codé4 de-

scribesMCDASH-ICFG, which can be used when it is not pos-
sible to start with an accurate ICFG of a machine-code progra

§5 presentdMCDASH-SMC, which addresses self-modifying code.

§6 describes how a language-independdi@DASH implementa-

tion was created§7 presents some experiments carried out with

MCDASH/x86. §8 discusses related work.
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Algorithm 1 SingleDASH Iteration

Input: An abstract grapld: with startandtargetnodes.
Input: A set of concrete traces.
1: if targethas a witness ifi" then
return reachable
end if
: Find a pathr in G from startto target
. if no path existshen
return not reachable
end if
: Find the last edgén, m) of 7 such that: has a witnessin T'.
. Let I be the instruction on edder, m).
10: Symbolically execute the concrete trace:tand thenl.
. Let S be the symbolic state obtained.
12: if S'is feasiblethen
13:  Find program input frong, run test, and add trace o
14: else
15:  RefineG at noden.
16: end if

N~ WN

2. Background onDASH

This section provides an overview of how tBaSH algorithm [6]
operates on source code. Given a program and a target label (
particular control location in the programDASH either returns
a test case whose execution leads to the target, or a pradhtha
target is unreachable (G¥ASH does not terminate).

While DASH is running, it maintains an approximation of the
program'’s state space. The approximation is representediaph
with edges labeled with program statements or program tiondj
and nodes labeled with formulas. We call such a graphbetract
graph. One of the nodes in the graph is designated to be tte sta
node (where program execution starts) and another nodesig-de
nated as the target (representing the target labal¥H also stores
a set of concrete tracés that are obtained from running tests. A
concrete state i’ is said to be avitnessfor a noden in the abstract
graph if it satisfies the formula that labels nade

DASH proceeds iteratively. During each iteration, it eithergun
atest (in an attempt to reach the target) or refines the abgtaph
by splitting nodes and removing certain edges (in an attempt
prove that the target is not reachable). If the graph has tiofpam
start to target, theDASH has proved that target is unreachable, and
the abstract graph serves as the proof. An informal degunipf a
singleDASH iteration is shown in Alg. 1.

We will explain the algorithm using the program shown in
Fig. 1(a) as an example, and describe HowSH proves or dis-
proves the reachability of each of the labetls L2, andL3. First,
suppose that the targetlid. DASH starts with an abstract graph
G that is the control-flow graph (CFG) @bo, shown in Fig. 1(b),
and all nodes are labeled with the formtlae. It initializes T by
running a random test. For our example, the only input to tioe p
gram is the value af. DASH chooses a random value forsay10,
and runs a test. This produces a trace of concrete statesithass
nodes ofG. The presence of a witness for a nodebis shown in
Fig. 1(b) as an %” inside the node.

In the first iteration, step does not find a witness farl. Next,
step4 finds the pathr = foo_start ~—+s n; =1 L1.In
steps8 and9, the noder is n1, andl is assume(y == 1). Stepl0
performs symbolic execution.

A symbolic state has two componentspah constraintand a
symbolic mapThe initial symbolic state has path constratinte
and a symbolic map that assigns a symbolic constant to the:inp
[x — mo]. Symbolic execution proceeds by building formulas
and expressions over the symbolic constants. The execoftitre

assignmeny = x + 1 does not change the path constraint, but
changes the symbolic map fo — zo,y — zo + 1]. The next
statement gathers up a path constraint: it equates thentwakie

of y with 1, leading to the constrainto + 1 == 1, which is
conjoined to the existing path constraint.

Thus, in stepl1, the symbolic state has path constraint+
1 == 1 and map[x + o,y — xo + 1]. A symbolic state is
feasible if and only if its path constraint is feasible. listhase, it
is feasible under the assignmert = 0. This provide a new test
case, andoo is executed wittx initialized to0. During the second
iteration, stef finds thatL.1 has a witness: the test reachigas

Now suppose that the targetiig. As before,DASH starts with
G as the CFG of oo and runs a random test with, sayassigned to
10 again (so that Fig. 1(b) still describes the initial sitoaji In the
firstiteration,r is the (unique) path fromoo_start toL2. In steps
8 and9, DASH considers the frontiefns, assume(z == 0),L2).
Symbolic execution yields the path constraing + 1 # 1 A2z =
0), which is unsatisfiable (assuming integer arithmetic, tepkthe
discussion simple). In this cadeASH refinesG. Next, we explain
how DASH carries out its refinement, in general, and will then
continue with our example.

The triple (n, I, m), where noden and instruction/ are the
ones chosen in ste@sand9, andm is the successor node &f
is called thefrontier: noden is the last place (along the currently
chosen path) at which a concrete witness has been seeb st
ries to push a test beyondin the hope that it might lead to the
target. When this is not possible, the abstract grapis refined
by splitting noden into n’ andn’, as shown in Fig. 1(c). The
refinement operation allows somen-connectivitynformation to
be represented i&; in particular, refinement is performed in such
a way that the refined graph records thais not connected ten
(see Fig. 1(c)).

Let ¢ be the formula that labels:, ¢ be the concrete witness
of n, and S,, be the symbolic map obtained from the symbolic
execution ofr up ton. DASH chooses a formula, called the
refinement predicat@nd splits node inton’ andn’’ to distinguish
the cases when is reached with a concrete state that satisfies
(n”) and when it is reached with a state that satisfip{n’). This
predicate is chosen such that
(i) no state that satisfiesp can lead to a state that satisfiesfter

the execution of, and
(i) the symbolic mapS,, satisfies-p.

The first condition ensures that the edge framto m can be
removed, and the second condition rules out the possilility
extending the current path alodg(forcing the search to explore
different paths). It also ensures thats now a witness forn’ and
not n” (because: satisfiesS,,)—and thus the frontier during the
next iteration must be different. One possibility for théimement
predicate is to choose the weakest liberal precondition PY\if
with respect td. Other possibilities are discussed below.

Returning to the example of how nodg is refined across the
frontier (ns3, assume(z == 0),L2), DASH chooses the refinement
predicategz == 0) A true, which simplifies taz == 0. This leads
to the abstract graph shown in Fig. 1(d). (The concrete wies
are again shown as’s.)

This case, whet is of the formassume(y), is one in which
def

DASH chooses a refinement predicate other thar= WLP(Z, 1))
(where ¢ is the formula that labelsn). The reason is that
WLP(assume(p), ) equalsey = 1 [29]. For instance, in the
example abovep; would be WLRassume(z == 0),true) =
((z == 0) = true), which simplifies tdrue. However, in keeping
with condition (i) above—i.e., states that cannot satigfgfter the
execution of should satisfy-p—we use the stronger refinement
predicatep, & (¢ A ). This shifts all states that satisfyp to the
refined node labeled withp. (e.g.,n3 in Fig. 1(d)). For instance,
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void foo(int x) {
y=x+1;
if(y == 1) L1: return;
z=2%X;
if(z == 0) L2: return;
y = bar(y);
if(x '=y) L3: return;
}

int bar(int a) {
return (a-1);

}

(@)

(b)

x foo_start

x foo_start

Figure 1. (a) An example program. (b) Initial abstract graph creatgdiSH, with witnesses shown usingx”. (c) GeneralDASH
refinement. (d)—(f) The abstract graphs after differemaitiens ofDASH. (To reduce clutter, nodes that cannot rebglare omitted.)

in Fig. 1(d) all states that satisfy+ 0 are excluded from node}.
Because: is not connected tb2, refinement vig: = (p A1) al-
lows the refined abstract graph to represent more informatiout
non-connectivity of states than it would have yia= (¢ = ).

In the next iteration, 7 is chosen to be
[foo_start, mi,n2,n3,12], and the frontier is at nodens.
While performing symbolic execution, the formulas thatdbb
the nodes are picked up in the path constraint: i.e., if thecot
symbolic map isS and¢ is the formula on the current node, then
¢ is evaluated (similar to a branch condition) and conjoinethe
path constraint. In our example, the formula that labglsvill be
picked up, leading to the same path constraint as beforeckwhi
means that the current path cannot produce a concrete witnes
n3). Refinement is performed ak, leading to the graph shown
in Fig. 1(e). This continues, finally leading to the graphvehan
Fig. 1(f). (In the last iteration, the refinement predicates out to
befalse and nodes labeled wiflalseare deleted from the abstract
graph.) This graph proves thiae is unreachable.

Refinement Predicate.In the presence of pointers, choosing the
right refinement predicate is the key. Suppose that the i&ont
(n,I,m) has statemeni = *p = 5 and that the formula om
isy = (x+y == 10). Then WLR®, I) is

p==&x A p==&y A (b+5==10)
V p==&x AN p#&y A (+y==10)
Vo op#&x AN p==&y AN (x+5==10)
vV p#&x AN p#&y AN (x+y==10)

This formula has four disjuncts, each for a differatfiasing con-
dition. DASH defines an aliasing condition as a conjunction
of equality and disequality constraints between addrettegsare
written to when executing the program statement (ppand ones
that are used in the formula (i.ézx and&y).

In general, if the statement writes to just one address faut th
formula hasn addresses, then there &% possible aliasing con-
ditions. The key insight that allom®ASH to operate efficiently in
the presence of pointers is that it chooses the refinemedicpte
based on aliasing conditions that actually arise in the ramgex-
ecution. It looks atS,,, which represents a collection of concrete
states that actually arise during program execution, anigesgay
from it. The intuition behind this approach is that one doeteax-
pect too many aliasing conditions to arise at a particulartpo the
program. Thus, considering them lazily makes the overait@ss
efficient.

In the example above, suppose thatis [p — &x, - - -], and the
addresses of andy are distinct. Them = (p == &x Ap # &y).

DASH chooses the refinement predicate WI(P, ¢)) = —aV (aA
WLP(I,%)). The latter term(cw A WLP(I,4)) selects only one
conjunct from WLP out the the exponentially many that it may
have. This allowdASH to avoid the exponential blowup. One can
verify that WLP, is a valid refinement predicate.

Interprocedural Analysis. Now suppose that the target is3.
DASH operates as before, except when the frontier is a call state-
ment. In its first iterationDASH splits nodens using the refine-
ment predicater # y. In the next iteration, the frontier is the call

to procedurévar.

At a frontier, DASH essentially needs to determine whether a
test could go beyond the frontier. Thus, in this case, it aged
find out if the execution obar can produce a concrete state that
satisfies the formula) = (x # y). It does this by recursively
calling itself on procedur@ar: the target is set to be the WLP of
1) across the assignment of the return valudaf to y, which is
' = (x # a). This is done by splitting the exit node bar into
two nodes, one labeled with’ and the other with)’. The former
node is set as the target node. The constraints on paranuéters
bar are obtained from the symbolic stefig, that is obtained from
symbolically executing the concrete trace up to nade

Thus, the recursive call tBASH is obligated to start from a
state[a — zo + 1,x — xo] With (zo + 1 # 1 A 229 # 0), and
must prove or disprove’ at the end obar. If this call to DASH
returns a test case, then the frontier insfd® can be extended
using the same test; otherwise, it proves thatannot be reached,
in which case a refinement is performed at the frontietds. The
refinement predicate is obtained from the proof that is netdrby
DASH (see [6] for details). In our example, the refinement predica
would be(x # y + 1).

During interprocedural analysis, additional care has ttaken
because there are now two targets: the split exit node ldiveld
7', as well as the global analysis target. On a given iterafbetgH
may use a path in the abstract gragto either target.

Checking Safety Properties.We have only describeBASH for
when the goal is to test the reachability of a given prograzation.
However,DASH can handle general safety properties as well: if
one wants to verify if the formulg is ever violated during the
execution of the program, then all nodes of the initial alxttgraph
are splitinto two, one labeled withand the other labeled withp.

All nodes labeled withy are treated as the target nodiéCDASH

is also able to do the same, but we limit the discussion togitgs
that check the reachability of a single program location.
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3. MCDASH-ICFG

We now describe how to extend tH2ASH algorithm to work

on machine code. The starting point is Alg. 1, which has four

requirements:
1. access to an interprocedural control-flow graph (ICF@)ctv
is used to build the initial abstract graph

2. a method to perform concrete execution of the program for

running tests

3. a method to perform symbolic execution of a given program

path (a sequence of program statements)

4. a method to compute WLR which is used when refining the
abstract graph.

In our first version ofMCDASH, called MCDASH-ICFG, we as-

sume that the ICFG of the machine-code program is provided

to us. In particular, theiICDASH-ICFG implementation uses the

CodeSurfer/x86 front end to build CFGs. (This assumption is

dropped ing4 andg5s.)

3.1 A Language-Independent Approach to WLR,

Lim et al. showed how to create primitives for concrete ekeou
and symbolic execution of machine code [30]. Their work joles

items 2 and 3 listed above. They also showed how to create a

primitive for weakest liberal precondition (WLP), but thmtmitive
causes the predicates that label the nodes of the absteqiit oy
explode.

In this section, we describe our language-independenbappr
to identifying “aliasing condition’a, as well as the WLP primi-
tive that goes along with it.

3.1.1 aand WLP,

As mentioned irg1, there are two challenges in defining an appro-
priate notion ofaliasing conditionfor use with machine code.
e int-valued quantities and address-valued quantitiesnatistin-
guishable at runtime, and
¢ arithmetic on addresses is used extensively.

Suppose that the frontier {3, I,m), ¢ is the formula onm,
and S is the symbolic state for the path up o For source code,
aliasing conditiomv can be derived by looking at the relationship,
in S, between the addresses written to by instructioand the
ones used in [6]. However, this way of computing is language-

dependenbecause the semantics of the language of instructions

must be incorporated into the algorithm, to determine “the a
dresses written to by instructiari.

In contrast, we developed an alternative, language-intipg
approach both to identifying and computing WLR. For the mo-
ment, to simplify the discussion, suppose that a concretthime-
code state is represented using two maps: INT — INT and
R : REG — INT. Map M represents memory, and ma&prepre-
sents the values of machine registers. (A more realistiaitiefi
of memory is considered i§8.1.2.)

Also, suppose that under the symbolic stéte R(eax) equals
R(ebp) — 8.1

First, we symbolically executé starting from the identity sym-
bolic stateSia = [M — Mo, R — Rg]. This results in the sym-
bolic stateS’ = [M +— updaté Mo, Ro(eax),5), R — Ro]. Next,
we evaluatey) under.S’—i.e., perform the substitutiogh[M
S'(M),R « S'(R)]. For instance, the term/(R(ebp) — 8)
evaluates to the contents of memory at addi@ésbp) — 8, i.e.,
acces$M, R(ebp) — 8), which equals

accesgupdatd My, Ro(eax), 5), Ro(ebp) — 8).
From the axiom for arrays, this simplifies to
ite(Ro(eax) = Ro(ebp) — 8,5, Mo(Ro(ebp) — 8)).
Thus, the evaluation af underS’ yields

ite(Ro(eax) = Ro(ebp) — 8,
5 Mo(Ra(ebp) — 8))
+ ite(Ro(eax) = Ro(ebp) — 12,
5, Mo(Ro(ebp) — 12))

=10 @)

This formula equals WLH, ¢) [30].
The process described above illustrates a general proferty
any instruction/ and formulaz,

WLP(I,%) = $[M « S' (M), R — S'(R)],

whereS’ = SE[I]Sis and SH-] denotes symbolic execution [30].

The next steps are to identify and to create a simplified for-
mula’ that weakens WLH ,+). These are carried out simulta-
neously during a traversal of WI(P, ). We illustrate this on the
example discussed above. Becauseitdderms in Eqn. (2) were
generated from array accessis;conditions represent the desired
aliasing conditions. We traverse Eqn. (2), and for each trthe
form ite(p, t1,t2), if ¢ holds in symbolic stat&, then it is con-
joined toa, and the term is simplified to . Otherwise, if-¢ holds
in S, then—y is conjoined tax and the term is simplified to;. If
neither case holds, then the term andx are left untouched.

In our example Ry (eax) equalsR(ebp) — 8 in symbolic state
S; hence, applying the process described above to Eqn. (@syie

' = (5+ Mo(Ro(ebp) — 12) = 10)
o = ( (Ro(eax) = Ro(ebp) — 8) )
A (Ro(eax) # Ro(ebp) — 12)

The formula—a Vv ¢’ (i.e., a = ') is the desired refinement
predicate WLR (I, ).

This approach is languagedependenbecause it isolates the
consideration of the semantics of the instruction set tactirapu-
tation of S’ = SH[I]Sia in WLP(I,). All remaining steps are
performed solely on formulds.

Itis true that the algorithm described above computes WLP)

@)

We use the standard theory of arrays to describe updates andeXPlicitly. However, this step alone does not cause an eiquoin

accesses on maps, e.gpdaté M, k, d) denotes the map/ with
index k updated with the valud, andacces$M, k) is the value
stored at index in M. We also use the standard axiom from the
theory of arrays:

accesgupdaté M, k1,d), k2) = ite(k1 = k2, d, acces$M, k2)),

@
whereite is anif-then-elseterm. We use the notatioR(r) as a
shorthand foacces$R, r).

Consider the following machine-code example, which is ksimi
to the source-code example discussedi2n Suppose thaf is
“mov [eax], 5”(which corresponds teeax = 5in source-code
notation), andp is (M (R(ebp) — 8) + M (R(ebp) — 12) = 10).

formula size—explosion is a consequence of repeated apiphic
of WLP. In our approach, the formula obtained via WIPy) is
immediately simplified to create firgt’ = o A WLP(1,1) and
thena = ',

11n x86, ebp is the frame pointer, so if program variabteis at offset -8
andy is at offset 42, this corresponds to the example discusseiRirwith
eax playing the role of variable.

2DASH and MCDASH need the symbolic-execution primitive BE any-

way for other steps of state-space exploration. Moreoveigplementa-
tion of SE[I] can be generated from a description of the semantics of an
instruction set [30]; consequently, an implementation dfR¥ (1, ) can

be generated as well.
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3.1.2 Byte-Addressable Memory

In the above discussion, we assumed that the memory mapge®s ty
INT — INT. In x86 machine code, memory is byte-addressable,
so the actual type of the memory mapliéT32 — INT8. This
complicates matters because accessing (updatidgrbit quantity

in memory under the little-endian storage convention tedas
into four contiguouss-bhit accesses (updates); for instancéabit
access can be expressed as follows:

access32_8_LE_32(m,a) =

letvl = Int8To32ZEm/(a))
v2 = Int8To32ZEm(a + 1)) <« 8 4
v3 = Int8To32ZEm(a + 2)) < 16 )
vd = Int8To32ZEm(a + 3)) < 24

in (v4 | v3 | v2|vl)

whereInt8To32ZEconverts ariINT8 to anINT32 by padding the
high-order bits with zeros, and™denotes bitwise-or.

Let update32_8_LE_32 denote the similar operation for updat-
ing a map of typdNT32 — INT8 under the little-endian storage
convention. Note that wheh < |k; —int32 k2| < 3, we no longer
have the property

access32_8_LE 32(update32_8_LE_32(M, k1,d), k2)
= access32.8_LE_32(M, k2).

and hence itis invalid to simplify formulas by the rule

access32_8_LE_32(update32_8_LE_32(M, k1, d), k2)
= ite(k1 = k2,d,access32_8_LE_32(M, k3)).

However, the four single-byte accesseswom Eqgn. (4) (i.e.m(a),
m(a+1),m(a+2), andm(a+3)), areaccesodperations for which
it is valid to apply Eqgn. (1).

Returning to the example discussed§®i1.1, whereR(eax)
equalsRy (ebp) — 8 in symbolic state5, we perform the same steps
as before. First, the symbolic execution bf= mov [eax], 5
starting from the identity symbolic sta#q = [M — Mo, R —
Ry] results in the symbolic state

S" = [M + update32_8_LE_32(My, Ro(eax),5), R — Ro).
The formulay is now written as follows:

access32_8_LE_32(M, R(ebp) — 8)
+ access32_8_LE_32(M, R(ebp) — 12)
= 10.

To obtain WLRI,), we evaluate) underS’, which yields the
formula shown in Fig. 2—where for brevity we have introduced
the notational shorthangs= Ro(eax), x = Ro(ebp) — 8,y =
Ro(ebp)—12, xx = Mo(Ro(ebp)—8), xy = Mo (Ro(ebp)—12),
etc. The formula shown in Fig. 2 is the analog of Eqn. (2).

The step that uses symbolic statdo identify « and create a
simplified formulay’ that weakens WLH, v) is now applied to
the formula shown in Fig. 2, and produces

22* & Int8To32ZE+(y + 3))
| 2¢ % Int8TO32ZEx(y + 2))
| 2% % Int8TO32ZE +(y + 1))
| Int8T032ZE *y)

and « is the conjunction of the disequalities collected from the
formula shown in Fig. 2:

7 def

def

a=2+3#p+3N...2+3F#pA...cFDp+3A...xFD
ANYy+3#p+3AN...y+3#pAN...y£p+3A...y#Dp.
These are the analogs of Eqgn. (3).

As before, the formulana Vv ¢’ (i.e.,a = ') is the desired
refinement predicate WLRI, ).

3.2 Local Variables

In this section, we describe an optimization necessary fwone
the scalability ofMCDASH-ICFG. Consider the program shown
in Fig. 3. WhenDASH is executed on the source code to test
reachability of the labeERR, it will perform refinement in its
first two iterations. Next, it recursively calls itself ongmedure
bar with the target predicates. = (g + 11 = 5). Insidebar,
the first iteration again performs refinement to build therfola
¢§rc: (g+h +12=5).

The story changes when dealing with machine code. When we
run MCDASH-ICFG on procedurefoo, it does some refinements
to build the formulagn, = (M(cy) + M(ebp — 4) = 5) at the
corresponding point t@. (which is just after the call tdar).
Here,c, is the (constant) global address of the varigple

Next, MCDASH-ICFG, like DASH, recursively calls itself on
bar. Ignoring the return instruction, the first iteration woldve
the instruction pop ebp” as the frontier, and would need to refine.
The semantics of this instruction are that it assigbg the value
M (esp) and then incrementssp by 4. Performing WLR, on ¢pc
results in(M (cq) + M (M (esp) — 4) = 5). The formula created
at the point corresponding g would be (M (c,) + M (ebp —

4) + M (M (ebp) — 4) = 5).

Note that the formula generated BYCDASH has a double
memory dereference, even though the source code contdins on
ordinary accesses on variables. The reason for this iSG&XIASH
does not know thagbp is a callee-saved register in this program:
at thepop instruction, it does not know that the value &tp is
restored to its value before the calltar.

To reduce the complexity of the formulas that arise, we akten
the notion of ‘&” to include the values oksp and ebp. If the
frontier is (n, I, m) with S, as the symbolic state, then in the
computation of WLR we checkS,, to see if the values afsp and
ebp are concrete (they may be symbolic). If they are concrete—
say c¢s and c,—then we conjoin the constraiifR(esp) = ¢s A
R(ebp) = c») to , and replace these registers with their constant
values in the refinement predicate. Thiig, would become

(R(ebp) = (csik — 4)) = (M (cq) + M(csi — 8) = 5),

wherecsi is the starting value ofsp. The result of WLR on this
formula across theop instruction is:

(R(esp) = cstk — 60) A (M (cstk — 60) = csk — 4) =
(9 + M(cs — 8) = 5)

The refinement predicate at the point correspondinggtds:

(R(ebp) = csk — 60) A (M (csk — 60) = s — 4) =
(M(cg) + M(cstk — 64) + M(csk — 8) = 5)

By this means, the double memory dereference goes awayhand t
refinement predicate looks more liké., except that it has an extra
constraint on the program stack.

The intuition behind using the concrete valueg o andebp is
similar to the intuition behind using aliasing conditiatin WLP,,:
the program is not expected to generate too many differegiag
conditions at a given program point, and its use greatly Biirep
the refinement predicates. Similarly, at a particular progpoint
in a given calling contextesp and ebp should not take on too
many different values—in particular, in well-behaved peogs
they should each take on only a single value.

4. MCDASH-ICFG

In some cases, especially for stripped binaries, it is nesie to
build an accurate description of the CFG of the program, auitta
full reasoning of the program’s semantics. Difficultiestsas indi-
rect jumps and indirect calls also show up in high-level lsages.

2009/6/4



22 x Int8To32ZHite(x + 3 = p + 3,0, ite(x + 3 = p+ 2,0,ite(z + 3 = p+ 1,0, ite(z + 3 = p, 5, *(x + 3))))))
| 26 % Int8To32ZKite(x + 2 = p + 3,0,ite(z + 2 = p + 2,0,ite(z + 2 = p + 1,0, ite(z + 2 = p, 5, %(z + 2))))))
| 2° « Int8To32ZKite(x + 1 = p + 3,0,ite(z + 1 =p+2,0,ite(z + 1 = p+ 1,0,ite(z + 1 = p,5,*(z + 1))))))
| Int8To32ZKite(x = p + 3,0, ite(x = p+ 2,0, ite(x = p+ 1,0, ite(x = p, 5, *x)))))

224 % Int8To32ZKite(y + 3 = p+ 3,0, ite(y + 3 = p+ 2,0, ite(y + 3 = p + 1,0, ite(y + 3 = p, 5, %(y + 3))))))

+

| 2¢ « Int8To32ZEite(y + 2 = p + 3,0, ite(y + 2 = p + 2,0, ite(y + 2 = p+ 1,0, ite(y + 2 = p, 5, *(y + 2))))))
| 28 % Int8To32ZHite(y + 1 = p + 3,0,ite(y + 1 = p+ 2,0,ite(y + 1 = p + 1,0, ite(y + 1 = p, 5, x(y + 1))))))

| Int8To32ZKite(y = p + 3,0, ite(y = p + 2,0,ite(y = p + 1,0, ite(y = p, 5, *y)))))

=10

Figure 2. The formula for WLRI, ), wherey is update32_8_LE_32(M, R(ebp) — 8) + update32_8_LE_32(M, R(ebp) — 12) = 10,
obtained by evaluating on the symbolic stat€’ = [M — update32_8_LE_32(My, Ro(eax),5), R — Ro]. For brevity, the following

notational shorthands are used in the formyla= Ro(eax), z =
*xy = Mo (Ro(ebp) — 12), etc.

procedure foo

. push ebp ; save frame ptr on stack
. mov ebp, esp ; ebp = esp
. sub esp, 56 ; make space for locals
. mov [ebp-4], 10 ; vl = 10
. call bar ; bar ()
. mov eax, g ; eax = g
int g = 0; . ;;13 eaxéa}léebp—él]f eaz ::xvl
void foo( ) { ) & P8 »
vl = 10: . cmp g, 5 ; g == b7
’ . jnz short loc.5D; jump if g !=5
bar( ); . i .
= vl . ERR: nop ; skip
g o . loc_5D:
it(g == 5) mov esp, ebp ; restore stack ptr
ERR: return; ’ ’
} . pop ebp ; restore frame ptr
. retn ; return to callee
vo;d bar( ) { procedure bar
int v2 = 20;
= v . push ebp ; save frame ptr on stack
} & ’ . mov ebp, esp ; ebp = esp
. sub esp, 56 ; make space for locals
P P
. mov [ebp-4], 20 ; v2 = 20
. mov eax, g ; eax = g
. add eax, [ebp-4]; eax += v2
. mov g, eax ; 8 = eax
. mov esp, ebp ; restore stack ptr
. pop ebp ; restore frame ptr

. retn ; return to callee

Figure 3. An example program and its compiled x86 binary.

However, more acute is the problem of identifying procedpbe-
cause a hinary need not follow any standard calling consenkor
example, a program can use a return instruction to simulpte-a
cedure call, and vice versa. For this reasf¢DASH-ICFG does
not use a front-end for building a CFG.

One standard approach in the model-checking literature is t
treat the program counter (PC) as data and use the CFG shown
Fig. 4(a), where op, denotes any possible instruction (it stands
for an abstraction ofv all possible instructions). Howewsing this
approach wittDASH has two difficulties: (i) A path in the abstract
graph only conveys information about the number of instomst
executed, not what those instructions are. Thus, duringoslim
execution, if the PC value becomes a symbolic expressien,dhe
would need to symbolically execuédl of the possible instructions
at PCs represented by the symbolic expressions. This cdly eas
overwhelm the tool. (ii) The entire program would be treagsca
single procedure. The interprocedural aspedagH is important
for its scalability. We show how to solve each of these pnotsle

in turn. For the first one, we show how one can make use of a is satisfiable withsg

technique from concolic execution [34, 21].

Ro(ebp) — 8, y = Ro(ebp) — 12, xx Moy (Ro(ebp) — 8),

4.1 Stealing Concrete Values

In concolic techniques for state-space exploration, thabsjic
execution of a path can steal values from a concrete execution
of 7 to simplify the symbolic state. This has previously beerduse
as a heuristic in tools for boosting test coverage. We showtbo
adapt the technique to work in a verification context. We a&ixpl
the concept in source-level terms.

DASH uses symbolic execution to learn an under-approximation
of the program’s behavior. We observe that one can relaxehe r
quirements of symbolic execution. Consider stépf Alg. 1, and
suppose that is the path (sequence of instructions) that the con-
crete execution took to reach statd et SE[]Sia be the symbolic
state obtained after symbolically executing the paftom the ini-
tial identity symbolic state. ThBASH algorithm remains correct,
while ensuring progress, if the following two propertieg aatis-
fied: (i) S = SH[7] St generalizeg, i.e., there is some assignment
to the input symbolic constants for which equalsc, and (ii) if
S’ = SH[r; I] S is feasible then the path I must be executable.
The first property ensures that if refinement is performeet tihe
frontier changes in the next iteration. (In particular,nisares that
c is not a witness for’ in Fig. 1(c).) The second property ensures
that if S’ is feasible, and we run a test using the input obtained
from S’, then the test must followr; 7)—and thus make progress
towards the target. Next, we show how stealing concreteegadtill
preserves these two properties.

Example.Suppose that’ = (z = x << y) has to be symbolically
executed, where< is the bitwise left-shift operator. If the current
symbolic state has path constraiptand symbolic magseore =

[x — f(inp),y — ¢(inp)], for some functiong’ andg over the
input symbolic constants, then the result of execufingpdates the
value ofz to (f(inp)<<g(inp)).

In concolic execution, one avoids creating complex syneboli
expressions (because the theorem prover has to later cbeck f
satisfiability of formulas over these expressions) by usioigcrete

. information. Suppose that we wish to avoid having a symbolic

Nsalue for the shift-argument @k. Then, if the concrete state before
the execution of’ is [y — 2, - - -], concolic execution techniques
would “steal” the value ofy from the concrete state [34] and
simplify the resulting symbolic map to:

Safter = [X = f(inp)7 y— g(inp), Z = f(inp)<<2]

This technique does not satisfy the latter of the two propert
mentioned above: ifnp has just one symbolic constasy, f =
(so+1),g9 = so, p = true, I' was the last instruction of, and
is a branch that tesiz == 4), then executing on the symbolic
stateScon results in the path constraifito + 1)<<2 == 4, which
== 0. Running a test with this input would
result in the concrete stat@erore = [x — 1,y +— 0] before I’
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PC = start A
ctxt(start)
. OPjnt
' PC # start A
PC # target A

ctxt(start)

PC = target A
ctxt(start)

(b)
Figure 4. Abstract graphs created BJCDASH-ICFG

(obtained by substituting for so in Seefore). After the execution of
I', the branchl cannot be taken.

For MCDASH, we change the process of stealing concrete val-
ues. Whenever the concrete value of a varighiestolen, say it is
¢y, then the symbolic map is updated as before, but the constrai
y == ¢y is symbolically evaluated and added to the path con-
straint. In the above example, the constrgint= 2 evaluates to
so == 2 underShefore @nd is conjoined te. The reader can verify
that the execution of will result in an infeasible state. The basic
idea behind our approach is to treat the process of steating c
crete values as if there was a fictitious branch condijica= ¢,
in the path. The concrete execution certainly satisfiesktasch
and proceeds through it, and the symbolic execution pickghep
appropriate constraint, which also allows it to simplify ymbolic
map.

For MCDASH-ICFG, the symbolic execution keeps stealing the
value of the PC from the concrete state at every step. Thigess
that the symbolic map always has a concrete value for the &@gh
it only has to symbolically execute a single fixed instructid each
step.

4.2 Interprocedural without CFGs

The abstract graphs constructed¥SH at any stage only refer to
nodes of a single procedure. This allows it to keep thesehgrap

is all other instructions. ThusyiCDASH-ICFG knows theCTXT-
stack manipulations that each of the three kinds of indostcan
perform.

During the execution o CDASH-ICFG, suppose that the fron-
tier has op,, as the instruction, the formula on its targetdsand
the concrete state at its source:isThe first step is to identify the
procedure being called. If the next instruction executed ksynot
a call instruction, then we refine using the predicate L€ v.,
whereu, is the PC value of. This refinement will result in the re-
moval of the op,, edge (because no call instruction can fire from a
state that satisfies P€E= v.). Otherwise, leb. be the PC after the
call instruction is executed at We steal the PC value. using the
method discussed in the previous section. N84CDASH-ICFG
calls itself recursively on the abstract graph shown in B{g) to
see ifp is reachable or not. In essence, we use call and return in-
structions to figure out contexts tH#tCDASH should verify in iso-
lation.

5. McDASH-SMC

For self-modifying code (SMC), the association of a PC valith

the instruction at that PC is no longer fixed. We extendlgtDASH

to incorporate the decoding relationship between a seguehc
bytes in memory and the instruction that those bytes reptese
To do this two strategies were possible; however, with thesemt

MCDASH implementation we were only able to try the first:

1. Similar to MCDASH-ICFG, we simplify the cases when the
PC value or the bytes in memory at that PC are symbolic
expressions. During symbolic execution, we steal the PGeval
as well as the memory bytes at that PC from the concrete state.
This preserves soundness, and ensures that symbolic iexecut
only has to execute a fixed instruction at each step (i.e., if
MCDASH-SMC returns a proof that a property holds, then it
indeed holds).

2. The alternative is to only steal the PC values, but allosvitlh
struction to be symbolic. To accomplish this, the decodisg r
lationship (byte-sequence to instruction), as well astis&ruc-
tion semantics would need to be expressed symbolicallyato th
symbolic execution can form expressions and constrairgs ov
them. We leave this approach for future work.

Except for the above change, tMCDASH-SMC algorithm is

to a manageable size. In the absence of any information aboutjgentical toMCDASH-ICFG.

proceduresMCDASH-ICFG would have to use a single graph to
capture the abstraction of an entire program.

We avoid this problem by definingrocedural context@CTXTSs),
which serve as a substitute for the notion for a procedurerdis
one contextCTXT(v) for each possible value of the PC. The
contextCTXT(v) roughly serves as a procedure identifier for the
one that begins at P& v. The concrete state of the program is
instrumented with a stack cTXTs that is manipulated by the
concrete execution. We usestk to refer to the stack associated
with concrete state.

If a test has to be started from statend PGc) = v, thenc.stk
is initialized to [CTXT (v)]. If the execution of a call instruction
takes state; to c2 thenca.stk = push(CTXT(PC(c2)), c1.StK).

If the execution of a return instruction takes stateto cs4 then
cs.Stk = pop(cs.stK), providedcs.stk has at least two elements.
In all other cases, the stack is left unchanged. (For weihted
programs, this stack identifies the current procedure ahatigits
calling context.) Similar manipulation is performed fomgyolic
execution. We add an additional type of constraint in ouiictog
ctxt(v), which is satisfied by a concrete statenly when the top
element ofe.stkis CTXT(v).

The initial abstract graph constructed BCDASH-ICFG is
shown in Fig. 4(b). In the graph, g is an abstraction of all call in-
structions, op, is an abstraction of all return instructions, ang,op

MCDASH-SMC can verify the compiled version of the C code
shown in Fig. 8. The variableinp is the input to the program. The
array code stores the binary encoding of the instructions shown
in comments above it. This code increments the value of t&gis
ecx. main calls this code, and after it returnsyde is modified to
change the immediate argument of il instruction to—1. Thus,
the next timecode is executed, the value etx is decremented by
1.

MCDASH-SMC is able to verify that target labeéRR is not
reachable. IIMCDASH-ICFG, predicates of the fornfiPC == v)
help it learn control-flow information because nodes of theti@act
graph that have such a constraint only have fixed successtues$
the instruction at that PC is call, return or an indirect jungimi-
larly, in MCDASH-SMC, the predicates that help build control-flow
information are of the fornfPC== v) A decodév, I'), where the
latter is a constraint that the contents of the memory attioca
represent instructiof. For the example in Fig. 3YICDASH-SMC
is able to pick up the constrainf®C == c¢) A decodéc, “add
ecx, 1")and(PC== c) Adecodéc, “add ecx, -1"), allowing
it to explore the possibility of executing different ingttions at the
same PC.

3This example is adapted from the one describedtinp://www.acm.
org/src/Joy/joy.htm
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void main(int inp) {
int old = inp;

/* _asm { mov ecx, inp }
* add ecx, 1; ((void(*) O)code) OO ;
* retn; code [2]=0xff;

*/ ((void(*) ())code) O);

unsigned char code[] = {0x83,
Oxcl, 0x01, Oxc3};

_asm { mov inp, ecx }
if(inp != old) {
ERR: return;

}
Figure 5. Self-Modifying Code

6. Implementation

The MCDASH implementation has been structured so that it can

be retargeted to different languages easily. The core coews of

the system are language-independent in two different difnas:

1. TheMCDASH driver implements Alg. 1. Itis structured so that

one only needs to provide an implementation of the concrete

and symbolic execution of a language, and a few other primi-
tives (e.g., WLR). Consequently, this component of the system
can be used for source-level languages or for machine-eode |
guages.

. For machine-code languages, we have used two toolgénat
eratethe required implementation of the concrete semantics and
the symbolic-analysis primitives from descriptions of gym-
tax and semantics of an instruction set of interest.

The abstract syntax and concrete semantics of an instruc-
tion set are specified using a language calle&d (Transformer
SpecificationL anguage) [31]. Decoding (i.e., translation of binary-
encoded instructions to abstract syntax trees) is speaifsity
a tool calledISAL (InstructionSet ArchitectureL anguage}. The
relationship betweelsAL andTSL is similar to the relationship be-
tween Flex and Bison. With Flex and Bison, a Flex-generarelrl
passes tokens to a Bison-generated parser. In our cas&Sthe
defined abstract syntax serves as the formalism for comratimic
values—namely, instructions’ abstract syntax trees—betwthe
two tools.

Compared with other specification languages for instractio
sets, TSL has one unique feature: fromsingle specification of
the concrete semantics of an instruction setudtiplicity of static-
analysis, dynamic-analysis, and symbolic-analysis corapts can
be generated automaticallyfrhe TSL system consists of two parts:

e The TSL language for specifying an instruction set’s abstract
syntax and concrete semantidssL is a strongly typed, first-
order functional language with a datatype-definition mecha
nism for defining recursive datatypes, plus deconstrudbiypn
means of pattern matching.

e The TSL compiler, which translates a specification to a com-
mon intermediate representation (CIR). The CIR generated f
a givenTSL specification is a C++ template that can be used to
create multiple analysis components by instantiating ¢me-t
plate in different ways.

TSL has two classes of users: (1) instruction-set specifiets, an
(2) analysis developers. The former use Ti# language to spec-
ify the concrete semantics of different instruction sel& Iatter
create new analyses by instantiating the CIR in differentsva
Specifying an Instruction Set.Much of what an instruction-set
specifier writes in ar'sL specification is similar to writing an in-
terpreter for an instruction set in first-order ML [24]. Omesifies
(i) the abstract syntax of the instruction set, by defining tbn-

4IsAL also handles other kinds of concrete syntactic issuesydimg (a)
encoding(abstract syntax trees to binary-encoded instructiob$pdrsing
assemblyfassembly code to abstract syntax trees), andgsgmbly pretty-
printing (abstract syntax trees to assembly code).

structors for a (reserved, but user-defined) typsruction (ii) a
type for concrete states, by defining—e.g., for 32-bit Ix&b—
the typestateas a triple of maps:

state: StatéINT32 — INT8, reg32— INT32 flag — BOOL);

whereINT32 and INT8 refer to 32-bit and 8-bit integers, respec-
tively, andreg32 andflag refer to a type for the names of 32-hbit
registers and a type for the names of condition-codes, c&sply;
and (iii) the concrete semantics of each instruction byimgia TSL
function

state interplInsttinstruction, stateS) { ... };

Semantic Reinterpretation. Each analysis is defined by rein-
terpreting the constructs of tHESL meta-languageTSL's meta-
language supports a fixed set of base-types; a fixed set lufrestiic,
bitwise, relational, and logical operators; and a facilitydefining
map-types. An analysis developer defines a new analysis @omp
nent by (i) redefining (in C++) th&SL base-typesINT32 INTS,
BOOL, etc.), and (ii) redefining (in C++) the primitive operation
on base-types{inTs2, +inTs, €tC.). These are used to instantiate the
CIR template. This implicitly defines an alternative intefation

of each expression and function in an instruction-set'scete se-
mantics (includinginterpinstr), and thereby yields an alternative
semantics for an instruction set from its concrete semsantic

For MCDASH, TSL is used to create several useful reinterpreta-
tions of an instruction set:

e By instantiating the CIR with a reinterpretation that penfis
the standard interpretation (in C++) of the TSL operators, w
obtain the instruction interpreter for concrete execution

e By instantiating the CIR with a reinterpretation that imgtates
INT32, INT16, and INT8 as the types of symbolic expressions
that denote 32-bit, 16-bit, and 8-bit values, respectjvielyhe
input language of an SMT solver, and operations (such,as
*, ==, etc.) as simplifying constructdtsve obtain a semantics
suitable for symbolic execution. (In our implementatiore w
used the Yices input language [18].)

¢ A third reinterpretation creates a primitive for performi/LP
[30]. (As explained in§3.1, WLP is used a subroutine in the
implementation of WLR.)

These reinterpretations are used as subroutinkkiRASH's com-
ponents for concrete execution, symbolic execution, andPWL
computation.

In MCDASH-ICFG, decoding of instructions is done all at once,
at ICFG-construction time. IMCDASH-ICFG andMCDASH-SMC,
decoding of instructions is performed instruction-bytinstion, as
concrete or symbolic execution proceeds.

7. Experiments

We designed our experiments to test how competM@&DASH is
against source-level tools. We compared agdiwssH on exam-
ples from [23f on which an earlier version dPASH was tested.
These are hand-crafted examples designed to illustrai@ugaas-
pects of theDASH algorithm. The later version dDASH [6] was
tested on device drivers. We could not use these examplesi®ec
we did not have the harnesses and the OS stubs for the drivers.
The examples are all written in C. We compiled them and ran
MCDASH-ICFG and MCDASH-ICFG on the resulting object file
(without using the symbol-table information). The sourcEle
does not use pointers, but the compiled binary manipulates a
dresses to access local variables from the stack. The semdt

5Straightforward simplifications are performed; eg== a simplifies to
true, etc.

6These are available from that paper's author's homepage : //www.
cse.iitb.ac.in/~bhargav/synergy.
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shown in Fig. 6. Comparing with the timing numbers in [23],
MCDASH is in the same range, except for a couple of examples.
Moreover, surprisinglyiMCDASH-ICFG was sometimes faster than
MCDASH-ICFG. This was because the absence of a CFG forced its
search to proceed in a different manner th@DASH-ICFG. And,

as a result, it got lucky in finding the desired loop invariafaister.

8. Related Work

Machine-Code Analyzers Targeted at Finding Vulnerabilities.
A substantial amount of work has been carried out on analysis [13] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasarg Robby,
techniques to detect security vulnerabilities by analyziource and H. Zheng. Bandera: Extracting finite-state models frawa.J
code for a variety of languages [36, 11, 32, 37]. Less work has source code. ICSE, pages 439-448, 2000.

been done on vulnerability detection for machine code. gelie [14] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Statied#on of
et al. [27] developed a system for automating mimicry asack vulnerabilities in x86 executables. ACSAC 2006.

Their tool uses symbolic execution of x86 machine code teadier [15] Coverity Prevent. www.coverity.com/products/pnet@nalysisengine.html.

30:775-802, 2000.

[9] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifyicode. In
Prog. Lang. Design and Impl2007.

[10] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Madul
verification of software components in C. IGSE 2003.

[11] H. Chen and D. Wagner. MOPS: An infrastructure for exang
security properties of software. {BCS pages 235-244, Nov. 2002.

[12] CodeSonar, GrammaTech, Inc., www.grammatech.cadlmts/codesonar.

attacks that can give up and regain execution control by fyiodi
the contents of the data, heap, or stack so that the applicati
forced to return control to injected attack code at sometdter a
system call has been performed. Cova et al. [14] used thifopia
to apply symbolic execution to the problem of detecting sécu
vulnerabilities in x86 executables.

Both Godefroid et al. [22] and Brumley et al. [7] have cre-

ated tools for performing concolic execution on x86 macluioge.
Concolic execution combines concrete execution and syimeri
ecution with the goal of finding inputs that increase testcage.
Calls to an SMT solver are used to obtain inputs that forceipre
ously unexplored branch directions to be taken. In contEassH

andMCDASH combine concrete execution and symbolic execution

with abstraction; they are goal-directed: they try to refilie claim

that there is no path from program entry to a given goal state.
In addition, the implementations of the other machine-cane

lyzers cited above are x86-specific, whereas our work caetae-r

geted to a new instruction set merely by writingf8L specification

and applying thé'SL compiler.

Self-Modifying Code. The work onMCDASH-SMC addresses a

problem that has been almost entirely ignored by the PL rekea
community. There is one paper on SMC by Gerth from 1991 [20],

and one recent paper by Cai et al. [9]. However, both of thapers
concern proof systems for reasoning about SMC.

In contrast, MCDASH-SMC can analyze SMC automatically.
As far as we knowMCDASH-SMC is the first model checker to
address verifying (or detecting flaws in) SMC. It is also flalssto
generate versions dfICDASH-SMC for different instruction sets
from descriptions of an instruction set’s syntax and sefant
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Program ICFG Available ICFG Not Available
Name #Instrs. | Outcome|| CE | SE | Ref | time | CE | SE | Ref | time
barber 196 proof 2| 14| 94| 216 1] 23| 59| 28
berkeley 75 proof 5 7| 22| 50.1 4 | 37| 81| 3.7
cars 108 proof 4| 10| 91| 16.1 3| 33| 87| 6.2
efm 133 test|| 10 | 49 | 325 | 128.8 7| 81| 371| 72.0
fig6 17 proof 2 4| 13 5.6 2] 20| 31| 9.0
fig7 17 test 2 1 0 0.1 2 6 5| 0.2
fig8 61 proof 2 3] 13 0.6 1 4 5| 0.7
fig9 16 proof 1 3] 13 1.4 1|14 25| 3.0
prog2 21 proof 1 3| 17 1.0 1| 23| 38| 32
prog3 18 proof 1 3 14 0.7 1] 20| 32| 20
prog4 38 proof 2 6 30 5.8 2| 36| 63| 210
prog5 22 proof 1 3 18 1.0 1| 24| 40| 31
testl 23 proof 2 5| 27 4.2 21 30| 86| 98
test2 32 proof 2 9| 48 4.8 2| 46| 138 | 19.8

Figure 6. MCDASH experiments. The columns, in order, are: the number ofungtns (#Instrs); whethé"lCDASH returned a proof or a
counterexample (Outcome); the number of concrete exemi(lOE); the number of symbolic executions (SE), which atpaés the number
of calls to the theorem prover; the number of refinements)(Réfich also equals the number of WLRomputations; and the total time
taken in seconds. The experiments were run on a IntélF@Hz machine witt8.3GB RAM.

[37] Y. Xie and A. Aiken. Static detection of security vuladilities in
scripting languages. IBSENIX Sec. Sym006.
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