

Computer
Sciences
Department

Flexible Lookup Modules for Rapid Deployment of New Protocols in
High-Speed Routers

Lorenzo De Carli
Yi Pan
Amit Kumar
Cristian Estan
Karthikeyan Sankaralingam

Technical Report #1658

June 2009

Flexible Lookup Modules for Rapid Deployment of New
Protocols in High-speed Routers

Lorenzo De Carli Yi Pan Amit Kumar Cristian Estan Karthikeyan Sankaralingam
University of Wisconsin-Madison

{lorenzo,yipan,akumar,estan,karu}@cs.wisc.edu

ABSTRACT
New protocols for the data link and network layer are being pro-
posed to address limitations of current protocols in terms of scala-
bility, security, and manageability. High speed routers and switches
that would need to implement these protocols traditionally perform
packet processing using ASICs which offer high speed, low chip
area, and low power. But with inflexible custom hardware, the de-
ployment of new protocols could happen only through equipment
upgrades. While newer routers use more flexible network proces-
sors for data plane processing, due to power and area constraints
lookups in forwarding tables are done with custom lookup mod-
ules. Thus most of the proposed protocols can only be deployed
with equipment upgrades.

To speed up the deployment of new protocols, we propose a
flexible lookup module, PLUG (Pipelined Lookup Grid). We can
achieve generality without loosing efficiency because various cus-
tom lookup modules have the same fundamental features we retain:
area dominated by memories, simple processing, and strict access
patterns defined by the data structure. We implemented IPv4, Eth-
ernet, Ethane and SEATTLE in our dataflow-based programming
model for the PLUG and mapped them to the PLUG hardware
which consists of a grid of tiles. The throughput, area, power and
latency we achieve are close to those of specialized lookup mod-
ules.

1. INTRODUCTION
The current Internet relies extensively on two protocols designed

in the mid-’70s: Ethernet and IPv4. With time, due to needs not
anticipated by the designs of these protocols, a number of new pro-
tocols, techniques and protocol extensions have been deployed in
routers and switches changing how they process packets: Ethernet
bridging, virtual LANs, tunnels, classless addressing, access con-
trol lists, network address translation, etc. Yet, the existing infras-
tructure has many acute shortcomings and new protocols are sorely
needed. Data link and network layer protocols have been proposed
recently to improve scalability [23, 29], security [51, 53, 15, 14],
reduce equipment cost [2, 25], to ease management [23, 28, 14],
or to offer users more control over their traffic [44, 52]. The two
main factors that slow down the deployment of new protocols are
the inevitable tussle of the various stakeholders [19] and the need
for physical equipment upgrades.

The use of new equipment is a necessity for changes at the physi-
cal layer such as switching to new media or upgrades to higher link
speeds. But data link layer and network layer changes do not nec-
essarily require changes to the hardware and can be accomplished
through software alone if the hardware is sufficiently flexible. Our
goal is to enable such deployment of innovative new data plane
protocols without having to change the hardware.

Sustained efforts by academia and industry have produced ma-
ture systems that take us closer to this goal. The NetFPGA project’s
[39] FPGA-based architecture allows one to deploy experimental
changes to the data plane into operational backbones [11]. While
FPGAs are an ideal platform for building high speed prototypes
for new protocols, high power and low area efficiency make them
less appealing for commercial routers. Many equipment manufac-
turers have taken the approach of developing network processors
that are more efficient than FPGAs. For example Cisco’s Silicon
Packet Processor [22] and QuantumFlow [18] network processors
can handle tens of gigabits of traffic per second with packet pro-
cessing done by fully programmable 32-bit RISC cores. But for
efficiency they implement forwarding table lookup with separate
hardware modules customized to the protocol. Many of the pro-
posed new protocols use different forwarding table structures and
on these platforms, they cannot be deployed with software updates
(without degrading throughput). Thus we are left with the original
problem of hardware upgrades for deploying new protocols.

In this paper, we propose replacing custom lookup with flexible
lookup modules that can accommodate new forwarding structures
thus removing an important impediment to the speedy deployment
of new protocols. The current lookup modules for different pro-
tocols have many fundamental similarities: they consist mostly of
memories accessed according to strict access patterns defined by
the data structure, they perform simple processing during lookup,
and they function like deep pipelines with fixed latency and pre-
dictable throughput. We present a design for a general lookup mod-
ule, PLUG (Pipelined Lookup Grid) which builds on these proper-
ties to achieve performance and efficiency close to those of exist-
ing custom lookup modules. Instead of using a completely flexible
hardware substrate like an FPGA, PLUGs contain lightweight pro-
grammable microcores that perform the simple processing needed
during lookup. Data structured are spatially layed out and PLUGs
move the computation required by lookups to the relevant portions
of the data structure. Our contributions in this paper are as follows:

• Programmable lookup modules that enable changing data plane
protocols in high-speed routers and switches without hardware
upgrades (Section 2);

• A dataflow-based programming model for representing forward-
ing tables (Section 3);

• An implementation of the forwarding tables for many existing
and new protocols by using this model and a discussion of other
possible uses (Section 4).

In Section 5, we outline a scalable tiled architecture that imple-
ments the programming model. Section 6 presents a static schedul-
ing approach that avoids internal resource conflicts, simplifies hard-
ware, and guarantees predictable throughput. Section 7 has a pre-

Protocol
L1 miss Interconnection network
per lookup bandwidth (Gbytes/sec.)

Software Lookup module
Ethernet 8 256 6
IPv4 1.5 48 4
Seattle 6.5 208 6
Ethane 80 2560 27

Table 1: On-chip network requirements.

liminary evaluation of the efficiency of the proposed architecture.

2. A CASE FOR FLEXIBILITY IN LOOKUP
MODULES

Since network processors are programmable, it is plausible to
implement forwarding lookup for new protocols and even existing
ones like Ethernet and IP directly on the network processor shar-
ing a single in-memory copy of the forwarding table between all
cores. While appealingly simple, such a solution has performance
and cost disadvantages and high-speed routers do not adopt this
approach. Such lookups would access multi-megabyte data struc-
tures with multiple reads from the data structure for a single lookup.
Level-1 caches which are 8KB to 64KB in size are too small but
Level-2 caches can capture the working set. However, the intercon-
nection network required to connect the cores to a shared L2 cache
holding the forwarding table would be extremely hard to build, re-
quire tremendous bisection bandwidth, and would be too slow. As
the number of cores on chip increases it gets harder to scale this
interconnect. We analyzed how such a system would perform by
measuring the traffic needed between L1 and L2 caches for soft-
ware lookups on an Intel Core2 processor with 32 byte L1 cache
lines. These measurements were made by examining performance
counters while running the protocols on representative data. Ta-
ble 1 shows the average number of requests to the L2 cache from a
single processor to satisfy a single lookup operation. To sustain a
throughput of 1 billion lookups per second, we can then determine
the number of requests the L2 cache must satisfy which in-turn
is the bandwidth the interconnection network must provide. This
ranges from 48 Gbytes/second to 2560 Gbytes/second as shown in
the third column. In the fourth column, we show the bandwidth re-
quired to interface to a specialized lookup module which is at least
an order of magnitude less.

Hence, high-speed network processors use separate lookup mod-
ules for forwarding tables. The lookup module receives the address
from the network processor core and returns the lookup result a
few cycles later. By using a lookup module the on-chip network
connecting the cores to other resources has less traffic and thus
a network with a smaller bisection bandwidth suffices. The local
caches of the cores are not “polluted” with portions of the forward-
ing tables, so the cores can use smaller caches and less area. Also
the overall latency of the lookup is reduced as a single roundtrip
over the on-chip network is sufficient. Column 3 in Table 1 shows
this approaches requires orders of magnitude lower bandwidth. The
biggest drawback of this approach is the lack of flexibility.A new
lookup module must be implemented for each protocol.We address
this drawback by proposing a programmable lookup module.

2.1 Two Examples
To illustrate the state-of-art and show the potential for a flexible

lookup module, we sketch how the forwarding tables for Ethernet
and IP are implemented today (Figure 1). Based on the similari-
ties and the differences we derive the mechanisms required for a
universal lookup module.

Ethernet Forwarding: For Ethernet we need a lookup in a hash
table using 48-bit Ethernet addresses as keys and port numbers as
values associated with the keys. Figure 1a shows a simple hash ta-
ble with 4 entries in each bucket. A key being looked up can be in
any of the entries of the bucket it hashes to, so it must be compared
against the keys stored in 4 entries. To reduce latency these compar-
isons are done in parallel by the custom lookup module from Figure
1b. The entries are divided among 4 memories, each holding one
entry of each bucket. The memories are connected to local pro-
cessing elements. During a lookup, the key and the number of the
bucket it hashes to are broadcast to the four processing elements.
Each one of them reads the entry corresponding to the bucket, com-
pares the key stored there with the key being looked up and if the
two match, it sends the port number onto the result bus. To increase
throughput these operations can be pipelined.
IP Lookup: IP lookup requires the longest matching prefix op-
eration which can be performed using a multibit trie as shown in
Figure 1e. The trie is traversed from root to leaves and at each level
two bits of the IP address are used to index into the current node1.
At the location identified by these bits we may find the final result
of the lookup (a port number) or a pointer to a node at the next
level. Figure 1f shows how a custom lookup module can be orga-
nized: three memories, each with the nodes from a given level of
the trie. Local processing elements read the correct node from the
memory, perform the required processing and generate the data to
be sent on the next link. The input link carries the IP address, the
next one carries the remaining bits of the IP address together with
either the final result if a match was found by the first processing
element or the address of the node to be accessed at the next level.
If the result is found earlier than the third level, later processing
elements just pass it through without performing memory reads.
Similarities: The two custom lookup modules are fundamentally
similar. Each have large memories connected to local processing
elements. The processing elements perform simple operations, and
each lookup follows an orderly succession of steps until it produces
a result after a fixed number of cycles. But their overall structure
differs because they implement different lookup algorithms. The
custom lookup modules lack generality in three key respects:the
number and size of memories, the specific processing performed
and the communication patterns supported.

2.2 PLUG: A Universal Lookup Module
In developing the PLUG we first developed a programming model

that enables the direct expression of the inherent structure in the
lookup operation.Lookup objectsdescribe this logical structure of
the data in the forwarding table and the associated algorithms for
lookups and updates. Conceptually the lookup objects are specified
with data flow graphs (Figures 1c and 1g). The nodes of these data
flow graphs arelogical pageswhich represent portions of the data
structure and the local processing steps for the data during lookups
and updates. The directed edges of the data flow graphs denote the
communication patterns. By extracting the structure, this program-
ming model simplifies the architecture and programming.

The PLUG architecture implements the programming model us-
ing a modular design outlined in Figures 1d and 1h. More details
of the architecture are in Section 5. It addresses the memory gener-
ality problem by having a large number of small memories that can
be grouped together to implement memory regions of the desired
sizes. Processing generality is achieved by using use lightweight
16-bit programmable processors. To accommodate any communi-
cation pattern, PLUGs use a multi-hop internal network that con-

1Since the trie in Figure 1e has three levels each corresponding to
the two bits of the IP address, it holds prefixes of length up to 6.

P0
00 01 10 11

P7 P2 P2
00 01 10 11

P3 P5
00 01 10 11

P2 P6
00 01 10 11

P5 P1 P4 P4
00 01 10 11

P7 P3 P4 P6
00 01 10 11

P1 P1 P6 P7
00 01 10 11

P6 P2 P4 P6
00 01 10 11

P2 P7 P3 P6
00 01 10 11

Memory 3

Memory 2

Memory 1Entry0

Entry1

Entry2

Entry3

Bucket 0

Entry0

Entry1

Entry2

Entry3

Bucket 1

Entry0

Entry1

Entry2

Entry3

Bucket 2

Entry0

Entry1

Entry2

Entry3

Bucket n

…
Memory 4

Memory 2

Memory 1

Memory 3

(e) Data structure used in IP lookup – multibit trie(a) Data structure used in Ethernet lookup – hash table

(f) Custom module for IP lookup(b) Custom module for Ethernet lookup

Memory 1
Memory 2

Memory 3

Processing
element 1

Processing
element 2

Processing
element 3

Input Output
Input

Processing
element 4

Memory 1

Processing
element 1

Memory 2

Processing
element 2

Processing
element 3

Output

Memory 3 Memory 4

PE 1

PE 2

COMM

Page
1.1

Page
2.1

PE 3

PE 4

COMM

Page
3.1

Page
4.1

Input Output Input Output

Page 1 …
Page 2 …
Page 3 …
Page 4 …

Page 1

Page 2

Page 3

(g) Data flow graph for IP lookup(c) Data flow graph for Ethernet lookup

Input Output

PE 1

PE 2

COMM

Page
1.1

Page
2.1

Page
2.2

PE 3

COMM

Page
3.1

Page
3.2

Page
3.3

Input Output

(h) 2-tile PLUG configured for IP lookup(d) 2-tile PLUG configured for Ethernet lookup

Figure 1: Data structures used by the forwarding tables for Ethernet and IP, separate custom lookup modules for them, data flow
graphs describing both algorithms and the mapping of both of them to the same 2-tile PLUG.

sists of communication modules at each tile and multiple direct
links between all pairs of neighboring tiles. Figures 1d and 1h
show how the two data flow graphs can be mapped to the same
2-tile PLUG. Multiple logical pages can be mapped to the same tile
by allocating separate memories to each of them. If a logical page
requires more memory than available on a tile, it can be mapped to
multiple tiles. Note that through the small programs running on the
lightweight processors, we don’t just control the processing per-
formed during lookups, but also the communication patterns and
the number and location of memories implementing each logical
page.

One of the distinguishing characteristics of the PLUG architec-
ture is that it is globally statically scheduled to avoid resource con-
flicts. No two processing elements contend for the same memory or
for the same communication ports. Three important benefits are: a)
simplification of the hardware, b) same fixed latency guarantees for
all lookup operations, c) processing a new lookup or update every
cycle. The programming model rules explained in the next section
allow such a statically scheduled architecture.

3. PROGRAMMING THE PLUG

A PLUG lookup objectimplements the main data structures of
the forwarding table and themethodsfor accessing them. In this
section we describe the primitives of the programming module:
data-blocks, code-blocks, messages, and logical pages. We con-
clude with examples of hash table implementations using the model.
Data: Data-blocksare the primitive building blocks for logical
pages and are small chunks of data that can be read with a sin-
gle memory access. A logical page is a collection of data-blocks
with similar roles in the data structure such that no method accesses
more than one data-block in each page. This rule allows us to avoid
conflicts for memory accesses.
Processing: The methods of the lookup object are broken into
code-blocks. Each code-block is associated with one logical page
and it can perform one memory access to read or write a data-
block from that page. Each page has multiple code-blocks corre-
sponding to the various methods of the lookup object. In practice,
lookup methods are typically performance critical and most com-
mon, but additional methods are required to build and maintain the
data structure.
Communication: Messagesare used to communicate between
code-blocks and the dataflow graph edges represent these messages.
The execution of a code-block starts when the page receives a mes-

Page A

Page B

Page C

Page D

Page E

Page F

Page G

Page H

Page I

Page J

Page K

Page L

Page O

Multicast message
from A to B and C

Separate messages
from D to E and F

Either G or H can generate a
message to I, but not both

Separate messages from
J and K reach L together

O receives a single message, if both M and N generate
a message, the one from N is discarded

Spread Divide

Collect Combine

Discard

Page M

Page N

(a) (b)

(c) (d)

(e)

Figure 2: Communication patterns in data flow graphs.

sage which also indicates the type of code-block to execute. The
entire context of the code-block consists of the data in the message
and that in the data-block read from memory. Each data-block can
send one or more messages to other pages and these must carry the
entire context needed for the code-blocks they trigger. The execu-
tion of the lookup object is started by sending messages from the
input interface of the PLUG. If the method produces results they
emerge as messages at the output interface.

The communication patterns between the logical pages of the
lookup object are described by the dataflow graph which is a di-
rected acyclic graph. The nodes in this graph are logical pages with
two special nodes of the input and the output interface. Each edge
in the graph represents one message. In practice, a few patterns can
be used to synthesize the complex dataflow graphs required for real
protocols. Figure 2 shows these complex communication patterns,
each of which requires some support in our software toolchain to
implement. Simple features of the architecture are used to imple-
ment these communication patterns: the existence of multiple par-
allel network links (for the divide and combine patterns), the avail-
ability of multi-hop multicast messages (for the spread pattern),
and static arbitration for deciding which message gets discarded on
a conflict (for the discard pattern).
Implementing the model: The PLUG programming model al-
lows a large variety of lookup operations to be implemented by a
simple yet flexible hardware. The model imposes the following
limitations: single memory access per page, strict adherence to the
acyclic data flow graph, limits on the sizes of data-blocks, code-
blocks, and messages.
Limitations: Some complex but infrequent operations (some up-
dates, expiration of old entries, memory compaction, etc.) cannot
be implemented as a single method of the lookup object. We sepa-
rate such operations into an arbitrarily complex routine that runs on
network processor cores and invokes one or more methods of the
lookup object. These methods need to follow the same data-flow
graph as the lookup methods. Thus an update to a page that is not
directly connected to the input interface by an edge in the graph will
have to go through one or more intermediate pages where simple
code-blocks will just relay the update message. This is a gener-
alization of the idea of “write bubbles” [8] used for updating IP
lookup pipelines without disrupting lookups.

3.1 Hash Tables

(a) Basic hash table

(c) Hash table with split entries

Values
for all
entries

(b) D-left hash table

Table 0
entry 0

Table 0
entry 1

Table 1
entry 0

Table 1
entry 1

Entry 0

Entry 1

Entry 2

Entry 3

Entry 0
key high

Entry 1
key high

Entry 2
key high

Entry 3
key high

Entry 0
key low

Entry 1
key low

Entry 2
key low

Entry 3
key low

(d) Hash table with combined entries

Entries
0 and 1

Entries
2 and 3

Finger-
prints

All
entries

(e) Hash table with fingerprints

Figure 3: Data flow graphs corresponding to changes to the
basic hash table design.

The lookup objects we implemented use many hash tables with
wide ranges of values for parameters such as the number of entries,
the size of the keys and the size of the values stored in entries.
To simplify the presentation of the individual lookup objects we
give below an overview of the 4 changes to the basic hash table we
used. Figure 3 presents the data flow graphs corresponding to the
basic hash table and the 4 modifications. Table 2 summarizes their
advantages, disadvantages and applicability.
Multiple hash functions: In the basic hash table (Figure 3a), due
to the randomness of the hash function, the buckets do not have
the same number of elements in them. This presents a problem as
when the number of used entries approaches the size of the hash
table, some of the buckets will be full much before others. If a new
key hashes to such a bucket it cannot be inserted, even though there
are many empty entries in the hash table. To make such a situation
unlikely, the hash table has to be run at a utilization of less than
100%. Using fewer, larger buckets allows better memory utiliza-
tion, but it increases power consumption as we need more logical
pages. D-left hashing [12, 13, 49] allows us to increase the mem-
ory utilization without increasing the number of pages. We use two
tables with different hash functions and on insertion hash to both
and insert in the table where the bucket the key hashes to is empti-
est. This makes it less likely that any buckets will have significantly
more entries occupied than the average. The example from Figure
3b implements d-left hashing. It uses two separate messages for the
groups of pages implementing the two tables because different hash
functions are used and the buckets in the two tables have different
positions.
Splitting: In some cases (e.g. Ethane) the size of the key is larger
than the maximum data-block size we can support. We can accom-
modate such hash tables by splitting the entries among multiple
pages. In the example from Figure 3c we split the keys into a high
key and low key stored on different pages. We send the two por-
tions of the key to the two separate groups of pages and each page
performs a check for its half of the key only. The last page keeps
the values for all entries and it reads the value associated with the
key only if both halves of the key successfully match indicated by

Modification Applicability Advantage Main disadvantages

Larger buckets always better memory utilization higher power
D-left hashing (b) always better memory utilization multiple input messages
Split entries (c) large entries can fit keys larger than data-blockhigher power, latency
Combined entries (d) small entries lower power higher latency
Fingerprints (e) with d-left hashing lower power higher latency

Table 2: The advantages and disadvantages of various modifications to the basic hash table.

it receiving two messages. There is one subtle possibility for false
positives that we must check: the two halves of the key may have
matched different entries of the bucket, and in this case the lookup
must fail.
Merging: In other cases (e.g. Ethernet) the size of a hash table
entry is smaller than half the size we can afford for a data-block.
Combining two entries in a data-block as shown in Figure 3d allows
us to reduce the number of pages (and hence power), but it increases
latency slightly because the code blocks need to perform two key
comparisons instead of one.
Fingerprints: A further opportunity for power saving is the use
of fingerprints [12] together with checks for exact matches for the
key as shown in Figure 3e. A first page contains small fingerprints
(say 8 bits) which are computed together with the hash function
and must be different for each of the keys in a bucket. All finger-
prints for a bucket are read and compared against the fingerprint of
the key being looked up. In the next page we can read directly the
only entry for which the fingerprint matches (if any) to perform the
check whether the keys match. This technique reduces power re-
quirements significantly because we do not compare against more
than one key in a bucket, but it increases latency because of the
processing in the fingerprint page. The use of fingerprints intro-
duces new conflicts as entries with the same fingerprint cannot be
stored in the same bucket even if the keys differ. When fingerprints
are used in combination with d-left hashing this is not that big a
problem as the conflicting entry can be moved to the other table.

4. LOOKUP OBJECTS FOR PROTOCOLS

4.1 Ethernet
We implemented Ethernet forwarding with learning, but without

VLAN support. The lookup object is a hash table with 4 entries in
each bucket, d-left hashing (2 tables) and combined entries (2 per
data-block). It uses a total of 4 logical pages. Each entry has 64
bits: a 48-bit Ethernet address, a valid bit, a 12-bit port number and
a 3-bit timestamp counter. If the key passed to the lookup method
matches a valid entry, the port number and timestamp are returned.
For each unicast Ethernet packet two instances of the lookup meth-
ods are invoked for destination and the source. If the lookup on the
source finds no match, we insert the address in the hash table and
thus learn the port through which it is reachable. We keep outside
the PLUG a secondary data structure summarizing which entries
are used (valid) and which are not and use it to determine in which
position to insert a new entry in.

We manage the expiration of the entries through the 3-bit times-
tamps. The system provides a coarse 3-bit “current time” vari-
able whose value is stored in every newly created entry. When the
lookup on the source address of a packet returns a timestamp that
is older than the current time, we invoke an update method for up-
dating only the timestamp in that entry. A background task periodi-
cally reads the valid entries one by one and invalidates those whose
timestamp is too old. Our coarse 3-bit timestamps generalize the

 Hash table with misbehaving hosts
 Key: MAC src addr + input port #
 Value: timestamp

OutputInput

 Hash table with permitted flows
Key: src+dst addr for MAC, IP, L4+
 IP protocol + input port #
Value: timestamp + output port #

Figure 4: Data flow graph for Ethane lookup object.

“activity bit” [14] used for garbage-collecting inactive entries and
allow more accurate control of the actual amount of time an entry
stays inactive before removal.

4.2 Ethane
In Ethane [14] a Controller host explicitly builds the forwarding

tables of all switches. The forwarding tables consist of two types
of entries: flow entries which indicate how the switch should for-
ward each allowed flow and per host entries indicating misbehaving
hosts whose packets should be dropped. The lookup object (Figure
4) uses two separate hash tables for the two types of entries. If
the lookups in both the hash tables succeed, only the result from
the misbehaving host table reaches the output interface. We im-
plemented the specific types of hash tables proposed in the original
Ethane paper: both use d-left hashing with two tables and one entry
per bucket. The key in the flow table is more than 26 bytes long, so
we used the split entries (Figure 3c) since the specific instantiation
of the architecture we consider limits the size of data blocks to 16
bytes. The lookup object has a total of 8 pages. By using larger
buckets and fingerprints (Figure 3e) the memory utilization could
be further improved without using more pages.

The Ethane flow table entries contain byte and packet counters
which we store in arrays outside the PLUG. The reason is that the
basic PLUG programming model mandates that each code block
perform a single memory access, but incrementing counters re-
quires two: a read and a write. The lookup method identifies the
position of the entry and no further searching is required to locate
the counters to increment. In Section 4.6 we show how the con-
straint of a single memory access per code block can be relaxed
if lookups arrive at a rate lower than one per cycle. With a rate of
one lookup every 6 cycles we could accommodate two counters per
entry in the PLUG. For the specific PLUG we evaluate in this pa-
per this translates to 167 million lookups per second which is more
than the rate required for forwarding 64-byte packets at line rate for
eight 10Gbps links.

To support multicast, in Ethane the flow table entries need to
store the set of ports through which the packets of a given flow
should be forwarded (note that the flow identifier also includes the

 DHT consistent hash 1
Roots of b-trees used
to for range search

OutputInput

 DHT consistent hash 2
Leaves of b-trees used
to for range search

 Next Hop
Array with MAC
address and
next hop port
for each switch

 Hash table with host locations
Key: MAC address
Value: switch index + type + timestamp

Figure 5: Data flow graph for SEATTLE lookup object.

input port). Our implementation can be easily extended to support
multicast for switches with a small number of ports (the Ethane
paper reports implementing switches with 4 ports) by storing in the
flow table a bitmap with the ports to which the packets should be
sent. But since the size of the bitmap is the number of ports, for
switches with more than a few dozen ports more radical changes
to the lookup object would be required to avoid a big increase in
memory usage.

4.3 Seattle
SEATTLE [29] switches participate in a routing protocol to com-

pute shortest paths between each pair of switches. The data plane
forwarding table of each switch has a table with the next hop to
use for reaching any of the other switches. Endhost interfaces are
reachable through a single switch that connects them to the SEAT-
TLE network. Individual switches do not store forwarding entries
for each remote host, they just keep a cache of popular destina-
tions storing the switch they are reachable through (not the port
they are reachable through). This way the cache needs not be in-
validated when topology changes affect the path to switches that
connect cached destinations. To locate unknown hosts, switches
use a one-hop DHT in which each switch is responsible for storing
indefinitely entries for all hosts hashing to a certain portion of the
DHT ring. If a switch receives a packet whose destination is not in
its cache, it needs to forward it to the resolver switch responsible
for the portion of the hash space it maps to.

Our lookup object for SEATTLE (Figure 5) implements three
components: a hash table mapping host addresses to their locations,
a next hop array with the next hop port for each switch and a DHT
ring for looking up the resolver switch implemented as an array of
two-level B-trees. The structure of the lookup object is such that
one lookup per packet is sufficient. In rare cases we also need an
update of the timestamps in the location table. To minimize latency,
the DHT ring and the location table are looked up in parallel. The
DHT ring always produces a result, but if the lookup in the location
table is successful it overrides it. Hence we always read the next
hop array, either to find the next hop to the switch connecting the
destination of the packet, or to its resolver.

The next hop tableis a simple array with the addresses and the
next hops for all the switches. We do not need a hash table because
the location table and DHT ring store the position in the array at
which the information associated with a switch is. We also need
to store the address of the switch in this array because it is needed
to build the outer header when the packet is encapsulated to be
tunneled to the destination switch.

The location tableuses MAC addresses as keys. It stores many
types of entries: the cache of popular remote destinations, addresses
for which the switch is the resolver in the DHT, locally connected
addresses and the addresses for all switches. Each entry contains
the position in the next hop array for the connecting switch. It also
stores a timestamp and a 2-bit type field which identifies which of

these four categories the entry belongs to. There are different poli-
cies for updating entries of different types. For example entries are
removed from the cache when a timeout occurs, whereas entries for
which the switch is the resolver are kept until the DHT changes.

The DHT ring needs to find the switch with the hashed iden-
tifier nearest, but no larger than that of the address being looked
up. We divide the hash space into 4096 intervals of equal size and
for each interval we keep a B-tree with the hashed identifiers of all
the switches that map to it. We chose the number of intervals so
that we can use B-trees of depth 2. The size of B-tree nodes is 128
bits: five 8-bit keys, five 16-bit values pointing to the entries for
the switches associated with the keys and an 8-bit counter for the
number of keys actually used. We use one of the values in the root
node to point to the entry of the switch with the largest ID in earlier
intervals. The second level of each B-tree has 5 nodes statically
assigned to it, but the number of children actually used varies.

4.4 IP Version 4
For IP version 4 we implemented two lookup objects that per-

form the “longest matching prefix” operation. The first one is a
straightforward adaptation of the “Lulea” algorithm [20] which uses
compressed multibit tries and achieves very compact sizes for the
forwarding table, but updates are relatively slow. The second one is
an algorithm using similar techniques that results in slightly larger
forwarding tables, but supports fast updates. For brevity we only
describe here the second lookup object, but we note that the main
difference from Lulea is that it does not perform leaf pushing.

The lookup object organizes the IPv4 forwarding table as a three-
level multi-bit trie with the root node covering the first 16 bits of
the IP address and the nodes at the other two levels covering 8 bits.
Uncompressed trie nodes consist of two arrays of size 65536 for
the root and 256 for the other nodes. The first array specifies the
port associated with the longest matching prefix (from among those
covered by the node) and the second holds pointers to children. For
nodes without children, we omit the second array. In the result ar-
ray there are often port numbers that repeat (covered by the same
prefix from the forwarding table), and in the child array there are
many entries with a NULL pointer. The compression algorithm
saves space by removing repetitions from the first array and re-
moving NULL pointers from the second. We use two compression
techniques (Figure 6): bitmap compression for “dense” nodes and
value-list compression for “sparse” nodes. A node is sparse if the
compressed array is below a certain size (8 in our implementation,
4 in Figure 6). Bitmap compression breaks the arrays into chunks
of 32 values (8 in Figure 6) and builds 32-bit bitmaps to find the
right entry within these arrays during lookup. In the first bitmap
the bit is set for positions which differ from the next one and in
the second the bit is set for non-NULL children. The lookup code-
block processing the summary counts the number of bits set before
the position to which the IP address being looked up is mapped
to. With value-list compression (not shown in Figure 6) we keep a
list of values for the 8 bits covered by the node for which the port
number differs from that for the previous value. For the child ar-
ray we keep a list of values that correspond to children. The lookup
code-block performs binary search in the value-list array to find the
correct index in the two compressed arrays.

4.5 Other Protocols
IPv6: We are currently implementing a lookup object for IPv6.
Since the last 64 bits of IPv6 addresses are the host part, prefixes
with lengths from 65 to 127 are invalid and we use a hash table
for the last 64 bits. To reduce the latency of the lookup we divide
prefixes into two pipelines that are looked up in parallel: one for

port 10000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

port 1
port 2
port 2
port 2
port 2
port 2
port 2
port 3
port 3
port 4
port 4
port 3
port 3
port 3
port 3

ptr 4
ptr 3

ptr 2

ptr 1
0
1
0
0
0
0
0
1
0
1
0
1
0
0
0
1

0
1
0
0
1
0
0
0
0
0
0
0
1
1
0
0

Base
index

Base
index

Base
index

Base
index

port 1
port 2
port 3
port 4

…

port 3…

…
…ptr 4

ptr 3
ptr 2
ptr 1

S1

S0

Uncompressed dense
trie node with children

Compressed dense trie node with children
Summary page Result page Children page

Result array Children array Result bitmap Children bitmap

Compressed
result array

Compressed
children array

port 10000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

port 1
port 1
port 1
port 2
port 2
port 2
port 2
port 2
port 2
port 2
port 2
port 3
port 3
port 3
port 3

Sparse trie node without children

Result array

port 1
port 2
port 3

…
…

Result page

Compressed
result array

4
12

Base
index

Summary pageUncompressed

Level 1
summaries

Level 1
results

Level 1
children

Level 2
summaries

Level 2
results

Level 2
children

Level 3
summaries

Level 3
results OutputInput

Figure 6: Compression technique and dataflow graph for the IPv4 lookup object.

prefix lengths of up to 48 and the other for prefix lengths of 49 to
64 and 128. The root of this second pipeline is a node with stride
48 implemented as a hash table. The latency of the IPv6 lookup is
only 70% larger than than for IPv4, but it uses more than 3 times
the number of pages (27) increasing power consumption.
AIP: The Accountable Internet Protocol [3] uses addresses com-
posed of 160-bit cryptographic accountability domain (AD) ad-
dresses and 160-bit endpoint identifiers (EIDs). This helps solve
many security problems that stem from the fundamental lack of ac-
countability in the traditional IP. The core forwarding operation on
AIP addresses requires looking up large hash tables with AD ad-
dresses or EIDs as keys and PLUG can implement this efficiently.
Since 144 of the 160 bits are generated by cryptographic hash func-
tions we can exploit their randomness to reduce the size of the ac-
tual keys stored in the hash table buckets. We can use some of these
bits as the bucket identifier and others as fingerprint, thus the actual
entry only needs to store the remaining bits.
PLayer: PLayer [28] is a data link protocol for data centers achiev-
ing more robust control of the traffic by using policy-aware switches
to direct traffic through the right sequence of middle boxes. For-
warding is based on rules on the source of the packet and the flow
5-tuple (source and destination IP and port number and protocol).
This is similar to the packet classification operation discussed in
Section 4.6 and can be implemented on PLUG.
NAT: PLUGs are well suited for implementing network address
translation with hash tables and arrays. We also considered a NAT-
based architecture, IPNL [23]. Most of the required operations can
be implemented by PLUGs. The one operation that is hard to im-
plement directly on PLUG is lookups when keys are variable-sized
such as for a cache of mappings from fully qualified domain names
to IP addresses. A hash table with collision-resistant fingerprints of
the FQDNs as keys would be straightforward.

4.6 Discussion
PLUGs can be used for other functions and they can be used in

scaled up or scaled down modes which we discuss below.
Packet classification:Another throughput-critical data plane oper-
ation involves matching packet headers against rules with ranges or
prefixes for each of the header fields (source, destination and proto-
col for IP and source and destination port). TCAM-based solutions
for the packet classification problem cannot be implemented on our
low-power SRAM-based architecture, but many of the algorithmic

solutions could work well. Algorithms that rely on processing the
fields independently and combining the results through bitmap op-
erations [35, 7] can make use of the parallelism of the PLUG pro-
gramming model, the wide memory reads, and the ability to select
the highest priority answers by discarding lower priority results.
Other approaches relying on decision trees [26, 43] or forests of
tries [5] can be naturally adapted to a pipeline and the flexibility
of the programmableµcores makes it easy to support the required
operations on the tree nodes. While we have not implemented any
of these algorithms on PLUG, we believe that packet classification
can be one of the important uses for it.
Signature matching: Deep packet inspection often relies on DFA-
based signature matching and compression techniques [33, 34, 9,
31] are often applied to reduce the memory used by transition ta-
bles. Lookup in these compressed transition tables is well suited
for PLUG and we have an implementation using some of the pro-
posed techniques. The latency of the PLUG can be a problem, but
techniques that consume multiple bytes at a time [10] may alleviate
it.
Per flow state: Features such as accounting, application identifi-
cation and intrusion prevention are supported by modern network
equipment and require per flow state. Hash tables with per flow
state can be placed on the PLUG. With current technology PLUGs
that can accommodate on the order of one million flows are feasi-
ble.
Scaling down: In settings where the target throughput is less than
one lookup per cycle, the programming model can be extended in
powerful ways. If the pipeline is only required to accept a new
method invocation every X cycles, we can relax the limitation that
each code block accesses the memory once. In fact each code block
has a window of X cycles in which it can perform multiple memory
accesses, for example to read increment and then write counters.
The semantics of concurrent execution of multiple methods in the
pipeline is still that of atomic sequential execution.
Scaling up: If the desired throughput is larger than one lookup per
cycle, multiple independent pipelines with separate copies of the
forwarding table can be used. The cost of the increase in through-
put is an increase in memory requirements, but it can be reduced
by taking advantage of the existence of popular destinations in the
forwarding tables. We can split the forwarding tables into a small
group of trie nodes or hash table entries that store popular destina-
tions and a larger group of unpopular ones. The pipelines can have

Figure 7: PLUG Architecture Overview. Three virtual tiles to
map three logical pages. (b) shows details for one tile.
separate copies of the popular entries but share one copy of the un-
popular ones. Collisions could still occur in the shared pipeline,
but they should be rare and one can recover by submitting again
the lookup that did not complete due to the collision. Hence we
can achieve performance benefits akin to those of caching in this
statically scheduled architecture.
Limitations: PLUGs are not suitable for all data plane processing.
For some tasks a traditional architecture (multiple processor cores
with multiple levels of caches backed by DRAM) is better suited.
There are three fundamental characteristics that distinguish tasks
suitable for a PLUG: the ability to describe the task with an acyclic
data flow graph, use of a data structure that can fit into SRAM,
and poor locality in this data structure. Signature matching using
DFAs involves cyclic data dependencies and hence the task cannot
be described as an acyclic data flow graph; PLUG can be used as
a lookup module invoked separately for each byte of input, but it
cannot implement the whole computation. The second condition
may not hold for equipment where per flow state is too large and a
PLUG is able to accommodate only a fraction of the flow records.
Examples of where the third condition does not hold are tasks such
as parsing protocol headers where no data structure is used or pro-
tocols for which the data structure is small enough to fit in L1 cache
[2].

5. PLUG ARCHITECTURE

Figure 7 shows the high level overview of the PLUG architec-
ture. It is a tiled multi-core multi-threaded architecture with a very
simple on-chip network connecting the tiles. Tiles provide three
types of resources: computation shown by the grid of computation
cores (calledµcores), storage shown by the grid of SRAMs, and
routers shown by the array of routers. The routers form an on-chip
interconnection network connecting multiple tiles together to form
the full PLUG chip. External interfaces to provide input and read
output from the PLUG are extensions of this on-chip network. The
architecture can support multiple external interfaces and we expect
PLUGs to be implemented as standalone chips or integrated with
other chips.

A key simplification of the architecture is that it is globally stat-
ically scheduled which is achieved by adhering to a set of rules in
generating the code-blocks. In the remainder of this section, we
describe the organization of each tile, the ISA, theµcore in each
tile, and the on-chip network.
Tile: The tile’s resources are virtualized as a memory array with
M ports and thus allowing up to M accesses at a time, a router ar-
ray with R ports thus allowing R input/output messages at a time,
and a computation array withC cores. The PLUG architecture can
be scaled along any of these dimensions, and the figure shows a
4Mx16Cx6R configuration. This virtualization allows the several
logical pages and their associated code-blocks to be mapped to a
tile. Thus one physical tile can be viewed as multiple logical or vir-
tual tiles, where each such virtual tile has a subset of the resources.
An example assignment is indicated by the coloring shown in the
figure, where three logical pages are mapped to a single tile by con-
structing three virtual tiles colored blue, green, and orange. A set of
programmer-visible special tile-registers are available to associate
sets of cores with each memory port and router.

When a message arrives through a network, it triggers the execu-
tion of the code-block it refers to. The next available freeµcore starts
executing the code-block. If another message arrives in the next cy-
cle, anotherµcore is used. When a code-block finishes executing,
that µcore is free. The resource constraints dictate that no more
thanM logical pages can be assigned to a single tile and thus the
maximum number of virtual tiles isM . Depending on the length of
the code-blocks, different number ofµcores are assigned to each
logical page. The number of networks assigned to each virtual tile
depends on the number of messages generated.
µCores: Eachµcore is a simple 16-bit single-issue, in-order pro-
cessor with only integer computation support, simple control-flow
support (no branch prediction), and simple instruction memory (256
entries perµcore). The register file is quite small, only sixteen 16-
bit entries and it requires four consecutive entries to be read for
feeding the router.
Router: Each tile also includes simple routers that implement a
lightweight on-chip network (OCN). Compared to conventional OCNs,
this network requires no buffering or flow control as the OCN traffic
is guaranteed to be conflict-free. The router’s high level schematic
is shown in Figure 7c. The routers implement simple ordered rout-
ing and the arbiters apply a fixed priority scheme. They examine
which of the input ports have valid data, and need to be routed to
that output port. On arrival of messages at the local input port, the
data gets written directly into the register file. Each network is 64-
bits wide, and the software mapper assigns networks to the virtual
tiles. The network message is a total of 80 bits, 16 bits of header in-
formation and 64 bits of data. The header information contains five
fields: destination encoded as a X coordinate and Y coordinate, a
4-bit type field to encode 16 possible types of messages, a multicast
bit which indicates the message must be delivered to some interme-
diate hops en route to the final destination and a 3-bit selector field.

This field is used to select between virtual tiles and to control which
of the tiles on the path of a multicast message actually process it.
ISA: The PLUG ISA closely resembles a conventional RISC ISA,
but with two key specializations. It includes additional formats to
specify bit manipulation operations and simple on-chip network
communication capability. The ISA uses 16-bit words and sup-
ports variable length loads that can read up to 128 bits and write
them into consecutive registers. We decided on 16-bit words based
on analysis of typical workloads.

5.1 Implementation Specification
To derive a PLUG configuration, we examined different proto-

cols and current and projected future data sets. Our target was 1 bil-
lion lookups per second (depending on minimum packet size and on
the number of lookups/packet, maximum traffic volume is between
160 Gbps and 600 Gbps) and less than 5 watts worst case power.
We picked a technology design point in the future and chose a 32nm
design process (which will be in volume production in 2010 [1]).
Many of our data-sets required 2MB and to account for future ex-
pansion, we provisioned for 4MB on-chip storage. Based on area
models we developed (explained below) a 21mm2 chip provides 16
tiles and a total storage of 4MB. Our workload analysis showed 32
cores, four 64KB banks, and 8 networks per tile meets our design
goals. This 16-tile 4Mx32Cx8R configuration is the specification
evaluated in this paper.

5.2 Modeling and Physical Design
We constructed area and power models for the PLUG architec-

ture using widely accepted design tools and methodology. Our
models include three components: SRAM, theµcores, and inter-
connection network.
Area: The SRAMs were modeled using CACTI 5.0 [48] - a stan-
dard SRAM modeling tool. We used single-ported SRAMs and to
save power used LSTP memory cells which have low static power2.
For modeling theµcore array, we used published processor data-
sheets and used the Tensilica Xtensa LX2 [47] as a baseline for our
µcore. This processor is a simple 32-bit, 5-stage in-order proces-
sor and occupies 0.206mm2 built at 90nm. Projecting for 32nm
technology and simplifying to a 16-bit data path, we scale down
its area and our models project 0.013mm2 . We conservatively as-
sumed the interconnect’s area is 10% of processor area. Based on
this model, a single PLUG tile’s area is 1.29mm2 of which 74%
is SRAM.
Power: CACTI provides power measurements for SRAMs and
we estimate worst case power by assuming the SRAM is accessed
every cycle. We used processor data-sheet information about the
Xtensa LX2 processor to derive the power consumption of our 32
µcore array. We model interconnect power per tile as 15% of pro-
cessor (µcore array in our case) dynamic power for an active link,
adapting the findings in [50]. The worst case power for a tile is 990
milliwatts.

Dynamic chip power for the PLUG is derived by considering
the (maximum) number of tiles that will be activated during the
execution of a method (activity number (A)) and considering and
average links active (L). Thus, worst case power can be modeled as
A tiles executing instructions in allµcores and one memory access
every cycle. We computeL based on the mappings of the lookup
objects to the grid discussed in Section 6. The final chip power = [
((memory leakage power per tile) +µcore leakage power per tile))

2The LSTP transistors trade off high on-currents for maintenance
of an almost constant low leakage of10pA/µm across technol-
ogy nodes by using longer gate length, thicker gate oxide, higher
threshold voltage, and higherVdd [1].

* (total number of tiles)] + [((dynamic memory power per tile)
+ µcore power per tile)) * (activity number)] + [(interconnect
power per active link) * (average links active)]. This model is
seeded with theactivity number (A)for different protocols.

6. SCHEDULING AND MAPPING
Earlier sections describe the lookup objects, we show here how

the logical pages and code-blocks can be mapped to the actual
physical resources. While we currently perform these operations
manually, we envision that the compiler could eventually make all
mapping decisions. A first step is to convert logical pages into
smaller physical pages that can fit on an SRAM bank. Different
logical pages can get mapped to a single physical tile and each log-
ical page has its own set of SRAM banks andµcores. Second, the
mapper also checks for resource conflicts - the number of instruc-
tions in the code-blocks that have been mapped to a tile must not
exceed the total number ofµcores available. Third, the mapper
also enforces fixed delays as explained in detail below.
Code-blocks: Each tile can be executing multiple instances of
code-blocks for the same logical page. While memories and net-
works are not shared between different pages mapped to the same
tile, the cores that run code-blocks for the same page could get
into conflicts when accessing memory or sending messages. We
ensure that each code-block for a page performs the memory oper-
ation the same number of cycles after its start. Since the code-block
instances running concurrently are started in different cycles, this
ensures that no memory conflicts arise. Similarly the sending of
messages occurs a fixed number of cycles after the code-block is
started.
Different paths: Two lookup instances can take different paths
through the grid. The time it takes for the result to emerge is the
sum of the processing delays (which are the same for all lookups)
and the total propagation delay. If the paths have different lengths
the total latencies differ and conflicts can occur at the output inter-
face (lookups initiated in different cycles emerge at the same time)
or inside the grid. Figure 8a shows how adopting a propagation
discipline can ensure that all paths have equal length. Since mes-
sages propagate only to the right or down, the propagation latency
to every tile is the Manhattan distance from the tile connected to
the input interface. The two lookups reach tile J through differ-
ent paths, but their propagation delays are the same. Note that a
conflict on the link between tile O and tile P is still possible: the
propagation delays are the same, but the processing delays differ as
lookup 1 has been processed by the first two pages, while lookup
3 has been processed by all three. To avoid these types of conflicts
we use two separate networks. More generally this type of conflict
arises because the two messages correspond to two different edges
in the data flow graph: for lookup 1 the edge between pages 2 and
3 and for lookup 2 the edge between page 3 and the output. The
propagation disciplines can ensure that messages corresponding to
the same edge do not collide, but if messages corresponding to dif-
ferent edges can occur in the same area of the grid the edges must
be mapped to different networks.
Multicast: Hash tables use “spread” edges (Figure 2a) to distribute
the lookup to multiple logical pages. We implement these using
multicast messages. Each multicast message takes a single path
through the grid, but it may trigger code blocks at more than one
tile. In Figure 8b we show the mapping of a 2-page hash table
to a 16-tile grid. Each logical page is mapped to 8 tiles and the
mapping ensures that each lookup will need to activate entries from
the two pages mapped to neighboring tiles. To avoid triggering
code blocks on intermediate tiles (e.g. tiles A and E for lookup
1) we use the selector field from the the message header. Code-

Figure 8: Mapping lookup objects to the PLUG grid.

Protocol Memory # of # of Lines of code # of
size logical code- tiles
(MB) pages blocks PLUG Reference

Ethernet 2 4 4 243 51 8
IPv4 1.4 8 26 450 330 8
Seattle 2 11 18 390 347 11
Ethane 2 8 15 1120 200 8

Table 3: Characterization of the lookup objects implemented
on a 16-tile PLUG.

blocks are triggered only if the value of this field matches a local
configuration register (similar to how multicast is implemented by
Ethernet endhosts).
Unequal propagation delays:In some situations we cannot avoid
unequal propagation delays. In Figure 8c we show the mapping of a
simple one-page lookup object onto the tiles not used by the object
from Figure 8a. Latency is minimized by using tile D for both the
input and output interface, but this means that the propagation delay
of lookup 2 is two cycles whereas for lookup 1 it is zero cycles.
To avoid a conflict at the output interface we add two cycles of
“padding” to the code blocks running on tile D.

7. EVALUATION

In this section, we evaluate PLUGs and their suitability and effi-
ciency in supporting our suite of four protocols. We implemented
each of the protocols using our software development stack. First,
we present a quantitative characterization of the different protocols
to demonstrate feasibility. We then describe the mapping of these
protocols to the PLUG architecture and evaluate performance in
terms of latency, area, and energy efficiency. For all experiments
we use a 21mm2 4Mx32Cx8R 16-tile PLUG chip with 64KB
memory banks.

7.1 Software Toolchain and Methodology
We implement PLUG lookup objects as C++ objects. For each

lookup object, we first developed a reference implementation which
directly implements the application without transforming it to the
PLUG model but implements the same routines (lookup, updates,
expiration of old entries, etc.). We use a C++ framework, which

Protocol Logical page bytes page mem. Latency
name per size banks (cycles)

data- (KB) per Code Total
block page block

Ethernet Buckets 16 512*4 8 10 10

IPv4

L1 summaries 12 24 1 10

82
L1 results 2 34 1 6
L1 children 2 27 1 9
L2 summaries 8-14 609 10 20
L2 results 2 685 11 6
L2 children 2 7 1 9
L3 summaries 6-9 36 1 16
L3 results 2 26 1 6

Seattle

HostLoc 9 144*8 3 14
49DHT Ring 0 16 64 1 20

DHT Ring 1 16 320 5 20
NextHop 8 512 8 9

Ethane
Misbehaving 16 256*2 4 21

31Flow table 1 16 256*4 4 10
Flow table 2 16 256*2 4 10

Table 4: Logical page characterization of the protocols.

provides the following: 1) a logical-page data structure as an array
data-type, 2) explicitly defined code-block functions to access these
data structures, and 3) network messages that are routed between
physical pages. Applications are implemented using this frame-
work and executed by invoking methods and passing input network
messages. Hash functions are computed by the network processor.
Our framework executes the corresponding code-blocks on differ-
ent pages and finally provides the result message which is verified
by comparing to the reference implementation. For performance
analysis, we hand-assembled code-block programs, based on the
C++ implementation.

7.2 Quantitative Results
We evaluate the cost of the generality provided by PLUG by

comparing against idealized implementations for lookup modules
for all the protocols we implemented. We also compare against
NetLogic’s NLA9000, a widely used custom lookup module for
IPv4 that implements a proprietary algorithmic pipelined lookup.
Data sets:Table 3 describes the characteristics of the four lookup
objects we implemented. For each protocol we used data-sets and

Protocol Memory (MB) Area (mm2)
PLUG Ideal Overhead PLUG Ideal Overhead

Ethernet 2.00 2.0 0% 9.8 6.6 49%
IPv4 2.00 1.4 43% 7.4 4.6 61%
Seattle 2.75 2.0 38% 13.5 7.2 88%
Ethane 2.00 2.0 0% 9.8 6.6 49%

Table 5: Memory and area characteristics.

traces that reflect deployed scenarios and/or future needs. Ether-
net forwarding uses random 100K addresses, IPv4 uses an actual
routing table with 280K prefixes, Seattle has been dimensioned to
support 60K switches and for Ethane we used the guidelines from
[14]. For all protocols, we see that the number of logical pages
is quite small and that the number of lines of code to develop the
PLUG implementations is similar to the reference implementation.
The last column in the table also shows the number of tiles in the
PLUG used.

Table 4 describes in detail the characteristics of individual logical
pages. It shows the size of the data-blocks in each logical page and
how many physical memory banks are used to schedule this page
to the PLUG hardware.
Latency: Column 6 in Table 4 shows the latency in cycles of the
largest code-block associated with each logical page of an appli-
cation in the last column. These numbers vary between 6 and 20
cycles. The total latency is simply the sum of the code-block laten-
cies along the dataflow graph’s critical path and it varies between
10 and 82. These numbers do not include the propagation latency
which is 8 cycles on our 16-tile grid.
Memory and area: Table 5 characterizes the memory occupied by
the different implementations. During the mapping process logical
pages are broken down into physical pages that will fit on a mem-
ory bank. Then, we decide which page is mapped to which tile and
which bank. To avoid conflicts, certain banks may not get com-
pletely full because they contain a physical page smaller than the
memory available in the bank. Occasionally we leave banks un-
used on tiles where we cannot map a new page because too many
µcores are used by the pages already mapped to the tile. Column
2 in Table 5, shows the total memory (sum of SRAM banks) used
in the different protocols accounting for these fragmentation and
scheduling losses and compares to the actual memory required by
the application. For Ethernet forwarding and Ethane which both
consist of very regular hash tables, there is no overhead. In the
other two protocols, the overheads are acceptable: 38% and 43%.

The PLUG chip devotes 74% of the area to memories and the
remaining 26% to computation cores and routers. Column 5 in Ta-
ble 5 shows the area occupied by a PLUG chip if sized to match
the needs of the protocol alone. If a protocol required only 4 tiles,
then we report the area of a 4-tile PLUG in this column. We are
not counting the area of unused tiles as overhead because they can
be used by other lookup objects. Column 6 shows an aggressive
estimate of the minimum area required for a specialized lookup
module. For this aggressive estimate, we assumed no area for any
of the processing required and count only the area of memories as-
suming no area losses due to alignment problems when laying out
the memories corresponding to the logical pages. IPv4 for example
would require eight individual SRAMs whose sizes match the size
of the logical pages listed in Table 5. We notice that the area over-
heads, introduced due to the generality of PLUG can be as high as
88%. However, this comparison is to an idealized implementation.
The difference will be smaller when comparing PLUGs to realistic
specialized implementations.

Metric PLUG NLA9000
Area (mm2) 140 -
Power (Watts) 1.4 6.5
Throughput (billion lookups/second) 633 300
Latency of lookup (ns) 148 160

Table 6: PLUG comparison to NetLogic NLA9000 (both at
55nm technology, interface overheads ignored for PLUG).

Protocol PLUG Ideal
Ethernet 0.72 0.22
IPv4 1.06 0.22
Seattle 1.68 0.33
Ethane 1.36 0.32

Table 7: Worst case power (Watts).

Power: Table 7 shows the power consumed by the PLUG for dif-
ferent protocols derived using our power model by determining the
activity number of each of the protocols. Columns 2 shows total
power and column 5 shows the power consumed by an ideal imple-
mentation which requires no power for processing and consumes
only memory read/write power. We see that PLUGs are within 5X
of this oracle implementation that simply cannot be physically con-
structed.
Comparison to state-of-the-art: The NLA9000 from NetLogic
is a chip widely used for IP lookups and it can be configured as
TCAM or as a low-power SRAM-based IP lookup engine using a
proprietary lookup algorithm. It can fit 1.5 million IPv4 prefixes,
it does 300 million lookups per second at a latency of 160ns con-
suming 6.5 Watts. Since this chip is built at 55nm technology we
compare to a PLUG chip also at 55nm technology for this discus-
sion. Because the SRAMs are slower, the highest frequency for the
PLUG is 633 MHz which reduces throughput. We can accommo-
date 1.5 million IPv4 prefixes with a 140mm2 PLUG providing
9 MB of storage using 36 tiles. In this configuration the PLUG
would consume 1.4 Watts and provide a latency of 148ns. Table 6
shows a summary of this comparison. Our numbers for PLUG do
not account for the power and latency of the interfaces to the rest of
the system, but the numbers for NLA9000 include these interface
overheads also. We conclude that in this case the PLUG is actually
more efficient than a specialized lookup chip.

8. RELATED WORK
Lookup modules: Ternary content addressable memories (TCAMs)
use hardware parallelism to match the search key against all entries.
They have been used for IP lookup [38, 42]. Their main problem
is their large power consumption due in large part to the fact that
all entries are activated in parallel. While selective activation of
TCAM blocks reduces the power consumption [54], SRAM-based
algorithmic lookup modules are the preferred solution for large for-
warding tables. Pipelined tries [8, 17, 6, 32, 27] are used by algo-
rithmic lookup modules. The PLUG solution for IP lookup falls
into this category. Casado et al. [16] propose a flexible lookup
module that can accommodate protocol changes. Their design is
based on a TCAM cache that hands packets over to software when
it cannot make a forwarding decision. Unlike PLUG which can
deliver predictable throughput irrespective on the traffic mix, this
solution depends on a high cache hit rate to achieve good perfor-
mance.
Dataflow: The PLUG programming model is inspired originally

by the SDF model [36] and by the dataflow model of Click [30].
The core differences are that we focus on lookups, not on the entire
functionality of the router and that our goal is to map the objects to
a module specialized for lookups, not to a general-purpose proces-
sor. Gordon et al. discuss a general dataflow like approach called
StreamIt [24]. Similar to historical dataflow machines [21, 4] the
PLUG architecture implements dataflow execution but in a coarse
granularity of code blocks and network messages. The conflict-
free operation of PLUG pipelines is similar to systolic arrays that
execute in a very regular fashion.
Tiled architectures: The PLUG architecture is inspired by re-
cently proposed tiled architectures [46, 37, 41, 45]. The key dis-
tinction is that these architectures are targeting general-purpose pro-
cessing and thus include area- and power-consuming features such
as memory disambiguation, control speculation, networks with flow
control and buffering and are too inefficient for workloads domi-
nated by memory accesses such as the lookups. Targeting lookups
allows us to statically eliminate all resource conflicts in PLUG.
Thus our architecture spends less area and power on “overhead”
beyond the memories required to store the forwarding table (inter-
nal communication and processing) and achieves higher through-
put for lookups than existing tiled architectures because we can
fully pipeline processing in each tile. The suitability of tiled ar-
chitectures to network-related tasks has been investigated in [40].
The authors developed a router architecture and deployed it on the
MIT RAW tiled microprocessor. The goal of this work is slightly
different from ours, as it aims to implement the full routing pro-
cess, while the PLUG is specialized to provide lookup support for
an external processing element. Moreover, the applicability of the
RAW-based approach to tasks other than IP routing has not been
demonstrated.

9. CONCLUSIONS AND FUTURE WORK
High speed network processors use custom modules for lookups

in forwarding tables because of area, power, and performance ad-
vantages. Since most new protocols require different structures for
their forwarding tables, inflexible lookup modules customized to
current protocols slow down the deployment of new ones by mak-
ing hardware upgrades necessary. We propose PLUG, an architec-
ture for a flexible lookup module and we show how the forwarding
tables of four different protocols can be mapped to it.

The forwarding tables are expressed as lookup objects that break
the data structure into logical pages, break the processing into code
blocks each local to one page and use explicit messages for all data
transfers. The dataflow graph describes the internal communication
patterns of the lookup object. The data, processing, and communi-
cation of the lookup object are mapped to the tiled PLUG archi-
tecture in a way that avoids resource conflicts producing a pipeline
with a fixed throughput of one lookup per cycle. Each tile has mul-
tiple µcores to process one new request every cycle. The static
avoidance of resource conflicts makes the routers used for internal
communication and theµcores very simple.

We have shown that PLUGs compare favorably to other approaches.
Future work to refine the architecture, compiler, and system soft-
ware is required to definitely answer the question of how effective
PLUGs are in deployed systems. Further evaluation in a product
environment can best answer some of the questions that relate to
the economics of high-end routers.

Acknowledgments
This work is sponsored by NSF grants 0546585, 0627102, and
0716538 and by a gift from the Cisco University Research Program

Fund at Silicon Valley Community Foundation. We thank Pere
Monclus, Mike Swift, Mike Ichiriu, Randy Smith, Matt Fredrik-
son and the anonymous reviewers for suggestions that improved
this paper.

10. REFERENCES[1] Semiconductor Industry Association (SIA), Process
Integration, Devices, and Structures, International Roadmap
for Semiconductors, 2005 edition. Int. SEMATECH, 2005.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. InSIGCOMM,
pages 63–74, Aug. 2008.

[3] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker. Accountable internet protocol
(AIP). In Proceedings of the ACM SIGCOMM, Aug. 2008.

[4] Arvind and D. E. Culler. Dataflow Architectures.Annual
Review of Computer Science, 1:225–253, 1986.

[5] F. Baboescu, S. Singh, and G. Varghese. Packet classification
for core routers: Is there an alternative to CAMs. In
INFOCOM, Apr. 2003.

[6] F. Baboescu, D. Tullsen, G. Rosu, and S. Singh. A tree based
router search engine architecture with single port memories.
In ISCA, June 2005.

[7] F. Baboescu and G. Varghese. Scalable packet classification.
In SIGCOMM, pages 199–210, Aug. 2001.

[8] A. Basu and G. Narlikar. Fast incremental updates for
pipelined forwarding engines. InINFOCOM, Apr. 2003.

[9] M. Becchi and P. Crowley. An improved algorithm to
accelerate regular expression evaluation. InANCS, Dec.
2007.

[10] M. Becchi and P. Crowley. Efficient regular expression
evaluation: Theory to practice. InANCS, December 2008.

[11] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and
G. Salmon. Experimental study of router buffer sizing. In
Internet Measurement Conference, Oct. 2008.

[12] F. Bonomi, M. Mitzenmacher, R. Panigraphy, S. Singh, and
G. Varghese. Beyond Bloom filters: From approximate
membership checks to approximate state machines. In
SIGCOMM, Sept. 2006.

[13] A. Broder and M. Mitzenmacher. Using multiple hash
functions to improve IP lookups. InINFOCOM, pages
1454–1463, Apr. 2001.

[14] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: taking control of the enterprise. In
SIGCOMM, Aug. 2007.

[15] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh,
N. McKeown, and S. Shenker. SANE: A protection
architecture for enterprise networks. InUSENIX Security
Symposium, Aug. 2006.

[16] M. Casado, T. Koponen, D. Moon, and S. Shenker.
Rethinking packet forwarding hardware. InHotNets-VII,
Oct. 2008.

[17] F. Chung, R. Graham, and G. Varghese. Parallelism versus
memory allocation in pipelined router forwarding engines. In
SPAA, pages 103–111, June 2004.

[18] Cisco Public Information. The cisco quantumflow processor:
Cisco’s next generation network processor.
http://www.cisco.com/en/US/prod/collateral/routers/
ps9343/solution_overview_c22-448936.html, 2008.

[19] D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tussle in
cyberspace: Defining tomorrow’s internet. InSIGCOMM,
August 2002.

[20] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
forwarding tables for fast routing lookups. InSIGCOMM,
pages 3–14, Oct. 1997.

[21] J. Dennis. A preliminary architecture for a basic data-flow
processor. InISCA ’75, pages 126–132, January 1975.

[22] W. Eatherton. The push of network processing to the top of
the pyramid. Keynote Address at ANCS, Oct. 2005.

[23] P. Francis and R. Gummadi. IPNL: A NAT-extended internet
architecture. InSIGCOMM, pages 69–80, Aug. 2001.

[24] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli,
C. Leger, A. A. Lamb, J. Wong, H. Hoffman, D. Z. Maze,
and S. Amarasinghe. A stream compiler for
communication-exposed architectures. InASPLOS 2002, San
Jose, CA USA, Oct. 2002.

[25] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Luz.
DCell: A scalable and fault-tolerant network structure for
data centers. InSIGCOMM, pages 75–86, Aug. 2008.

[26] P. Gupta and N. McKeown. Packet classification using
hierarchical intelligent cuttings. InHot Interconnects VII,
Aug. 1999.

[27] W. Jiang, Q. Wang, and V. K. Prasanna. Beyond TCAMs: An
SRAM-based parallel multi-pipeline architecture for terabit
IP lookup. InINFOCOM, Apr. 2008.

[28] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware
switching layer for data centers. InSIGCOMM, pages 51–62,
Aug. 2008.

[29] C. Kim, M. Caesar, and J. Rexford. Floodless in seattle: A
scalable ethernet architecture for large enterprises. In
SIGCOMM, pages 3–14, Aug. 2008.

[30] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek.
The Click modular router.ACM Trans. Comput. Syst.,
18(3):263–297, Aug. 2000.

[31] S. Kong, R. Smith, and C. Estan. Efficient signature
matching with multiple alphabet compression tables. In
SecureComm, Sept. 2008.

[32] S. Kumar, M. Becchi, P. Crowley, and J. Turner. CAMP: fast
and efficient IP lookup architecture. InANCS, pages 51–60,
Dec. 2006.

[33] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. In
SIGCOMM, Sept. 2006.

[34] S. Kumar, J. Turner, and J. Williams. Advanced algorithms
for fast and scalable deep packet inspection. InANCS 2006,
pages 81–92.

[35] T. V. Lakshman and D. Stiliadis. High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching. InSIGCOMM, pages 203–214, Sept. 1998.

[36] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987.

[37] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz. Smart Memories: A modular reconfigurable
architecture. InISCA, pages 161–171, June 2000.

[38] A. J. McAuley and P. Francis. Fast routing table lookup
using CAMs. InINFOCOM, pages 1382–1391, Apr. 1993.

[39] N. McKeown. The NetFPGA project.
http://www.netfpga.org/.

[40] U. Saif, J. W. Anderson, A. Degangi, and A. Agarwal.
Gigabit routing on a software-exposed tiled-microprocessor.
In ANCS, pages 51–60, Oct. 2005.

[41] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
S. W. Keckler, D. Burger, and C. R. Moore. Exploiting ILP,
TLP and DLP with the Polymorphous TRIPS Architecture.
In ISCA ’03, pages 422–433, June 2003.

[42] D. Shah and P. Gupta. Fast updating algorithms for TCAMs.
IEEE Micro, 21(1):36–47, Jan. 2001.

[43] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
classification using multidimensional cutting. InSIGCOMM,
2003.

[44] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. InSIGCOMM, Aug. 2002.

[45] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.
Wavescalar. InMICRO ’03, pages 291–302, December 2003.

[46] M. B. Taylor, J. Kim, J. Miller, D. W. laff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, W. L. Jae-Wook Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The RAW
Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs.IEEE Micro,
22(2):25–35, March 2002.

[47] Xtensa lx2: The fastest processor core ever,
http://www.tensilica.com/products/xtensa_lx.htm.

[48] S. Thoziyoor, N. Muralimanohar, and N. Jouppi. Cacti 5.0.
Technical Report HPL-2007-167, HP Research Labs, 2007.

[49] B. Vöcking. How asymmetry helps load balancing. In
IEEE-FOCS, pages 131–140, Oct. 1999.

[50] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a
power-performance simulator for interconnection networks.
In MICRO 35, pages 294–305, 2002.

[51] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless internet
flow filter to mitigate DDoS flooding attacks. InProceedings
of the IEEE Symposium on Security and Privacy, May 2004.

[52] X. Yang, D. Clark, and A. W. Berger. NIRA: a new
inter-domain routing architecture.IEEE/ACM Transactions
on Networking, 15(4):775–788, Aug. 2007.

[53] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting
network architecture. InSIGCOMM, Aug. 2005.

[54] F. Zane, G. Narlikar, and A. Basu. CoolCAMs:
Power-efficient TCAMs for forwarding engines. In
INFOCOM, Apr. 2003.

